Chapter 1: Describing the universe

1. Circular motion. A particle is moving around a circle with angular velocity @ . Write its

_’
velocity vector ¥ as a vector product of @ and the position vector I with respect to the
center of the circle. Justify your expression. Differentiate your relation, and hence derive the

angular form of Newton's second law (?'I - I&') from the standard form (equation 1.8).

7

The direction of the velocity is perpendicular to & and also to the radius vector I. and is
given by putting your right thumb along the vector . your fingers then curl in the direction

of the velocity. The speed is ¥ = @ Thus the vector relation we want is:

V=a =¥

Differentiating, we get:
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since @ is perpendicular to I The second term is the usual centripetal term. Then
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and
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since @ s perpendicular to I, and for a particle I=mre



2. Find two vectors, each perpendicular to the vector u=(1,22) and perpendicular to each
other. Hint: Use dot and cross products. Determine the transformation matrix & that allows

you to transform to a new coordinate system with & ~axis along Uand ¥ ~andz —axes
along your other two vectors.

We can find a vector ¥ perpendicular to u by requiring that ¥ =0 A vector satsifying
this is:

v =i0,1,-1}

Now to find the third vector we choose

ﬁr=ti><?!=(1, 2 zjx(m, 1, —1J=(—4, 1, 1]

To find the transformation matrix, first we find the magnitude of each vector and the
corresponding unit vectors:

) (1, 2,2)_(1, 2,2]

u= =]

JA+d+4 3

{_‘.-=(D’ 1, —1]
V2

and

) (—4, 1,1) (—4, 1,1]
W = =
JIE+ 1T+ 1 302

The elements of the transformation matrix are given by the dot products of the unit vectors
along the old and new axes (equation 1.21)

J2o2J2 o2
_ 1
A=—1 0 3 -3
32

-4 1 1

To check, we evaluate:

222 22 1 9,2 1

1 _ _ _
—1 0 3 -3 2 | =—=| 0 =| o | =0
9,2 9,2

-4 1 1 2 0 0

Ad =

as required. Similarly



JZ 242 202 0 0 0

=1 _ -1 -
A 3 o3 2 1 5 & 1
-4 1 1 -1 0 0

and finally:

J2 22 22 -4 0] 0

Y =i = =i =
AW K o3 ! 1 E 0 0
-4 1 1 1 18 1

3. Show that the vectors d-= (15, 12, 16), V= (-20, 9, 12) and W = (0,-4, 3) are mutually
orthogonal and right handed. Determine the transformation matrix that transforms from the

original (x.3.2) cordinate system, to a system with ¥ ~axis along o ¥ ~axis along ¥ and

axis along W, Apply the transformation to find components of the vectors E =(1,1,1),

z.’
b =(3,2.1) and ¢ =(=2. 172 in the prime system. Discuss the result for vector c.

Two vectors are orthogonal if their dot product is zero.

EI-T.-'=( 15, 12 15)-(—20, g, 12J=—300+108+192=D

and

E‘-ﬁ.f’=( -20, 9, 12)-(0, ~4, 3J=-36+35=U
Finally

Ei-i{'=(15, 12, 15)-(0, ~4, 3]=-48+48=U

So the vectors are mutually orthogonal. In addition

Uxy

(15, 12, 16J>«:(—20, 9, 12J=(D ~500 3?5]

125W
So the vectors form a right-handed set.

To find the transformation matrix, first we find the magnitude of each vector and the
corresponding unit vectors.

|l_.i|2 = 152 + 122 + 162 = 625 = |l_.i| = J625 = 25
So



Similarly

( -20, 9, 12 )
75

( 0 -4 3 J
5

The elements of the transformation matrix are given by the dot products of the unit vectors
along the old and new axes (equation 1.21)

g =

and

W =

Ag =R %,
Thus the matrix is:
15 12 16
=11 _
A 5% 20009 12
0 -20 15
Check:
15 12 16 15 625
=i — - L - d
Al s=| 20 9 12 12 s=| 0 258
0 -20 15 16 "
as required.
Then:
15 12 16 1 43
' _ i : _ i
E: s=| 20 9 12 1 s=| 1
0 -20 15 1 -5
and
15 12 16 3 25 17
A N - 11 _ 1] _
b 5% 20 9 12 2 5% 30 = &
0 -20 15 1 —25 -5
15 12 16 -2 —50) -2
! —_ L — —_ i —_ —_
¢ se| 20 9 12 1 5= | 25 1 ¢



Since the components of the vector ¢ remain unchanged, this vector must lie along the
rotation axis.

4. A particle moves under the influence of electric and magnetic fields E and g Show that

Yo=LE x
a particle moving with initial velocity 0 is not accelerated if E is perpendicular to

B

A particle reaches the origin with a velocity ¥ = Vo + 28, where € is a unit vector in the
direction of E and £ <% vo. If E = Eoi1, 1.1} and g =Bu(l,-2,1). set up a new
coordinate system with x' —axis along E = E’ and ¥ Taxis along E Determine the

particle's position after a short time £ Determine the components of ?':5) and i":*f:' in both
the original and the new system. Give a criterion for ““short time".

But if E is perpendicular to g then E . E =0, s0;
F=g(E-E) - 0

and if there is no force, then the particle does not accelerate.

With the given vectors for E and g then
ExB =B B(1+2,1-1,-2 -1y = EyBy(3,0,-3)

3| - o

Then , since

¥, = 28001 g1y = 1800 g -1
o= 28001,0-1)= 1801.0.-1)

Now we want to create a new coordinate system with ¥ ~ axis along the direction of v

Then we can put the ¥ -axis along ED and the © ~axis along B',;,, The components in the
original system of unit vectors along the new axes are the rows of the transformation matrix.
Thus the transformation matrix is:



2 2
- I S S
ATl FEOE
A= 1
 E EF
and the new components of ¥ are
: 2 K
¥, = ¥2 B0 g g
] 7 .SDI: g :J
Let's check that the matrix we found actually does this:
(1L g L |
vz Jz 1 |
rr R 1 1 1 Ep
Vo=No=1 B 5 & > |25
1 _ 2 1 -1 |
\VE ) |
Np |
Ep
75, | "
0
as required. |
Now let ¥ = Yo + ¥ Then
F = (E +[¥o + ]KB’J = gy’ B
in the new system, the components of g are:
A2 2 1 0
B =5 LE % % -2 = By 0 = Je5,2
1 -3 1 1 Ve
. £ F )

and so
F - JogsBy R = wd
Since the initial velocity is ¥ =voR" + ¥ the particle's velocity at time £ is:

¥ - (W . ﬁfﬂggnf)f oy

and the path is intially parabolic:



F=aty + ('Pﬂf,"‘ o qE‘S” )i

This result is valid so long as the initial velocity has not changed appreciably, so that the
acceleration is approximately constant. That is:

fe Y0 2m - Y0 2

'
V6 a8y 7 Be

or Y0/ times (the cyclotron period divided by ). The time may be quite long if £ is small.
Now we convert back to the original coordinates:

F=a7F =ATF

;1 1 1 3 J_
GoE Vot + L 2570 2
1 _ 2
= b 5 F st
1 1 1 0
o B E )
( vt 1 8o 1 3
EJF‘EEE(? i+ 1)
i 5
—_ S3er l‘?iﬂf_l_
2 (2 3) y

5. A solid body rotates with angular velocity . Using cylindrical coordinates with € ~axis
along the rotation axis, find the components of the velocity vector Vatan arbitrary point

within the body. Use the expression for curl in cylindrical coordinates to evaluate V=,
Comment on your answer.

The velocity has only a P ~component.

¥ =(0, pw, 0}
Then the curl is given by:

Ou o33 2) 4% %) 2o

ié[a—i(pzmj] = 2%(2@3}} = Jw2 =2

Thus the curl of the velocity equals twice the angular velocity- this seems logical for an
operator called curl.



6. Starting from conservation of mass in a fixed volume ¥, use the divergence theorem to
derive the continuity equation for fluid flow:

do I
= + ¥V (p¥) =10
where £ is the fluid density and Vits velocity.

The mass inside the volume can change only if fluid flows in or out across the boundary.
Thus:

% = —IS,D?' A4

where flow outward (;.,r - A >0} decreases the mass. Now if the volume is fixed, then:

3
% - %J‘pd!’r"=‘|‘a—’zdﬁr= - [ ;0¥ - fiad

Then from the divergence theorem:

IZ—’EJF= —Iﬁ (¥ )dV

and since this must be true for any volume V. then

%_}ﬁ-(ﬂvko

7. Find the matrix that represents the transformation obtained by (a) rotating about the

X ~axis by 45° counterclockwise, and then (b) rotating about the ¥ ~axis by 30" clockwise.
What are the components of a unit vector along the original £ ~axis in the new (double-
prime) system?

The first rotation is represented by the matrix

2
Ay =] 0 cosd5” sm45t | =| O© % %
0 -sind5" cosd5e 0 —d2 2
2 2

The second rotation is:

cos(—30°) 0 =an(-307)
Az =] 0 10 =
—sin(—30°) 0 cos(-307)

And the result of the two rotations is:



(72 & _& )
_ i oa | i &
ﬁhgﬁal = 0 1 0 0 = S - 0 T T
1 £ 0 _£ A 1 _ .8 J&

2 2 1 2 \ ¢ &

The new components of the orignal  ~axis are:

(5 a2 _a ) £ 1
2 4 4 0 % & 7
A & I I
0+ T 0 T = | !
1 _fE & 1 a £
2+ & 4 :

8. Does the matrix

cosd smnd y
sn@  —cosd 0

0 0 1

represent a rotation of the coordinate axes? If not, what transformation does it represent?
Draw a diagram showing the old and new coordinate axes, and comment.

The determinant of this matrix is:

cosd sind 0
sind —cosd 0 | = —costd - sin®f = -1
0 0 1

Thus this transformation cannot be a rotation since a rotation matrix has determinant *1.
Let's see where the axes go:

cosd smd 0 1 cosd
AR = sind -cosf 0 0 | =] sind
0 0 1 0 0
and
cosf sm@ 0 0 sin
AY =| sinf -cosf 0 1 = —cozd

0 0 1 0 0



while

These are the components of the original ¥ ~ and » axes in the new system. The new * ~

and ¥ axes have the following components in the original system:

1
a=a7l o
0
where
cesd  snfd 0
a7l = sind  —cosd 0
0 0 1
Thus:
cosd
o=l sing
(0

The picture looks like this:

Problem 8: # = w/3



The matrix represents a reflection of the ¥ “and ¥ ~axes about the line ¥ = x tan(B/2)

9. Represent the following transformation using a matrix: (a) a rotation about the ¥ ~axis
through an angle /3, followed by (b) a reflection in the line through the origin and in the
A+ ~Y-plane, at an angle 27/3 10 the original & ~axis, where both angles are measured
counter-clockwise from the positive & ~axis. Express your answer as a single matrix. You
should be able to recognize the matrix either as a rotation about the 2 ~axis through an
angle ©. or as a reflection in a line through the origin at an angle 2 to the & ~axis. Decide
whether this transformation is a reflection or a rotation, and give the value of - (Note: For

the purposes of this problem, reflection in a line in the £ =¥ plane leaves the £ ~axis
unchanged.)

Since only the * and ¥ ~components are transformed, we may work with 2 % 2 matrices.
The rotation matrix is:

f o 1 1
cosg Sl _ > 2,."3
—gin & x 1 1

Sl COS 3 = 3 .

The line in which we reflect is at 27/3 to the original & Taxis. and thus at ™/3 to the new

& Taxis. Thus the matrix we want is (see Problem 8 above):

am L 2 1 1
CosSR s _ =3 NE:
I _ 20 1 1
sm—3 Lo 5 5 )3 5

Thus the complete transformation is described by the matrix:

_1 1 1 1
5 Eﬁ = 5“'@ -1 0

A= : =
1 1 -1 1
V3 2 - REE 0 1
The determinant of this matrix is ~1, and so the transformation is a reflection. It sends * to

~X and ¥ to ¥: soitis a reflection in the ¥ ~axis (* = miz).

10. Using polar coordinates, write the components of the position vectors of two points in a
plane: £1 with coordinates 71 and #1.and £z with coordinates 72 and 2. (That is, write

each vector in the form ¥ =v»F +vgl. ) What are the coordinates 73 and 3 of the point £3
whose position vector is

?3 = ?1 +_II2?



Hint: Start by drawing the position vectors.

Problem 10

The position vector has only a single component: the ¥ “component. Thus the vectors are:

P = (r1.0)
and

Pz = (r2.0)
The sum also only has a single component:

Tz = (r3,0)

where, from the diagram @ * g =102~ '91, and:

r% = r% + rf —drprgcos(m —a - f8) = r% + r% + drpracos(fy — 0

_ [Z..z
Thus £3 has coordinates = ljr? Tritariracosifia —01), 63 = 6y + 8

where
sinf _ gine _ smify -0 - f)
3 rl Fl
= ;-(sin(8z ~ 61)cos§ - cos(6z ~ 61 )sing)
and thus
tand = =20 = b

rifrg +cos(fy — 61

We can check this in the special case 71 = Fi. g = (2~ 1 )/2 Then

_ 2an(fz - 8 )/ 2cos(fy — 01 )/2 _ tay (B2 — 61
1+ 2cos?(fy - 61)/2 -1 2

tan S

as required.
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11. A skew (non-orthogonal) coordinate system in a plane has X'~ axis along the

X ~axis and ¥ Taxis at an angle  to the * ~axis, where & « @/

(a) Write the transformation matrix that transforms vector components from the
Cartesian £ ~.¥ system to the skew system.
(b) Write an expression for the distance between two neighboring points in the skew

system. Comment on the differences between your expression and the standard
Cartesian expression.

(c) Write the equation for a circle of radius . with center at the origin, in the skew
system.

¥
Elil.I
=%
Problem 1.11
(a) The new coordinates are:
.
& & tan &
and
e_ ¥
Y T ne
Thus the transformation matrix is:
1 —cotd 1 sind —cosd
A = = -
] 1 st 0 ]

sin ff

Compare this result with equation 1.21. Here the components are given by



Aydeth = cosfy

(b)

ods? (cfx“?f + .:inJ . (.:;!":J:f’iﬁ + .:I’yT]
= (dx')? +2de' @' T -]+ (@)
= (.::Ex“)2 + 2dx’dyv cos @ + (.:f_}f“jz

The cross term indicates that the system is not orthogonal. We could also have
obtained this result from the cosine rule.

(c) The circle is described by the equation
F-F=ga°-= (Ifo "‘.J”TJ - (I“Tf +.J”T)

= {x“}z +2x'v cos 8 + {y“}z
a result that could also be obtained by applying the cosine rule to find the radius of

the circle in terms of the coordinates ¥ and ¥ -

12. Prove the Jacobi identity:
'a'x(t_::xi!) +b % (€ xd) +EK(§KE] =0
The triple cross product is
dx(bx2¢)-b(@-¢) -2(d-b)
and thus
'a'K[ExEE] + b x(€x3) +EK(EKE)

-b(d-2)-¢(d-b) +¢(d-b) -&(b-2) +&(b-2) -b(d-2)

=0
Since the dot product is commutative, the result is zero, as required.

13. Evaluate the vector product
—+ —+
(‘a’ x b] x (E x d]
in terms of triple scalar products. What is the result if all four vectors lie in a single

—

plane? What is the result if db and ¢ are mutually perpendicular? What is the
—+ —+

result if B = dY



We can start with the bac-cab rule:
(2<B) < (¢x3) -Bla-(¢x3)}-{5-(e~3))
-b[d¢.d]-4[bed]
Equivalently, we may write:
( X E) ¥ (exH] - E.'{(‘a'xﬁ)a} - H{( ¥ E)E.'}

- e[a,ﬁ,a] - E[E,E,E]

If all four vectors lie in a single plane, then each of the triple scalar products is zero,

and therefore the final result is also zero.

If 4 b and ¢ are mutually perpendicular
( L E] = gbé

( x E)E = tabc

where the plus sign applies if the vectors form a right-handed set, and
( KE]K (E.'KHJ =f:'{+c:E:-E H}—H.::f:-c
= +.:IE:'-:( [l: d] dJ

b = d, then (3~ E]-Ei 0 and

(8xB) x (€xd) - ~d{[#@xb)-<} - B[dbE]

14. Evaluate the product ( ] ( ] in terms of dot products of db

—

d.
(‘a’ x E] . (f:' x E) = syt i
- (aﬂa-‘?ﬂ - a_r':w b :lﬂ_;'bj;ﬂgc;!"m

= aibieidy — a;bicid;

- (&-2)(b-d) - (2-d)(b-2)

?:' and



15. Use the vector cross product to express the area of a triangle in three different
ways. Hence prove the sine rule:

sing _ smg _ sy

A B o

—
First we define the vectors 4 b, and ¢ that lie along the sides of the triangle, as
shown in the diagram.

— —
Then the area equals the magnitude of dxborof b xTorof % €. Hence
Afsiny = BCsine = ACsin g

Dividing through by the product ABT, we obtain the desired result.

da-b)-(3a-b
16. Use the dot product ( ] ( ] to prove the cosine rule for a triangle:

c2 = a® + b% - 2abcosey

=
c
With the vectors defined as in the diagram above,

(E—E)-(E—E)=a2+bz—25-ﬁ

—

But if d and b lie along two sides of a triangle s shown, then the third side
—

¢=d-b Thus



c? = a® + b* - 2abcosey
as required.

17. A tetrahedron has its apex at the origin and its edges defined by the vectors g,

_..

b, and E-r.each of which has its tail at the origin (see figure). Defining the normal to
each face to be outward from the interior of the tetrahedron, determine the total
vector area of the four faces of the tetrahedron. Find the volume of the tetrahedron.

[+ ]
Problem 1.17

With direction along the outward normal, the area of one face is
A -lbx%
b2
The total area is given by:
2A - HKE+EKE+§KE+(E—E] * (EE—E]

—+

Expanding out the last product, and using the result that E * b =0
2R =bxd+e¢xb+dxe+bxe-dxe+dxb
-bx3+3dxb+exb+bx¢=0
since bxd=-dxb

The volume is 1/6 of the parallelopiped formed by the three vectors, (or 1/3 base

y=1[dbe]

times height of tetrahedron) and so

18. A sphere of unit radius is centered at the origin. Points L and W on the

surface of the sphere have position vectors U, ¥ and W. show that points Fand &



on the sphere, located on a diameter perpendicular to the plane containing the points

U, ¥ and W, have position vectors given by

PosUx¥+V xR+ W=l
B [,V W]

where & is the angle between the vectors I and .

cozd

Problem 1.18

The triangle UV has sides given by the vectors U-V. ¥V-% ang W-U The
plane of the triangle may thus be described by the vector

E (U—T.r') x[’?—w’j =UxV¥+¥xW-Uxw
=UxV+¥xw+w=U

This vector is normal to the plane. The vector I'is a unit vector, as are the vectors d,

v and W, since the sphere has unit radius. Thus we may write I' = d/a, and

el - cosf = (UxV+VxW+@x0).U
_ R
- 7
Thus
_ [ovw]

cosd
and thus



TV + ¥ i+ o i
[0.9.%]

To obtain both ends of the diameter, we need to add the * sign, as given in the
problem statement.

cosd

19. Show that
Vx(Ve) -

for any scalar field D.

[% o —%(Eﬂ_ﬁ)}i + two similar terms

=
because the order of the partial derivatives is irrelevant.

= = | g
20. Find an expression for ( ) in terms of derivatives of E and b.

= amﬂibm - lﬁljﬂjf:';-

Now remember that the differential operator operates on everything to its right, so,
expanding the derivatives of the products, we have:

¥x(dxb)-4(V-b)+(b-V)d-b(V-4)-(d-¥
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Chapter 1: Describing the universe

21. Prove the identity:
( ] (‘a’ J [b ‘?J_a'+_a' (‘_'?" ] x(‘_'?"x_a','l

Hint: start with the last two terms on the right hand side.

_',
We expand the third term, being careful to keep the differential operator operating on b but not ES

The ith component is:

_ﬂ' K(‘_V' * E:] = E{?-;;cxjé';;_rmﬂjf:'m

= {Sz'Iajm = Gy ajf,.'ﬂjaff?m
ﬂma;'f;'m - ﬂ_faff:‘;

Thus

x(‘?‘? x E] + Ex(‘? xd) = Gudbn - (8- ¥ ) + bl — (H-?]ai

;
Combining terms:

x(‘?xg)+ﬁx(‘?xﬁj =‘_'§"'(_a'E) —(Hﬁ]ﬁ—(ﬁfq")ﬁ
‘@"(ﬁﬁ] - (‘a"‘_v'JE+ (H-‘@"]ﬁ+5x(‘axﬁ)+gx(‘axaj

as required.

7. (3dxb =
. 4
22. Compute ( ] in terms of curl ! and curl B.

[V-(8xB)],

& (sgearbi) = sl(Biay )op + aydiby]

and so

7. (-a'x'b'] - B (7x3) _a.(ﬁrxﬁj
23. Obtain an expression for v x ':‘i’nj and hence show that v (qﬁr‘i’) N

sgedi{dur) = sgrlupdid + g
T U+ (V=)

Now with d =%, the first term is the cross product of a vector with itself, and so is zero, while the
second is zero beacuse the curl of a gradient is zero.

24. The equation of motion for a fluid may be written



o(Z+ (V-V)F) - -Freod

where ¥ is the fluid velocity at a point, £ its density and Fthe pressure. the acceleration due to
gravity is ﬁ Use the result of Problem 21 to show that for fluid flow that is incompressible (¢ =

= 0). Bernoulii's law holds:

2
constant) and steady (&
&2 %,ﬂvz + pgh = constant along a streamling

Hint: express the statement "constant along a streamline™ as a directional derivative being equal to
zero.

Use the result of problem 21 with i-b-v
F(v2) = 2(V-¥)8+ 29 x(¥ x ¥)
Write a as the gradient of the gravitational potential, g%, and dot the equation with v
0
SV(V(2) -V (VxF)) = TP ¥ - Y
v x(Vx¥)

Since is perpendicular to ¥, its dot product with Vis zero, and we may move the

constant # inside the derivative to get:

?-ﬁ(%pv2+£s‘+pgﬁz]

as required.

. . P+1—pv2+pgﬁz
Under what conditions is 2 equal to an absolute constant, the same throughout the
fluid?

(9-9)0-39(7)

If the flow is irrotational ('_V' x =0), then
to get

and we may simplify immediately

?(%pv2+P+pgﬂz] =0

in which case the constant of integration is the same throughout the fluid.

25. Evaluate the integral

jfcu-dT

where (a) T is the unit circle in the ¥ ~¥ “plane and centered at the origin

U =xyk -2y
We can use Stokes theorem:



§ v.dl=[ (VxU)-Ad4

Here the surface is in the & ~.% plane and the £ “component of the curl is:

vxﬂ|g—cump e {_I_}fzj ay(}’f .,VJ - (_},2_:,.;2) - _rz

and so the integral is

I (? xﬁj « Add = I (2mrdr) —2:.-:% ‘; = _%

(b) C' is a semicircle of radius & with the flat side along the & ~axis, the center of the circle at the
origin, and

U =xy? % +yxly
We need only the £ “component of the curl.
_d 2y = - =
Vil |x—|:|:|mp e (yx :I & (xy j 2xy — 2xy =10
and so the integral is zero.

(c) Cisa3-4-5 right-angled triangle with the sides of length 3and 4 along the ¥ ~ and ¥ ~axes
respectively, and

U =x*% +0¥

g=4 - 43

Using Stoke's theorem:

§ v.dl=[ (VxU)-Ads

with the £ “component of the curl being:

ai ] @;(IEJ e

we have



fods fo" e %( ‘%J

I = -8 |
Or, doing the line integral:
ji T-dl - j xdx +j3 (<% - dT+xﬁ-dT) +[jcmcfy
= _I-; xidx + -[2 xidx+ r xvdy
4
- [#(4- 35) (-34)
_16(x* _x* |3=m(g_ -
3 ( 2 G J 0 3 NZ 3) g
The same result, as we expected, but the calculation is more difficult.

(d) ' is a semicircle of radius @ with the flat side along the & ~axis, the center of the circle at the
origin, and

d =|:2;': —y3)ﬁ - (3}?2 +x3‘:|ﬁr

(Vx8), = (7 +2) - (25 ) = 57+ 32 - 3
Thus the integral is

npas 3 = 3.4
IDID 2o dpdd E?m
26. Evaluate the integral
[ ¥ -dA
&

where (a) Sis a sphere of radius 2 centered on the origin, and

V=2 R +3%y +3%22
We use the divergence theorem:

J‘ﬁj‘-dﬁ = [, 9 -¥ar



Here
\ =%(x3) + %(3}22‘] +%(3yzzj = 3(;;2 + z2 +y2J =
and so

DA A ~|* 32 - 384
(AL dA - I 2Pl 7 12x?‘n 12¢32 - 384

(b) Sisa hemisphere of radius 1, with the center of the sphere at the origin, the flat side in the

£ =Y Tplane, and

V =x2z(§ + 2)

v-¥ =%ﬂﬂj 0 % IIIE}EJ T %(IE}E) = x¥y +z) = 7 sin®BoslsinBsing + cos )
Integrating over the hemisphere we get:
i= ID M3 in?fcos?Plsindsing + cosdr? sin fdrdfde

Doing the integral over ¢ first, the first term is zero, and we have:

1
I= J‘D ﬂ|'2,1~5 sin® Ol cos §) sin fdrd® = ‘m% ‘D-I";(l —yﬁ)ﬁa"ﬁ

1

_afE e Y o=
& 2 4 24
0
27. Show that the vector
U =xf +yy -222

has zero divergence (it is solenoidal) and zero curl (it is irrotational). Find a scalar function % such
that

b=V
and a vector ﬂs.uch that
bd=vxA
V-l=-1+1-2-0

and

(V x1) =%I:—22:I - %m =0

3

and similarly for the other components.



M _ L s
P U = ?ﬁf’: then &~ b 2 *Az). Similarly, we obtain d 7 glx.z) and

¢ = ~2* + h{x.) Thus

X2 4y?

R
will do the trick. The curl is a bit harder. We have:

B _ 8y _

th i

dd, _ dd; _

Z &

dldy _ad, _

s

Then:

Ay = xy+ I %dy + fix.z)

from the first equation, and

Ay = —yx+‘|‘a§ifdx

dd, _5 a4, 0

from the second. Thus we cantake &  “*and & _ * This gives

Ay =-2xzand 4, =10
which also satisfies the last equation, and we are done:

—

A = —Zxzy —xyi

28. Show that the vector
v-£

has zero divergence (it is solenoidal) and zero curl (it is irrotational) for ¥ = 0. . Find a scalar

function ¢ such that

and a vector ﬁ such that

In spherical coordinates:

and




Then
790

and ¥ = ¥ x ﬁ has only an ¥ “component provided that 4, =0 Ap = Uand rdsis independent

of - Then

is satisfied provided

satisfies all the constraints.

29. A surface ~ is bounded by a curve C. The solid angle subtended by the surface Sata point £,

where £ is in the vicinity of but not on the curve, is given by

Here @21 is an element of area of the loop projected perpendicular to the vector R-%-% s

the position vector of the point £ with respect to some chosen origin @ and X is a vector that
labels an arbitrary point on the surface or the curve. Now let the curve be rigidly displaced by a

small amount &5 | Express the resulting change in solid angle die as an integral around the curve.

— _ = v i}'
Hence show that Vi v 3§ R

The solid angle subtended at P by an area element da js

_ = _da, _ {dixds -
A = Vileds = R; = (TS)'R

where @41 is the element of surface area projected perpendicular to the vector I from the origin to
that element. The total change in solid angle due to the displacement of the loop is thus

o - f)1-4() <

—(jf";%xd?] . da

M52

and so

ol —(jﬁ vix .:f?)

—ﬁx§%£

30. Prove the theorems (a)



[, Foar - ji DhdA
¥ 5
We begin by proving the result for a differential cube. Start with the right hand side:
jﬁ ThAdA = (Dix + dxldvdz — D(x)dvdz)R +{ Dy + dy)dxdz — Dy idxdz)y
5
+(D(z + dz)dxdy — D(z)dxdy)2
- (%‘fi +82y+ 223 Jardydz = Yoy

and since the result is true for one differential cube, and we can make up an arbitrary volume from
(Chapter 1 §1.2 3)

differential cubes as in the proof of the divergence theorem itis true in

general.

b. We use the same method:
[¥ x tav - jtﬁfﬁ x U )dA
On the right hand side, the first pair of faces gives:
jﬁg{ﬁ = U)dd = (& = Uix + dx)dydz - & = Uiz )dvdz )

- R Ké—a?dxdydz - (—%ﬁ ¥ %ijdmydz

Including all the 6 sides we have:

A Tidd = (g x 08 g, 0U 5, 80
ﬂ(ﬁ?ﬂu)ﬂiﬁl—kxxax+y><6y+zxﬁz)aixdydz
— r’_ iz - iz Ptz _ Bi] _ Hig ~ i
- (- %29+ B224 Gae- Gy ﬁﬁz+yaz)dxdyciz
_r%_ﬁuSn(ﬁuz_ﬁmaa(ﬁug_ﬁug
= L( % e )y+ Ew o )z+x R )).sixdydz
= V x Tdr

and since the result is true for one differential cube, and we can make up an arbitrary volume from

Chapter 1 §1.2.3)

differential cubes as in the proof of the divergence theorem [ *itis true in

general.
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Chapter 1: Describing the universe

31. Prove that (a)

jf qa.:fT=I A % ¥V ddA
o K

We use the general technigue used for Stokes' theorem in the chapter. We integrate around a

differential rectangle in the + ~.% “plane. Then

fdiﬁ rect CI:IdT

Plx.yldxR +Plx + dxyldy¥ + Plx,y + dyldx(-R) + Plx, yld(-¥)

~P{lx.y tdy) - Plrylldr® +{Plx +dx.y) - Blxy) DY

_ [_ad _
{- Elyi-'-ﬂ y}dxdy % x Vb

But for our curve and the area spanning it, A=2 g

_'.
; dl = [ x Vdad
oiff rect
Now we sum up over all the differential rectangles making up our arbitrary curve, to show

ji ¢dT=I A % Vb
s i

as required.

(b)
J‘S(ﬁ ><‘7?.5'J x Udd = jfc.::‘TK

Again we begin with a differential rectangle in the ¥ =~ plane.

iﬁf o dl x U —1, (20,1 el 2 i (0, 3 JeloW e, (0 + o,y Jalv 2 e ( 4 ale, y )l R
ITT re

+ 24, (20, Y + dy ) — 2, (0, + ey Jebe — 1, (x, y)-sfyi ~ uz(x,y)ciyi
=cixdy{ay aé’j;x+%;‘z—a§}y }
= da{(V-U)a-V(d-n)}

= Ig(ﬁx?) x Udd

32. Derive the expressions for gradient, divergence, curl and the Laplacian in spherical
coordinates.

The line element in spherical coordinates (equation 1.7) gives us the metric coefficients:



Thus we have:

80, 1

1

r sind

+ =

and finally:

o
S

( 3'% rsinfug — = rsmﬂu.;.)

g )
(ﬁi sinfeiy —

[Il tipig |8

0y
ar

| [
A
1T, .1

Vid = ‘?-[?ci:)

1 3 (2P d 1ad 1 43 1 aP
r_ﬂﬁ(’r ] rsmﬁ' E'E( mds g ] ¥ rsmﬂﬂ_tin(rsmﬁ'ﬁ]
1 2 3P

2 a_a?“(r ] 2 smﬁ' 'f% (Smﬁ%‘? ] e s}n:"ﬁ' 881?

33. In polar coordinates in a plane the unit vectors F and ? are functions of position. Draw a

diagram showing the vectors F at two neighboring points with angular coordinates & and & + d0.

Use your diagram to find the difference AT and hence find the derivative /38

Problem 1.33




df = Fz - 1

has magnitude

dr = 2/P|sin 28 = g8

2

and in the limit @& = 0, itis perpendicular to F. so

dP =dbd
and thus

gt _

ai d

[ =1

34. The vector operator i appears in physics as the angular momentum operator. (Here

t = .,."——1 and ' is the position vector.) Prove the identity:
V({f-u) -u+7(V-0) +i[t><ﬁ}
for an arbitrary vector .

Begin with the result of problem 21.:
‘@"(‘?[j} = (?’.‘_V'J[j +['[i-‘_'?"]?+f’x|:‘@"xﬂj +|_.i><(‘_'?"x J

Working on these terms one at a time:

— _ &E_E_ly _ _
VT ($ E)Rplustwm5|r’ﬂ|larterrﬂs =0

and

-9 = (w2 +nth,Ji +y, 0 (xR +¥ +z2)
W Y

=, R, ¥ 2 = U
Now we are left with
V(t-1) - (?-‘?:lﬁ+ﬁ+?><ﬁ5'xﬂ]
Now look at
i(EKﬁJ=(?Kﬁ'J % U
The ith component is

Sl Sipgp O ik = S SipgPp Ogti = {5;;,5&? - Ekqﬁz-pjrpﬂquk

z(t X U] = ppiaey — gty = redaeg —#y ('_'?" . T.i:l

while
{Ex(V =d)}

= E{;‘k?;‘(Es;:qﬁqu] = Sy Sipg yOplig = (5;-_2,5_,- ~ Gig Oip )"".r'ap”q
= rydhagy — Frdiiy = mding — (? . ﬁ')ui

i



Substituting into our result (1.1) above:

[‘i"(? I_.i,'l ] = ('r'- \T.:"Ju!-+uz-+r_?-a,-u_,- - IIT’- ?Jui

Using equation (1.2) to evaluate 758455, we have
V(F-T) = U+F(T-°) +:(CxT)

as required.

35. Can you express the vector E: (1.2.3) as a linear combination of the vectors , - (11,15
Uz = (1.0.-1) and s = (2,1,0)7 can you express the vector b =(1,3,2) as alinear

combination of the vectors U1, Uz and U7 Explain your answers geometrically.

Let

d = ol + 50, + U5

(1,2,3) = [+ 8+ 2y, +ya—-§)
Thus we have the three equations:

1 =a+G+2y
2=+
2=w-4
From the third equation
=a-3
and from the second:
¥ =2

and so from the first:

l=oa+(e-3)+22-a)=1
which is true no matter what the value of . Thus we can find a solution for any - For example,
with & = 1:

"a'=EI1—2EI2+|"J'3

_..
For the vector b we would have:
=atf+2y
o+ oy

=CH_|8

[
I

or

l=o+(e-2)+2(3-a)=4



—
which cannot be true for any value of . Thus no combination of the three U: can equal b

—
Geometrically, the three U vectors all lie in a single plane, and ! lies in the same plane. But b lies
out of the plane. Note that the cross products:

(11 1)x(123)=(1-=21)

are all multiples of the same vector, indicating that all four vectors are coplanar. However,
:»< =] -1 =
( 1,3, 1 ) ( L, & 2 J ( L, =L, 2 J is not a multiple of (1.-2, 1jsindicating that

_'.
B lies out of that plane.

36. Show that an antisymmetric 3 % 3 matrix has only three independent elements. How many

independent elements does a symmetric 3 % 3 matrix have? Extend these results to an & %
matrix.

If #§ = "7 then @& = ~@w and so all the diagonal elements are zero. There are three elements
above the diagonal. The elements below the diagonal are the negative of these three, which are
the three independent elements.

A symmetric matrix can have non-zero elements along the diagonal. There are only three
independent off-diagonal elements, giving a total of 6 independent elements.

An V% N matrix has & elements along the diagonal, so an antisymmetric matrix has
[Iﬁﬂ - N]HE = NN - 1)/2
independent elements. A symmetric matrix has
(W2 -N)/2+ N = (N2 + N)/2 = NN+ 1)/2

independent elements.

37. Show that if any two rows of a matrix are equal, its determinant is zero.

To demonstrate the result for a 2 * 3 matrix, we form the determinant by taking the cofactors of the

elements in the non-repeated row. Then the cofactors are the determinants of 2 % 2 matrices of



a b

& - .
the form “ . The determinant equals ab —ab = 0. |f each cofactor is zero, then the

determinant is zero. For a 7 % & matrix, we can always reduce to 3%3 using the Laplace
development, and those determinants are zero as we have just shown.

38. Prove that a matrix with one row of zeros has a determinant equal to zero. Also show that if a

matrix is multiplied by a constant ¢ its determinant is multiplied by £ -

Use the Laplace development, with the row of zeros as the row of chosen elements, and the result
follows immediately.

Since each product in equation (1.71) in the text has three factors, the result is clearly true for a
3%3 matrix. But then, from the Laplace development, each product in a 4*4 determinant is one

. , N - L .
factor times a 3*3 determinant, and so is ¢ times the original. Continuing in this way, we obtain
the general result.

39. Prove that a matrix and its transpose have the same determinant.
Using equation 1.72 in the text (first part)
deth = D agdy
.
Now if #¥ = @i is the transpose of &, then
deth = > BBy = detB
.
by the second part of equation 1.72.

40. Prove that the trace of a matrix is invariant under change of basis, that is,

Tr(4') = TH(CAT™) = TrA)

T(Cac™) = > cpan(C™) - Z;;(E_l ) Coa

ik it

= > bpagp = Trih)
Ik
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Chapter 1: Describing the universe

41. Show that the determinant of a matrix is invariant under change of basis, i.e. det {A ;' “detl4). Hence
show that the determinant of a real, symmetric matrix equals the product of its eigenvalues.

det{A') = det[CAC™ ) = det{T)det(A) det(T™ )

= det{C) det{A) det} = det{A)

For a diagonalized matrix,
det[ﬁf:l = k1 hohs
QED.

42. If the product of two matrices is zero, it is not necessary that either one be zero. In particular, show that a

2*2 matrix whose square is zero may be written in terms of two parameters ¢ and &, and find the general form
of the matrix.

a b a b
o o oo

I
o

A =

aZ + b ab+ bd
ca +de bo+d?

Thus either # = Dand ¢ = 0, ord = =& If & and < are both zero, then & and d are also zero, and A = 0pytif

- - _.2 . .
d = —a, then also #¢ = ~&“. Thus the matrix may be expressed in terms of the two parameters 2 and &

o] b
A =

2

—at
-_— rd
&

A =

. c d . ) )
43. If the product of the matrix and another non-zero matrix B is zero, find the elements of B.

You may find it necessary to impose some conditions on matrix &. |f so, state what they are.

B 7 |
We know that det®) = 0. so if g h then &% —Jfg = U. g0 & =J&/2. Thus the product is:
R
a b g
7 =10
oo g fgie y,
ae + bg f“:bg ) :
ce + dg f“:dg




Thus

g = —aelb

0 0

ha—ad ( _ ad J
= [ _
L] L]

which can be satisfied if € = = U, in which case matrix B = 0, or @d — &c = det{&) = 0. | the latter case,

matrix B is specified in terms of arbitrary values ¢ and 7 as

. J 1 2 o~
_ae _f2 el _.., _
B P [ (e
111
1 00
. . . 0
44. Diagonalize the matrix:
We solve the equation
1-x1 1
det] 1 -k 0 =1
1 0 =*

M1 =AY+ 2A = 0 = A(-AZ+A+2) = -A(A+ 1)(A - 2)

Thus the eigenvalues are: 0,2,-1. The corresponding eigenvectors satisfy the equation

111 T, ]
1 00 W = Al v
1 00 W W

For » = 0, we have

0 -1 2
-1 0 1 s =1 1 s 2
1 1 1

eigenvectors:



45. Show that a real symmetric matrix with one or more eigenvalues equal to zero has no inverse (it is singular).

Since the determinant equals the product of the eigenvalues, (Problem 41), the determinant equals zero, and
thus the matrix is singular.

. . . 34 ) _ .
46. Diagonalize the matrix , and find the eigenvectors. Are the eigenvectors orthogonal?

1-n 2
det = -2-Sh+HX =10
3 4 - K

24+ 1 f 2 -1
The eigenvalues are: z 2 22 2z = and we find the eigenvectors from the equation

1 2 ] ]
= A
34 W W
Thus
1t 2v = b
Butdv = Ay
So
v=}“‘51u
and then
= TN Nl IR S IV 341 B
T (AT (2‘2"%)(2‘2‘“{%)2
=—|:—6j%=3u

Thus we may pick any value for ¥ Choose ¥ = 1. Then

- (3+145)4 - 162 /5)

1
L(32 %)

and the eigenvectors are:

The inner product is

1+ 56+ 5) - )

16

I
—
+

|
T
=2
=

Since the product is not zero, the vectors are not orthogonal. Since the matrix is not symmetric, the eigenvectors
need not be orthogonal.



1 1
T =
and find a matrix % such that AB = AT,
a b
A = )
We must have det{&] = 0. o write 5 sa Then
a b 10 a  2h
AR = =
¢ bela 0 2 ¢ ZBE
and
a b 11 a ath
AT = =
¢ hofa 01 £ otk

We can make the two answers equal if & = & Then
A =

and

a 2

o 2o

48. Show that if 4 is a real symmetric matrix and Cis orthogonal, then A' = CaC™ is also symmetric.

If a matrix is orthogonal, then its inverse equals its transpose, so ct=Ch Then:
(a)7 = (cacT)’ - ca’c? - cac’ - &’

and so A is symmetric if Ajs,
49. Show that 4B = B& if poth & and B are diagonal matrices.

If & and B are both diagonal, then

f11 0 0 .52'11 0 0 ﬂllbll 0 0
AB =l 0 axn 0 0 ba 0 = 0 aubn 0
0 0 d33 0 0 .52'33 0 0 43352'33

is also diagonal. Then



brian 0 0
AR = 0 by 0 = BA
0 0 bazasp

and the matrices commute.

50.Let  *b =Xad: Now let by = cgly, similarly for #. and compute the product
dkb = > ald)
- S5 cuceat
I B -
= 2. 2.2 Cleyash
I B -
Now if the matrix € is orthogonal, then ©7 = €™, and so in this case
Bkb =D > buashy = > aky = Axb
ik J

and the inner product is invariant.

2 2 _
51. A quadratic expression of the form %~ * iy + oyt =1 represents a curve in the ¥ =¥ plane. (a) Write
this expression in matrix form. (b) Diagonalize the matrix, and hence identify the form of the curve and find its

symmetry axes. Determine how the shape of the curve depends on the values of o5 and - Draw the curve in

thecase @ =8 =2, ¥y =3

(a)
xTax =1

where the vector X has components (.7} and the matrix

P
g
Check:
) x 4 ox + Sy
() = (x.7) = ox? + fxy + fyx +p° = 1
gy ¥ \ Pt
Now we diagonalize:
-
o & _ 0
& YA

N e e
oy — Ao+ )+ 22 -2 =0
Thus the eigenvalues are:



}\_
2
Catyt fly-al+4p?
- 2
The eigenvectors are given by:
) {3
o 5 x _ x
g F ¥, k}” ¥,
p £
+
ox + Sy e x
fx + oy J \ Y
or
- _ Y 2y _ Az
¥ B x E(’T ot Jly - o) + 48 ] X
The new equation is
X' Ta'x =0
x 0 M
)| R B RS
0 kg ¥ ray

If A1 and %2 are both positive, the equation is an ellipse. This happens when
ly- ) +457 <a+y
(= a)® +48% < (o + )2
82 <oy
But if 52 > 0¥, then A2 is negative, and the curve is an hyberbola. For the ellipse, the eigenvectors found

above give the direction of the major (minus sign in *) and minor axes.

=g = - 2 - -
Forthecase ® =& = 2. ¥ = 3, we have #° =4 < ¥ = 6, g0 the curve is an ellipse.

= 1 =
M= 2+ LT 45616 BT g T 0408

1

Aa=2-17 -043845 47 o T 1.5102

The equation of the minor axis is:

while for the major axis:



y = —0-433515 ~ 2y = - 78078x

]

4 munor
EVAL

2

4 -2 ApN 2 4

major aEs

The equation of the ellipse is:

2x% +4xy + 3¢ = 1

52. Two small objects, each of mass #. are joined by a spring of relaxed length ! and spring constant k.

Identical springs hold each mass to a wall. The walls are separated by a distance 3L write the Lagrangian for
the system, find the normal modes and the oscillation frequency for each mode.

Let X1 and *2 be the rightward displacement of each object from equilibrium. Then the kinetic energy is

_1 ﬂfx_1J2+L (fﬁ_zf
£ 2”(@& 2"\ 2

and the potential energy is
= lﬁ:(x% +x% +(x2 — x1 )2J
= %k(Ex% + 2x% = Exgxlj
Thus the Lagrangian is:

10
- -1 d 3T s
L=KE-V=2mq =X Lx+L
2 dt o1 Jdt # -1 2

Thus the normal mode frequencies are given by the characteristic equation:



2=k -1

=0
-1 2-n
3-43+22 =0
n=31

Thus the frequencies are NE and W 3K The eigenvectors are given by:
2?{1 - X3 = }\Il

xz = [2-Rx; = —x10rx

Thus the two objects either move together, or exactly opposite each other. When moving together, the middle
spring is not stretched or compressed. The outer two springs both pull or push the system in the same direction.

The frequency is VE&i, the same as for a single object-on-spring system. When they move opposite each
other, all three springs are distorted and each exerts an equal force on the system. The frequency is thus

ki

Finally we check the transformation matrix:

1 1
b -1

As expected, the matrix is orthogonal.The transformed potential energy matrix is:

VLI—IE—ILII
Je b1 -1 2 Jeb -1 1

53. Find the normal modes of a jointed pendulum system. Two point objects, each of mass #. are linked by stiff

but massless rods each of length L The upper rod is attached to a pivot. The system is in equilibrium when both
rods hang vertically below the pivot. The diagram shows the system when displaced from equilibrium.

The system is most easily analyzed using Lagrangian methods. The kinetic energy is:

2 dt 2 dt dt i df
Taking the reference level at the pivot, the potential energy is:

2 2 2
K= Ln(190)" ¢ Lo (20 ) + (222 )7+ 2costr - 02090982 )

V= —mglcos®) —mglicosf) +lcosty)

Now if the displacement from equilibrium remains small, th % 1and 2 < 1, we can approximate the cosines

in the expression for 4 by Taylor series, truncated after the second term. Then:

o — -— |- - L]+ -2
¥ mgf(l > ) mgf{(l > ) 1 5 )}

= ~3gmi+ Sgmi(26F + 63)

Thus the Lagrangian is:



L=K-V .
i
d8; 2 d8) df (81 - 82)° by 2
- 1 zddy dbz {4 Mgz 2
_mg(drjmg dt dr(l 2 +2£(drj =
+ 3gmi - %gmﬁ(ZE'f +62) §
oo d8 Y? L a8 48, l(f,frag? E 18 fonz gy o
= (G )+ T () - g5 et i
to 2nd order in small quantities. Lagrange's equations are: '
ddf _ 9L _
4 98, 36,
428 28 g
28791 + 4702 _ B9 -
dt? az 17
.:112&2 + cleﬁl g
—=f =10
a2 a1

Here the coupling is in the derivative terms: it is called dynamic coupling.

B|2

o
112 e 1
— 2 &y a —E
Lo (‘* )(uz 1;2) 5] f(ﬂl &2) 0

fg

b=
o~
= ]
b —
S—
+
L]

This time we need to simultaneously diagonalize both matrices.
= -h -h2
—-Af2 % - A2
(25 -23)(3-5) -2 -0
2(%]2 —41‘%'_ +A2 =0
A\ = (4 + flé-8 ) %
- (2242)%

=0

The eigenvectors are found next:

NRERE X1\|=(10 x1
12 1/2 x2 /L 0 < X3
x1+ =x2 Y f x]
Y =
é—xl+é—xg J, \ é—n
Thus
xz—Etl_}\xl

So with our . we get:



1-27F 2
E(TJ;{_)X1= W
2(—1;,@](2; J2)

:E) (27 )
-J2x1, fon

X2 =

X1

So the eigenvectors are:

Then
; 1 -2 1 172 1 1
E =T'ET = 42
1 J2 1/2 172 )
1 -2 1-14J2 1+1.2
IR AN RE A SRS
f 2-a2 ¥
¥ 2442
and
1 -J2 10 1 1
W= T™WT = V2 .
1 42 0 < =2 48
1 =2 1 1
1 W2 —5VZ 442

2 0
o2
Both are diagonal. Notice that the transformation is not orthogonal in this case.
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Chapter 2: Complex variables

1.1f 21 = 3+ 2ignd 22 = 3 -4, find 21/22 and 21 ¥ 22

Zl _ 5+21 _ (5+21‘](3+43’] _ 15+ 261 + 82 - 7426,
j 3—di 3+ di

9+ 16 25 25
z1zg = (5+ 2803 - 4i) = 15 - 14 - 8% = 23 - 14

. . . 3.
2. Use the polar representation of Z to write an expression for Z~ in terms of ¥ and 8. Use your result to express

cos 3t and sm 38 in terms of cos & and snf

23

(miﬂf = 3,3
rlcosf +isind)® = 7 (cos 36 + isin30)

cost @+ Zicos fsmb + 3% cosfeintd + P sinc @ = cos 38 +isin 38

The real part gives:
cos38 = cos®d - 3cosfein?d = cos E-'[u:oszﬁ - 351'112:?] = Cos 3[4 cosd - 3]
and from the imaginary part:
sin36 = 3cos?fsint — sin®f = sind(3cos?l - sin?f) = sind(3 - 4zin?6)

3. Prove De Moivre's theorem: (tes® +ism )™ = cosnf + ismab.
(cosd+ism)? = ()" = ™ = cosnd +isnnt.

. - 2 - - . . . L = : .
4. The equation (v —y0)® = daix - x0) describes a parabola. Write this equation in terms of Z = ¥ * . Hint:
use the geometric definition of the parabola.

The parabola is a curve such that for any point on the curve the distance from a point is equal to the distance to a

line. In this case the point is at (x.;. <. ynj. The distance from the point is d where:

d = Jix—x0-a)? +(y-y0)?
d? = (x - x0)® - 2alx - xg) +a® + (y -y )?
Using the equation of the parabola:
d* = (x—x0)* + 2alx - x0) +a® = (x - x0 +a)? = &
where

s=x~—(xg—a)

is the distance from the vertical lineat * = X0 ~ .



Now we can express these ideas using complex numbers. The distance from the point

0= (x':' Ta, J’?':'J is |2 ~ 20| and the distance from the line is &z = (%0 — @]} Thus the equation we want is:

lz = za| = Relz - (x0 — a))

5. Show that the equation
p-cltk-dl =«

represents an ellipse in the complex plane, where < and d are complex constants, and © is a real constant. Use
geometrical arguments to determine the position of the center of the ellipse and its semi-major and semi-minor
axes.

The absolute value [~ ¢lis the distance between a point £ in the Argand diagram described by Z = % * ¥ and
the point ¢ described by the number ¢ Thus the equation describes a curve such that the sum of the distances
of £from the points Cand 'is a constant ( @). This is the definition of an ellipse. The points Cand L' are

_ : : : z=Lic+d)
the foci of the ellipse, so its center is half way between them, at 2 '

When F is at the end of the semi-major axis, then [ ~¢| = a{l —elang F~d| = all +e)go @ = 22, and the
semi-major axis is

a = ol
Then also
& - ¢

o

~ =
f:'=ﬂu'1—é‘2=% 1——|d ;l =%c~:2—|a!'—c|2
\ o

z = ge+ b0

ld —c| = 2ae = & =

and so

6. Show that the equation

represents an ellipse in the complex plane, where & and b are complex constants and ¢ is a real variable.
Determine the position of the center of the ellipse and its semi-major and semi-minor axes.

First recall that multiplication by gt corresponds to rotation counter-clockwise by an angle P (Figure 2.3c) - Thus

. = 1 = i) .
if @ =7a2"%and & = r5€"°, then Zis represented as follows:



z @=0)

_—36

Now as ¢ increases, the lower line rotates counterclockwise, while the upper line rotates clockwise. The two lines
align when:

]

I?a"'(i):&b_(i’
or

- &b_&a
¢ 2

which is the direction of the major axis. The length of the major axis is =z + 75 = || + 2] The smallest value of

[] occurs when the two “vectors” are in opposite directions, i.e.
Iﬂa + (i) = ﬁb - (i) +
or

I Rl P 3
¢ 2 2

Thus the minor axis, of length llz| = 1211 is perpendicular to the major axis, as expected.

8.+ (ﬂb‘ﬂnj _ Batba . 5
The angle that the major axis makes with the * ~ axisis "¢ 2 2 Let ¥ and ¥ bethe

coordinates of Z with axes coincident with the major and minor axes of the ellipse. Then :

Ae™ + Be™® = roexplily + ¢)) + ryexpli(ds — $))

e (120 ) [ (L5 1) ) ey (L5204 4) )]

Exp (z’—(&" ; B) )zr

=

[+ :
(3 2 J rotates the number in square brackets ( Z ) by an angle

Again we note that the factor i
[
2 counter-clockwise. Thus:

Z = rae™ + rpe T = (o +rplcosa Yilrg — rp)sino

_ lf-fL)
where ™ 2 2 Thus we have

)Y )

I:,r'a+,r'b:]2 (ra_rbjz

which is the equation of an ellipse with semi-major axis [l * 2] and semi-minor axis 4] = 121l The center of the

ellipse is at the origin.
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7. Find all solutions of the equations (a) £~ = -1

Write £ in polar form:

e = 1 = 1explin + 2nwi)

for 0 £ » <4 Thus the solutions are

z= lexp(i% _,_1;232%]

z = cos(%] +1‘sin(%] — 080902 + 0. 5877%

3 COS(%"'ETW] +1‘sin(%+2TxJ = cos(%x)+z’sin(3%)

—0.30902 + 025106

zz = cos(m) +ism(m) = —1

zq = cos(—?t] +1isin(?TW] = —0.30802 - 0.95106;

1R[]

z5 = cos(%x] +ism(%’*‘f] — 0.80902 - 0. 5877%

iz e
0.
o, L]
0.
z; 0.
[ + + 1
-1 -05 D 0.5 1
-1, H
.
-0, ™ zj
-0,
24‘
14 _ 2minfd
() z* = 16. The roots are 2t1) 2(+*™%), » = 0,1,2,3
Zn = 2gin2

These points are at the corners of a square: 0 = 2 (on the real axis) €1 = 2 (on the imaginary axis),
zo = —2, g3 = —2i

8. Find all solutions of the equation (a) t@: = 100.



Write € = % /. where ¥ and ¥ are real, and expand the cosine:
cosxcosiy — sinxsniy = 100
cosxcoshy — istnxsinhy = 100

Writing the real and imaginary parts separately, we have:
cosxcoshy = 100 and  smxsmhy = 0

We can solve the second equation with either ¥ = 0, or x =0, am. Butwith ¥ = U the first equation becomes

cosx = 100 which has no solutions. (Remember that X is real.) So we must choose * = %7, where * is any
positive or negative integer, or zero. Then:

cosamcoshy = 100

Now the hyperbolic cosine is always positive if ¥ is real, so we must choose * to be even, or zero. Then
coska® = +1 gang:

g’ + 2 = 200

(;,:-J‘jf* - 200 +1 =10
o = 200 + ,.'2002 -4
2
= 100 £ 9959 = 199 89 5 0001 = 10
and thus
v =In(152 59) = 5 2983
or

¥y = ]11[5. 0007 = 10'3] = -5 2983

Both values give the same value for the cosh. Then

|z = 2mr + 5 2083 |

(b) snz =&

sin(x +iy) = smxcosiy + cosxsmniy

stix coshy +icosxsinhy = 6

Equating real and imaginary parts:
stnx coshy = &

cosxsinhy = 0

Clearly ¥ = 'is not a viable solution, so we need

Then

sin(?z + %]?ccoshy = (1" coshy = &

Since cosh ¥ is always positive ( ¥ is real) then # must be even, and



& +e? = 12
e - 1202 +1=10
Do LESH ”544_4=61ﬁ
Thus
y=1n(64_r,,e'%] = 2 4779 0r - 2. 4779
Thus

z= (2n+%]?r12.47793'

9. Find all solutions of the equation coshz = =5,

coshz = coshix + &) = ceshxcoshiy + sinhx sinhiy = ceshxcosy +ismhxsiny = =3 The imaginary part must

be zero, so we must have * = Uor ¥ = #T. The real part would be C98Y or (=1)" coshx jn the two cases.

Since ©9%¥ can never equal ~2» we must choose ¥ = %7 with # odd, and then setting the real part equal to

=5 we need

coshx = 5

and the solution is : * = £2.2924. Thys z = 222824 + (Zn + 1), where # is any positive or negative integer.

10. Find all numbers Z such that € = In(=3}.
z= ]11[5@"”"'2’“'”] =I5 +im{Zn+ 1) = 1 6094 +ix(2n + 1)

11. Investigate the function ¥ = 1/WZ. Find the functions %%} and V{7 %) where W = &+ 1. How many
branches does this function have? Find the image of the unit circle under this mapping.

1 -1 e o 1 8 i
Y ﬁe ‘,.fF(EOSE zsmz]
Thus
= =1 eel = sing = - L an 8
= poosd rEOSE’v o st JFSME

The function has a branch pointat & = 0, and it has two branches. Two circuits of the 2 ~ plane give the whole

W ~ plane.

The unit circle is defined by l=r=1 6<6<x Theninthe W - plane we get a piece of the unit circle:

| = oF =1, and, for the principal branch, =02 go 02¢>-m



= .l .
12. The function Wiz} = 2 " Find the functions %78} and v{7.%) where W = u + 1. How many branches

does this function have? Find the image under this mapping of a square of side 1 centered at the origin .

W = (ré'"ﬂ]m = pligit _ rlm(cos4£+z'sin4£]

Thus
= Nl g Ll B
u=r"osandy =+ %ant
4 4
The function has four branches since we have to go around the original plane four times to get the whole

W ~ plane.

x =1

1l p=1
The line 7y =0y +5(r" zsec&,oiﬂixmj

is mapped to
ll4
W= (%secﬁ) exp(z'g)
= _1
Thetop sideat ¥ = 1,”2(?" Zamg WA <0< 3w/ maps to

(515) e (:2)

12" = Tsecd,3m/d £ 0 < S/

W

The left side at & = is mapped to:

(% sec(f — ?cj) e exp(z'g)

- 1
The bottom at ¥ = _”2(3" Zemff-m 2w <0 < Tnfd) maps to

o (a=) =2)



map of square

S

= 03 \

a 0a 1

The entire square has mapped into the first quadrant and has been deformed into a curvy polygon. The other four
branches of the function would close the polygon by completing the other three quadrants.

13. Oblate spheroidal coordinates #. ¥. W are defined in terms of cylindrical coordinates #- p. 2 by the
relations:

o +iz = ccoshin +v), w = ¢
Show that the surfaces of constant ¥ and constant ¥ are ellipsoids and hyperboloids, respectively. What values
of ¥ and V correspond to the £~ axis and the & = 0 plane?
o +iz = glcoshucosy +ismhusinw)
Equating real and imaginary parts, we have:

o = cooshucosy and z = ¢sinhusiny

We want to find the shape of the constant ¥ and constant ¥ surfaces. First eliminate ¥ :

COsY = ——— and siny = ——
ccoshu o sinhs

Thus

1= rcos

2 2
2 2 — |':| e
Vv +osmnsy = (—J + ( - )
ccoshu o sinhs

Thus the surfaces of constant ¥ are ellipsoids with semi-major axis £ cosh ¥ and semi-minor axis

¢ stih. Similarly, by solving for coshu gng snhw, squaring and subtracting, we find:

1=cosh2u—sﬁﬂ12u=(L)2_( z ]2

CLCosY cony

so the constant ¥ surfaces are hyperboloids.

+1 2
The £~ axis is described by t@sv = 0,ie. ¥~ =2 Then z = esmhu which ranges from ~®to *% as
i does. The 2 = 0 plane is described by ¥ = Oor v =0or v = 7. These choices correspond to different
regions for - But # is always positive, so we don't need ¥ = T Thus w2 v S tmf2 0 Lw L ey

0 £ w < 2r describes all of space.



\-. R zf. Fl
J/J.- \xH . _;"I,r'a =05
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:
Ea

This plot shows surfaces of constant ¥ and constant ¥ for

c =1

14. An AC circuit contains a capacitor ' in series with a coil with resistance £ and inductance £. The circuit is

driven by an AC power supply with emf & = £ncoswi.
(a) Use Kirchhoff's rules to write equations for the steady-state current in the circuit.

Loop rule:

¢

spcosmi = IR+L% +E

Charge conservation:

di
J= 1=
et
= I
(b) Using the fact that cos wt = Re ':E ;' , find the current through the power supply in the form:
I=Fe (E_Zné,m]

where Z is the complex impedance of the circuit.

= 05
First write cos ®* Ee ':‘3 ) so the first equation becomes:

Respe™ = IR+ L4+ %

— 1704
I=TRe(&™) Then diffferentiate the loop equation with respect to time:

£+Ld_zf +l£
clf get O

iR — w2 L+
iy o) C

Now let

iwsg = B

I Ep

I(iwR - w?L + 1/C)
Thus



The complex impedance is:

7= R+iwl+ L
iy

(c) Use the result of (b) to find the amplitude and phase shift of the current. How much power is provided by the
power supply? (Your answer should be the time-averaged power.)

Multiply top and bottom by the complex conjugate:

/= Re 20 R_j[mL_Gj_cjlzé,imt
R+ (l- L)

il

= il (Ru:u:us mt + (mL— %J sinm:)

Ry [mL—ﬁjg

L— L
= =il b cos ol + [m i sit oo
JRE+|:DJL—C:—CJ|2 JRE+|:UJL—ﬁ:|2 JRE+|:DJL—C:—CJ|2
=]

= (cosd cos of + 51 d sin o)
7

JR3 + (0L - L)
= Ll : cos(mt — ¢

JR3+ {mL— ml—cjl

Thus the amplitude is

and the phase shift is:

1
_ 1 (U‘JL B E)
¢ = tan %
The time-averaged power is:
P =« ]z =< £a - (cosdcosaf + sind sines Jeg cos of =
2 1
JR +(oL- L)
_ oH cos ¢
B 2
2 1 4=
JR +(wl- L)
_ 1 Reg
T2 o2 132
R*+ (oL- L)
(d) Show that the power is given by
P= %Re(fg*j



2 2
_1 fo_ 1p.ZlEl® _1n_ 2 _ 1
£ zRE':ZngF 7 ke 22 pRegee ~ ghe s

since EeZ = ReZ™. Then
—lp.s - 1lp. 2.
F 5 Ee =T 5 Ee =
%Ref& = %REE&'*

15. Small amplitude waves in a plasma are described by the relations

o d _
5 + E(M.;,vj 0
ED% = —gn
and mé—i:‘; = —aF — v

where 0. €, #, ¥and £0 are constants. The constant ¥ is the collision frequency. Assume that *: £and

¥ are all proportional to EEp(kx —1wi). Solve the equations for non-zero 7,5 and ¥ to show that @ satisfies
the equation:

2
2 gy = 0T - 2
o I ey U.Jp
and hence show that collisions damp the waves.
Putting in the exponential form, the equations become:
—iwn +iktngy = 0
tkgaE = —en
and - iwery = —e& — v
Use the second equation to eliminate £ from the last:
— fupy = —e(__ﬂ] — BV
iken

and then use the first equation to eliminate # -

2
— onay = (z’i&u ] (kﬁ?vJ — e

Now we have an equation with ¥ in every term. Either ¥ = 0, a solution we are told to discard, or else:

} 2 n
—dwm = £ 00 —
igg ™
2 npe* 2
+ 3 = =
W iy = S Wi

which is the desired result. Now we solve this quadratic for

—iv t ”,I_I,E + dad

2

ol

With no collisions, ¥ = U the solutionis © = *wp. With collisions, the real part of the frequency is slightly

altered, but the important difference is the addition of the imaginary part ~1#/2. The wave then has the form



EEp (iﬁ:x —itwy |1 -

2
E fex — | w, [1- 2 —iE
Xp( [ %} ED

The real exponential shows that the wave amplitude decreases in time.

EEp (iﬁ:x —itwy |1 -
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Chapter 2: Complex variables

-2
16. Write the real and imaginary parts ¥ and ¥ of the complex functions(a) f=z"smz gpqg (b)

f=1

1% Ineach

case, show that ¥ and ¥ obey the Cauchy-Riemann relations. Find the derivative

4774z first in terms of X and ¥ and then express the answer in terms of Z. Is the result what you expected?

since

Thus

Thus

and

Then

while

F=ix+ ) sin(x +iy)
= (xz + Zixy + (:y)zjﬂsmx CoSIv + cosx siniv)
= |:x2 -2+ 2ixy}{smx coshy +icosx sinhy)
iy o PEY —.g-z'[a';v] _e7? —.go' _ _sm.hy - ety
21 21 i

= (xz —yz;l sinx coshy — 2xyvcosx sinhy + 1 (Exysmx coshy + (xz —_yz;l cosx sinty )

=
I

(x2 —yzj sinx coshy — 2xycosx sinhy

=
I

2xysmnx coshy + (x2 —yzj cosx sinhy

% = Zrsinzxcoshy + (xz —yz;l cosx coshy — 2ycosx sinhy + 2xysinx smhy
% = 2xsinx coshy + 2aysinz sinhy — Jycosxsinhy + (x? —y? Jcosxcoshy
.
dx

So the first relation is satisfied.

Then

while

% = —Zysinx coshy + (x2 —y2] sinxsinhy — 2xcosxsinhy — 2xycosx coshy

é—a; = Zysnxcoshy + 2xycosxcoshy + 2xcosxsmhy — (x2 —yz) sinx sinhy
.
dy

and the second relation is also satisfied.

The derivative is
ki
dz

as expected.

2xsinxcoshy + (x? — y?)cosxcoshy — 2y cosxsinhy + 2x sinx sinhy

+ {2y sinxcoshy + 2xy cosx coshy + 2xcosxsinhy — (x2 — y2 )sinx sinhy)

2(x + iy )(sinx coshy + icosxsinhy ) + (x? — y? + 28 )(cosx coshy — isinxsinhy)

2Z3iNZ + 22 cosz



F= 1 - 1+9‘_{'J’_
(b) = P9 Thus

- 1+x = ‘.Jf
u (x+1)2+y2’v (x + 192 + 2
Then
oy 1 _ o flHxp? (x+ 1y 4yR -2l +x)
W mr 1y (x4 17 +52) (tx + 19 +57)°
_ - (1+x)?
(tx+ 1) +5%)°
ETa —2¥(1 +x)
dy ((x+1 +_y2J
& 21*xp _du
i ((x+l +}”2J ih
and
»_ -1 % _ (1) U’QJ
D x 1)+ ((x+1 +y2J ((x+1 +yj

D R Vs S
(l:x+1}2 +sz3 dx

So the CR relations are satisfied. Then the derivative is:

4. -t L wllrx) il )
Lo (x+1P42)? (1)t (w1 )
Il S Ak ) S
pr1f IR 1?21y

which is the expected result.

17.The variables * and ¥ in a complex number = & * )Y may be expressed in terms of

*
Z and its complex conjugate £

x = 2(z+z%

1
2
= 1 *

= =lz—-=z

y= 5=
Show that the Cauchy-Riemann relations are equivalent to the condition

&
=0
P

*
We rewrite the derivatives using the chain rule. Suppose that F=Az2.2"). Then:

Lo Lp g @b (3-8

SRR

If the Cauchy-Riemann relations are satisfied, both terms in square brackets are zero, and hence

¥ -

& 0. as required. This means that the function =1z}, and " does not appeatr.



1

- 2 = 3 gy
18. One of the functions ¥1 = 2(% = ¥)* and ¥2 3 isthe real part of an analytic function

w(z] = &+ . Which is it? Find the function ¥i%.¥} and write ¥ as a function of 2.

Both the real and imaginary parts of an analytic fucntion satisfy the equation
Vi =0
so let's test the two functions:

2 = i —_ —_ i - = =]
W eu 4ax(x ¥ 4By(x yi=d+d4=8=10

and
Viug = a—ixz —%ny =Z2x-2x=10
So the correct function is ¥2-

Then from the C-R relations:

5
%=%=x2—y2:v=x2}:—%+ﬂxj
and
%=—%=2xy:\v=x2}r+ﬂy)
Thus
3
S
v o= xey 7
Then
3 3 3
f=%+ix2y—xy2—i%=%(x+zy)3=%

19. A cylinder of radius & has potential ¥ on one half and
=¥ on the other half. The potential inside the cylinder may be written as a series:
- f 2 vl e (2n + 110
o) = L (5)7 2
sl M2 ntl

Express each term in the sum as the imaginary part of a complex number, and hence sum the series. Show that the result
may be expressed in terms of an inverse tangent.

D(r, 8)

[}
I
=
M 8
3
"
et
&
x
-

The sum may be recognized as the geometric series (2.43)

Bir, 6 = 4_3‘;1111]‘;1 ﬁdw

o

R 2o
To do the integral, let wia® = sm¢, dwia® = cospdg.



A smolrtid? cosd
CD(.?",&) - Tltn-l-u md(i)
e 5t
= A [ 7 secgdd

w 0
Im{]n 1 +22:’a2 }
J1-z4at
Trn 4 In 1+Zg.-"'c22
1 - z3fg?

. 1+ 2%/
riag( 1720 )

= A¥ Im[Infsec ¢ + tan ¢ )[>" |

1
45

|
=

Now the logarithm is

1+z2%/a _ ‘ 1+z%a*
In =In
1-z%/4% 1 - z%/g?

and thus
_ 2 1 +z24a
$ir )= 2 arp - "< S
.8) i 1-2%/a®
Next we find the argument:
1+z%a® _ a® +rcos 268 + 37 5in28
1-2%a2% @ —prlcos2f—irfain2f
(a:‘ + 2 cos 20 + i sin 20) l:'a:2 - ooz 20 + i sm20)

2 .
(a? - ricos2f)” + sin? 24
at =t + 2ia?r? sin 26 _ A.fe
at —2a*rfcos 28+t

where

o = 2a°rsin2

44 _.?"4

tan

and thus

D(r,6) = 2V tan1 2a°r% 5in26

9
ﬂ4 _.?"4

o i a2 -
20. The function 7 = it (=*) (cf Example 2.10) also has a zero at Z = ™ - What is its order?

To find the order of the zero, we write the Taylor series centered at NES

= 2zooszt |,ﬁl’ =2 /moosm = —2,/7

Thus the series is

A2) = =2 /F(z= )+ o

and the zero is of order 1.

21. Find the Taylor series for the following functions about the point specified:
(a) 2052 gpout 2 = 0

The series is € times the cosine series, i.e.



2 4
zcosz=z(1—%+z—+---J

Ln
=

=z-

o™,
+
|N
+

I_h

(o) In(1 +2) gpout z = 0

Atz =0, fiz) =p(l) =0

The derivative is

The 2nd derivative is

2
A o1 - qatz-0
dz? (1+zj2
The 3nd derivative is
3
4 2 __oatz=0
=3 (1+z)3
So the series is:
2
- a_ Z 2 .3
Infl1+z) =z E+§z +
2 3

The radius of convergence is 1. since {1 * 2} has a branch pointat & = -1

(©) = aboutz = w2

The derivative is

The 2nd derivative is

ff2f _ —sihE _ ~cosz sing _ _f 2 R E _ T
22z 222 +223 B (?J+2(EJ Els = o
So the series is:

inz - 2 _ (213 (,_mys 1[of2 V- _xy

=l (T) (Z 7) +T[2(T) 1}(2 7) Gk
The radius of convergence is ™ since the function has no singularities (other than the removable singularity at
z=10.)

1
(d) =*-1 aboutZ = 2.

First factor the denominator:



There are poles at € = *1 Nowletw =z~ 2:

Expand each term in a geometric series:

_ 2_ .34 ..-1 1
GRER(])

] —

Az)

“3(rwewto e 3130 (3) )
=%(1—w+w2—w3+...—%+%—";’_2+...J

335 (3) () )
e 1o i e

The radius of convergence is 1, since 7iz) has a pole at £ = 1.

22. Determine the Taylor or Laurent series for each of the following functions about the point specified:

£osg
(@) =1 aboutZ = 1

The function has a pole at £ = 1. so the series is a Laurent series.

First find the Taylor series for £z -
cosz = cosl —sinliz- 1) - %(z— 1)2

The general term is

™ -1 mpE 17
PR o (-1} — cos 1 for s even
= (-2 BT gy for m odd
Fal
and thus
_ (z- 1) 1 it 2= 172
Ao o oot Z o] Z Gt

The radius of convergence is infinite, since the function has no other poles or singularities.

x!
s aboutz = 0

The function is analytic at

- . . . N . . . 3
z=10 (there is a removable singularity) so the series is a Taylor series. We start with the series for 51l



2 é 10
sinz =l22_2_+z T oa
z z 3| |
3 9
=z-Z +Z +
3l I

The radius of convergence is infinite, since the function has no poles or other singularities
e .
(c) r~n aboutZ = IT

There is a simple pole at Z = iT : the series is a Laurent series:

e.,x. _ gm é,x—!:n’[
Z-im z—im
2 3
" L BN [TV L T
W W 21 3l
=—l—]—ﬂ—w—2— where w = z —iw
W 2 &

The radius of convergence is infinite, since the function has no other poles or singularities.
Inz
(d) =1 aboutz = 1

Th function has a branch pointat Z = 0. The singularity at £ = 1'is removable, since Inz has a zero at

z = 1. we should be able to find a Taylor series valid for 0<l-11<1.

First find the Taylor series for lnz |gtw=2z-1

2 3
]n(l+w)=w—wT+W?+...

So

hz _ 1 (Z_l_liz—1)2+liz—1)3+m)
7 3

z-1 +':Z_1:'3 o
2 3

I
—
|

branch ]

Eut?.b‘

bk u 0.5 1 1k 1B

(e) tan E (z) =w

3
——
[

E
+
@
o
E
e
Il
th!\.l
E
|
@
|
E

&
Lt
2

[
|
o
+

[
+
-
I
o

So



1 (l+r-.lz 1 (;‘—z
WSl 1—;:2] o7 1B i+z]
There are branch points at Z = i. There is a Taylor series valid for E| < 1.
2}3[12— 1(—22J+ {z—)—z}]

z+ l(;zf + 2(3235 + o

W

3 i
-z- %23 +%25 o

1.9branch cut

0.5

-15

branch cut
"

Problem 22

23. Determine all Taylor or Laurent series about the specified point for each of the following functions.

pr:
(a) =*+1 about the origin.

The function is analytic about the origin, so there is a Taylor series. The function has poles at
z = i, 5o the Taylor series is valid for | < 1. There is a Laurent series valid for | > 1.

Taylor series:

™
]
I
——
—
+
L]
+
]
+
|N
+

+Z—---)l:1 -2t -5+ )

]
b
+
—

13 ¢, 101 s _ 389 6,
297 P igp? T agp? oo forkl <l

M
madl ';3!
Laurent series:
£ _ _ Liii(_”m 1
22 +1 22 (1 + 22 n= %! m=0 sz

We may simplify the negative powers as follows:



g _ sl =L(]+ c 222 2

Zel 21+1) 2 2 3 4
=...zi5(1—%+ .)+ZL4(—1+%+—$.
L (1-ds k)

Il
o
o
Liy]
o
[1e
T
b | —
=
=
+
Lir]
B
o
=
pa| |
2 —
+
X

valid for |Z| > 1

1 .
(b) =*+1 about = ?

The function has simple poles at Z = %i. so we can find a Laurent series valid for

0< -4 < 2and another valid for - > 2

LetWw =21

=i(l
22 +1 2iwvw

In Region |, expand the second term in a geometric series:

1 1

1

1

1 _
Z2+1 LW n? (1+wai)

i1 wo_ow?
w+4(1+2 z

Ay -0 Y_ &
= 7| ! 7" ) 3

which is valid for 0 < =& < 2

In the outer region (II) we expand the other way:

3

o)
1 z—j f(z-1y
| 16

v



2|~
+
]
Es

[ (3B )]
@) ]
-1 _ 24

wéowt oyt

= 21 4

which is valid for £ ~#| # 2.
=
(c) =2 about £ = 3

The function has poles at # = *3. We should be able to find a Laurent series valid for
0 < |2 = 3| < & and another for £ = 3| # &

2-9 E-3z+3) ww+6)

where ¥ = 2 = 3. Then for | < & we have:

z  _ w43 1
24 _ W w
z2-9 6(1+E)
w3 (1w wt o ow J
= S (1 6+62 63+
(1, 1 _woow? o owd J
_(6+2wJ(1 6 " 67 T g3
1 .1 1 1 .2 _1 B ...
S o Tz T Tt Y T Teee W T
__ 1 1 ==3) =-37
"S- 12T T T am ¢
while for [w] » ©
z _ w+3 1
z? -8 Yow(l+ L)
=W+3(1—£+£—£+ ]
w2 W w2 W3
-1 _ 3 .18 _ 108 |
W w2 w3 4
_ 1 __ 3 . 18 _ 108 .

1
(d) =*+= about the origin.

The function has poles at £ = *3, sothereis a Taylor series valid for [£| < % and a Laurent series valid for & » 2.



Laurent

Taylor

—
|

|—

—

Z+9  ©

3
1 1
& 31 ( 1 -2/ + 1+z/3i )

L+2+(£)+ (&) + +1-2+(&)- (%

_dfy_z22 2
=Gl
while for 2| > 3
1 =L( 1 1 )
=2 40 giz v 1-3iz 143
_ 1 3i 304 3047 _(_ﬁ 3iN:_ (31
_612(1+Z+(Z)+(ZJ+ 1 z+(z) (z
_ 1 (3 3i 47 3i %7
—5(747) +(2) "+ ]
_ 1 9 34
Tz AT E

24. Find all the singularities of each of the following functions, and describe each of them completely.

et _ ol
(@ 7 ~ Wz

Expand out each term in a series:

£ _ginl=1tz+2R+.. _ (l—%[ljﬂ...)

Z Z Z Z z
=1+£+i+...+_1 -1 4.
2 3l 327 5lz?

This is a Laurent series with infinitely many negative powers, and it is valid up to the singularity at
z = 0. so the function has an essential singularity at £ = 0.

COFE _ sing

(b) E4 !

Let's look at the series for this function about the origin:

cosz _oging _ 1 -z¥2+240l 4+ 2231+ 25480 -
= 22 = 22
= —£—£+i—i+
2 6 4l al
- 242 4
37 30

This is a Taylor series valid for all Z Thus the function has a removable singularity at = = 0.

tanhz

(c) =




The function has a removable singularity at & = 0

2

]jmtanhz _ ]jmsnzchz _q
=0 £ z—] 1

But the tanh function also has singularities regularly spaced along the imaginary axis.

L R
tanh iy F Tl itany

and 'Y has singularities at ¥ = (2r + 1}m/2. The singularities are all simple poles. For example
coshiy = cosy = —sinly — w/2)
—(@—xmyn%@—xmf+uj

: m\tanhz o (z-i2)sinhz
xlﬂ}g(z I?J _xl}ﬂ% zeoshz

(2 - .t% ) sinhz

= lim :

il (—.:'I[z— i) — 3‘—!(2— 2 + )
= lim sinhz

F—+Ai2 ;'2(1 + 3%—![2— 2+ J

i) T

Since the limit exists, the pole is simple.
2
@ (1 +2*)

The function has a branch point where 1 +2z* = 0, orz = .
25. Incompressible fluid flows over a thin sheet from a distance

40 into a corner as shown in the diagram. The angle between the barriers is w/3, andat* = A0,

V=V Assuming that the flow is as simple as possible, determine the streamlines of the flow. What is the velocity at
r = Xof3.0 = n/67

The velocity potential satsifies

Vi4 =0
and thus we may look for a complex potential T = ¢ +iv D mustbe an analytic function in the region
L8273 andatx = o we need

-V = ~Pof

The streamline function must be a constant on the surfaces & = U and



8= w3 we may take this constant to be zero, and then the function sin 3¢ does the job. (The function

sin 328 would also work, but would lead to more complicated flow.) This suggests that we look at the analytic function

3330 3 o
kzw = krie™ = kri{cos 30 + 13 36). The imaginary part of this function satisfies the boundary conditions at the two
surfaces. Thus the streamlines are given by

w = krisin38 = constant
and the velocity is given by

v

V¢ =-V (kr* cos36)

~3kr? cos 361 +3kr? 5in 308

~3kri[cos 38R cosd + Wain 81+ sin 30~ R sin & + Yeosd)]
3hr[~R(sm 30sind + cos3fcosd) — Yleos 30 d — sn30cos )]
= SR [-R{zos 26) + P{sin 26)]

Thus at & = 0 we have
¥ = - 3k2%
and so
3kXE = Ty
Thus the streamlines are given by
_
3XE

L ( 3xEc \'F
Vo sin 30
e _

See Figure. *o ! (solid line), 5 (dashes), and 1/5 (dots).

ain3d = constant = O

The velocity is

N 22 180528+ sin26)

Yo 3x%
and so at * = £0/2, & = /% we have
N gl an® agl o™
7 1z g TYz et
- "o o
¥ E(\J-’?:itw_»,f]
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Chapter 2: Complex variables

26. Prove the Schwarz reflection principle: If a function Az} is analytic in a region including the real axis, and

A%} is real when % is real,

fiz) = A"

Show that the result may be extended to functions that posess a Laurent series about the origin with real
coefficients.

- = top -l
Verify the result for the functions (a) fiz) = tosz gng (b) fiz) = tan " {z).
(c) Show that the result does not hold for all Z if fiz) = Iniz) (the principal branch is assumed).

If the function is analytic, it may be expanded in a Taylor series about a point 0 on the real axis:

z) = ianiz - xp)”
n=

and since
= Zﬂnl:x - xﬂjn
n=0
is real, then each of the @z must be real. Then
Za (z—xp)" = Za (r”e’”ﬂj
= Za g = Za re_‘ﬂ = fiz*)

The proof extends trivially to the case where the series is a Laurent series with real coefficients.

= aF + g E _ aHa T 4 g Y

cos 5 5
So
5, i g ] il )
(cosz)* = £ €~ *¢ Calig re = coslz")
2 2
. = -1 . L.
The function ¥ = tan " (z} is trickier.
e & o lgz:w —gw _ lEEz:w -1
g 4w i EEzw +1

Thus

and, choosing the principal branch of the logarithm,



2 ) = Lla(1+iz) - In(1 - iz)]

z
1
|—
=3
—

2 1-iz 2i
= I fi1— #x? vitant 2 —n T4t - panl X
> (]n (1-21" +x° +itan T—> In (1T +»)° +x° —itan 1+;v‘)

)

S 1Y (TR PR X : Z ., 2 g x
2(3]11 (1= +x% +tan 1_y+z]n,|||li1+y:l +x% +tan 1+y)
Then

f{z}=%(ih1‘;'l:1—y:lz+x2+tan_11;£y—z']nm+tan_llf_y
and

Az = %(—ﬂn,n'(l +y12 + 22 +tan ! 11;.; +iln J{1 -1 + 22 +tan X

1=y

and the two expressions are the same.

Note that this function has branch points at £ = i, but it is analytic on the real axis.

(©)
Iz = lnr +id
We proceed by showing that the relation fails at one point, & = ~1 Atz = ~1. on the real axis,

hz = ix
Then

(lnz)* = —iw
but

Iniz*) = In(z) = ix
27. Find the residues of each of the following functions at the point specified.

=2
(@) =1 atz = 1
First factor the function:

z—2 = z—=2
z2Z2-1 f(z+1)z-1]

The function has a simple pole at Z = 1 and the residue is:

Tl = 1 z—2 =]jmz_2= _
x—>ll:z j(z+1:lliz—1) =lz+ 1

b [—

) =P (3 1) gz =0

First rewrite the function:

and then expand in a Laurent series:

)



Now we can pick out the residue: it is the coefficient of 1. The residue is

1/=

SINE

(c) # atthe origin

The easiest method here is to find the Laurent series:

; 3 5
stz _ L(Z_z + Z +)

and thus the residue is
CO58
(d) T=inz at Z = @H

Since the denominator is a function #(z) = 1/2 = snz that has a simple zero at = /%, we can use method 4.
The derivative is

and so

ReS = lim 982 = (-1

s—nlg  CUSZ

28. Evaluate the following integrals:

CO5E
(a) jEC‘ z where T is a circle of radius £ centered at the origin.

The integrand has a simple pole at & = 0, which is inside the circle. The residue there is:
lim cosz = 1
=

and thus

COSE - :
§c sz 2i
§ s gy . . .
() T s where Cis a square of side 4 centered at the origin.
The integrand has a simple pole at Z = 1. which is inside the square. The residue there is:

lim sinhz = sinh 1
—1

and thus

jtc ;ullleZ = 2wisimh1 = ?ri(é'—gl]



(c) ﬂEC T+ Where C'is a circle of radius ! centered at the origin.

3 - a ’ 3

The integrand has a pole at Z = ~<. which is outside the circle. Thus:

fosse

£ 4 :
(d) jgu:' 4w+ where C'is a square of side 1 centered at the point Z = {1 +£)/4.
1
L3

0.6
.

0.4
0.3

-04P.20p 02 04,086 'Za 1
Sk

0.4
od
The integrand has two simple poles, at & = i/ Only one, at & = /2, is inside the square. The residue at
z= I.I'IIE is

and so

o
q

29. Evaluate the following integrals:

J‘2:i‘[ 1+cc|s|5
(a) 10 2-5111{']

. L = it
We evaluate as an ingtegral around the unit circle. Let € = 2", Then
-1 ( 1
cosd 5 z+ ?J

and

snd = %(2— %J

dz = ia0dg = df = %

and

Then



J‘f‘“l+cgsﬁ'd _j[ 1 3(24_%.:'@
02— snd cE—%[z—lexz
-4 2+(z+1) &
043'—[2—%} Z

+1

1
i
IR
+
N
by

I

i
]
[

+
[
+
—
B

The integrand has poles at Z = U and

Only the poles at Z = Oand? ~ (2 - "EJE are inside the circle. The residues at these poles are ~1 and

I R (a3 i) 1
—-E) z—(2+ﬁ)i (Z—ﬁ)i (2—ﬁ)z’—(2+ﬁ)z’
) 3-243 - (2-3 )i )

(E—E): i3

V3

_14i¥3
'3

So the integral is:
20 1+ cosl on o _ J3 - 2,43
o 5=oids Em( T+ 1+t ) 5T

A _sin'f

(b) -[D 1+cns"ﬁ'

Let 20 = ¢. Then: cos28 = 2cos?8 -1 =1-2sin"8, 5

A 71 cos2f) Izﬂl cos¢d¢;
L 1+é—c0528+1 0 3+cos¢g 2



cos¢ =ljt 1_;(24-%)@
2 o 3+'305¢ 2 J unit circle 3+1—(z+%) iz
_ {2
—i§ 2z (Z +1]@
21 o unit circle fiz + (22 + 1) Z
The integrand has poles where
_ 61 36 -4
2

= -3+ /8 = -3+2/2 = - 17157,-5 8284

Only one of these poles is inside the unit circle. There is an additional pole at £ = 0. The residues are ~1 and:

W ~(3+242 -1)°
a2z z(z- (-3-22)) (-3+242)(-3+242 - (-3-2J2))
~(~4+242 ) -2(3-242)
T (B22)(#Z)  (3+202) 2
= o2

Thus the integral is:

[ 1 e S - Lomi(-1+2) = =(V2-1) = 1.3013

+ cos

(c) '[D 1 +sin’ ﬂ

R ——
unit circle (1_31_(2_;_]2) iz

= § £ =
unit circle ( ERY

z2 - }1—(22 - 1) Jz

2m 1 _
dé =
ID 1+ sin?d

The integrand has poles where

z=il(22—lj
Z2-1F2=10
o L Bl SR
2 _1_"5
Of these 4 poles only 2 are inside the circle, at £ = 1-,2 andz = "1+ V2. The residues are:
im (-1+42) i diz
Hl-,,ﬁ(z_l(zz_u J 1= (z-1-J2)(F+22- 1)
=_%‘,.f§3-

and



o Er1-42) . 4z
=8 (-1 -1)2) el (P -2z 1)(z+ 1+ 2)

=—ii.|"§

q

Thus the integral is:

J‘z" 1 ge-= 2m(—%¢'§ijz =z 2

O 1+sin8
@) [3 sin®*6a¢

. T I L . .
Since sin“({~%) = 5“8, we may rewrite the integral:

In _ o _ In
IET s 89 = %‘l‘:[ i = %funrt circle [é(z - %]} %

1 =0

_ a In =
22:& *l I §un'rt circle (Z 1J

The integrand has a pole of order 2n+1atz =0 The residue is:
Zn s 2n In -1, [2n)(2n w2
lig b (2 - 1) = iy L T () - () 2B 2

All the terms in powers > 21 are zero in the limit, and all the terms in powers < 27 differentiate away. Thus

- 1 e n 1 g2 [ (2ni2n-1). (Zrz a+1)
i T e @~ 17 = lim s 5{22”[ 734 =) }
_ (1) @m)2n-1).. (n+1)(2 )
Zn)] 734
_ (=1)"2R)
YT

Thus the integral is:

‘l‘; SmEnﬁd& — 1 I:_l:]nz (—1}”(2nj|

30. Evaluate each of the following integrals:

o 1
(a) ‘Lm 2142 2

We close the contour with a big semicircle at infinity. The integral over the semicircle is:

I N 1 ai'z‘ L wRmax
semicirele 22 4 0 z2+ 0
= TRmax—L 1 ¢z 1
R|Tro2 | = R1- 20l

> 0asR=f| > =

The poles of the integrand are at £ ~ J—r?u@- Only the pole at € = +?\J{§ is inside the contour. the residue is:



litm 1 = 1
=2z + iﬁ Eiﬁ

Jdm 1 dx = 2wl 1 =£?r
™ xZ 42 g2 2

and the integral is:

oy P s

51+l

We close the contour with a big semicircle at infinity. The integral over the semicircle is:

I N Z ‘ L wRmaz|—£ ‘
semicircle 23 4 ] 23+ ]
- P 1 T 1
= gRmaxS | —1 | £ &
B+ 1 R |1—L”lz|3|
< 0asi=f|l— o
]
a B
The integrand has poles at
z = E_l:llﬁ — é,:':i‘[|'3 -1 Ez’ﬁ:i‘[ﬁ
_ 1,3 1 B
—_ _3, o —_—
2 2 2 2
The first of these is inside the contour and the second is on it. We'll evaluate the principal value. The residue at
= Lo 28y
z=373 tis:

x—>;_+_!£z 23 +1 1+ |:2_-+ 1:](2— é_ + %3]
1_+£3'

= 2 2

(e 51 2
l+£3‘

= 2 2
3 1 ;
(§+ 3id3 (“EJ

[]
I
|.—n
.
—_
Tl
+
-
— " —

. . - = {3
The integral around the little semicircle where & = 1+ % s



— it . : _ il .
litn 1+¢ee ige®df = lim 1 +¢ge : igede

0 v ( 1 +E€!ﬂ) +1 =0 v —1 + 3zt — 3222200 4 232500 4
= limi —1 + e #30
lﬁﬂl-ri 307 — 3o 4 g2gI -

_ " =L I
_.t_rj[ 3-5116—313

Thus
PJ‘_W .:fx + %z = ETCI'(—%I'(\E +1‘]] = %?c 3+ %i?r
and so
o 3
PJ‘_W x3x+ 1.:£x = g?c
(C) J‘+°° cnsmx

There are no poles on the real axis, so we may assume that the integral is real. Then we may evaluate:
™ Coswx b~ e [ exp(imxjdx
= 249 = x2 49
Close the contour with a big semicircle in the upper half plane. The integral along the semicircle is zero by
Jordan's lemma. The poles are at & = +31, put only the pole at & = +3i is inside the contour. The residue is:
é,z'bk _ Ez’wlﬁz’] _ .;:,'_3""‘1
=3z + 3 i fi

Then:

COSWX 7. _ BN _om S
J‘_m x2+9dx Re(Em z J =€

% 5Inx

(d) =75

The poles of the integrand are where

z4 + Dz + 2

I
)

B U X |14

None are on the real axis. Thus we may take:

[ R gy = T (7 xe” gy
gl 4 2x+ 2 = oxd 4 2x + 2
and close the contour with a big semicircle in the upper half plane. The integral along the semicircle is zero by

Jordan's lemma. Only the pole at £ = —1 *+ijs inside the contour. The residue is:



fm _zE" Cl+iespf(-1+2)) _ (1 +d)exp(-1-4)

=-1wz— (=1 -1) e e
Thus the integral is:

.|'+°° LSinx dr = Im(Em' (—1+i)exp(—-1- 3:')

- x? 4+ 2x+ 2 2

= Im{me {sin1 - cos 1) +ime {cos 1 +ainl))

me W eosl +sml)

1. 5%7
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Chapter 2: Complex variables

31. Use a rectangular contour to evaluate the integrals:
o g
@)= 1w 0 CRea < b

The upper side of the rectangle should be at ¥ = 2mfb (for real ). Then on the upper side:

‘|.+oo-|1'2ml.5 2% _e® +o E,axgzaEﬂfb Jx = Ez’azﬂ:fb Im L dx
—H 2 il 1 +é,bz = 1+ é,-b.xé,ﬂﬂ - 1 4 é,bx
Then around the whole rectangle:
as : Jid a2 H2nlh as
f €% _dz=lim [ €% _dx+ J”‘ ¥ g
rectangle 1 +&™ R w—R ] 4 g™ E 1+e™

R+2mfp az R ar
2 f € &+ -r € 4
Falals ] 4 o= —RuZmp ] 4 b=

. Joar g o) az
= lim {1 — g@a2n J“ b+ _e* 4
R—:m( ) -R 1+€-5£ -rR

1+e™
R
+ _r _e®
-Re2mls 1 4 25

Along the end at * = & with @ = o + &y

.r:tﬂm —&dz = _l.;m% e TVe v idy = el® IRE"TRI?% ere iy

1+ 1 +gbRoity e ok 4 piby
-rR‘ﬂ“"'f’ g dz‘ <o ?"fﬂ'e"ﬂ’. 2N o oRelewR 1 2m
R 1 +€bx e 5R+€zb.}l b |€zb.}l | -z 2R h

_ . Rela-blR 1 2T

provided that Eea < &.

Alongtheend at ¥ = R

.I-_R o= _ .I-El E—ct.R—'p}lEz'-:r,}-—e'rR 3,:3:}3
—RHITE ] 4 o mE ] 4 PR
-2 = L
oy ¢ ool 2250
-EaImE ] + o 1 + o PRy
—gRat_ 1 2T L 0g5R a
- P b

provided that Eea > 0. Thus we have:

anx

§ Eaxbxdz - (1 B Eiﬂzmlb.] ‘I‘+-: 1 iébx dx

rectangle 1 + 2

Now the integrand has a pole where

or



z = infh
which is inside the contour. The residue there may be found from method 4:
az 1 Eaz’:i‘[fb

residue = lim £ = 1
snlh habE £ -1

2M1 /b

and so the integral is:

az _ _imalh
jf e® 4 = zm( il ]
rectangle 1 + 2% &

and thus
J‘ dx = 2E —gifalt D 1
1 4 b b q1- .g-""z"""'f’ L) (Ez'mfb - Eﬁ'ﬁdn’b]
—x_ 1
b smwalb

The result is real, as expected.

J‘+‘°° sinth ax
(b) ™ smh dax

ax

We put the top of the rectangle at = = I/ Then:
sinhaz g, = [*° _sinhax g, 4 [ sinhaz g
frect:mgle sih 4z —= gimhdax 'I-R smhdaz

+I‘R”’“'“ sinh 2z +]’ = sinhaz
ramiz snhdgz  d-Reme sinhdaz
_ [* sinhax dx_,_.l'*“" sinhax smhax o, _ 2_[ sinhax _smhax

—= gimhdax —= ginhdax —= ginhdax
There are poles inside at £ = inmida n = 1,2, and 3. The residues are:
- o isinLam . sin 2
sinhaz  _ smhinw/d _ 4 _ i P

-]

r—vintMa da coshdaz da coshinm dacosnm 4 (1)

Thus summing the 3 residues, we get:

Ij—sﬂh4ﬂﬂxxdx = m’ﬁ(—sinE + gin & —sinﬁ] = }1 - ( J2 + 1) = %"Eﬂ:l

Note: the singularities on the top line at = = 1w/a and on the *-axis at ¥ = U are removable.

(c) -I.'m' coshax =l



Again we want the integral along the upper side of the contour to be a multiple of that along the
lower. Here we find there is an additional integral that we have already evaluated. We can make use
of the results

coshiaz) = coshla(x + 1)) = coshax cosay + ismhax sinay

So we can take ¥ = /2 on the upper side of the rectangle, so that F@5&y = Cos® = ~1land

sty = sinw = 0 Tphen:

2 + 2 3 2
jf Z .:zi'z=j];:jm[ R_x2 gy R _z .:i'z]

rectangle coshaz “k coshax B toshaz

. -4 i 2 - 2
+h1n[ it 2 _gpe [ 2 ai'z]
F=o| JBHE  coshaz ~REHE coshaz

On the top side:

I—Rﬂ'_g. 72 I—R (x +imia)? p
2% coshaz 2 n::c::-sh{ ax +im)
+8
ey N
- l:-::lshc:x - l:-::lshc:x -R coshax

TThe second integral is zero because the integrand is odd and there are no poles on the real axis.

The third integral was evaluated in § 2.7.3, Example 2.22. The result is w/a. Thus:

-R+H L 22 dr = I+R IE - (TE J3

REH%  rcoshaz -R coshax &
Now at the two ends, we have:
B+ )2 .
T Rl e
R n:osha:z 0 gaRgiay — p-aR, gy
2{R? + w2/a?
{ T pmak ( ) — 0 a5k — =
ot 1 - E.-ﬂlaR

fora » 0. A similar proof works for Re2 L0 - just factor out g ok in the denominator.

Now we have:

2 3 _ . .
fremangle DOerhﬂZ R—m:' I‘R t:cash.:zx - (%J - ETEIZ(FESIdI_]eg)

There is a pole where

coshaz = 0
i.e. at
s
z =i
2o
and the residue there is:
2 _ (im/2e )2 __ w2
s—inf2a a sihz i Hiep3

and therefore



x2 _ 1 rmy3 e
f,f = L[ —
= coshax * 2 (‘I J " dig?
- 1(z)?- 1z _ 1z
2 ha 4 43 4 43
32. Evaluate the integrals
(@)
o 3
I x27 ax

The integrand has a branch point at the origin and a branch cut, which we may take along the
positive real axis. Let's evaluate

3
2o
ol+z

where C is the keyhole contour in Figure 2.36.

Along the bottom of the branch cut:

z3m 3& T E

= I £ __gr= I dr
O,battom 1 4 53 Obattom 1 4 3 01+

Now along the big circle, we have:

faon 12
circle | 4 53

32
i IE“R—_M%&
R |J 0 1+R3E3zﬂ

i

2R 2% 0 agR 5

<
RA-1  RIE
ST V- BT BN NN I . Smis _ 1 _ A8 .
The integrand has poles at © (1) ¢ 2 i o 3B = =1_J° 2 2 "

three are inside the contour. the residues are:
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(b)
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0 +2 41
Use the keyhole contour. There are two poles inside, at £ = %I, thatis, £ = g2 and g2,
1.'3 2mif3 .'6 b ]
jt dr I i &  dr=2mi ™ g’ :
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Check that the integral around the small circle goes to zero:

|
f“ﬂmaﬁ 0ass— 0

33. Evaluate the integral

w o Jdx
1] 1+x21'-f

by integrating over a pie-slice contour with sides at ¢ =0andatd = 7N, 027 =

dz
We evaluate * 1= over the suggested contour.

On the curved part of the contour, the integral is bounded by

“1+z

On the straight line at $ = W, z = re®” i and we have

iﬁﬁ%%UESR%m
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Thus
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The integrand has a pole where

1+z% =0

or

19

L

Zp =@

(the other roots are outside the contour) and the residue there is

Hpm ﬁerﬁp(—iﬁfﬂzw— 1}) = ﬁem(_mﬂﬁg)

()

Thus
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34. Evaluate the integral

=it
e dx
IEI

" . . . 2 - .2 :
along the positive real axis by making the change of variable ¥~ = 7IX™. Take care to discuss the

path of integration for the ¥ ~integral. Use the Cauchy theorem to show that the resulting ¥ ~integral
may be reduced to a known integral along the real axis. Hence show that

I sinx2dx = I cosxodx = lF. S _
24 2 (The result has numerous applications in physics, for example

in signal propagation. ).

sinx? = Ime™
, = J—iy = o
and letting ¥ = Joix = ey, then
=it R e TET
ID 8 ox ID g ¥ e
The path of integration is moved off the real axis: when ¥ = R— @, thenu = 2R o along a

line making an angle ~®/4 with the real axis. But the integral around the closed contour formed by
the real axis, this line, and the arc at infinity is zero because there are no poles of the integrand

inside, and the integral along the arc — 0:



J‘ = ‘I‘_ﬂ'l4 E-R"smﬁé.:'ﬂd& = l;RJ‘_ﬂME-R“[coszﬂﬁ'smEE]é.:'ﬂd&
are 0 ]

and cos2 is positive throughout the range —mi4 L8 L0, sothe integral — 0. Thus the integral
along the sloping line equals the integral along the real axis. Thus

S = i ot = iﬂlﬂﬁ:L £=l T ;
IDE dx = e .[né £ 2 2 ﬁ““:lz 2 2{1“:I

T/

Problem 34.

Thus
® o 2a 22 - 1 =
ID sthxdx ID cosxedx P

35. The power radiated per unit solid angle by a charge undergoing simple harmonic motion is

4P - panip cos wi
dtd {1+ fcosfsinws )’

= .2.c4 2 -
where the constant & = €“¢c8"/4ma“ gng £ = aw/c is the speed amplitude/c (see.e.g, Jackson p
701). Using methods from section 7.2.1, perform the time average over one period to show that
¢ df o K 2

4 + 52 cos?d
2= ain 8 e
bl 8 (1 —,82 n::-::-szﬁj

Write # = @£ Then the time average is:

¢ dP oo Ksind (2x__ cos'd
bl 2w 40 {1+ Fcosfsing)’

We can simplify by doing one integration by parts:

¢ 4P . Ksin'f cosg
52 (4G cosf)im | (1 + Grosfsing)®

211_ - —s;in(#) d
I” (1+ G cosfsing)? ¢i|

0

_ _Ksin® [ m__ —sing
8?:.8::0519[-[0 (1 +,8c¢sﬁsﬁ1¢:l4d¢j|

= 1_ + l
We convert to an integral over the unit circle in the £ “plane and write SEE Y 2 (2 Z ) and



= L - l i = 3 =
sin‘i’ RS ) Also ¥z = @ 'I'“f‘ﬁ, so @ = dzfiz. with 4 = Foest, the integral is

W g o 1 (z- %) dz
'I.':' (1"'4‘15]11(#))4 t#) 21 4 unit circle (1_,_%(2_?1))4 iz
lj‘ Z(z* - 1)

2 unit circle (2_3'3(22 — 1])4

where & = A/2. The denominator is

4 4
YN R L L . T U R S = jipd (a2 42 _
(z-iB:2 +iB)* = (-iB) (z Z 1) = (=B) (z iZ 1)
and there are 2 fourth-order poles at:

_ i/Bt JFUF +4 -+ [1-1/(48%) - 4 - + JaZ =7 -
? - 28 A

where 4 < 1 and so the square root is imaginary:

z=§[—lim}

Only one of the two poles is inside the unit circle:

zp=i[—l+m]

A
Now we find the residue using method 3:

_ 3 (22 - 1
Redfizy) - 3_111%%?(2 = ((z —ZE:)(Z ‘Zjn)34

4 _ 2
e @)
=% 31 dz? (z - z9)"

where
o = ﬁ[—l—ifl—ﬂz]
Thus
2 3 4 2
Resflz,) = lim - & 4z” - 2z -
ﬂ Pj =z, 3 EiZz |: [2—20)4 [Z—ans
il df 622-1 o 2721 7 = )
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Now

and
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o 3( )Elr'ldz YE
Thus
=2 -1
Resflz,) = 4| —2 - 221 , o 228~ 1 2
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and thus the integral is:

14 2(Z-1) L. 2w _Ksin'y (ﬁ‘*cos*&) 1 +46° cos’s
2 ¥ unit sircle (z—iB(z:"—lJr (—iF)* emfcosd 16 (1-5° I:osglf-';lm

4+ 52 cos?d

= 2afcosd
[1 - g* cosgﬁ']m
and finally
2 a2
¢ 4P 5o Ksin?6 27 cos 8 A+ b7 cos "qm
il STC.SC (l_ﬁzmszﬁj
2.2
- Lieinzg 28 cosf
4 (1 - ﬁzcc}szlﬁ'j
as required.
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36. Langmuir waves. The equation for the Langmuir wave dispersion relation takes
the form:

= v )i
0=1+2 P
T ﬂmﬁwv

where “# is the plasma frequency ne/znm and ¥ is the 1-dimensional Maxwellian
— FH F‘?E‘PE J
V) = = Bl
A= meaT Kp( 2ksT

Notice that the integrand has a singularity at ¥ = w/k. Landau showed that the

integral is to be regarded as an integral along the real axis in the complex ¥ ~ plane,
and that the correct integration path passes around and under the pole.

(a) Show that the integral may be expressed as:

E:'ﬂvfﬂv o v iiov
== @) — ﬁ:v PI

(cf Section 7.3.5)

im &
-“wkv ikt

=k

The principal value is defined in the section referred to
ij Eﬂ‘u ,”Elv _ ]JIH( tlJ||.i:—E+‘|\+m )Bﬂﬂf&u .
- = l.in_) =] —aa ulit+e o= .S.'._V
We need to add to this the integral around the small semicircle that passes beneath
the pole. On this path, ¥ = Wik + E'Eiﬂ, and the integral is
it

0 sig - 1
do = 19
\I‘_ﬂ _EEEE .EC B.P

=ik

which is the required result.

(b) Evaluate the principal value approximately, assuming “¥* # vr = Jkalim 54

hence find the frequency © as a function of £ What is the effect of the pole at w/k?
First we integrate by parts:

iV S Y |
Pl S P[m_h‘ﬂ ﬁ:‘l‘_mmdv}

=0—;:PI*°°L.@
™ (o — v )

Because of the exponential in the Maxwellian, the numerator is very small except when

v & vy & Wik Thus we expand the denominator:



1 - 1 - -1 1+2£+3£2+...]
(o — v )2 w2 lkviw - 1)° wz( “ [m J

and thus, integrating by parts
w G o E:v
P T gy - - & [ f(1+ GCAR --].:;t‘v
_%(1+U+33¢_21;§+...J

o o)

Finally, the pole on the real axis contributes a term:
df : 1 2
_im & = ;. -¥Y Jexp| -2
BV e o I\ vE D2
2
'j; vi Dk

This term is small because the exponent is large, so let's neglect it for the moment.
Then:

=ik

2 2
D=1—°‘”F’*‘C(1+3—k v,J=1——m ( —5521:;?)
"E:EL:' o l:L]2 CL:'

To zeroth order the resultis “ = “#- The first order correction gives:
w? = wi + 34w}
the Langmuir wave dispersion relation. Now we add in the small imaginary part:
5 2

w? = 2.2 _: [=® oy Wy
u:u + 3ipty? 3|'2 (kzv?)a*j{p( Ekzvf‘)
_ - 2 2 -
Thus © must have an imaginary part, @ = @ ¥ I¥. and thus @~ = wy + 25, with

1 F wh o - w3
24 2\ i 2k2vE
The wave form

exp (fhkx — dwt) = explikx —iw,t —i(iyt)) = explikx — iw,t) exp v shows that with

anegative ¥- the wave is damped.

(c) How would the result change if the path of integration passed over, rather than
under, the pole? The contribution from the pole would change sign, and we would
predict growth of the waves rather than damping. This is contradicted by experiment.

37. Is the mapping W = z* conformal? Find the image in the ¥ ~ plane of the



circle £ =% = linthe z - plane, and plot it.

. = 2. : L
The function ¥ = & is analytic. The derivative

dw = o
i

IS not zero except at the origin. Thus the mapping is conformal except at the origin.

The circle is described by
(z—i)(z" +i) = 1
or
zzt 4z -2 =0
which maps to
S () +i( - T) = 0
L

and if W = 02",

p+ifo(e™ -] =0

Here's the plot:

Z ~ plane



W ~ plane
Invariance of angles breaks down at = = 0. where the mapping is not conformal.

- 1
38. Is the mapping ¥ = ¢ * T conformal? Find the image in the ¥ ~ plane of (a) the

X ~axis - (b) the ¥ ~ axis, and (c) the unit circle in the Z ~ plane.

- 1
The function ¥ =2 7% 7 is analytic exceptat Z = 0 and at infinity. The derivative is
daw _ - 1
iz z4

which is zero at Z = *1. Thus the mapping is not conformal at these two points.

(a) The real axis maps to
1

Ww=x+ =
x

The origin maps to infinity, the positive + ~ axis maps to the positive ¥ ~ axis with
¥ > 2 andthe negative & ~ axis maps to the negative ¥ ~ axis with & -2
(b) The imaginary axis maps to

v o))

Thus the points ¥ = *1 map to the origin. Points with 0<y<1 map to negative

V. while points with ¥ > 1 map to positive V-



i yversus
X
10
]
4]
x -
T 7 T T LI T
-4 o 2y 4
-4 ]
_|j-
_3-
-10-
¥ versus
¥

(c)The unit circle ¥ = ot maps to

w =g+ = Zrosf
---a chunk of the real- ¥ axis between % = —2 and & = +Z.

A capacitor plate has a cylindrical bump of radius . on it. The second plate is a

distance & * a away. One plate is maintained at potential ¥, and the other is
grounded. Find the potential everywhere between the plates.

We want to convert to a coordinate system with @ = 1, solet * = xfa, ¥ = yia

Then the cylinder has radius r=1 Now we map to the W ~ plane using the



= o4 1

=z +—. . . e e

£~ This maps the cylinder plus # axis to the ¥ axis. The second
R |

. ' v =y - =dia .

plate has coordinate ¥ ~ dia = 1. |t maps to the line > In this

T
mapping

plane the potential is

¢=V§v

whic is zero for ¥ = Uand ¥ for ¥ = d/a. The complex potential is then:

D = FEw =y +ig

o
Mapping back, the potential in the z - plane is:
@ =re(z+1)
ot z
= E}-’E(" i + l —aﬂ]
7 re r“e

so the electric potential is:

=
Il Il
R
& &
[dn] I'.l'.i_
= =
= =3
— o—
[~ T
| |
R Y |—
L — "'\-.__...-

Equipotentials for pfv7= 0.1 (dashed), 0.5 (solid blue), 0.75 (red) and 1 (green).

39. Show that the mapping £ = W * 2" is conformal except at a finite set of points.

A parallel plate capacitor has plates that extend from & = ~lto x = = Find an



appropriate scaling that allows you to place the plates at ¥ = 7. Show that the given
transformation maps the plates to the lines ¥ = 7. Solve for the potential between

the plates in the ¥ ~ plane, map to the Z ~ plane . and hence find the equipotential
surfaces at the ends of the capacitor. Sketch the field lines. This is the so-called
fringing field.

Choose ¥ = 25%/d where ¢ is a coordinate measured perpendicular to the plates, and

d is the plate separation. The function W * e’ is analytic everywhere, and the
derivative is

ﬁ =1+g¥
It is non-zero except at the points
g% = -1
w = tiw, * Siwefc
or, equivalently,
z=-1%i2xn+ 1w

The mapping takes the form:
XAiv = utiv+ete™ = u+e¥cosv + iy +e¥siny)

the real axis inthe u - plane]

Then for ¥ = 0 { X ranges from ~®to T, j.e. we

get the whole real axis in the Z ~ plane. The line @ = IT maps to
x=u-et, y=mWw X ranges from ™ at ¥ T ® to ~lat # = 0. This IS the top

plate of the capacitor. Similarly ¥ = ~i% maps to the lower plate.

The mapping ¥ = Az} has a branch point at each of the points
z=-1x:iZn+1)T. Each 2 ™ ~ wide strip of the ¥ ~ plane maps to the whole

Z ~ plane - For each branch there are two points in the Z ~ plane at which the
mapping is not conformal.

In the W ~ plane we can write the potential as ¢ = viiir, giving a complex potential
T = wlfin, with the complex part being the physical potential. Equipotentials

correspond to ¥ T const T Y0. The corresponding curves in the Z ~ plane are:



X =utetcosv
¥ = v +e¥snyvg
Thus
oY = .:"r._ o
11V
and

x = (y—vglocotvg T

The equipotenials are shown in the figure.

S
I: |'r J'f
1/ /
'
cepaciter plate — J.: / W4 p
. -
'J.Fﬁl ’ 4 ff-'ur.l'ﬁ
-~ I N
Il
._'__._a-"""- 2‘__-""#-'-
_»"'-'_'-I-'-'-c
,_,-—'—"'-'
e
-3 -2 -1 ] 1 E 3

40. Two conducting cylinders, each of radius . are touching. An insulating strip lies
along the line at which they touch. One cylinder is grounded and the other is at

potential V. Use one of the mappings from the chapter to solve for the potential
outside the cylinders.

. The transformation Z = Za/w maps each of the cylinders to a straight line in the

W ~ plane. For a circle centered at Z = i with radius @ we may write a point on the
circle as

z = tig + q2'®

which maps to



_ et _ i - i
= — = , - +iz + o
" i + qa'? [iz'.:z + .:::é."q’) (?1'.:1 + .:ze"‘""j ( )
= m(;i'FCGStﬁ—isﬁlcﬁ:l
_ n::-::-s.cia T
1*smndg

AS ‘i’ varies, ¥ takes on all real values and ¥ falls on the lines +1.

In the ¥ ~ plane, the potential is ¢ = (v + 112 50 we can write a complex
potential

D = (w + P72

where the physical potential is the imaginary part. In the Z ~ plane we have:

o ()

_fdalx-) NV _f2a . NV
* (E—fJE (e +i)g

The imaginary part is:

b= Vhsng+ L= TV

2 IE +l;|__r2 2

Problem 40. Equipotentials for T =04, 3V /4and
¥



The equipotentials are given by

e

=l=a|™

L-9)
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Chapter 2: Complex variables.

41. Show that the mapping ¥ = Lz - 2) maps the arcs (a) £ = 4] = 2 with end points
atz = 3% ﬁiand(b) e —i2+%)| = 1 withend pointsatZ = 3+iandz = 1 +ito
straight line segments.
(a) The arc is described by the equation
(z—4yz*-4)=4
zZzt -4z +zN)+12 =10

Using the transformation:

z= 2+—%;
and thus
(2+ 3 2+WLJ*—4(2+i+[2+%J*]+12=m
ol ) et ) e
il k) -
Thus

1-2lw+w' ) =10
This a straight line parallel to the ¥ ~axis: ¥ = /4 withz = 32 ﬁz’,

1 _ 1F 3
1+ /3 4

The line extends from ¥ = v/3/4 o v = = \f3/4.

w:

The arc in the € ~plane. (a) blue (b) black
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The line in the ¥ “plane

(b) The circle is

Ty
|
e
+
R=]
S
—
k)
|
-
[~
+
]
-
—_
*
Il
—l

I
=,
—
[~
=1,
=
—

= _1
Y = ——
2
. o | w=_Ll =-LlL_z
This is a straight line parallel to the ¥ ~axis. It extends from -1+ 2 2to

42. Show that [ (x) < Ugor =1 < x < 0

If =1 < x < 0, then we can write

Hx) = smﬁxlif:l -x) ) —|sin;x|l"(y)

where 1 <% < 2 Then IV} is positive and hence Fixdis negative.

43. Prove Cauchy's inequality: If fiz)is analytic and bounded in a region R

lz—zo0] < & and [fiz)| < M on the circle £ = 20| = 7 < &, then the coefficients in the
eqn 44)

Taylor series expansion of 7 about 20 ( satisfy the inequality



o] <

M
s

Hence prove Liouville's theorem:
If fizd is analytic and bounded in the entire complex plane, then it is a constant.

Using expression (45) with I equal to the circle of radius 7

=
|c”|=glj:- ﬁ:)ﬂdz‘
T |¥ circle (z — zg )"
_ M
L—0 d0 = 2=
27 fcircle prtl " p

as required.

To Prove Liouville's theorem, we let Rand?”—> =@ Thencn = Uforall # > 0. Thus

flz) = cn. a constant.

44. A function Az} is analytic except for well-separated simple poles at & = Z=.

= 1-M, z, # U. Show that the function may be expanded in a series

Zﬂ”( Za T Zrz)

where 2= is the residue of ¥ at Z=- Is the result valid for &% — =7 Why or why not?

Hint: Evaluate the integral

Iy = ﬂ“’:' LT

2m Co Wiw — z)

where Ci s a circle of radius & about the origin that contains the N poles. You may

assume that /2| < 85 on Cii for £ a small positive constant.

The integrand has simple poles at the origin, at . and at =. # < . Near one of the

poles Z». the integrand has the form

H +Z W_En)k

wiw —zliw — zn)

The denominator of the first term has a simple zero at Z» and the sum is analytic at Z=»-

so the residue at €= is



idn — tin
d,i[wﬂw —zZ)w — zx)] | [(w —z)(w —zn) + wiw —za) + wiw —2)][,5
Ly W=E,
ZnlZn — Z)
Thus
N
= _Dj L2 Z—ﬂﬂ
~ z = ZplZn — Z)
But also
Fog
In| £ i 2Ry &
< 5 R R S TR
Thus f» = Uas £w — = and so
S N 1 1
He) = A0 2=y~ +§b” =t e

as required.

The residue theorem holds when there are a finite number of poles inside the contour, so

this proof is limited to finite N

See also Jeffreys and Jeffreys 11.175.
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Chapter 3: Differential equations

1. A vehicle moves under the influence of a constant force ﬁ and air resistance proportional to

velocity (equation 3.5 with |_:' replacing the gravitational force.) Find the speed of the vehicle as a

function of time if it starts from rest at £ = 0.

Choose * ~axis along the direction of F' The equation of motion is then:
v -
mEY + gy = F
it
and the solution to the inhomogeneous equation is:

F
[

P o=

The solution to the homogeneous equation is of the form 2% where

4o = - o
mato=0=a
Thus the complete solution is of the form:

Vo= % + Ag othn

Now we apply the initial conditions: vil) =0

0=d+

=l e

So the solution is:
=] F —_ _I:u'll?"n
v=g(l-emm)
The vehicle reaches a terminal velocity Vs = /o gg £ — =.

2. Find the general solution to the differential equation
y.’.’.’ _ 3}}.’.’ + 3}}.’ _y — I:l

Hint: Extend the result for a double root from section 3.1.1.

The solution is of the form " where
g7 —3d +3%-1=10
(s-1)7 =0
or & = 1, aroot repeated 3 times. Extending the result from the chapter, we guess that the two

.. . 5 2 % . = 55 N 5 55
additional solutions are 2" and X"¢€". Let's check. With ¥ = V¢, ¥ v e+ ave™,

L = N . 2 5% M = L L 2 ! 3 Sk
v (v" + 280" +5%v)e and ¥ (v 35" + 357 + 57y ) Substituting into the

differential equation:



[vm + 3gp” + 35 + 5ty - 3(1)” + 2 +32v:| + B(v* +.5'v;| —v]e” =10
y +v”(35—3)+3vf(52 — 25+ IJ +v(53 -3 + 35— 1:| =10

The coefficients of V. ¥, and ¥ are each zero, so this equation simplifies to v =0, which has
solution

v=Ax*+Bx +
as expected. Thus the general solution is:

r= (sz + Bx + C'Jé'”‘

3. A capacitor T, inductor £ and resistor & are connected in series with a switch. The capacitor
is charged by connecting it across a battery with emf £ The battery is disconnected, and the
switch is closed. Find the current in the circuit as a function of time after the switch is closed.

The differential equation is:
di g _ 40, Ld0 . @ _
LEE+ R+ === +F-=+% =1
ot £ g2 ot C’

and the intial condition is & = £C at £ = 0. The inductor prevents the current from changing
=4 _q

immediately after the switch is closed, so we also have g dt at{ = 0. The solution is
(83.1.1)

O = (Acoswi + Bsinwi e ™
with @ = &2L and w? = VLT - o?, Differentiating, we find
I = —afdcoswi + Banwi)e ™™ + w(—Asnwi + Boozwile™

= ([w8 - xd]coswit — [@8 + wd ] smwt e ™
Applying the initial conditions, we have:

A==0
and
—ad+wB=0= B= 24 = 2
Thus
Hig) = —% (u::»:2 + u:uzj sincia ™
= —_£ o
T simeoie

Notice that £ is negative for small £ implying that the capacitor is discharging.

4. The Airy differential equation is:
y'—xy =0

Find the two solutions of this equation as power series in %-



The point & = Oisa regular point of this equation, so we may write

y= Zanx”

and

yo= ZH(M — 1japx™™2

ZH(H — 1janx™™? - Zanx”ﬂ =0

o .. .0 . L
The lowest power that appears in this equation is # "~ and its coefficient is:

Then the equation is

Then for xt we have:

and for X"

-1

(e + 2 + 1)

I:m v 2:”:.*?’3 + l:lﬂmﬂ —dm-1 = 0= ape =
Thus the recursion relation skips two. One solution starts with 21 -
4 7
= x + A + A + o J
7 1( Gx3 TXEXAX3
and the other starts with @0 -

3 A
_ =,
Y ﬂn(1+6+6}<5>{3k’2+ )

5. Solve the equation xy' + 2 =0 (83.3.2) using the Frobenius method. Show that Y0} cannot
equal any non-zero constant, as discussed in 83.3.2.

:J:Z(;—z +piin+p = Vapx™?™2 + EZ.:IHJ:”*?’ =0
The lowest power of & is it with coefficient
plp—1)ag =0
and solutions # = U, 2 = 1. Then for ¥ we have
(p+ ipla) +2aq = 0 = a) = aD;TEU
For? = L.
] T g

and for? = 0,



ang = 0
The general recursion relation is:

ptauiptun-—la, +t2a, ) =0=a, =a

_1 _2
Tl talpta-1)

Thus for # = 1:

=) -2 -2 (-2)°
Hy =dp-1———— = dp-2 = du-2
nln+1) nn-1) nla+1) (r+ 102 (- 1)
(-2)° (-2)°
=dys 5 = dy—s 5 5
(m—1)n-2)n+1wmn-1) (m+ 14— 1)(r-2)
B (2"
"+ nl
Thus the first solution is:
_ (-2)" N
‘yl_zﬁn+1!n! Z:U:n+llnl
R ﬁ 23 3 24 4 N
3 4131 5141
2
=y xt p 131 4,
S - S TV R
Check by differentiating
Lo i (—2;{)”
Y1 ; slzl
" = ( 2 i ?‘!1 = .}?1
= R A —o
Y ;HI[H—I Zq;‘n+1|?z| X
as required.
For? =0
2an+2a1 =0 = aqx = -m
2
@n = ﬂ:;*:—1_—2 = dp2 l: E:I
nin—1) nln— 17k - 2)

This generates the same solution as ¥ = 0.

This solution shows explicitly that the regular solution ¥1 — Uand 11X —>constas * = 0. Thus

Y10} cannot equal any non-zero constant, as discussed in the text.

The second solution is found using equation 3.37:



¥z =yilnx + anx”?’
n=0

Differentiating:

¥y = yilhx+2L +ZE:' (2 + pix™®!

Yz = yihx+ Ey?l - % i ;bnin tpilntp - 1"

Stuffing this into the differential equation, we get:

]

yixlnx + 2y - .Jle +3 baln+plin+p— 17?7 +2(y1 1nx+anx”?’) =
n=0 n=

Inx(ory +2p1) +2p; — 2L + 3 baln+p)r+p - 1001 423 bxev? = 0
n= n=

2y - yTl + > baln+pln+p - 1" 423 bx™? = 0
n=l n=0
Using equation () our equation becomes:

ziﬂ—iiﬂi Zz:- (2 +p)ln +p — 192777 +22£:- X =0

121 + 171l
neg < 2t 1l =l

The lowest power of & in the first two terms is x". Thus # must be an integer. With # = 0, we
find:

i(E) (2;:3++11J men—l n1+zsz _

Sl

The coefficient of x0 is:

1+2£:.;.=[]:>E:-.;.=—%
I]':
—2§3+2£:-2+2£:-1 =0:>£:-2=%—E:'1
xz:
D_g :+6£}3+2sz53"%_335 b CRCIRE Sl At
I3:

3 b b
0= 27 7 o {op, + 08 = b, = _3—l=—l(—l+ 1]—l=—l—i,3;.
(312 4 PR 18 %L 9 :

The terms in 21 are just ¥1 again. Thus the general solution is:



U I G 3 IR I R T -
e “”‘T;(mwm+b”1xm§qﬂ+1jmn 22 8 @ "

The second solution ¥2 > ~#0/2 35 * = 0, put cannot be expressed as a Taylor series. The
first derivative is

PN () y [ex)” _ Ix% _ 28x°
72 ;qn+1)!n!+mx§ P R

which diverges at the origin.

6. Find a solution of Laguerre's differential equation:
v +(l—xp +ay=10
that is regular at the origin. Show that if & is an integer k. then this solution is a polynomial of

degree k.

x="Uisa singular point of the differential equation, so we may write the solution in the form:

¥ = Zanx”*?"

Then

¥ = Dln+plaaanr!
and

y'=2Untpintp - Danx??
The differential equation becomes:

Z(}z +pin+p = Dapx™® + Z(;—z + plax™?l - Z(Pﬂ +planx™? + u::ez.:znx”*?’ =0
The lowest power is e Its coefficient is:
plp—llag+pag =0=p =10,
a repeated root. The coefficient of & ™ is:

(1 + 11 %amel — micm + ctam = 0

So
(2 — o (o — )i — 1 — o)

i+l = ————=dm T cfpa—1
(2 + 132 (oz + 1)%m2

Thus
afoe — 1) —m+ 1)
(ral 2

an

Thus one solution is:

yman e D lamm )
= (1)



Now if @ = £, an integer, then the series will terminate with # = %, and this solution becomes a

polynomial or order k,

i 1l =t
Y = an Zl:—l:lm el = 1) ':’: l:lxm

The first few are:

F=1
»1 = ap(l - x)
k=2
2
¥a =an(1—2x+x—)
2
and so on.

The second solution is found by introducing the logarithm:

y=yilnx+ Y aaxn?
and inserting into the de.

7. Solve the Bessel equation:
dx2y" + dxy' + {4x2 -1)y =20
as a Frobenius series in powers of £ Sum the series to obtain closed-form expressions for the

two solutions.

The differential equation has a singular point at * = 0, so we write:

y = xF Zﬂn-’f”

¥ o= Z':H +p:|ﬂnxn"'p-l
and

¥'= D lntplntp - Dapxn??
The differential equation becomes:

42(?2 +piin+tp - Da,x™? + 42[:?'3 +pla,xF + 42@,,:{”*?”'2 - Zanx”ﬁ’ =10
The lowest power is x¥ and its coefficient is:

(e - 1)+4p - l)ap = 0
so we have the indicial equation:



dp?-1=10

with solutions
_ 41
¥ =g

The coefficient of xP* is:

dp+lp+d4ip+1)-1=0

1=2

1
: : + = . . :
which gives F 2’ leading to the same two series. Thus we need only consider ?

The recursion relation is obtained by looking at the coefficient of P

{4 +plm+p - 1) +4m+p) - 1lam + dan-=2

So
A = — -2
(m +p)? - 104
= — ﬂm—z
1 _
(m = zj 1/4
= =2
mim 1)
Sowith ? = t1/2,
dym = Em—2 =] |:— :|2 L
mim + 1) (22 + 112 19(m — 2
= (14" i
a2 = T o
and the solution is:
= N 2
anJx ; VIERY
The second solution has # = ~1/2:
= _ _ UWm-2 o f_qa r |
G VI WU ey et
— A% @0
a = o

and the solution is:

=_Dm
2

The first of these may be written:

oo
o .
1] Z L2l a0 SH1X

ﬁr=ﬂ 2r+1 N

while the second is:



= .. COSX
¥ =an—

JT

8. Solve the hypergeometric equation
(2 —x )" +(Bx-12p" +p =0

as a series (a) in powers of * and ﬂb) in powers of & ~ L.

(a) The equation has singular points at ¥ = 0 and at * = 1. so we write a Frobenius series:

¥y = xF Z.:xnx”

y = Z':H +p:|ﬂnxn-'?_l
and

Y= 2l +pintp - anx?
Then the differential equation becomes:

0= Z(M +plln+p - Vaax™? - Z(H +piln +p = Vanx™ P!
+ EZ(M + 2 lanx™? - %Z(” +pla,xt? Tl + x¥ Zanx”
The lowest power is e and its coefficient is:

plp = Lag +%}"ﬂn =0

EOR

with solutions # = U and # = 1/2. 50 one solution is regular at the origin and one is not. The

So the indicial equation is

recursion relation is found by looking at the # * 2 power:

[+ p)om + = 1)+ 3m +p) + am = [ (m +p)m +p+ 1)+ Llom +p) Jawn = 0

Thus
mrp)imtp+2)+ ]
im+p+ l:l(m+p+é_J

Em+]l T dm

So with # = U we have:

e+ 2+ 1 = 24 ':m"'l:'z = o4 ot
(2 + Vil + 1/2) m(m+1)|:2m+1:| " om+ 1

dm+]l = dm

and thus the solution is:

_ 22 .2 3323, n 7! noy
¥ an(1+2x+2 3% + 2 =3 + +2—|:2H_1:|“x + )

The second solution has the recursion relation:



Emt]l T dm

3
_, (m*3)
" ofm 1)
and so the solution is:
_ L 35 g (Zn + 1)1 o=
Y “”‘E(HE“EET+”'+2—HH+”'

(b) Now let ¥ = & — 1 The equation becomes:

wiw + 1" + 3w+ 1) - 1/2p +y =10

24 i ( o Do g -
(W wj_;u‘ S > Jy v =10
Now look for a series solution in ¥ -
0= Z(?ﬂ +plin+p - Danw™® + Z(H +piln +p - Vanw™?
#3230+ plaww™ + 2 D+ planw™ T+ 3 @™

The indicial equation is:

p@—1)+%p=0

ed) e

So? = U. or 2 = =32 The recursion relation is:
0 = [{m+pim +p = 1)+ 3m +p) + 1am
+ [qm Fp)imtp+ 1:.+%|:m rp+ 1;]%,,1
So
[ +plipm +p + 21+ 1
(m +p+%j(m +p+ 1)

mtl T Tdm

with 2 = 0. we get:

So the solution is:

_ _ 2 A 3. 2" o,
b ﬂl:l(]. gW"'gW + +—[:2,13+3:|||}3|W + )

while with # = ~3/Z.\ve have:



ey (o 3)(mrd) 4
ﬂm+1)(m—%)
N
" lm 1)

and the second solution is:

9. Find two solutions of the Bessel equation
x4y + ' + (x2 - %Jy =0

| 2 siME
as series in & Verify that your solutions agree with the standard forms ¥ # ( & EOSIJ and

= 2 (225 + snx)

The equation has a singular point at ¥ = 0, so we use a Frobenius series.

D n+pln+p - Vapa™ + D (1 +plans™™® + (xz - %) 2. aax™ =0

The indicial equation is:
plp-1)+p- % =0

. . n o= ii
with solutions ’ 2

" The recursion relation is:
am(ﬁm +pi)? - %) + g = 0

Sowith ? = *t3/2

A = — =2 — =2
™ 3 g mlm + 3
(+3) -% ': )
and the solution is:
_ o apf g x® L e iw xin 5 o
2~ (1 52 75432 U s i
_ 5 5 g 5 2n4] .
“”*’E(’f 52 7542 N et a
sing _ 12 14, 16 12 1.4, 1 6
But = LOSX = &% 307 +84Dx 3(x T +23|:|x Jso

¥y = ?’a;':'(me —n:c:-sx]



as required.

The second solution has:

_ _  dm-a
ST
and therefore
2 4 In
= BRI+ 2 X 4+ (=171 X o
2 ( 2 4.2 Y e TITPS 1L
=ﬂ_ﬂ(%+£—i+...+(—1}”+l ! +)
T 2 42 (2a = 3311{ 2831
: cosx — -1 1, 1.3 R - I
Then SMX T = T X T X T oxT Y g
So the second solution is:
CoOsx

= 20 f
¥ E|:5111.7:+ =

10. Consider a linear differential equation of the form:
25 A xy gy =0
Expand the functions fix) and E(x)in power series of the form
Ax) = fo +Ax+fax? + o

and similarly for £ Find the indicial equation. What is the condition on o and £0 if there is only
one root? What is the value of the root in that case? Use the method of variation of parameters to
show that the second solution of the differential equation is given by equation (3.37). Hint: show

that the equation for ¥ may be reduced to the form:

& (v’ = -1 + aix
ﬁﬂm’;‘ f;ﬂ::‘

where #(%} is a series of positive powers of %- Integrate this equation twice to obtain equation
(3.37).
 With ¥ = 2™ we have
0= Dan(n+p)n+p~ V™2 4 (fy +fix + ) D anln + p)x"? 2
+igg +g1x + - }Zﬂnxnwﬂ
The lowest power is T giving the indicial equation:

plp-11+fip+go =0
with roots:

1-fot i1 -)* - 420
2

p:

There is only one root if



and then

Then assuming

¥z T vyl
and

x4+ fayy tevz = 0
(v"y1 + 207+ xf + (Vi t ) t g = 0
(v”xz +fxvij1 + 21?“_}?“1;:2 + v(xEyT + fxy) + g}q) =10
The term multiplying ¥ is zero, because ¥! satisfies the original differential equation. Thus

vixdy = —vflifxyl + Exzy”

A P SR U S
o FAS T x T
S
X
since 27 tJo = 1.
To obtain this result, we used
Y1 _ paox® tailp + 1)xF +
.J';]. QDIP +ﬂ:1xp+1+...
a, ptl
A R
x 1+ 2%+ ... &
=3}
where %) contains only positive powers of %
Integrating, we get
Inv' = ~Inx + (positive powers of x )

and hence

¢

y' = %exp(stuff) = % + (positive powers of x )
integrating again, we have

v = Inx + positive powers of x
so that the second solution has a logarithmic term.

vz = y1(lnx + series of positive powers )

This document created by Scientific WorkPlace 4.1.



Chapter 3: Differential equations

. . . . 2.1 i = .
11. For a linear differential equation of the form ¥+ x5 + g = 0, where the functions 7% and
(%) are analytic, the indicial equation may be written as Alp) = Uwhere 22 is a quadratic
function. Show that in determining the recursion relation, the coefficient of the ©» term is hip + ).

Hence argue that the method fails to provide two solutions if the solutions of the equation hip) =10
differ by an integer.

First we insert the series into the differential equation:

Dntpn+p — anx™ + > (n+plapx™PAx) + > anx™Pglx) = 0

To isolate the lowest power (Ip:' in this equation, we write the functions fand g using Taylor series
about the origin: Then

plo - 1) +pA0) +g(0) = 0 = hip)
Now we look at the power xP
0 =amim+plim+p - 1)+ (m+planfl)+m =~ 1+ plan-/(0)+
+amg(0) + am-1g (0] +
The coefficient of @ is
(2 +plm +p = 1)+ (m + plA0) + g(0) = kip + m)
Now if the solutions of #(2) = U are 21 and 22 = 21 * I, then we will not be able to obtain a

solution for €& because its coefficient will be zero, and the method fails.

202022
When does this argument fail? If the differential operator * d*/dx* + xfd/dx * g is even, then the

solution Y%} is purely even or purely odd. The recursion relation relates &= to #=-2. If the roots of
the indicial equation differ by unity, we will have two linearly independent solutions, one even
solution and one odd solution, given by the two different roots.

CRI - O L
12. Solve the equation = (rfx ] (equation 3.19 in the chapter) by writing it in the form

and integrating twice.



Yoy
¥ Y
i{]ny’j = —i(]ny) = 3 = A (factor of 2 inserted for later convenience)
dx dx 29
d .2y =
& = 4
07)

32 =ﬂx+i:’=ﬂx+y§
¥ =0 = A = 4= 30

2 jAx +y% 2y
JZVD (2vpx +0)

Y

13. Find the two solutions of the equation

The equation has a singular point at * = 0, so we write a solution of the Frobenius type:

y = Zcxnx”?’
Then, multiplying by *: the differential equation becomes:
ZI:PE +plin+p = Da,x™?! - ZI:PE +pla,xF + Zanx”“’ =0
The lowest power that appears is il and its coefficient is:
(p— ljpag = 0

which has solutions # = 0, 7 = 1 Inspection of the equation shows that ¥ = ¥ is the complete

solution. Or, we can write the recursion relation by looking at the coefficient of x¥

with # = U we get:
(#2 + 1)) — Bt + g = U
(#22 + 10t — (92— 1ty = 0
So
(72 = 1)
mim + 1)

B+l =

if we start with 20 we get an immediate problem, so we must conclude that 0 = 0 and this is not a
valid solution.

Starting with # = L we get the recursion relation:
i

(2 + 1) + 2)

(et 2)m+ Ve — (et Vg g = 0= ape = m

which gives €1 and all succeeding terms zero. This is the solution ¥ = & that we guessed above.



For the second solution we choose a logarithm:

¥y =xhhx+ Zcxnx”*?’

¥ =lhx+1+ Z(H + pla,xt P

and

¥ o= L Dinp)n +p - Nauamr
Stuffing into the differential equation, we have:

1+ Z{n +pin +p — Vapx®® ! —xlhx —x - Z{n +p)aax™? + xlnx + Zanx”ﬁ’ =0

1+ ZI:PE +plin+tp - Dapa®™®l —x - ZI:?E +plax™F + Zanx”*?’ =0

.0 -
The lowest power is ¥~ so we take ¥ = 0

[==]

oo oo
1+ Zm(n — Dapx® ! —x - Za@cxnx” + Zcxnx” =10
n=l n=

n=2

0
Then for the # term we have:

For the x! term:

2&2‘1‘(11"‘(11 =|:|:;‘*|:Ig =%
For the 2nd power:
- - - 49z _ _ 1
3><2|:I3 2(12"‘(12 [j:'}fl3 3}{2 2}{3'
and for the #ith power:
-1
(92 + 1)stcte) — Wit + @ = 0 = dppe] = dm F'?E?:?’.E - f:l

Then we can step down:



(2 = 2]

tam = m m-l
_ m-2) (#2 = 3) - (2 — 3] 4
mim = 1) (m = 1)m = 2) "% lm—1)2
_ lm-3) (r22 — 4] s = (2 — 4) L
mim =12 m=2)m =31 " lm=12(m=-2)
. lm-4) m-5) =5 .
mipm — 112 (m — 2) (1 = 3)(m — 4) ™ mlm — 192 (m — 2)(m - 3) ™
_ 1 1
TR CTE TR T I
1
(2 — 1)l
Thus the solution is:
- x* x> x4 x™
y o xlx I e S 3@ e Tyl

14. Determine a solution of the equation
(1+xh" +(3+ 2z +(2+x)y =10

at large £- Hence determine the solution for all +-

At large & the equation simplifies, since & = 1
Y+ Ay =0
The solution is an exponential 2™ where
et +2mt+ 1l =(m+1)2 =0
with only one solution, # = —1. Thus at large *. ¥ ™ g

To determine the solution for all %. we look for a solution of the form ¥ = #{X}2 . Then:

) )

! !
Y =ue " —ue

and

M -

-_ I B— -_
¥ =wue ' —2uettue’

and stuffing in, we get:
(I+x)(u'e™ - 2u'e™ +ue™ )+ (3+ 2x)(w'e™ —ue ™ ) + 2+ x)ue™ = 0

. . =X .
Since each term contains € ~: we cancel it:

(1+x” +u + (0 =10

Thus



Integrating once, we get

SO

integrating again:

g =Aln(l+x)+ 8
Thus the complete solution to the original differential equation is:

y=e Al +x)+ 5]

15. Determine the large argument expansion of the Legendre function 1 by finding a solution of
the equation

(1 —ley” —2xy +2y =1

as a series in powers of lx.

First we let W = 1/%. Then

and

dy _ d (ﬂff]cf_w _ _Li(_wsz_ﬂ"J
2 g

dx2  aw\dx ] dx xZ dw dw
d a?
— .21 Vo a2ad ¥
v a2y
=9 3 =7 + 4
v gty v ,:,fwz

So the differential equation becomes:
1 5 dy g d2y 2 ( 2 dy J _
1-— || 2w’ —+w —= |- =] -w— | +t2y =10
( W J( " dw v ) U G Y
cfz_}? v
fwi-1)——+2wi s +2y =10
H (W ‘:Iﬂ-‘wz HW d W

The equation has a singular point at ¥ = 0, so the solution may be written as a Frobenius series:

¥ = Zcxnw”*?’
Then we have:

Z(m +plint+tp— 1a, (‘H:""”?J+2 W)+ EZ(H + pla,wt T+ EZ.::HW”*?’ =10
Xl +p)n+p+ Daww™ 2 + X (2~ (n+p)n +p = Dlaww™ = 0



The lowest power is w¥ and its coefficient is:
—plp — 1ag + 2ap = 0
and so, with @0 * U, the indicial equation is:
pi—p-2=10
p-2)p+1)=10

with solutions # = 2. ~1. The two values differ by an integer. One value gives a solution that is well

behaved at W = U (x — =), and this is the solution that we want.

The @+ 1) power has coefficient:

|
=

—|fp+1pc11+2c11 =
—ailp +2)p - 1)

which gives @1 * Oand? = lor =2 These values give the same two solutions as before.

Il
L)

The # * #2 power for #2 2 £ gives:

ptm=2)pt+m=—llama+t[2-(p+m)p+tm=—1)]am =10
So

_prm-2lp+tm-1)

“m T mrmiptm-1)-2 7
With # = 2, we have:
_ i + 1) _ mlm+ 1) _mt
S . e 2 i S 2
and so
- E;
2 3 m+3ﬂn
Specifically:
oo = %ﬁln
] %ﬂz— %igﬂEI:%ﬂD

and so the solution is:




where 4 = 3an is an arbitrary constant.
16. Solve the equation
xey" - dxy' + (6 + x2 Jy =0

The equation has a regular singular point at * = 0. so we use a Frobenius series.

ZI:.?E tpintp - Da,x™% - 42{?2 +pla,x™F + 62&,,}:”*7" + Zanx”*?”z =10

The lowest power is x* and its coefficient is:

2ip = ag — dpag + bag = 0
So the indicial equation is:

0
0

pd—Sp+ 6
(p-3)p-2)

So the solutions are ? = 3 and # = 2. which differ by an integer. Thus we may find only one series.
Let's see.

The coefficient of xF* is:
[(p+1lp-4ip+1)+6]ay =0
which gives ¥ * 1 =3, 2, with @1 = 0. and these values will give the same solutions as # = 3,2

with o = 0.

The recursion relation is:

(e +plime +p — Vlam — 4l + plam + Gam + @m—2 = 0

So
g = — -2
T (mtAp)mtp-5)+6
and with # = 2, we get
P =2
" (4 2 — 31+ 6
The first few terms are:
= 40
[y} 2
= —__ @2 = 22 _ do
T TEx1+6 1z 4l
ag = 24 )

So the solution is:



= .:zgx2 CoSx

The second value of #» # = 3, gives:

A = — =2
™ lmt 3im - 2]+ 6
So
= =20
[y} 6
e — o dn _ 21| bedy|

@ 7 TTx2+6  6(20) S5X4x3x2 5l

So the solution is:

=
1]
=
La
—
—
|
L_ul-"*m
+
L_th
|
+

I
=
[ ]
—
L
I
|-‘H
[ ]
+
|-‘H
. [, ——
I
|-‘H
.\_\_'| —
+
e —

I
el
m.
=
bl

) 2 2.
Thus the two solutions are £~ C08X gnd £~ =M1,

Check:

i(xz cosx;I = Qcosx —dxsinx — x%cosx
ant

) 2 _ I
E(I cosx,'l = 2xcosx — x°smx
x? (2 cosx — dxsinxg — x4 I::osx:l - dx (2}: Cosx — x° sin;':) + (6 + xzsz cogx =0
as required.
17. Solve the equation
=y +4xdy =0

The equation has a regular singular point at & = (1, so we use a Frobenius series.

Z(H +pin+p — Dapx®? - Z(H + pla,x™ Pl + 4Zcznx”*?’+3 =10

, -1 , o
The lowest power is x¥ and its coefficient is:



plp - 1)ag —pag = 0
So the indicial equation is:

plp-2)=10

with solutions # = Uand # = 2. The recursion relation is:

(+pln+p - llan — (2 +plan +dayq =

Thus:

4':1?:—4
(2 +plintp - 2]

ﬂn=_

So each series has only every 4th power. With # = 0, we get

4'51:'-:—4

(r2hlze = 2]

I:I;u;=_

So

and the solution is:

With ? = 2 we get

4':3:—1-4
e 2
So
4£I|:| _dpn
44 £ % 4 Tl
4::14 Ty ey

and the solution is

4 8 &
J:=,;1Dx2(1—x_+x_+---J =|:1|:|(I2_x—+—x

I
o
=
) .
=
-

Check:

: [sjnxzj = 2(1::05;':2];{

A

ﬁ(E(cosxzij = —4(51'11;{2];{2 + 2oosx®

0



x(—4(sinx2;|x2 + 2|::osx2J - E(Cc::-sxzjx +dxd snxe = 0

as required.

=-1 4+;
18. The conical functions are Legendre functions with / 2 i

(a) Starting from the Legendre equation (cf Example 3.7), find the differential equation satisfied by

P_I . —_1 .
the conical functions = ~7 " (%] and 2 7 7 (x)

(b) Show that one solution is analytic at the point ¥ = 1, and determine a series expansion for the

. Pl gy sin £ . : .
conical function = 7" (cost) jn powers of " 2. Hence show that this conical function is real.

(a) The differential equation is
(1 —ley” -2y i+ 1 =0

where * = cosf. Now substitutef 2 ik

(1-22)" - 20 + (L +in ) (L +in v = 0
(1 —ley” - 2xy - (% +}x2)_}3 =10

(b) Since cosf = 1 - 2sin?&/2, we can let ¥ = sind/2, and then x = 1 corresponds to ¥ = 0
Further:

x=1—2u3:‘=%=—4u

14
So
D odrdy _ ﬁf_ﬂ"(#]
ax i dx i v~
and
&y _ i(ﬁf_ﬂf)d;u _ i(iff_ﬂf)—_l
dx® du \dx }dx di \ gy ) du
_ 1 dy 1 @
(4212 du® 167 du
Also

1-x2=({1-x)1+x)= 23;32(1 —uzj = 4u2(1 —ugj

So the equation becomes:



2 _a2nf 1 dfy 1 dy a2y 1oAY 1 a2y,
412(1 uj(mmz =F -2 |-y LA (4+1Jy_0

U-i) dy O-sd)dy (1 )@ (1 32),

4 i Aii fi 214 fi 4

2 d
[l—uzjﬁ+(%—3uJi—[l+4ﬁﬁ)}:: 0

u=0jsa singular point of the equation, so look for a solution of the form

¥ = Zcxnu”*?’

Then:
0= 2n+pln+p - Va2 = X +p)n +p = lanu™
+ Z(n + planu™t e - 3 Z(m + g - (1 + 43&2] Zcxnu”?’

, -2 : .
The lowest power is w”“ and its coefficient is:

plp — Nao +pag = 0
So the indicial equation is

Pt =0

with the solution = Y. Thus one solution is analytic at the origin. The recursion relation is:
0=(m+p+2)m+p+ lamae —(m+plm+p - lan

+im+tp+ 2lamea — 3m +plam — (1 + 4h2jam
And so

(m+plim +p + 21+ 1+ 402
(m +p + 2)°

Epta = Gm

Sowith? = Uwe get:

mlm + 20+ 1 + 432
(72 + 2)2

s+ =

So

= oAt ]
“2 %T
2(4) + 1 + 4n2 (4l3+1j (4}~?+32j

@4 = a2 42 22 42

4(6) + 1+ 4x2 (422 + 1) (4»2 +32) (402 +52)
=

@E T a4 62 22 42 62

and thus the solution is:



1 + 4n?+] smzi + [4}\1+1J [4}-.1+31.] smq_i +
(If"j - 4 2t 2 2! 41 2
Y 0 C[ane) e [412+2n-1?] Y
27 41 [Zn T 2

which is clearly real.

. . 4.1 =0
19. Write the equation + ¥ +¥ = Ujn standard form, and use Fuch's theorem to show that the
Frobenius method may not give two series-type solutions about * = 0, Change to the new variable
u=1/x (cf Example 3.10) and show that the new equation can be solved by the Frobenius method.
Obtain the two solutions.

In standard form, the equation is:
" ¥y
yo+==10
]

- 4 2 - 2
Then the function E(x) = 12, and x°g(x) = 1/x* has a second order pole at * = 0. Thus by

Fuch's theorem, the Frobenius method will not give two series solutions.

With % = Ux, dvidx = —ulduldx ang d*yidx® = ud®pidu® + 2u dyidu. Then the equation
becomes:

2
u“—d Y 4 2u3d—y +uty =10

chr? &
¥t %}f’ +ty =10

_ _ 2
This equation has flae) = 2/ and 8l#) = 1. so both #7#) and #” (%) are analytic at # = . Thus
we look for a solution of the form:

oo
¥ = u¥ Zanu”
n=]

The equation becomes:
pr +nllp +r - Va,u™®2 + EZ{H + p ™ + Zanu”ﬁ’ =0
n=d n=l n=

The lowest power of ¥ is u? 2, and its coefficient is:

[plp — 1)+ Zplag = 0

piHp =10
which has the solutions
p=10-1
The recursion relation is:
p+aulp+u+tllan +azs =0

or



tdn-2

ﬂn=_

p+n+lip+n)
With? = 0 :
_ _ udx-2 — A2 dyn-4 _ i_qnl2 A1y
n = ——e= = (-1 = (-1
“ (m+ 1) =1 ( + 1i(z0(n — Tiin — 2) =1 (2 + 13
with # = 1
_ _ tx—a = [—1yni2 &0
S s Tl
The recursion relation skips powers, so the series will have only even # terms:
— f_qyvm &0
@m = 1
Thus the general solution is:
}r = - = R
Z_‘ﬂ Em + 1 Z_‘ﬂ j.
- o = 1 2t E -
o Z_‘ﬂ Em + 1 Z_‘ﬂ j.

o IE
=2 + —
A Cosid

x(c}:sml +ﬁcos%]

In this case the two roots of the indicial equation do provide two independent solutions, even though
they differ by an integer.

Check:
“=.;._-sml+ﬁ|:osl+x —inztosl+£sinl
°e x L2 x T 7%
()b 1o
"o |'3 1 ol 1 IS _1 1 03 1 1
= ging t Feug s (arz)(F et o (0-2)(F )t
__e o 1_ 8 1
ES]I].E x—SCOSf
qu”+y=x4(—;%sm%—x£3cos%J+x(c:~_'sin% +ﬁcos%]
= —axsm%—ﬁxms%+x(asm%+ﬁcos%] =
as required.

20. Solve the equation

v +yroshx = 0



Hint: first expand the hyperbolic cosine in a series, then use a power series method.
¥ +ycoshx =0
2

" 2m
Yoty 2, A= =0
; (2p)]

Now look for a series solution:

"

.0
The lowest power is &

1.
Now look at £ -
]

R R O =U:}cz3=—?

_2az tag _ g

.:z4><4><3+.:x3+‘§_'!3=0::~.:z4= i

xF, Podd, = 29 * 1.

ﬂ2q+3':29" a 3:“:2':5" + 2:' + tgqul + {Eqﬂj 2:” tooodagHl = 0
o = _(2g - Vay _ a5 _ . azgl
7 (2g + 1)1 (29 + 1)(2g)(2g - 4] (2g + 1)(2g)
X%

@, Az

ange2(lg + 202 + 1) + Pt razg = 0

(2g)  (2g - 2)
i O = an ) L
T (290 2g(2g - 1)(2g - 4)I 2q(2g - 1)

There are two solutions, one with even powers and one with odd powers. Let's look for a pattern:

gpoB= A=A T 0 o A== 20

T Ex5x2 6x5 E%5%4 q




[ s s v
fIE:__D_ 2 4 — ]

Gl Bx7x4l 8xTx2 8x7
_ _@n an _ Sap
3 BXTIRI =D GxTXEI
_dnr_ =7 _ Gag
= ﬂ[ 1+5%3-5] =
Fi = _ o _ i _ iy _ 23 _ g
10 101 10%x0xél 10x0=x4] 10=x9x20 10x9
— _ g + fln.-'llz _ 5(104"'2 _ Qﬂln
100 10x9xél  10x9x6l 10x9xal
- o _ i
= B 4 x T 4TS5 -09) = 12220
1mt ) 101
ag=-_ %1 _ 63 __341 .41 __241
Sxdx2  5x4 5 5l 5]
- @] _ @3 _as
BT TTRex4l Tx6%2l TX6
- _5(11 _ i _ _EcI]_
7l TxRERIHIHD FTHEHS|
_ a1y = 217y = 21
grivdtdx2+a)= =07 = 5
There is no obvious pattern. The solutions are:
2 A g 10
_ _x Sx° _ HxT x
r1 "“D(l ot er Ter Mo T ]
and
2 4 A
- I S A S
V2 alx(l 3T 50 el )
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Chapter 3: Differential equations

21. The Stark effect describes the energy shift of atomic energy levels due to applied electric fields. The
differential equation describing this effect may be written:

o gz, Us _m® Y,
4 +y+(k 75 S 4x)3"’ 0

l 2
where the term 4 s is the perturbation due to the electric field. Obtain a power series solution for ¥ and

obtain explicit expressions for the first four non-zero terms. How many terms are needed before any effect
of the electric field is included?

There is a singular point at £ = 0, so we use the Frobenius method.

0= Zan(n +piln+p - 1xmPl + Z(m + playx Pl

L. -1 _ m? n
G L D2

n

o -1 . .
The lowest power appearing is x¥7°, and its coefficient is:

2
anplp - 1)““%?‘%% =0
2

2_ M -
Py
with solutions
= + i
T
Then we look at successively higher powers:
P
2_ms |
ﬂ1|ttf?+ ].:I - Tj| = _kﬂlj
p+1)° - 2
where we took ? = #/2 in the last step.
xPt
2 _m* | _
ﬂz[fp +2) - T} = —ka) - =an
- Ho_U
(m +1 ?Jﬂn

+
P



2
ﬂ3[(3 +p)¥ - WT} = _(Eﬂl + kaz — lEﬂnJ

2 4
_ (U _k k2 _Q] 1 1
( P +k(m+1 > V2w + 23 45)“”
1 3+ 5 1 i3 1
43 7 [ 12 Uk{m +3m+ 2im+ 1) bBlm 3 m+ 2)m+ 1) * 12(3 +m}E]ﬂD
The general recursion relation is obtained from the # * & power:
2
agnlp +g+ 1% + Equ-l + kg — Equ—z - B 4 =0
2 4 4
. ~ %qu_g - gaq_l kg

+1 = 7
? (p+g+1)2-2

Choosing # = #/2, e obtain the relation:

U
dat] T f 78 2 _"hlﬂi‘
? (q+1l'(q+m+1)
The first four terms are:
 kx il e
iz -5t (2[m+2][m+1] 4[m+2])
= GoxEs 1 3 5 1 {7 1
| T U i) T Sl feae] t Tt
i 1 = kx + it _ {fe )
_ a,;.x’”"z-q m+l 2m+2m+l) 33 2+l )
1 3 Smth %7
~aeay 17 U iy + TR 2

e

The effect of the electric field does not show up until the cubic term.

22. Show that the indicial equation for the Bessel equation

d{, & _
ofx (xdeery 0

has a repeated root. Show that this root leads to only one solution Find the second solution using
equation 3.37. Try to get at least the first three terms in the series.

Expanding the derivative, we get

v 4y +xy =10
so there is a singular point at the origin.

S anln 2l +p = U+ S anln + 2+ S i = 0
M " "

Z.:;tn(n +p )il 4 Zanx”?’ﬂ =
H el

The indicial equation is

Then we have:



g = —

axg =
The solution is
-1 &
= an — x
Z 22.‘:(k| :]2
Now we look for a second solution of the form:

yo =y lnx + Zanx”*?’
bl

% = }’_1 +y1 Inx + (1 + plax?!
i =y1 +yixinx + > (5 +pla.x™?
o ! "
i(xd_}’J = y1 )1 Inc 4y +ppxine + 3+ ) +p - Dawx™®™
i A 1 1 1 1 "
Stuffing in, we get:
df,a _
dx (x c:t’x) fay =0
yixlnx +y) (2 +Inx)) +y xlnz + Zﬂn(?z b B PET e Zﬁln-’f”t’ﬂ =0

H M

nx (yx + oy +p1x) + B +Zﬂntﬂ +pPam? T+ 3 auam?l = 0

Ezéziklgk z,i;l_l_za m+p:|2 n*;:l_'_za P
k=1
1

==

222&11@ 1).

_Uk 2+ 2wyl ]
= —x + anln t+ %" + gnx’ =1
; 23‘%!(3:+ 13l ; e +p) ;

Since the first series has only odd powers of %, # * 2 must be even. The lowest power in the first series is

221 Zﬂn(?? +p:|2xn";:l—l + Zﬂnxw’ﬂ =0
bl H

1 =
%" sowe can take ? = U and # even to get:

- (‘1 20 2,n-1 +1
= apRex® T+ dpx® et =1
= 2%kl + 1)) Z Z

Then xl



22
I3
(-1 2 _ __ 1] 1
g e raz= 0o e = (g va)
—_ 1)1 +1‘ﬂn}
“ 42{222! 22
_ 1 _3
24(2”2(% 2)
?{5
kY S S NS B J }
24213 62 12903] .
1) 1 .1 _11(
=R EYPYET 2%:2!)2(@” EJJ
___1 1 3 1
2232 \ 242131 25(2112  24(21)2
N U N B U
2232( 273 2RIy ”)
_ 7 1
P32 2832
x?
(-1)° 2
= 263!4! +agEe+ag =0

1 1
=L +
98 =52 ( 76314 QEJ

1 1 7 1
- + - a
52 (253!4! 2932~ 25(31)2 ”)
5 1

= - + a
2163 " QB4

We can see that the function multiplying 20 is just our first solution. The second solution is:
2 4 & g
=y ln +1+(£) +i(£) + 7 (E] —i(i)
72 o ARE 2) T EN\2) T @Ea ) 3l

23. Attempt to solve the equation

xz_}’H +y.' — |:|

using the Frobenius method. Show that the resulting series does not converge for any value of -

Za’n()ﬂ +pin+tp - 1)x"7 + Zcxnﬂm +pjx®l =0

n M

. -1
The lowest power is x¥



app =0
Thus we need # = Y or @0 = 0. The next power is **
applp — 1) +a1(p+1) =0
with # = O we get

I
]

]
The general recursion relation is:

0
—mim — 1)
mt 1

Gmlm tpllm+tp = 1)+ amalm +p + 1)

i +] oL

From the ratio test, the ratio of two successive terms is

|um+1 - m(m— 1)

— T |x| = m|x| @S m — o

This ratio is # 1 for any finite value of * for #* > x|, and thus the series diverges.

24. Weber's equation is

ozt o
4)*"’0

e —

_}rH + (m +
2

= —A
Show that the substitution ’ EXP[ 4 Jv(x) simplifies this equation. Find two solutions for v(x) as

power series in ¥,

Substituting in:

4 4
+ EKP(‘%EJVH r (m + % - ‘T—J EXp(‘%JV
Ig xg " xﬂ

) _“Xp(_TJP ' Exp(_TJv +mxp(_TJv -0

Thus the equation for ¥ is:
v'o—xv ey =0
x = Ujs a regular point, so
Z;—z(n = ljanx”_z = Znanx” + mz.:xnx” =10

. 0
Starting with %~ . we have:



2% 1 xay +may = 0= ay =%ch
From x! we get
XX ay—a) tma; = 0= ay = —MB—_Il.:zl
and in general, from x*
B+ 2)p+ Vage —pap +may = 0= @y = —%aﬁ,

Thus
_qalmmp 2] m-p+4)
v prap -
_(m-pt2im-p+4)-m
»l

o

pall

e

for ¥ even, and

2 —p+2)lm—p+4) (m—1)

dp = p| ]
for ¥ odd. Thus the solutions are
2 il — 2) I
- _x _ M2 4 pall r
Y EXF’( 4 J“‘”(l i | R e L )
and
xz x - ?‘?‘!2_1 x3 + [?”_34]??!_1]:{5 + ...
Y= E’XF'(_T]M ool

P

25. The Schrédinger equation in one dimension has the form

2
o (& - v
Develop a series solution for ¥ in the case that ¥ is the potential due to the interaction of two nucleons:
M
=C —
Obtain at least the first three non-zero terms.

#- ffz‘.ﬁ’ - _
£+ (oo

Let 2 = 2Emik® and ¢ = 2ECHR. Then

The equation has a singular point at ¥ = 0, so we use a Frobenius series.



Now expand the exponential in a series:

Sonts 5l +p= 1w+ (o= 3 )z%xm

n

Zcxnn+p)(?z+p—1)x’“‘”'2+22a x’“*’—cZZcx x”‘mlm =10

n el el
The lowest power is &% =
applp — 11 =0=p=10,1

. =
The next power is x¥

ailp+1p—cagp = 0= a; = —=20__
ik 7+ 1)
12 = U we would get @n = 0. sotake ? = 1. Then
-~ ZEm
i1 2
The next power is X*
azip + 2)p + 1) +ean —cl-oag +ay) = 0
_ oot edag +cag
“2 Tx2
_ —2(cc:e+e:l+czﬂ
12 f

with = 1 the differential equation becomes:

anln + Vinx® +2 > apx™! - ¢ czx”*m m=D
Z Z > _

m=0n=0

for £~ we get

Thus

2 2 _
‘#’(x:'=c;tn(x—':x2 + 2§Za+gjx3+---)

26. The Kompaneets equation describes the evolution of the photon spectrum in a scattering atmosphere.

BB_P; = Aeare— Al 12 Bx(x (# +2+x?))

Here * is the photon number density, * is the dimensionless frequency, and “T is the Thomson scattering



cross section. We may find a steady state solution (a;ag = 0} when photons are produced by a source

4(x) and subsequently escape from the cloud. When # remains * 1, the Kompaneets equation becomes
a linear equation:

S 0 ) vl - -0

where ¥ is the Compton "y" parameter, equal to (fractional energy change per scattering)x':mean # of

scatterings). Assume that glx) =0 except for ¥ = 1.
(a) Show that for & = 1 the solution is an exponential. This is the Wien law.

For x * 1, we may ignore both & and 4riy. Then the equation simplifies to

.
ntn=10
.
n o= -n
I}E=E_.“!J:

(b) Show that in the special case ¥ = 1 the solution is a power law in ¥ .

iy =1, negelecting ¢ the equation becomes
x%%(xd'(n“ +.>3;|J —dn =10
Look for a power law solution, # = *¥. Then:
L (s (ot v20)) - =
xiza—i(‘ﬁxpﬁ +xp+4:| -4z =1
L (plo+ 357 + (p + 4172 ) ~ a7 = 0
plp+3xP +(p +4)xP* —dxr = ()
Negelecting the larger power of * in the limit ¥ -* 1, we have a solution with
pi+3p-4=10
p=-41

" . | . . . .
The positive power does not make sense physically, so the solutionis # - Notice that with this solution

the term we neglected is zero anyway, so this is an exact solution, not valid only for small *-

(c) Verify your answers to (a) and (b) by letting # = £V and finding a power series solution for *-



14 ‘ -
?E(x‘*(ﬂe +n)) - ou =10
%a—i(x"‘(—e'“v +ev +eTv)) - %e‘“v =0

X

%a—i (x"‘e"‘v') = %e‘“v =

1 EJE T Y | 4—;:”_4—;:=
E(ﬂrxev xev+xev) J—;ev 0
Now divide out the factor € " to obtain:

@ + 4 _ 2 L i = [:]
xtv ( w = J‘u 577
There is a singular point at ¥ = 0, so use a Frobenius series:
0= anln+p - Din+p)x™2+4> a,ln +p)x™??

n n
_ + nip-l _ i ntp—2
;ﬂ?!l:m p:lx I}r ;ﬂ”x

The lowest power is ™7 = and its coefficient is:
agplp — 1) + dapp - %an =0

3+ [0+ 16fy

P

2 _4 _ -
-y =0=p

Note: as ¥ — =, 2 = U and we get a regular power series.

: . . . -2 .
The recursion relation is found by looking at the coefficient of P

P

am(m+p = 1w+ p) + dam(m +p) = am-r(m — 14p) ~ Gam =

_ (m+p - 1] 4 = e +p—1)
(m+plm+p+3)-4°7 (0 + 2mp + 3m +p2 +3p) - 2

-1

and using the indicial equation, this simplifies to:

(m+p— 1) _ (2m—5i (9+16;”y})

Gm = ml ST
+
EM(M S e J
>
Thus the solution is

(m2+2mp+3mj
o (-3 Mo+ 16h1)  A2(-1t 5+ 16hY ) (3£ 5+ 16h))
= o7& _ + 95 oo
e 2(1+ T+ T607) 8(2+ [O+16D7) (1+ T+ T657)
When ¥ = 1. the square root equals 5 and we get:

_2m-5%5, _ 1
Zmim £ 5) (s + 5

-1

&

corresponding to ¥ land —4 respectively. Thus



5]

n =g fapx te* = agx ™
as we found in (b), or
- % 1 1 1 2 - . TH ol H Iz I3 X4
= | - = L — - & _ X _X
noe “”ﬁ'(ﬂl TR TR e (E T T 4!]
_ 3l o x ozt xt
"IDXT(I (1G5 5))

27. A patrticle falls a distance d under gravity. Air resistance is proportional to the square of the particle's
speed. Write the differential equation that describes the particle's position as a function of time.

We start with Newton's 2nd law:

F, = ma,

2 2
—;c(ﬁ) = mdx
e Bt miﬁz

Choose dimensionless variables, and show that the equation may be put into the form:
-:],.?H+|:r_'.:],?.12—|8 - I:I
Divide by & -

ld?‘_mi(ﬁ -
E 42 Mg cf.if] b=0

Each term in this equation is dimensionless. Express the distance travelled as a fraction of the total

distance € : ¥ = xfd and define a dimensionless time * tyaid. Then the equation becomes:

2 7 2
id_er@(d_yJ —1=0

g gt Mg\ g
2 2
2y +@(d_y) ~1=0
dr? " \dr

which is of the desired form with @ = &dfw and & = 1. Using a spreadsheet to compute the coordinates,

starting at ¥ = lwereach¥ = Z2at7 = 1.45, corresponding to £ = 1.46 5. With no air resistance we

would have:
t= f2dig = [2210 5 =1 435
CAa -y

Air resistance increases the time by 0.02 s or 1.4%.

with @ =.2, 7= 1.465, anincrease of 2. 4.



2 +..
1.8 :
- i —_alpha=02
ERE = .
2 —— No resist
1.4
I_t
.12 +.+ *u-
S A S S G A S
o ™ T @ @ — N
(o] fa] L) (o] -— -—
tau

28. In astrophysics, the Lane-Emden equation decribes the structure of a star with equation of state

= 1 =
= Kﬂ[n+ ki Defining £ = A", the equation of hydrostatic equilibrium becomes:

1 4 _2d¢ n o
x—za(xa)”’ -0

where % is a dimensionless distance variable. This is the Lane-Emden equation.
(a) Find a series solution for ¢ in the case # = 1.

For# = lthe equation is linear, with a singular point at & = 0 so we may solve with a Frobenius series:
o 2 ! _
S 9 =0
Zan(n +p - n+px™™P = + EZQH(H +p P 4 Zanx’m’ =10
n M

n

The indicial equation is found from the coefficient of ¥ -

aollp — 1lp +2p] = 0
So for @ao * 0,
pp+l)=0
=0 op=-1

The coefficient of 7% " is:
allp+2)p+1) =10

Soife@1 # 0,2 = =2 or =1 Thus these two solutions duplicate the first two.

with # = 0,

&0

2a2+2><2a2+ﬂn=ﬂ;‘>ﬂg=—2x3




and for # > 2

awilm — 1)+ 2agm + @y = 0
ae = w2 — 0 s
" mim + 1] (e + 1im)iame — 1)l — 2)

)

S PI MTh

Thus the solution is
2, 0, (1)
= N ST ST 2n
¢ “‘”(1 TMCTI e T )

This function is the spherical Bessel function jo(x) (Chapter 8), and this solution is regular at the origin.

The second solution is found from # = -1

amealm + 2im+ 11 +a, =0
- Zm

(e + 2)(me + 1)

g+ =

and so the solution is

This solution is not well behaved at the origin, and so can be ruled out on physical grounds. Note this is
one of the rare cases in which we get two independent solutions even though the roots of the indicial
equation differ by an integer.

(b) Find the first 3 non-zero terms in a series solution for ¥ for arbitrary #. Verify that your result agrees
with the result of part (a) when # = 1 (Hint: begin by arguing that the solution contains only even powers

of %]

If we replace & with ~%. the equation is unchanged. Thus the solution must be even in %. (or purely odd,
but that would give zero density at the center of the star, which is clearly unphysical), and thus the first 3
non-zero terms are:

¢ = apg+ aax? + qqx”
and we may choose 20 = 1. Then
g = (1 + gox? +cx4x4)”

= 1+ naqx? + nagx* + M(agxﬂz + O ()

sl — 1)
2

2 4

= 1+ nmaax® + naax” + a:%x4 + E?(xﬁj

Now we stuff into the DE



x%i[xj (Eagx + 4cz4x3j ] + 1+ magx? + nagxt + ?ﬂ:—_wagx" =10

x%(ﬁxzag + 20x4a4j + 1+ nmaaxt + (mza, + H(HE—_”a%Jx“ =0

faz + 20x%as + 1+ paax® 4+ =10
" . L . .
There are additional terms in & from the derivatives of the next term in the series, so we cannot use the
2 .
terms beyond #"- Thus, equating terms of equal power,

6(124‘1:':':}(12:_

o |—

and

20a4+ma2=0$g4=—%=ﬁ

Thus
_1- x4 omxt
p=l-c 3’

The series converges quite fast for & < 1,, and agrees with the previous result for # = 1.

(c) Solve the equation numerically for # = 2, $(0) = 1 and ¢'(0) = 0. At what value of * does ${%) first
equal zero? (This corresponds to the surface of the star.)

We'll use the Runge-Kutta method. The resultis iX) = U at x = 4.35. Here are the spreadsheet
formulae:

U2 uEHtn=l

=2 w2y 4 2={] w=y' ¥ =2
1

h 005
X Il LSTh u=y" etal il
a 1 u} =Bg5"2 b =LE =4B§385"2
=AL+5B%3 =B5+Hub =Ch+Mb =2*CEiAE-Be] =fBRI*CE =(2*C A +B542]"3B% 3
=A5+3B8%3 =BE6+HWE =CE+HE =2*CVAAT-B7+2  =$BEI*CT =2*C A7 +87 215853
etal iz Etad

=FE§IC5+F5/2) =-[2 L5+ 5] MRS +hB ) H{E5HES 22768583 =FEE {05 +HEZE)
=FB3INCE+FED) =-[2%(CE-+H 62006 +5 B3] HEE+ER 2" 6033  =5BE*CE+HEL)
=EEFIAMCTHRF) =-[27CF 7 2)MAT +EBES2) HEFER 2 66 =FBEHC7 +HA

iz otad

= (™D HHSA )AL R A HES R0 TEH Y =RRYE ROy

= @™CH+HER AB+5E 2 HEE HGEZZ"EE  =5E537{CE+IA]

= L2MCAHHT A + SR R HBET +GTAATEEEY  =5B33NCT 17

e dla m
=[2*CEHIEAASHEET) HEBR HE 2B =([Ea A RMSHEE =P He 2 S +HE e
=@ Ch+IB){AE+5053)+[BaHE)*2] 5833 =[F+2"Gh+2"BHE]E =[Fb+2"He+2"I6+LEh
=202+ N AT H5B53 ) HBR W21 585 =EF R 2GT 4R =7 T2 T+ U
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Solution for # = 2. The numerical solution agrees well with the series (red line) from part (b) up to

x = 1.3 The first three terms of the series are not sufficient for larger values of &

29. Investigate the effect of air resistance on the range of a projectile launched with speed ¥1. Assume

- oW

that air resistance is proportional to velocity: = re= . Write the equations for the & ~ and

¥ ~coordinates in dimensionless form. Scale the coordinates with the maximum range R= vﬁfg. What is
the dimensionless air-resistance parameter? Determine the dimensionless range for values of the air
resistance parameter equal to 0, 0.1, 0.2, 0.4 and 0.5. Determine how the maximum range changes, and
also determine how the launch angle for maximum range changes as air resistance increases. Hint: if
there is no air resistance, you can obtain exact expressions for the increments in position and velocity in a

time interval ££. Use the same expressions when @ * 0, put with acceleration computed from the value

of ¥ at the beginning of your time interval.

_ dy oy
F_}. = md‘z_z = &IE
and
2
F =i i = _,dx
g A e
Dividing by #2&. we get:
1d% o &
E s RS ot

and

We can make this dimensionless by expressing ¥ in terms of the maximum range without air resistance:



R =viig Then: ¥ = X/R = ugivi

and with ¥ = ¥R

v diw V0 dw
g% dt? mg? di
Then let 7 = £&/0. The equations become:
d?w _ _q_ oV dw
dre e dr
and:
diu _ _ovo du
dr? Mg dr
Now let # = &vo/#g. Then integrating once, we get:
e _
LY = gy + [T
dr g 0
where L0 is the dimensionless initial velocity in the & ~direction
_ vpcoos8 vy _
g = —e——— = cosf
. R £
Now we set up a numerical scheme to integrate this set of equations. Notice that if @ = 0, then
- c;t’w‘ 1.z
W =wpt—| 7+ =71
dr g 2

solves the equation exactly. So let's try basing our numerical scheme on this. In each time step compute

the increment in ¥ by

= dw 1w
Aw = @ o L
dr lo’ 2 ar?

2
0
and similarly for & Setting up a spreadsheet, we find that the range decreases and the maximum range
moves to a smaller angle of launch as the air resistance increases.

R ol catralirod o

———]

|— btz
bnin- 013
[

r Ll
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30. The equation that describes the motion of a pendulum is

y' = ~Esiny

(a) When ¥ remains small, the equation may be reduced to the harmonic oscillator equation. Solve this

equation to obtain the solution ¥(£}-

(b) With the initial conditions v{0) = =/3, ¥'(0) = 0. solve the non-linear equation numerically to obtain
the period. By how much does the period differ from your result in (a)?

Pendulum equation
y' = ~Esiny

For dimensionless variables, let time scale be ¥ le. Then

When ¥ remains small, then

Yooy

b =yuc¢sﬁz = ¥QCosT

where T is the dimensionless time variable defined below. When ¥ is not always small, we solve
numerically.

with solution

= E ! ! = —aiqg L = — —
70) 37V (0) =0 Thys ® o) = 2 and #(0) = 0.
See spreadsheet for solution.
The period is 6.75 seconds. For the exact cosine solution, the period is 2™- The % difference is

675 - 2x =7 4%
2T
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31. Bessel's equation of order * has the form:

2
fi__}’ + lff__}" + (1 - ﬁ)}; = I:I
dxe  *dx xe

Show that the differential equation
2
ﬂ + zt}" =1
dzz
may be converted to Bessel's equation through the relations
= zy
and

= 2 _lhp
= ¥4
Ptz
What is the order of the resulting Bessel's equation? (The solutions are given in Chapter 8.)

First change 7 to ¥-

Y1y |
g 2 JZ "E.:iz
and

a1y 1 d, ody
=2 4 32 WZ dZ iz

. = = = 57l
Next change Z to *- For ease of computation, let & = 1 +r/2 Then x = 2'/s, and dx = z° dz

Cf_;l-’ = d_“}? d_x = d_“}? =l = d_y |:5_1 ]II-5
& ek 2 )
and

':f_z.;"'r=£(dy51)= nz—sz.}”_,_z.slif.}’dx
dz ax ,;1‘;;2.:;32

oA ol 4 - {1er) b2l D
22 ()t + (o o2 2



Thus the differential equation takes the form:

dif

—+z’ =10

2 I
-1 ¥ 1 ay .}’ -
Z II2.+E_+‘,|’_ + Jzzty = 0

Divide by vZ and use the expressions for the derivatives:

&%y, a1 20 G d -

s+ i5— 1 ] D WLy o § N
G CRDCS ~a v M i
Dividing by ':SX:'%_I i ﬁngz_zkand rearranging:

Ay 1dy Y

+J,r =
dr? Tdx A{xs)
This is Bessel's equation with ¥ = 1f2s = 12+ r)
The equation
2
a7 _ Zf=10
dzz
becomes the modified Bessel equation 3.38.
32. Show that the equation
TR TR . STy
o)

has a solution of the form
- K 5)

and find the order ¥ of the modified Bessel function.

d _o5d
FirstletZ = /250 & 2&';
4 222 2dz 4z2

u”+2u*+£u =10
22

Now let ¥ = Z€ ¥

u’=$ey VZETY + JEe Ty

i 1 = 1 = 1
= T - & +
eV g R

Thus

ey + JEeTy - 2 Ze Ty + Ee Ty

0=-—L emy- Lompr Lovys momp-25:7 + 227

4732 JE vz
+ Lm0 FeTy 2z T v £ FoTy
Z 22



v],.?H +%y.' _J'?(]- + 1;42_;:J = D

bl

2 -1 _
This is the modified Bessel equation (3.38) with i 4 4 or & = 1/4 - v,

This document created by Scientific WorkPlace 4.1.



Chapter 4: Fourier Series

1. Show that the Fourier series (equation 4.1) for a function flx) may be written:
Azl = Zﬁ:n coslax + ¢y
n=0

and find expressions for kn and $n-

Expand the cosine to obtain:

Azl = iﬁ:n(cosnx COS (hy — SHLAX 5Ly, )

n=0
Comparing with equation 4.1, we have:

@n = —knsitign, Bn = kncosda

Thus
kw = (Jad + b2
and
[
tangy, = -2
(i)n E:'n
where @z and &= are given by equations 4.7 and 4.8.
We may also work from the exponential series:
1 = gt = = é,z'ﬂ,.é,z'nx
Ax) =D cx .
n=— n=—0

oo

Z racosinx + 8,) +isinipx + 0,)]

p=—tn

In this formulation €= may be complex, but *» is real. Thus if Axlis real, the imaginary terms must combine to give
zero, leaving:

Ax) = Z FuCosiax + 0y

n=—
where
= = | 1 é= —na
rn = lenl = | 2[5 Axle ™ ax |
and
2 —Inx
bn = 0 = arglen) = arg{ =L [ Alx)e ™ |
Note that
(i)—n = _(i)n
and
Faun = P

and so the sine terms sum to zero in pairs, as required, and the cosines combine to give a sum over positive #
only.



oo =0 oo

fx)= 3" recosic+¢a) = D racos(X+dy)+rocosdg + 2 ra oS+ ¢y )

n=—wo n=-1 n=l

oo oo

rocosdy + 2 P COS(—AX + by ) + 2 Fn COS(IIX + iy )

n=l n=l

oo

rocosdp +2 3 1y COSIX + §y )

n=l

which is of the required form, with ko =roand kn = Zrnforz > 0.
2. Develop the Fourier series for the function fx)=x
(a) over the range 0Lx sl

(b) overtherange 1 = x £ 1

(c) Make a plot showing the original function and the sum of the first 3 non-zero terms in each series.
Comment on the similarities and differences between the two series.

We choose a variable Z = 2T that varies from U to 27 as % varies from 9 to 1. Then we write the series as

Axi=x= Zan sin2wax + by cos 2mux

The coeffcients are:

I x sin 2waxdx
[ ~ooglo )| - [ -Sos 2 |
w5

[ 1 + Sn2max ‘1j| -1
. T

2an
and

xcos 2anxdx

il
M
I

T AR 0 Z2mxm

[D—Mr}:g
2mn 0

[ sm2?mx |1_ 1si112:-mxdxj|
1
T

Solid- 3 terms. Dashed- 6 terms



We need to calculate &0 separately

So the series is:

(b) Over the second range we choose the variable ¥ = ™X which ranges from ~T to ™. Then we have
Ax) =
And the coefficents are

x= Zan simwmx + by, cosmax

y = I_l x st waxdx
- u:osmzx Cos THX
x(- ”—1 Il —gnax
— hd
= —2(-1)" + Sty THX |1 _ 1)
wH T | TH
and
Dy = I-l X COS THXAX
- Sif M Sif A
x( wH )|_1 Il wH e
-1 _ —cosmax |1 7]
TH 0 wH -1 0
't 1 ~
y
P
sy |
s T 5 |
']
B U
L 1 o 1
LS5 _r’ [+ [HE-3 1
|I - .
0 W a5
5 il
[
1)
e ak

So the series is:

sinmrx
»n=l
(c) The two series are

Both series have sine terms have coefficients that decrease as /2. The second series has coefficients that
alternate in sign, while in the first series the signs remain constant. The diagrams show that the series appear to
converge about equally well to the original function flx)

%. Of course they differ outside the range (0.1}



Solid- series on (-1.1). Dashed- (0,1)

. . . = .2
3. Develop the full Fourier series for the function Aix) = x% over the range 0Lx <1

The series has the form:

Ax)=x% = Zan SATHE + by, Cos 2TAX
where the argument 27X of the sines and cosines varies from U to 27 as * varies from U to 1. Then
1 .
tn = 2 -[n x2 sin 2l

2[;{2(— cos 2mhx J |1 _Il kcosandx}

2T 0 0 2T

_ Hl_ﬂ(—l +2[x(51132$) |;_.[.3 %dxn

_ 1 f_ 1 _ —cog 2T 1
= (-1 77 [0- =52, ])

- -1
- Fl
and
by = _[ x? cos 2maxdx
= sin 2THx 9y SN ATHX 7
[ ( 2T | -[ x 2w x]
- _ 2 | g4 pocosimax | _ U —cosdmnx
st [ 2ma ‘.;. -[D ama dx]
_ |i1_sm2?mx|1j|= 1
(:-mj:‘ 2xn o (mn)?
Finally:

by = I; xidr = %

Thus the series is:

x% = %+Z(——sm2?mx + 1 > cosznx)

n=l (?f??:l
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Sum of first 6 terms

4 An odd function 7%} has the additional property that A+ 1) = -Ax)

(a) Make a sketch showing the important features of this function.

Since fix t L) = <Ax), then fix + L/2) = fix - L/i2 + L) = —fix - L/2) = AIL/2 — %), the function is even about

the point & = L/2. Thus it looks like this:

ET

LET

- (b) Which kind of Fourier series (sine series, cosine series, or full series) represents this function on the range

L <x <l

Since the function is odd it is represented by a sine series.

(c) Show that the series has only terms of odd order (* =

integral over the range 0 £ x £ L/z.

Axy = Zan siny 2L

with

Zm + 1), and find a formula for the coefficients as an

L

= %J‘iﬂ'xj sin 22X o

L

A ks a

since both 71X} and the sine are odd functions of *. - their product is even. Now we divide the range again:



oo 3121 o5
- %U Ax)s ”ﬂxcz’x+ﬁmﬂx+£.)sm?m(z—+mde
- %U Ax) Smmrx I Ax) Smmrxde
= [ Ax)sin ZZ2dx if a i 0dd
7

—
=

—
U'J

i B2 . .
where we used the evenness of 1 again in the last step. The result is zero for # even, as expected.

If instead f1x * L) = /1], then we will have only # even terms.

Even function, fix + L) = fix)

(a) Make a sketch showing the important features of this function.

Since the function is even, f1=%) =iz}, so the function has mirror symmetry about the ¥ ~axis. Since

fix + L) =A%), the function has period £ rather than 2. Thus it looks like:

eTET

ET

(b) Which kind of Fourier series (sine series, cosine series, or full series) represents this function on the range
-Lix il

Since the function is even it is represented by a cosine series.

(c) Show that the series has only terms of even order (*# = 2m), and find a formula for the coefficients as an

integral over the range ¢ £ x £ L/2.

i
With a range 2L we choose the variable I which varies from ~T to ¥ as % varies from ~L to +Z. But since the

function has period L, only even # terms should appear in the sum. The arguments of the cosines are multiples of

2wx/L, so that the resulting sum has period L. Then:

= X ancos 1TE

with

HTX o

=1
@ L I_Lﬂx)cos 7

7 I Axlcos 222 m‘rx Lot



since both 1%} and the cosine are even functions of *. Now we divide the range again:

o= 3 o

=%(_|- ﬂxjcosmﬁﬂfﬁ"'j‘_ ﬂx+L)coswdx]
=2(j- ﬂijOSMExdx-i- I Ax) cosHExd‘x]

= %-l-n ﬂxjcos%ﬂdx if 15 &ven

where we used the evenness of again in the last step. The result is zero for # odd, as expected.

@) If x + L) = <Az} we must amend the derivation of @x :

or - 31 oy 5

(I Ax) cos@dx+_|-_ ﬂx+£)coswcﬁ]

U fixlcos ”Ex dx + I —fixicos ”Ex a!’x]

-4 MK o if o0
L-[u Ax)cos 7 dx If »i5 odd

All the 2= with # even are zero. The function looks like:

LET

5. Which series, the sine series or the cosine series, do you expect will converge more rapidly to the function

! ) i . .
Ax) =27 onthe range 0 <z < 17 Give reasons for your answer. Evaluate the first four terms in the optimum
Slx]

series. How large is the fractional deviation atx =05gndx = 17

. . . . . = 43 - . -
The sine series gives an odd extension of the function fix) =% onthe range (1.1}, and has a discontinuity of 2
at* = 1. The cosine series gives an even extension, and its periodic repetition is continuous at * = 1. Thus the

cosine series will converge faster.

Let

X3 = Zﬂn COSMTHE

Then

4
an = I; xidx = _x4 = %
while



1
= 2.[.;. x2 cos i

- 1 1
3 SINTIFX 2 .. TR
= 2[—x e +.[|:| 3x St~ fix}

B 2 T 1, cosmc

= ﬁ T ol T —I EITEETX}

s [ =1 2 { sm:n:m: 1 I sm:n:m: }}

N o T

_ 6 [ U 2 cosmmcl]|_ 6 (1 _2[=1)" - 1])
T i T (mn)z 8 0 ()2 (1112

Thus the series is

=1+imc05?mx n+2 EPEREY:!
=18 > oy (-1

n=l

The first four terms are

5
%+%Z '305?””( i 2 2(1 —(—1)”)) = %+ ?(EOSETUE+%EOS4TEK+%EOSQ?€X]

T a=l b

oTET
ZET

cET

The fit "looks" pretty good between about 0.1 and 0.9. (Pf3 ~ solid blue line. 3 terms, red line dashed, 4 terms black
solid.)

Deviation is

=[1-_1 _ EEZcosgnx((_ljn_,_ 22(1_(_1:'?:))‘

and is plotted below



TE

wn

ZET

e —]

oz od TE a2 1

x

The percent deviation is less than 25% for Saxdl (approximately).

In particular, at ¥ = 0.5

‘1_ 1 6 N cosmap ((_1JH+LF(1—(—1)”))‘ - 0. 21585

andatx = 1

3
‘1_%_%2':05592((_1;.“ 2 (1—(—1)*))‘=0. 17197

This document created by Scientific WorkPlace 4.1.



Chapter 4: Fourier Series

6. Find the Fourier series on the range U £ x £ 27 for the function Aix) = smox, where
@ js not an integer. Check your result by checking the limit @ —> %. With the value

=07, plot the original function and the first 3 terms of your series on the range 0£x %27 Comment.

The series may be written:
s oex = Zﬂn sinMx + b, coskx

where

n = %I;Isinoaxsinmcdx
_ 1_ 2T B _
= 5 _[D (cos(o —mlx — cos(a + 7 ddx

1 (sin(a—n)x B sin(a+n)x)

P (oo — ) (ot +m)

2n

0
1_( sin2n{ce—n)  sin2n(c+n)
T Zm (et —n) (ce+m) )

1 sindma _ sinZmo

B Zﬂ((a—nj (o&+rz))
_ sinZnos( 21 2)

Zm o —n

and

-l 5

b, = 7 Iy 21N 000 COS Feral

I W S
= 5z _[D (sinfce + r2 ke + sinfe — 720 el

_1 { cos{e—nlx cos{a+nix Y|

- 2',!1:( (ce—s1) (ce+r) ) 0
1 cos2mlu—n)-1 cos2mice+m)— 1
- E( (@w-n) ' (a+n) )
_ -1 2 -1 2 -1

o (Soplmest 4 soilnesd )

1 -—cos2mo 20k
31 P —

(-

5

(-3

ES

L5

£

Finally

2n . 2 -
by = LJ‘ sinaxdr = —_L BT | n_ 1 -coslmo
s b g 2w

and so the series is:

o0
sinox = L_Cosama iz — " |sn2resnar + —% {1 - cos2ma)cosnx
'.-‘r N g

2o

Limitas & — # !

Welet® =#m+ gandlet £ — 0



1 -cosla(m + 5)

i %Z(ﬁ) sm2w(m + £)smux + L‘S)z(l —cos2m(m + £))cosax

2mim + £) S\ (m ) - (2 + £)% —
1-coslms , 1% ( u sinax ) - (e + glcosax ., _
— i E smamws + 20— — ] —cosdwse
2rim+ ) T\ + 2t 2t - n? (i + £)% —u? ( )

(2ms)? 1S 7 SinAK (m + g)cosnx [ (2ms)®
%4?C(m+gj+fz( 2 H2J2?r£+ Z 5

w2t + st g (m+sj2—n

Each term = Uas & = 0, except for the one term with # = #. The surviving term is:

l(msinmx )2?r£+ 208X ((2?55)2 ) = l(msinmx szg = sinmx

Tf 2mse 2me 2 w 2msg

as required.
7. Find an exponential Fourier series for the function sith &% on the range
0 £ x £ 2w By combining terms, rewrite your answer as a series in sines and cosines.
We write the series as
oo
sinh ax = Z £ T
where

—nx 1 & = —nx
Iz sinh core ey = nﬁ(e“"—e“")e dx

1

27
_ L(e[ct—m]x e-[r:tﬁ'n]x )
T4 o -+ in)
1

a7

(e[ﬂt—mpﬁ -1 olarmEn _ )

an

o — I —(c+ i)

_ L(eji{ﬂ_l + g ane _ )
dm N o— i (oo i)
1 lo+pie®™— 1]+ (a-mile™™-1)
4n a? +n?
_ 1 qcoshl2no— c+imsinh2n
m o +

And so the series is:

cinh o = Z ccoshdre — @ tinsmh2re ms

2 2
n= ot tr

Notice that the real part of €= is an even function of

#. while the imaginary part is an odd function. Thus we can rewrite the series as:

sitheor = L cosh2mer— 1 . i celcosh2mo — 10(e™ + e ™) 4 insinh 2nale™ — e ™)
21 o o 4 p2

n=l

3 L( cosh 27ma — 1 +ZZ ctlcosh 2o — ljcosnx nsthno&smnx)

2m @ = o + p2

Note that if we let @ = i, then snh(iffx) = fsmFx and we get back the result of problem 6.
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solid-3 terms. Dashed - 6 terms

8. Obtain the first four non-zero terms in a Fourier series for the function 1% on the range w4 < x < w4
The function is odd and so we need a sine series with period T/ Thus:

oo
tanx = Zan sindax
n=l
where

dn = % I;M tan x sindnxdx

The first four terms are:

a1 = % _[:'14 tanx sinfdy Jdy = % _[;'M ggéfc 2 sinl 2% cos 2ol

15 .r"‘* SIX A
T CostSlnxcostOSZxdx

- 4 -
%ﬁ sinx cos 2xd = %ﬁ %coskﬂx

8

= 16 DM cos 2x — (%)dx

_ 16 [ sin2x _ { sindx | x o
- - (= 1) ],
el _=m|_8 5_
=18 L-Z - £-2-0 54688
Similarly
az = £ [ tanxsingxax = 8 (2 - L) - -0 30235
as = & [ tanxsin12xdx = £ (12 - Lr) = 0 20695
as = £ [ tanrsint6nan = £ (L5 - Lr) = -0 15683
Thus

tanx = 0. 54648 sindx — 0 30235 an8x + 0. 20695z 12x — 0 15653 s 16x + ...
The series converges rather slowly. The next term is:

as = %J‘gﬂ-ﬂ tan x sin 20xdx = %(—l'x + @) = 012611



' ' '
(-3 (-2 (-3

Solid curve -four terms; dashed curve- five terms.

9. Use numerical integration to find the first 10 terms in a fourier series for the function 511%™ on the range

. . . . - .
0 < x < 7 Whatis the maximum % error between your series and the function 51Z™ over the given range?

We may choose an even extension of the function to the range ~% to # and expand in a cosine series. Thus

where

and

The first few terms are:

Thus

ol
sinx? = Zan COSMX
n=0

2

T .
dy = %ID SN X< COSHIAR

ay = 4 [1 sinxldx = 0. 24594

a; = %I; sinx? cosxdy = 19245

ay = %I;‘smﬂ cos2xdx = —1. 6751 % 1072

a5 =

Ao

I“ sinx? cos3xdx = —. 68035

o

g = %I; sinx? cosdxdy = . 18925

ds = %I; sinx? cos Sxdx = 21467
ag = %IS sinx? cosbxdx = —. 25927
ag = & [ sinx? cosTxddx +. 18982

a

ag = %J‘n sinx? cosBxdx = — 12607

=

g = %IS sinx? cos Ixdx = 08531

a0 = %I"smxzcosmxdx = -6 0703 % 1072



sinx? = 024594 + 019245 ¢cosx — 16751 x 102 cos2x
- 06803518 cos3x + 0. 18925 cosdx + 0. 21467 cos Ox
- 025927 cosfxr + 0 18982 cosTx - 0. 12607 cosBx + 0. 08531 cos 9x
= 6.0703 x 102 cos 10x

o5

w

S5

The greatest percent difference is at the end points, and at the other points where sinx? = 0 (ﬁ = L7723 4ng

Wam = 2.3068). Other than at these places, the greatest percent difference is <10%. The greatest difference is 0.4 at

X =n

0.24594 - 0.19245 - 1.6751 x 1072 + 0. 6803518 + 0. 18925 - 0. 21467 - 0.25927 - 0. 18982 - 0. 12607 - 0. 08531 =
21201 % 1072

10. Find the full Fourier series for the ramp function

xif0<x<1
Ax) = ,
1if1<x<2

ontheinterval 0 < x < 2

The argument of our harmonic function must be 27 when * = 2, and so itis TX. Thus the series has the form:

L==3
Azl = Zan sinumx + b, cosumy

»=0
where
dn = Inl xsmnamxdx + .[12 sinHTELR
_ SINAW — ATWCOSAT _ COSSNT — COSAT
nird nw
I G Y el G Y
T T Ew A T um
and
by = J‘n; xcosxumxdx + IT cosmmxdx
- cosam tawsinar — 1 | sinluw - snuw
2.2 HTT
new
_ -1t
- i
Finally
bo = 5[ fomax+ x| = 3[3+1]- F
Thus

Notice that only odd # contribute to the cosine terms.



* Black & = 10 gjye & = 20

Note the Gibbs phenomenon at the edge of the flat plateau.
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Chapter 4: Fourier Series

11. An electric circuit contains a 1.5 mH inductor, a 5 #F capacitor and a 200
£ resistor in series with a power supply that supplies a rectified sine wave voltage with amplitude 110 V and period 2 ms.
Determine the capacitor voltage as a Fourier series.

The equation satisified by the circuit is:

dl g _
Lﬂ,‘g + IR+ = 2]

where

sinepi i 0 < ¢ < wfw = TH2

g(t) = 20
— ginowf who € £ < 2nfw =T =2ms
First we find the Fourier series of the emf. Since the differential equation has 1st and 2nd derivatives, we'll use the exponential
series:
= ché.z'nmt
where
= fo T zmr g = 1 f A2 e g _ T il
=== |, (2 e R T(ID sioste TR dE Im sit wée dﬁ]
= i riz é'!.w _é'_iw gy — T E'imt - E—a'mt il J
T(D I P
_ ¢ Mmhe llwmie TR0 Gfiwbe liwmbe Y |7
2T\l —mjw {1 +ajw | (1 -njo  —i(l+njw /g,
_ ﬂ(éz'[l—n]n =9 é,—a'[l*?z]:i[ =9 i _é,z'[l—n]:i[ 1 _é,—a'[l*'n]:i[
27N i1 —aw i1+ ndw i1 — a2 —i(1 + 2w
_ ﬂ(giﬂ—n]ﬂ -1 + é,—z'[l-'-n]n = q|
iTN 1 - sl i1+ »)w
O AtV Lol W ot L
iTy il -l (1 + a2l

We could obtain the same result from the first "bump" in the function, repeating with period I/,

The result is zero if # is odd. If # is even, we get:

o = 280 1,1 - _ 22p
* T ((l—njm (1+?z)cu) w(n— 1)1 +x)

We have to evaluate the # = 1 and # = ~1 terms separately:
g (TR e e T e )
€] = — 7_9 et — E_"& o7
LT T U 21 o 2
TR o4 _ T _ o
- o ([Pl g T 1o dr]
T U 21 T 2

_ B0 ¢ o T2 T2 (f o ~2iu r
T 2T —Zs'co o 2w ] |r.'2)

g0 E_Q-Zm'_l |rl'2_(£_€-4m'_€-2m')|r -0
2 —Zim g 2 —Zim

and similarly for ©-1- Thus the series is

_ 250 Z z'2m-’.0:r

(4m -1)

We can plot this to check the result:



amhicpsllon

w2 T

e T

w4 T

TE T

Now the differential equation becomes:

dEQ 40 250 gi2mu
REE 4 = oo
* * Z (4m -1)

Now express  as a Fourier series:
Q= ananw

Because of the orthogonality of the exponentials, we have an equation for each coefficient & in terms of

“xn. Thus only even * survive, and:

2g
- nw? L0, +inwRC, + On _ 280
C ?t(?@z - lJ

and so

On = - 2z0
? ?r(nz = 1] [—}z il + ol + }3]

Now as usual let

R 2008 g oeee7x 104 /s
T2 T 3%10%H
and
wl=_L - 1 = 1.3333 % 10 j5°
° IC  (1L5%103H)(5x 10FF)
Then
Q EEDC
n x(,:g = 1)( mfmg 23.’30!me.:‘% - 1J
and thus the capacitor voltage is:
Ve = Q 25p it
c = ?t(;ﬂ = 1] [ {w/iwg ) - 23’32-::::0);‘0)% - 1]

ZSDCLJD (n w? - mn + 23’?20&0)]

= ?r(nz _ 1) [(n2m2 - w%)z + (2)@0!0)]2]

L IRul

The real terms are even in # while the imaginary terms are odd, so:

7 dso | 1 . Z (nzcuz = m%] Cospul — a0 SNk
= =4 L 4 Wi

Tl n=Zm=l (nz - 1][(33%)2 —m%f + (2?30:&:)2]
Alternatively, we may simplify by writing

25ge it ;
o= z 1] T
c = 2 _ 2 2_ 142 242
g ?r(?z 1} J(n {odoog ) 1;I + (2nawfmnj

where



—2now

2 2

tang, = >
néw® — wg

Both expressions give the real result:

cos(Bwt — g

n=dm (;32 - I}J(nzmz,-’g)% - ]J2 + (2.’2@0);!0)%]2

]
The Fourier component may be large for any # close to T Now

W= —2% = 1000x /5
2x 1035

SO

wg _ 133333 10% _ qq 547 _
—L = = 22200 = 3 6755

1000
and so ©4 could be large if @/wn is small. However, it is not:

, (6_ 6667 x 10% fs)(lUOO?rHSJ .

oon) -
wf 1. 3333 x 108 /g
SO
Fe=140Y % + cos{nwt ~ ¢n)
n2m (a2 = 1) J(#23. 6755)2 - 1) + w2
and
2n6. 6667 % 10% /5
tan by = - 2no - _ ( J
w(#? - (wpfw)? ) (10007 /5 ) (#* - 3. 67557 )
- 133 33 o _ 42 44n
w(#® - 13.508) (»* - 12. 508)
The first few terms are:
_ 1, cos(Zws = ¢o) | cosidwt — ¢4) J
Ve = 140 v(z B T T A V-1 7 B
where
tang, = ——2244X2 _ — g 9763

(2% - 13. 509)

= gz = tan_l(S. 82630 = 14592 + ¢ = 4. 6008
Notice we want an angle whose sine is negative and cosine is also negative, so the correct quadrant is the third:

sind 6008 = - 99378 cos4 6008 = - 11136
___apaaxa _ — _
tangg = ~—2244XA__ _ 65 149 = 4, = tan” (~68. 149) = -1 5561
P " @z - 15 509) b ( )

Here we want a negative sine but positive cosine. Thus

cos(2wi — 4. 6008) N cos(dewi + 1. 5561) N cos(bwt + 1. 4827)
18. 967 188. 52 662. 3 J

- 1
V. = 140 V(z +



e i)

Notice that the variation is not very large: about 15 V. The circuit smooths out the variations in the power supply voltage.

12. A single loop, series LRC circuit has resistance R =15 &, inductance £ = 10 mH and capacitance =15

=
A rectified sine wave power supply (see Figure) with Period

- - . . . . S -
T'=157%10"" gis attached to the circuit. Find the voltage across the capacitor as a Fourier series in time once the circuit has
reached a steady state.

The equation is:

di g _
L&y prs = = g
dt o (¢)

Write € as a Fourier series:

Q = Z Qnemwz
where @ = 2%/ Then
Bt) = D Epe™

and the de is

— Ina2Q, + RO, + Qc - B,

and so
. _ F, 1

G =

—LCn%w? + inwRC + 1 L wi +i2now - n2w?
where
2 = 1 - R
we = —— and o=
bIc 2L
Half-rectified sine wave:

Series:

Swlt) = D Enet®

where



B, = %, Ig.'z sinewfe TG = ﬁ, g.'z (em = e_’“:le_"””dz
H

e Crem i)
= ol - L)
- (_1—);:2"— 1 ((1 1?2) 1 ln))
) S

-1 ueven

?c('l _sz

We must do the integral differently if # = O

Tz

0

= l 2 TR e = L T s _ -y e
B T.[D sincode Ut 57 )0 I:é‘ e e gt
12chfi = i _ -g—2z'wz.r =

& ZT-Ziw) |,

B 2;’3’ o , (1-e

i_e'z”‘—l 1
4 47w 4

Similarly, for # = -1
— 1 phz o — Ziny _
Fo] ?ID sioie™ i 2 7 | (e lj.:i'z
-_-1
43
Thus
+o
splt) = Z 1 - gizma 1 1 (é,:wz z wzj
il ?C(l —4dxn J
1,5 1
= + Ccosdnmi + = sinowi
T ; :-'c 1 - 4332J 2
We test this result by plotting it:
T
[HE=)
[y
5 z
Then:
0, - ,C A 1
-LCn%w? + inwRC + 1 L wi +i2naw - nw?
- 1 1 1
= - M oeven
?r(] = nzj L m% +i2m00 — H2w2
and
Ea 1 _ 1 +1 1
1l =
= L ti2am — w? L4 g iZow — w?

Thus



Now we put in the numbers:

and

and

So

and

P’C = E ] 1 TR

= 24 _ a2
wLl . Even (1-7%) wf +i2row - n?w

n = Il _ g i
LU\ wd +i2ow -w?  wi-i2aw - w?
1 5 [witw? ) cos o dn s o
LS Zn, EvEn [1_an

(e e | *+H2mana]?

Em%
i1 [o0f o ) sim ar+2 aeaces o

2 [UJ;'WIJ!"'DM:I!

(170 g | s e+ 228 5in o
La Ll -
M W ieen, even (1= (1=t nd )+ (Zraiokod |

(1ol | sinur+2 22 cosoy
1 a5
+1

2 (Lot ) (2ahg)

2_ 1 _ 1 _ 7 .72
-1 . - 6. 6667 % 107 5
0TI T Tox10%x15x10°

J6 6667107 5 =8 165x 103 57"

|

w = 2 =4 0%x103g7!
(1.5?>< 107 5)

w2 =16x107 5

Cﬂ=i=L=6255_

2L 2(12 = 1072 H)

1
oo 625 _ 7 g4 1072
@0 g 165 x 103

w - _40x10° g 4500
@0 g 165« 107

(i)z = 0.48992 = 0. 24

oo

2“—2@ =2x7 6546 % 1072 x 0 489% = 0.075
Wy



\
p

H[—

H—

+ L Z 2 [] -. 24.’32‘} cosxoi + UU?5?35111?3CU£ + l ?651110.J£ + U.U?5COSCLJ£
i 7, EVEN (1 _H::J (] - 24?@2J2 + (U.U?ﬁnjg 2 (.75:12 +0.0752
— 2 ;
L1 Z ) I:l - 24n? ) cosmwt + 0.075x sinwnwt 4 T6sinwt + 0,075 coswt
T
noven (177%) (1- 244%)% +(0.075n)° 1. 1665
31831+ 65152sinewe + 6. 4295 X 102 cosws — 1. 1065 cos 2wz — 4. 1494 sin Doz
+ 04643 cosdws — 2. 4523 % 107 sindat + -

gl Ldad i
SRR

Blue- input. Black- output

Notice the major contribution from the resonance at the second harmonic (*# = 2}.

13. A spring-and-dashpot system satisfies the equation

d*x AX 4 p 2y = gy
2 gt At

The system is driven by a periodic driving force with period B

ai i 0 LT
Ae) = _
alT-¢) if T2 ¢ T

Find the response of the system x(t) as a Fourier series.

We begin by finding the Fourier series for

71£). Since the de has 1st and 2nd derivatives, we'll use the exponential series:

with

(=]

ﬂ:) = ché.mzm.'r

1 ¢T w2mT g, — 1 I —m2mT r _ 2T
£ o Aerema: ?( o ate gy + [ alT = ¢l

a zé—mZmFT Iz _pTe 51'?22:'-‘[:{1" g—z'n2m|'f' r _ zé—mZmFT r + T é,—a'n2m|'1"
T =2 /T g IU —in2x/T —in2m/T g —in2%/T |y J‘TQ —in2w/T
a (Té‘ i _ e—inszf Tz + T(g-!?ﬂﬂ _ g_‘-”ﬂj _ (Tg‘iﬂ?ﬂ _ Tg—a'nﬂ ] + e—a'nEme r
—i2nw 2 —in2wiT |g 2 —in2m{T |
o (E—im’[ -1 + é.—a'r.!?i‘[ — é,—im’[ ]
—i2nw \ m2w/T —in2w/T
CZT =i _ = QT _qwn _
prEr & (Q 1‘] 2ng2 = 2

The result is zero if # is even and

Dutd

)



if 2 is odd.

Now we write the displacement of the spring system as a similar series:

x = angz'n2m|'f

and stuff into the de. By orthogonality of the exponentials, we can evaluate each term in the sum separately:

_ 2 2m 2m 2, - __al
H(zjn+a'm?xn+icxn e

and thus

af
2.2
2w 2 - 2 (2“ + qin 20

An = 7

Let wn = 2%/T Then:

x(t) = a 1 _ it

T nzmg k2 — orimog

We can group together the terms with # = Nandz = Mo get:

-2

#E WY (?32@% - kzjz + (omang )

(?zzcug ﬁ:zj cosrwpf — 2otkeog smangt

If £ = #w0 for some #. there is a resonance at that value of

#, and the response of the system is large at the harmonic, particularly if the damping is small (/g = 1),

14. A simply supported beam of length L pears a load

W that is uniformly distributed over the first 1/4 of its length. Determine the deflection of the beam as a Fourier series. Make plots
showing the first 1, 2, and 3 terms of your answer. How many terms are needed to obtain a result accurate to 1%? (The
differential equation satisfied by the beam deflection is equation 3.10, and the displacement is zero at the two ends.)

The deflection of the beam is given by:

dty _ 1
.:x’x_4 EQ’(-")
where
3 if x { L1
glx) = P
0 if x> L4

Since the deflection is zero at ¥ = Y and ¥ = L. we should be able to express the deflection

Y as a Fourier sine series of the form:

Zyn ey mcx

Let's express 4 as a similar series:

x) = an 511 ”Ex

where

(%)
E]
I

?mx
7 .[n Sy
_ 2 pll 4% mrxdx

I gin

Llo ¢ L
_ a¥{_ L amx |H
(o))
- _ o BT _
L?c (COS 4 1)

where



£ n=17915.
0 if u=2610.

08 = -2 i 2= 3,511,130
1 i oa=412.

1 if n =816,

Stuffing the series into the de, we get:

(%Jq«“» "B Hie (COS% -1)
and thus:

7 _(%J4E?LW;PI (cos 2 -1)

and so

Hit

AL ZI‘COST P

i

_ Eix? n L

Because of the very strong dependence of ¥= on #. the series converges very rapidly. The first few terms are:

y = BIFL: ((1—£)smﬁ+ism2” +i(l+£)sin3m" + 2 gndEx +)

Eix? 2 L3 L 33 z L 42 i

_ SWEL WX L 2mWx =, AWx = dwx 4
= (CI. 292895111L +0.031258mn 7 +7.0251 % 107 sin 7 +1. 9531 % 107 ain 7 + J

The first term alone should give 1% accuracy. Let's check by directly integrating the differential equation:

dty o %rifx<.£f4
P W N
Integrating once, we get:
if x < L/ and
y' =B
if x » L4

We can use the discussion in Chapter 3 to determine appropriate boundary conditions.

o _ 1
= - m(x
¥ 77
where # is the net cc torque of all forces to the right of . and
drm =
=i = fx
praiasd
where £ is the net vertical force to the right of ¥- Thus
e —1
= ——ifx
¥ = i)

Now we can find the support force at the right support (¥ = L) by computing torques about the left end:

_ pEM A _ _
T ID Txdx FL =10

(3 -2

-
Fs= 2

4w
L

2 —

Thus



Continuity of v atx = L4 requires:

Bl
and thus
A=p-F _ 1w _W¥__TW
El B8 Bl 3 &
Integrating again, we find:
o _ 2Wxt _ W
Y = far “sE TS
for ¥ < L and
LU LE + D
Y T EI®
otherwise. Again the boundary conditions require = 0and continuity at * = Li4 gives:
oWi: I WL _ 1 WL - - 1WL
6757 82ld ms4 PT P g E

Integrate again:

for ¥ < L4 and

otherwise. Continuity at & = Li4 requires:

QWL _IWER g 1 WIE _WLL g
43z gr 8 Bl 3 Bl 83 8EI 4

1 wl? 5=

96WEE =G

Then the final integration gives:

-t 7 W os
Y= sigml asEl At

and

1 W.s_ WL 2,{1 WL
Y= agErY T 1eEl +(96 i +F]"+K

in the two regions. Since ¥ = U at the two ends, & = 0 and:

1 WLB_ Wi L2+(LWL3+F]L+K=U

48 Ef 1681 96 LET
L Wrs_rr-k
iz Bl
Continuity at & = L4 requires:
_ WLt WL, gL E) L WL Lz+(LWL2 +F);+K
4% gLE] 48 Bl 43 4 EibA% w4 16%E] 96 Af 4
1 s _
1536 EEL £
Then
Fo 49 i

1556 EBi
and the full solution is:



R R . P if =< £/4

y=E L 43 1336
i 47 I _2 65 72 1 73
A LAy B =S
it T imel AT ml T iA

Red- 1st term only. Blue- 2 terms

The first 4 terms of the series give a curve that is indistinguishable from the exact solution. One term does not give the correct off-
center peak of the deflection, but the first two terms give a result that is very close to the exact result.

x/L exact 1 term error L#a) 2 terms error t#a) 3 terms error L72)
25 £ 3476 %1075 414 %1077 147 6 231%x 1072 1.835 6 361107 -0 211

5 7487x 107 7657 %1077 -2 268 7 65T x 1077 -2 268 7.473x 1072 . 186
75 00472 5414 %107 -14. 7 4 3557=x107 2 60 4 727x1072 -0 15

Thus two terms of the series gives an error of about 2%, while three terms gives about 2 tenths of a percent error.

15. A beam rests on supports at its ends, & = 0 and * = L. The load 9(%) varies linearly along the beam:

4 = @X. What are the boundary conditions? Find the displacement of the beam as a Fourier series. Plot your results, and
comment.

Y - Latx)

— 5 L, =L
dx4 Efg (224

7

with Y100 = »(L) = 0. Thus we can write the solution as a Fourier sine series of the form:

The de becomes:

where
-2 HEX 3. = 2 . L axx |, L ¢l AT
I EIstdex f( xﬁcosT|D+ﬁID cos—dx)
= %(—Lcosm‘r+£sm%ﬂ DJ ?%—L( lj”+1

and so, from equation (),



and so:

[-E--U g i
oo T £ o
ez T .\

raes T %

[ :}2‘5 :}5 IG?‘S
Black 5 terms -- Blue 3 terms Red 2 terms Navy 1 term
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Chapter 4: Fourier Series

16. A guitar string of length L =165cmis plucked by pulling it to the shape:

axe if 0 <x < L3
yix,0) = 2 .
%(L—xj if L34 x <L

and then letting go. Determine the subsequent motion of the string. Which harmonics are excited?

Since the string is fixed at each end, we can express the displacement as a Fourier sine series:

= D ault)sin HEI
Stuff this into the wave equation:
Az A=

2 _
where ¥* = T/i. Then we have:
2 2
—d 4n = —VZ(EJ (225
dt= L
and so
RUVE 4 po o RTVE
L " L
Since the string has a non-zero displacement but zero velocity at £ = 0, we need the cosine:

— HEwe . HTX
vix, i) Zﬂn cos S sin St

w = A,cos

Now at £ = U, the shape of the string is:

axe if 0<x < L3

Zﬂ smmrx =
(L-x) i Li3<x <L

a2
q

and thus

s
B
I

]

o opmx o, [0 1,2 AL —u)
Iu x4 am 7 adx Izm =104 gin Tdﬂ

(

I a2 . AWX Lo@r _ w2 WX
I EE G .:fx+-|-mH|:L x) sm—cix)

I
[l [

e R

p— —

T = S D BT 77
_I.uxsmL.::t'x 4_I-Dusm£.du

Now

1 MTX Lf__a NTX MTX
Ix sde}: = —,I( X Cos 7 +_[2xcos Td}:)
_ L f__a HTX L nTX i AEX
= —,I( X cog 204 7 + mf?xsm _[2 r:ixJ
L 2

_ MTX 2xl, . mmwx i MTX
= = | —x“cog + sin + 2 Cos
T ( T HT I R T

.1

=

=

and so:



if_it at 2L af i nt _
Al Eeapen)
" L _Fr o f ar Znm 41 2nm I L
\ Tﬁ( R R~ e (cos 2% - 1
r" i? B n 2nM 2 o Hf (-1 andt
_ Za & (cos BF — (-1)7 cos 2% ) %(SmT_TsmT
R it ni (-1) dnn _
\ +2-L (cos 28 - 1= 58 (cos 222 — 1) )
r" i? nf n 2nn 2L o R (-1 iy 2R
g | TFleesF (1 ees ) + 2 [sin 2t - S sin 2
mtl\ +2j‘|[f;1 (cos”—“—l—%(cos@—l]]
dnmfs = 3nw/3 - uw/3 o
Cos Egﬁ =(-1)" cos%
and
sin 228 = ~(~1)"sin 2T
so we can simplify:
_I LY | -1r —14n
2 20y + Zramaz 1+ Sh(-1))
b BT i? o _ 1% _ 1 _1y»
2l (eos B (1-3) — 1+ 3-1)7)
_ 2al’ (. »xm 2 3 HE _ 1 qym
) (7 )2 (smT H(EEOST 1+20D )]
The first few terms are:
n=1:
2
b B (g 3 (3o g 1 L))
2 2
- 28170 30398) - L7 (0 61796)
w ™
n=2:
_ 2al? (. f2x 1(3 2 _ 1/ 142
Az = 2 (sn( ) + 2 (Feos( ) -1+ 3012))
2
= 0. 253%6aL
w
=23




Az = El;ﬂ?f-; (ﬂn(%) + %(%cos(%] -1+ %(_133])

~5 4314 x 102 52

n=494
_ Zal f . 4wy, 1 (3 Az Y o1+ 1yoqys
ATy (s =l zx(.ﬂ.m( z) -1+ 5t )
2
- -0, 13053a5_2
s
and thus the solution is:
. 0. 61796 sin 2 cos 22 + 0. 25396 sin 22 cog 222
y = al, I
72 | -9 4214 x 1072 smesE -0 130635111—1:-:}5 4?” +
GRET "_\H"'\\
—_ T
# ?“’T{s a5 0TS JI"1
anet h‘“——r"”fdﬁﬁj

Red: Vf,.l'fL =104 Blue Vﬁ,.'"L =05

17. A violin string is plucked to a triangle shape as shown in the figure, and then let go. Find the
displacement of the string at later times.

voGOIT
GRS T
Qs T

TR T

The initial displacement function is:



04x if 0¢x< LM

0y =
7 0) Dz -x) if LA<x< L

The solution is

o0
= Zcxn ain ZEE cng
= L
n=l

The coefficients #» are given by:

_ 2 o HTLX
Ty = Lﬁy(x,ﬂl)sm 7 o

2 LM R 2
IE .[1143:5111Tc::bc+I

HTVE

L

N o AT
= (L IJSIH—L o

T

Ela
_08f 1, —4Siﬂi—ﬂﬂ+ﬂﬂ6051
T 4 1272
37 511'1 1 .F"ITIZ
-3 ﬂz:n:2

GRS T

GG T

G T

) (- LR 1

L2 T

1 1l
N lgz 3MMCos TH?‘E+4SII‘1THH
2V 4 7o

Blue: = L,r'll[:"l-’, redf, = L,l’li'l-’ :greenf, = L.HIEV

Every fourth (¥ = 4m) coefficient is zero. These harmonics have nodes at = /4 and so are
inconsistent with the given initial condition. The resulting displacement is

32 A
X, f = == =
-yE 3 sz

2o

HTVE

BT
COS
L

ks

PETEI

L

18. A piano string of length L s hit by a hammer of length P = L/10, The hammer is centered at

x = L/ and the impulse it imparts is I Determine the subsequent displacement of the string as a

function of X and ¢ Which harmonics are excited?

The solution may be written as a Fourier sine series, since (0]

= > ault)sin

Stuff this into the wave equation:

= YL} = 0 4t all times. Then

RX




2 _
where ¥ = T/it. Then we have:

and so

RAVE | p o RTVE

L ; L
Now since the string displacement is zero at £ = 0, we need the sine function. Thus:

yix, i) = ZB,: St mEvE sm?‘*’ﬂﬂ

Immediately after the hammer hits, the string velocity is not zero. Using the impulse momentum
theorem:

dn = Apcos

_ _ g L L,
i= =pl>X for&e - L {x < &2+ 5
fp = pbgplor g - o x5
Thus
I 1 3
& i 0 otherwise

The left hand side is:

— B AT HTVE ain 2TX
2.5 I L L =

_ BTV .. ATX
ZB,; 7 sm—L

Thus

Amvy _ 2 (300 . oagmx
i 7 EL\[ sit1 i ax

%?ﬁ!ﬁ_ﬁ (_ Cos %J E::ln

20 (cos AT 3nT )

wiaz V05 T o

= 20 5 gp BT g 2T

plam 4 20

Thus:

B, = L 40f ek ek

ATV pIinw sin = s

= A0 ] g AT gy AT

2n2 BV 4 0

and the displacement of the string is:

oo
_ 40 Z gin BT oin BE o0 BAVE o ATX
n=1 #

20 L L



T
, sin 22 = 10 - : o o
Since g for # = 4, these harmonics are all missing. The second sine is zero when

n = 20m, put these values are included in our first set.

G T
eoT
TS T

Qs T

GRS T

e RN
=4 '}W\‘\E‘{ W\_H_/ﬁ

xfL

v/l = 0.1 (black), 0.5 (red) and 0.75 (blue). The vertical axis is the dimensionless variable #V¥/40L

19. Fourier series may be used to evaluate certain series of integers. To illustrate the method,

. , : 2 =
develop the Fourier series for the function & on the range "™ to @ Set & = 0 and hence evaluate:

“ o qyn-l
Z(U I S
2 Z-

n=1 M
Which sum do you obtain by setting # = w! Finally, use Parseval's theorem to evaluate

>

n=l #

The function is even on this range, and so the series has the form:
Ax)=x2 = Za‘n COSMX
where the argument * of the cosines varies from "™ to ™ . Then
dn = 1 If %2 cosmuxdx
)

. .
_ 0 SILAX g ]
- -1 M

)

K3
_ 1] _2smnxnx
T e

= _i[g_,_x—cosnx |:[_‘|‘ﬂ —cosnxdx]

TH 7 - A
= E[EW_1n+smnx“j|=i_1n
L [on(-1y+ ign|" ] = A-1)
Finally:
= 1 T 2 = li " = ﬂ‘-_z
an 5 i F dx = — : 3

Thus the series is:

Setting * = U gives:



3 n=1 Hz
and hence
i (-1)"t g2
n=l '}32 1
Setting ¥ = T we obtain:
2 [ee]
w = B 2SIy

and so

: . .
2 - mt i _q L L
oAt
72 < w15 .
= " 4 + L= gt
2 = ;)Hzt jE?
We have
1L AN
prl I
o e Piav 4
L5 ST 3] ;;ﬁ
£=W_4+8m 1
5 9 ;H*’f
and thus

ll-""h\,"III oS Gs (=N 1



Sum of first 6 terms

20. Use the Fourier series for the step function to evaluate the sum

5 L
= Zmt 1
Use Parseval's theorem applied to the same series to obtain the sum

==

2 ——

=1
The series we need is equation 4.10 (or 4.13). Setting T4 we get:

_ & sinf2m + 1)m/2
'_ TZ:.] 2w + 1

Thus

1_2% nm
2 W;2m+l

and thus

= 25?3
Using Parseval's theorem applied to equation 4.13:

I;ﬂx)zcz‘x - ‘[im 1dx

Il
|
T
H
e

]
-ll--|-—l
t\.1|'_l

and so

==

> __1 _1=% _ =%
e 428
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Chapter 4: Fourier Series

21. A function 1%} is represented by the Fourier series:

Ax) = g(an gitl ”Ex + b, cos ”Ex ]

on the range (—L.L). Derive a form of Parseval's Theorem (equation 4.19) applicable to this series, that is,

2
express I: f(x X in terms of the coefficients @x and 2=

%I;Lﬁ:szdx %-I-u é(an smm + by cos ”Ex J

oo

X Z(am sin H2IX 4+ § o cos L) gy
2 I )

283 + 2 (al + 53)
Hml

where we used orthogonality of the sines and cosines to evaluate the integrals on the right hand side.

22 1F iz} is represented by the series 2 5e™ over the interval 0 < & < 27, and &(x) = Z€r2™ over the
same range, prove the generalized Parseval theorem:

Eﬂﬂx:lgl:x:ldx = ang—n = ang;

n n

where the second expression applies when the function g(x) is real.

The integral on the right hand side may be writtem in terms of the two series:

1 a7 1 R i i
3 o nlelalds = 5" 5™ gwe™dn
= 1 2 TH o T
E%%gmfnjn IR IA
-1
. %%gmfnzﬁan,—m
= Efng—n

23.The capacitor shown in the figure is charged by the battery, and discharges through the bulb when the

potential across it equals 0. 30" Assuming that the capacitor discharges very rapidly, show that the potential
across the capacitor as a function of time is:

Ve =V(1-278C) 0 << RCI10

and repeats periodically with period T'= RCIn10. Find a Fourier series with period 7 that represents this
function.



-2
\E/

To find the period we first find when the capacitor voltage reaches 0.9V.
0.9 =1-"C= 1 =,"RC = 17 = 2”0 = ; = ROM10.

VI:.f:I = V(l _ é‘_“IRCJ = Z Cné.z'nE:im'J“

n=—n

The coefficients are:

b [(1-om(-25i2) jeera

#ln 10+Hn27] r
1 e 2T eEp (_ T )

Can

T T —#2n/T  —[Inl0+ m2nlT
0
_emin_q expl-[ln10+m2m]) -1
T —mmZm —[In10 + im2x]
__110-1  _ 910 __ 9 _ Inl0-inlm
In10+ in2m In10+ in2n 10 (ln10)° + 4n2n?

When # = 0, we have

£ —tnl0d
B150- o2 - 7 )

é‘_hlln_-l:l_,_lfl':'_l:l_ 9

o

)

=1+
In10 In 10 10110
Thus
Pie) .. 9,9 i 2w =010 manir
¥ 1010 10 it (1012 + 4m2n?

Now we combine terms to get a real series:
10 1 . Z I..P’Izﬂlié'mz T _ o2 :i‘[“.n'J") Ini D(ez'HEme + e—mEme)
5 In10 "= (1n10)? +4n2n2 (1072 4+ 4m2p2

) = =

E}?{
10 1 - 2T P ot
= g = + 2isin
10 {9 In10 Z (In10)? + 4m2n? T (In10)* +4n2n?
E}?{

=1
10 1 ® pamsin 22 +2In10cos 2’}5” }

10 T
4 In10 (01092 + 4mn?

2wt Inlo 3 cos

2R
T

}



e T

esT

[

] L2 1 15 z
T

. . . . . = 1 _ ,HRC
The plot shows the first twenty terms in the series solution, as well as the function Vg = 1-e .

24. A rectangular box of dimensions @ * & ¥ a has conducting walls. All the walls are grounded, except for the

one at¥ = £ This wall is separated from the others by a thin insulating strip, and it is at potential v Using the
method illustrated in Chapter 3 Example 3.15, find the potential everywhere inside the box.

Following Example 3.15, the solution is

R 2 2
Six,y.z) Zzansmmrx mxzsjnh(t'?? + 7"@”)

3 i
n=l m=1

Evauating this expression at ¥ = &, we have:

® o= {2 2
Dix,b,z) ZZcxnsm mxzsmh(MJ = F

ot ol

and thus the coefficients are:

. e rmtad Y o re . opwx o, 2 (2. mEz
ansmh(—) = EV.[.;. 5t <2 dxﬁ.l-.;. s S =z

a
iaz{;l —cosmm 1 —cosmm _ 4V(1 _(_ljn)(l_(_l:'m)

a2 M T R

Thus only odd # and odd # terms contribute

(£ )

Dix,y,2) =L i i m‘rx : m;rz
m=l, 0

MRS

Ly nthnt Tk
h a

At Z = @/2, the solution is

167 v Smh( JV)
':If'(x,_y,%J: i > 3 sinZZE sinmzﬂ e

#=1, odd =1, odd 7R 51

S sinh| Jn? +(2p+ 1) 2
g £ Sy Y
% el g2 =0 n[2p+1)sinh(Jn2+(2p+1j2 %J




cET
aat //f’ H‘\ \

sxtd s -

[ [ L2 [N 1

with & = &. Solid line ¥ = /2. dashed blue line ¥ = #2/4. dotted red line ¥ = #@&/10. The plot shows the first

three nonzero values of # and #*.

25. A rectangular box measuring @ * b ¥ ¢ pas all its walls at temperature 7 except fortheone at = = <,

which is held at temperature T2. When the box comes to equilibrium, the temperature function Tix.») satisfies
equation 3.14

ar _ 2
T = W=7
with the time derivative on the left equal to zero. Use the method of Chapter 3 Example 15 to find the

temperature T'in the box in the form

Nx.yz) = 11+ lx,p.z2)

where T is expressed in a Fourier series

. T
Tz, = Zanm sitl ngx sitl E:-y z)

nm

Find the function 12} and the coefficients @mx-

Since the differential equation reduces to

r) < 3.3 om0 on (227 ()

n=1l m=1
and onthe sideatz = ¢

5o £ ez ) ()

n=l m=l

Thus

. z
amsmh(J(%)z+(%J c) = %ir_rsm—sm M;T_]? (T7 — T Jebeddy

= (1 - 1)a 12 gosnm p 1= cosmm
= 4{%—_51)(1 — (-1)”)(1 _ l:—l)mj

FIRTT

Thus only odd values of # and *# have non-zero coefficients. The temperature function is:



ey -Ti+(H-T)E ¥ %

B #=1, 0dd m=1, odd
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Chapter 4: Fourier Series

26. A infinitely long, conducting tube with circular cross section of radius # is divided into
four pieces by insulating strips running along its length. One of the four pieces is at

potential I, and the other three are grounded. Solve Laplace's equation in two dimensions

using the method of Example 3.15. Evaluate the solution at # = # and show that the result
is a Fourier series. Determine the coefficients, and hence find the potential everywhere
inside the tube.

The equation is (equation 1.44)

Using separation of variables, let D = Rip)W(¢)

Padray+ oy

R 3o {,:- J
Thus the solution for ¥ = g™t We choose this function because it is periodic with period
¢. and thus the potential at ¢ is the same as at # * 2%, as it must be, since both values

represent the same physical point. Then the equation for Ris:

& SR ¥ T
'DE{'DR} iR =10

The solution is a power, R = 0%, where
ﬂailfpﬂpj = plpP = mip?
o
Thus

P = tTm
and the general solution is of the form

D = D (amp™ + byp ™)

We must eliminate the negative powers because the solution is finite at # ~ 0. Thus

Dlo,p) = D 0™ (ame™® + by )

andat® = &

$la, ¢) = Z.:xmczme’"”'ﬁ

a Fourier series for P.



Equivalently, we may write the series in the form:

= Z,ﬂm(cm Cosmp + dy st

To find the coefficients we use the given values for .

. Foif 0 g < omf2
Zﬂmﬂm€2m¢ = { lj. (i) i

0 if m2< ¢ < 2n

Thus
— 1 = — i E'_jmlil 2
@m = Sxam Jo F i 2mwa™ —im g
_ g2 (=M
2wa™ —im 2aa™ —im
If # is even, # = 2%, we have
o (-1 -1 rr 0 if »iseven
i = = =
M dmng® 2ena®™i | 1 if »is odd
If # is odd, we have
R =) it SRR A ) e
" Zwaettl —ilan + 1) 2rasttl e + 1)
A i ¥ it
Eﬂ_.ﬂﬁnﬂ (2,}3 + ]:I
While for #2 = 0 :
= 1 -
am = 5o [o Vb = 5
Thus
( o g S 2[En+1] f gfline )b g -RIne )k
Tro(£) ( e )
@(p:(b]:IF'FE—E}; 2 42 1|’il 12 ][2"” |§h1]+a 120+1 )
o A s dnt ot ntl _ —l3n+] g
\ Tl )" ey € IZD }
o 2[2m+l) S22+
o ( S5 )
=X 4 :
4 I @ ¢ v3ntla [ P11 cos(2nt] Jp-sin(2n+l g
k\ +Zn=|:|[_j 2 2n+l]

Alternatively, using the series in sines and cosines, we have



and

Finally,

Thus

0 If m2lS even

dm = Lo [ sinmas =

™

PR

- L(1_ _.:05@] -

i

Plo, ¢)

+
A=
w3
aMs
B
-2
=5 a2
+
—

+
A=
a1

(2 + 1)

(]

I
==

+
A=
]

S ]

i (

ST ymI2 i s odd

_1 cosmd |2
® T m

1]

| 1=(-1y2 if miseven

Ty if mis odd

"rosiln + 1)g

Il
[
+
A=
[
—
by ]
T
b
T
—_

o

(_

[

2r+1

2y sina(2n + 1)

()

) sing2n + 1)¢

[p ]2n+1 (=1)% cos(2m + 1)¢ + smf2n + 1)4

2n+ 1

[22+1]) sin 2(2nm + 1)g

*(z)

Both solutions are the same, of course.

2n+ 1

The plot shows contours of constant potential.
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27. A Fourier series of the form

may be expressed as a power series
Sxi = chz”

where 2 = lim—) re™. By identifying the power series, the function fix) may be identified.
Use this technique to sum the Fourier series

Q:' -
Z SHI MK
#
n=1

where 0 < & < T Check your result by evaluating the Fourier sine series of the function
you found.

Let £1 = lm,— rat and 22 = lm,— re T
_-:\:- z'n;-:_—a'n;-:_lml
Ax) = Z‘% = EZI:EEZT - z5)
n= n=

For7 < lwe may sum the series as follows:

2iflx)

e[S - [ (s - 1) (5 - 1)
—Inf1 -z )+ Inf1 - z3)

]n( 1- rea"_"'” )
1 - re®

Now take the limit ¥ —* 1 from below.

_ L]nl_é,—e';-;
fr) = - l=es

We want to write the argument of the log in the form

z = pg'®
where
sol-e®1-e™ | 1-2eW 4 1- 2(cosx —isinx) + cos2x — ismZx
1-eg% 1-g7# 2-2cosx 2-2cosx

Thus



p=lz|=‘{{2?= 1_€1'x -l_é,z';-: =1

1—g% 1 g™

and

= Imz _— 2sinx — sinlx
t = =
an Eez 1 - Z2cosx +cosldx

_ Jsinxy — Zsmxcosx
1-2cosx + 2cos*x — 1
Zainx(l — cosx)

—2cosx(l — cosx)

= —tftanx

One solution of this equation is ¢ = ~X, put there are also other possibilities. Since

sin{@ * x) = Fsinx gng cos(® £ x) = ~COSX, we might choose ¥ = * ~ X or
¢=(m+x) f0 < x £ nf2, sinxjg positive and 25X is also positive. Since

1 -cosx 2 Oforall %, 2 has a positive imaginary part and a negative real part, so ¥ must
be in the second quadrant, and ¢ =7 -x fuf2 < x LT, then SNX js positive but C28X
IS negative, so £ has a positive imaginary part and a positive real part, so # must be in the

first quadrant. Again the appropriate value is p=m-x
Putting all this together, we get
= iln z'III - i ]Il]_ +

_ ¢ _w-x
= ; foro< x <=

The function is odd in #, since the series is a sine series.

Check by evaluating the Fourier coefficients of our function fix).
Ax) =3 apsinax

T — .
By = %.I-u T~ X ainwmxdx

2
I:(l - %j st axdx

— T F i Fl]
= COSXMY | — l —x COERX | + -Il COsRX i'.!"I
0 I b 0 M

2 0
Ll ) S O |
# 7 #

as required.
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Chapter 5: Laplace Transforms

1. Show that the following functions are of exponential order, and find their Laplace transforms.

(@) fig) = smhot

Since the function is a linear combination of exponentials, it is of exponential order -

Fls) = | sinh cree s

= mé‘m_é‘ —ﬁrcﬁ

.s—ct.)r é,—(.w:n)r
—ls + ) ) 0

)fOrS>oz

oo

l
2
1
2 oz:l

2_0!2

(b) fiz) = tanh oz

]Jme'_p’—’g e *
g™ + g™

- ]Jme_p’}_é s 0forp > 0
+2

litry & #* tanh oz
o

Thus tanhef js of exponential order 0.

= I  tanh oite it

J‘ T o Tt
0 g™ +e o 4 g

oo _ 2t )
I 1-e¢ " gag
01— g=m

Now let € 2% = 1. Then du = —2o0te 2%t = —Domds

91 -w ke du
£is) 11+uu 2oy

=zijéusm-lu—uj(l—u+u2+---(—1)*un+---]du
[
= o [ow P (1 -2+ 2u? - 2% 4 21+ )

1
_ i H'S'Qa B u.sﬁ!aﬂ 4o nusﬁa"n .
20&( e 23f2cx+1 20-1) Z +x

0

Check: Inverting gives

as required.

(c) fit} = sinaz



|sinyaz | < 1for allreal a and ¢

Thus Ai£} is of exponential order 0.
Flz) = I; sin Wt & ek
Let V@ = % Then af = u° and adt = Zud
Fls) = I; sinwe ' %Tudu
% I; sif s (—e = )

. - == oo _
l(—smué' s’ la +I COSLE “””"du]
g 0 0

ELJ‘;" [é,z'u + e_"”;le_“”!"“du
iy

Now we complete the square:

} } .3 .3
5,2 g — i) 2 It — i) 2 s s It
—— + = —& — = & — .+ -
gt T a(” S”) a(u 5 (23) (sz J

and similarly for the other term. Thus:

Fs) = %E[exp(—%((u_ %J2+(%J2))+exp(—%((u+%f+(%JEJJ}M
%exp(—%)[ﬁ:g exp(—%xzjaix+_r;:§ exp(—%xzjc'bc}

- teo(-£ )T JF -t ew(-)

valid for Fe(s) > 0.

(@) fig) = ™

|e"”" < 1forallreal @ and real ¢

Thus At} is of exponential order 0.
Fls) = ‘l‘;e_‘“!e_”dﬁ

Complete the square of the exponent:
2 2
Py IR v JP S 245 g _{_=
at - st = —a(® + £1) a(f. +az+(—2aJ (—za) J

{2 (5)

and thus
Fie) = exp( £ ) [y em| -a(e+ £ ) Ja
“en(£) g oo () %
_ %Eexp(%]erfc(sfzﬁj
(o) fle) = 22

Atle™ = tafa? = zexp{—ﬁ(ﬁ = ]J}



£ < 1, then
Atle _’—ﬁexpl,‘."'_(l— i)}i.ﬁeﬁ {e

while if £ > 1
Atle™ = ﬁﬁxp{—ﬂ(‘."?, - 1)} e
Now
B = ﬁ - xe i _
& lex+Zs 242
Thus

for £ > 1. Thus 71t} is of exponential order 1.

The transform is:

Let v =t Then @t = 2udu

= 1
Now change variables to Jé(u J to obtain
3
= 1 vy 1 2y _dv
7o) = 20m () [, (2 ¥ &) emion 22
3
_ 2 1 1 2
Y EXP(ALS ).r:.'z.-'.?( * 2.5 ) exp(—v* Jdv
_ 2 1 3,3 v 3 v 1 2
_326@(45)-[:.'2.5(1} +5 s+45+8 )exp(v)dv
Use the following results:
= vy - AF 1
ST [H“f(zﬁ”
(See Appendix 9.)
= Vap = LT = legf-L
I-lﬁﬁvé o 2( ¢ )|—1.'2,,f3 ZEXp( 45)
257 1_ —+* = 1_ — -’ -
fm vie™ dv = > Jips vive ™ dvy 5 ( ve |‘1|'2J_+f1|'2."3€ fiv)

H(gk =)+ S o2 ]

-1 1 4T 1
s EXP(_EJ + T[] +erf( 2 )]

and



Thus

and then

as before.

IjmrvEg_ﬂdv B %Ijﬂﬁ P d = %(_vj - 12 5 +.|-—1f2,,.':s' Eve'ﬂdv)
-3 (a) 2ae=(4))
- (1 5) e (-55)
Gem(i) s (735 2 3%+ gl ) omo7)
L+ L) emn(-) * Fr(Fem(-5) + 1 v et
+2lem(-L) + L 1vet(7 )]

foem(-e(vr- )"+ )
)So
lizje'”‘1 (2u+ %)du
:EJ+S3%§(1+EI‘£(2
531'-"2 ";E (1+erf( 2}5 )
% (1 + erf( 2,]!57 )

_%{% +S3Lmexp(%

st 3deem(E) T
-l )em T

- Fo () (3 ) e (35
g e (3]

N PREAl |

1| | [N



(f) fl2) = sinfwi + $a).

This function is of exponential order 0 because the two complex exponentials g

First write

sinfeof + g ) = sinwf cosdg + coswisn gy
Then use the linearity of the transform to obtain:
Flg) = cosgp—2 _ +singg—=—
# 2 + )2 $ 22 + o2
_ wCos g + F8in iy _ cos(gg — £)

,5'2 + 0_32 '1.5'2 + 0..'12

¢ 0f 0 <x <y
tg if & > g

flz) =

(g) The ramp function

This function is of exponential order because £ is (see text) and AL) L forall b

Fls) = [Cretde + [ tge™tdt
i] to
- _.pio _ g™ -1, fg -
= —p U _ + 9 o
3 o2 g
_1-g™
o2

2. Using the shifting property, or otherwise, find the Laplace transform of the function

0 if <2

)~ (t—2Ye™ if £ 22

The factor & & suggests that we also use the attenuation property

- Then with the shifting property and the transform of £ from Table 5.1 :
N RN Y A T | |
Lig-2P =e®L() =2 i
Now use the attenuation property:

o 2lha) 3
(s +a)*

His)

3. Find the Laplace transform of the function £ cosh .

First note that the transform of £(f) = coshat jg

¥z) % I; (2™ + 2™ )™t

%(s—lce +s-l1:o_') N (szfcﬂzj

leor+ip ) and E_!'i"-m""ﬁn]

are. (See text.)



Then using equation (12) with # = 1:

| - _d s
Litcoshat) = - = L
(£ coshat) pa (5] e (Sg = cxgjl
- _ 1 _ 25
[52_&.2] (.5'2—0!2}2
25 — (&* - &%) R
o) (o)
. . ﬁf:l — smmhaor
4. Find the Laplace transform of the function t
Let gif) = sinheet. Then
N i B B
=) 5 ID (2™ - 2™ )™t
= i( 1 _ 1 ) - o
ahe—o st (32—0:2]
Then using equation (5' 14) :
_ == _ oo P
Fls) L Falda L —(02 = o:zjl da
Let @ = acothx. Then o = cxﬁ cothxdx = o_'(] - cothzx)dx and
- 1 2
Fiz) = o ee| 1 — coth®x Jax
') Iaz(comzx—lj ( )
= —x = —coth™ u:rfu:}_'|m
Now
cothx = % =u
g* — g
So
coth Yu = x
where
(e = 1)u = (&% + 1)
So
¥y - 1) = 1+u
and thus
= 1y futl
i Eh(u—lj
Thus:

" l]ns+ce

; 2 e o

0= -4u(3)

5. (a) Find the Laplace transform of the triangle wave function with period T
1 - alt — »nT) If 2T ¢ < T+ T2
alin + NNT-2) f aT+ T2 << (n+ 10T

First we find the transform of the first period:



at if 0« < TF2
gle) = < a(T-&) if T/2<e<T
0 othenwise
Then

L2
gt
Lty ]
AN

|

= (TR T it
J‘D afe "t +J‘m alT — te ™ds
fo byl _ pTh g P

ﬂ( = g ID - taT -z

_ a(Té-.sTE + %é—st

r fo o r T g

P SR P __SJ

Tﬂ) +aTé-.sI'__é-.sJ"|'2 _Q(Té‘_ﬂ‘ __Té,-sfﬁfz N lé'_j r J

) = = = iy T

= TE-JTE _ e-.s!"f?! -1 _QTE-JI'_E-JTE g Te-.si"_ Te"‘m,fE _ é,—.si"_é,—.sfﬁ
_23 ,5'2 & e 32

@ =T _ e TRy o @ 1 _ . =T2y2

3—2(0+1+e~* 20712 ) 3—2(1 g TR}

Thus the transform we want is:

-

Gls) _ o  (1-e”T)°

Figl = ya
(s) R (1 _e,—.sr.'z) (1+ e,—sm]

B (] _E_JTIQ] B T
" e aen(f)

o _ .
(b) the sawtooth function: At) 8=gk) I 2’ <3< ipr L

The function is periodic, so first we find the transform of 8{£) = &£
r F -5t
— &
n [ & dz)

T
_ T T e“‘r—l)
N e

u) (S &

= L (1-e7T(:T+ 1))

Gis)

r t
I aie™dt = a(ﬁi
0 5

—st
a(_zé,-ar _g

= .5'2

Then applying the periodic signature:

- [l_E_JT(ST-'- 1” - a g
FI:S:I_S_E {1—2"1"] _s_z(l_eﬁrjjl]
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Chapter 5: Laplace Transforms

6. Use the Mellin Inversion integral to invert the following transforms:

(a) Fle) = s/(s% + 25+ 3)

The transform has poles where its denominator has zeroes, ie at

5 = %(—21,#4—12) = -1+if2

Thus we must place the contour to the right of & = -1 Aline along the imaginary axis will do. Then we
close to the left, enclosing both of the poles. The integral along the big semicircle is zero, since

Fig) = U yniformly as & = = Then

J : I:'W 5 eitds = L HINZ + 02 erghlry 17 W2 _.Iﬂ e e et

ZME W= 52 4 25 43 2id? TN
_ g —a'.”Q_:r _ z'.l'f:r ; z'.I'Z_! —a'.l"f!
= e e +i42 |e +e

e"(cos J2i- % sinﬁr)

Fis) = —
(b) (")

The function has 2nd order poles at & = 2. Thus we must choose ¥ 2 0

_ 1 e E.ﬁ!
1y = L e g
A0 g ey

We close the contour to the left, enclosing both poles. The integral along the big semi-circle goes to zero

as & —* ®. The residues are:

d o g _ o g
i (5 — — = lim =~
s—ia iz (5~ i) (33 + g2 ) 2 ssads (5 +ja)?
_ ].1.m o i 2%
=iz (g + jg ) (s +ia)?

— 2t — 221'.:'.!! — 1- iﬂﬁé,z}:.!
(2ia)® dig?
and similarly



. . ) . t
lim 2 (s+ia)?—€"  _ fim & _e"
s——a 45 (5-2 + EIE ]2 i——a 5 (S — ;'g;lz

lim —2g* n fe"
s==a\ (5 — g’ (5 — i)?
_Ei.lﬂ-f_ 2 e—;’a:

(—2ia)?
R IEII+ ]. e—;’a:
4 i

Thus the function is:

At) = L_I:Emf:l(l — Rl o Gai lé,—a'a:r)

2 A Aig>
= 13 (2isinat — Ziafcosal)
dicy
D
= —— (sl — afcosaf
2 ( )

(c) Fis) = g ¥ fs

The function has a branch point at the origin. We choose ¥ > 0and put the branch cut along the
negative real axis. The function has no other singularities. Then:

_ 1 pree g
) 2 IT'!"I‘ g ds
The integral along the big semicircle goes to zero and we have:

Jo = [l * e e * | =0
o e top of branch cut little circle bottom of branch cut
and thus:
yhH= — =
I:r—:‘m Itu:up of branch cut II'rl'tIe circle It:u:lttn:um of branch cut
Along the little circle:
— o H !
. -1 JEE [=. = .
I_ _ = litn I 21 8 iapfidd = 0w
little circle 0 47 soif

On the top of the branch cut & = e and

[ - [° e [T
top of branch cut

while along the bottom & = re " and therefore:

R i —n@
J‘UE = >

Ibu:d'tu:um of branch cut
Putting it all together, we get:
I L R S | ( ] e =t dr
£ = _ ds = | -Ewi+ 2| s fre —J
el 2rid oy & 2xi ID Jr r

1—%‘[;51&1 re_”':f,—r




. . 2 -
To evaluate the integral, we can complete the square. First let ¥~ = 7

o == .
1 Pain remdr = 117 g ypw® dudy
0 F W Jo H2

L —? i
= ID sifL e .

= % I; I; cosyudve ™ du

Then
g 2
a2 - 2 DEYY _ DU (3.1") (E)
exp (—iu® + i) exp( z(u T ) exp( .ﬁ(u FE- . > T
2 2
- - W Y
=] —ﬁ + = S —
(%)) = (%)
So
2 [ it g = 2 [ e <X Y 14T
T.I-u.l-u cosyue ™ dudy = £ Dexp( ?)ET.:I:}?
- LJ'”M Wl
JT o
= er‘f(—l )
24
and thus
At =1- erf(—l ) = erfc(—l )
241 24
- 111[1"-*] evdw
(d) Flg) = —— (Express the answer in terms of the exponential integral Ei(x I-m w where
x <0y
_ 1 pree _Infl+s)
il = — - E )
i) 2t o ye g © %
The integrand has a branch pointat & = ~1, and also a removable singularity at & = 0. Thus we need

¥ > 0. we close to the left, and go around the branch cut which lies along the negative ¥ ~axis. Then

Hen In(1+s)
[j=_1-(:" + + + + J——”,;-j
i J‘:r—a'-x* .rbig semicircle Itu:up of br. cut .[hu:lﬁ.br.u:l;t II'rl'tIe circle & € as
The integral around the big circle goes to zero as R — = The integral around the little circle
- _ i
(S = -1+ gz ] is:

- ]11(5.;?"&]

_]11(1 + Sje"’ds = _Iﬂ 1 _EE(_I-FEEH-J:I.EE!.EICI.IE
-1+ =2

.r little circle &

= I_ﬂ Ing +if (et pitgg s 0

O
as £ = U. Thus:

L‘I‘Tﬁm _]Ill:l v Sjé‘”dﬂ' — ]Ill:l i S:I ¥ da

=1} ot e )
=== +
2wi oy g S WJtop of br.cut bott. br. cut &



Onthetop ofthecut, & = —1 + re'”, o

I ]n(] + S:Ig'“d‘g _ J‘D ]Il(réz'ﬂjé[._lﬁg.hl]té,z'ﬂdr
top of br.out g o -1 + pot
_ ¢0 (lnr+ iw e gy
J“‘“ r+1
while on the bottom, & = —1 + e 7" :
]n('l +-5') R - ]n(ré,—e'j‘[)é,[—lﬁg-ﬂ]zé'—mdr
‘[ ——ta¥gs = I :
bott. br. cut & ] 1 + pp T
_ e (nr - im e gy
ID r+1
So
1 e In(l+s) L. (Inr— ime L 7kdr ~ (lnr+ e 1 kgr
27i .ry—sm — O IS 278 .[; r+1 .[: r+1
_ _r g gy
o r+1
_ _r’ P
1 i

where # = 1+ 7. Now let W = —%f. Then:

ﬂf.:l — _J‘"m eVdhw _ T oe¥aw _ Eil:—i:l

- W - W
Als) = —
7 =2
(a)
Flsy=1 lji _%(IJ’%{;—EJ’%%‘;—;* ':2?32;”1}“;:+ )

Each power inverts to a power, so we obtain a power series for fit)

A =1+1 (@) | 3 (at) , (22— 1)l (at)™

2 2l 8 4 Znll 2nl
1+ {a:i:l2 N {.:z.ifj‘* b {ai:lg” b
vE g2 (221137
= 1 + (a:.ﬁ)z + (ﬂgjl‘ + ... (azjgn + .
e 8e 22”(?2!)2

(b)
Azl = L J‘Tﬁm ‘E—Hds

: o
2mi ¥ 2 _ 2

The function has branch points at £ = ¥, so we can run the branch cut along a line between these two

points. The contour must be placed with ¥ 7 @. . Then we must run the contour along the real axis,



around the branch line, and back along the bottom of the real axis, so as to exclude the non-isolated

singularities at ¥ = ¥ There are no other poles inside the contour, so

Hiea 5t 5t
ﬂi) - 21 ] ; =) = ds = 21 i (Itn:p of real axis +.rbmam of real axis) = ds
=
we ol - gl I "'732 _ 42

i)

The function is continuous except over the branch cut. Now we change variables to Z where

-3 1
= 5 (z+ zJ
172 2
[+2)- %
Then
_ _ 1
ds = E(l Z—z).:i'z
From problem 2-38, the branch cut maps to the unit circle, so
ey 5 E E z’+ L
A = g [T s - L welers) %(1—%).532
LTy 2 2 WL ¥ unit circle szfz"' ?1:'2 — g2 =
=1 Jdegpat 74+ 1= _1 1 eyp T premp @ L gr
2T §unit circle £ = 2 (Z z ] 27F 4 unit cirele £ = 2 = 2z

The integrand has a pole at the origin. To find the residue there, look at the series:

bew gt - {2 H(%5)") S0 (2)"
-Z2(%) "5

n—m-l _

-1, _
£ 7 we must have # = #

Res = ;(%ﬁjznﬁ

Thus when €

Thus

- 3(%)" gk

which is the result obtained in (a).

8. Use the convolution theorem (eqn 17) to evaluate the inverse transform of

Fls) = (s ojsm”

We can write the transform as the product of the two transforms:

o —

and

Fq = &

The first may be easily inverted:

F = %(ﬁ— S__,!_m) = (e} = %{e“’—e”j = sinh{wt)



The second function is in table 5.1;

falt) = coswt
Thus:

fe) = [ flrlfle - r)dr
I; coswrsinhw(f — 7)d7

We can write the integrand in terms of exponentials:

1-1

|

ﬂﬁj — %J‘:‘D (EJ'UJ‘I + é,—a'w‘lj (é,bJI:I—‘I:I _ é'_m&_ﬂjlcf?
— lj" é,[z'—l ]m*.ré,mz _ E[z'+1]r.d'.ré,-w:r + é,—l::'+1 }'.a*.ré,mz _ E-wé,[l—a'}m*.rdT
4 Jo
-1 o _ ) ) )
_ [ EERE 1o ey Ly, Wy glihr g
A i-1 i+1 i+ 1)
_ L Ez’-’.;J:r_Eth _ Ez’u_é—\u + E—a'-'.-JI_EUJI _ é,—e'-'.-Jz_E—w:r
dew i—1 i+ 1 i+ 1) 1-1
= ﬁ{— coswi + coshot )
Check using inversion integral:
= 1 pree W

At 2t

- 2mi J pe (34 - I:L:'4J

The integrand has simple poles at & = *t, & = ¥ Thus we take ¥ 7 @ and close to the left. The

integral around the big semicircle— 0, and the residues are:

wig® 1

2u0(2w?)  Aw

—pdg W 1

= Pt
(—Zw)(2w2)  dw
iwe™  _ _ 1 i
—20w2(2iw) 4w
and
—iwle ™ _ 1w
—2w? (- 2iw 4w
Thus

1 (Eu + g U — il é.—a'm:rJ
e

1

— (coshwt — cosmé)

At

9. Use the integration rule (equation 5.14) and Table 5.1 to derive the result of Example 5.89 for the

transform of 1/ \.E :



12 = 1 Mool i
Ve = 238 The transform of V2 is [(3/2)/ 21"(1,”2);’3 '

(=)

Thus, using relation (14), we have

1™ F g = AT o1 ™
2.[; 5.3|'2d3 223 |5

0
g

10. The diagram shows a simplified version of an automobile spark coil circuit. The spark plug itself acts
like an open circuit until the potential across it reaches the breakdown voltage for air. Thus you may

ignore that branch of the circuit until the end of the problem (part (e)).The battery voltage =12y,
C=01pp R=1082 gnd L = 10 mH,

_ paimts codl

+ B
Vo

o

— i _| + & spartl plug
C —T=

L —

-

(a) How long a ““long time" is necessary? Write down expressions for the charge on the capacitor and

the current through the coil at £ = 0,

With the switch closed, the circuit reaches a final equilibrium with the capacitor fully charged

(Q= o0 = {12V){01pF) =12

¥C) and a steady state current of

i= &R = (12 U)H(ID QJ - 1.2 A. Applying Kirchhoff's loop rule to the left loop, we can see how the

circuit reaches this steady state:
diy .
g=L2" +§R
dt

Thus the current i1 reaches its final value exponentially with a time constant

T=LR= (IU mH]f(lD Q) -1 ms. Thus a few miliseconds is the "long time" necessary.

(b) At = 0 the points open. Qualitatively discuss the circuit behavior. What is the expected long time
solution for the charge and current?

When the points open, the capacitor begins to discharge. The inductor resists immediate change in the

current. The charge and current will oscillate as they decay towards the final values (4 ~ 0,:=0)
During the oscillation, the potential difference across the capacitor (and hence across the plug) will
reach a value >12 V, hence allowing the plug to spark.

(c) Use a Laplace transform method to solve for the potential difference across the spark plug as a
function of time.

The current variable ! amd the charge variable ¢ are defined in the diagram. The equations describing
the circuit behavior are found from Kirchhoff's loop and junction rules:



di

ot

g _rdi _io =
= Lk iR =1
c Ca !
The initial conditions are:
i(0) = g/R, g(0) = =

Applying the Laplace transform, we have:

1= ~(sQ-q(0)) = @+ <C
and
L — O — TR =
= Lisl—i0n-IR =10
%—f{ﬁs+£j+£%=0

Combining equations and , we get:

£~ (-s0+ C)(Ls + R)+ LE = 0

(1 +a(lil=+ R = «0(LCs + RO - LC%
Thus the transform is:

Cls + RIL) - UR
0=z
g% + Refl + 1/LC
or, writing 1/4C" = w§, RC = 7¢, and L/R = 71, we have:

0= EC[3+ Urp) - e

52 +5frp + mg

We can complete the square in the denominator:

s+ rpstwd = (s+ 1/2r)° + wi - 1/473
and then we may write ¢ as:

0= e (g+ L2rp)+ Varp — Uire
(s + 1/272)* + wi - 17473

Now compare with the standard results:

r Y= —&5
(coskt) =, 2
Lisinkt) = —&
(i it R
together with the shifting property:

L£(2A:)) = Fls +a)

2 2,2 _ 2 :
So defining @ = “n 1/471. we find the solution for & :

glt) = EC’EXpI:—Q“ET;:I(cosw,; + M Smwg)



and the potential difference across the plug is:

AV = % = gexp{—i,’2r;:l(cosl:m.ﬁ} + M Sﬁl':C'Jf:')

Putting in the numbers, we have:

rz = LiR = (10mH)/(10Q) = 1ms

re=RC = (102)(0.14F) = 1.0ps

and
wi = JL - 1 = J1.0x10% (radis )?
" VIC JomH) (0.1 4F) (radss )
= 3. 1623 % 104 rad/s
Then:
w = Jwj - 141} = JI.D ® 10% - ﬁ radés = 3. 16 x 10* rad/s
and
or; = Ure _ 12M5-11pus 31 63
o 2. 16 % 104 rad/s

Thus:

av = (12 V) exp(~z/2 ms)
x [.:os[[a_ 16 = 10* radfa]f,) - 31 6351'11[[3. 16 % 10% radfa].ﬁ”

(d) Plot your solution. What is the maximum potential difference achieved?

TMAMJ\HMI\MWL - |
KA

The function we plot is: (12 ]EXp (_f’fz ) (cos(Bl_ 6 f’J = 31. 63sm(31. 5*"” where £ is in ms. The plot

shows potential difference in volts versus time in miliseconds. The plot on the right is an enlarged view.
The maximum potential difference is achieved where

d = - - ' =
Eaff' dzgexp( tarpcos(we) — 31 63 amiws)) = 0



-1l exp(—#/271 Weosws — 31 63ainwi) — swexp(—& 27 )((sinows) + 31 63(coswe)) = 0

2 TI
exp(—if?r;j((—L - 31 630}] coswi + (M —m)sinmi) =0
27 27
or
1
o = 3w o1 81463 2607,
SEI 15 815 - wry
 1+63.26(3. 16 x 10* rad/s ) (1 x 107 5)
15. 815 - (3. 16 % 10* rad/s (1 x 107 5)
1+ 63 26(31. 6)
= = —126.7
15 815 - 31. 6
Thus
t= Lian(-126.7) = 1 (-1 5629+ x) = 4 9959 % 1075 5
316 = 10* rad/s
= 0.050 ms

where we have added Tto get into the correct quadrant (see graph of tan function below)

L
Erd-] = o = ri-]

Then the maximum potential difference is:

AV = (12 V) exp(-0.050/2 ) (cos(31. 6 x0.050) - 31 63sin(31. 6 % 0.050]) )

= |-370.28 Y

(e) If the breakdown voltage of air is 3 MV/m, what spark plug gap would be required with this circuit?
Remember that you would like the engine to start even if the battery is a bit low!

To get a field of 3 MV/m, we need a gap of:

e laP] _ 370,28 Y
E 3% 108 Wim

In order to allow for a margin of error, we ought to make the gap about 0.01 mm. This is pretty small. A
transformer in the circuit increases the potential difference yet more, allowing for a larger gap.

=1.2342=10%m =0 12 mm
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Chapter 5: Laplace Transforms

11. A beam is supported at one end, as shown in the diagram. A block of mass M and length lis placed on the

beam, as shown. Write down the known conditions at ¥ = 0. Use the Laplace transform to solve for the beam
displacement.

{/L\
)

.
=

The equation satisfied by the beam is:

where

0 if =< xq
glx) = < Mg/l if xp <x<axp+!
0 it x »axg+i

The initial conditions are: (0} = y'i{0) =10 The second derivative is given by equation 3.8:
™ = —L = i ( + i
Y'(0) = = 7m(0) = g Me(x0 + £ )
and then the third derivative, from equation 3.9, is:
»"(0y = =La0) = L e

Bl El
Now we have enough information to solve the problem. First transform the whole equation:

s¥ - s3p(0) — s[04 — " (0) - y™(0) = (=)

El

where
Ols) = [T qlxledx = [ MBowigy
= %E—sxn(l _é.—.sf)
=

Thus:

417 _ Mg / Mg = % —sip _ ol

#r-sgf (o 3) + = g (1)
and so

Mg _ - M A
}’=—5‘ge”°(1—e“‘)— g;+ 3g(xt|+i)

Is Bl SRl 2
The last two terms can be inverted immediately using Table 5.1: We get:

Mg M, 1)
£l 3l iy 27 2l

The first term may be evaluated using the shifting property:
e (St = x0)(x = x0)* = Stx = %0 = )(x = 50 = 1)*)

Thus the solution is:



yix) = %[ﬁ(m—x.ﬂ(x—x.ﬁ* = S(x = xg = Ix = x0 = 1)*) = -+ (0 +%)J§_ﬂ

The quantity is square brackets is:
1 ¥ o
-5+ 3 )4 if x < xn
1 4 . i e :
m((x—xu)}—;—!+(xn+5);—! if xo <x <xp+/{

(R —x0) - D20 202 =120 -x0) - D) ) - & + (xo+ L) & if x>x0+!

1
0024 =L

0,04+
0.06+
0.05+

014
012+
0.14+4
016+

0134
vEL gl

12. Technetium is used in medical procedures as a diagnostic tool. The technetium is obtained as the decay
product of ElglMo, which decays to gngc with a half-life of 66.02 h. The technetium in turn decays with a half life of

6.02 h. A medical radiology department receives a source containing 100mCi of 99Mo at 9.00am on MOnday
morning. Find the amount of Technetium present in the sample as a function of time after 9.00 am. When is the

e i
amount of Tc a maximum?

The amounts of the three elements (Mo, Tc and the decay product of Tc) are described by the equations:

and

cf?ﬂ3
213 _ 3,
pr a%r

where *+ are the decay rates. The decay rates are related to the half-lives. Let's transform each of the equations:

SNm - ?Eml:o:] = _;'\.]_Nm

sNp—nr(0) = A N — JaNT
and

sl — n3(0) = 2oy
Solving, we find:

Ham (0]

Vo = g+ h




My - np(0)+ M Ny _ ar(0) | ( . J(”mm))

g+ hs g+ hs g+ ho g+ A

and similarly for &3 Inverting the first equation gives:
Hm = Aml(0)e ™M

Thus #m decreases to one half of its initial value at time #1& where:

l = g Mtin
5 ]
and thus
3‘\11‘,1,12 =Inz
and thus
- 2
Y ohp
A similar relation holds for each species. Thus the decay rates are:
A = Ihz
£6.02h
and
P In2
6020

In the second equation, we set nr(0) = Oy get:
Wy = ( A1 ) 2m(0) Y _ llnmli[l?')( 11 J
g+ hs g+ h hp —ha Let hg g+ M

H1# (0
"31"1:5:] = ;.\11?2_ E‘\g:l

and inverting, we get:
{é—}\lr _ é—.‘-x,:r:l

Thus the maximum amount occurs at time ¢ where

EXE- - -
dnr _ Mx 5\2:' (—3‘\26 }\’:"’}\lé‘ }\.rj -0

dt Al -
or
(=il _ Mg
e = 3
_ _ g Mz
(Az ;'L.lzlf—lﬂﬂ
1 Az
t= — 1 iz
(Ao —A1) M
_ 1 |, ln2 66.02h
S 2 Ind g.02h In2

G602 h a6.02 h

(6.02h){66.02 h) | 66.02
(66.02h-602h)lnz 602

22.887 h

The maximum Technetium occurs at 9.00 am Monday +22.9 h =7h 34 mon Tuesday morning.

13. An overdamped harmonic oscillator satisfies the equation

d%x dx 2y =
7 + EQE +wix = ft)



2 2
where @ 2 @f and the driving force is a square wave of period - Find the displacement x(£) if the intial

x(0) = &

conditions are dt |:r=|:| S Plot the result for & = 2wn and @7 = 1, and 0 & £ £ 3772

First we transform the equation:
S2X + 2usX +wiX = F

and solve for the transform 4 :

- F
¥ =
5% + 2o + w?
where
- 1
F =
S(l + é‘_'sﬂz)
(Example 5.6). Thus:
¥ = 1

S[l + é'_“m;l (32 + Zos + m%)

Zl:_ljné,—mﬂ? 1

— .5'(52"'2&.5""0.3%]

We can use the shifting property to evaluate each term in the sum, so let's work on the multiplier

HOE 1 = 1 = 1

3(32 + Zow + w%jl

S(I:S"'Cr.':lz"'m%_ﬂ.'zj S(':S+C¥:'2_°~’§J

The factor 1/ tells us that the result is an integral, and we can invert the other factor using the attenuation property.

Thus
S I - e S
ih=——1 ¢ g g it
A = o [o 2 )
-1 ef & L 2™ Y|
Zag g — o g oo 0
- 1 -af & g _ 1 1 1
& = T —= T
2':'-:'0 g o g o 2':'-:'0 g o g o)
- 1 —.:c:( gt g ! ) 1
= 2 — + +
2w wp-a& Wyt w2 — wa
gt _ 3
_ 1 g-m(cwn o™ +(wy —aje™ ), g
2w m% - ol - m%
&
_ 1 - coshwpt + T sinhoopd
@® - m% @® - m%
Thus:

xit) =
n=

-ni) + Lsinhowg (2 - nl
Z(‘l:'ng(ﬁ_”g)[;z‘e_“["”:ll(ms}mu(z 2) wnzmh o 2))j|

2 _ 2 _
o ahy o ahy

Then with & = 2wp and @7 = 1 = 2woT we get:

x(g) = 3
n=l

7 Sierrs(e-nf) 1-om(-4 o ) (con(



e T

CEET

CET
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14. (a) A harmonic oscillator with resonant frequency 0 is driven by a sinusoidal force Fit) = Fosmwl. |f the initial

conditions are *{0) = 0, dxfdt = 0 5¢¢ = 0, find %(£). What happens if @ = wn?

The equation is

Transform both sides:

w? + g
Thus
Alsi=A £
A E )
=4 w 1 _ 1
-\ ) F+ed)
Inverting, we get
x(t) = (m%‘jﬁ(smm - 03‘]—031'110).35)
If & = @a. we back up to
Xs) = 4—20
(32 + m%]z

We can invert this using the Mellin integral
xe) = S [T A9
3o 2
I (.S‘ + mDJ
There are 2 second order poles at & = fiwa. The residues are:

b (s T oo 124 it R T Wy st
.s—:ﬁmn.:z‘sI:S in) (Sz+m3)2E s—=Hg oS (Siiijze

= Awp lim —.2 ot + : e
s=Hug (g % g ) (s iwn)

— Amn( -2 o ot 4 £ o Tkt
(+2dt0g )7 (+2d00p )2

—T 4 .
— J‘I:].CLJD 2+ zlg.lﬂfebm:;

- AT I s
Ty
Thus



_ 4 (=1 +iwpee™ — (=1 = g e 0
2 —2iwE

- _
g

(stneopi — wplcoswps)

Check the derivative at £ = 0

%(sinmgz —wpicoswyt) = mﬁz stheogtd = Dats =0

2
2mwixiFo yersys wot

Notice that this solution has an amplitude that increases linearly with Z. indicating the resonance.

() If ¥ (0) = @, then
FPX-atwi¥=4_©

w? + 52
F=4 ih] 1 + [
w? + g2 52+m§ 32+m§
Thus
- A o oW g o
xi£) sinews — —= sinwqgl | + 2 sinowgt
2 _ .2 wn
(w8 - %)

When @ = @i

- ((1 + aj':' ) sificupé — wpk cosm.;..ﬁ)

15. The two circuits shown in diagrams (a) and (b) show how we might use a capacitor to prevent sparks across a

switch when the switch is opened. Assume that the switch has been closed for a long time, and is opened at £ = 0.
For each circuit, use Kirchhoff's rules to solve for the current through the inductor and the charge on the capacitor
as a function of time after the switch is opened. Discuss the merits of each of the circuit designs.



vV

Problem 15a

AN - |
RTAE T

Initial conditions:

Transform:
v eV
E = fR + SLIT LE + E
and
I =0
Thus

Multiply by & and divide by £

Now let m% = 1-HI":"and o = B2l

Hﬁ+2m+mﬂ==%@a+ﬂ
7= g (2o + 8]

R (32 + 2os + m%

Vo lstolto

Rig+a)?+ 02
where

0 = m% — 2

Now invert:

The charge on the capacitor is:



Gt I; it = J-; %e‘“‘* (E sin £t + cos L‘.!:Jdr

£l
=£( oL [E—cuﬂ'f.‘lr_l_é.—q:—z'ﬂt_li|+l|ié.—q:+z'ﬁt_1+é.—~:t.+—z'f.‘|:r_1j|)
R ZHQ - + L2 - — i 21 —o+ ikl - — i
P e e o e )| Pk |
_ ¥ pEIw] o+
R L [ oG Gy e J
2 o400

i o —oe ™ emQt - Qe ™Moozl - 1) ol — 2™ oosll) + Q™ ain (1
RN o7 ' o7

- %LC(E&(I — e o5 (1) + %e*ﬂ sin!.'.!r)

2 2
_ _ ot 0f = A0 o
= VC({I e Mooz (0 + e smﬂzj
The charge #(¢) = ¥T as ¢ = @, as expected.
(b)
1| |
+] -
12 ™ [
L "R
b
. +W_
o
VT
_ —
Problem 15b
i g
L=l +5 ) R-2 =10
a1t
. g
S
Initial conditions:
0y = ¥
h(0) = 5
gl = C'F

Now transform everything:

Vo2
hR+sLh - LG =& =0

I=h+ik=10

=l -CV
Substitute



V- LtCV _ L
(oL + Ry -8 = 27V o 0

(SL+R+$]51 =L%+EV

5 = _LVIR+ Vs

=¥V _ s+l
R &2 + 205 + wi
From here the solution is almost the same as to part (a), and 1 equals the { in part (a). (Compare equations and .)

When finding the charge, there is a sign change, and we must remember that g(0) = CV 5o there is a result from
the lower limit on the LHS. Thus:

2 2

_ —ar W T 2et
glt) VC(E cos St —5am ¢ smf&.ﬁ)

We find that ¢ — Uas { = =. This system is safer than (a) because the capacitor is uncharged in the "off" state.
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Chapter 5: Laplace Transforms
16. The switch has been in position

4 in the circuit shown for a long time. What is the charge on the capacitor and the current
i through the inductor? At time £ = 0 the switch is moved to position

& What is the charge on the capacitor and the current a long time later? Find the charge on the capacitor as a function of time for

2 _
¢ > 0. Give your answer in terms of @0 where ®i = 1/LC. o = R/L ang
B = VERC you may also find it useful to define ¥ = (o + 8)/2 angd i = v 208 =" You may assume that

& s real.

Initially the capacitor charge is 4 = C¥ and the current through the inductor is a constant and equals V2R

A long time after the switch is moved the current has the same value FI2R and the capacitor charge is

= =1
(L= 38T 2 oL The opposite plate of the capacitor is positively charged compared with the initial state.

After the switch is moved Kirchhoff's loop and junction rules give:

it+i] =iz

. _ dg
T

v-iR-rdi+ & -
BTRE T
and

LR+ 2L =0
Iz ol

Now transform everything:

f+i =1

N o= a0 -gll) = a0 - VT

V _otp_ori— g g _
= IR - LI L:(O)+E ]
Vo oo LV, & _
= }.FR SLAF ﬁ"'E—U
and
12R+%=0

Eliminate {1 and £2 :

I=h-0 = ;—g—sQ+VC= Vo - Qs+ 8)

Then:



Vo + & - =+ _V
E-®esL)ve - gls+8)) - £

le
L]

So
QB +s+a(1+ £)) L -ro(1+ §) - 5= -0
and
—”‘s_ﬁ+@+g+%
BT BT )
yo 5+ (et f)s+ B
Fogt v slo+ B+ 20
_E—Sz+[a+§)s+aﬁ
5 52+ 2z + Zoff
_ye St (arf)sral
E gt + 2y + 2043 - 42
_ o S (- f)eres
T

Q=vC

The denominator factors:

- o:.S o 1
= VC( +S+T+2J(s+’r+i£‘2)(s+l}‘—i§2)

s+ P &
=Vc—‘_““3( L 1_)+ LA
Zifdz \ (s —#2) (g 4y + i) {z+ )% + Q22
We invert using the attenuation property, and the integration rule:

VC(— o et!'ﬂ—r)? _ gy e‘“(cus ot +ch/2 sin QIJ J

2800
. . r
gl 7'9_(?”?} +a ¥ (cus e 1F EL sinQ.tJ
Ll-v  —(y+itd) ||, £

o SUG-R _ | PR ] 3 ¥+ ofd
T[ o= + =7 }+e cos L+ 5 st £ 24

[l
oGy ANy ) YO AR L ) i
'Q|i i Y QQ{ 7 :l ]+e-ﬂ(cosﬂz+ Y+QDU2 st:J)
+¥
B

Gl

= ¥

e
Fiv)
p

yio

[
5
2

-2

I

(
(
-
(
(

" g
_yof BB ¥ anll — Lz cos Ll + 00 +e"’(cusQ£+ }r+u!23ngJ
0 Q2+'y2 9]
= ;0:|3 - +e"”(cusQr(l + %j + (}q—sz + T?B JsinQi))
02 4y % 4y Q0%+
But
522+72=20:.|5’—72+72=20:.8
So:

glz) = %(—1 +e_"’(3cos§2£ + 3’}‘5 “ sianJJ

1
Check the limits: At £ = 0, ¢(¢) = FCwhileas t = =, ¢ 7 73 VS, as required.

17. The switch has been closed in the circuit shown for a long time, and a constant current flows. What is the charge on the capacitor? At time

£ = 0 the switch is opened. What is the charge on the capacitor and the current through the inductor a long time later? Find the current through

the inductor as a function of time for £ > 0. Give your answer in terms of @0and © where °~‘D = VViCqng
o = Rf2L



v

R |L
___c
E
—
N

The constant curent is v (R +R ) and the charge on the capacitor is

CVRI(R+R'). A long time after opening the switch, the current and the charge on the capacitor are both zero.

The equations satsified by the charge and current result from an application of Kirchhoff's rules:
inti=1

. cey

in = —

?

and after the switch is opened, i1 = 0..so i2 = =i The loop rule gives:
g _io_rdi =
= -iR-LEL =)
Z et

Now transform everything:

I = 50 - 4(0) = s - FLE

R+R
%—IR—SLI+L1‘(O)=O
£ _jr-stiei Y -
C R+ R
Eliminate & :
_ L( VR _ J
Then
L(VCR, I)—IR—SLI+L V__yg
sCNR+ R R+
1 _ v VR
f-L-r-s2)-=- -
( S) R+R  s(R+R)
Thus

7= Vc( Ls+R )
R+EN1+RCs+ 8L

__¥ s+ 20 __7 g+ o)+ o
R+R\ - - 205 - & R+R A\ (s+0)% + 0 - o2

We may invert using the attentuation property and the known transforms of sine and cosine:

ig) = i _z T cosﬂlw% —odt ¢sin”lw% o
R+ R 2 2

g T

¥ .
Check: Atf =0 i = g whilei = Uast — o

18
. The switch has been open in the circuit shown for a long time. At

¢ = 0 the switch is closed. Find the current through the inductor and the charge on the capacitor as functions of time for
1

2 _ = 2 =
¢ > 0. Give your answer in terms of 50, @and & where @& = /LT o = R/2L ang = wplde = o



AV
_ R.
I
+ [a
i1
i L,

With the switch open for a long time, the current i = iz = VI2R and the charge on the capacitor is VT2,
When the switch is closed, we define the variables as shown in the diagram, and apply Kirchhoff's rules:

i=1i +tia

4
di

i1 =
-4 -r-rdi - g
T
and
g _in=
= - R=0
g 2
Transform everything:

f=0h+i

i1 =52 - q(0) = a2

%—%—m—ﬁhmmpo
V_E_jg- Vo
Y- Z-IR-slI+ L= 0
and
e
Y _nr=0
Il 2

Eliminate {1 and 2 :

2
(=0t - ofe o) - of e ) - e )
Then:
%—%—m+¢mwwm+£i=o

Thus
¥ ¥

_ T
Q= + s+ 2alis + 2R)

s+ 1/
(s+2c)(s +2P) + of

1
B
¥
L
v /e + 174
L
v
L

52425 + o) + daf + of
s+ 1M
52+ 25(p + o)+ 2ad
i 4oz +1
0L (s+ B+ o) - (B+a) +2ef
' doss + 1
R (s+pta)-p-a?+ 2ot

o2 .
Now define 2 Then:



0= N dafs + 1
2R g+ 5+ )2+ 022
and inverting gives:

) = 2_2 {I’D %ﬁ‘ exp(—(a + §)¢' ) singas'ds’ + % exp(~(o + £)¢)sin €t |

The integral is:

1 .I‘: pl-latBlalle — g -le+fialk g = L pllatfislll  pllafisll |f
2ido 2 -l + B+ —(e+ ) -0
_ 1 [ gltlerdinlle — o + g HlorBl=lly —
i\ —(o+g)+i2 (o + ) + 182
We may simplify the right hand side as follows:
o (e ) ) g
23 (o + )7 + G2 (o + ) + Q22
=_é_(mpy(a+ﬁ)sinﬂé+§écosﬁé N e
(o + ) + 27 (o + )7 + 23

The denominator is:

(o4 82 + 07 = o + 208 + 62 + Juf - o - 62

2
3.2 _ i
2ee§ + U0 2@—4a

32 _
+ Ew% = 2w%

Thus:

alt) = L{E (R - e [(or + B)sin 2t + Qs ] +e'(°‘+p:“sjn§2£}

2R% i

2 —
—259 ((e{”m‘ (7&%!42 o ) sinéef + % {1 - cosiir) ) )
i w

0

Thusatf =0, 2(0) = Dandas £ — =,

as required.

Now

- . ¥ dofs + 1
i= +20) = S —TE = =+ 2
Qs + 28) 2R (s+ﬁ+@)2+g22 (s + 28)
2 45+ 4o+ 28
2R s+ f+ e+
We have already done most of the work to invert this. Thus

2""% 0 larph (ot Blsin [+ Qoos [l
(e = = T( 2 ¢ 2m?

42 BB Bl i O 4 @B nns Of

1- e'f“"-s?{(ﬁﬁﬁ ) sin€t + cos Qe )

2 E}Iﬂe'[“*“ sin (0t + e oY ooz Cf

. -m+m(M) - ]
"R _1 e o sin (2

The currentis /28 poth at £ = U and as ¢ = =. again as expected.

19. In the figure shown, capacitor €1 has charge £ and capacitor ©'2 is uncharged. At

¢ = 0 the switch is closed. The two capacitances are equal. Find the voltage across each capacitor as a function of time for
¢ >0



i R
o[ o WY

c C
% % | L
R R

For £ 7 U, we define the currents as shown. Then we apply Kirchhoff's loop and junction rules to get:

i=1i tig
o A
N7
o dga
2T

L rik-uR-2 -0

ARy T ¥ )
= iR Ldﬁ iR=10

The initial conditions are:

gi1i0) =@
g2(0) =0
#oy =0
Now we transform all the equations:
f=0h+i

h=sf1—qi0)=sCh - @
Lo=e0s - q2(0) = a0

%) &2 _
¥l nr-LR-E2 =9
o AR

%+11R+SLI—L.€(O) +IR =0

Next we eliminate the currents:

I=slh+02) -0

L+ (501 - Q)R + (5L + RSAQ1 + 02) - ©) = 0

1
" We may rewrite the equations as:

Ll (o -0)-o02 - 22 - 0

=1 R _ 2 -
Nowlet® =~ &o, I 8. and “0

and



LLsoi-0)+ (s5 1)+ 22)-0) = 0
i =02+ £) +s(§+1)@+02) =0
O (s% + 206 + af ) + s02(s + 6] - Q20 +5) = 0

Now eliminate &2 :

0:= 01 - 2.

Then:

0 (5% + 260 + o8) +5(01 - 85 ) (s + £) - 026 +5) = 0

01 (sls +8) + & + 28 + 08 —Q(2ﬁ+s+$_,:xﬂj -0
(26 + =) +als+ G)s+ a)
28 + 338 + af

257 + 388 + 20 + s

(25° + 358 + af Jis + o)

o] 1 . 38+ 23
2 Ft e 22138408

=Q 1 4.1 Za+ 30
2\ 27 3+ )

The first term inverts easily, to give

41
For the second we use the attenuation property and Table 5.1:
o 25+ 35
1 [2ndterm) = =
Crdem) = S e g 2 239
3 3
_e sttt
2 - T - I
((s+28)" + £ - 262)
and thus
= 38
ﬁi’fndterm = %e 3heid (cos £+ %smﬂi)
where

2.9 _ 952 AL 2%
& 6'8 LARC 3L J
__1 _(3Ry?
2L (4 ik )
This result can be understood as the appropriate frequency for an LRC circuit with the two capacitors in parallel (

3R

Cag = 2C) and the two resistors in parallel, and that combination in series with the third resistor (R*‘? T3

The final result is:

Priz)

Cy1ie) = %e“m + %9_3&"4 (cos fas + %Siﬂ@f)

This solution has the correct limiting forms at £ = 0 and as £ = *. For &2 we get:

Q2=Q1-S§a

and thus

!

Cagz = Clq1 - G=™™)
= %3_3'3"'4 (cos B + %siﬂﬂé) = %e_m
which also has the correct limiting forms.

20.The switch in the circuit shown in the Figure has been closed for a long time, and is opened at



¢ = 0. Find the currents in the circuit as a function of time for £ » 0.

L1
H D

Circuit for Problem 20

We define the current variables i1 through the battery, iz through the arm A8, and 13 through the arm

D Kirchhoff's junction rule gives:
i1 = iz ti3
Kirchhoff's loop rule gives the differential equation satisfied by the currents for £ >0

i i . .
L2l v i, 22 v R+ R =F
1= 2y 171 2l2

The open switch imposes the condition i3 = Ofor £ » 0.

With the switch closed for a long time, the inductor plays no role and the currents are in a steady state. The resistors

Raforma parallel combination of equivalent resistance R2/2. The total resistance in the circuit is then
R1 + R2/2. The initial conditions are 110} = £/(K1 + R2/2) = in, ang #2(0) = 13(0) = in/2 = B/(2ZR + R2).

Transforming the equations, we get for £ >0

h=hh+is=151

I (Sf] - %) + fosly + B10) + Roly = %

which has the solution

. 1 i
h=1h= T *Lii - E(TJ“—R.%&)
(L + Lads + (R + Rz) IR+ |
(L1+L2)(S+ [I-|+E1]]

Inverting, we get:

a) =) = g (50 ) exp(_ Ei :ijgg) eyl em(_%f’)dﬁ
TRy (Lﬁlﬁz )Exp(_ g: :ng’) & ff"-z) (Em(_%f’) ) 1)
E(Rl 5 (Lﬁlﬁz )- e ) Exp(_gi :?3:) vy

_ Rally - La] - 2R1la o182 Y, &
S amrrr ) = (o) @ e

g Rally —La) - 2R 15 . _(RL+Rz) Y,
mim i () 1

At =10,

, . _ g [Rally —L2) - 2Riis +
1(0) = (% = (R1 + R} | (2R + R)(Z1 + Lg) 1}
L

= 2F
(28 + Ry )Ly + Lz)

in conflict with the known initial conditions 1 (0) = B/{R) + Ra/2) and

i2(0) = B/(ZR1 + Rz). that we used in equation (). The currents have to make an instantaneous jump at



¢ = 0. The inductor will not let this happen. Instead, a spark will jump across the switch as it is opened. The solution we obtained does not
correctly predict the behavior of the circuit because our system of equations fails to model the physical system correctly for a short time after the
switch is opened. In practice, a capacitor is usually placed across the switch to absorb the current and avoid the spark.

2nd part
Rework the problem leaving the initial value of the current

i2 in arm AB as an unknown to be found. Find the solution for the current i1 through E1 and require that it satisfy
0(0) = BB + R2/2), what value of #2(%) is required? Give a physical explanation of this result. If 1 = R2and
Ly = L2, plot both solutions. Plot current in units of £/& versus time in units of

L/R How long is it before both solutions give the same result to within 1%7?

Ll (S.Lrl - ﬁ) +L2(512 _12(0)) +R1!1 + RQIQ = %

_ Bis+ L E{(R + Raf2) + Laia(0)
(L1 +La)s + (R + Rz)

. Ry, . 1 (_R1+R2 _ B ( (_R1+Rz )_ )
noR (31+R2f2+L212(0))51+526Xp I-1*’1-25] R +R T L1+L2£ !

We need 1(0) = /(&) + R2/2), and we can get it by choosing #2(0) = £/(R1 + Ra/2) to0.

=1

Thus

This means the current jumps from arm CD to arm AB instantaneously at ¢ = 0.

If #1 = £z and

Ly =1Lz, plot both solutions. How long is it before both solutions give the same result to within 1%?

Plot £ in units of Z/& and £ in units of L/&.

ES
£
s
oE
s

[

(-5

Values are within 1% after £ = % 2(L/R)

1_2 4
The difference is

-

C T m, Solution is : 1% = 4 2047}

s

7 2! solutionis : {x = 4. 1947}
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Chapter 5: Laplace Transforms

21. The radioactive series that begins with Neptunium 93 contains the following decays:

Decay type half-life
23?Np — B, & 214%10° y
P, = B g 27.0d

23 s 2 o 16x10° y
2 s @ 7340y
W 5 B, g 148d
Bpe = P @ 100d
2l A7 = 48min
21?At — 213|3i @ 0.032s

gj — 7pg (0go) § 47 min

“gi— 1w @

213F’O — 2ngPb 42 Hs
= My g 2.2min
ZDQPb — QDQBi |'S 3.3h

If we regard any decay that takes less than one year to be essentially instantaneous, then the chain simplifies to:

23‘?Np %233 1 %229 Th %209 Ei
Write a series of differential equations that describes this decay chain. Apply the Laplace transform to find the fraction of the original

23?Np that is in the form of Uranium, Thorium and Bismuth after (a) 105 and (b) 106 years.

Let the numbers be #. #U etc. Then

BN o 3 e —> sy - al0) = Ay Ny

d
The solution is
_ nwil)
NN_ S+>\1
Next
d;;’r = Mymp— hgkp — 8l = M ANy - 2Ny
Thus
_ Ay _ ( LS At
NU S+)\2 S+}\2)(S+>\1
Next
ﬂ:;f;zf = )\2?3(}_;\3.’?:‘% SNI‘ = )‘2NU_;\3NT
= 2Ny =( ha )( LS ) 0]
i S+)\3 S+>\3 S+)\2 S+>\1
and finally
d:;;ﬁﬁ = )\3?31'% SNB = >\3Nj'
So

_ 3‘\3Nr=ﬁ( Ha2 ( *1 (0]
Ne s 5 ,5-+}\3) s+}\2J RN

Now we invert this using the Mellin integral. There are four poles, so we get

1 _ Pl
ffr((é)) s A; T —ral qu
vy e B W e

Check this resultat £ = 0 :



as required.

Similarly

Atfi=10

as required.

The decay rates are:

So

So at 10S Y,

At 106 y

and at 104 y

Next we look at #T

1 _ s—k:!
Hfrgg; - }\1}\2}\3 :p\:?l 1l —ha A —Ra ]
M _ et _ Rk
:[:“M][l'z] |[:|_|][p\q_|]
—1- Aot _ Aot _ A hatsg
hathg —hallhg —Aa)  Aalhg —Ag)ihy —ha) ik — A d(he - A
hphak *
=1- 17243 ~(~Ag * Az — Ay 3
ey e R A rerp Ty PeEp ey
—1- Aahl timhat s ks _ 1- (ha = A 0lha = Az _
(dz — Asdih - Aa) (Az = Azllhl — As)
,;gr(f,) _ }\2}\1 [- é_}\.:! + é,—}m + é.—}ur }
.’?N‘(U) ‘1()\2 - )\3 )()\1 - )\3) ()\3 - )\2)()\1 - )\2) ()\3 - )\1 )()\2 - )\1)
arl0) -

#20)

—

Mah
Hah

vl 1 " 1 " 1 }
Liha = Radha —hs) (e R —A2) 0 (hs — Ad(Aa — )
[

1( A3 _}“3)1(}\1_}‘3) B {7z — A1) —?\2)] =0

nylt) _ [ghat — gt
ad0) LU Ty =) ]

» = 2

2

e—}q _ e_-'u-“zlll?m _ (e—]_nzjnl!m _ (%J!hm

nyult) M Fohat Rty 1
w0) iy T T T e

ﬁ{(éjrﬂ.ﬁxlﬂ*v _ (%Jrﬁ.lﬂlxmsy}
1 65104 b 14x108

= 1_2'14x11]6ﬂ.6><]05 {(%Jtlﬁ 00y (%J: 1410 \;}

-5, 0805 = 10-2{(%Jn'1.6x1l3’y _ (%J?I‘lmxmﬁy}

-8 0208 = 10—2((%)1&5 ~ (%]Nzuhqg)

-8, 0808 x 1072(. 64842 — 96813) = 2. 5835 x 1072

{e_}\;? _ e—}\,s}

nult) _ 21 06 1 1214y "
2. 0808 % 10 ((2J (2J 5 7388 % 10

#ull) _ g 0508 10'2((5”15 - ( J”m) - 3 1647 % 1073



So at 104 y

at 10S y

@
and at 10 ¥

For Bi we get

So at 104 y

At10°

and at 105

and of course

ml)

m\,{ﬂ)

1)

PP

_;_]; g_l?’ e—?&,!
231{[12 = d3d(h - 13) (hz = Aa)(A1 — Aa) * (h3 = Aq ks - 11)}

10 (12" (1/2y% {12y
T hi (7 — VG = Uh) | (Ut = W) - 1) (1 — 1)1 — ml)}
_ (1/3™a (1/2y%% (1423
=Ll =1t | ik = D= by | Ut = D = 170
(1/2)2‘{?34Dy (1/2)ﬂ1_6x10-"3r

T {1-1.6x 10577340 ) (1 - 2 14 % 10577340 © (1.6 1057730~ 1) (1 - 2. 14 x 101 6 x 10° )

(1/2):& 14108 y
T2 4% 10577340 — 1) (1 - 1.6 % 10572, 14 % 10°

(1/2)1‘”340 W (1,2)#1_6!10"' (1,2)1‘(2.14!105
6 043 < 0% | 257 38 T 268 53

P@r(ﬁ) _ (1;2)10”’?340 . (-Uz)h'lﬁ (]f'z)lfQH

- -5
a0 " 6 oazwi0® | —m7 3 Tme e o PAxIW

arie) _ (1{2)105ﬁ340 . (11;2)1#1.6 . (U2)1{21_4

- -5
ni0] 6. 043%10° 257 38 268 83 1 08210

"31"(3) _ (1;2)1055‘340 . (U2)l|'.16 . (U2)1|'2.14 b 306 x ]0_3
ani0) 6 043% 103 257 38 268 83 '

1 &t
Aot - =
= Aphgdsg Je;l halhg 1:11;:::3
B Ty R WY o vy

- (3)" e - () T
(1 = taftz 1 — #1743 2z (1 = ts/ta)(1 = t1483)

-G e
G R R Y R

(1;’2)!1’3340 (1;2)!{1_6:-:10"'
(T- 1 6x 10573407 (1- 2 14 x 105/7340) (1 - 734071 6 x 10°) (1— Z 14 x 1051 6 x 107 )
_ (1;]?{2.14:’:105 1
2 (1- 739072 14 x 10°) (1 - 1.6 x 10%/2 14 x 107 )
_ 1 17340 1 1 HlG=104 1 _ 1 2. 14=108 1
- (3) 6 0429 % 1% (3) e~ (2] 32208

- 1 1 _ 1 -1 -4 2 _
AT EELE + T 957 99508 1-1.6548x 107" + 5 4656 = 10 1. 0845

=. 99983 - 9998 = 1. 914 = 1078

1047340 118 11214
1 () e (3) e (1) o
#30) 2 £ 042 % 10 2 11 807 2 92206

=1 9334 %107

10417340 1.5 1214
1 ()" e (1) - (1)
a0 2 6 043 % 103 2 11 807 2 92206

=4 9552 % 1077

10817340 1/.18 1f2.14
o1 ()" e (1) (1)
a0 2 6 042 % 10 Z 11807 z 93206

= 21663

nilt) = st».;([])é'_)\'r _ ap(0) _ a0}

ol 2 145108 y




radioactive decay

0 *'T'\

S a 5 —Uranium
g -z // \{ —Thorium
E -3 / !f—'\ Meptunium

4 /!’/ Bism uth

£

5 /

log (timelyr)

£:3

=t

P

22. Find the Laplace transform of the function 2it) ;" Express the result in terms of the transform
F(s) of the function 2} Use the result to solve the differential equation

Bty =27
subject to the intial conditions w0y =1

From equation 12:

G = —%L(ji:) - —;is(sF - A0Y)

Transforming the differential equation:

ds 1+g
Simplifying:

47 _ 1

ds 1+

dr o 1

ds s(1+5)
_v. =l _1_

Hs) - Fa L(o 1+0Jdo

The left hand side = ¥{#) because ¥ — U as
& —» . Then using the integration property (84.2) and the fact that the inverse transforms of the two terms are
2™ and 1. we have:

() = ==

i ¢

Check that this has the right initial condition:

Let's stuff into the equation to test the solution:

£ ¢
Thus
s =2
iyt 1-e  1-e _ =

B tyv=g 7 F g
as required.
23. Apply the Laplace transform to the differential equation:

yu _ ﬁgy = 32

Does the Laplace transform offer any advantages in solving this equation? Using any method of your choice solve the original equation or the

transformed equation subject to the initial conditions ¥(0) = 1ang ¥(0) = 0, and comment.

The transformed equation is:



- P+ g% - gl0) - ¥10)

- +gir =

mLAJ|M I:ijL...1|[\-7'

and this equation is more complicated than the original.

Series method: Original equation

.0
lowest power is £

Thus the solution is

»e) = an + (1 +an){ 45 +

Zn(?@ = Ljant®2 - Za,,zw = ;2

2az =0

3% 2az =10

4% 3y —ap = 1
_ 1+ag
T

5><4c15—a1 =10

a5 = =

(2 + 2)m + Vlatmez = Gm—z = 0

dm+2 = '
™2 T 2)m + 1)
- -4
n nin—-1)

With the intial conditions, we have #1 = Dandao = 1

Check

So

as required.

3 743
vooof2y 8
¥ 2(; + _3+
2 _ .2 i £10 )
£y z+2h Te7a3 "
y”_f2}“_32

Solving the transformed equation is much more difficult.

We can transform the solution to get:

Check this in the de

as required.

Look for a solution

22 i 510
pro 2 4654, 108654
.5'3 S? Sll
-V +52Y = %+s
5
_654 1009654 +52(l+i+ 6.54 +J -
S? 11 & 5.5 SS‘ .5'3



— dn
¥= ZS_H
Y= Z_”;fl
F= Zm(?x+ ljsifg

F’—32Y=Zn(?3+1);fz .sifz =—s—b%

The successive powers are:
.5‘2 X

ag =0
&y

a1 =1
0

az =0
-

as =0
572

@g =0
-5

2ay —as = —2
as =2+2=4

s?.p 5

(7= 2)p — Vapz —apsa = 0
@ = (72— An - 3,
Thus

¥= l+ i + 6-5-4...
g 3 ]
The transform doesn't help!

24. Take the Laplace transform of the Bessel equation of order zero
w o, 1oe _
Yooy ty=10
and show that

(52 + l)}’(sj +s¥s) = 0

Solve for Y15} with the initial condition (%) = 1 and hence find an integral expression for Jofx}.

The tricky term here is ¥ i So multiply the whole equation by & -
oAy +xy =10

Now use equation 5.12

_d _ 0N 4 sF— (0] — BT =
E(szl’ (0] =) (0)) + s - y(0) - (1) = 0

The unknown )’E(O) disappears:
- 2sF - Y +pl0) +sF -y - F =10
(#+1)F +s¥=0

The initial value ¥{0} also disappears. Then

¥ ___=s
r g+ 1
Integrating
- _1
Iny = §]n(s2 +1)+C

or



yo A

Jet + 1

Inverting the transform,

Jolx) = -1 J‘Tﬁm¢e”ds

E it fsz +1
where ¥ » 0.
Jalx) = A J‘Tﬂm L

There are branch points on the imaginary axis at ¥

(Ref: Jeffreys &Jeffreys pg 581, Morse and Feshbach pg 619-624, Gradshtyen and Ryzhik ). By choosing different branches of the integrand, and
moving the contour appropriately, we can obtain expressions for the Hankel functions as well as for

g (See Chapter 8.)

¢fCh2§22.1)

By choosing the branch cuts to run from 7 to ! [ , we obtain the form

Joix) = A [ 2= —qs
I —am

Evaluate thisat * = 0

Let & = smf

A 2 cosfdf _ o4 _
Jo(0) Tf‘[—n{z cost A=

and thus 4 = 1. giving

=1
JD(X) i \I‘—a' Il'Sz 1 £
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Chapter 6: Generalized functions in physics

1. Show that the following sequences of functions are delta-sequences:

(@)
$alx) = ZeH

[ balxifixdan = [ 2o bz )as

-1 fﬁ +1.m + Mk
+ b
( U +1n'ﬁJ 5e " Alxlax

h+ih+ri

Then since $2(x) 2 U for all values of %. the mean value theorem gives:

ﬂé)‘l‘ IR 2 —nlxldx _ﬂé)‘l‘ L » 2™y

2 z
] @ N,

where = £ £ £ -1/\%. Thys
J.'Tl — Dasn —= o

An almost identical proof shows that 3 —* 0 as # — =.

Finally for {2 we have:

L 7 k) - T 5 b
g 5T AR dx = AE) [ ST AR

wherel/v® £ B £ -1/ Thys

0 i

= 2
AEV2
.

AE)E
Thus this $= is a delta sequence.

(b)

Hint: Use contour integration.

Multiply by a test function that is analytic in the UHP and integrate by closing the contour in the UHP:

f—‘l‘_mfl:x 21 =42 fz)

E 1+ n2x2 1+ 22



The poles are at Z = Zi/2. Only the pole at %% is inside the contour, so:

; i/ .
1= £ 22 () - fn)

Thus in the limit:

lig [ ¢ulx)dx = lim Aitn) = A0)

which is the sifting property. Thus P is a delta-sequence.

(©

We evaluate

—o 2

NTX
We evaluate along the real axis in the complex plane. We'll displace the path of integration downward so that it

‘|‘+°° 1= COSAX 42y

lies beneath the (removable) singularity at & = 0. Then we write the integral as:

W@ = cosmr _ 2= otE — g
i= I ﬂXj Ireal axiz Tamae ﬂzjdz
Then provided that Az)is analytic except for a set of poles, we have:
1 - é.—a'nz

_ _ 1 - gi=
4 fl " fz Ireal axis 2?2?!.’2 Z:I Ireal axiz En?rzz ﬂzjdz

We close the contour upward for the first integral and downward for the second. In both cases the integral
along the big semi-circle goes to zero, and we can use the residue theorem. For the first integral, the pole at

z = U js inside the contour, and

n =2m( ZRes( Fl-e™ J )
Snmz? 55

(Note: the exponential is bounded because *# > Otor poles in the upper-half plane.) Then:
im, .51 =A0)
For the second integral, the pole at Z = 0 is not inside the contour and the integral is zero in the limit. Thus

J‘*_: 1- Eosznxﬂx:ldx = A10)

RIX

and the sifting property holds. Thus 2 is a delta sequence.

2. Find a Fourier series representation of the delta function (%) in the range (=L, +L) in two ways.

(a) Start with the fourier series for a step function (cf equations 4.11 or 4.20) and differentiate.

The series (4.11) is a step function with a downward step at * = 0. we modify it to give an upward step at

x = 0,and a full period of 2L Then the series we want is:



H

_ 2 i smanx/l | _ % + % i sinnmx/l
=1, odd n=1, odd
Now we take the derivative:
_de_2 N 2N
Bx) = £2 = = Z E—WM =< Z cosnmwx/l

ax i
n=1,0dd n=1 odd

which is a series with constant coefficients, as we have come to expect.

(b) Start with the block functions (equation 6.2) and form the Fourier series. Take the limitas # — =.

Using the block functions:

2ojf =Ll ¢yl «
Pn = . " " =Zamcosm§x
0 othensise m=0
where
_1lh oa . mrx - n (L o ommx y|TT
an = 7 [ageos = L (e 22 |,
= Lo..omE
%msm—}2 m o=
and
= 1 omg - aglk = 22 o 1
ST BT y e v Ay

Now we take the limit as # —* = :

d(x)

[]
3
b
=
3
N
|
g
15
—_
B2~
+
Ms
E-1|—

Are the results the same? If not, why not? Give a quantitative as well as a qualitative account of any
discrepancy.

The results are not the same. The first result is a sum over only odd values of #. but its amplitude is twice that
of the second result. We should not expect the results to be the same, because the first result gives a periodic

set of both positive and negative & ~functions, positive at & = 0,2L, 4L etc and negative at -L, L, 3L etc.

The second result gives a periodic repetition of positive & “functions at * = —2L, 0, 25 etc.

To verify this, let's take the second series, shift it by L, multiply by —1 and add it to the original series. This
should give the first series:

2,5 1 2 o 1 M= L) ) _ e 1 .
f+z=:fcosmgx—(f+z=:fcos > ):Zf(cosmgx—(—lj cosmng

m=l m=l m=l

2 TG
= o5
2, Feosty
m=1, odd
which is the first series, as expected.



3. A point load #2 is placed on a beam of length Z at a distance £/3 from the left hand end. Find the
displacement of the beam:

(a) if the beam is supported at one end, as in problem 5.11.

The relevant differential equation is

dty _ 1 _ Mz I
ot Eel) Fo(x 2

The boundary conditions are {0} = »'(0) = 0. we can solve this problem using the Laplace transform

method. We can obtain additional boundary conditions at * = 0 using equations 3.7 and 3.8:

e - _ ]_ — _Mg
and
“(0y = Lgl
hal()] 7723

Now we transform. The transform of the delta-function is:.

I; B(x = Li3)erdx = gL

Thus
M M ! M =5
stY -y (0) - g (0) - eA(0) - S p(0) = E—fe o
Thus:
_ Mg up_ Mg | Mg 1
st Bl s*BI  s7EI3

Now we invert. The exponential tells us that the function is shifted:

Sz -£)(x- LY’
SR e

Mg | 2P +Lx* i x < Lf3
6EI lpr2-LI3 3 x> Lf3

The solution looks like:

0 0.2 0.4 0.6 0.5 1
0
=L
0.014
o.024
0.034
0,041
0.05 yEIMg 1.7

(b) if the beam rests on supports at each end, as in Example 5.2.



We have the same differential equation but different boundary conditions. Now Y0y =)L) =0 Letsusea
Fourier series:

Then

L Lo EP 3 L L HI 3
and so
_2MeNor Lyt mm
vl =7 f;(?ﬂrj ST e T

. 4. : : L
The series converges very fast because of the factor # in the denominator. Every third term is missing

T
(sm? ! for # = 3,6, etc). The solution looks like:

O 0.2 o4 “Lopg 0.8 1

-0, 00
-0.00H
-0.005
-1.NMH

-0.0H
0,01
0.014
0,015
0,01

FEILI e
d‘_): =
4. A damped harmonic oscillator (cf Problem 4.13) has initial condistions x(0) = x0and & |0 " An

impulse s applied at £ = £0. Find the motion of the oscillator for £ >0,

dex dx L2 = s
rjfz—z+u::~_'E+J'c;r 7 0l¢ ~ ¢

We'll solve this using a Laplace transform:
s2X - x'(0) - 5x(0) + a[s¥ — x(0)] + k2X = Lo
FH
Thus
I
e % + g+ at)xg + vo

54+ as + k2
Let's factor the denominator, and use the attenuation property:

=

2 2
2 st = e+ 2 - 22
g s + i (.S‘ 2) i A



. ol
Then, setting 4

Y= 2
i Y2 2
(s+4) +o
Inverting gives:
£xp t v
x(t) = mfijgff - fnjé‘_a[’_"”]'g sl — #p) + ( 7 J e ginet + xpe ™2 coswt
Thus for £ < fo.
Lxo +vo
x(t) = (‘?TJE_'”'Q sinwi + xpe " coswi
while for £ # fo
i
_ . = Xo +vo _ . _
x(t) = mffme b 2)2 gin it — £g) + (:’%e @2 sin @t + xge %2 cos wt

it
- . : X0 +Vo )
= gl {i@e“’ﬂ"z(smmfcotmfn — cOSMf sinGmig ) + 2—) S G +Xp COS Cﬂf}

7 W
_ e S [T w2 oL I ol o
=g o | e cotafg + X0 + Vo |+ cosmt| mm e ™ sinety +xg

5. Distributions may be multiplied by infinitely differentiable functions. Do you expect the product

o) - %2

to be a valid distribution? Why or why not?

1
Not necessarily, because the function === is not differentiable at * = . (Distributions may be multiplied by
infinitely differentiable functions.)

Investigate the properties of this quantity by evaluating the integral

Im $alx —a) xIdx

- ]
where $x(%} is a delta sequence of your choice, and iz} is a test function. In particular, determine the result

for functions that have the property fia) = 0. 1s wix) a valid distribution in this case? Can you identify it?

We can evaluate the integral by using the Taylor series for fix) about x = & :

[ 80D gy = [ 22 [y (2 - 2 (o) + (- s () + o Jan
- [l )] L1 @)+ - alf )+ i

All terms after the first two are zero in the limit # — =*. The second gives f(ﬂ)- The first is indeterminate

unless & is a zero of / */1z) = 0. |n that case we may write:

vy = B2 - g -a)



Alternative proof: Use the block function delta-sequence:

Ia*’lh‘! ﬂd}'{

a-llp & ~ &

Now let & = & —

1t ﬂu+a)du _AE+a)

-1 1
e T B where - — < E <o

Now if i) = U, then we may add it:
[o e gy - AEX ) AG) L pgyasn > o

—a X~ E
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Chapter 6: Generalized functions in physics

6. Evaluate

I: E_MSIIIE + 2x - 3;|c£x

Since 2+ 2x =3 = (x + 3)(x = 1), then

Bx+3) . Blx-1)
R+ -y Rx + D[
d(x + 3) N gz — 1)

|-4] 4]
Lip(r+3) + oz - 1)

5(x2 + 2x - 3]

Thus
|7 e¥ia(x? +2x —3)dx = [7 el Lol + 3) + ox ~ 1))ax
- g
= J(e7 e
— 0. 10442
(b)

Ii: e““lﬁ(xz +x - 6).:fx
The delta function may be written:
dlx + 3] N dlx — 2]

B(x?+x-6) = [(x+3)(x-2)] =
(% 45 -6) = fla+ 3 = 2)] = e+ e

and thus

_3'! _2!
g2 L g

5+ 5= 5 (o7 )

%(1_ 2341 % 107" + 1. 8316 = 1072)

3 6879 x 1077

Ij e_“‘lﬁlfxz +x - 12].:1':1:

7. A string of length L with tension 7 and mass per unit length ¥ is hit simultaneously at £ = 0

at the two points * = Li3and x = 2L/3. The impulse delivered at each point is I Find the
subsequent displacement of the string.

The initial conditions are ¥i%.0) = 0 and
Y| - Liax - 1f3) + 8x - 2L73)]

a =0
The solution is then of the form



— 2 g, i ?EEL’I — BTV

L

where

L1a(x - £s3) + 8lx - 22/3)] Zﬂnsm(TJ%

The coefficients are given by:

, BEV. = f sm(ﬂﬂ )£ 8(x - Li3) + 8z - 2L/3) Jax

L o L JF
= dfan BT 4 oy 20T
II.J:(S]IIB + s1n 3 ]

Thus:

_ 4 Z(Sm_ t gipn 2AT ) gipg BTX g ATVE

3 b L
Every third harmonic is suppressed. The plot show the string displacement at
vifL = 1710, (plack) 1/5 (blue) and 1/2 (red).

8. Using a general curvilinear coordinate system (cf Chapter 1 section 3) with coordinates
¥,v.%, find the charge density due to a point charge ¢ placed at the point ¥ = o, ¥ = Vi,
W = Wo. Hint: start with the delta sequence (6.25) and note that as # == . only a differential

line element ds* is needed in the exponent. Then make use of equation 1.61.

o (1) = a3(7)
o

where ! is the differential length element between £ (#0.¥0,w0) and a neighboring point with

coordinates (#:V.W). Thus



3
o(F) = }!%q(%) exp(—n2 (M3 (0 — o )2 +A30v —vo )2 + 3w —wn)? ) )

—iﬂhfha (T’E )Exp( e jz)(?)x
exp{-n*hilv—vg )%‘.(?)exp(—nzh%(w—wu)zj

—2Hip — zig )00 — v )Bw — Wy )

hlh f15

where we used the result
nhy _ 2y x - PIY
nhg}nm(ﬁ)explf okt — un) II —%(E)exp(x (¢ — 20 II
= 8(x — up]
(equation 6.19) and similarly for the delta functions in ¥ and W.
9. We must show the existence of

jﬂfn L Iﬂ S I xp(-n2 (x - x')? )dx'glx)dx

Changing the order of integration, and writing glx) as a Taylor series about ', we have:

=0 Eﬂ?iff [2] 7 exe(nitx - 2"y )[alx") + (x - 2")g'(a") + - Jddia!
= I e R e P A r
= nhi% Ecx?iff .I-—.-.z .I-_m EXp (_}zﬂﬁx -x :IE) ; - — Hrdxcfx

All terms in the Taylor series with odd **# integrate to zero. For even #. we change variables to
w=n?{x-x')" du=n*2(x-x")dx = 2nJudx to obtain

o7, .’.'.!?Ir
)

litn M
me D ST

.I-mz_l-mé"“ o um_d"g

M | M
s el dx

rm g gL gy

(]

(See equation 2.75 for the gamma function.) In the limit, only the # = 0 term survives, and we
have

™ g
= lim
s 2.:1,..-'— b m| I—ﬂ.:f;:

+a ™ g
= lim
o 2.:1,..-'— # m| I—ﬂ.:f;:

hinmjjfnﬁxjg(xjdx = E_LI g(x')dx' =< g >

as required.



10. Show that the sequence of functions

fulx) = —2

2 cosh®nx
converges weakly to the delta function.

We investigate the integral:

In = A iy
‘I‘*" EE:oshz;-zxgl: :I

Using the mean value theorem,

= e i
b = &lf) I"“ 2 cosh®ax o

_ g(E)(taﬂl{Hﬂ J b

5 = glE)where —o { E{m

—0

We need to zero in on the value of £ so divide the range of integration up into pieces:

- 1.7 g e
I = ( + + J—” xdx
" - 1w Il.‘,ﬁ 2 cosh?ax gla)

In the first integral:

- A
[Tt | < 3y 2 |tanhrex| M | = S2L | (o (- 7 ) - (-1 |

where M1 is the upper bound of l2(x )] on the interval (= ~1/W% . Now

SR A —Z.x_ -, -,
R R (R [ (TR

=1-2*+..forx >0

tanh x

= -1+2e% + .. forx < 0

So
1| £ My (e + ) > 0a58 — o

A similar argument shows that the third integral goes to zero. The middle integral is

£
%(ta:m(ﬁ;' —tanh(~ k' )) = glE)tanh (45 ) for - ﬁ < E< ﬁ
— gll)asn — =
Thus /»(%] converges weakly to the delta function.
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Chapter 6: Generalized functions in physics

11. According to the properties of distributions in section 6.3, ¢ "0(x)isa
distribution. Which distribution is it?

[[e78 () Jeldx = [[8(x)e ™glx)ldr = - (e gla))

—eglx) +eg (x)|, = —gl0) +g'(0)

—Ia(x;.g(x).:fx —Ia x)glx)

e (x) = —a8lx) - &ix)

n

Thus

12. Starting with the integral (6.16), show that

8(x) = %I;’ coskxdk

(o )
EL-I‘ Pooskxdx = %J‘; coskxdlk

13. Show that, for # and & both positive,

dlx —a) = %‘I‘; coskx cos kadic

and obtain a similar expression as an integral over sines.

Is this result consistent with problem 12? Discuss.

Fix, ) = %Ecoskxmsfmaﬂ:
B l E.z'.i;x _i_E.—a'.i;;-; )(Ez'.i:a _l_E—a'.i:a )
-om E( 2 2 2
_ 1 e+ —nka | ika—ika e~k
= o _[:(e + & + e +e Yedk

_ 1 ikxHka iy —Thka _ L TR dud 0% 7ok
= g et R elie o [t

where in the second term we set @ = —%. Thus:



f(:{,ﬂ:l — é ‘I‘: I:Ez'.i:xﬁ'.i:a + Ez’.i:x—a'.i:ajdk

Glx +a)+ d8(x —a)
But if £ and @ are both positive, & can never equal "% so

%‘I‘: coskx coskadk = 8(x - a)

as required.

Start with the relation

_ Fr dklxa) — L R S
8(x —a) - dk 5 I_me g i

1
ETE o
'1 n ] L. L.
o (coskx +ismkx)coska — ismka )di
L
'1 ] . .
= 5 _lcoskx coska + sinkx sinka Jdk
The other terms have odd integrands and so integrate to zero. Then

dlx —a) = % \I‘;ml:cc:-s;i:x coska + sinkx sinka ldk

%5{:{ —a)+ L I;"“ sinex sinkadic

where we have used the relation already proved, and thus
Mx-a) = 2 I;‘“ sinkx sinkadk

As @ = U, neither of these results seems consistent with problem 12. The
expression in terms of sines goes to zero, while the expression in terms of cosines

is twice the result of problem 12. This happens because we constrained * and 2 to
be strictly positive. Thus the sifting property for these expressions is

Aa) = I;ﬂxjﬁﬂx - aldx = ‘I‘;ﬂxj% ‘I‘I;m sin &z sin kadidx
= I;ﬂxj% f;m coskx coskadkdx
whereas, using the result of problem 12,
A0y = J‘j:ﬂxj% I: cos kxdkdx
Now if /X is even, we may rewrite this integral as
2 I;“ﬁ:x)% [ coskndidx

which is consistent with problem 13. Similarly, for odd functions we find equivalence
for the sine expression.



14. Find the Laplace transform of Bt — a). Express the inverse as an integral using
equation 5.19 and demonstrate that this integral possesses the sifting property.

L(3le —a)y = [ e7dt — addt = e

Thus
dii —a) = ﬁ‘l‘:::é"m&”ds
So we check for the sifting property:
I ﬂ.ﬁjzm ‘[W e et dsds = % I I \e*tdte 2ds
= o [ Fisle™ds = fla)

as required.

15. A disk of radius @ and mass ¥ lies in the ¥ ~ plane. Express the density in
terms of delta functions

(a) in rectangular Cartesian coordinates

In Cartesian coordinates, the disk is located at € = 0. we have:

o(%) = 2586)

[ +
it v& T < @ and zero otherwise. We can also express this in terms of step

functions:
p(%) = o) (a- a7 +5? )

ek

(b) in cylindrical coordinates

In cylindrical coordinates, the step function looks nicer:

o(%) = L az)ola - o)

ok

(c) in spherical coordinates.

The disk is at # = T/2, so the density looks like:



,ﬂﬁf} - M dlrcos @18 — #)

Ta’

= ﬂg Slcos 818 — 7)
Ty

o MO w2) o

Tacr |_ sin '5'||g=mg

= M 56 ni2)8(a - )
W F

16. A rod of length ! and mass ¥ lies along the & ~axis with one end at the origin.
Determine the density using delta functions

(a) in rectangular Cartesian coordinates

The rod is restricted to ¥ = U and 2 = 0,s0 we may write:

Mapisiz) if 0<x <

(%) =
( ) 0 otherwise

We may also write the result using step functions:

o(X) = Lapy)alz)Bx) - @lx - 1)]
(b) in cylindrical coordinates

The rod is restricted to 2 = D and # = U We start with the result from part (a) and
convert to cylindrical coordinates. In particular:

3y) = dpsing) = S8(sing) = = oip)  _ o9

cosdlym  °
Thus:

o(®) = X 5 y600) - Bl - 1)]

Check the dimensions of the result!

(c) in spherical coordinates.

In spherical coordinates, the rod is at = /2 and ‘i’ = 0. The result must look like:

o(R) = 488 - m/2)3d)[B(r) - Blr - 1)]



We need to find the function 4. we integrate over a spherical shell with inner radius

= M
7 and outer radius 7 * 47. The amount of charge enclosed is i d dr. Thus:

Mar = dm = [7[2" o(R)r? sin édbdper

ID ARG - w203 B — Elr — 1)1 sin 0
Now if 7 is between 0 and L we have:

TM.:fr = I; I‘;’"“ﬂa(& — wl2)8(d )r? sin 6d6dper = Igﬂﬁw — w22 sin 6dbedr
= Ay sin %cir = Arédr
Thus
_ M
A= 4
b
and thus

o(X) = Loa(s - w/2)a(p)(O0) - B - )]
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Chapter 6: Generalized functions in physics

17. A line of charge with uniform line charge density M lies along the # ~axis. Find the volume charge density (a) in
cylindrical coordinates and (b) in spherical coordinates.

(a)
p(x) = Ap.z)ndlo)
The system has azimuthal symmetry, so there is no dependence on . To find 7. integrate over a cylindrical slice of
height &z
dyg = hdz = lfﬁ(ﬂ lodddzdp
If 7 did not depend on & the result would be zero. Thus we must have 7= 1o, Then

Nz = 32w [ A 8o Jodzdp = NemAdz
Thus 4 = /2%, and

o) -

(b) In spherical coordinates the charge exists only at #=0Uandatd=w Again there is no dependence on P.
o(Z) = fir.6)8(6) + 8(6 - )]
This time we integrate over a spherical shell of radius #- This shell cuts the line at two places, so the charge

enclosed is 2 Adr.

dg = 2ndr = |1 Eﬂf(r,&j[aﬂﬁj + 3(6 — 7) P2drdd sin 616

o I;‘ Air BB + 86 — m) ]2 sin 66

Here 7 must have a factor 1/ in order that the result of the integration be non-zero. Thus

shdr = 2m I; i&[ﬁ(ﬁj + 88 - w)ridrsin 8 = dwdridr
sif1

Thus
A = A
2mr
and
o(x) = [8(6) + 8(8 - )]
Eﬁrr smf-'

18. A disk of charge with radius @ and surface charge density alr) = o072 jies in the * — plane with center at the
origin. Find the volume charge density (a) in cylindrical coordinates and (b) in spherical coordinates.

(@)
p(x) = flp.z)lonBla - p)élz)

Integrating over a wedge of a cylindrical shell at # {a

dg

a.;,'%?d,odtﬁ; = J‘:‘ﬂp,z)a.j@(a - p)dizodod pdz
Ao, Dogpdodd

R

Thus ] and



o(%) = 002 B(a - p)alz)

(b)
pﬁ] = Alr.BlogBla — #1806 — wi2)
and integrating over an orange wedge shell at # < awe get
crl;,%circiti) = Igﬂr, BlogBia — r13(6 — ©/2)ridrde sin 046
= flr, ?rf2)crur2cz’rd¢

Thus
f=a
and

o (%) = Z28(a - r)a(d - =/2)

19. Current { flows in a loop of radius 2 lying in the ¥ = ~plane with its center at the origin. Find an expression for
the current density (a) in cylindrical coordinates and (b) in spherical coordinates.

@)
T =180 - a)diz)d
(b) The current exists onlyat* = ¢ and £ = 0. Thus
T= T - ajﬁﬂz:lt; =iy — a)dlrcos E-':It;

r-a) 8(6-%) .
R S

(e — )

¥

)

=7 flcos E-':It; =fa(

r

20. Prove the relation (equation 6.27)
Tt = 2xa(p)

m
where # is the radial coordinate in a cylindrical coordinate system, and # is the position vector in a plane.

For & = 0
(i+i)ln A Y 81 o L 91  Y
ot gyt “ o 2 (x*+pt) By 2 (xP4yt)
__ 2 ot 2y?
2 +y2 (xz +y2)3|'2 |:JC2 +y2)3|'2
2 +y2 (xz +_}’2:|3|Q

For @ = U the derivatives cannot be computed. So we check for the sifting property:



Iﬂ" 20 Spaﬂﬂf(?‘:lvz fn %M - Icircle of radius E{ﬁ .[fﬁjﬁth B ﬁh% ’ ﬁf}ﬂ

- . Py bV
B Icircumference P W ]nE Jcﬂ' Iu:iru:le of radius £ o 'Dd'od(i)

_ o0 3
Icircumference ﬁpd(i) Iu:irc:le of radius £ El_pdpd(i)

TR pidp - [U= b) - A0)
2rA 0

as required.
Use the result to find the potential due to a line charge M running parallel to the Z "axisat & = &. ¥ = b

First we put the z axis along the line occupied by the charge. The charge density in these coordinates is:

o(%) = 3(7")
Then the equation satisfied by the potential is
rafg
Vi = ——£ )
i
Using the result above, we thus conclude that:
II:l.'
®=-2 nl
2reg R

where here £ is the distance from the origin to the reference point where we choose % to be zero. Then converting

back to the original coordinates:
___X (x —a)? +(p - &)
® d =g h[ P

21. A circuit contains a resistor, a capacitor, and a square wave power supply with period T Use Kirchhoff's loop
rule to write an equation for the current in the circuit in terms of delta-functions, and solve it to find the current as a
function of time.

_ %
Bl =R+ =
(t) = IR+ %
Differentiate to get:
dE _ dlp. 1
ot et Z

The term on the left is a sequence of & ~functions, upatf = 0, T and down at £ = T2 etc Using equation 6.13

({:Efj — % ZEmE:ﬂHT _ %Zé,mﬂlﬁt—f]ff

_ Fa mamT _ Vo _qsn_ T
"o e 2 e

_ 2Fyg S ginznir
r n odd
Then applying Kirchhoff's loop rule, we have



2E-fl:l Z mamilT _ de+ !

'
n odd

So express { as a Fourier series

I = ané.z'nszf

Then
2Fo _ . 2T By I
T g
for # odd, and zero otherwise. Thus
I = EVD

{im2mR + TIC)
and thus
pIamIT

EVD Z EVD Z T/RC —indm _wamir
mETE + TIRC L dmia? + TH(RCY

_ 4V TIRC 2wl HET 2wl
=42 Ccos + sin
2 dmin® + THRC)? T 4xin? + TH(ROY T

» odd
The plot shows I8V versus #7 in the case that &' = 27,
[

L5 B

LX)

L05

22. Starting with the result
-7
o-P

3
¥
for the electric potential due to a dipole placed at the origin (cf Example 6.1), calculate the electric field everywhere,

including at the origin. Use a method similar to that used in 86.5 to prove relation 6.26.

The electric field is the gradient of the potential.

B- -9 - -ﬁ(f"j)

r

(8-9) L +Bx(9xL)-(8-9)L

<
The curl is zero because 7~ = _ﬁtlf’"j and the curl of a gradient is zero. So we are left with:
- —[B. 1
E--(B-V)V;

Now away from the origin (r = 0), and taking the ¥ ~axis along ﬁ :



e it o2 E)
.T (6.1 solutions)

However, at the origin, the derivatives cannot be computed in the usual way. Since we already know that

21 _
Vel =
by testing for the sifting property. We integrate over a small sphere of radius £ surrounding the origin:

-[sphere —ﬁ( ﬁr;? )drz: -J P20

surface of sphere .?'3

(B - PIPE0

.[surface of zphere

surface of sphere

P [, (1= ) " cos? 4o

All other components are zero. Then:

— P’«3
Isphere Edl = —p(l - T)

whereas, using the explicit form (6.1 solutions) we get:
| (—E +3 P )dV
sphere .?'3 rS
IEI"‘I IQ:?[ p sinfcosd .. . . . :
= - +3p—————" T (XsinBcosd + y¥sinbsind + Zcozs ¢ rridpdd
av-1+0 o o

£ —4?'|:+3TIII:4)"3:I 3
) 4 dr=BJ 0dr=0

To make these two results consistent, we must add a delta-function:

E =3 i_f - % - B2 (%)

+1

-1

23. Using a delta-sequence of your choice, show that the limit

h.m[ﬁ(xj—ﬁﬂx—l!) }

01— |

exhibits the sifting property of g (x).

lzn - [($n(x) = flx = OYx)dx

I I
< I
S el

=

=
|

=

which is the sifting property of & (x).

_4"'55(1')’ we should suspect the presence of a delta-function in this case too. We can check this assertion

- sinfcosd(Rsinbicosd + ysinbsing + 2cosd)sinBdBdd

24. Use the derivative property 6.20 to show that, for distributions, the Laplace transform of the derivative ‘i’;':x )

equals £ times the Laplace transform of $. Show that the Laplace transform of Intjg ~{y + &) where ¥ is Eulers

constant. ~Jo ¢ " lhxdx = 0.5772

distribution, is ~¥ ~ ln&.

Hence show that the Laplace transform of 1/t ¢ > 0}, condsidered as a



Here is Maple verifying the value of ¥ by numerical integration: Jge 7 Inxdx = -0 57722

Now

L{$'(0)) = [oe™d (e = = [ $(e)L (o™ )dt = sDs)

Lilng) Iglnze-ﬂdz = I;mtxfsje-xdg = %Igﬂnx - Insledx = Li—y - lns(-e )|
- rons ; fns as reduired.

= d
1t = Ling)

Then by the derivative rule, and thus

L(%J = s0(ln¢) = —y - Ins

This document created by Scientific WorkPlace 4.1.



Chapter 6: Generalized functions in physics

25, Starting from equation 6.16, show that
fim SIEX )

R WX
Confirm your result by demonstrating the sifting property. Use contour integration to do the integral.

Similarly, show that

X

fir cosfx _ 0
o
if the integral
[ Ax ) Eos KR ax

is taken to be the principal value.

. fl=zjmsmdx
Demonstrate the plausibility of the results by evaluating Ale s and
— [~ coshi
2 .[s S odx numerically for a set of values of # % land & = 1. Show that as & increases, {1 = 1 and 2
decreases toward zero.

L R i =
i —— I_Re dr = 8lx)
gl — g TR 1 sinzxf _
R—= 2ixm B ® X Sﬂxj

To check for the sifting property, we multiply by a test function 7%} that has a set of simple poles in the upper-half
plane, and is analytic in the lower half plane. Then integrate.

_ o in R _ 1 o iRx _ R
I J‘_mf(xjsm dx %J‘ﬁﬁ:xj%cﬁ:

wX

Close the contour upward for the first term and downward for the second term. There is a pole at

x =10 Putting a little semicircle under the pole, we get

1=70)+ > Res(f). Ez‘f -0
»

[

Then as & = =,
gfe = g Re 5 ()
because ¥# is positive. Thus
. B s Ay _
jm [ A58 = 70)
The result is the same if we put the semicicrle over the pole at the origin, as it must be, since

st fx/X has a removable singularity at * = 0,

Replacing the sine with a cosine, the pole is not removable, and the result depends on how the path is chosen. The
principal value is zero. Putting the semicircle under the pole:



P flor) Cos e g 1 |

semicircle

2w

fiz) cogﬁz dz =

P | Aoy ac + lim J© flee®) cos(Ree™)idb =

Thus

: D cosRx _
Jim P Iﬂ Ax ) EELL gy

Now for some numerical integration: First the sine.

2 rl0 sml0x =
2[4 snlligy - 0 98816

2 rlo sinlOx =
2 il gy = 059389

2 rlao sinidlx -
2 rlo sin30x =
2o sndl:gy - 0 99814

The results approach 1.

For the cosine, we have:

10 cos 10x -
I cesllsgy — 6 3054

10 oos 10x -
onol 5 dx = 8. 628

10 cos 20 =
I | ses2sgy = 7 9356

20 cos 0% -
2 cosdi gy = 5 937

10 oo 50x -
1o 3y = 75312

10 cos 40x -
ooy s dx = 2447

10 cos 1005 —
ool S dx = 63314

10 cos 10005 —
ool s dx = 40278

10 cos 105 -
o eslo% gy - g 21121

10 cos b dx

The plot shows J oooo1 — =

‘il'_:i_}mmP_[: for) COSEX gy 4 imf(0) =

2

| f0)+ X Res(f), £
P

im0}

A0+ 2 Res(f),

a iRz,
Zp

versus 1288 The integral approaches zero as Mincreases.

iRz,
Zp



INTEGRAL
[ L . R
|-

(=1
L]
[ .
(]
=

The result is needed in Appendix 8.

= &

d =
26. Show that @ sign{*) = 28(x) where sign'ix:I Bl

First note that the function &(x) = [x| = x sign(x) is continuous and thus, by the smudging theorem, we can find an

equivalent distribution. Then the derivative & (%) is also a distribution whose value is sign':x)= and the second
derivative is also a distribution with the property

I_w 2 signix ifix dx

—I_*j: sian(x )f (x dx
Ilf(x)dx - I;of(x)dx

= A0) - (=A0)) = 2A0)
= I: 280x )x \dx

and thus
isigntxj = 28(x)

27. Show that
me[”](xj =
First note that the result is true in the following cases:
# =0, any # ~This is an identity.
m =0, . (Equation 6.7)

m=1n=1 (Example 6.4)
To prove the general result, we integrate by parts:
Ijxmﬁi”](xlﬂx)dx = —_[:: %(xmﬂxjjﬁi”'”(x)dx
— [Tl o) 4 e e )8 e
= (U [ Gemp () + e flx))8 P 2 e
= (=102 [ GemRIGe) + 2imxm L f (o) + o = 1067 210c) )82 b

If # < #2. we proceed this way until we have completed # integrations by parts, leaving 8z in the integrand. Each

term multiplying the delta function has a positive power of £- and the result is zero.



Now assume the result is true for some value # £ #2. Then

[Zm st N iwdn = - [ a6

—J‘_m(xmf x) +mxm i Ax) Jﬁiﬂ](x)dx

Use the given result for #-

JZama s = = 2] (10" S ) 1)

Integrate the first term by parts to get

gLy Lﬁxj}dx

(m—m+1j

—5[”_’”+1]I: Ix dx

(72 = 22!

[S-1ym

and then combining the terms:
2 mzlntl) — f_qwm _ R+l
I A x )dx = (-1) —(n— T I n—m+t1+mld (x)fx hdx

I:?? v 1:] +en I:n—m*'l]l: lﬁx:}

(= + 17 J—=

- (-1

and so the result is true for # + 1if it is true for #- But the result is true for # = 1, with

m = 10or0. Thusitistrue forall # » lifm = 1

Next we increase . Assume the result is true for some # < #. Then

[ xmsmixifixidr = [ xamaW(x)[xAx)]dx
[ s ) o

n—mll
= [ G A + 1 ()

where we used this result:

[ 8x it = (-1y70) L ()

-| 5 Uxyf (xdx
Work on the second term, assuming # + 1< n

2 5o (s = = [T I bR (e

= (n—m— 2]

—Iz{m —m = 1)ER Ay ax

Thus
J':xmﬂ@inl(xmxm = —(-1)™ (nf—lmjl J':[aim'”(x) +(n—m = 1080 )

= (—1)m* [Hf—')l [ I - s e
= iy [ e

Thus the result is true for # + 1 < 2 if it is true for #2 < 2.

Putting these results together, we conclude that the result is true for all # and *-

=] o — oo
28. The integral [57Axldx =[x Blxfxdr yhere o < 0 may be integrated if

x%is interpreted as a distribution. First show that



208(x) = 1 i T
&lx) (cx+1j(cx+2j---(cx+njdx”[ Bix)]

where @ 7 > Uand #is an integer. Use the result to evaluate the integral
Imx'3f2e'”dx
o
Start with the RHS

o %(x“@(xj}ﬂxjdx - [ xtBx)f (x)dx = - [ x4 (x)dx
xx)] o + I;D ox O Ax dx

I: cx Tl @ix)Axdx forae > 0

Thus

xt8ix) = (x“ﬂ@ 1) fora > -1

a'+1dx

Now we can repeat the process # ~ 1 times to obtain

o - 1 adr ¢ am
x"8ix) = (a+nj(a+n—l)---(a+1ja!’x”(x Bzl fore+a >0

Thus

“? o = (-1)" e
Inxﬂxjcz’x = CERCE D) IDX ﬂ?’](xjcix

Now we apply this result. Choose # = 2

Sl = 1 S e R
Jo == dn = iy Jo * e R

Irf1Y -
The integral is r(3s’2):§r(§) NEFLAEN

I; 23y = —2 T

This is the Hadamard "finite part".
29. A material absorbs light at frequency

¥I due to an atomic transition. The imaginary part of the dielectric constant may be approximated as

208 ~ ¥z} Use the Kramers-Kronig relations (Chapter 2 Example 2.24) to determine the behavior of the refractive

index #* ~ ee/e0) as a function of frequency. Comment.

Using the results of Example 2.24, and writing Re sfeg = #2, we have

Ll i1
Alwg) = 1= 2P (" m”a( L

w? - wi
— 4UDP‘[m 0.380.." m;jdw
- wf
_ 4o wg
LIRSE:

Thus



2og ¥
nip) = J1+ T 20 %_ 2

I

The refractive index approaches a constant for ¥ % ¥I and approaches 1, the vacuum result, for ¥ * ¥I.

~ _ do ¥p
”-(1 m—an?J

This result is consistent with the fact that, for most materials, the refractive index is greater in the blue than in the red.
dn _ 200 ¥

(For ¥ * wp, d&F "= ¥ js positive. This frequency range includes the visible if ¥I is in the infrared.). Near the

line center,

20 ¥
yom 290 KL

We have answered the question posed, but we should check that the second relation in Example 2.24 is also satisfied.

vlwy ] = —%:;PI; (cu e e o

== o7) (- o)

The integrand is even in & so we may rewrite it as

_ Zag o | oy
— Pl oo

(- o7) (@1~ %)

We evaluate the integral by putting semicircles over the poles at 1.

twi. The poles are simple. We may close the contour with a big semicircle in the upper half plane. The integral
around the closed contour is zero, because there are no singularities inside. Thus

P‘[_m YL_dw + D (integrals around semicircles) = 0

7 -] (o -)

The integral around each semicircle is similar. For the semicircle around “1, write @ = w1 + g2

. 0 o o) . 0w o .
lira 1 L L] a8 = 1 L idg
5+l -LI (20.]1 +£é'!B;IEé‘!B [wi_ |:CLJ1 + gg®® ]3J = -[ (2] [g_JL—g_Jlj

it

e 0z
2 {wz-oi)

it

For the semicircle around ~™1. write @ = —w1 + 22
lirn ID . Y 2t = L W
=0 (=00 - Eé'"ﬂjgé'"ﬂ 2 [y + oot 2 ( J
1 Wy [ w] + s ]

and the sum of these two terms is zero. The sum of the integrals over the poles at %1 is also zero.

The result is different if @1 = @I. In this case there are second-order poles at ¥@i. The integrals are

@2 . _ @l .
limn L - 2 idf = lim _—mse‘ﬂz'dﬁ
=0 (m% — [taz + se"ﬂ]zj =07 (Flewre™)

i L e”'ﬁ' ’
=0 ds -1 |4
— lim =L
=0 28

Thus the result is zero unless @1 = @wi. when it is infinite. We have regained the delta-function type behavior.



To be sure, we should check for the sifting property. | leave that for another day.

You might wonder why we obtain an infinite result for the integral around the semicircle, whereas the integral around
an entire circle (the residue) is finite. This happens because for a pole or order greater than one, the contribution of
each segment of the path to the residue is not the same. This is clear from the integral above: for the entire circle

(limits 0 and 27) the integral is zero, but for both halves the result is (positive or negative) infinite.

1 sin’as
30. Demonstrate the sifting property of the delta sequence (6.5), $n(x) = 203 in the case that

%) has a second order pole at Z = Z# in the upper-half plane. Can you extend the result to a pole of order !

We can borrow the result from the chapter, changing only the evaluation of the residues.

The residue at Z#+ by method 3, is:

Resizy) = = lin 4 ((z - 2) ) 125 )

Now if /2 has a second order pole, then its Laurent series is of the form

)= —42 4> anz-z)"
([ 220 2 ove-sre 1=

A

dz

[ Cfm':m +2)z- Zp:'mﬂ j|¢
= z

i + O dam o Ding _ ading
+|ia_2+ Z ﬂm(Z—Zp)m 2j|( 2ine _21 & J

and thus

2 (-2 1= )

2 3
m=-1 Z Z
and thus
— Iy TR ¢ .
Resiz,) = L | [anl=e™ | +q, Z2ne™ _o1-™% eqn 1P 6.30
" 22 2 =
— Dasy — «
since
QEz'nx,, = EEz'nxpé,-E:q}l,
and Ve 7 0.

The first term in equation (egnl P 6.30) is the same as the result in the chapter. The remaining terms arise because
this pole is of higher order. For a pole of order #. we would have to differentiate

# times, leading to a term of the form g, But this term also = U as # — = for any #%. Thus the result is
unchanged.
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Chapter 7: Fourier Transforms

1. Find the Fourier transform of the following functions, and verify your results by computing the inverse
transform.

(@ V(% + 4x +13)

Ej.i:x

K= L[ "
) ﬁfﬂxzwxﬂz
We do the integral by completing the contour with a big semicircle, and rewriting the denominator:

7

=2k

- 1 e g
Fiie) = JEL” (x+2-3)(x + 2+ 3)

A

There are poles at & = —2 % 3 For & < U we close the contour upward. Only the pole at & = —Z+ 3
is inside, and we obtain:

N i e R VI 2 e
i) qumj s Ll

For £ > 0 we close the contour downward. Only the pole at & = —2 = 3i s inside, and we obtain:

Ftkj = 1 I:_E?ﬁ) E}{p(_zki_; - 33)) — Eﬂl:—3+ﬂi:ﬂ:
Jﬁ -3 3
In both cases we have:

To invert, we evaluate:

fx) = 1 r’“ #2“ oZita 3Rlgin Jf — %I”ezﬂ;e—wﬂemdﬁc

—
-
I:I)

k(24 43k a

(24+x)4+73

o E.z'i:l?hc]ﬂ.i:
e (2 4x)i-3

1 1 -1
E([E+x};’+3 " (2 +x)i-3 )

6 — 1
942 4+x)° ) x4 4+ 4x 413
as required.

o

(b) € Tcosfix



_m? E!.B.:’i =+ E_Elﬂx

-1 ‘rmé'_m]cosﬁxé'_‘hdx= 1 J‘mcs o gy
vemw 1 Jem 1T 2
So there are 2 integrals of the form
1 Jdm 20 g Ty
Jem 4T

with ¥ = £ £ 8. To do each we complete the square:

2
- ax® —iyx = —o.'(xz +i%x] = —o:(x+1ii) e

and the integral is

|
3

2 a 2 g
L)L [ e (-a(x il Jd - (_’r_ 1 [eens
EXP( 4&) B -[—m EXP( 7 IEGEJ * 4o | B W'rﬂﬂe

+ g2 _ g2
o (a5 ()

We may invert the two terms separately:

e+ 8y Y
Salx _J_I““ ( o )ehdk

Again we complete the square:

2
G0 ;—rf:‘ +ikor = — oL (82 £ 2k + B2 + dikenr)

Bz 1 5 .
=~ ~ 2 W+ 2k(2ioax £ B))

Aoy
= —% ~ 41—05 (2 + 2k(2icoc £ P + (2icec £ p)° - (2icoc + B)?)
2
= —f—a - 41—& ((2icoe+ B +F)% - (2icoe £ B)?)

Thus

: 2
Jfelx) = exp (— E; + [Emii B) ) .L:- (——(Em;x+ P +£c)2J

_ ony 2a/C er dk
= e}{p(—@xzimﬁ) o I_mexp(—ﬁlizmxi[3+k]sz
= exp(—ox? + xp) ZE

and so



x)l = 1 xl+iixl = 1242 e —ax? +ix +e —ax? - ix
Ax) Eﬁtﬂijf-(ﬂ EEE{KP{ £) +exp( £))

= %emi(exp(ixﬁ) + exp(—ixf)) = e cosfx

as required.

) x If 0<x 2
x =

0 otherwise
(c)

—

i) 1 _r:ﬂx]le"*hcix: 1 _[xe""‘”‘.:ix

e Fik+1)-1 )

Inverting:

ey R oo f o I ==k _ .
fix) = == [T Reta = L (T[T 4 £2 2L Yea

vem K
ks

_ 1 pre empliklz - 1)) 1 e
ol I Ll Tk E\I‘ﬂk_?dk

We invert by completing the contour with a big semi-circle. Because of the terms exp(i(x — 1)) in the
first integral, we complete upward for > 1 and downward for ¥ < 1. Thereis a pole at k=10 sowe

choose to put the path of integration slightly below the axis. Then for * > 1the pole is inside the
contour. To find the residue we evaluate the Laurent series:

explik(x — 1)) (1+ak(x - 1)+ (ikix - 1))%/2+ )
k2 2

+;:;x+%—lx2+---

(i + 1)

ik + 1)

1
k2

and so the residue is %, and the integral is:



I =ilix) = -x

For * < 1 there is no pole inside the contour and so the integral is zero.

For the second integral we close up for & > Uand down for ¥ < 0. There is a second order pole at
k=10

gf 1 tikx + (ikx )32+ =1 4i,

1
2 2 ook 2

and so the residue is i%. For ¥ » U.the integral is:

o =ilix) = —=x
while for ¥ < Uit is zero. Thus our result is:

0-0=10 if x<0
I=h-i= O-(-x)=x M 0<x<1
—x—-(-x)=01if = > 1

as expected.

1
(d) coshasx

=k

- _1 p*_e
Fik) = d
) o I“m coshar

We close the contour with a rectangle with its top side at ¥ = %/&. Then on the top side:

—F =z = =2k kX o =2k
R.hmlﬂ £ dz = R eWets dx = gF= IR € ix
FHmla coshaz E - coshax “E coshax
The integral along the two vertical sides goes to zero as R— =
IRh’j‘[fﬂ gj"ix gz = E_E-m‘lvj‘[fa E-‘E"- . . .
3 coshaz 0 coshaRcosay +isinhaf sthay
R i
- g’ la g 7
= - — 085 f = @
coshal 40 cosqy +itanha R sinay 4
:m'a et Cf_}?
since the integral 0 eosqpisingy ™ which is bounded and the factor in front goes to zero.

There is one pole inside the contour, at € = im/2a. The residue is (method 4):

2 —i= _ g.i::i‘[fﬁa _ g.i::i‘[fﬁa

s—wmida ¢ sitthaz e sinh é—i?r it

and thus the integral is:

_ By (e [ e
Irectangle a (1 Te JI‘W cjshaxdx - Em(é Iy ]

and thus



LI I SN WS S
2 a@cosh(

a4 gkt & aknla 4 L knf2a kwf2a)

So the transform of $&ch is another $8ch! The inverse is then:

FlF 1 =1
2 2y %cosh(x%%‘f-] coshax

as expected.

() te™?
Flw) = 1 j:' te~2e™gs
3 J! (fea—a
_ 1 (ﬁg L) é‘ Jta—2 dg_;.)
2?C oy — EI ) — o
_ ([:l (zc.:u—ajt m)
IIZL." - CI o
_ 1
Elil.i' - ﬂ
To invert:

- ( 1 )E—mdw

Ve U Jom o\ (fw - df)z

__ 1 = 27w

2 40 (.:,_;. + jg)z
There is a second order pole at & = ~%. For ¢ < U we close upward. The contour encloses no poles,
and the result is zero. For £ # U. we close downward. the residue at the pole is:
lim i(w + icz)z—g_m = —jtg HlTal = —jzpat
g ol (m + Iﬂ)

Thus the inverse is:

A = —Em‘(—ﬁ] (—ize_“’j = jo
as required.
@ x;”(xz + .:;tzj

Fik) = e T glx

1 J‘“" x
vemr T x4+ a®
We complete the contour upward for & < 0 and downward for £ * U. There are simple poles at

x = Xiq. The result is:



Flk) = Jé_zm da ) EE 2 for b ¢ 0
W
= L op)ia e o If P8 G
Jer -2i o
—i k[T ke
'FyE e
Inverting, we get:
Ax) =

%iE {J'Em PP - J’: e_k“e‘h.;ﬂ:}

_ g [ gk |0 gEeea) |®
2 | (a+ix)|_, zx—aj 0
= I = X
2 ( it —a ] 42 + 32
as required.
_ 12
2.(a) (%) 1447
ﬂx? = = Eik,,z'.i:xdk

Jﬁjﬂlwkﬂ

There are poles at £ = %i/2

- Jor (—23 ) ‘”2) forz > 0

= Eé""z forx >0

firy = = Em s L2 EOR) e g

—i

andfor * < 0

fix) = e i

1 ‘I‘”’ 1
NI
The poles are the cube roots of ~1/ = i. These have the values

by = Ez‘[m‘ﬁﬂm].‘ﬁ — Ez‘[m‘ﬁﬂm.’ﬁ]
for# = D, 1,2
kg = ¢ =

ﬁ+%z‘

L
2

ky = gt = —%‘E + %j

and



kg = 2P =
For = » U we close upward, enclosing the first two poles:
e exp (/3172 - 1/2)x . exp (=342 - 1/2)x
oSBT ()
Eﬁg_xm(exp(ﬁixfz) , exp (- JFix/2 ) )
o (72) (3 37) + (3 + 3143 e (- s
9

Ax)

= Ji2me ™

n cas(ﬁxﬂ) + J3 sin(ﬁx.f?]
3

For < U we close downward, enclosing the pole at & = ~ :

x) = ——L_2g 2’
R~ Eer)

= J2we ™

(C) isinhak

flx) = di

1 J‘*‘” g
Jom ¥ sinhak

We close the contour with a rectangle with its top side at ¥ = %/&. Then on the top side:

—R+ifla Ez’.i;x - Ez’hé—x% .t pR Ez'.i;x
e g = [R_eleTE - ok 0k
Renla sinhak R Tsmhika +im) [ % ot

2 % fix) 2

The integral along the two vertical sides goes to zero as R— =

£ sihhaz 0 sinhaBcosay +icoshafsinay 4
_ EE:‘.’;\R ﬂlla E_IEI-'
smhaf 40 cosay +icothaRsimay

Jvfr'l'h'ﬂfa Ez‘.ix gz = Ez-mjvj‘tfa E“-‘E"

dy — 0askh— «

fila g

since the integral 0 cosgprmay which is bounded and the factor in front goes to zero.

We know that the pole of the transform will be in the upper half plane, so we put the path of integration
under the pole at £ = U. Treating the integral along the upper contour similarly excludes the pole at

k =imia. Thereis one pole inside the contour and the residue is (method 4):



g = 1
=0 iacoshak  ia
and thus the integral is:

_ . o Ej’.i:x _ |
Irectangle (1 e J J"W coshax ax EWE(E)
and thus
) = — Y27
a[l +g e )
Verify:
R V2T gy - 1 o gy
Jor 4 .:1{1 +eg e ) g a0 coshixm/Za)

We use a similar method.

—R+3a 1 g = -R é—a'.i;xé,z.i:aé,mﬁagﬁ'ﬂ
RoZia  gpamlan o oohiyr/2g) R Z2acoshixmiZa +ix)
_ E—E.i:a +R é.xﬂﬂaé.—a'.i:x
= - o
2a I‘R I
2a
Thus
5 1 ] E:'T[Eé..i:a
FEk)= ————2 —_ =
) 2a(1- %) m(%smhmfzj
-9 i - 1
g_'i;ﬂ = g'i:ﬂ i sinh ke
as required.

3. If Fik) is the Fourier trasnform of 1%}, show that ¥@#/dk is the transform of Z/l%)- What conditions

must &%) satisfy for this result to hold?

Let %) be the inverse transform of (2F/dk. Then

glx) = —= [T 1% e dk - ﬁ(e"‘“ﬂkﬁ |7~ [ ixpetdic)

I
!
b
=
—
—
<
5
F‘T‘
I
o
S
=

provided that Flk) = 06k = o

4. Verify Parseval's theorem in the form of equation 7.10 by evaluating the transforms of the functions

—n 2
Alx) = cosfix gng glx) = 2™ and evaluating the two integrals in equation 7.10.
Since
= = 1 i fix 1 f
x cosfx = | + e
fix) = cosgix = L )

Then



Fik) = %Eﬁik—ﬁ) Tk + 5]

and from Example 7.2

Gik) = wf (HJ

Then

[ Fc e = [ Lot~ ) + ot + o))~ eap  ~-; e

2,3._! 40&2
L [eo(-2) ¢ em{-25) |- o2
220 [Exp( 4 TR 4o Joo P Ao

‘I‘i:ﬂxjgl:xjdx = ‘I‘i: e R I:: %(e".ﬂx N é'_"ﬁ*‘)é'_“!fcfx

and then from the result of Example 7.2:

oo 1 1 _ ISE | _ ,82 _ 1 _ ISE
[t = 3| ez )+ -7 ) |- Fem(-)

and the two integrals are equal, as required.

We also need

5. Verify Parseval's theorem in the form of equation 7.11 by evaluating the transform of

) 1 if -1 <£x 21
) =
0 otherwise

2 2
and evaluating the integrals of fix)* and [FE)°

+ . iy | 1 =k _ ik
F(.s.',':l - 1 J"_l E—a.i;xdx — 1 @ - 1 & : g
Jor 47 Jor ikl NeT —ik
= |2 snk
Tk
Then
Iﬂx 2dx —I ldx = x| =2
and
2 - 2 smzk 2 ™ 1 gt — gk 2
[Py = 2 [ kg - 2 [7 L (T] dic

- 2.[.-00;:2( J 2;3;_24,@—213;)&

We can most easily do the integrals by dividing into 2 pieces and closing the contour separately for
each piece:

[Pty = - L[ G

+oo

= il | Q—Zﬂ:_l
2 ol 5 ﬂﬁc—zdk



Each integrand then has a first order pole at k=10 we displace the contour down by a small amount
S0 as to pass beneath the pole. Then:

[ #i)2ak = —ﬁzqua =2
and Parseval's theorem is verified for this function.

This document created by Scientific WorkPlace 4.1.



Chapter 7: Fourier Transforms

1
6. Show that if #%1 is the transform of /1% ). thenz 14/} is the transform of f12% ). Show that the result is

consistent with Parseval's theorem.

"o
[
Nis
|

= JE_ J‘_mf(ax e T
s

Jﬁ
17(4)

[ColAx)Pdx = [\ Pk

J‘J:: Fla e 2 gy g

Parseval's theorem states:

Now for f1@% ). we have:

[ax)Pax = [T1Fae0Pak = — [ IR (kfa) Pk

where £alx} is the transform of 712X J. On the left hand side, change variables to ¥ = @& and on the right

change variables to ¥ = k/a

[ ifax)ax = [P &L - 2] Zatdx

Thus
[CifadPdu = [TIF(<)Pdx
as required.
Acoswgt If Tt T
Al = .
. : . 0 othenwise
7. Find the Fourier transform of the function that represents a

- . . 2 . =
finite train of data. Plot the Fourier power spectrum |#iw)]* as a function of @7 for the two cases @07 = 1 and

wod = 10, and comment. What happens as ! increases toward infinity?

Flw) = I Acoswote™ds = L _l-r A8+ e it gy
NaT Jem 1T 2
_ 4 ( glowar  gito-aoy J i
22w Hwe +w)  Hw -we) S|

A (o 2y



-15 -10 -5 5 x 10 15

The Fourier power spectrum (see Figure--Black: wod = 10. Blye woT = 1l:') is

_ Jq_z(smzlimu +w )T N sin®(ew — wo )T N 2sinlicuu + w7 sinfow —mn)’f)

2
|F (e ]| D (w0 +0)2 (@ - wp ) {wg + w) (w —wp)

As T increases the spectrum becomes more concentrated around © = @0, ultimately becoming a delta-
function spike at each frequency. The finite length of the data train introduces additional frequency components.

l—lllif —T< 4T

0 otherwise

Flw) = 1 Ifr(l—ﬁ?l]emdz
[fa(

(=)o 1+ 4o

i T i T - :
ﬂ‘ +l(—g€?__w + TE?_ d§+§’3_‘ _df,))

g 0 g - e

(Ez'mf_é,—!mf + %(—TE_MT + é,z'n'.-xr

_ (Tt g

W (iw)?

_ 12 1= cosm’f sin mTHE sincw 772
L P WaiE
J; J7 (Tmej

1 if —TL <0
gle) = -1 if 0<t<T

Hence find the transform of the function U cisiilee

Notice that &if) = dfdt. and thus

g 2
Flew —iFlen) = —jwT |—L S Wi
@) 0 2w [ Towf2)?

_ 12 sinfw Ty
EJ; (T2/2)

9. Show that the square deviation between two functions,



D= I lAx) - glx|Pdx
equals the square deviation between the transforms:

D= I (k)2 dk

D= I [z - j|2.:ix
=Iw1 x1]° - 2Axgl }a!’x
- j,,JFn:ﬂ:n ~ 2F(k)Gk)* + |Gk nFcﬂv
by Parseval's theorem. Thus

D= I (k)2 dk

10. A spring- and -dashpot system satisfies the equation

dx dx 2. =
oy + 2::}:E +wpx = fAz)

with @0 » @ The driving force per unit mass fit) equals g " sinfd. . Find %(f) for £ > 0 and verify that your

method gives * = Ufor £ < 0.

Transforming the equation, we get:
- w3X - ZiwoX + wiX = Flw)
where

= L‘I‘me'm siny S2fe MY
Jom 1f
= 1 J‘;(Eiﬂ: _ é‘_’.ﬂ:‘:lé‘_mé‘iucﬁ

12T
-1 ( -1 -1 J
032w NS tw] - Hw-Q)-o

Using this result in the transformed equation, we solve for 4

yo 1 ( -1 o 1 J -1
2iJen 2 +w)-o  ilw-0)-o (m2+2ima—mﬁj

Thus inverting, we get:

1 o 1 — 1 1 —a'r.c-:r
t b
x(t) i —m(j(§2+m:l—ce i(m—Q)—&)(m + Zieocy — a_:u,:,) “

_+m 1 _ 1 1 =t
4?;-[4(@—5-2)4‘3'@ (Q+mj+ia)[m2+2ima—m§]’3 e

. . . . m=—mi1llmﬁ—cx2
It will be simpler to do the two terms separately. The integrand has first order poles at ,

w = *£2 —io. Al the poles are in the lower half-plane, so X(£) = U for £ < 0.

- 2 _ 2
For £ » 0 we must close the contour downward. To simplify the solution, set ¥ “o e



First term: The contour contains all three poles of the integrand, at & = L2 —fer, Ty —io

1 exp( =i - i
((Q—ia32+2iﬂﬁ—iaja—mﬁ] mp(u(Ee 2

- 1 0y —
= —————exp(-itd - @),
2+ o - i I: ;

mexpc—ﬁw—mw
_ 1 8en
T iy R ek
and
—1 EERIY — o =—1 EEp (Y — o
e s A roew T R

and using the residue theorem, we have:

1t = (—2mi) r exp(—ikd — o) N Exp(—iy — o) N exp(iy — o) }
I \@Pre?-wl  (r-Q2y) (@)

Combining the last two terms, we get:

P (Q + Tjg_’.?‘" + I:’:r' - ngﬂ"

2y y? - a2
g o) sy (e en)
2-»:',- ")"2 _ 5'22

g0 —L2 iyt + oy cos
¥ m% -2 -0z

So:

- fcosyﬁ— %ismzﬂ—e_‘ﬂ"
xilE) = —Le ™™
2" Z_ 2 -0

oy

-

For the second term, we get the same result with f8 — -2

- fcosyﬁ + %z’ st yE — il
xali) = —Le ™
2 l 2_ 4202

oy

-

Now we combine both terms, to get:

x(£) = x1(£) — xz(£)
i _mf cosyt — Shisinyt - ¢ _ & isinyt + cosyt—e

The residues are:

- 27 o — a? — (2 o — a? — (2
_mf —2% sinyt — i(e’ — gk
1 ma — af - 04
C skl — < sinye
wa — o — 22

=&

‘)



The resultis zero at £ = U as expected.

Let's check the result at %2 = - The limitas % = ¥ may be computed using I'Hospital's rule:

o fo0s 8 - smﬁrﬁ _ - YECOSYE ~ st -yt
L=y —EQ _2,:'{,2
which is finite, as expected for a damped oscillator.

11. An electron in an atom may be modelled classically as a damped harmonic oscillator (cf problem 10 above.)

Ht) = Ep2nik

The electron is driven by an electric field - What is the appropriate 72} for this problem? Solve

for the transform () of the electron's position.

‘ix+2cxdx+mx—ﬁ:.ﬁj

e ot
with
_ _eEl)
Aty = -—
Transforming the RHS, we get:
EI:CLJ:] — J‘ Eq SlﬂQf Py
Jﬁ -
il =i
= L R Ll 1
ﬁ [ Bt
il ptl=lL
_ ( +wlr lua }.:z‘z

23‘.% ‘l‘-m

We can do this integral by moving the contour slightly downward. Then for the first term: we close upward for

w > ~5 The pole at the origin is enclosed. Thus::
R
[ 28 - omiRes(0) = 2n

For @ < ~& we close downward. No poles are enclosed and the result is zero.- For the second term, we close

upward if & > L2, downward if @ < £ Then:

Imeﬂ'[ﬂw}dz= 0 i w8
b 2w i w > 0
0 i w>
_ & .
Elw : 2mi i -8 < w {8

0 # w< -0

And then the transformed equation is:



0 i w>Q

—sz—EmmX+m§X=%—D % 1 i -0 <w 8
0 4 w < —82
and so
0§ w >
_ &= 1 .
w) = =7 [& 1 -2 w8
) fy2 m%—mz—Ez’am ¥ v
0§ w < -0

Use the results of section 7.6 to determine the power spectrum of the radiated energy. Plot your results in the

case @ = wpo/10 £2 = 2wy and comment.

The power spectrum is:

> — W i}
el 53(4?C)2£|:| I‘XE jl
0§ w > &2
- a2 s PR 1 .
B Yl 1if 2w
C3|:4?C:|2£|:| Q2 02 (mg _mzjz + A2 @f o
0§ w < -k
0§ w » &2
_ 22 2 ot o cw <o
32703050 (0 - w?) + 40l 4 w
0 i w< -
Now put in the values & = wp/10, & = Zwg.
2 ;2 0 ;f o 20}0
ﬂ = g ED 0_)4 .
do | Femcis (ol -at)+ 0 0datet | | | D S @
0 i w < 2w

The spectrum looks like:

0 it w > 2

_ ) — 9 i 2<d w2
L (1007 |40 Ddea? v “
0 if w { =2

Since the negative frequency has the same physical meaning as the positive frequency, it is usual to look only at
the positive values. Then:

W _ EEEE o 1 i 0< w< 2ug
iy 16me 01 g (m% —mzjz +0 U4m%m2 0 3 w > 2w




257
a0
157

107

Notice the peak at the resonant frequency @ = wao.

12. The electric displacement ﬁ is related to the electric field E by the dielectric constant € . In general, € is a
function of frequency, so that the relationship is one between the Fourier transforms of ﬁ and E :

ﬁ(x,m)=e (mj_Et(x w)

a) Show that the relationship between B (x.) and Efx=fj is:

Bix.¢) = EB(x.2) + [7, G(r)Eix.¢ - r)dr

and determine an expression for (1) in terms of €lw).

First define the function &} in terms of the dielectric constant €(w) : €(w] = 1+ Flw). Then:

Bix,w)=(1 + Haw 1 E(x,0)

We compute the inverse using the convolution theorem:

Bix.¢) = B(x,e)+ [~

-0

GH{r\Bix.t - ridr

as required.

b) Find (£) for the one-resonance model

2
Wy

2 2

elw) =1+ —— £
w? - wi — pw

where *7 | “0.and ¥ are real, positive constants, and ¥ < wo.

The integrand has two simple poles, at

iyt ,Ill—yz +4mﬁ oy . 32
o= =—z§i m,:,—(—)

2

Both are in the lower half plane. We close the contour downward for £ >0, enclosing both poles. Then



L
=4
I I
| e |
2 =
EM =
%}
/,-F'_\-\q\‘
b | m 0
' o
5 7
- =
p—
L |
-~ = |
]
% +
& " £
A [=TX%
L2y |
= _—
=%} [N e
I f —
b
) ="
b~ o —
I
B +
S -
! H
1] —
o i
T f‘l“\
g |
= b [
(=Y %] |
|
o =
] e =1
T |
% —
e [N p
N —
e —
="

I
]
H
=

c¢) Discuss the physical meaning of your result. Be specific!

The integral expression for b shows that b depends on the electric field in the past, but the form of & shows

that we need only look a short time into the past. (&£ ~ 2/7).
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Chapter 7: Fourier Transforms
13. An electron in an atom may be represented by a damped harmonic oscillator with frequency

@0 and damping rate ['. An external electric field E(f) acts on the electron. Find the Fourier transform

i(“«‘) of the electron position as a function of time. If the electron loses energy at a rate

=+
P=]- E = eV E use Parseval's Theorem to show that the total energy loss is:

w2r|E(w)|2

2
wh ~w?)” +wiT?

o

Note that the integrand is sharply peaked at = = 0, while

E(m) is a slowly varying function, and thus the integral may be approximated as:

2
AU = —‘_E'wg | J‘_m 2)1"+ 21_25&.3

Evaluate the integral by contour integration to show that alls independent of [" and hence find
AU (In this expression, @0 and [are real positive constants, and wo » T)

The equation satsified by the oscillator is:

mdX l"m‘éf +mwix = —eE(.ﬁ)

di?
Transforming, we get:

- ¥ -l + wiX = —% E(w)
and thus

Rw) = £ Ew)

w? +iwl - wd
The total energy lost is the time integral of the power:
W= [Pl = [T -eWe)E():
Now we use Parseval's theorem to write this in terms of the transforms:
W= e [ Ve )E{-wd
and since V() = d®/dt, then:
W=eg I: ioXf o El—w Jdo

E(co) =

1 e - —

|t Rr e B
(% - co%)z +i@l?

s'%_[:co
B .rm |E(oa)‘ (c021"+1'c0(c0 —cou))
- ©2)? + (al)2

Since the energy loss is purely real, we may take the real part of thls expression. (Note also that the imaginary part is an odd function integrated
over an even interval, and thus integrates to zero.) Thus:

|E(co) |2(c02—.t'c01"— ®F )

|E ‘ w?l
AT = oy
m ‘I‘_m |: 2 —wzj + (wl)?
as required.
Now the integrand is sharply peaked at @ * @i, so we may approximate as:
2 2 L 2r
AU = € |Blwg)| [ w dw

2- w%jg + (wl)?



The integrand has 4 poles, given by:

w? —wg = tiwl”

HI+ -T2 + 42
2

Two are in the upper-half plane and two are in the lower half plane. We may close the contour either way. Let's close it upward. Then the integral
is:

and thus

w =

2

e w?TC A © gl B = i w
J- (02 -ad)? +lP gt +Mj2ﬁ2w3(w2‘w5] + 20l

il
i

+ lim ]—0«‘
v S D) + TR

1
B
—
g
+
g
—
£

Thus

and is independent of I

14. The Radon problem. Radon diffuses from the ground into the atmosphere at a rate

¥. Model the atmosphere as a semi-infinite medium with boundary (the ground) at ¥ = 0. Then the density

o(n.t) of atmospheric radon is described by the equation:

2
% _p¥e 5,
ot 3}?2
where Zis the appropriate diffusion coeffcient and
Xis the decay rate for radon. The boundary condition at the ground is
3
o =const = -o
¥ |y

What is the boundary condition at ¥ — =7 Use the Fourier cosine transform in

do
¥ to derive an integral expression for 2(%.4in the case that #(%.7) = 0. Evaluate & at ¢ = U and hence determine

@ in terms of 7 and £
The boundary condition at @ is 2.1} = 0 gg ¥ — =

Applying the cosine transform:

Rk, t) = J%J‘;p(y,i)coskydy

we have

R _pf [2,_x2zr)-
=& D(ﬁakR)}\R

—(kQD+ AR+ EQD

which we may integrate to obtain:

2= &ty - Roew (09040

But k. 0) = 0, o

_j2 o) =R
J;(szﬂ}\j ’

and thus



ply.)

2aDI°°1‘

JE I Fm(l — exp (- (KD + W)t} ) coskydl

exp - sz.D + }\:li}-

coshydk  Radon egn 1

Now differentiating, we get

(k2D + %)

a o
a_f;' - 2%!5 J‘D exp{—(kzﬂ"' }\)z} ooz ki
do T O S = ceD o™
T Tj‘ufé +e ™ | dk j dic
= ol8ly) = rily)
Thus © = 7/D
do - 2 2
0" Lo exp (- (K20 + 1) e )yak
= &g_}‘-?_l E =r é_h
T
JDE 2 willt
o{0.£) = 2 Igd’ff aresp {~(E2D+ )7}
_ ¢ dre 1
dre IIDT E I
Let A = 22, Then &7 = Zudui™ and
Judue ™ _ o =_F
ol0,£) J_ J‘D = I duz ™ N5 CD[JEJ
where F is the error function.
Also note
a =
8_? = %J‘D exp{— 4D+ A]z} cos kydk
=L I; exp{— (k2D + X))t} (e‘fﬁ” + 7% )dic
e 2
()
T 4.0
Then:
. o 2
ot e -
p(y’f':' r‘[o ‘,@e}{p( 4.0 )dﬁ

After a long time: (G&R 3.471#9 with # = 1/2, x

and for large ¥ this takes the form

=i y=h 8 =y44D,

p(y,m)n;_ﬂz(%)mm( f';‘)
" FgE @)= (/3)

=(+/5)

s

We can also use equation (Radon egn 1) to get the long time solution:



I.g(y,g — 00) =) 2CED J‘D (kED }\) coskydﬁ:

_ CM_D oo e!ﬁ’)’ +e_¢-b‘
[ (k2D+>\)dk

& __e® g
I = (&% +AD)

There are poles at k= £yMND. we close upward for ¥ >0, enclosing the pole at +HyMD. The integral is then:

EXp yi,"ND
oly,t —= @) = %2%17( J_exp(—yf)
2i WD D
-z (B)
{9 2
as before.
Long-time distribution.
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15. A long copper rod of cross sectional area 4=1 cm2 is initially at 15°C. At time £, one end (at

x = EJ) is placed into a vat of hot oil at 300C.
(i) Refer to Chapter 3 §2.5. Write the equation that describes the change of temperature at position

* along the rod at time &.

(i) Write an expression for the temperature ] of the rod immediately after the end is placed in the oil.

(iii) Discuss the use of Fourier and/or Laplace transforms in solving this equation. What determines the best choice of transform for this problem?

(iv) Find the temperature of the rod as a function of position and time for & >0
(v) Given the following data for copper, plot the temperature along the first 5 m of the rod at times

£=053515s,3.0s, 6.0s. Thermal conductivity: 400 W/mK Specific heat: 385 J/kgK Density 8.96 kg/mg.
0)

mcﬂ = —kﬂaz_T
f

a2

where # = 4.

@iy T10.0) = 300°C" Tix,0) = 15°C, x > 0.50 we may solve for 7= 15°C = 7 with 7{0.£) = 285 gng
72,00 = Ogor 5 5 0,

(iii) The Laplace transform is best suited to the time variable since this is an initial value problem. We could also use the Laplace transform in

space, but we do not have enough conditions at & = 0. The sine transform may work well since we know

T0.2) Letstryit.

(iv) Taking the sine transform, we'll call the transform variable 2 to avoid confusion with the thermal conductivity.



which may be integrated to give:

woo '
Nowat i = 0,
Fla,0) =10
o)
and thus
_ i
£ = JF R {1 (o))
Thus

EI?E%@ —em(%a%]}smam
- %I:d@j‘: {1 - E@(%ag]}cosaududa

Ly T [ ()

We can evaluate the integral of the delta function by using one of our delta-sequences.

5 _ I 5 Ce 121
[o Bu)d = g [ Gdu=lm = =5

(%, £)

Thus

7zt =To—Ta erf(x 412;3 ) = Th erfc(x 4";{‘;3 )

and so

Tix,t) = 15°C + 285“Cer‘fc(x e )

(8_ 96 kgfm3]

With the given numbers £ = 400 W/m*K ¢ = 385 J/kg*K # = pd, gomid =p = " Then

896 ka/m” ) (385 Jikg - K
7T ( am” ) ( 9-K) = 1. 46835'%/m
kA 4(400 YT |»<)'|

Tix,2) = 15°C + 285‘Cerfc(il. 4683 sﬂzfm) = 15C+ 285=C(1 - erf(Ll_ 4683 Smfm)J
Thus o St

= 300°C - 285'03;*(?1_ 4683 Sm,‘m)

200 4
25044
&
2009}
Eod vt
1004

Al

The plot show 7 versus ¥ in meters at times



t=035g (black, dotted line), 1.5 s (blue,dot-dash line), 3 s (red dashed line) and 6 s (green line).

16. A long beam is resting on an elastic foundation. The equation satisfied by the beam displacement is:
dy
Bl = g(x) — op(x
= el - o)
where 4{%} is the load and
& js a constant describing the elastic properties of the foundation. If the load is concentrated toward the center of the beam, then we may
assume that ¥ = U as ¥ — = Transform the equation, and find () in terms of

Lik). solve for the beam displacement if

() g(x) = Mgd(x —a) and

0 @) = FSE+ L) -s(x- 1))

KRV = 0 - af
thus
}7 = Q
KEI+ o
()
o= Mg IS(;\' - cz)e'_"':”‘dx = _Mg g
J2T Jon
Then
_ Mg é.—a'i'a
Jom KAE+ o
and
Mg pe ke ik
=2 _e gy
) am Iﬂ R o

We integrate by completing the contour (upward for * > @ and downward for X < &) There are poles at
14 . .
k= (L) et = 0,1,2,3
1)
and two poles lie inside each contour. Write

o= ()"

. = 1 = 3m .
Then for ¥ * & we close upward, enclosing the poles at kp = -8‘3:“"4,’{71 = fe ) The residues are:

lim W~ #o)
o BRI+

%mm exp(iBe™(x - a)) = enk exp(i’B%(l +i(x — a))
c

- 1+ilx—alilk -

Reslkn) explikix—a)) = .il».tp T

explik{x —a))

4p3ET 4p2EI
_ —%ﬁexp(:ﬁ%(l +s')(x—c:s))
and
Resfi) = m exp (iBe™™ (x - a))
- j;;“; exp(z'ﬁ%—l +s‘>(x-a>)
- gat}sggif Ew(iﬁg(_l Hilts _a))

Thus for & » &



=
-
|

(£ 1 (1 +1)eibEhmal2 4+ (1 —j)gﬁ'ﬁﬁfﬁi‘ﬂ]ﬁ]g'ﬁﬁ&'ﬂ]a
2 AR E!

Jorbbal2 4 (5 + 130 BTbcl2 Yo/ hmald
3R]
Mg

? (

= i ( ( B2 (a2 —g‘!ﬁ-ﬁfﬁ EJQJ e éilﬂqﬁfﬂ—a]ﬁ + e_"'eﬁ[)‘_‘z]'lzjg_ﬁﬁ[%‘ﬂ]&
8 giEivi

e 2 - nf 6352 (x - B2 limali2
T 5m Cos ﬁT(x a) | +sin ﬁT(x a) | |e

Now for ¥ # @ we must close downward, enclosing the poles k2 and %3. The residues are:

res(iky) = m xp(z.ﬁ’g=5m'4 (x —a))
_ W2 1+ N
el R A SR EE
and
reS(k3) = m Xp(lﬁeﬁﬁll‘q x _a)J

_ W2 -1+ N
_T%T;Iexp(zﬁT(l iz a))

and thus for ¥ < a :

Yix) = Mg (-27 )(% [313.5} )((1 + e 2kl 4 (1 4 ;-)ez'ﬁﬁh-alrzjgﬁﬁh-alrz

_ 2 Mg ((i— 1)e BEbrall _ (j 4 1)gitdZball ) bZlmal

8 pEI
_ 42 Mg V2 o) Csinf e 8 sl
= = BoEl C0s BT(x ) sin T(x a) | |e
Putting the results together, we get:
yix) = % T (cos(ﬁg(x = a:l) + sm(,ﬁ’gh = a|) )e_ﬁﬁh_"l'&

FM.%I ok i@e"h e

2 -z ® 2n L —ik

_ Mg e_’H"Q - e J_ Mg ska:Q
2x L

and so

_w_ 2 Mg snkre 1
e = I J;T ko AR+

and inverting we get:
4on M .
yix) = j' g Smkﬁ.:@ k4E}+ ae:hdk
- Mg e e’m = s 1 gy
2imL k MEI+
wo exp (Lik(L + 2x)) - exp (Lik(-L + 2x))
'[ ﬁ:(k“E!+ c:e_:l

dk

- 2;?:45

The integrand has poles at:



4 .
kn = (%) giM2mnl = (12 Zand ik, = 0
We evaluate the integral by putting the contour slightly below the real axis.

First term:

For L+ éx > 0, je x > =L/2, we close upward enclosing the poles at *0,%1,and

ky. By method 4, the residues are:

exp(Lik(L + 25)) o SB(1 +i)L + 2x))

Ro= i —mia S-1)E + o
exp (L6 - 1(x + £) )
- o - 5E]

4
where = (%Jl

exp (Lik(E + 2x)) oo (261 + )L + 2x) )

Y T S-1)E+ o
(- 586+ D(x+ £))

o - 5E]
and
exp(Lik(L + 2z))

R =
YT StEIa

1
3
and the first term is:

o BED (%iﬁ:(ﬁ. + 27:))

= k(B + o)

2mi fem(_gﬁ(x : %JJ (EXP(%ﬁi(x + %)) + exp(_ﬁﬁx‘(x + L

T1>=I

o — 5K

= 2mi

(Exp(_%ﬁ(xJ' %JJ 2,305(“@’3(X+ %J) ’

o 1
o = 5EI Z @

When % < =L/2, we close downward enclosing the poles at 2 and &3.

The residues are:

Exp(_gﬁj(j+])(x+%J) exp(%ﬁ(l_i)(x"’%J)

Az = o - 5E] - o - 5E]
and:
exp(%ﬁz’(l—i)(x+%—a]] exp(%ﬁ(l+z’)(x+%—a)]
£ = o — 5E1 - o - 5E]
giving

s £5p [ Sik(L = 2a + 2x))
= k(K*EI+a)

-2mi exp(%ﬁ(x+f)] 2003(%;3(;[ + LJ)

o — SEF

Tl = j dk

The second term is evaluated similarly, giving:



. s exp (ik(=L + 2x))
= k(K'El+ o)

= 2ni(ew(_%ﬁ(rﬂj 2605(§ﬁ(x—

o — 5E]

3|

))+4)

for x > LiZ, and

. v £2p [ Lik{=L + 2x))
Chl E(KE+ o)

exp( £-6(x - £)
=_2m-( Xp(a—SEI ch"“(%ﬁ(x_%n)

for & < L/2.

Thus we have:

Forx » Li2
yix) = (Tb T%)

mli_:fi.ﬁ_ J2003 (%B (x+ & J +

(”':fi’ scos(Lp(r-£)) + j
=0 -

%B(x)) cns[@(ﬂw %)]exp(—gﬁi.)
T o-SE

b
Al

al=

_ Mg TR
L —cns[@(x—%)]exp(%ﬁi.)

B 2Mg EXp (—%Bx} {CDS (%ij cos —BL = sm( BxJ sm—BL} exp( EMJ
IR —{cus(%ﬁx} s—|3L+sm( BxJ sm—BL}exp(ﬁBLJ
Mg BEP (—%Bx} Cos (Eﬁaxj cos —ﬁaL sitth 2= "5 BL

I SEF— o +sin( |3;;J sm—ISL cosh 2= "E R4

ForLJ’Q P —Lf2 3
Fitd
¥(x) = 25Ty — T3d)

2t

Mg Tzws(%ﬁ(m %)J + 1
A

(00 ]

+T2°°5(%B(x_ ?J]

. EXp (—gBLJ exp( 1 BXJ 3 £08 (£|3 JJCDS TRL- sm( 12 BxJ sm%BL}

n 3
7| = o — 581 +exp (%ng cos (% cos TBL+ sin(%ﬁxj m%m

exp(-LpL
= 2%(% + }i(_—;;i,J Cos ";_Bxcus £Eu'Lcns %Bx— sﬁl%ﬁxsﬁl@ﬁ;ﬁsiﬂh%ﬁx}

Finally for & < -Lf2

ylx) = Ta<) i
& 2= Bx
= 2% XPS(E;_E J (cos ”{25 pxcos ”f BLsinh ‘If BL—sin%Bxsin ”f BLcosh J2 -

L LN e

17. Find the Fourier sine transform of For the function



8 =4

(a) The sine transform is

(b) The cosine transform is:

SN, find (a) the Fourier sine transform and (b) the Fourier cosine transform.

E I; e " sinx sinkxdx

_ g @ Qz'x_e—a'x Qz'h_e—ih)
J;IDQ ( 5 )( L

= __1 f% Ime—xﬁ'xﬁ'h — g atETks _ gankn g g R
0

- -1 f g TR xR g TR xR R + g AR
Ry Ve s s s oy s g

lJZ 1 _ 1 _ 1 + 1

NT\ T+ 1) —1+3(1-k) —T+ik-1) -1-31+4&)

lﬁ(g ke J - 2 _2k

AVER g4+t Tt +4

J%J‘;e_“ sinx coskxdx

oopew _ f aT g é,z'.i:x + é—!.i:x

J;ID‘" ( % J( 2 ]d"

j_EJ% I;g-xﬁ'xﬁ'h + g AR gk o gy

1 2 ( e—xﬁ'xﬁ'.i;x " e—xﬁ'x—i.i;x _ e—x—a'xﬁ'.i;x _ e—x—a'x—a'.i;x

GNT\TT+qp+1) —1+H1-&) -1+4k-1) -1-H1+A)

=1 g( 1 N 1 _ 1 _ 1

ZNT \Tak+1) —1+41-%) -1+ik-1) -1-#1+&)

ig(4k2—2) Pz—kz
EHA L WY Tkt +4

18. For the function ¢, find (a) the Fourier sine transform and (b) the Fourier cosine transform

(a) The sine transform is

Jg.[;xe'“" sindxchs = g{;xe'“"(%)dx
= %JZ rx(e—ﬂlxﬁkx_e—m—;h)dx

_ 1 —dhks | e—mﬁh )
B 21'(x—c1+s}c r —a+ik

_ L e—r:tx—a.i;x
21 (x

The integrated terms vanish, leaving

(b) The cosine transform is:

[2 e ] 1 (2 g ok
fﬁxe“"smkxdx—z ﬁ(

@

5

e

—itx—Tkx

= os+.tfc)2

2

+
(e -

ik)?

1 (2
ST T

- F Gy

1
= os+sf«:)2 (- — ik)? )

)

)l

)

)l

o

w



Ej:xe'msimbcdx EEMW(M)C&

%gﬂx{e-mﬁh_i_e-ax—zh}dx

_1 {2 (x gk
TOZANT T etk

The integrated terms vanish, leaving
e

{2 [ xe ® siniodx = 1 2 g
r i3 ( = oz+.tk)2 (—o&—s’fc)2

12 1 1
-2 "/;((—oa+s'k)2 " (—ox — ik)? )

T -

Toa? + k2

—cti 2k

)

19. Show that the Fourier cosine transform of the function x# for 04 p < 1ljg

J;_ ks _r':p) Hence show that the function

(== —_ - _ . (== - -
_r e s Hkx - e otx ke _r e itk
o *0 -+ ik —a—ik lg Y0 —c—ik

*)

/7 s its own cosine transform. Obtain similar results for the sine transform. (The results of Chapter 2 89 may prove useful.)

am

J_I 2 coskxdx = LJ‘ X 1( ahs +e_’b‘jdx
0 Jm 10

In the first term let & = ~ikx and in the second let ¥ = ix

= (1) e () ]

;:n: [( e ] r 1P~ le“‘dwr( e n ] j' 1P~ 191*5{;‘.;]

L rgwn2 +e’i”""2)rup le™du

ﬁ

.J'Z‘II: 13
2 1 £
= & —cos I
s T
where we can move both integrals to the real axis since there are no poles between the imagnary axis and the real axis.

In the special case # = 172, w e find

= je 1 =_ 1
Felk) xkﬁﬁ N

so this function is its own transform.

The sine transform is

Eﬂxp'l coskxdy = Jﬁi Exf’ L{e® — o™ yalx

el %L g

— 1 (e—apilﬁ e:pﬂﬁ)rup—lema’u

AT I3

% & anZre)

so that with ? = 1/Z we obtain the same result as for the cosine transform.

20. Determine the form of Parseval's theorem (equation 7.10 and 7.11) that applies to the cosine transform.

Following the method in section 7.3.5, and remembering that the functions are defined only for positive #:



I;mﬂx Iglx dx % J‘; dx I;O Rk cos kxdk I; diFw ) coswxdo

‘[; dkj‘;dwF(k)G(w)% I; coskx coswxdx

Then from the result of Problem 6.13,
IS‘” gl ldx = I;“ ke I;’ deo U GHleo Yotk — o)
= I‘;‘ Pl Gk

The same expression holds for the sine transform.

The equivalent relation to 7.11 is thus:

[V Pdx = [k 2dk
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Chapter 7: Fourier Transforms

21. The magnetic field in a conducting medium diffuses away according to the equation:

FHix,t) _ dHxt)
A S

Solve this equation by taking the Fourier transform in space and the Laplace transform in time. Find Hix, 1) if the
magnetic field at £ = Oisa step function:
Hy if —df2 L x < di2
Hix,0)= < ° _
0 otherwise

Express your answer in terms of the error function (Appendix 1X).

aH _ kKt
o pa
Thus
_ -kt
H—Aexp( T J
Att =0,
' _ 12 i A2
Hk,0) = J;HDMT
Thus

H'(ﬁ:,.ﬁ) = J%HD&RE&Q—EH#H

We may invert using convolution and the results of problem 5 and Example 7.2:

Hix i) = J’:;_ Ha fg If{z g huVunh g,
b

= bl rmr
Let:F 2 * " Then

H(x,f,j - HI:I Ih‘d&]ﬂfﬁﬂ"&ﬁé‘?i

T Jrdiz) g

%Hﬂ(ﬁl{((x +2cx’f2:l $J _ erf(l:x —zcﬂE:l p;_u:r ))

(=)

The plot shows HiHu versus */4 for 440 = 0.1 (black line) and 0.5 (red, dashed line).

22. This solution is similar to that for problem 21. The transform is:



where
22
Bk 0) =4 = 'D—Daexp(—kf )
(Example 7.2 with @ = 1/&). Thus
2 2 2
Bk, t) = 20 aexp(—kf )E_F:D’

and thus
+o 2 .
olx 81 = 1 J‘_m o, EEp (—kz (% + DﬁJ Je’hcﬂ:

23. Develop a three-dimensional version of the convolution theorem. Use the result to obtain the solution of Poisson's

()

£

equation

Vi =

Evaluate the resulting integral explicitly if fs'(?:' - gﬁﬁ"j.

If the transform is of the form FGJG[kJ then
o [ (R)o)e5k - 1 [ () L [ a(@)e T

(2.?{33?2
- (le)m Ij g(U)/(R-0)su
The transformed equation is:
_.3:2'11?' - _R(EJ
£0
o )
-::D(k] "

Now the function L& inverts to

1 o ki o _ 1 o gl glep o
(ZTIZIIBE .[—00 P 4k = (2?‘[)3'|2 .[g .[-1 2 k dkduzn
1 et ‘Hdﬁc

-1

J2Zm e0
_ 1 oo ez’.i:v _ e—a'.irr
N2mir '[':' 4 o
1 e gl
ek
NETIF '['“‘ k

The integral has a simple pole at the origin. With

¥ positive, we close upward with a small semicircle over the pole and a big semicircle at ®- Then

oo
e IR *f -0
—e semicircle radius £ semicircle radius R

The integral around the closed curve is zero by Cauchy's theorem ,and so the principle value is the negative of the



integral around the little semicircle:

J%ir(m) ) E%

and so

- 1 = ¢ 2(U) 1 s = 1 p(U) 3
*x) (2w)3EEITWdU 4?r£n‘|‘|i' Ei|dl_'i

as expected.

Now if # = gﬁﬁ"} then we have:

g5(8) g
-:p{i’) 4?:5 I|§¢' [j| 4?r£|3r

as expected.

24. Find the three-dimensional Fourier transform of the charge distribution

o(f) = £

dar

R[FE] = 1)3E Z;L k7 o

+1 pldn 2@"" P
bl s

+]
e
-1

_ 1 LI é.—a'.i:r - é.z'.i:rd
2027127 Jo¢ &

—la g e

g
2(2m )32 J0 —tkr

o0

1 ( é,—z'.i;v—rfa _ é.z'.i;v—rfa ]
—215,3:(2:.-:)3"2 —ik—-rla  ikr-ria

0

= 1 ( 1 - 1 )
Dik(2m)?E N -k - lla ik - la

1 ( a’ ]
(2w )R A k2a? + 1
25. Take the Fourier transform of the three-dimensional wave equation

d’s - w2V = AN,z
g (%.¢)

and solve for the transform S(E’m ) Show that the introduction of a damping force (through the addition of a term

d'.s
% on the left hand side) moves the poles off the real axis. Invert the transform in the case @ — 0 for the case

f(R.2) = e,

(vzﬁcz —wsz = S(E,m
_ F
BHE — B
Thus



s(®.:) = 1 e Le’ii"'“ciﬁdm
l: ‘:l (2?()2 I-mj-oo pefd — 2
The integrand has poles at @ = vk, on the real axis, provided by the differential equation, as well as poles of the

transform <. The damping term modifies the transformed equation:
(vzﬁcz -w? - z'mc:ejS = F(E,m]
and the poles are then at
_ Tiat JhtE? - a?
2
and both are in the lower half plane. The integration path along the real axis passes above these poles. Thus in the

limit @ = 0, we keep the path of integration above the poles.

F(R.2) = e 7R3

Now we look at the function
0

(foo) = b [0 [ [ o [ty e

+1

-1 _[2“ Ay _[: rlgragyg H

(2my32 Jo —ikr |
— 1 W =M TR g
= WJ‘D re™e (g e Ydr
o prilian) | o griclenl) L geclled®) [T pm o ge-lledd
S (’"—uan;c . .[u e+ T TlTa-ik | .[u —1fa—z';:‘f’"]

gl
i—Lia — #)*

]

1 [ 1 _ 1 }= I 4’
VITk | (~la+ i) (la - k) VIT (14 k%)’

__ 1 gi-liasl)
JImik | (—lia + ik)*

a

da 3 1 - z'l:i-a'urdm

_ 1 o 2 +1 - 1
s(X.) = In kzdk.[n d(i)kj-l dmj-m 2 (1”:2@2]2 v —w?

(2 )?
For £ < U we close upward and the result is zero. For { # 0 we close downward, enclosing the poles at & = Tvi.

a3 2 x 1 1 1 ekt dkrativie
s(%,t) (27)3E .[:k {ﬂcﬁ dtbkﬁl A (1 +k2a2)2 vk {e g Ch )

=Tk _

_ _ Amia® r dip_ 1 = k*a? (e _ ¢ gl | g ot )
v(2)Rir 0 (1 4 k2a2)2
Z : 1 —.fi:C2 2 ] HhHv
- %I:dk—ﬂz{eh e _ gtk

J21

The integrand has two second order poles at ka = *i. For 7 7 vt we close upward for the first term, enclosing the

(1+k2a?)

pole at ka = +i. Similarly, for ¥ < v we close downward, and the pole at ka = =i s inside. Then the residues are



e 1 - kzaz T vz
i Y S S S
—la cﬂ:( +3fﬂ) (1"‘.352(22]2@

d 1= .5.','2(12 EEioa il
il dE g (k £ ifa)?

L ]jm —2ka®  _ o 1-k%a® + 1 -k%a® :i(r - v.ﬁ) Pl
gt e\ (ktifa) (ktie)® atlk tifa)?

= 1| _Flia _ 2 o 2 il — i) | g Tl
a ( 2ifa)? +21‘fa)3 at(2ifa)? ( ;
— .?" _ Vf,:] Flr—vt)la
Ec;t

The result is similar for 7 # V£.

Thus for * < Vi

s[i’,.ﬁ] = E%(Emjza%j ((r — e )e*rm2 — (3 4yt Jp-lronia
= ”EK {r + v e — (r — pile +(r—ﬂ)'a}
atvr
= 2?f4 é‘_mal:l:.?" + Vf,:]é‘_nlﬂ _ l:.?" _ Vﬁ:]é'ﬂa:l
vra

whle for 7 # Vi

S(i’,ﬁ} — 2?C4 g—n'a I:l:r'—vﬁje""lﬂ + (?" + Vﬁ:]é‘_mlaj
WY

At ¥ = vi poth solutions give the same result.

Red vifa = 1; Black: vtia = 2

(b)

= 1 = = F zﬁ41' ™
Sﬁf,.ﬁj J‘_m‘l‘_m mé WIS

where

Flw) = L [eo s (Fya9ad%5de = —L



1 2 n 1 1 2E41'
S(i),f) WE.’% Cﬂff} Cf(bj;ﬁl dl_ll':;.r:o wé‘ K

J'“’kz.sfkj" i exp(.zkru)%

(21'1:)2

_ Ez.i:r_e—z.i:r ez.i:u:r_e—z.i:u:r

B ( ;.1;)2 rkdk ikr 2v

-1 r oikbrv) ok gdkbve)l ok g
2(2m)%yp ¥0

_ 1 — ) —

= o= [B(r—vi)— &(r+vt)]

Since both # and £ are positive, we may drop the second delta function, to get

s(R) - A2

m?

26. At £ = 0 the distribution of salt in a pipe of fresh water is given by

plx,0) = po (%+ %]

Solve the diffusion equation to find the salt distribution at £ > U'in terms of the diffusion coefficient £

The transform of this function is a step function plus a delta-function (see, eg, Problem 3 where & = 1).

iy j’:(sin-:xx_,_ljé,-mdx

’“UE'U] in ax 4
.[—m( Zm'x }+%)24th

1 ['.I-oo é,z(m—k)x — é.—z'(m-i—k)x

NoT 1
Each term in the integrand has a simple pole at the origin, although the original function has a removable singularity

there. Thus the result of the integration should not depend on the method we choose to avoid the pole. We choose to
put the path under the pole.

o0 dx + 2;1_“5(;:)}

—a 2iox

In the first term we close up if k= a < 0and down if
k—a >0 The pole at the origin is displaced slightly downward so it is included in the lower contour. Thus we obtain

zerofor & — @ < 0and ~2mifor £ — @ » 0. The second term is treated similarly, to obtain
o(k.0) = 8 [E 15t + o) - e - ] + 22wk
This function is a box that extends from 2 to *2 and thus
pﬁf.-ﬁ] _ J‘ f k20t ik e 20 J‘-m S(ﬁ:jg"‘”‘é";m’dﬂ:

4
We integrate the first term by completlng the square:
2

2
— k2Dt + ikx = —(mﬁ— X ) =
2 D¢ 4.0

and the second using the sifting property, giving:



00+ 21 el (o5 o) -

L . . . . 2 = 1. . _
Distribution of salt at various times. The horizontal axis is @*. Dashed: @“f¢ = 1, solid, 2; dots, 3. Blue: £ = 0.

27. Sum the series

o

Z(_ljp _ 2_::' +1

p=0 e+ (2}9 + 1)2
by taking the Fourier transform of each term, summing the series in the transform space, and then transforming back.

First we transform the function:

o kA dx

Falk

‘;’E_WJ‘ﬁx + 5

The integrand has poles at * = iz (# = 2p + 1). For

% > Uwe close the contour downward, and we close upward for £ < 0. Thus:

—k[—n
Foli) = Jﬂ_(—zm;é‘ zfm] fork > 0
AT -
_ %E—bz
while for & < 0
—a.l:[m]
=2 A
Falk) - (2mi)2 o = e
Thus

Thus in the transform space, the sum is:

Filk) = i(—l)pﬁ HiZpH1) = f -LHZ P (o7 2H)?
f 1+e™ J7 2coshlk| J; Zcoshk

where we recognized the sum as the geometric series (equation 2.43) with £ = ~¢ +) and I < 1.

Now we transform back:



- 1 ey 1 thx
= = dk
Ax) P J““ 2 Zcoshk

The integral was computed in problem 1d.. The result is:

Ax) = 4 cosh?(c?m@j

28. Use the derivative rule (7.6) and the symmetry property of Fourier transforms to evaluate the transform of * "

We already know that the transform of the function 1 is

vem k), and so by the symmetry property and the derivative rule:

Filix)") = J2x (1) Z_3(-k)

Thus

Flan) = o 17 LK)

We can check our result by inverting:

Ax) = ﬁﬁ: m(i)”%a(k)e%ﬁ:

i”(—] :'Jn(ix:]né‘!h |k=B

by the sifting property of derivatives (equation 6.7). Thus

as required.
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Chapter 8: Sturm-Liouville Theory

1. Find the eigenfunctions for the Helmoltz equation

2
Y Ly =g
dx
subject to the boundary conditions
y=10
atx = Uand
¥ =0
atx = L.
The functions that solve the equation are
¥ = sinkx
and
Y2 = coskx

To satisfy the first boundary condition we must choose the sine. Then to satisfy the second we have:

e (222

so the eigenvalues are:

and the eigenfunctions are:

2
Y 4y =0
dx?
subject to the boundary conditions
av+&y' =10
at* = Uand
ay+fy =0
atx = L

The general solution of the differential equation is:

v =Asmkx + Bcoskx
Now we apply the boundary conditions:

3y = kAcoskx — kBsinkx
Soatx = 0:
ab+hikd =10

whileat * = L



cfdsmkl + Booskl) + fildcoskl — Bankl) = 0
Blocoskl — Skankl) + Alwsinkl + Skcoskl) = 0

The two equations for 4 and £ have a non-zero solution only if the determinant of the coefficients is zero:

@ bic _ 0o
acoskl — Shankl wsinkl + Skcoskl
or
alosinkl + Skcoskl) — bkl coskl — fkainkl) = 0
sinkl {ac + 58k% ) + coskL{afk — bak) = 0
or
tankL = 2%~ 4F)
ace + b2
This equation gives the set of eigenvalues. Then:
B=-5k4

and the eigenfunctions are:
- iy — 2
y=A4A (smﬁ:x Ekcosﬁ:x]

lf& = @and # = F.then we get:

The eigenfunctions are:

Check:at* = L

as required.

Now let @& = & and 8 = 2e:L. Then:
_ kfba—af) _ kl{eo -alo) _ kT
ao + B8 aw+alekil? 1+ 2k%1°

tan ol




tanx =~ oA , Solutions are: * = *2. #9843 6 2038 e,

3. The displacement of a square, vibrating membrane of side L satisfies the two-dimensional Helmholtz equation
2 2
Rit4 g + a_g +k%s =10
dx e
where & = w/v w s the frequency and ¥ is the speed of waves on the membrane. Suppose the membrane is

fixed atits edges at ¥ = 0.L and ¥ = 0L Separate variables and solve for the eigenfunctions 5(x.¥). Show that
the system exhibits degeneracy, that is, there is more than one eigenfunction corresponding to a given eigenvalue

2 . . . .
£ Inthe particular, show that there are two eigenfunctions 1 and =2 that correspond to the eigenvalue
2 -5 2y . . :
ke = 5m=/L* what symmetry of the physical system causes this degeneracy? (Hints: (a) where are the nodal

lines for the two modes? (b) what happens if one side of the membrane is slightly shorter, equal to L- E?) Any
linear combination of the two eigenfunctions is also a solution. Find some of the nodal lines for combinations of

the modes, eg 1 * 52. How do these modes reflect the symmetry of the system? Can you find an eigenvalue that
has three-fold degeneracy? If so, what do those modes look like?

Separating variables, we have & = AT where:

The separated equations are
X' = -e2¥and ¥ = - (k% - o2)¥
To satisfy the boundary conditions we need the solution A = sinox gnd the eigenvalue & = mm/L,. Similarly

: 2 {2 2N 2r2
¥ = sinfumyiL) and thus © = (2 + a2 )m2/L The eigenfunctions have the form

AEX o RETY

L L

S = 50

Thus the two eigenvalues &m» and S=n have the same eigenvalue. This is a reflection of the fact that the system
may be rotated by ™2 without change. This rotation changes “=n to ~%am- Changing the length of one of the
sides destroys the symmtery and removes the degeneracy. The nodal lines for the mode &m= are at ¥ = pLim,

0<p <mandat* =gl 0 < g < 2 Rotation by T/Z sends one set of lines to the other. The linear
combinations look like:

& = smn T Conm

With #2 = 2, » = 1Weget

g = smz—xsmiﬂ+ Csmz%smz—y
with & = 1, the nodal lines are given by
sm% sm? + sm% gif ?;y =10
ESstm ?;y (cos% + cos =& 7 ) =10
or
T o pos FE
cos 7 cos 7

that is



|
I
I+
|
I+
=

The solution that we need, with 0Lxysl is

yv=L-=x
a diagonal line. The square has reflection symmetry about this line.

i 2 . .

If we can find a number &° that has more than one set of values of #%,% that satisfy the relation
2 - 2 2 2472 ) _ =2 3 A2

k2 = (m? + 02 )m¥L , we will have a greater level of degeneracy. For example, 20 = 3% + 5% =7+ 1. Thys

the eigenfunctions £5.5: %1 and 1.7 all have the same eigenvalue- a three-fold degeneracy. The combination

. . om . . : . T
Smﬁﬂsm_y+sm?ﬂsm_y+smﬁsm_y

L L L L L L
looks like this:

These functions also share the rotational symmetry of the square.

4 A set of eigenfunctions ¥» (%) satisifies the Sturm-Liouville equation (8.1) with boundary conditions (8.2) The
function € = U. Show that the derivatives ¥»(X) = ¥4(%) are also orthogonal functions. Determine the weighting

function W{x) for these functions. What boundary conditions are required for orthogonality?

The differential equation is:

d D 4 ppy = 0
cz’x(fdx) i

Multiply by ¥r/um:

Yrn A g =
}\m fix (J{ymj i W.J”m.}"n D

Now, as we did before, multiply the equation for ¥» by Ymi*n, subtract and integrate:

I} Vn d . _ ) d . —
J‘a(}\mawmj-i-wymyn [}\_HE(@HJ-FWJIJM}J I:I

Integrate by parts:

f(i—"myin - i—’:yéj ’

- (5 -3 i =

aQ

Thus the integral



unless # = ¥, provided that:

This will be the case if, for example,
(a) fla) =A%) = 0. asin the case of Legendre functions.
(b) ¥ia) = ¥y(&) =0

(© ¥ia) = U and yib) =0

5. Use the recursion relations to show that the derivatives F 1) of the Legendre polynomials are orthogonal on

2
the range (-1,1) with weighting function (12 in agreement with the results of problem 4.

Using the ladder relations, we have

Pr=—1L (P —uP
; 1—;::21: -1~ B
Thus:
[L (1 = B2V Prndis = b [1(Pry ~ P1)Pds
Integrating by parts on the right hand side:
[ PraPrds = PraPul? - [Pl Pmds
and
[} BPiPrds = ;J:P:Pmltl = [(B1+ 4P;) Prach
1= [(Froy + 0+ 10Pr ) Prndls

Thus the right hand side is:
1—(—1)*’*?**1—{9}_1%@ {1+ (-1) I{PH (1 + 1)P;)Prdps

(I + UIP:Pma’ﬁ
21+ 1)

DI+ 1
Pn’

_ 2
which demonstrates that the i are orthogonal with weighting function (1 H ]

6. To obtain Fourier-Legendre series we often need to evaluate integrals of the form:

1
= [, & Prlpldy

a) Start by evaluatin f? and i
(@) y g



g = I,; pO P )dy

This integral was evaluated in the text (Example 8.2). We found:

£=_Pmmn=_vw%u+w!=vw%u+uu-m
!

f i+ P [+ TP
_ DF - _p -2
G+ g - 1)1 @+ 10

for { odd, and zero for { even (exceptf =0, 38 =1

We do the next integral by parts, using the recursion relation (8.39):

Frq - P ) ‘1 _ ¢l P — Py i

A= T Bt = (

The integrated term is zero, and we can use our first result to do the remaining integrals. The result is zero if lis

odd, and for { even we get:

f.% =ﬁ[£§-1_fg+1]
— 1yl = — 1411
20+1 HI (I+2)
(=192 (7 - 2311
= i+2+7-1
20+1 (.E+2)!!I: )
1= 3
=i-1 (5-2)'2':
1) (I + 2311
.Next:
1 1 'un+1 1 1
liI?':'q=‘|‘IZIP:P‘I:llifillﬂ?ﬁ=‘|‘IIIP: A = a+1 D= a+ 1
and
N LORT MR W P P i R
1= [t Palpldn = [ et vz | T we

(b) Now working from equation 8.37 we get:
_ 1 1 i’ _ 1 i’
iy = [ Pdp = [ w"Prydy
| | 1 =
= wB | = [+ D Prdp = pPraly + [ e Prad

1-(m+ 1) -1+ a7}

So:

= A -1

P aEieT

(c) Use these results to "step down" until you can use your results from (a) to obtain an explicit expression for i,



First consider the case # 2 £ We step down using the result above to get:

_ _ m -1 nin-1) =
= n+£+1j?‘1 C (r+l+lin+i-1)77
3 alr—11-(n-I+1) e

(n+i+1n+i-11 (n-i+3)7"
_ alr—11-(n-I+1) ( 1 )
m+i+1)n+i-1) (n-f+310vn-I+1
-1 (m-I+2)
(m+i+1)n+l-1) (n-I+3)
7l (n=I+ 1)1 7l

T i+ i+ 0 m-Dlm+i+ 10

Let's check this against our previous result for i

mo= xll = 1
Lol e+ 2311 n+2

which checks OK.

Now if # < &, we get:
min— 111
B = n
b o a+i+ Din+i-1){l-n+3) ™

which is zero if { = % is even and for { = # odd we get:

- L e oem 2
j?"I:f+,»z+1j|:J+n—1)---(;—,»”3:)(” (I—n+ 1)

N i

B ey ey

1
Check against the result for i we got zero for 'odd (i.e. {=T1even, as required.)

1 ooy (£ =3
h= {7+ 2300
which checks with the result calculated in part (a).
If { =%, Then
Al —1)-1 - x

Do ln+2e - 10 (207 (2a+ 1000

7. We have already verified in the text that the formula gives the correct normalization for P1(x) and £2(x). Then:

2 1y + Pa(x - “fix+ S N 5£x+ Py d—zx— Plix+ 1)
L= e+ 1 = - e - e 1 e | ) (1)

dx* &x X dx™ dx*
= G- 1l 1 Pl - )L 1 D4 1)
X X

Now evaluate this at ¥ = 1. All terms except the last are zero, and thus:

éf;(xz-ljj - na!

%=1



and thus

1 d 2y =

20zt

5=

as required.

8. Evaluate the integral

+1 Pfl:x:] dx

k W1 - x2

. . . . {1 - 2
and hence obtain a Fourier-Legendre series for the function 1Ayl —=x=.

startwith { = Dand { = 1. Then:
T 1

fD = q

1-x2
Making the change of variable & = sinfl, dx = cos dt

cosBd8 = J‘dﬁ =8 = sin_l I:xj

J‘Jﬁr—rq =I cosd

and so
| -1
Iy = s (x)|_1 =2z 1==w
and

f1= 1

Indeed the result is zero for all odd ! because in that case the integrand is odd.

Next use the ladder relation:

(1)
. b AP lx)y - —2LP,_

5= —i Piix) dx = _11 -1x) !
1-x° 1-x°

fx

and integrate by parts. The first term is:

*1 + il + .
P 1 - 52 ‘ + (3 Pal-22dr = 0+ [7 Pl 1 -22ax
-1
Thus

—f1-1y¢"p I N e B = _ 2
i (1 L) [ At -a2ar = L [T P JT-x2dn

and using the ladder operator again, we get

_ =R Py - xPp _ .2
b= S (PR e

I-1)2 .
(-1) h - [ xPrlx)
! -1 |'1 _ x2

In the second term we use the pure recursion relation:

+] xP;_llixjdx _ 1 + (i- 1)Pg-2|ixj+fPIdx
L2 2i-1y+ 1471 2

1-x
and thus



_ -1 -1y _ -1
i ] I*"z(l 2;—1) -1

Rearranging, we get:

Stepping down, we get:

B ((2?2;)!1!3” )2“

ﬁ = > anPulz)

Thus for the series we want:

we find
a, = 2n2+1jj Palx] 4. 2;351;”
W1 x2
and thus

_ 2
== - 2 pan+ (B ) i)

f z
We can verify the result by plotting the first few terms along with the function 1Al -x (black line). .

I1 -IZIIB -IZIIJS -IZII.4 -IZIIE IZIIJ IZI.I4 x IZII.G IZIIB 1I
Red dashed line, 3 terms. Blue dot-dash line, 4 terms.
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Chapter 8: Sturm-Liouville Theory

9. Write Laplaces's equation in oblate spheroidal coordinates (cf Chapter 2 problem 13), separate variables,

and hence show that the solution requires Legendre functions in both the coordinates ¥ and ¥- Argue that the
solution exterior to an oblate shperoidal boundary requires the use of the Legendre function of the second

kind, &
Oblate spheroidal coordinates are defined by:
o +iz = ccoshiy +iv) = cooshu cosv + icsinhu siny

We want to find the shape of the constant ¥ and constant ¥ surfaces. First eliminate ¥ -

Cosy = N and siny = —=

ccoshu o sinh

Thus

1 =rcos

2 2
2 P, — o =
v+ sy = (—J + ( - ]
cooshu csmhu

Thus the surfaces of constant ¥ are ellipsoids with semi-major axis “cosh¥* and semi-minor axis sinh.

Similarly, by solving for coshi gnd snh, squaring and subtracting, we find:

1=cosh2u—sinhzu=( 2 )2—( £ ]2

£COsV o sy

so the constant ¥ surfaces are hyperboloids.

=+ .
The £ ~axis is described by £23V = 0,ie. ¥~ =2 Thenz = Zesinhu which ranges from ~* to t= as ¥
does. The z = U plane is described by ¥ = Oorv =00rv =7 These choices correspond to different

regions for £- But # is always positive, so we don't need ¥ = T Here w2 Av Ltwmlignd 0w L e

Next we look at the line element:

Note:
dp

canhucosva — ¢ coshu sinvdy
and

R
I

ccoshu sinvely + o sinhi cosvay



ds® = dx? + dy® +dz? = dp? + pPd¢? + dz?

= (csmhucosvdu — cooshu sinv.:fv:l2 + (ccoshusinvdy + canhucos v.:x’vjz

+ (e coshu cosv )2 dw?

_ .2 sinh® cos®vdu® + cosh®u sin®vav? + cosh®u sin®vdu®
+sinh®u cos2vav? + cosh®u cos?vaw?
= o2 ((.:fuz + .:I’v2] (l::oshzu sin®y + sinhu coszv) + cosh?u coszvdwz)
o ((cx’uz + .:I'v2) (u:oshzu (1 = coszv) + (u:oshzu = 1) coszv) + cosh®u coszvdwz)
= g2 ((duz + r:fv2] (l::oshzu - coszv) + cosh?u coszvdwz)

= hidu? + hidv? + hidw?

Thus

CJEOShEH - costy

ol
—
I

ol
28]
I

and

By = ceooshucosy

. 2
Now we are ready to write the v operator:

T2p = 1 fi(;ﬂz%@)Jri(ﬁk @JJri(fH;ﬂz@J}
Bihohs Ldu\ kA ol by dw \ ks Ow ),

- 1

= %
(coshzu - coszv) coshicosy
2., _
{Bi (coshu Cosw %ﬁ J Bi (coshu cosv %( cosh 131“ cos®y %)}
coshucosy
- 1 1 4 b 1 a felesd
(l::oshzu - v) oot B (coshu 7 ] + 3 (cosv = ]}
+ 1 F
(coshucosy)? Aw?
Laplace's equation is Vip =0, Next we separate variables:
= Ul ) Vv )W)
Tih = = W I ¥ 3 bz 0L ooa A
(coshgu — cos v) Lcoshu du (n::c:s - ) CosV gy (cosv ch J}

.UV W
(coshucosv)?® dw?

2.
Now divide through by TF#. and multiply by (coshacosv)®

o - _(eoshucosv)® 2 (comudd )+ — L8 (cosv )} + EF

(coshzu = coszvj L Ifcosh Ob Ty Trosy A A0 Y A _

The final term has separated out: it is a function of ¥ only while the other two terms are functions of ¥ and ¥

. . . . 2 .
only. Since ¥ is our old friend #: we choose separation constant ~*" so that the solutions are



I = Eﬁmw
Then:
2

_ (coshumcosv)® 1 3 ar7 1 3 ar
[coshzu - 50521;] U T coshy O (EOShu the ) Frosv E(EOSPEJ} m’

(coshzu = coszvjf(coshu cosv:l2

Now multiply through by

BHJ ) (coshju - coszv;l
o
v (coshucosv)?

R . I O 1) 1 8
[coshu du (cos “a ) Frozy e

- 1 d At 2 1 4 ar o
= coshu 2= + cosw2l —E
[coshu o ( ch ) coshly Poosv av ( ch J costy
Now we have separated again. We can recognize each of the pieces as Legendre's equation, so the

H+1y

(EOSV

separation constant is

L9 (rosp @) - 2 1jge1y=0
Frosy e (cosv v J cosly I: j

and

1 d alf e _
h -+ 11=10
Ticoshy o (COS o o J cosh?y l: :I

In the lVequation, let b = sinv, du = cosvdy

) — .2 _
E|:|:'1 B jt’e"] +i+ 1)V
The solutions are:
V= Pu) = PP(sinv), of OF(sinv)

In the U equation, let £ = fsmhu, d% = icoshudu cosh®y — sinh®u = 1, go cosh?u = 1 - £2

— A (-2 )7 -l W+ =0
ggl (178 T - )T+ 22
with solution
LF = PP(ismhu), (F (7 sinhu)
Thus the eigenfunctions are of the form:

e (PP(sinv), O (sinv) ) (P7(isinhu), OF (i sinhu) )

We cannot eliminate the &s here because the argument istnh# can become large.

10. Expand the Legendre function 0(x] for large values of the argument, and show that your result agrees
with the asymptotic form in equation (8.28), modulo a constant.

Al fl+xy o 1 f_1+lxy_im o 1f2y_ iz . 1
Colx) 2111(1—;;) zln( 1—1fo 2+2(x] 5 " x
Compare
g+ 1y 1 1 _ 247 1 1
=ﬁ N — R & S~ E — N
3 I+l 1 1 x
C(2+2) (2x) ir(l) 2 T ox

11. Rewrite the Legendre equation



i((l —xgj%J HiE+H g =0

in terms of the variable % = 1/% and obtain a solution as a series in % Show that for large *. iey goesto

zero as 1/2'™. show that for = 0 the solution ©0{%} may be written as in equation (8.28) but with * = 1in

the denominator instead of 1 ~ x.

We use the method of Chapter 3 section 3.3.5.

dQ _dQgy _ _,2d0
adx s i,
Thus the equation becomes:
2 d 1 Y..24d0h } _
=1 |1-—= —= |[+ii+1 =1
2Ll(1- L) g,

The equation has singular points at & = U, and at # = £1. we look for a solution of the form

o= Zanu”*?’

ugi[{uj —1) Xin + plaa™ ]+ M+ 1) a™ = 0
1? (ZI:H +tplin+tp+ Lau™ =X (n+pifn+p - ljanu”ﬂ"gj HIE+ 1) au™ =0
Sir+plintp+ Daw™ - n+pin+p - Vau™ + 11+ 1) au™ = 0
The lowest power is ¥ which gives the indicial equation:
—plp-1y+ii+1)=10
with solutions #? = “fand? =1+ 1. Looking at the power ™% \ve obtain the recursion relation:
(e +p = 2)fm+p — lama —(m+p)im+p = lam +i{i+ ljan = 0
or

(et p— 2)(m+p - laps
[ +pllen +p - 1) -+ 1)

am=

with? = I+ 1, we have
(2 + = 1) + Dty
fm+ i+ Im+ ) -+ 1)

dm =

which is valid for # > 2, leading to the series:

s (2 + 1Y ~2n
Oilx) = =5 - [+ T+ o+ =10+ D+ 1= e+ = =T O™

The series with ? = ~/is not regular at infinity; in fact this is the Legendre polynomial. The recursion relation
(e = 1= 2)m—I- 1ay,o
R R e B I

B =
blows up for # = !, so coefficients beyond -2 cannot be found.

For { = U, we obtain



_ fln (2 + 1] L = 20 1
Qul) Z (25 + 1)2n(2n — 1)(2n — 2)- T2 m

)
=ﬂ|:|]n(1+lij=ﬂn]n( J

2 1-1/x 2
12. In a steady state, the time derivative of the charge density is zero, and so
0=%.7=%. [ aEJ
So if the conductivity is uniform, we can pull it through the divergence to get:

G B = -gVid =0

as required.

and thus P satisfies Laplace's equation.

In polar coordinates:

Separate variables:

r8(R) . 1LEW g
Ry dr W age
As usual, we choose
LBEW — _k_2
woaee
so that
W= Acoskl + Hankl
Then
FdfdRYy 2 2
ralry) -k
The solution is a power:
R=rF

So? = *k Thus the eigenfunctions are:

(Acoskd + Bsnk8){or® + 5r7*)

and the solution may be written:

P = D> (Agcoskd + Bysink)(rF + i)
&

First we set #% = U pecause we want our solution to be finite at 7 = 0. (With % = 0 we obtain the solution

Aplnr. we also eliminate this solution because it is not finite at 7 = '3-) Now our boundary conditions at © = &
are:

Jr = —g@ 0

dr
except



.o_ _ Y
Jr = gt for 6 << =
and
Y | _ Y ¥
Jr o3 for = > {8 < ?E+—2

This is a Neumann problem. Inserting the solution for P, we have

~ 0> kidgroskd + Bysinkf)a®! = above function of 8
&

Now we make use of the orthogonality of the trig functions. Multiply both sides by cosnd and integrate. Only

the one cosine term with £ = # survives the integration:

- ad,mna™! = (rm —IWQ)Lcomﬁdﬁ'
2 il f oyl
a*:im (sinaf|"5; ~ sinnd 375 )

-1 (zsinﬁ 2(—1)”smﬂ]

QAyin 2 2
0 i w5 even
o S if nisodd

while for the sine terms we get:

— n-l _ ¥ prtpl L ;
a8, TH U-*y& ﬂ-:n'2] o sin A Gdd

- _a’){f?ﬂ (cosmﬁ'ﬂ'ﬁg - cosnﬁﬂj‘é)
- __{ e
iR 0-0)=0
Thus:
A, = 7 S
atoyinin 2
and
P = ﬁ_ji smnw’E( ) cosnd
Y oodd
Then B
— - _!
j=o ﬂi{r‘f 2. Sm?zﬁz [ (L )" cosnd + —( )" —cosrz ]
n=lnodd !
- . 7l o n-l o m—
= ;f_":; Z Slnf‘lz"r’fz (rz ran cosnB P r _ )
n=1,nidd 1 E
- Eiga 3 m "2 (cosnf P —sinnd 6) =
n=1, n old =
|

The first term is:

4i . ¥
Tyid sift - 'S



and is constant.At & = /2, only the & component is non-zero: at & = U and . only the F component
survives.

13. A solid sphere of radius @ is immersed in a vat of fluid at temperature 70. Heat is conducted into the
sphere according to equation 3.14. If the temperature at the boundary is fixed at 70, and the initial

temperature of the sphere is 71, find the temperature within the sphere as a function of time.

27 = 0T
DViT= &

Look for a solution with £~ 7o = fi£)&ir) (We expect no dependence on the angles because the boundary
conditions are spherically symmetric.) Then we have

D& (P E ) - &g
or

DLE(#@) = %a;; = constant

Then the ¥ equation is:

5830

The secret here is to rewrite the differential operator in the form:

2
j?(rﬂj - %rﬂ

- 2
We choose » = ~i“L tg be negative, and the solution is of the form
_ 1 git g
R=+

COSpF

Next we choose the sine solution with eigenvalue ¥ = nTia go that i) = U. Thus the solution is of the form

=1 +Zﬂ%sm%e'[’”"ﬂfﬂ’ Fioa



Finally, at £ = 0

So

So we get:

So

The plot shows (T-To)(h

2 [ o Ry |"J J-Iﬂ ) Ry J
=17 7 L LCILLEN + L LLALLES
l: 1 |:|:'J r Coa . . Cos i

Ty = To)(-a(-1y" + [ & sin AT gr )

o AT 7]

S (T - To)(-al-1)" + 2(5% ) sin 822 |2
(T3 = To)(-a(=1)" + 0)

12

0z

1]

04

n2

= T )07 versus * for D¢/a® = 1/20 (red), 1/10 (blue), and 1/5(green). The black

line shows the original temperature distribution (first ten terms)

14. Use the Cauchy formula together with the Rodrigues formula to write Fil) as a contour integral in the

. . {2 _ . . .
complex plane. Take the contour to be a circle of radius ¥* 1 and hence obtain the integral expression

Pyix) = %I;[x ¥ mcomﬁ}:dtﬁ

-1,

= /l
21;| Em jt )I+1

=} (2_

where the integral is along a closed curve enclosing the point £ = &. In particular, choosing the curve to be a

. . {2 _ _
circle of radius ¥& 1 centered at £ = *. we have



2 i
[Jr+».,n'x2—1.‘:j""II —1j|
Fitx) = 2:+11 : Eﬂ ( ):+1 Vx? - liedp
T (q'xz = lé‘ﬂI‘J

. . [xz + Ex\me"'ﬁ + (xz - 1]22"'1' -1 T
B S+l ID [x2 _ 1)II'2€:'IIII a¢
. - [2):-.;'1{2 - 12" + (xz = lj (1 +e2"'I'J T

pitl g Jo (x2 _ ljfl'?é,mp

- L e T (22 ) T

0 2

= %J‘;[x+ mcos¢j|Ici¢
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Chapter 8: Sturm-Liouville Theory

15. Starting from the relations in section 8.3.5, derive the following recursion relations for the Associated Legendre functions:
@

@=m+ 1) f1-u2 PPl = PR - uPT

Starting with equation 8.37, we differentiate:

d _ 'l o e
o Fr= Fivufy = P

Differentiating again

2 3

(E—l)i2P1=i2P;+;¢d Py - d3P:—1
2 3 3

(f-2) izPI =#i3P:— d3P:—1

Continuing, we get

w1 " [
= +1 o P = o = i §=N
(= )dﬂ.m—l I #_d;im I A i-1

m miz
Multiply by (=17 (1 - %)

- -mH 1)1 - p? PP = uPT - PR

which is the first relation.

(b)

(20 + 1) J1-p2 PP = PR, - PRy
Similarly, starting with the pure recursion relation (8.34)

A p o 1y v+ 1dp,, =
fdsz:l (2f Udﬁ(#P:) (£ UdﬁPIl 0

1dp | - (204 1)(;,¢in +P;) ++ 14 p, =0
it it dp

Do it again:
a2 _ ( d ( d ) d ) - _
=P A+ B p R+ 2R 1Py =0
P ( ) el Gt et ( :Iai'p:2 1
a2 2 e a2 -
=Py -2+ 1 LB+ R+l 1=y =0
Fate ( )(#dpcz e :) ( )dﬁz 1
Continuing

& a4 gl 4 _
&Py -2+ 1 P+ Prl+i+ &P =0
P ( )(#dﬁim A :) ( )c‘fp:m 11

—q1wm _ .2 miz
Now multiply by (-1) (1 |
1P, = (20 + 1P — (20 Vp(=1) 1= g2 PP+ 0+ 1), = 0

Using the first relation to eliminate #4 't

1P - (20 + 1)(9;{1 —(-m+ 1) 1—;;2;:';;*-1] 2+ U J1- 2 PEL+ (14 1)PE = 0
[0 - 117 + (20 + 1+ 1) JT- w2 PF + 1+ 1)PE = 0

Thus:



(2 + 1) J1-p2 PP = PR, - PR

From these two relations derive the following:

(c)

(20 + 1WPP() = (1= m + V)P + (14 m)PTy
We want to eliminate the square root:

== m o+ LR = PR ) = (2 + (PP - PRy
Thus

(204 1PP(p) = (1-m+ 1)PRy ~ (i-m+1-20- )PP,
= (1= + 1)P%y + (m + DPY

QED.

16. Starting from the definition (8.53), obtain the *%-raising recursion relation:

mt+l _ e m m
i - J1- w2 %P:

1-p
Solution:
i mo_ mi 2 mi2 dm
1w _ _yaymia-l gm _ o 2ymiz Mt
=(-1) |: Ml - p?) a Pr+(1-p2) A7 P:j|
- _ il o P;n_ 1 P;nﬂ
]—|.L2 I|1—|J.2
Thus

mt+l _ e m m
i - J1-u2 %P:

1-p

Combine this result with equation (8.59) to obtain the # ~lowering relation
(F+mil - m+ PP = 1 - 2 d;ip;" - M%P}”

Use equation 8.59 with # — #2 = 1

0=Frl s 2M%P‘}” + [+ 1) =l - 1917
—u

. . - mt]
Use the previous relation to eliminate £7

m—t P+ [1-p2 dpr = o B PR [+ 1)~ — 1)]PF
1 _#2 . 1- ;.¢2

Thus

M = nu' m
(o + 11+ 1= )PP = 1 - 2 d%ﬁ;" P}

17. Use the results of problem 15 to show that, for i+ m even,



P P v el Rl 11
PIEUJ_': Uﬁ ]&W

From 15(a)
(7= m + 1)PP0) = PP (0)
and from 15 (c)
(f = we + 1NFE (0) = —(+m) B0 (0)
Thus

Pry(0) = 2Py (0) = — £ (= £ 1)PFO)

I-m+1 I—m
and so

PR(0) = ~(1+m - 1PR(0)
Now step down:
70) = (=120 + m = 1)+ m - 3)PTF(0)
(=1 = 1)+ = 3. (0~ + 1)1, (0)

Now use equation 8.47 for £1={0) :
M0y = (- M peg )l
FRO) = (=17 TR (-1} T
iz b T - - 1)
= (== 10 (= w2l

g = 1)
(-1 Tl

as required.
18. Show by direct substitution into equation (8.15) that

Fald) = sn™8 yse the value of the orthogonality integral (8.55) together with the result

mf2 s]'n2m+1 A48 = (2 )l
0 +1 1011 i
{Z=+1 1! (eg Gradshteyn and Ryzhik formula 3.621#4) to show that

[ 2p2)]

27|

Pie) = sin™ §

Stuffing in:
;.;—} (smﬁjﬁ smmﬁ) - ;:jﬁ‘ sin™ & + malem + 1) sin O sin™ &

Y I - m-l 2 o] 2 - m+l
—E(smﬁmsm ﬁcosf‘l‘) mean™ - Goos“d + man™ - 8

The derivative is

w 5™ Goos? 0 - mesin™ g
and thus the equation is satisfied.
If P = Asn™d, then
LR L T | — 2[:2???)' — 2 (23??)”
4 [ =R = o = 2 2 + 1011

Thus

2o (om 3 -1 _(2m)l (2m)l _ [(m)! T

27 m|

Finally note that for #¢ = 1,



and for # = &

So we also need a factor {~11™. Thus

Py = (-1)m %ﬂ: sin™g
QED
19 The integral
a [PPP 312 1
B 7 (7= )l

Verify this result for (a) f=m=1, (b) f=2,m=1and (c) i=m (d) Stepping down in

#t. use proof by induction to show that the result is true in general.

P - _Wso
n =Ij 1y =2[;dﬁt= 2=_2l

as required.

P (IR T-n L () -1

+1 +]
Ip = [ 9%dp = 37| = 6 = 2o

(10
and finally
_ o[ (2m) 7P gintme _ of (2e)! 7% (20 — 1)1
Tyw = 2[u [me! } 0 sin 05 = 2[ — } 5=y
_ o[ (2m)l P [(2m = 2)U]F T (2m [2*pm =10 T
- 2[2%! } (2 — 1) 2[2%! ] (Zm — 1)1
= (2”?!»:»3 = (ﬁ)l F19 equation 1

Now we want to show that

a [PRp)] i -

1 [+l
-1 1_#2 m

w21 F 19 equation 2
(= )l

for { < #2. First assume that the result is true for some # and { £ #. Then

[ ey e

- 1 +1
Jim1 = d
bt " T T T- 42 *
! b _ 21 m-l Hel
_ 1 i LA R 0
(f+m)i-m+17d S w =1 1-p?
P o pm-l m
= _ M {im s (Pp) P y_m (d.b!Pj JPI dye
fd

-1 {{+miii-m+1) -1 (1_#2 m— 1 1_#2
where we used the result of Problem 16. The first term is:
o 1 L(‘Hmjl _ 1 {(f+m— 1)
=1 +m)il -+ 1) (] - )l m— 1 —m+ 1]
which is the result we want. The other terms are:

dp



; _ d m . =
A FPVE e (@) _ ey

T m-1l 2 S R ,fl_#zdpi 1- .2

We integrate the first term in the integrandby parts:

+]
(Prerty| - J‘*l — PPy

1
R R

The integrated term is zero provided that #2 2 1. Then we have

1 —HL m e (Pm:lfpm—l _ +1 1 FER e+ m= (Pm)fpm—l
[ m*“:t“:“fiﬁ dp= | 2(:..”—#&2(?:)+P: I]P:I—jiﬁu
.[+:' 1_“. Pm"'le ld“'_ 0

by orthogonality relation 8.50. Thus the relation is true for 2 ~ Lifitis true for

#2. But we have already shown it is true for # = f(P19 equationl above) and thus it is true for all #%. where
fFzmzl

20. Using the generating function Gz, pt) (equation 8.32) and the addition theorem (8.65), derive the expansion

e i I I Zfllf’ (6.7, (8.4')

|I_X| =0 m

We begin with the result from

% = Z lcosy)
|z == | =07
and then use the addition theorem

+H

= i
I T
E%x"_=;rfl Z E?flyim ’(i))}?m(&’(pj

as required.

Hence find the magnetic vector potential due to a circular loop of wire with radius ¢ and carrying current L

I |JGC‘” P

=)
[

= B =) 503 Z

Z 2“_1 Yin(8, )75, (8", 4" )(r Vodr du' d¢’

= DQIZ Z T Y;m(ﬁ,cbjjé(p’)(—isin(b’+'§rcos¢’j}’;‘m(8’,¢’)du’d¢’
m=-

where in the last step we changed the meaning of #< to be the lesser of ¥ and 2. and similarly for

mi

7> We now use orthogonality of the # " to argue that only terms with #¢ = *1 survive the integration over ¢

J‘ Sm(i)é.—zmq&'d(i) Izﬂenﬂ_T?Iﬁ —amlild¢ = Zxcaml _§m 1)
I

and

[Foospemiay = (Ret e miay - 2us,, 40, )
Thus



=l

Il
=&
]
—y
E[+]e
‘?r|f?h
it

{2+ i — m)]
I+1Y CICT 2L 4id + m)l

7
x (—EM + (Bt + 5,,,,_1}JP;§= [%J

- “iffé = é’“‘f @ty (K 4 5+ ) | PEO)

= § L {Brerioer g+ Sl e oerg-m)}

_ mafé rzq {plge)plqn) 1)' (y( 4 o7t +3x|:é-=¢_£—!¢)‘|)‘|}

= uozafi ;‘;1 {pl(e)plqn)g 1§I (fcosd - :"csindn}}

- M LR

1
We can simplify a bit by inserting the value of F1(0) First note that F1 is even if ! is even, and odd if / is odd. Since
£1% is the #th derivative, &7 will be odd if £ + 2 is odd and even if { + # is even. So £7 (?) = U unless

I+ # is even, or, in this case, ! is odd.

Now we can use the recursion relation (8.37)

IPilp) = pPilp) - Prylp)
iP(0) = _P}—1(D:' = P:l—1(0:'

Now we use equation 8.47 for P00 get:

LAt o s T A S R D

£(0) = 1+ 1P (0) = 7+ 1){-1) [+ I

e e e s BE R L o s g (89 5 1)

Fra = (C1702 23(2n+2)u e 1)2”+1[}3+1)!
I cznz;})u

Thus:

#Dﬂfz -’"%ﬁ L (2 (_])ml (2n + ljllPl (“)‘;

Fert2 (2n + 2)) 2l 2t

pod r%nﬂ (22 = 1)1l ol .
= & -1,
o o — 2n+1 (?2 + ])!l: :] 2n IE.U*)'#'

21. Verify the result (8.67)

L Q- 1 o _ - o
fgn = | P )dp = 2IDP: (o )y = wEp (0)F] EU:'%':‘UEM PR L odd

First we evaluate the Legendre functions:

e DN et O e (=200 [+ = 1)1
fim = UUIM(I+1)!!( 1)bmia Tyl 1 Dl PRI - s
for{ > 2 f{=m=1,

f11=‘%

It { = # we should get



() 11{ 2022 — 1311

irmm = -
T + 1911
__1 pan (2m II- m _ (2m2)] 14" gz
fmm - 5' &flﬁ —_— - = L=,
240 2% sin™ #sin 2m+IM!E2i)m+1 fun'rtu:lru:le (z ZJ iz

There is a pole of order # * 2 at the origin. The Taylor series is:

1 e+l _ I oLy f_1h (2 + 1) mprl) 4 i1yl
Z"+ (z b+ e () Pl —p+ 1)1 + o)
w+l
= mo4 =1 (P?E"‘l)l :w—zp_l_”l(_])
(z ( 1) p!l:m—p"'ljlz zm+2

The Mz termisthe # — 20 = ~lor 2 = (m + 1)/2 term. Thus the residue is

l:_]:][m*'l]n'z (m T 1)' = _1j[m+1]|'2 (P?E i 1)'

()1 (- =5 +1) IE30;

Thus

= _(_1:][m+1]|'2 (2] Dof—14imtl (e + 1)1
2m+1m!2m+1 [(ﬂjl]z
5 |

_ox @mlim+1) _ g (25)
2 [l + 131172 2% (e + 1)l1{m — 1)1

Compare

(ra )1 2e0e — 111 mal (2l { Zeoz ) paal | _ [ 2a2 )]

fm + 1)1 "mr N mr N m) 27w 1) =

if# =1, putlis any odd integer, then:

In = wPr (0)P}(0)1(-1

ol +1 "
o= |7 P = [T -1)(1 - 47) ﬁP;(#)a&c

- | (1-p2)" a_ P
[(1 Y {]_#EJmP;(#)@]

- 1 b B

B I 2_ g,.lmd;':ﬁ" ljdﬁ‘i

From the soln to Problem 8:
L= (M 1 e P g NP

T2 @it e
- -2y 32
2“1[*’((;_1;“) ‘ ”(W”
x| -2 (a2

2+ 10 -2+ D= T

_ (il 1, 1
(2£+1)[(£—1)!!]2[f .{+1]

_ ol -2)
- g+ 10

—?CP:—1(U:JP:+1(U:J = _%P_rl EUJPIHEU)

which is what we want!!

T



Now for the proof by induction. We step down in # using egn 8.59:

*l pam-2 - -1 m
Pridy = PPdy + 2(m
S o oy e [fl 4

Then using the result of Problem 16:

fim—a = e 1)—(:??_21— SRRy {f:m —2I[PE” + 41 - u® (P?—l)’}dﬂ}
_1 _ _ _ - —
[f(ml)—(m—z)(m—l)]{ I = 2| 1= p (5 IJ| J—P 1 }

_1 _ _ lf_,(. -
[ftf+1)—(m—2)tm—w]{‘rf’” Syl 1}

So
- 2(??1 - 1)'}1’??2 = Z2ipn + 2Tpn
Thus
- I = _ i
EE TE e
and so
_ 1 Ji _olm— 1)
R S e T A R I}
- 1 s W(f—2)l!(f+m—1)!!
((f+m—1)(f—m+2)][m 2] g+ 10 (-l

(= 290 {7+ - 31
T+ D 7=+ 2)01

—(m - 2w

So result is true for # ~ 2 if it is true for #. Since we have shown it is true for # = I, it is true for all odd

#t. for any odd £
22. Find the electrostatic potential inside a hemisphere of radius & with potential © = 0 on the flat side and
T = ¥ on the curved part.
The solution is of the form
D = > Apr'inlf, $)
im

at = & P must be zero at # = U 7. thus we need sine functions ##¢. Next we evaluate on the curved part:

Tla.d.¢) = ZZB;maPm(cos&)smm¢ ¥

I m=l
Thus

[2 Vsnmpdp = L > BmaPR(cost) = £(1-(-1)7)
I

% for s odd and zero for e even.

1 e 1 - "
%I_l il = %gﬂrma"f_l PP(cos 8)P7 (u dd

The result is zero unless ¢ *+ # is even, so we need I odd. Dropping primes, and using the result of Problem 21:

o (-2 (- 11 _ a(f+m}l 2
W(mchlju =l ) 2Bfmf(z—m)!2;+1

Thus



=2 (= 1 (2 1) (T )l

Bim = 2V(.E+1)II = )l I U+m)l gl
=22 w1 g
W(;H) R (T+m)ll &l

for;>2.F0rf=m=1:
= _FizZy__2VF
Bu--5(3)--3%
and the potential is
1

@(r‘;&tﬁn) —%%smtﬁsmﬁ 2 Z %ﬂ% Z %P}”(cosﬂ)smmtﬁ
=3, fodd % " m=l, m o a

The first few terms are:

Dir, 6, 4]

37 deng— 27 (151 - 1 3 -
e o sin ¢ sin & 1.3 (8P3(cosﬁjsm¢+ 6X4X2P3(cosﬁ')sm3¢J
= 2 Zanpsing+ 67’—4%3111&(3[5.:052&— 1) sing + 5sin?6sin3¢)

The! = Jtermis

11 3 (3 1 5
5 48(48P55m¢’ 48 x 8Psm3¢+48><8><10P551I15¢J

To calculate the £5+ we start with F5. Do a series expansion of the generating function using Maple:

L = 1+ax+[—l+§a2)x +(— a+5a3)x +(3 - 15 2+£c::4Jx4
T Zart 2 2 2 8

15 35 .3 53 .5 5
+(_a_—_g_ + = Jx + .
g 4 g

Thus 50 = ($x(15- 7027 + 63x% ) ).

Next use equation 8.53.

(-1)228 2 (15% - 70x% + 63x° ) = ~L(sing)(15 - 21022 + 3152*)

= —2{smd)(1 - 14x? + 212%) = P}

(-1F 2B L (1521027 + 315x*) = L{sin®6) (-420x + 12607 )
= 15 (sin?6)x (327 - 1) = Fi

(-1)simn” 8L (-420x + 126027 ) = 4205 8(1 - 9% ) = P2

sin’ (6)-£- (420 - 37802 ) = ~7560 0’6 = F3

Then the { = 3 term is:



% (—ilﬁsinEB)(l —14cos28+21 00548)) 31 ¢

11

=5 L 2 5
+og (4205in°8(1 — 9cos?8))sin3¢ — —=75605in°Psin5¢

11 123 L (5in®)(1 - 14cos?8+21 cos48)5m¢

80 +2 sin®8(1 - 9 cos?B)sin3¢ - 2 sin’Bsin5é

At = w2, ¢ = T2 e have

Dir, wf2, wl2)
—

4433 #5
10240 45

3
2

ah

_1r
83

057
054

047

L] 04 x 04 oz 1

This expansion to i=5 appears to be good to about ¥ = 0. 6a.

At e =05, 8 = x/2

@@5 $) 3 7 : 11 .11
E +m(35m¢>+5sm3¢) LTl WS VED 5111¢>+ = sch;S smﬁcja)

The plot shows &/ versus ¢-
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Chapter 8: Sturm-Liouville Theory

23. Quantum mechanical treatment of the harmonic oscillator results in the Hermite differential
equation

yo=2xy +ayp =0

Write this equation in standard Sturm-Liouville form. If the boundary conditions are vix) = Oas

x — *@, show that the solutions are orthogonal on the range (=c2, e

» and find the weight function
w(x). Solve the equation to find a series expansion for the Hermite functions. What value of the
eigenvalue Mis required for the functions to remain bounded throughout the interval, including

x — *®m9 (Hint: experience with Legendre functions should prove useful.) Normalize the solutions by

choosing the coefficient of the highest power x" to be 2", and hence determine the first three
eigenfunctions.

We want to write the equation in the form (& 1} Expanding out the differential operator, we get:
B Y -yt hwy =0
Comparing with Hermite's equation, we can multiply by a function A(x]) such that
- 2xhix) = k'(x)
Infky = -x% + constant
Thus # = g™ and the standard form is:

L) oo

_.I!

Then the weight function is wix) = e ang

Jﬁ_: 2™ yuymdx = D UNIGSS 2 = m

For the series solution, we use the original form of the differential equation and let ¥ = 2 @X". Then

Zann(n = 1)1':”'2 = EZ.::”HJ:” + }xZanx” =10

ﬂ22+}\ﬁzn=[]:>a2=%fzu

##,p >0

|
o]

apialp + 2)ip + 1)~ 2app + oy =
_ (2p — X)
B )
The series converges for x| < = put for large ¥ we get
-, &

and the ratio of successive terms is



+2
ﬂp+jxp . Tyl

— =
ApX F

This ratio is greater than 1 for £ ? P2, 5o that the series diverges as * —* ™. We can avoid this
problem by choosing M = 2% for some integer #- Then @a+2 = 0 and the series terminates with the

x* term. As with Legendre functions, only one of the two solutions to the differential equation
terminates. That solution is the Hermite polynomial. Then we find:
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or, in general, the coefficient &= of %™ in the #th polynomial is

n-m

Gmp = (1) 2m 2
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Let's find the first 3.

0_-1=
n =0 Thereis only one term, and it is a constant equal to 2" = 1= Hulx)
# =1 There is again only one term, and the solution is 2x = Hyix)

% = 2 :There are two terms:
So

and

24. The generating function for Hermite polynomials is

(Fx,£) = 7+ = Z %Hnl:xj
a=0

Use this generating function to establish a pure recursion relation for Hermite polynomials(analogous

to equation 8.34 for Legendre polynomials). Also obtain the derivative dfn/dX in terms of the fx
(analogous to equations 8.40 and 8.41).

Differentiate Z(*.£) with respect to £ a total of # times to obtain the Rodrigues-type formula
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As with the Legendre functions, we