
Chapter 1: Describing the universe

1. Circular motion. A particle is moving around a circle with angular velocity  Write its 

velocity vector  as a vector product of  and the position vector  with respect to the 
center of the circle. Justify your expression. Differentiate your relation, and hence derive the 

angular form of Newton's second law (  from the standard form (equation 1.8). 

The direction of the velocity is perpendicular to  and also to the radius vector  and is 

given by putting your right thumb along the vector : your fingers then curl in the direction 

of the velocity. The speed is  Thus the vector relation we want is: 

Differentiating, we get: 

since  is perpendicular to  The second term is the usual centripetal term. Then 

and 

since  is perpendicular to  and for a particle  



2. Find two vectors, each perpendicular to the vector  and perpendicular to each 

other. Hint: Use dot and cross products. Determine the transformation matrix  that allows 

you to transform to a new coordinate system with axis along  and  and axes 
along your other two vectors. 

We can find a vector  perpendicular to  by requiring that  A vector satsifying 
this is: 

Now to find the third vector we choose 

To find the transformation matrix, first we find the magnitude of each vector and the 
corresponding unit vectors: 

and 

The elements of the transformation matrix are given by the dot products of the unit vectors 
along the old and new axes (equation 1.21) 

To check, we evaluate: 

as required. Similarly 



and finally: 

3. Show that the vectors  (15, 12, 16),  (-20, 9, 12) and  (0,-4, 3) are mutually 
orthogonal and right handed. Determine the transformation matrix that transforms from the 

original  cordinate system, to a system with axis along  axis along  and 

axis along  Apply the transformation to find components of the vectors  

 and  in the prime system. Discuss the result for vector  

Two vectors are orthogonal if their dot product is zero. 

and 

Finally 

So the vectors are mutually orthogonal. In addition 

So the vectors form a right-handed set. 

To find the transformation matrix, first we find the magnitude of each vector and the 
corresponding unit vectors. 

So 



Similarly 

and 

The elements of the transformation matrix are given by the dot products of the unit vectors 
along the old and new axes (equation 1.21) 

Thus the matrix is: 

Check: 

as required. 

Then: 

and 



Since the components of the vector  remain unchanged, this vector must lie along the 
rotation axis. 

4. A particle moves under the influence of electric and magnetic fields  and  Show that 

a particle moving with initial velocity  is not accelerated if  is perpendicular to 

 

A particle reaches the origin with a velocity  where  is a unit vector in the 

direction of  and  If  and  set up a new 

coordinate system with axis along  and axis along  Determine the 

particle's position after a short time  Determine the components of  and  in both 
the original and the new system. Give a criterion for ``short time''. 

But if  is perpendicular to  then so: 

and if there is no force, then the particle does not accelerate. 

With the given vectors for  and  then 

Then , since 

Now we want to create a new coordinate system with  axis along the direction of  

Then we can put the -axis along  and the axis along  The components in the 
original system of unit vectors along the new axes are the rows of the transformation matrix. 
Thus the transformation matrix is: 



and the new components of  are 

Let's check that the matrix we found actually does this: 

as required. 

Now let  Then 

in the new system, the components of  are: 

and so 

Since the initial velocity is the particle's velocity at time  is: 

and the path is intially parabolic: 



This result is valid so long as the initial velocity has not changed appreciably, so that the 
acceleration is approximately constant. That is: 

or  times (the cyclotron period divided by . The time may be quite long if  is small. 
Now we convert back to the original coordinates: 

5. A solid body rotates with angular velocity  Using cylindrical coordinates with axis 

along the rotation axis, find the components of the velocity vector  at an arbitrary point 

within the body. Use the expression for curl in cylindrical coordinates to evaluate  
Comment on your answer. 

The velocity has only a component. 

Then the curl is given by: 

Thus the curl of the velocity equals twice the angular velocity- this seems logical for an 
operator called curl. 



6. Starting from conservation of mass in a fixed volume  use the divergence theorem to 
derive the continuity equation for fluid flow: 

where  is the fluid density and  its velocity. 

The mass inside the volume can change only if fluid flows in or out across the boundary. 
Thus: 

where flow outward (  decreases the mass. Now if the volume is fixed, then: 

Then from the divergence theorem: 

and since this must be true for any volume then 

7. Find the matrix that represents the transformation obtained by (a) rotating about the 

axis by 45  counterclockwise, and then (b) rotating about the axis by 30  clockwise. 

What are the components of a unit vector along the original axis in the new (double-
prime) system? 

The first rotation is represented by the matrix 

The second rotation is: 

And the result of the two rotations is: 



The new components of the orignal axis are: 

8. Does the matrix 

represent a rotation of the coordinate axes? If not, what transformation does it represent? 
Draw a diagram showing the old and new coordinate axes, and comment. 

The determinant of this matrix is: 

Thus this transformation cannot be a rotation since a rotation matrix has determinant  
Let's see where the axes go: 

and 



while 

These are the components of the original  and  axes in the new system. The new  

and  axes have the following components in the original system:

where

Thus:

The picture looks like this: 

Problem 8: 



The matrix represents a reflection of the and axes about the line  

9. Represent the following transformation using a matrix: (a) a rotation about the axis 

through an angle  followed by (b) a reflection in the line through the origin and in the 

-plane, at an angle 2  to the original axis, where both angles are measured 

counter-clockwise from the positive axis. Express your answer as a single matrix. You 

should be able to recognize the matrix either as a rotation about the axis through an 

angle  or as a reflection in a line through the origin at an angle  to the axis. Decide 

whether this transformation is a reflection or a rotation, and give the value of  (Note: For 

the purposes of this problem, reflection in a line in the  plane leaves the axis 
unchanged.) 

Since only the  and components are transformed, we may work with  matrices. 
The rotation matrix is: 

The line in which we reflect is at 2  to the original axis  and thus at  to the new 

axis. Thus the matrix we want is (see Problem 8 above): 

Thus the complete transformation is described by the matrix: 

The determinant of this matrix is , and so the transformation is a reflection. It sends  to 

 and  to  so it is a reflection in the axis (  

10. Using polar coordinates, write the components of the position vectors of two points in a 

plane:  with coordinates  and and  with coordinates  and  (That is, write 

each vector in the form  What are the coordinates  and  of the point  
whose position vector is 



Hint: Start by drawing the position vectors. 

Problem 10

The position vector has only a single component: the component. Thus the vectors are: 

and 

The sum also only has a single component: 

where, from the diagram , and: 

Thus  has coordinates   

where 

and thus 

We can check this in the special case   Then 

as required. 
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11. A skew (non-orthogonal) coordinate system in a plane has  axis along the 

axis and axis at an angle  to the axis, where  

(a) Write the transformation matrix that transforms vector components from the 

Cartesian  system to the skew system. 

(b) Write an expression for the distance between two neighboring points in the skew 
system. Comment on the differences between your expression and the standard 
Cartesian expression. 

(c) Write the equation for a circle of radius  with center at the origin, in the skew 
system. 

Problem 1.11

(a) The new coordinates are: 

and 

Thus the transformation matrix is: 

Compare this result with equation 1.21. Here the components are given by 



(b) 

The cross term indicates that the system is not orthogonal. We could also have 
obtained this result from the cosine rule. 

(c) The circle is described by the equation 

a result that could also be obtained by applying the cosine rule to find the radius of 

the circle in terms of the coordinates  and  

12. Prove the Jacobi identity: 

The triple cross product is 

and thus 

Since the dot product is commutative, the result is zero, as required. 

13. Evaluate the vector product 

in terms of triple scalar products. What is the result if all four vectors lie in a single 

plane? What is the result if   and  are mutually perpendicular? What is the 

result if  



We can start with the bac-cab rule: 

Equivalently, we may write: 

If all four vectors lie in a single plane, then each of the triple scalar products is zero, 
and therefore the final result is also zero. 

If   and  are mutually perpendicular 

where the plus sign applies if the vectors form a right-handed set, and 

If  then  and 

14. Evaluate the product  in terms of dot products of    and 



15. Use the vector cross product to express the area of a triangle in three different 
ways. Hence prove the sine rule: 

First we define the vectors   and  that lie along the sides of the triangle, as 
shown in the diagram. 

Then the area equals the magnitude of  or of  or of  Hence 

Dividing through by the product  we obtain the desired result. 

16. Use the dot product  to prove the cosine rule for a triangle: 

With the vectors defined as in the diagram above, 

But if  and  lie along two sides of a triangle s shown, then the third side 

 Thus 



as required. 

17. A tetrahedron has its apex at the origin and its edges defined by the vectors  

 and each of which has its tail at the origin (see figure). Defining the normal to 
each face to be outward from the interior of the tetrahedron, determine the total 
vector area of the four faces of the tetrahedron. Find the volume of the tetrahedron. 

Problem 1.17

With direction along the outward normal, the area of one face is 

The total area is given by: 

Expanding out the last product, and using the result that : 

since  

The volume is 1/6 of the parallelopiped formed by the three vectors, (or 1/3 base 

times height of tetrahedron) and so  

18. A sphere of unit radius is centered at the origin. Points  and  on the 

surface of the sphere have position vectors   and  Show that points  and  



on the sphere, located on a diameter perpendicular to the plane containing the points 

  and  have position vectors given by 

where  is the angle between the vectors  and  . 

Problem 1.18

The triangle  has sides given by the vectors   and . The 
plane of the triangle may thus be described by the vector 

This vector is normal to the plane. The vector  is a unit vector, as are the vectors  

 and  since the sphere has unit radius. Thus we may write  and 

Thus 

and thus 



To obtain both ends of the diameter, we need to add the  sign, as given in the 
problem statement. 

19. Show that 

for any scalar field  

because the order of the partial derivatives is irrelevant. 

20. Find an expression for  in terms of derivatives of  and  

Now remember that the differential operator operates on everything to its right, so, 
expanding the derivatives of the products, we have: 
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Chapter 1: Describing the universe

21. Prove the identity: 

Hint: start with the last two terms on the right hand side. 

We expand the third term, being careful to keep the differential operator operating on  but not  

The th component is: 

Thus 

Combining terms: 

and so 

as required. 

22. Compute  in terms of curl  and curl 

and so 

23. Obtain an expression for  and hence show that  

Now with  the first term is the cross product of a vector with itself, and so is zero, while the 
second is zero beacuse the curl of a gradient is zero. 

24. The equation of motion for a fluid may be written 



where  is the fluid velocity at a point,  its density and  the pressure. the acceleration due to 

gravity is  Use the result of Problem 21 to show that for fluid flow that is incompressible (  

constant) and steady (  Bernoulli's law holds: 

Hint: express the statement ''constant along a streamline'' as a directional derivative being equal to 
zero. 

Use the result of problem 21 with 

Write  as the gradient of the gravitational potential,  and dot the equation with 

Since  is perpendicular to  its dot product with  is zero, and we may move the 

constant  inside the derivative to get: 

as required. 

Under what conditions is  equal to an absolute constant, the same throughout the 
fluid? 

If the flow is irrotational ( ), then  and we may simplify immediately 
to get 

in which case the constant of integration is the same throughout the fluid. 

25. Evaluate the integral 

where (a)  is the unit circle in the plane and centered at the origin 

We can use Stokes theorem: 



Here the surface is in the  plane, and the component of the curl is: 

and so the integral is 

(b)  is a semicircle of radius  with the flat side along the axis, the center of the circle at the 
origin, and 

We need only the component of the curl. 

and so the integral is zero. 

(c)  is a 3-4-5 right-angled triangle with the sides of length  and  along the  and axes 
respectively, and 

Using Stoke's theorem: 

with the component of the curl being: 

we have 



Or, doing the line integral: 

The same result, as we expected, but the calculation is more difficult. 

(d)  is a semicircle of radius  with the flat side along the axis, the center of the circle at the 
origin, and 

Thus the integral is 

26. Evaluate the integral 

where (a)  is a sphere of radius 2 centered on the origin, and 

We use the divergence theorem: 



Here 

and so 

(b)  is a hemisphere of radius 1, with the center of the sphere at the origin, the flat side in the 

plane, and 

Integrating over the hemisphere, we get: 

Doing the integral over  first, the first term is zero, and we have: 

27. Show that the vector 

has zero divergence (it is solenoidal) and zero curl (it is irrotational). Find a scalar function  such 
that 

and a vector  such that 

and 

and similarly for the other components. 



If  then  Similarly, we obtain  and 

. Thus 

will do the trick. The curl is a bit harder. We have: 

Then: 

from the first equation, and 

from the second. Thus we can take  and  This gives 

which also satisfies the last equation, and we are done: 

28. Show that the vector 

has zero divergence (it is solenoidal) and zero curl (it is irrotational) for . Find a scalar 

function  such that 

and a vector  such that 

In spherical coordinates: 

and 



Then 

and  has only an component provided that ,  and  is independent 

of  Then 

is satisfied provided 

satisfies all the constraints. 

29. A surface  is bounded by a curve  The solid angle subtended by the surface  at a point  

where  is in the vicinity of but not on the curve, is given by 

Here  is an element of area of the loop projected perpendicular to the vector   is 

the position vector of the point  with respect to some chosen origin , and  is a vector that 
labels an arbitrary point on the surface or the curve. Now let the curve be rigidly displaced by a 

small amount  . Express the resulting change in solid angle  as an integral around the curve. 

Hence show that  

The solid angle subtended at P by an area element  is 

where  is the element of surface area projected perpendicular to the vector  from the origin to 
that element. The total change in solid angle due to the displacement of the loop is thus 

and so 

30. Prove the theorems (a) 



We begin by proving the result for a differential cube. Start with the right hand side: 

and since the result is true for one differential cube, and we can make up an arbitrary volume from 

differential cubes as in the proof of the divergence theorem it is true in 
general. 

b. We use the same method: 

On the right hand side, the first pair of faces gives: 

Including all the 6 sides we have: 

and since the result is true for one differential cube, and we can make up an arbitrary volume from 

differential cubes as in the proof of the divergence theorem it is true in 
general. 
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Chapter 1: Describing the universe

31. Prove that (a) 

We use the general technique used for Stokes' theorem in the chapter. We integrate around a 

differential rectangle in the plane. Then 

But for our curve and the area spanning it,  so 

Now we sum up over all the differential rectangles making up our arbitrary curve, to show 

as required. 

(b )

Again we begin with a differential rectangle in the  plane. 

32. Derive the expressions for gradient, divergence, curl and the Laplacian in spherical 
coordinates. 

The line element in spherical coordinates (equation 1.7) gives us the metric coefficients: 



Thus we have: 

and finally: 

33. In polar coordinates in a plane the unit vectors  and  are functions of position. Draw a 

diagram showing the vectors  at two neighboring points with angular coordinates  and  

Use your diagram to find the difference  and hence find the derivative  

Problem 1.33



has magnitude 

and in the limit  it is perpendicular to  so 

and thus 

34. The vector operator  appears in physics as the angular momentum operator. (Here 

 and  is the position vector.) Prove the identity: 

for an arbitrary vector  

Begin with the result of problem 21: 

Working on these terms one at a time: 

and 

Now we are left with 

Now look at 

The th component is 

while 



Substituting into our result (1.1) above: 

Using equation (1.2) to evaluate  we have 

as required. 

35. Can you express the vector  as a linear combination of the vectors  

 and  Can you express the vector  as a linear 

combination of the vectors   and  Explain your answers geometrically. 

Let 

Thus we have the three equations: 

From the third equation 

and from the second: 

and so from the first: 

which is true no matter what the value of  Thus we can find a solution for any  For example, 

with 

For the vector  we would have: 

or 



which cannot be true for any value of  Thus no combination of the three  can equal  

Geometrically, the three  vectors all lie in a single plane, and  lies in the same plane. But  lies 
out of the plane. Note that the cross products: 

 

 

 

are all multiples of the same vector, indicating that all four vectors are coplanar. However, 

 is not a multiple of indicating that 

 lies out of that plane. 

36. Show that an antisymmetric  matrix has only three independent elements. How many 

independent elements does a symmetric  matrix have? Extend these results to an  
matrix. 

If  then  and so all the diagonal elements are zero. There are three elements 
above the diagonal. The elements below the diagonal are the negative of these three, which are 
the three independent elements. 

A symmetric matrix can have non-zero elements along the diagonal. There are only three 
independent off-diagonal elements, giving a total of 6 independent elements. 

An  matrix has  elements along the diagonal, so an antisymmetric matrix has 

independent elements. A symmetric matrix has 

independent elements. 

37. Show that if any two rows of a matrix are equal, its determinant is zero. 

To demonstrate the result for a  matrix, we form the determinant by taking the cofactors of the 

elements in the non-repeated row. Then the cofactors are the determinants of  matrices of 



the form . The determinant equals  If each cofactor is zero, then the 

determinant is zero. For a  matrix, we can always reduce to  using the Laplace 
development, and those determinants are zero as we have just shown. 

38. Prove that a matrix with one row of zeros has a determinant equal to zero. Also show that if a 

matrix is multiplied by a constant  its determinant is multiplied by  

Use the Laplace development, with the row of zeros as the row of chosen elements, and the result 
follows immediately. 

Since each product in equation (1.71) in the text has three factors, the result is clearly true for a 

3 3 matrix. But then, from the Laplace development, each product in a 4  determinant is one 

factor times a 3  determinant, and so is  times the original. Continuing in this way, we obtain 
the general result. 

39. Prove that a matrix and its transpose have the same determinant. 

Using equation 1.72 in the text (first part) 

Now if  is the transpose of , then 

by the second part of equation 1.72. 

40. Prove that the trace of a matrix is invariant under change of basis, that is, 
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Chapter 1: Describing the universe

41. Show that the determinant of a matrix is invariant under change of basis, i.e. det det  Hence 
show that the determinant of a real, symmetric matrix equals the product of its eigenvalues. 

For a diagonalized matrix, 

QED. 

42. If the product of two matrices is zero, it is not necessary that either one be zero. In particular, show that a 

2  matrix whose square is zero may be written in terms of two parameters  and  and find the general form 
of the matrix. 

Thus either  and  or  If  and  are both zero, then  and  are also zero, and  But if 

 then also  Thus the matrix may be expressed in terms of the two parameters  and : 

43. If the product of the matrix  and another non-zero matrix  is zero, find the elements of  

You may find it necessary to impose some conditions on matrix  If so, state what they are. 

We know that det  so if  then  so  Thus the product is: 



Thus 

which can be satisfied if  in which case matrix , or  In the latter case, 

matrix  is specified in terms of arbitrary values  and  as 

44. Diagonalize the matrix:  

We solve the equation 

Thus the eigenvalues are:  The corresponding eigenvectors satisfy the equation 

For  we have 

and similarly for the other two values. So the eigenvectors are 

eigenvectors: , 



45. Show that a real symmetric matrix with one or more eigenvalues equal to zero has no inverse (it is singular). 

Since the determinant equals the product of the eigenvalues, (Problem 41), the determinant equals zero, and 
thus the matrix is singular. 

46. Diagonalize the matrix , and find the eigenvectors. Are the eigenvectors orthogonal? 

The eigenvalues are:   and we find the eigenvectors from the equation 

Thus 

So 

and then 

Thus we may pick any value for  Choose . Then 

and the eigenvectors are:  

The inner product is 

Since the product is not zero, the vectors are not orthogonal. Since the matrix is not symmetric, the eigenvectors 
need not be orthogonal. 



47. What condition must be imposed on the matrix  in order that  with . If  

and  find a matrix  such that . 

We must have  So write  Then 

and 

We can make the two answers equal if  . Then 

and 

48. Show that if  is a real symmetric matrix and  is orthogonal, then  is also symmetric. 

If a matrix is orthogonal, then its inverse equals its transpose, so  Then: 

and so  is symmetric if  is. 

49. Show that  if both  and  are diagonal matrices. 

If  and  are both diagonal, then 

is also diagonal. Then 



and the matrices commute. 

50.Let  Now let  similarly for  and compute the product 

Now if the matrix  is orthogonal, then  and so in this case 

and the inner product is invariant. 

51. A quadratic expression of the form  represents a curve in the  plane. (a) Write 
this expression in matrix form. (b) Diagonalize the matrix, and hence identify the form of the curve and find its 

symmetry axes. Determine how the shape of the curve depends on the values of  and  Draw the curve in 

the case   

(a) 

where the vector  has components  and the matrix 

Check: 

Now we diagonalize: 

Thus the eigenvalues are: 



The eigenvectors are given by: 

or 

The new equation is 

If  and  are both positive, the equation is an ellipse. This happens when 

But if  then  is negative, and the curve is an hyberbola. For the ellipse, the eigenvectors found 

above give the direction of the major (minus sign in  and minor axes. 

For the case   we have  so the curve is an ellipse. 

 

 so  

 so  

The equation of the minor axis is: 

while for the major axis:



The equation of the ellipse is: 

52. Two small objects, each of mass  are joined by a spring of relaxed length  and spring constant . 

Identical springs hold each mass to a wall. The walls are separated by a distance 3  Write the Lagrangian for 
the system, find the normal modes and the oscillation frequency for each mode. 

Let  and  be the rightward displacement of each object from equilibrium. Then the kinetic energy is 

and the potential energy is 

Thus the Lagrangian is: 

Thus the normal mode frequencies are given by the characteristic equation: 



Thus the frequencies are  and  The eigenvectors are given by: 

Thus the two objects either move together, or exactly opposite each other. When moving together, the middle 
spring is not stretched or compressed. The outer two springs both pull or push the system in the same direction. 

The frequency is  the same as for a single object-on-spring system. When they move opposite each 
other, all three springs are distorted and each exerts an equal force on the system. The frequency is thus 

. 

Finally we check the transformation matrix: 

As expected, the matrix is orthogonal.The transformed potential energy matrix is: 

53. Find the normal modes of a jointed pendulum system. Two point objects, each of mass  are linked by stiff 

but massless rods each of length  The upper rod is attached to a pivot. The system is in equilibrium when both 
rods hang vertically below the pivot. The diagram shows the system when displaced from equilibrium. 

The system is most easily analyzed using Lagrangian methods. The kinetic energy is: 

Taking the reference level at the pivot, the potential energy is: 

Now if the displacement from equilibrium remains small,  and  we can approximate the cosines 

in the expression for  by Taylor series, truncated after the second term. Then: 

Thus the Lagrangian is: 



to 2nd order in small quantities. Lagrange's equations are: 

Here the coupling is in the derivative terms: it is called dynamic coupling. 

This time we need to simultaneously diagonalize both matrices. 

The eigenvectors are found next: 

Thus 

So with our  we get: 



So the eigenvectors are: 

The matrix that effects the transformation is given by 

Then 

and 

Both are diagonal. Notice that the transformation is not orthogonal in this case. 
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Chapter 2: Complex variables 

1. If   and   find   and   

 

 

2. Use the polar representation of   to write an expression for   in terms of   and   Use your result to express 

  and   in terms of cos  and   

 
The real part gives: 

 
and from the imaginary part: 

 

3. Prove De Moivre's theorem:   

 

4. The equation   describes a parabola. Write this equation in terms of   Hint: 
use the geometric definition of the parabola. 

The parabola is a curve such that for any point on the curve the distance from a point is equal to the distance to a 

line. In this case the point is at   The distance from the point is   where: 

 
Using the equation of the parabola: 

 
where 

 

is the distance from the vertical line at   



Now we can express these ideas using complex numbers. The distance from the point 

  is  and the distance from the line is   Thus the equation we want is: 

 

5. Show that the equation 

 

represents an ellipse in the complex plane, where   and   are complex constants, and   is a real constant. Use 
geometrical arguments to determine the position of the center of the ellipse and its semi-major and semi-minor 
axes. 

The absolute value   is the distance between a point   in the Argand diagram described by   and 

the point   described by the number   Thus the equation describes a curve such that the sum of the distances 

of   from   the points   and   is a constant (  ). This is the definition of an ellipse. The points   and   are 

the foci of the ellipse, so its center is half way between them, at   

When   is at the end of the semi-major axis, then   and   so   and the 
semi-major axis is 

 
Then also 

 
and so 

 

6. Show that the equation 

 

represents an ellipse in the complex plane, where   and   are complex constants and   is a real variable. 
Determine the position of the center of the ellipse and its semi-major and semi-minor axes. 

First recall that multiplication by   corresponds to rotation counter-clockwise by an angle   (Figure 2.3c)  Thus 

if   and   then   is represented as follows: 



 

Now as   increases, the lower line rotates counterclockwise, while the upper line rotates clockwise. The two lines 
align when: 

 
or 

 

which is the direction of the major axis. The length of the major axis is   The smallest value of 

  occurs when the two ``vectors'' are in opposite directions, i.e. 

 
or 

 

Thus the minor axis, of length   is perpendicular to the major axis, as expected. 

The angle that the major axis makes with the   axis is   Let   and   be the 

coordinates of   with axes coincident with the major and minor axes of the ellipse. Then : 

 

Again we note that the factor   rotates the number in square brackets (  ) by an angle 

  counter-clockwise. Thus: 

 

where   Thus we have 

 

which is the equation of an ellipse with semi-major axis   and semi-minor axis   The center of the 
ellipse is at the origin. 



7. Find all solutions of the equations (a)   

Write   in polar form: 

 

for   Thus the solutions are 

 

 

 

 

 

 

 

(b)   The roots are     

 

These points are at the corners of a square:   (on the real axis)   (on the imaginary axis), 

    

8. Find all solutions of the equation (a)   



Write   where   and   are real, and expand the cosine: 

 
Writing the real and imaginary parts separately, we have: 

 

We can solve the second equation with either   or     But with   the first equation becomes 

  , which has no solutions. (Remember that   is real.) So we must choose   where   is any 
positive or negative integer, or zero. Then: 

 

Now the hyperbolic cosine is always positive if   is real, so we must choose   to be even, or zero. Then 

  and: 

 
and thus 

 
or 

 
Both values give the same value for the cosh. Then 

 

(b)   

 
Equating real and imaginary parts: 

 

Clearly   is not a viable solution, so we need 

 
Then 

 

Since cosh   is always positive (  is real) then   must be even, and 



 
Thus 

 
Thus 

 

9. Find all solutions of the equation   

  The imaginary part must 

be zero, so we must have   or   The real part would be   or   in the two cases. 

Since   can never equal   we must choose   with   odd, and then setting the real part equal to 

  we need 

 

and the solution is :   Thus   where   is any positive or negative integer. 

10. Find all numbers   such that   

 

11. Investigate the function   Find the functions   and   where   How many 
branches does this function have? Find the image of the unit circle under this mapping. 

 
Thus 

 

The function has a branch point at   and it has two branches. Two circuits of the   plane give the whole 

  plane. 

The unit circle is defined by     Then in the   plane we get a piece of the unit circle: 

  and, for the principal branch,   So   



 

12. The function   Find the functions   and   where   How many branches 
does this function have? Find the image under this mapping of a square of side 1 centered at the origin . 

 
Thus 

 
The function has four branches since we have to go around the original plane four times to get the whole 

  plane. 

The line     to   (  is mapped to 

 

The top side at   (    maps to 

 

The left side at   (  is mapped to: 

 

The bottom at   (    maps to 

 



 
The entire square has mapped into the first quadrant and has been deformed into a curvy polygon. The other four 
branches of the function would close the polygon by completing the other three quadrants. 

13. Oblate spheroidal coordinates       are defined in terms of cylindrical coordinates       by the 
relations: 

 

Show that the surfaces of constant   and constant   are ellipsoids and hyperboloids, respectively. What values 

of   and   correspond to the   axis and the   plane? 

 
Equating real and imaginary parts, we have: 

 

We want to find the shape of the constant   and constant   surfaces. First eliminate   

 
Thus 

 

Thus the surfaces of constant   are ellipsoids with semi-major axis   cosh  and semi-minor axis 

  Similarly, by solving for   and   squaring and subtracting, we find: 

 

so the constant   surfaces are hyperboloids. 

The   axis is described by   i.e.   Then   which ranges from   to   as 

  does. The   plane is described by   or   or   These choices correspond to different 

regions for   But   is always positive, so we don't need   Thus   ,   and 

  describes all of space. 



 

This plot shows surfaces of constant   and constant   for 

  

14. An AC circuit contains a capacitor   in series with a coil with resistance   and inductance   The circuit is 

driven by an AC power supply with emf   

(a) Use Kirchhoff's rules to write equations for the steady-state current in the circuit. 

Loop rule: 

 

Charge conservation: 

 

(b) Using the fact that cos  , find the current through the power supply in the form: 

 

where   is the complex impedance of the circuit. 

First write cos  so the first equation becomes: 

 

Now let     Then diffferentiate the loop equation with respect to time: 

 
Thus 



 
The complex impedance is: 

 

(c) Use the result of (b) to find the amplitude and phase shift of the current. How much power is provided by the 
power supply? (Your answer should be the time-averaged power.) 

Multiply top and bottom by the complex conjugate: 

 
Thus the amplitude is 

 
and the phase shift is: 

 

The time-averaged power is: 

 

(d) Show that the power is given by 

 



 

since   Then 

 

15. Small amplitude waves in a plasma are described by the relations 

 

where         and   are constants. The constant   is the collision frequency. Assume that     and 

  are all proportional to   Solve the equations for non-zero   and   to show that   satisfies 
the equation: 

 
and hence show that collisions damp the waves. 

Putting in the exponential form, the equations become: 

 

Use the second equation to eliminate   from the last: 

 

and then use the first equation to eliminate   

 

Now we have an equation with   in every term. Either   a solution we are told to discard, or else: 

 

which is the desired result. Now we solve this quadratic for   

 

With no collisions,   , the solution is   With collisions, the real part of the frequency is slightly 

altered, but the important difference is the addition of the imaginary part   The wave then has the form 



 
The real exponential shows that the wave amplitude decreases in time. 
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Chapter 2: Complex variables 

16. Write the real and imaginary parts  and  of the complex functions(a)  and (b) 

 In each case, show that  and  obey the Cauchy-Riemann relations. Find the derivative 

 first in terms of  and  and then express the answer in terms of  Is the result what you expected? 

since 

Thus 

Thus 

and 

Then 

while 

So the first relation is satisfied. 

Then 

while 

and the second relation is also satisfied. 

The derivative is 

as expected. 



(b)  Thus 

Then 

and 

So the CR relations are satisfied. Then the derivative is: 

which is the expected result. 

17.The variables  and  in a complex number  may be expressed in terms of 

 and its complex conjugate 

Show that the Cauchy-Riemann relations are equivalent to the condition 

We rewrite the derivatives using the chain rule. Suppose that  Then: 

If the Cauchy-Riemann relations are satisfied, both terms in square brackets are zero, and hence 

 as required. This means that the function  and  does not appear. 



18. One of the functions  and  is the real part of an analytic function 

 Which is it? Find the function  and write  as a function of  

Both the real and imaginary parts of an analytic fucntion satisfy the equation 

so let's test the two functions: 

and 

So the correct function is  

Then from the C-R relations: 

and 

Thus 

Then 

19. A cylinder of radius  has potential  on one half and 

 on the other half. The potential inside the cylinder may be written as a series: 

Express each term in the sum as the imaginary part of a complex number, and hence sum the series. Show that the result 
may be expressed in terms of an inverse tangent. 

The sum may be recognized as the geometric series (2.43) 

To do the integral, let  



Now the logarithm is 

and thus 

Next we find the argument:

where 

and thus 

20. The function  (cf Example 2.10) also has a zero at  What is its order? 

To find the order of the zero, we write the Taylor series centered at  

Thus the series is 

and the zero is of order 1. 

21. Find the Taylor series for the following functions about the point specified: 

(a)  about  

The series is  times the cosine series, i.e. 



(b)  about  

At   ln  

The derivative is 

The 2nd derivative is 

The 3nd derivative is 

So the series is: 

The radius of convergence is  since  has a branch point at  

(c)  about  

The derivative is 

The 2nd derivative is 

So the series is: 

The radius of convergence is  since the function has no singularities (other than the removable singularity at 

 

(d)  about  

First factor the denominator: 



There are poles at  Now let 

Expand each term in a geometric series: 

The radius of convergence is 1, since  has a pole at  

22. Determine the Taylor or Laurent series for each of the following functions about the point specified: 

(a)  about  

The function has a pole at  so the series is a Laurent series. 

First find the Taylor series for 

The general term is 

and thus 

The radius of convergence is infinite, since the function has no other poles or singularities. 

(b)  about  

The function is analytic at 

 (there is a removable singularity) so the series is a Taylor series. We start with the series for 



The radius of convergence is infinite, since the function has no poles or other singularities 

(c)  about  

There is a simple pole at  the series is a Laurent series: 

The radius of convergence is infinite, since the function has no other poles or singularities. 

(d)  about  

Th function has a branch point at . The singularity at  is removable, since  has a zero at 

 We should be able to find a Taylor series valid for   

First find the Taylor series for  Let 

So 

(e) tan  

So 



There are branch points at  There is a Taylor series valid for 

Problem 22

23. Determine all Taylor or Laurent series about the specified point for each of the following functions. 

(a)  about the origin. 

The function is analytic about the origin, so there is a Taylor series. The function has poles at 

 so the Taylor series is valid for  There is a Laurent series valid for  

Taylor series: 

Laurent series: 

We may simplify the negative powers as follows: 



valid for  

(b) about  

The function has simple poles at  so we can find a Laurent series valid for 

 and another valid for . 

Let 

In Region I, expand the second term in a geometric series: 

which is valid for  

In the outer region (II) we expand the other way: 



which is valid for  

(c)  about  

The function has poles at  We should be able to find a Laurent series valid for 

 and another for  

where  Then for  we have: 

while for 

(d)  about the origin. 

The function has poles at  so there is a Taylor series valid for  and a Laurent series valid for  



while for 

24. Find all the singularities of each of the following functions, and describe each of them completely. 

(a)  

Expand out each term in a series: 

This is a Laurent series with infinitely many negative powers, and it is valid up to the singularity at 

 so the function has an essential singularity at  

(b)  

Let's look at the series for this function about the origin: 

This is a Taylor series valid for all  Thus the function has a removable singularity at  

(c)  



The function has a removable singularity at 

But the tanh function also has singularities regularly spaced along the imaginary axis. 

and  has singularities at  The singularities are all simple poles. For example 

Since the limit exists, the pole is simple. 

(d)  

The function has a branch point where  or  

25. Incompressible fluid flows over a thin sheet from a distance 

 into a corner as shown in the diagram. The angle between the barriers is  and at  

 Assuming that the flow is as simple as possible, determine the streamlines of the flow. What is the velocity at 

 

The velocity potential satsifies 

and thus we may look for a complex potential .  must be an analytic function in the region 

, and at  we need 

The streamline function must be a constant on the surfaces  and 



 We may take this constant to be zero, and then the function  does the job. (The function 

 would also work, but would lead to more complicated flow.) This suggests that we look at the analytic function 

 The imaginary part of this function satisfies the boundary conditions at the two 
surfaces. Thus the streamlines are given by 

and the velocity is given by 

Thus at  we have 

and so 

Thus the streamlines are given by 

See Figure.  (solid line), 5 (dashes), and 1/5 (dots). 

The velocity is 

and so at   we have 
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Chapter 2: Complex variables 

26. Prove the Schwarz reflection principle: If a function  is analytic in a region including the real axis, and 

 is real when  is real, 

Show that the result may be extended to functions that posess a Laurent series about the origin with real 
coefficients. 

Verify the result for the functions (a)  and (b)  

(c) Show that the result does not hold for all  if  (the principal branch is assumed). 

If the function is analytic, it may be expanded in a Taylor series about a point  on the real axis: 

and since 

is real, then each of the  must be real. Then 

The proof extends trivially to the case where the series is a Laurent series with real coefficients. 

So 

The function  is trickier. 

Thus 

and, choosing the principal branch of the logarithm, 



Then 

and 

and the two expressions are the same. 

Note that this function has branch points at  but it is analytic on the real axis. 

(c) 

We proceed by showing that the relation fails at one point,  At  on the real axis, 

Then 

but 

27. Find the residues of each of the following functions at the point specified. 

(a)  at  

First factor the function: 

The function has a simple pole at  and the residue is: 

(b)  at  

First rewrite the function: 

and then expand in a Laurent series: 



Now we can pick out the residue: it is the coefficient of  The residue is 

(c)  at the origin 

The easiest method here is to find the Laurent series: 

and thus the residue is 

1
. 

(d)  at  

Since the denominator is a function  that has a simple zero at  we can use method 4. 
The derivative is 

and so 

28. Evaluate the following integrals: 

(a)  where  is a circle of radius  centered at the origin. 

The integrand has a simple pole at  which is inside the circle. The residue there is: 

and thus 

(b)   where  is a square of side 4 centered at the origin. 

The integrand has a simple pole at  which is inside the square. The residue there is: 

and thus 



(c)   where  is a circle of radius  centered at the origin. 

The integrand has a pole at  which is outside the circle. Thus: 

(d)  where  is a square of side 1 centered at the point  

The integrand has two simple poles, at  Only one, at  is inside the square. The residue at 

 is 

and so 

29. Evaluate the following integrals: 

(a)  

We evaluate as an ingtegral around the unit circle. Let  Then 

and 

and 

Then 



The integrand has poles at  and 

Only the poles at  and  are inside the circle. The residues at these poles are  and 

So the integral is: 

(b)  

Let  Then:  so 



The integrand has poles where 

Only one of these poles is inside the unit circle. There is an additional pole at  The residues are  and: 

Thus the integral is: 

(c)  

The integrand has poles where 

Of these 4 poles only 2 are inside the circle, at  and  The residues are: 

and 



Thus the integral is: 

(d)   

Since sin  we may rewrite the integral: 

The integrand has a pole of order  at  The residue is: 

All the terms in powers  are zero in the limit, and all the terms in powers  differentiate away. Thus 

Thus the integral is: 

30. Evaluate each of the following integrals: 

(a)  

We close the contour with a big semicircle at infinity. The integral over the semicircle is: 

The poles of the integrand are at  Only the pole at  is inside the contour. the residue is: 



and the integral is: 

(b)  

We close the contour with a big semicircle at infinity. The integral over the semicircle is: 

The integrand has poles at 

The first of these is inside the contour and the second is on it. We'll evaluate the principal value. The residue at 

 is: 

The integral around the little semicircle where  is: 



Thus 

and so 

(c)  

There are no poles on the real axis, so we may assume that the integral is real. Then we may evaluate: 

Close the contour with a big semicircle in the upper half plane. The integral along the semicircle is zero by 

Jordan's lemma. The poles are at  but only the pole at  is inside the contour. The residue is: 

Then: 

(d)  

The poles of the integrand are where 

None are on the real axis. Thus we may take: 

and close the contour with a big semicircle in the upper half plane. The integral along the semicircle is zero by 

Jordan's lemma. Only the pole at  is inside the contour. The residue is: 



Thus the integral is: 
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Chapter 2: Complex variables 

31. Use a rectangular contour to evaluate the integrals: 

(a)   

The upper side of the rectangle should be at  (for real  Then on the upper side: 

Then around the whole rectangle: 

Along the end at , with 

provided that  

Along the end at 

provided that  Thus we have: 

Now the integrand has a pole where 

or 



which is inside the contour. The residue there may be found from method 4: 

and so the integral is: 

and thus 

The result is real, as expected. 

(b)  

We put the top of the rectangle at  Then: 

There are poles inside at ,  and 3. The residues are: 

Thus summing the 3 residues, we get: 

Note: the singularities on the top line at  and on the -axis at  are removable. 

(c)  



Again we want the integral along the upper side of the contour to be a multiple of that along the 
lower. Here we find there is an additional integral that we have already evaluated. We can make use 
of the results 

So we can take  on the upper side of the rectangle, so that  and 

. Then: 

On the top side: 

TThe second integral is zero because the integrand is odd and there are no poles on the real axis. 

The third integral was evaluated in § 2.7.3, Example 2.22. The result is  Thus: 

Now at the two ends, we have: 

for  A similar proof works for Re  just factor out  in the denominator. 

Now we have: 

There is a pole where 

i.e. at 

and the residue there is: 

and therefore 



32. Evaluate the integrals 

(a) 

The integrand has a branch point at the origin and a branch cut, which we may take along the 
positive real axis. Let's evaluate 

where  is the keyhole contour in Figure 2.36. 

Along the bottom of the branch cut: 

Now along the big circle, we have: 

The integrand has poles at    All 
three are inside the contour. the residues are: 

and 

So 



(b) 

Use the keyhole contour. There are two poles inside, at  that is,   and  

Check that the integral around the small circle goes to zero: 

33. Evaluate the integral 

by integrating over a pie-slice contour with sides at  and at   

We evaluate  over the suggested contour. 

On the curved part of the contour, the integral is bounded by 

On the straight line at   and we have 



Thus 

The integrand has a pole where 

or 

(the other roots are outside the contour) and the residue there is 

Thus 

34. Evaluate the integral 

along the positive real axis by making the change of variable  Take care to discuss the 

path of integration for the integral. Use the Cauchy theorem to show that the resulting integral 
may be reduced to a known integral along the real axis. Hence show that 

 (The result has numerous applications in physics, for example 

in signal propagation. ). 

and letting  then 

The path of integration is moved off the real axis: when  then   along a 

line making an angle  with the real axis. But the integral around the closed contour formed by 
the real axis, this line, and the arc at infinity is zero because there are no poles of the integrand 

inside, and the integral along the arc  



and cos2  is positive throughout the range  so the integral  Thus the integral 
along the sloping line equals the integral along the real axis. Thus 

Problem 34.

Thus 

35. The power radiated per unit solid angle by a charge undergoing simple harmonic motion is 

where the constant  and  is the speed amplitude  (see.e.g, Jackson p 
701). Using methods from section 7.2.1, perform the time average over one period to show that 

Write  Then the time average is: 

We can simplify by doing one integration by parts: 

We convert to an integral over the unit circle in the plane and write  and 



sin  Also , so  With  the integral is 

where  The denominator is 

and there are 2 fourth-order poles at: 

where  and so the square root is imaginary: 

Only one of the two poles is inside the unit circle: 

Now we find the residue using method 3: 

where 

Thus 

Now 

and 



So 

Thus 

and thus the integral is: 

and finally 

as required. 
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36. Langmuir waves. The equation for the Langmuir wave dispersion relation takes 
the form: 

 

where   is the plasma frequency   and   is the 1-dimensional Maxwellian 

 

Notice that the integrand has a singularity at   Landau showed that the 

integral is to be regarded as an integral along the real axis in the complex   plane, 
and that the correct integration path passes around and under the pole. 

(a) Show that the integral may be expressed as: 

 
(cf Section 7.3.5) 

The principal value is defined in the section referred to 

 
We need to add to this the integral around the small semicircle that passes beneath 

the pole. On this path,   and the integral is 

 
which is the required result. 

(b) Evaluate the principal value approximately, assuming   and 

hence find the frequency   as a function of   What is the effect of the pole at   

First we integrate by parts: 

 
Because of the exponential in the Maxwellian, the numerator is very small except when 

  Thus we expand the denominator: 



 
and thus, integrating by parts 

 
Finally, the pole on the real axis contributes a term: 

 
This term is small because the exponent is large, so let's neglect it for the moment. 
Then: 

 

To zeroth order the result is   The first order correction gives: 

 
the Langmuir wave dispersion relation. Now we add in the small imaginary part: 

 

Thus   must have an imaginary part,   and thus   with 

 
The wave form 

exp  shows that with 

anegative   the wave is damped. 

(c) How would the result change if the path of integration passed over, rather than 
under, the pole? The contribution from the pole would change sign, and we would 
predict growth of the waves rather than damping. This is contradicted by experiment. 

37. Is the mapping   conformal? Find the image in the   plane of the 



circle  in the   plane, and plot it. 

The function   is analytic. The derivative 

 
is not zero except at the origin. Thus the mapping is conformal except at the origin. 

The circle is described by 

 
or 

 
which maps to 

 

and if   

 

Here's the plot: 

 

  plane



 

  plane

Invariance of angles breaks down at   where the mapping is not conformal. 

38. Is the mapping   conformal? Find the image in the   plane of (a) the 

  axis  (b) the   axis, and (c) the unit circle in the   plane. 

The function   is analytic except at   and at infinity. The derivative is 

 

which is zero at   Thus the mapping is not conformal at these two points. 

(a) The real axis maps to 

 

The origin maps to infinity, the positive   axis maps to the positive   axis with 

  , and the negative   axis maps to the negative   axis with   

(b) The imaginary axis maps to 

 

Thus the points   map to the origin. Points with   map to negative 

  while points with   map to positive   



 

  versus 

  

 

  versus 

  

(c)The unit circle   maps to 

 

---a chunk of the real-  axis between   and   

A capacitor plate has a cylindrical bump of radius   on it. The second plate is a 

distance   away. One plate is maintained at potential   and the other is 
grounded. Find the potential everywhere between the plates. 

We want to convert to a coordinate system with   so let     . 

Then the cylinder has radius   Now we map to the   plane using the 



mapping   This maps the cylinder plus   axis to the   axis. The second 

plate has coordinate   It maps to the line   In this 

plane the potential is 

 

whic is zero for   and   for   The complex potential is then: 

 

Mapping back, the potential in the   plane is: 

 
so the electric potential is: 

 

 

Equipotentials for   (dashed), 0.5 (solid blue), 0.75 (red) and 1 (green).

39. Show that the mapping   is conformal except at a finite set of points. 

A parallel plate capacitor has plates that extend from   to   . Find an 



appropriate scaling that allows you to place the plates at   Show that the given 

transformation maps the plates to the lines   Solve for the potential between 

the plates in the   plane, map to the   plane  and hence find the equipotential 
surfaces at the ends of the capacitor. Sketch the field lines. This is the so-called 
fringing field. 

Choose   where   is a coordinate measured perpendicular to the plates, and 

  is the plate separation. The function   is analytic everywhere, and the 
derivative is 

 
It is non-zero except at the points 

 
or, equivalently, 

 
The mapping takes the form: 

 

Then for       ranges from   to   i.e. we 

get the whole real axis in the   plane. The line   maps to 

      ranges from   at   to   at   This is the top 

plate of the capacitor. Similarly   maps to the lower plate. 

The mapping   has a branch point at each of the points 

  Each 2  wide strip of the   plane maps to the whole 

  plane  For each branch there are two points in the   plane at which the 
mapping is not conformal. 

In the   plane we can write the potential as   giving a complex potential 

  with the complex part being the physical potential. Equipotentials 

correspond to   const   The corresponding curves in the   plane are: 



 
Thus 

 
and 

 
The equipotenials are shown in the figure. 

 

40. Two conducting cylinders, each of radius   are touching. An insulating strip lies 
along the line at which they touch. One cylinder is grounded and the other is at 

potential   Use one of the mappings from the chapter to solve for the potential 
outside the cylinders. 

. The transformation   maps each of the cylinders to a straight line in the 

  plane. For a circle centered at   with radius   we may write a point on the 
circle as 

 
which maps to 



 

As   varies,   takes on all real values and   falls on the lines   

In the   plane, the potential is   So we can write a complex 
potential 

 

where the physical potential is the imaginary part. In the   plane we have: 

 

 
The imaginary part is: 

 

 

Problem 40. Equipotentials for   3  /4 and 

  



The equipotentials are given by 
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Chapter 2: Complex variables. 

41. Show that the mapping  maps the arcs (a)  with end points 

at  and (b)  with end points at  and  to 
straight line segments. 

(a) The arc is described by the equation 

Using the transformation: 

and thus 

Thus 

This a straight line parallel to the axis:  With  

The line extends from  to  

The arc in the plane. (a) blue (b) black



The line in the plane

(b) The circle is 

This is a straight line parallel to the axis. It extends from  to 

 . 

42. Show that  for  

If  then we can write 

where  Then  is positive and hence  is negative. 

43. Prove Cauchy's inequality: If  is analytic and bounded in a region  

 and  on the circle  then the coefficients in the 

Taylor series expansion of  about   satisfy the inequality 



Hence prove Liouville's theorem: 

If  is analytic and bounded in the entire complex plane, then it is a constant. 

Using expression (45) with  equal to the circle of radius 

as required. 

To Prove Liouville's theorem, we let  and  Then  for all  Thus 

 a constant. 

44. A function  is analytic except for well-separated simple poles at  

  Show that the function may be expanded in a series 

where  is the residue of  at  Is the result valid for  Why or why not? 

Hint: Evaluate the integral 

where  is a circle of radius  about the origin that contains the  poles. You may 

assume that  on  for  a small positive constant. 

The integrand has simple poles at the origin, at  and at   Near one of the 

poles  the integrand has the form 

The denominator of the first term has a simple zero at  and the sum is analytic at  

so the residue at  is 



Thus 

But also 

Thus  as  and so 

as required. 

The residue theorem holds when there are a finite number of poles inside the contour, so 

this proof is limited to finite  

See also Jeffreys and Jeffreys 11.175. 
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Chapter 3: Differential equations 

1. A vehicle moves under the influence of a constant force  and air resistance proportional to 

velocity (equation 3.5 with  replacing the gravitational force.) Find the speed of the vehicle as a 

function of time if it starts from rest at  

Choose axis along the direction of  The equation of motion is then: 

and the solution to the inhomogeneous equation is: 

The solution to the homogeneous equation is of the form  where 

Thus the complete solution is of the form: 

Now we apply the initial conditions: 

So the solution is: 

The vehicle reaches a terminal velocity  as  

2. Find the general solution to the differential equation 

Hint: Extend the result for a double root from section 3.1.1. 

The solution is of the form  where 

or  a root repeated 3 times. Extending the result from the chapter, we guess that the two 

additional solutions are  and  Let's check. With   

 and  Substituting into the 
differential equation: 



The coefficients of   and  are each zero, so this equation simplifies to  which has 
solution 

as expected. Thus the general solution is: 

3. A capacitor  inductor  and resistor  are connected in series with a switch. The capacitor 

is charged by connecting it across a battery with emf  The battery is disconnected, and the 
switch is closed. Find the current in the circuit as a function of time after the switch is closed. 

The differential equation is: 

and the intial condition is  at  The inductor prevents the current from changing 

immediately after the switch is closed, so we also have  at  The solution is 
(§3.1.1) 

with  and  Differentiating, we find 

Applying the initial conditions, we have: 

and 

Thus 

Notice that  is negative for small  implying that the capacitor is discharging. 

4. The Airy differential equation is: 

Find the two solutions of this equation as power series in  



The point  is a regular point of this equation, so we may write 

and 

Then the equation is 

The lowest power that appears in this equation is  and its coefficient is: 

Then for  we have: 

and for 

Thus the recursion relation skips two. One solution starts with 

and the other starts with 

5. Solve the equation  (§3.3.2) using the Frobenius method. Show that  cannot 
equal any non-zero constant, as discussed in §3.3.2. 

The lowest power of  is  with coefficient 

and solutions   Then for  we have 

For 

and for  



The general recursion relation is: 

Thus for 

Thus the first solution is: 

Check by differentiating 

as required. 

For 

This generates the same solution as  

This solution shows explicitly that the regular solution  and const as  Thus 

 cannot equal any non-zero constant, as discussed in the text. 

The second solution is found using equation 3.37: 



Differentiating: 

Stuffing this into the differential equation, we get: 

Using equation () our equation becomes: 

The lowest power of  in the first two terms is  Thus  must be an integer. With  we 
find: 

The coefficient of  is: 

The terms in  are just  again. Thus the general solution is: 



The second solution  as  but cannot be expressed as a Taylor series. The 
first derivative is 

which diverges at the origin. 

6. Find a solution of Laguerre's differential equation: 

that is regular at the origin. Show that if  is an integer  then this solution is a polynomial of 

degree  

 is a singular point of the differential equation, so we may write the solution in the form: 

Then 

and 

The differential equation becomes: 

The lowest power is  Its coefficient is: 

a repeated root. The coefficient of  is: 

So 

Thus 

Thus one solution is: 



Now if  an integer, then the series will terminate with and this solution becomes a 

polynomial or order . 

The first few are: 

and so on. 

The second solution is found by introducing the logarithm: 

and inserting into the de. 

7. Solve the Bessel equation: 

as a Frobenius series in powers of  Sum the series to obtain closed-form expressions for the 
two solutions. 

The differential equation has a singular point at  so we write: 

and 

The differential equation becomes: 

The lowest power is  and its coefficient is: 

so we have the indicial equation: 



with solutions 

The coefficient of  is: 

which gives  leading to the same two series. Thus we need only consider  

The recursion relation is obtained by looking at the coefficient of 

So 

So with 

and the solution is: 

The second solution has 

and the solution is: 

The first of these may be written: 

while the second is: 



8. Solve the hypergeometric equation 

as a series (a) in powers of  and b) in powers of  

(a) The equation has singular points at  and at  so we write a Frobenius series: 

and 

Then the differential equation becomes: 

The lowest power is  and its coefficient is: 

So the indicial equation is 

with solutions  and  So one solution is regular at the origin and one is not. The 

recursion relation is found by looking at the  power: 

Thus 

So with  we have: 

and thus the solution is: 

The second solution has the recursion relation: 



and so the solution is: 

(b) Now let  The equation becomes: 

Now look for a series solution in 

The indicial equation is: 

So  or  The recursion relation is: 

So 

With  we get: 

So the solution is: 

while with we have: 



and the second solution is: 

9. Find two solutions of the Bessel equation 

as series in  Verify that your solutions agree with the standard forms  and 

 

The equation has a singular point at so we use a Frobenius series. 

The indicial equation is: 

with solutions  The recursion relation is: 

So with 

and the solution is: 

But  so 



as required. 

The second solution has: 

and therefore 

Then  

So the second solution is: 

10. Consider a linear differential equation of the form: 

Expand the functions  and  in power series of the form 

and similarly for  Find the indicial equation. What is the condition on  and  if there is only 
one root? What is the value of the root in that case? Use the method of variation of parameters to 
show that the second solution of the differential equation is given by equation (3.37). Hint: show 

that the equation for  may be reduced to the form: 

where  is a series of positive powers of  Integrate this equation twice to obtain equation 
(3.37). 

. With  we have 

The lowest power is  giving the indicial equation: 

with roots: 

There is only one root if 



and then 

Then assuming 

and 

The term multiplying  is zero, because  satisfies the original differential equation. Thus 

since  

To obtain this result, we used 

where  contains only positive powers of  

Integrating, we get 

and hence 

integrating again, we have 

so that the second solution has a logarithmic term. 

This document created by Scientific WorkPlace 4.1. 



Chapter 3: Differential equations 

11. For a linear differential equation of the form  where the functions  and 

 are analytic, the indicial equation may be written as  where  is a quadratic 

function. Show that in determining the recursion relation, the coefficient of the  term is  

Hence argue that the method fails to provide two solutions if the solutions of the equation  
differ by an integer. 

First we insert the series into the differential equation: 

To isolate the lowest power (  in this equation, we write the functions  and  using Taylor series 
about the origin: Then 

Now we look at the power 

The coefficient of  is 

Now if the solutions of  are  and  then we will not be able to obtain a 

solution for  because its coefficient will be zero, and the method fails. 

When does this argument fail? If the differential operator  is even, then the 

solution  is purely even or purely odd. The recursion relation relates  to  If the roots of 
the indicial equation differ by unity, we will have two linearly independent solutions, one even 
solution and one odd solution, given by the two different roots. 

12. Solve the equation  (equation 3.19 in the chapter) by writing it in the form 

and integrating twice. 



13. Find the two solutions of the equation 

The equation has a singular point at so we write a solution of the Frobenius type: 

Then, multiplying by  the differential equation becomes: 

The lowest power that appears is  and its coefficient is: 

which has solutions  . Inspection of the equation shows that  is the complete 

solution. Or, we can write the recursion relation by looking at the coefficient of  

With  we get: 

So 

if we start with  we get an immediate problem, so we must conclude that  and this is not a 
valid solution. 

Starting with we get the recursion relation: 

which gives  and all succeeding terms zero. This is the solution  that we guessed above. 



For the second solution we choose a logarithm: 

and 

Stuffing into the differential equation, we have: 

The lowest power is  so we take  

Then for the  term we have: 

For the  term: 

For the 2nd power: 

and for the th power: 

Then we can step down: 



Thus the solution is: 

14. Determine a solution of the equation 

at large  Hence determine the solution for all  

At large  the equation simplifies, since : 

The solution is an exponential  where 

with only one solution,  Thus at large   

To determine the solution for all  we look for a solution of the form  Then: 

and 

and stuffing in, we get: 

Since each term contains  we cancel it: 

Thus 



Integrating once, we get 

so 

integrating again: 

Thus the complete solution to the original differential equation is: 

15. Determine the large argument expansion of the Legendre function  by finding a solution of 
the equation 

as a series in powers of  

First we let  Then 

and 

So the differential equation becomes: 

The equation has a singular point at  so the solution may be written as a Frobenius series: 

Then we have: 



The lowest power is  and its coefficient is: 

and so, with  the indicial equation is: 

with solutions   The two values differ by an integer. One value gives a solution that is well 

behaved at   and this is the solution that we want. 

The  power has coefficient: 

which gives  and  or . These values give the same two solutions as before. 

The  power for  gives: 

So 

With  we have: 

and so 

Specifically: 

and so the solution is: 



where  is an arbitrary constant. 

16. Solve the equation 

The equation has a regular singular point at so we use a Frobenius series. 

The lowest power is  and its coefficient is: 

So the indicial equation is: 

So the solutions are  and which differ by an integer. Thus we may find only one series. 
Let's see. 

The coefficient of  is: 

which gives   with  and these values will give the same solutions as  2 

with  

The recursion relation is: 

So 

and with  we get 

The first few terms are: 

So the solution is: 



The second value of   gives: 

So 

So the solution is: 

Thus the two solutions are  and  

Check: 

 

 

as required. 

17. Solve the equation 

The equation has a regular singular point at so we use a Frobenius series. 

The lowest power is  and its coefficient is: 



So the indicial equation is: 

with solutions  and  The recursion relation is: 

Thus: 

So each series has only every 4th power. With  we get 

So 

and the solution is: 

With  we get 

So 

and the solution is 

Check: 

 



as required. 

18. The conical functions are Legendre functions with  

(a) Starting from the Legendre equation (cf Example 3.7), find the differential equation satisfied by 

the conical functions   and   

(b) Show that one solution is analytic at the point  and determine a series expansion for the 

conical function   in powers of . Hence show that this conical function is real. 

(a) The differential equation is 

where  Now substitute 

(b) Since  we can let  and then  corresponds to  
Further: 

So 

and 

Also 

So the equation becomes: 



 is a singular point of the equation, so look for a solution of the form 

Then: 

The lowest power is  and its coefficient is: 

So the indicial equation is 

with the solution . Thus one solution is analytic at the origin. The recursion relation is: 

And so 

So with  we get: 

So 

and thus the solution is: 



which is clearly real. 

19. Write the equation  in standard form, and use Fuch's theorem to show that the 

Frobenius method may not give two series-type solutions about . Change to the new variable 

 (cf Example 3.10) and show that the new equation can be solved by the Frobenius method. 
Obtain the two solutions. 

In standard form, the equation is: 

Then the function  and  has a second order pole at  Thus by 
Fuch's theorem, the Frobenius method will not give two series solutions. 

With   and  Then the equation 
becomes: 

This equation has  and  so both  and  are analytic at  Thus 
we look for a solution of the form: 

The equation becomes: 

The lowest power of  is  and its coefficient is: 

which has the solutions 

The recursion relation is: 

or 



With 

With 

The recursion relation skips powers, so the series will have only even  terms: 

Thus the general solution is: 

In this case the two roots of the indicial equation do provide two independent solutions, even though 
they differ by an integer. 

Check: 

as required. 

20. Solve the equation 



Hint: first expand the hyperbolic cosine in a series, then use a power series method. 

Now look for a series solution: 

The lowest power is  

Now look at 

  odd, : 

There are two solutions, one with even powers and one with odd powers. Let's look for a pattern: 



There is no obvious pattern. The solutions are: 

and 
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Chapter 3: Differential equations 

21. The Stark effect describes the energy shift of atomic energy levels due to applied electric fields. The 
differential equation describing this effect may be written: 

where the term  is the perturbation due to the electric field. Obtain a power series solution for  and 
obtain explicit expressions for the first four non-zero terms. How many terms are needed before any effect 
of the electric field is included? 

There is a singular point at  so we use the Frobenius method. 

The lowest power appearing is  and its coefficient is: 

with solutions 

Then we look at successively higher powers: 

where we took  in the last step. 



The general recursion relation is obtained from the  power: 

Choosing  we obtain the relation: 

The first four terms are: 

The effect of the electric field does not show up until the cubic term. 

22. Show that the indicial equation for the Bessel equation 

has a repeated root. Show that this root leads to only one solution Find the second solution using 
equation 3.37. Try to get at least the first three terms in the series. 

Expanding the derivative, we get 

so there is a singular point at the origin. 

The indicial equation is 

Then we have: 



The solution is 

Now we look for a second solution of the form: 

Stuffing in, we get: 

Since the first series has only odd powers of   must be even. The lowest power in the first series is 

 so we can take  and  even to get: 

Then 



We can see that the function multiplying  is just our first solution. The second solution is: 

23. Attempt to solve the equation 

using the Frobenius method. Show that the resulting series does not converge for any value of  

The lowest power is 



Thus we need  or  The next power is 

With  we get 

The general recursion relation is: 

From the ratio test, the ratio of two successive terms is 

This ratio is  for any finite value of  for  and thus the series diverges. 

24. Weber's equation is 

Show that the substitution  simplifies this equation. Find two solutions for  as 

power series in . 

Substituting in: 

Thus the equation for  is: 

 is a regular point, so 

Starting with  we have: 



From  we get 

and in general, from 

Thus 

for  even, and 

for  odd. Thus the solutions are 

and 

25. The Schrödinger equation in one dimension has the form 

Develop a series solution for  in the case that  is the potential due to the interaction of two nucleons: 

Obtain at least the first three non-zero terms. 

Let  and  Then 

The equation has a singular point at  so we use a Frobenius series. 



Now expand the exponential in a series: 

The lowest power is 

The next power is 

If  we would get  So take  Then 

The next power is 

With  the differential equation becomes: 

for  we get 

Thus 

26. The Kompaneets equation describes the evolution of the photon spectrum in a scattering atmosphere. 

Here  is the photon number density,  is the dimensionless frequency, and  is the Thomson scattering 



cross section. We may find a steady state solution (  when photons are produced by a source 

 and subsequently escape from the cloud. When  remains  the Kompaneets equation becomes 
a linear equation: 

where  is the Compton ''y'' parameter, equal to (fractional energy change per scattering) mean # of 

scatterings). Assume that  except for  

(a) Show that for  the solution is an exponential. This is the Wien law. 

For  we may ignore both  and  Then the equation simplifies to 

(b) Show that in the special case  the solution is a power law in  . 

If  negelecting  the equation becomes 

Look for a power law solution,  Then: 

Negelecting the larger power of  in the limit  we have a solution with 

The positive power does not make sense physically, so the solution is  Notice that with this solution 

the term we neglected is zero anyway, so this is an exact solution, not valid only for small  

(c) Verify your answers to (a) and (b) by letting  and finding a power series solution for  



Now divide out the factor  to obtain: 

There is a singular point at  so use a Frobenius series: 

The lowest power is  and its coefficient is: 

Note: as  ,  and we get a regular power series. 

The recursion relation is found by looking at the coefficient of 

and using the indicial equation, this simplifies to: 

Thus the solution is 

When  the square root equals 5 and we get: 

corresponding to  and  respectively. Thus 



as we found in (b), or 

27. A particle falls a distance  under gravity. Air resistance is proportional to the square of the particle's 
speed. Write the differential equation that describes the particle's position as a function of time. 

We start with Newton's 2nd law: 

Choose dimensionless variables, and show that the equation may be put into the form: 

Divide by 

Each term in this equation is dimensionless. Express the distance travelled as a fraction of the total 

distance   and define a dimensionless time  Then the equation becomes: 

which is of the desired form with  and  Using a spreadsheet to compute the coordinates, 

starting at  we reach  at  corresponding to  s. With no air resistance we 
would have: 

Air resistance increases the time by 0.02 s or  

With   an increase of  



28. In astrophysics, the Lane-Emden equation decribes the structure of a star with equation of state 

 Defining  the equation of hydrostatic equilibrium becomes: 

where  is a dimensionless distance variable. This is the Lane-Emden equation. 

(a) Find a series solution for  in the case  

For  the equation is linear, with a singular point at  so we may solve with a Frobenius series: 

The indicial equation is found from the coefficient of : 

So for  

The coefficient of  is: 

So if   or  Thus these two solutions duplicate the first two. 

With  



and for 

Thus the solution is 

This function is the spherical Bessel function  (Chapter 8), and this solution is regular at the origin. 

The second solution is found from 

and so the solution is 

This solution is not well behaved at the origin, and so can be ruled out on physical grounds. Note this is 
one of the rare cases in which we get two independent solutions even though the roots of the indicial 
equation differ by an integer. 

(b) Find the first 3 non-zero terms in a series solution for  for arbitrary  Verify that your result agrees 

with the result of part (a) when  (Hint: begin by arguing that the solution contains only even powers 

of  

If we replace  with  the equation is unchanged. Thus the solution must be even in  (or purely odd, 
but that would give zero density at the center of the star, which is clearly unphysical), and thus the first 3 
non-zero terms are: 

and we may choose  Then 

Now we stuff into the DE 



There are additional terms in  from the derivatives of the next term in the series, so we cannot use the 

terms beyond  Thus, equating terms of equal power, 

and 

Thus 

The series converges quite fast for  and agrees with the previous result for  

(c) Solve the equation numerically for   and  At what value of  does  first 
equal zero? (This corresponds to the surface of the star.) 

We'll use the Runge-Kutta method. The result is  at  Here are the spreadsheet 
formulae: 



Solution for  The numerical solution agrees well with the series (red line) from part (b) up to 

 The first three terms of the series are not sufficient for larger values of  

29. Investigate the effect of air resistance on the range of a projectile launched with speed . Assume 

that air resistance is proportional to velocity: . Write the equations for the  and 

coordinates in dimensionless form. Scale the coordinates with the maximum range  What is 
the dimensionless air-resistance parameter? Determine the dimensionless range for values of the air 
resistance parameter equal to 0, 0.1, 0.2 , 0.4 and 0.5. Determine how the maximum range changes, and 
also determine how the launch angle for maximum range changes as air resistance increases. Hint: if 
there is no air resistance, you can obtain exact expressions for the increments in position and velocity in a 

time interval  Use the same expressions when  but with acceleration computed from the value 

of  at the beginning of your time interval. 

and 

Dividing by  we get: 

and 

We can make this dimensionless by expressing  in terms of the maximum range without air resistance: 



 Then: 

and with 

Then let  The equations become: 

and: 

Now let  Then integrating once, we get: 

where  is the dimensionless initial velocity in the direction 

Now we set up a numerical scheme to integrate this set of equations. Notice that if  then 

solves the equation exactly. So let's try basing our numerical scheme on this. In each time step compute 

the increment in  by 

and similarly for  Setting up a spreadsheet, we find that the range decreases and the maximum range 
moves to a smaller angle of launch as the air resistance increases. 



30. The equation that describes the motion of a pendulum is 

(a) When  remains small, the equation may be reduced to the harmonic oscillator equation. Solve this 

equation to obtain the solution  

(b) With the initial conditions   solve the non-linear equation numerically to obtain 
the period. By how much does the period differ from your result in (a)? 

Pendulum equation 

For dimensionless variables, let time scale be  Then 

When  remains small, then 

with solution 

where  is the dimensionless time variable defined below. When  is not always small, we solve 
numerically. 

  Thus  and  

See spreadsheet for solution. 

The period is 6.75 seconds. For the exact cosine solution, the period is 2  The % difference is 



31. Bessel's equation of order  has the form: 

Show that the differential equation 

may be converted to Bessel's equation through the relations 

and 

What is the order of the resulting Bessel's equation? (The solutions are given in Chapter 8.) 

First change  to 

and 

Next change  to  For ease of computation, let  Then  and 

and 



Thus the differential equation takes the form: 

Divide by  and use the expressions for the derivatives: 

Dividing by  and rearranging: 

This is Bessel's equation with  

The equation 

becomes the modified Bessel equation 3.38. 

32. Show that the equation 

has a solution of the form 

and find the order  of the modified Bessel function. 

First let  so  

Now let 

Thus 



This is the modified Bessel equation (3.38) with  or  
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Chapter 4: Fourier Series 

1. Show that the Fourier series (equation 4.1) for a function  may be written: 

and find expressions for  and  

Expand the cosine to obtain: 

Comparing with equation 4.1, we have: 

Thus 

and 

where  and  are given by equations 4.7 and 4.8. 

We may also work from the exponential series: 

In this formulation  may be complex, but  is real. Thus if  is real, the imaginary terms must combine to give 
zero, leaving: 

where 

and 

Note that 

and 

and so the sine terms sum to zero in pairs, as required, and the cosines combine to give a sum over positive  
only. 



which is of the required form, with  and  for  

2. Develop the Fourier series for the function  

(a) over the range  

(b) over the range  

(c) Make a plot showing the original function and the sum of the first 3 non-zero terms in each series. 

Comment on the similarities and differences between the two series. 

We choose a variable  that varies from  to 2  as  varies from  to 1. Then we write the series as 

The coeffcients are: 

and 

Solid- 3 terms. Dashed- 6 terms



We need to calculate  separately: 

So the series is: 

(b) Over the second range we choose the variable  which ranges from  to  Then we have: 

And the coefficents are: 

and 

which is expected since the function is odd over this interval. Finally: 

So the series is: 

(c) The two series are: 

Both series have sine terms have coefficients that decrease as  The second series has coefficients that 
alternate in sign, while in the first series the signs remain constant. The diagrams show that the series appear to 

converge about equally well to the original function  Of course they differ outside the range : 



Solid- series on (-1.1). Dashed- (0,1)

3. Develop the full Fourier series for the function  over the range  

The series has the form: 

where the argument  of the sines and cosines varies from  to 2  as  varies from  to 1. Then 

and 

Finally: 

Thus the series is: 



Sum of first 6 terms

4 An odd function  has the additional property that  

(a) Make a sketch showing the important features of this function. 

Since  then  the function is even about 

the point  Thus it looks like this: 

(b) Which kind of Fourier series (sine series, cosine series, or full series) represents this function on the range 

? 

Since the function is odd it is represented by a sine series. 

(c) Show that the series has only terms of odd order (  and find a formula for the coefficients as an 

integral over the range  

with 

since both  and the sine are odd functions of  their product is even. Now we divide the range again: 



where we used the evenness of   again in the last step. The result is zero for  even, as expected. 

If instead  then we will have only  even terms. 

Even function,  

(a) Make a sketch showing the important features of this function. 

Since the function is even, so the function has mirror symmetry about the axis. Since 

 the function has period  rather than  Thus it looks like: 

(b) Which kind of Fourier series (sine series, cosine series, or full series) represents this function on the range 

? 

Since the function is even it is represented by a cosine series. 

(c) Show that the series has only terms of even order (  and find a formula for the coefficients as an 

integral over the range  

With a range  we choose the variable  which varies from  to  as  varies from  to  But since the 

function has period  only even  terms should appear in the sum. The arguments of the cosines are multiples of 

 so that the resulting sum has period  Then: 

with 



since both  and the cosine are even functions of  Now we divide the range again: 

where we used the evenness of  again in the last step. The result is zero for  odd, as expected. 

(d) If  we must amend the derivation of  

All the  with  even are zero. The function looks like: 

5. Which series, the sine series or the cosine series, do you expect will converge more rapidly to the function 

 on the range  Give reasons for your answer. Evaluate the first four terms in the optimum 

series. How large is the fractional deviation  at  and  

The sine series gives an odd extension of the function  on the range  and has a discontinuity of 2 

at  The cosine series gives an even extension, and its periodic repetition is continuous at  Thus the 
cosine series will converge faster. 

Let 

Then 

while 



Thus the series is 

The first four terms are 

 

The fit "looks" pretty good between about 0.1 and 0.9. (  solid blue line. 3 terms, red line dashed, 4 terms black 
solid.) 

Deviation is 

and is plotted below 



The percent deviation is less than 25% for  (approximately). 

In particular, at 

and at 

This document created by Scientific WorkPlace 4.1. 



Chapter 4: Fourier Series 

6. Find the Fourier series on the range  for the function  where 

 is not an integer. Check your result by checking the limit  With the value 

 plot the original function and the first 3 terms of your series on the range  Comment. 

The series may be written: 

where 

and 

Finally 

and so the series is: 

Limit as  

We let  and let 



Each term  as  except for the one term with  The surviving term is: 

as required. 

7. Find an exponential Fourier series for the function  on the range 

 By combining terms, rewrite your answer as a series in sines and cosines. 

We write the series as 

where 

And so the series is: 

Notice that the real part of  is an even function of 

 while the imaginary part is an odd function. Thus we can rewrite the series as: 

Note that if we let  then  and we get back the result of problem 6. 



solid-3 terms. Dashed - 6 terms

8. Obtain the first four non-zero terms in a Fourier series for the function  on the range  

The function is odd and so we need a sine series with period . Thus: 

where 

The first four terms are: 

Similarly 

Thus 

The series converges rather slowly. The next term is: 



Solid curve -four terms; dashed curve- five terms. 

9. Use numerical integration to find the first 10 terms in a fourier series for the function  on the range 

 What is the maximum % error between your series and the function  over the given range? 

We may choose an even extension of the function to the range  to  and expand in a cosine series. Thus 

where 

and 

The first few terms are: 

Thus 



The greatest percent difference is at the end points, and at the other points where  (  and 

 Other than at these places, the greatest percent difference is <10%. The greatest difference is 0.4 at 

 

 

10. Find the full Fourier series for the ramp function 

on the interval  

The argument of our harmonic function must be 2  when  and so it is  Thus the series has the form: 

where 

and 

Finally 

Thus 

Notice that only odd  contribute to the cosine terms. 



 Black  Blue  

Note the Gibbs phenomenon at the edge of the flat plateau. 
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Chapter 4: Fourier Series 

11. An electric circuit contains a 1.5 mH inductor, a 5 F capacitor and a 200 

 resistor in series with a power supply that supplies a rectified sine wave voltage with amplitude 110 V and period 2 ms. 
Determine the capacitor voltage as a Fourier series. 

The equation satisified by the circuit is: 

where 

First we find the Fourier series of the emf. Since the differential equation has 1st and 2nd derivatives, we'll use the exponential 
series: 

where 

We could obtain the same result from the first "bump" in the function, repeating with period  

The result is zero if  is odd. If  is even, we get: 

We have to evaluate the  and  terms separately: 

and similarly for  Thus the series is 

We can plot this to check the result: 



Now the differential equation becomes: 

Now express  as a Fourier series: 

Because of the orthogonality of the exponentials, we have an equation for each coefficient  in terms of 

 Thus only even  survive, and: 

and so 

Now as usual let 

and 

Then 

and thus the capacitor voltage is: 

The real terms are even in  while the imaginary terms are odd, so: 

Alternatively, we may simplify by writing 

where 



Both expressions give the real result: 

The Fourier component may be large for any  close to  Now 

so 

and so  could be large if  is small. However, it is not: 

so 

and 

The first few terms are: 

where 

Notice we want an angle whose sine is negative and cosine is also negative, so the correct quadrant is the third: 

 

Here we want a negative sine but positive cosine. Thus 



Notice that the variation is not very large: about 15 V. The circuit smooths out the variations in the power supply voltage. 

12. A single loop, series LRC circuit has resistance   inductance  mH and capacitance  

F 

A rectified sine wave power supply (see Figure) with Period 

 s is attached to the circuit. Find the voltage across the capacitor as a Fourier series in time once the circuit has 
reached a steady state. 

The equation is: 

Write  as a Fourier series: 

where  Then 

and the de is 

and so 

where 

Half-rectified sine wave: 

Series: 

where 



We must do the integral differently if 

Similarly, for 

Thus 

We test this result by plotting it: 

Then: 

and 

Thus 



Now we put in the numbers: 

and 

and 

So 

and 



Blue- input. Black- output 

Notice the major contribution from the resonance at the second harmonic (  

13. A spring-and-dashpot system satisfies the equation 

The system is driven by a periodic driving force with period : 

Find the response of the system  as a Fourier series. 

We begin by finding the Fourier series for 

 Since the de has 1st and 2nd derivatives, we'll use the exponential series: 

with 

The result is zero if  is even and 



if  is odd. 

Now we write the displacement of the spring system as a similar series: 

and stuff into the de. By orthogonality of the exponentials, we can evaluate each term in the sum separately: 

and thus 

Let  Then: 

We can group together the terms with  and  to get: 

If  for some  there is a resonance at that value of 

 and the response of the system is large at the harmonic, particularly if the damping is small  

14. A simply supported beam of length  bears a load 

 that is uniformly distributed over the first 1/4 of its length. Determine the deflection of the beam as a Fourier series. Make plots 
showing the first 1, 2, and 3 terms of your answer. How many terms are needed to obtain a result accurate to 1%? (The 
differential equation satisfied by the beam deflection is equation 3.10, and the displacement is zero at the two ends.) 

The deflection of the beam is given by: 

where 

Since the deflection is zero at  and  we should be able to express the deflection 

 as a Fourier sine series of the form: 

Let's express  as a similar series: 

where 

where 



Stuffing the series into the de, we get: 

and thus: 

and so 

Because of the very strong dependence of  on  the series converges very rapidly. The first few terms are: 

The first term alone should give 1% accuracy. Let's check by directly integrating the differential equation: 

Integrating once, we get: 

if  and 

if  

We can use the discussion in Chapter 3 to determine appropriate boundary conditions. 

where  is the net cc torque of all forces to the right of  and 

where  is the net vertical force to the right of  Thus 

Now we can find the support force at the right support (  by computing torques about the left end: 

Thus 



Continuity of  at  requires: 

and thus 

Integrating again, we find: 

for  and 

otherwise. Again the boundary conditions require  and continuity at  gives: 

Integrate again: 

for  and 

otherwise. Continuity at  requires: 

Then the final integration gives: 

and 

in the two regions. Since  at the two ends,  and: 

Continuity at  requires: 

Then 

and the full solution is: 



Red- 1st term only. Blue- 2 terms

The first 4 terms of the series give a curve that is indistinguishable from the exact solution. One term does not give the correct off-
center peak of the deflection, but the first two terms give a result that is very close to the exact result. 

exact 1 term error 2 terms error 3 terms error 

.25

.5 0

.75

Thus two terms of the series gives an error of about 2%, while three terms gives about 2 tenths of a percent error. 

15. A beam rests on supports at its ends,  and  The load  varies linearly along the beam: 

 What are the boundary conditions? Find the displacement of the beam as a Fourier series. Plot your results, and 
comment. 

with  Thus we can write the solution as a Fourier sine series of the form: 

The de becomes: 

where 

and so, from equation (), 



and so: 

This series converges very fast. Here's a plot of the first five terms: 

Black 5 terms -- Blue 3 terms Red 2 terms Navy 1 term 
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Chapter 4: Fourier Series 

16. A guitar string of length  cm is plucked by pulling it to the shape: 

and then letting go. Determine the subsequent motion of the string. Which harmonics are excited? 

Since the string is fixed at each end, we can express the displacement as a Fourier sine series: 

Stuff this into the wave equation: 

where  Then we have: 

and so 

Since the string has a non-zero displacement but zero velocity at  we need the cosine: 

Now at  the shape of the string is: 

and thus 

Now 

and so: 



 so: 

and 

so we can simplify: 

The first few terms are: 



and thus the solution is: 

Red:  Blue  

17. A violin string is plucked to a triangle shape as shown in the figure, and then let go. Find the 
displacement of the string at later times. 

The initial displacement function is: 



 

The solution is 

The coefficients  are given by: 

Blue:  red  green  

Every fourth (  coefficient is zero. These harmonics have nodes at  and so are 
inconsistent with the given initial condition. The resulting displacement is 

18. A piano string of length  is hit by a hammer of length . The hammer is centered at 

 and the impulse it imparts is  Determine the subsequent displacement of the string as a 

function of  and  Which harmonics are excited? 

The solution may be written as a Fourier sine series, since  at all times. Then 

Stuff this into the wave equation: 



where  Then we have: 

and so 

Now since the string displacement is zero at  we need the sine function. Thus: 

Immediately after the hammer hits, the string velocity is not zero. Using the impulse momentum 
theorem: 

Thus 

The left hand side is: 

Thus 

Thus: 

and the displacement of the string is: 



Since  for  these harmonics are all missing. The second sine is zero when 

 but these values are included in our first set. 

 = 0.1 (black), 0.5 (red) and 0.75 (blue). The vertical axis is the dimensionless variable  

19. Fourier series may be used to evaluate certain series of integers. To illustrate the method, 

develop the Fourier series for the function  on the range  to  Set  and hence evaluate: 

Which sum do you obtain by setting  Finally, use Parseval's theorem to evaluate 

The function is even on this range, and so the series has the form: 

where the argument  of the cosines varies from  to  . Then 

Finally: 

Thus the series is: 

Setting  gives: 



and hence 

Setting  we obtain: 

and so 

Writing the series in exponential form, we have: 

We have 

and thus 



Sum of first 6 terms

20. Use the Fourier series for the step function to evaluate the sum 

Use Parseval's theorem applied to the same series to obtain the sum 

The series we need is equation 4.10 (or 4.13). Setting  we get: 

Thus 

and thus 

Using Parseval's theorem applied to equation 4.13: 

and so 
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Chapter 4: Fourier Series 

21. A function  is represented by the Fourier series: 

on the range  Derive a form of Parseval's Theorem (equation 4.19) applicable to this series, that is, 

express  in terms of the coefficients  and  

where we used orthogonality of the sines and cosines to evaluate the integrals on the right hand side. 

22. If  is represented by the series  over the interval  and  over the 
same range, prove the generalized Parseval theorem: 

where the second expression applies when the function  is real. 

The integral on the right hand side may be writtem in terms of the two series: 

23.The capacitor shown in the figure is charged by the battery, and discharges through the bulb when the 

potential across it equals  Assuming that the capacitor discharges very rapidly, show that the potential 
across the capacitor as a function of time is: 

and repeats periodically with period  Find a Fourier series with period  that represents this 
function. 



To find the period we first find when the capacitor voltage reaches 0.9V. 

  

The coefficients are: 

When  we have 

Thus 

Now we combine terms to get a real series: 



The plot shows the first twenty terms in the series solution, as well as the function  . 

24. A rectangular box of dimensions  has conducting walls. All the walls are grounded, except for the 

one at  This wall is separated from the others by a thin insulating strip, and it is at potential  Using the 
method illustrated in Chapter 3 Example 3.15, find the potential everywhere inside the box. 

Following Example 3.15, the solution is 

Evauating this expression at  we have: 

and thus the coefficients are: 

Thus only odd  and odd  terms contribute 

At  the solution is 



With  Solid line  dashed blue line  dotted red line  The plot shows the first 

three nonzero values of  and  

25. A rectangular box measuring  has all its walls at temperature  except for the one at  

which is held at temperature  When the box comes to equilibrium, the temperature function  satisfies 
equation 3.14 

with the time derivative on the left equal to zero. Use the method of Chapter 3 Example 15 to find the 

temperature  in the box in the form 

where  is expressed in a Fourier series 

Find the function  and the coefficients  

Since the differential equation reduces to 

and on the side at 

Thus 

Thus only odd values of  and  have non-zero coefficients. The temperature function is: 
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Chapter 4: Fourier Series 

26. A infinitely long, conducting tube with circular cross section of radius  is divided into 
four pieces by insulating strips running along its length. One of the four pieces is at 

potential  and the other three are grounded. Solve Laplace's equation in two dimensions 

using the method of Example 3.15. Evaluate the solution at  and show that the result 
is a Fourier series. Determine the coefficients, and hence find the potential everywhere 
inside the tube. 

The equation is (equation 1.44) 

Using separation of variables, let 

Thus the solution for  We choose this function because it is periodic with period 

 and thus the potential at  is the same as at  as it must be, since both values 

represent the same physical point. Then the equation for  is: 

The solution is a power,  where 

Thus 

and the general solution is of the form 

We must eliminate the negative powers because the solution is finite at  Thus 

and at 

a Fourier series for  



Equivalently, we may write the series in the form: 

To find the coefficients we use the given values for 

Thus 

If  is even,  we have 

If  is odd, we have 

While for 

Thus 

Alternatively, using the series in sines and cosines, we have 



and 

Finally, 

Thus 

Both solutions are the same, of course. 

The plot shows contours of constant potential. 

black 1/2 blue 1/4 red 1/8 green 1/16 purple 



3/4 

27. A Fourier series of the form 

may be expressed as a power series 

where  By identifying the power series, the function  may be identified. 
Use this technique to sum the Fourier series 

where  Check your result by evaluating the Fourier sine series of the function 
you found. 

Let  and 

For  we may sum the series as follows: 

Now take the limit  from below. 

We want to write the argument of the log in the form 

where 

Thus 



and 

One solution of this equation is  but there are also other possibilities. Since 

 and  we might choose  or 

 If   is positive and  is also positive. Since 

 for all   has a positive imaginary part and a negative real part, so  must 

be in the second quadrant, and  If  then  is positive but  

is negative, so  has a positive imaginary part and a positive real part, so  must be in the 

first quadrant. Again the appropriate value is  

Putting all this together, we get 

The function is odd in , since the series is a sine series. 

Check by evaluating the Fourier coefficients of our function  

as required. 
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1. Show that the following functions are of exponential order, and find their Laplace transforms. 

(a)  

Since the function is a linear combination of exponentials, it is of exponential order  

(b) 

Thus  is of exponential order 

Now let  Then 

Check: Inverting gives 

as required. 

(c) 



Thus  is of exponential order 0. 

Let  Then  and 

Now we complete the square: 

and similarly for the other term. Thus: 

valid for  

(d) 

Thus  is of exponential order 0. 

Complete the square of the exponent: 

and thus 

(e) 



If  then 

while if 

Now 

Thus 

for  Thus  is of exponential order 1. 

The transform is: 

Let  Then 

Now change variables to  to obtain 

Use the following results: 

(See Appendix 9.) 

and 



Thus 

Another method: Using equation 12: 

Let    So 

and then 

as before. 



(f)  

This function is of exponential order 0 because the two complex exponentials  and  are. (See text.) 

First write 

Then use the linearity of the transform to obtain: 

where  

(g) The ramp function  

This function is of exponential order because  is (see text) and  for all  

2. Using the shifting property, or otherwise, find the Laplace transform of the function 

 

The factor  suggests that we also use the attenuation property

 Then with the shifting property and the transform of  from Table 5.1 : 

Now use the attenuation property: 

3. Find the Laplace transform of the function  

First note that the transform of  is 



Then using equation (12) with 

4. Find the Laplace transform of the function  

Let  Then 

Then using equation 

Let  Then  and 

Now 

So 

where 

So 

and thus 

Thus: 

5. (a) Find the Laplace transform of the triangle wave function with period 

First we find the transform of the first period: 



Then 

Thus the transform we want is: 

(b) the sawtooth function:  

The function is periodic, so first we find the transform of 

Then applying the periodic signature: 
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Chapter 5: Laplace Transforms 

6. Use the Mellin Inversion integral to invert the following transforms: 

(a)  

The transform has poles where its denominator has zeroes, ie at 

Thus we must place the contour to the right of  A line along the imaginary axis will do. Then we 
close to the left, enclosing both of the poles. The integral along the big semicircle is zero, since 

 uniformly as  Then 

(b)  

The function has 2nd order poles at  Thus we must choose 

We close the contour to the left, enclosing both poles. The integral along the big semi-circle goes to zero 

as  The residues are: 

and similarly 



Thus the function is: 

(c)  

The function has a branch point at the origin. We choose  and put the branch cut along the 
negative real axis. The function has no other singularities. Then: 

The integral along the big semicircle goes to zero and we have: 

and thus: 

Along the little circle: 

On the top of the branch cut  and 

while along the bottom  and therefore: 

Putting it all together, we get: 



To evaluate the integral, we can complete the square. First let 

Then 

So 

and thus 

(d)  (Express the answer in terms of the exponential integral where 

) 

The integrand has a branch point at  and also a removable singularity at  Thus we need 

 We close to the left, and go around the branch cut which lies along the negative axis. Then 

The integral around the big circle goes to zero as  The integral around the little circle 

 is: 

as  Thus: 



On the top of the cut,  so 

while on the bottom, 

So 

where  Now let  Then: 

7.  

(a) 

Each power inverts to a power, so we obtain a power series for 

(b) 

The function has branch points at  so we can run the branch cut along a line between these two 

points. The contour must be placed with   Then we must run the contour along the real axis, 



around the branch line, and back along the bottom of the real axis, so as to exclude the non-isolated 

singularities at  There are no other poles inside the contour, so 

The function is continuous except over the branch cut. Now we change variables to  where 

Then 

From problem 2-38, the branch cut maps to the unit circle, so 

The integrand has a pole at the origin. To find the residue there, look at the series: 

Thus when  we must have 

Thus 

which is the result obtained in (a). 

8. Use the convolution theorem (eqn 17) to evaluate the inverse transform of 

We can write the transform as the product of the two transforms: 

and 

The first may be easily inverted: 



The second function is in table 5.1: 

Thus: 

We can write the integrand in terms of exponentials: 

Check using inversion integral: 

The integrand has simple poles at   Thus we take  and close to the left. The 

integral around the big semicircle  and the residues are: 

and 

Thus 

9. Use the integration rule (equation 5.14) and Table 5.1 to derive the result of Example 5.89 for the 

transform of 1/  



 The transform of  is  Thus, using relation (14), we have 

10. The diagram shows a simplified version of an automobile spark coil circuit. The spark plug itself acts 
like an open circuit until the potential across it reaches the breakdown voltage for air. Thus you may 

ignore that branch of the circuit until the end of the problem (part (e)).The battery voltage  V, 

 F,   and  mH. 

(a) How long a ``long time'' is necessary? Write down expressions for the charge on the capacitor and 

the current through the coil at  

With the switch closed, the circuit reaches a final equilibrium with the capacitor fully charged 

(  C) and a steady state current of 

 A. Applying Kirchhoff's loop rule to the left loop, we can see how the 
circuit reaches this steady state: 

Thus the current  reaches its final value exponentially with a time constant 

 ms. Thus a few miliseconds is the ''long time'' necessary. 

(b) At  the points open. Qualitatively discuss the circuit behavior. What is the expected long time 
solution for the charge and current? 

When the points open, the capacitor begins to discharge. The inductor resists immediate change in the 

current. The charge and current will oscillate as they decay towards the final values (   
During the oscillation, the potential difference across the capacitor (and hence across the plug) will 
reach a value >12 V, hence allowing the plug to spark. 

(c) Use a Laplace transform method to solve for the potential difference across the spark plug as a 
function of time. 

The current variable  amd the charge variable  are defined in the diagram. The equations describing 
the circuit behavior are found from Kirchhoff's loop and junction rules: 



The initial conditions are: 

Applying the Laplace transform, we have: 

and 

Combining equations and , we get: 

Thus the transform is: 

or, writing ,  and  we have: 

We can complete the square in the denominator: 

and then we may write  as: 

Now compare with the standard results: 

together with the shifting property: 

So defining  we find the solution for 



and the potential difference across the plug is: 

Putting in the numbers, we have: 

and 

Then: 

and 

Thus: 

(d) Plot your solution. What is the maximum potential difference achieved? 

  

The function we plot is:  where  is in ms. The plot 
shows potential difference in volts versus time in miliseconds. The plot on the right is an enlarged view. 
The maximum potential difference is achieved where 



or 

Thus 

where we have added to get into the correct quadrant (see graph of tan function below) 

Then the maximum potential difference is: 

(e) If the breakdown voltage of air is 3 MV/m, what spark plug gap would be required with this circuit? 
Remember that you would like the engine to start even if the battery is a bit low! 

To get a field of 3 MV/m, we need a gap of: 

In order to allow for a margin of error, we ought to make the gap about 0.01 mm. This is pretty small. A 
transformer in the circuit increases the potential difference yet more, allowing for a larger gap. 
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11. A beam is supported at one end, as shown in the diagram. A block of mass  and length  is placed on the 

beam, as shown. Write down the known conditions at  Use the Laplace transform to solve for the beam 
displacement. 

The equation satisfied by the beam is: 

where 

The initial conditions are:  The second derivative is given by equation 3.8: 

and then the third derivative, from equation 3.9, is: 

Now we have enough information to solve the problem. First transform the whole equation: 

where 

Thus: 

and so 

The last two terms can be inverted immediately using Table 5.1: We get: 

The first term may be evaluated using the shifting property: 

Thus the solution is: 



The quantity is square brackets is: 

12. Technetium is used in medical procedures as a diagnostic tool. The technetium is obtained as the decay 

product of Mo, which decays to Tc with a half-life of 66.02 h. The technetium in turn decays with a half life of 

6.02 h. A medical radiology department receives a source containing 100mCi of Mo at 9.00am on MOnday 
morning. Find the amount of Technetium present in the sample as a function of time after 9.00 am. When is the 

amount of Tc a maximum? 

The amounts of the three elements (Mo, Tc and the decay product of Tc) are described by the equations: 

and 

where  are the decay rates. The decay rates are related to the half-lives. Let's transform each of the equations: 

and 

Solving, we find: 



and similarly for  Inverting the first equation gives: 

Thus  decreases to one half of its initial value at time  where: 

and thus 

and thus 

A similar relation holds for each species. Thus the decay rates are: 

and 

In the second equation, we set  to get: 

and inverting, we get: 

Thus the maximum amount occurs at time  where 

or 

The maximum Technetium occurs at 9.00 am Monday +22.9 h =  h  m on Tuesday morning. 

13. An overdamped harmonic oscillator satisfies the equation 



where  and the driving force is a square wave of period  Find the displacement  if the intial 

conditions are  Plot the result for  and  and  

First we transform the equation: 

and solve for the transform 

where 

(Example 5.6). Thus: 

We can use the shifting property to evaluate each term in the sum, so let's work on the multiplier 

The factor  tells us that the result is an integral, and we can invert the other factor using the attenuation property. 
Thus 

Thus: 

Then with  and we get: 



14. (a) A harmonic oscillator with resonant frequency  is driven by a sinusoidal force  If the initial 

conditions are   at  find  What happens if  

The equation is 

Transform both sides: 

Thus 

Inverting, we get 

If  we back up to 

We can invert this using the Mellin integral 

There are 2 second order poles at  The residues are: 

Thus 



Check the derivative at 

 versus 

Notice that this solution has an amplitude that increases linearly with  indicating the resonance. 

(b) If  then 

Thus 

When 

15. The two circuits shown in diagrams (a) and (b) show how we might use a capacitor to prevent sparks across a 

switch when the switch is opened. Assume that the switch has been closed for a long time, and is opened at  
For each circuit, use Kirchhoff's rules to solve for the current through the inductor and the charge on the capacitor 
as a function of time after the switch is opened. Discuss the merits of each of the circuit designs. 



Problem 15a

Initial conditions: 

Transform: 

and 

Thus 

Multiply by  and divide by 

Now let  and 

where 

Now invert: 

The charge on the capacitor is: 



The charge  as  as expected. 

(b) 

Problem 15b

Initial conditions: 

Now transform everything: 

Substitute 



From here the solution is almost the same as to part (a), and  equals the  in part (a). (Compare equations and .) 

When finding the charge, there is a sign change, and we must remember that  so there is a result from 
the lower limit on the LHS. Thus: 

We find that  as  This system is safer than (a) because the capacitor is uncharged in the "off" state. 
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16. The switch has been in position 

 in the circuit shown for a long time. What is the charge on the capacitor and the current 

 through the inductor? At time  the switch is moved to position 

 What is the charge on the capacitor and the current a long time later? Find the charge on the capacitor as a function of time for 

 Give your answer in terms of  where   and 

 You may also find it useful to define  and  You may assume that 

 is real. 

Initially the capacitor charge is  and the current through the inductor is a constant and equals  

A long time after the switch is moved the current has the same value  and the capacitor charge is 

 The opposite plate of the capacitor is positively charged compared with the initial state. 

After the switch is moved Kirchhoff's loop and junction rules give: 

and 

Now transform everything: 

and 

Eliminate  and 

Then: 



So 

and 

The denominator factors: 

We invert using the attenuation property, and the integration rule: 

But 

So: 

Check the limits: At   while as   as required. 

17. The switch has been closed in the circuit shown for a long time, and a constant current flows. What is the charge on the capacitor? At time 

 the switch is opened. What is the charge on the capacitor and the current through the inductor a long time later? Find the current through 

the inductor as a function of time for  Give your answer in terms of and  where and 

 . 



The constant curent is  and the charge on the capacitor is 

 A long time after opening the switch, the current and the charge on the capacitor are both zero. 

The equations satsified by the charge and current result from an application of Kirchhoff's rules: 

and after the switch is opened, so  The loop rule gives: 

Now transform everything: 

Eliminate 

Then 

Thus 

We may invert using the attentuation property and the known transforms of sine and cosine: 

Check: At ,   while  as  

18
. The switch has been open in the circuit shown for a long time. At 

 the switch is closed. Find the current through the inductor and the charge on the capacitor as functions of time for 

 Give your answer in terms of and  where ,  and  



With the switch open for a long time, the current  and the charge on the capacitor is  

When the switch is closed, we define the variables as shown in the diagram, and apply Kirchhoff's rules: 

and 

Transform everything: 

and 

Eliminate  and 

Then: 

Thus 

Now define  Then: 



and inverting gives: 

The integral is: 

We may simplify the right hand side as follows: 

The denominator is: 

Thus: 

Thus at   and as  

as required. 

Now 

We have already done most of the work to invert this. Thus 

The current is  both at  and as  again as expected. 

19. In the figure shown, capacitor  has charge  and capacitor  is uncharged. At 

 the switch is closed. The two capacitances are equal. Find the voltage across each capacitor as a function of time for 

 



For  we define the currents as shown. Then we apply Kirchhoff's loop and junction rules to get: 

The initial conditions are: 

Now we transform all the equations: 

Next we eliminate the currents: 

Now let  ,  and  We may rewrite the equations as: 

and 



Now eliminate 

Then: 

The first term inverts easily, to give 

For the second we use the attenuation property and Table 5.1: 

and thus 

where 

This result can be understood as the appropriate frequency for an LRC circuit with the two capacitors in parallel (

 and the two resistors in parallel, and that combination in series with the third resistor (  

The final result is: 

This solution has the correct limiting forms at  and as  For  we get: 

and thus 

which also has the correct limiting forms. 

20.The switch in the circuit shown in the Figure has been closed for a long time, and is opened at 



 Find the currents in the circuit as a function of time for  

Circuit for Problem 20

We define the current variables  through the battery,  through the arm  and  through the arm 

. Kirchhoff's junction rule gives: 

Kirchhoff's loop rule gives the differential equation satisfied by the currents for : 

The open switch imposes the condition  for  

With the switch closed for a long time, the inductor plays no role and the currents are in a steady state. The resistors 

 form a parallel combination of equivalent resistance  The total resistance in the circuit is then 

 The initial conditions are  and  

Transforming the equations, we get for 

which has the solution 

Inverting, we get: 

At  

in conflict with the known initial conditions  and 

 that we used in equation (). The currents have to make an instantaneous jump at 



 The inductor will not let this happen. Instead, a spark will jump across the switch as it is opened. The solution we obtained does not 
correctly predict the behavior of the circuit because our system of equations fails to model the physical system correctly for a short time after the 
switch is opened. In practice, a capacitor is usually placed across the switch to absorb the current and avoid the spark. 

2nd part 

Rework the problem leaving the initial value of the current 

 in arm AB as an unknown to be found. Find the solution for the current  through  and require that it satisfy 

 What value of  is required? Give a physical explanation of this result. If  and 

 plot both solutions. Plot current in units of  versus time in units of 

 How long is it before both solutions give the same result to within 1%? 

Thus 

We need  and we can get it by choosing  too. 

This means the current jumps from arm CD to arm AB instantaneously at  

If  and 

 plot both solutions. How long is it before both solutions give the same result to within 1%? 

Plot  in units of  and  in units of  

Values are within 1% after  

The difference is  

, Solution is :  

, Solution is :  
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21. The radioactive series that begins with Neptunium 93 contains the following decays: 

Decay type half-life

Np  Pa 2.14  y

Pa  U 27.0 d

U  Th 1.6  y

Th  Ra 7340 y

Ra  Ac 14.8 d

Ac  Fr 10.0 d

Fr  At 4.8 min

At  Bi 0.032 s

Bi  Po (98%) 47 min

Bi  Tl (2%)

Po  Pb 4.2 s

Tl  Pb 2.2 min

Pb  Bi 3.3 h

If we regard any decay that takes less than one year to be essentially instantaneous, then the chain simplifies to: 

Write a series of differential equations that describes this decay chain. Apply the Laplace transform to find the fraction of the original 

Np that is in the form of Uranium, Thorium and Bismuth after (a) 10  and (b) 10  years. 

Let the numbers be   etc. Then 

The solution is 

Next 

Thus 

Next 

and finally 

So 

Now we invert this using the Mellin integral. There are four poles, so we get 

Check this result at 



as required. 

Similarly 

At 

as required. 

The decay rates are: 

So 

So at 10  y, 

At 10  y 

and at 10  y 

Next we look at 



So at 10  y 

at 10  y 

and at 10

For Bi we get 

So at 10  y 

At 10

and at 10

and of course 



22. Find the Laplace transform of the function  Express the result in terms of the transform 

 of the function  Use the result to solve the differential equation 

subject to the intial conditions  

From equation 12: 

Transforming the differential equation: 

Simplifying: 

The left hand side =  because  as 

 Then using the integration property (§4.2) and the fact that the inverse transforms of the two terms are 

 and  we have: 

Check that this has the right initial condition: 

Let's stuff into the equation to test the solution: 

Thus 

as required. 

23. Apply the Laplace transform to the differential equation: 

Does the Laplace transform offer any advantages in solving this equation? Using any method of your choice solve the original equation or the 

transformed equation subject to the initial conditions  and , and comment. 

The transformed equation is: 



and this equation is more complicated than the original. 

Series method: Original equation 

lowest power is 

Thus the solution is 

With the intial conditions, we have  and 

Check 

So 

as required. 

Solving the transformed equation is much more difficult. 

We can transform the solution to get: 

Check this in the de 

as required. 

Look for a solution 



The successive powers are: 

 

Thus 

The transform doesn't help! 

24. Take the Laplace transform of the Bessel equation of order zero 

and show that 

Solve for  with the initial condition  and hence find an integral expression for  

The tricky term here is  So multiply the whole equation by 

Now use equation 5.12 

The unknown  disappears: 

The initial value  also disappears. Then 

Integrating 

or 



Inverting the transform, 

where  

There are branch points on the imaginary axis at  

(Ref: Jeffreys &Jeffreys pg 581, Morse and Feshbach pg 619-624, Gradshtyen and Ryzhik ). By choosing different branches of the integrand, and 
moving the contour appropriately, we can obtain expressions for the Hankel functions as well as for 

 (See Chapter 8.) 

By choosing the branch cuts to run from  to  , we obtain the form 

Evaluate this at 

Let 

and thus  giving 
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Chapter 6: Generalized functions in physics 

1. Show that the following sequences of functions are delta-sequences: 

(a) 

Then since  for all values of  the mean value theorem gives: 

where  Thus 

An almost identical proof shows that  as  

Finally for  we have: 

where  Thus 

Thus this  is a delta sequence. 

(b) 

Hint: Use contour integration. 

Multiply by a test function that is analytic in the UHP and integrate by closing the contour in the UHP: 



The poles are at  Only the pole at  is inside the contour, so: 

Thus in the limit: 

which is the sifting property. Thus  is a delta-sequence. 

(c) 

We evaluate 

We evaluate along the real axis in the complex plane. We'll displace the path of integration downward so that it 

lies beneath the (removable) singularity at  Then we write the integral as: 

Then provided that  is analytic except for a set of poles, we have: 

We close the contour upward for the first integral and downward for the second. In both cases the integral 
along the big semi-circle goes to zero, and we can use the residue theorem. For the first integral, the pole at 

 is inside the contour, and 

(Note: the exponential is bounded because  for poles in the upper-half plane.) Then: 

For the second integral, the pole at  is not inside the contour and the integral is zero in the limit. Thus 

and the sifting property holds. Thus  is a delta sequence. 

2. Find a Fourier series representation of the delta function  in the range  in two ways. 

(a) Start with the fourier series for a step function (cf equations 4.11 or 4.20) and differentiate. 

The series (4.11) is a step function with a downward step at  We modify it to give an upward step at 

and a full period of  Then the series we want is: 



Now we take the derivative: 

which is a series with constant coefficients, as we have come to expect. 

(b) Start with the block functions (equation 6.2) and form the Fourier series. Take the limit as  

Using the block functions: 

where 

and 

Now we take the limit as 

Are the results the same? If not, why not? Give a quantitative as well as a qualitative account of any 
discrepancy. 

The results are not the same. The first result is a sum over only odd values of  but its amplitude is twice that 
of the second result. We should not expect the results to be the same, because the first result gives a periodic 

set of both positive and negative functions, positive at 2   etc and negative at   3  etc. 

The second result gives a periodic repetition of positive functions at    etc. 

To verify this, let's take the second series, shift it by  multiply by  and add it to the original series. This 
should give the first series: 

which is the first series, as expected. 



3. A point load  is placed on a beam of length  at a distance  from the left hand end. Find the 
displacement of the beam: 

(a) if the beam is supported at one end, as in problem 5.11. 

The relevant differential equation is 

The boundary conditions are  We can solve this problem using the Laplace transform 

method. We can obtain additional boundary conditions at  using equations 3.7 and 3.8: 

and 

Now we transform. The transform of the delta-function is:. 

Thus 

Thus: 

Now we invert. The exponential tells us that the function is shifted: 

The solution looks like: 

(b) if the beam rests on supports at each end, as in Example 5.2. 



We have the same differential equation but different boundary conditions. Now  Let's use a 
Fourier series: 

Then 

Thus the coefficients are given by: 

and so 

The series converges very fast because of the factor  in the denominator. Every third term is missing 

(  for  etc). The solution looks like: 

4. A damped harmonic oscillator (cf Problem 4.13) has initial condistions  and  An 

impulse  is applied at  Find the motion of the oscillator for . 

We'll solve this using a Laplace transform: 

Thus 

Let's factor the denominator, and use the attenuation property: 



Then, setting : 

Inverting gives: 

Thus for 

while for 

5. Distributions may be multiplied by infinitely differentiable functions. Do you expect the product 

to be a valid distribution? Why or why not? 

Not necessarily, because the function  is not differentiable at . (Distributions may be multiplied by 
infinitely differentiable functions.) 

Investigate the properties of this quantity by evaluating the integral 

where  is a delta sequence of your choice, and  is a test function. In particular, determine the result 

for functions that have the property  Is  a valid distribution in this case? Can you identify it? 

We can evaluate the integral by using the Taylor series for  about  

All terms after the first two are zero in the limit  The second gives  The first is indeterminate 

unless  is a zero of  In that case we may write: 



Alternative proof: Use the block function delta-sequence: 

Now let 

Now if  then we may add it: 
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Chapter 6: Generalized functions in physics 

6. Evaluate 

Since  then 

Thus 

(b) 

The delta function may be written: 

and thus 

7. A string of length  with tension  and mass per unit length  is hit simultaneously at  

at the two points  and  The impulse delivered at each point is  Find the 
subsequent displacement of the string. 

The initial conditions are  and 

The solution is then of the form 



where 

The coefficients are given by: 

Thus: 

Every third harmonic is suppressed. The plot show the string displacement at 

(black) 1/5 (blue) and 1/2 (red). 

8. Using a general curvilinear coordinate system (cf Chapter 1 section 3) with coordinates 

 find the charge density due to a point charge  placed at the point   

 Hint: start with the delta sequence (6.25) and note that as  only a differential 

line element  is needed in the exponent. Then make use of equation 1.61.

where  is the differential length element between   and a neighboring point with 

coordinates  Thus 



where we used the result

(equation 6.19) and similarly for the delta functions in  and  

9. We must show the existence of 

Changing the order of integration, and writing  as a Taylor series about  we have: 

All terms in the Taylor series with odd  integrate to zero. For even  we change variables to 

 ,  to obtain 

(See equation 2.75 for the gamma function.) In the limit, only the  term survives, and we 
have 

as required. 



10. Show that the sequence of functions 

converges weakly to the delta function. 

We investigate the integral: 

Using the mean value theorem, 

We need to zero in on the value of  so divide the range of integration up into pieces: 

In the first integral: 

where  is the upper bound of  on the interval  Now 

So 

A similar argument shows that the third integral goes to zero. The middle integral is 

Thus  converges weakly to the delta function. 
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11. According to the properties of distributions in section 6.3,  is a 
distribution. Which distribution is it? 

Thus 

12. Starting with the integral (6.16), show that 

13. Show that, for  and  both positive, 

and obtain a similar expression as an integral over sines. 

Is this result consistent with problem 12? Discuss. 

where in the second term we set  Thus: 



But if  and  are both positive,  can never equal  so 

as required. 

Start with the relation 

The other terms have odd integrands and so integrate to zero. Then 

where we have used the relation already proved, and thus 

As  neither of these results seems consistent with problem 12. The 
expression in terms of sines goes to zero, while the expression in terms of cosines 

is twice the result of problem 12. This happens because we constrained  and  to 
be strictly positive. Thus the sifting property for these expressions is 

whereas, using the result of problem 12, 

Now if  is even, we may rewrite this integral as 

which is consistent with problem 13. Similarly, for odd functions we find equivalence 
for the sine expression. 



14. Find the Laplace transform of  Express the inverse as an integral using 
equation 5.19 and demonstrate that this integral possesses the sifting property. 

Thus 

So we check for the sifting property: 

as required. 

15. A disk of radius  and mass  lies in the  plane. Express the density in 
terms of delta functions 

(a) in rectangular Cartesian coordinates 

In Cartesian coordinates, the disk is located at  We have: 

if  and zero otherwise. We can also express this in terms of step 
functions: 

(b) in cylindrical coordinates 

In cylindrical coordinates, the step function looks nicer: 

(c) in spherical coordinates. 

The disk is at  so the density looks like: 



16. A rod of length  and mass  lies along the axis with one end at the origin. 
Determine the density using delta functions 

(a) in rectangular Cartesian coordinates 

The rod is restricted to  and so we may write: 

We may also write the result using step functions: 

(b) in cylindrical coordinates 

The rod is restricted to  and  We start with the result from part (a) and 
convert to cylindrical coordinates. In particular: 

Thus: 

Check the dimensions of the result! 

(c) in spherical coordinates. 

In spherical coordinates, the rod is at  and  The result must look like: 



We need to find the function  We integrate over a spherical shell with inner radius 

 and outer radius  The amount of charge enclosed is  Thus: 

Now if  is between 0 and  we have: 

Thus 

and thus 
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17. A line of charge with uniform line charge density  lies along the axis. Find the volume charge density (a) in 
cylindrical coordinates and (b) in spherical coordinates. 

(a) 

The system has azimuthal symmetry, so there is no dependence on  To find  integrate over a cylindrical slice of 

height 

If  did not depend on  the result would be zero. Thus we must have  Then 

Thus  and 

(b) In spherical coordinates the charge exists only at  and at  Again there is no dependence on  

This time we integrate over a spherical shell of radius  This shell cuts the line at two places, so the charge 

enclosed is 2

Here  must have a factor  in order that the result of the integration be non-zero. Thus 

Thus 

and 

18. A disk of charge with radius  and surface charge density  lies in the  plane with center at the 
origin. Find the volume charge density (a) in cylindrical coordinates and (b) in spherical coordinates. 

(a) 

Integrating over a wedge of a cylindrical shell at 

Thus  and 



(b) 

and integrating over an orange wedge shell at  we get 

Thus 

and 

19. Current  flows in a loop of radius  lying in the plane with its center at the origin. Find an expression for 
the current density (a) in cylindrical coordinates and (b) in spherical coordinates. 

(a) 

(b) The current exists only at  and  Thus 

20. Prove the relation (equation 6.27) 

where  is the radial coordinate in a cylindrical coordinate system, and  is the position vector in a plane. 

For 

For  the derivatives cannot be computed. So we check for the sifting property: 



as required. 

Use the result to find the potential due to a line charge  running parallel to the axis at   

First we put the  axis along the line occupied by the charge. The charge density in these coordinates is: 

Then the equation satisfied by the potential is 

Using the result above, we thus conclude that: 

where here  is the distance from the origin to the reference point where we choose  to be zero. Then converting 
back to the original coordinates: 

21. A circuit contains a resistor, a capacitor, and a square wave power supply with period  Use Kirchhoff's loop 
rule to write an equation for the current in the circuit in terms of delta-functions, and solve it to find the current as a 
function of time. 

Differentiate to get: 

The term on the left is a sequence of functions, up at   and down at  etc Using equation 6.13 

Then applying Kirchhoff's loop rule, we have



So express  as a Fourier series 

Then 

for  odd, and zero otherwise. Thus 

and thus 

The plot shows  versus  in the case that : 

22. Starting with the result 

for the electric potential due to a dipole placed at the origin (cf Example 6.1), calculate the electric field everywhere, 
including at the origin. Use a method similar to that used in §6.5 to prove relation 6.26. 

The electric field is the gradient of the potential. 

The curl is zero because  and the curl of a gradient is zero. So we are left with: 

Now away from the origin , and taking the axis along 



However, at the origin, the derivatives cannot be computed in the usual way. Since we already know that 

 we should suspect the presence of a delta-function in this case too. We can check this assertion 

by testing for the sifting property. We integrate over a small sphere of radius  surrounding the origin: 

All other components are zero. Then: 

whereas, using the explicit form (6.1 solutions) we get: 

To make these two results consistent, we must add a delta-function: 

23. Using a delta-sequence of your choice, show that the limit 

exhibits the sifting property of  

which is the sifting property of  

24. Use the derivative property 6.20 to show that, for distributions, the Laplace transform of the derivative  

equals  times the Laplace transform of  Show that the Laplace transform of  is  where  is Euler's 

constant,  Hence show that the Laplace transform of  (  condsidered as a 

distribution, is  



Here is Maple verifying the value of  by numerical integration:  

Now 

Then by the derivative rule,  and thus 
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25. Starting from equation 6.16, show that 

Confirm your result by demonstrating the sifting property. Use contour integration to do the integral. 

Similarly, show that 

if the integral 

is taken to be the principal value. 

Demonstrate the plausibility of the results by evaluating  and 

 numerically for a set of values of  and  Show that as  increases,  and  
decreases toward zero. 

To check for the sifting property, we multiply by a test function  that has a set of simple poles in the upper-half 
plane, and is analytic in the lower half plane. Then integrate. 

Close the contour upward for the first term and downward for the second term. There is a pole at 

 Putting a little semicircle under the pole, we get 

Then as  

because  is positive. Thus 

The result is the same if we put the semicicrle over the pole at the origin, as it must be, since 

 has a removable singularity at . 

Replacing the sine with a cosine, the pole is not removable, and the result depends on how the path is chosen. The 
principal value is zero. Putting the semicircle under the pole: 



Thus 

Now for some numerical integration: First the sine. 

 

 

 

 

The results approach 1. 

For the cosine, we have: 

 

 

 

 

 

 

 

 

 

The plot shows  versus  The integral approaches zero as  increases. 



The result is needed in Appendix 8. 

26. Show that sign  where sign  . 

First note that the function  sign  is continuous and thus, by the smudging theorem, we can find an 

equivalent distribution. Then the derivative  is also a distribution whose value is sign  and the second 
derivative is also a distribution with the property 

and thus 

27. Show that 

First note that the result is true in the following cases: 

 any This is an identity. 

  (Equation 6.7) 

  (Example 6.4) 

To prove the general result, we integrate by parts: 

If  we proceed this way until we have completed  integrations by parts, leaving  in the integrand. Each 

term multiplying the delta function has a positive power of  and the result is zero. 



Now assume the result is true for some value  Then 

Use the given result for  

Integrate the first term by parts to get 

and then combining the terms: 

and so the result is true for  if it is true for  But the result is true for , with 

 or 0. Thus it is true for all  if  

Next we increase  Assume the result is true for some  Then 

where we used this result: 

Work on the second term, assuming  

Thus 

Thus the result is true for  if it is true for  

Putting these results together, we conclude that the result is true for all  and  

28. The integral .  where  may be integrated if 

 is interpreted as a distribution. First show that 



where  and  is an integer. Use the result to evaluate the integral 

Start with the RHS 

Thus 

Now we can repeat the process  times to obtain 

Thus 

Now we apply this result. Choose 

The integral is =  Thus 

This is the Hadamard ''finite part''. 

29. A material absorbs light at frequency 

 due to an atomic transition. The imaginary part of the dielectric constant may be approximated as 

 Use the Kramers-Kronig relations (Chapter 2 Example 2.24) to determine the behavior of the refractive 

index  as a function of frequency. Comment. 

Using the results of Example 2.24, and writing  we have 

Thus 



The refractive index approaches a constant for  and approaches 1, the vacuum result, for  

This result is consistent with the fact that, for most materials, the refractive index is greater in the blue than in the red. 

(For   is positive. This frequency range includes the visible if  is in the infrared.). Near the 

line center, 

We have answered the question posed, but we should check that the second relation in Example 2.24 is also satisfied. 

The integrand is even in  so we may rewrite it as 

We evaluate the integral by putting semicircles over the poles at  

 The poles are simple. We may close the contour with a big semicircle in the upper half plane. The integral 
around the closed contour is zero, because there are no singularities inside. Thus 

The integral around each semicircle is similar. For the semicircle around  write 

For the semicircle around  write 

and the sum of these two terms is zero. The sum of the integrals over the poles at  is also zero. 

The result is different if  In this case there are second-order poles at  The integrals are 

Thus the result is zero unless  when it is infinite. We have regained the delta-function type behavior. 



To be sure, we should check for the sifting property. I leave that for another day. 

You might wonder why we obtain an infinite result for the integral around the semicircle, whereas the integral around 
an entire circle (the residue) is finite. This happens because for a pole or order greater than one, the contribution of 
each segment of the path to the residue is not the same. This is clear from the integral above: for the entire circle 

(limits 0 and 2  the integral is zero, but for both halves the result is (positive or negative) infinite. 

30. Demonstrate the sifting property of the delta sequence (6.5),   in the case that 

 has a second order pole at  in the upper-half plane. Can you extend the result to a pole of order  

We can borrow the result from the chapter, changing only the evaluation of the residues. 

The residue at  by method 3, is: 

Now if  has a second order pole, then its Laurent series is of the form 

and thus 

and thus 

since 

and  

The first term in equation (eqn1 P 6.30) is the same as the result in the chapter. The remaining terms arise because 

this pole is of higher order. For a pole of order  we would have to differentiate 

 times, leading to a term of the form  But this term also  as  for any  Thus the result is 
unchanged. 
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1. Find the Fourier transform of the following functions, and verify your results by computing the inverse 
transform. 

(a)  

We do the integral by completing the contour with a big semicircle, and rewriting the denominator: 

There are poles at  For  we close the contour upward. Only the pole at  
is inside, and we obtain: 

For  we close the contour downward. Only the pole at  is inside, and we obtain: 

In both cases we have: 

To invert, we evaluate: 

as required. 

(b)  



So there are 2 integrals of the form 

with  To do each we complete the square: 

and the integral is 

where  Thus: 

We may invert the two terms separately: 

Again we complete the square: 

Thus 

and so 



as required. 

(c)  

 

Inverting: 

We invert by completing the contour with a big semi-circle. Because of the terms  in the 

first integral, we complete upward for  and downward for  There is a pole at , so we 

choose to put the path of integration slightly below the axis. Then for  the pole is inside the 
contour. To find the residue we evaluate the Laurent series: 

and so the residue is  and the integral is: 



For  there is no pole inside the contour and so the integral is zero. 

For the second integral we close up for  and down for  There is a second order pole at 

and so the residue is  For the integral is: 

while for  it is zero. Thus our result is: 

as expected. 

(d)

We close the contour with a rectangle with its top side at  Then on the top side: 

The integral along the two vertical sides goes to zero as 

since the integral  which is bounded and the factor in front goes to zero. 

There is one pole inside the contour, at  The residue is (method 4): 

and thus the integral is: 

and thus 



So the transform of h is another h  The inverse is then: 

as expected. 

(e)  

To invert: 

There is a second order pole at  For  we close upward. The contour encloses no poles, 

and the result is zero. For  we close downward. the residue at the pole is: 

Thus the inverse is: 

as required. 

(f) 

We complete the contour upward for  and downward for  There are simple poles at 

 The result is: 



Inverting, we get: 

as required. 

2.(a) 

There are poles at 

and for 

(b)

The poles are the cube roots of . These have the values 

for  

and 



For  we close upward, enclosing the first two poles: 

For  we close downward, enclosing the pole at 

(c)  

We close the contour with a rectangle with its top side at  Then on the top side: 

The integral along the two vertical sides goes to zero as 

since the integral  which is bounded and the factor in front goes to zero. 

We know that the pole of the transform will be in the upper half plane, so we put the path of integration 

under the pole at  Treating the integral along the upper contour similarly excludes the pole at 

 There is one pole inside the contour and the residue is (method 4): 



and thus the integral is: 

and thus 

Verify: 

We use a similar method. 

Thus 

as required. 

3. If  is the Fourier trasnform of  show that  is the transform of  What conditions 

must  satisfy for this result to hold? 

Let  be the inverse transform of  Then 

provided that  as  

4. Verify Parseval's theorem in the form of equation 7.10 by evaluating the transforms of the functions 

 and  and evaluating the two integrals in equation 7.10. 

Since 

Then 



and from Example 7.2 

Then 

We also need 

and then from the result of Example 7.2: 

and the two integrals are equal, as required. 

5. Verify Parseval's theorem in the form of equation 7.11 by evaluating the transform of 

 

and evaluating the integrals of  and  

Then 

and 

We can most easily do the integrals by dividing into 2 pieces and closing the contour separately for 
each piece: 



Each integrand then has a first order pole at  We displace the contour down by a small amount 
so as to pass beneath the pole. Then: 

and Parseval's theorem is verified for this function. 
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6. Show that if  is the transform of  then   is the transform of  Show that the result is 
consistent with Parseval's theorem. 

Parseval's theorem states: 

Now for  we have: 

where  is the transform of  On the left hand side, change variables to  and on the right 

change variables to 

Thus 

as required. 

7. Find the Fourier transform of the function  that represents a 

finite train of data. Plot the Fourier power spectrum  as a function of  for the two cases  and 

 and comment. What happens as  increases toward infinity? 



The Fourier power spectrum (see Figure--Black:  Blue ) is 

As  increases the spectrum becomes more concentrated around  ultimately becoming a delta-
function spike at each frequency. The finite length of the data train introduces additional frequency components. 

8. Find the Fourier transform of:

Hence find the transform of the function  

Notice that  and thus 

9. Show that the square deviation between two functions, 



equals the square deviation between the transforms: 

by Parseval's theorem. Thus 

10. A spring- and -dashpot system satisfies the equation 

with  The driving force per unit mass  equals  Find  for  and verify that your 

method gives  for  

Transforming the equation, we get: 

where 

Using this result in the transformed equation, we solve for  

Thus inverting, we get: 

It will be simpler to do the two terms separately. The integrand has first order poles at  , 

 All the poles are in the lower half-plane, so  for  

For  we must close the contour downward. To simplify the solution, set  



First term: The contour contains all three poles of the integrand, at  . The residues are: 

and 

and using the residue theorem, we have: 

Combining the last two terms, we get: 

So: 

For the second term, we get the same result with  

Now we combine both terms, to get: 



The result is zero at  as expected. 

Let's check the result at  The limit as  may be computed using l'Hospital's rule: 

which is finite, as expected for a damped oscillator. 

11. An electron in an atom may be modelled classically as a damped harmonic oscillator (cf problem 10 above.) 

The electron is driven by an electric field   What is the appropriate  for this problem? Solve 

for the transform  of the electron's position. 

with 

Transforming the RHS, we get: 

We can do this integral by moving the contour slightly downward. Then for the first term: we close upward for 

. The pole at the origin is enclosed. Thus:: 

For  we close downward. No poles are enclosed and the result is zero.  For the second term, we close 

upward if  downward if . Then: 

And then the transformed equation is: 



and so 

Use the results of section 7.6 to determine the power spectrum of the radiated energy. Plot your results in the 

case ,  and comment. 

The power spectrum is: 

Now put in the values   

The spectrum looks like: 

 

Since the negative frequency has the same physical meaning as the positive frequency, it is usual to look only at 
the positive values. Then: 



Notice the peak at the resonant frequency  

12. The electric displacement  is related to the electric field  by the dielectric constant  . In general,  is a 

function of frequency, so that the relationship is one between the Fourier transforms of  and  : 

a) Show that the relationship between   and  is: 

and determine an expression for  in terms of  

First define the function  in terms of the dielectric constant   Then: 

We compute the inverse using the convolution theorem: 

as required. 

b) Find  for the one-resonance model 

where  , and  are real, positive constants, and  

The integrand has two simple poles, at 

Both are in the lower half plane. We close the contour downward for  enclosing both poles. Then 



c) Discuss the physical meaning of your result. Be specific! 

The integral expression for  shows that  depends on the electric field in the past, but the form of  shows 

that we need only look a short time into the past. (  
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13. An electron in an atom may be represented by a damped harmonic oscillator with frequency 

 and damping rate . An external electric field  acts on the electron. Find the Fourier transform 

 of the electron position as a function of time. If the electron loses energy at a rate 

, use Parseval's Theorem to show that the total energy loss is: 

Note that the integrand is sharply peaked at , while 

 is a slowly varying function, and thus the integral may be approximated as: 

Evaluate the integral by contour integration to show that  is independent of  and hence find 

. (In this expression,  and are real positive constants, and .) 

The equation satsified by the oscillator is: 

Transforming, we get: 

and thus 

The total energy lost is the time integral of the power: 

Now we use Parseval's theorem to write this in terms of the transforms: 

and since  then: 

Since the energy loss is purely real, we may take the real part of this expression. (Note also that the imaginary part is an odd function integrated 
over an even interval, and thus integrates to zero.) Thus: 

as required. 

Now the integrand is sharply peaked at so we may approximate as: 



The integrand has 4 poles, given by: 

and thus 

Two are in the upper-half plane and two are in the lower half plane. We may close the contour either way. Let's close it upward. Then the integral 
is: 

Thus 

and is independent of  

. 

14. The Radon problem. Radon diffuses from the ground into the atmosphere at a rate 

. Model the atmosphere as a semi-infinite medium with boundary (the ground) at  Then the density 

 of atmospheric radon is described by the equation: 

where  is the appropriate diffusion coeffcient and 

 is the decay rate for radon. The boundary condition at the ground is 

What is the boundary condition at  Use the Fourier cosine transform in 

 to derive an integral expression for in the case that  Evaluate  at  and hence determine 

 in terms of  and  

The boundary condition at  is  as  

Applying the cosine transform: 

we have 

which we may integrate to obtain: 

But  so 

and thus 



Now differentiating, we get 

Thus 

Let  Then  and 

where  is the error function. 

Also note 

Then: 

After a long time: (G&R 3.471#9 with    

and for large  this takes the form 

We can also use equation (Radon eqn 1) to get the long time solution: 



There are poles at  We close upward for  enclosing the pole at  The integral is then: 

as before. 

Long-time distribution. 

15. A long copper rod of cross sectional area  cm  is initially at 15 C. At time , one end (at 

) is placed into a vat of hot oil at 300C. 

(i) Refer to Chapter 3 §2.5. Write the equation that describes the change of temperature at position 

 along the rod at time . 

(ii) Write an expression for the temperature  of the rod immediately after the end is placed in the oil. 

(iii) Discuss the use of Fourier and/or Laplace transforms in solving this equation. What determines the best choice of transform for this problem? 

(iv) Find the temperature of the rod as a function of position and time for . 

(v) Given the following data for copper, plot the temperature along the first 5 m of the rod at times 

 s, 1.5 s, 3.0 s, 6.0 s. Thermal conductivity: 400 W/mK Specific heat: 385 J/kgK Density 8.96 kg/m . 

(i) 

where  

(ii)   So we may solve for  with  and 

 for  

(iii) The Laplace transform is best suited to the time variable since this is an initial value problem. We could also use the Laplace transform in 

space, but we do not have enough conditions at  The sine transform may work well since we know 

 Let's try it. 

(iv) Taking the sine transform, we'll call the transform variable  to avoid confusion with the thermal conductivity. 



which may be integrated to give: 

Now at 

so 

and thus 

Thus 

We can evaluate the integral of the delta function by using one of our delta-sequences. 

Thus 

and so 

With the given numbers  400 W/m K  385 J/kg K  so   Then 

Thus  

 

The plot show  versus  in meters at times 



 s (black, dotted line), 1.5 s (blue,dot-dash line), 3 s (red dashed line) and 6 s (green line). 

16. A long beam is resting on an elastic foundation. The equation satisfied by the beam displacement is: 

where  is the load and 

 is a constant describing the elastic properties of the foundation. If the load is concentrated toward the center of the beam, then we may 

assume that  as  Transform the equation, and find  in terms of 

 Solve for the beam displacement if 

(a)  and 

(b)  

thus 

(a) 

Then 

and 

We integrate by completing the contour (upward for  and downward for  There are poles at 

and two poles lie inside each contour. Write 

Then for  we close upward, enclosing the poles at   The residues are: 

and 

Thus for : 



Now for  we must close downward, enclosing the poles  and  The residues are: 

and 

and thus for  

Putting the results together, we get: 

(b) 

and so 

and inverting we get: 

The integrand has poles at: 



We evaluate the integral by putting the contour slightly below the real axis. 

First term: 

For  ie  we close upward enclosing the poles at and 

 By method 4, the residues are: 

where 

and 

and the first term is: 

When  we close downward enclosing the poles at  and  

The residues are: 

and: 

giving 

The second term is evaluated similarly, giving: 



for  and 

for  

Thus we have: 

For 

For 

Finally for 

17. Find the Fourier sine transform of For the function 



 find (a) the Fourier sine transform and (b) the Fourier cosine transform. 

(a) The sine transform is 

(b) The cosine transform is: 

18. For the function  find (a) the Fourier sine transform and (b) the Fourier cosine transform 

(a) The sine transform is 

The integrated terms vanish, leaving 

(b) The cosine transform is: 



The integrated terms vanish, leaving 

19. Show that the Fourier cosine transform of the function  for  is 

 Hence show that the function 

 is its own cosine transform. Obtain similar results for the sine transform. (The results of Chapter 2 §9 may prove useful.) 

In the first term let  and in the second let 

where we can move both integrals to the real axis since there are no poles between the imagnary axis and the real axis. 

In the special case  w e find 

so this function is its own transform. 

The sine transform is 

so that with  we obtain the same result as for the cosine transform. 

20. Determine the form of Parseval's theorem (equation 7.10 and 7.11) that applies to the cosine transform. 

Following the method in section 7.3.5, and remembering that the functions are defined only for positive : 



Then from the result of Problem 6.13, 

The same expression holds for the sine transform. 

The equivalent relation to 7.11 is thus: 
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Chapter 7: Fourier Transforms 

21. The magnetic field in a conducting medium diffuses away according to the equation: 

Solve this equation by taking the Fourier transform in space and the Laplace transform in time. Find  if the 

magnetic field at  is a step function: 

Express your answer in terms of the error function (Appendix IX). 

Thus 

At 

Thus 

We may invert using convolution and the results of problem 5 and Example 7.2: 

Let  Then 

The plot shows  versus  for  = 0.1 (black line) and 0.5 (red, dashed line). 

22. This solution is similar to that for problem 21. The transform is: 



where 

(Example 7.2 with  Thus 

and thus 

23. Develop a three-dimensional version of the convolution theorem. Use the result to obtain the solution of Poisson's 
equation 

Evaluate the resulting integral explicitly if  

If the transform is of the form  then 

The transformed equation is: 

Now the function  inverts to 

The integral has a simple pole at the origin. With 

 positive, we close upward with a small semicircle over the pole and a big semicircle at  Then 

The integral around the closed curve is zero by Cauchy's theorem ,and so the principle value is the negative of the 



integral around the little semicircle: 

and so 

as expected. 

Now if  then we have: 

as expected. 

24. Find the three-dimensional Fourier transform of the charge distribution 

25. Take the Fourier transform of the three-dimensional wave equation 

and solve for the transform  Show that the introduction of a damping force (through the addition of a term 

 on the left hand side) moves the poles off the real axis. Invert the transform in the case  for the case 

 

Thus 



The integrand has poles at   on the real axis, provided by the differential equation, as well as poles of the 

transform . The damping term modifies the transformed equation: 

and the poles are then at 

and both are in the lower half plane. The integration path along the real axis passes above these poles. Thus in the 

limit  we keep the path of integration above the poles. 

Now we look at the function 

For  we close upward and the result is zero. For  we close downward, enclosing the poles at 

The integrand has two second order poles at  For  we close upward for the first term, enclosing the 

pole at  Similarly, for  we close downward, and the pole at  is inside. Then the residues are 



The result is similar for  

Thus for 

whle for 

At  both solutions give the same result. 

Red  Black:  

(b) 

where 



Since both  and  are positive, we may drop the second delta function, to get 

26. At  the distribution of salt in a pipe of fresh water is given by 

Solve the diffusion equation to find the salt distribution at  in terms of the diffusion coefficient  

The transform of this function is a step function plus a delta-function (see, eg, Problem 3 where ). 

Each term in the integrand has a simple pole at the origin, although the original function has a removable singularity 
there. Thus the result of the integration should not depend on the method we choose to avoid the pole. We choose to 
put the path under the pole. 

In the first term we close up if  and down if 

 The pole at the origin is displaced slightly downward so it is included in the lower contour. Thus we obtain 

zero for  and  for  The second term is treated similarly, to obtain 

This function is a box that extends from  to  and thus 

We integrate the first term by completing the square: 

and the second using the sifting property, giving: 



Distribution of salt at various times. The horizontal axis is  Dashed:  solid, 2; dots, 3. Blue:  

27. Sum the series 

by taking the Fourier transform of each term, summing the series in the transform space, and then transforming back. 

First we transform the function: 

The integrand has poles at   For 

 we close the contour downward, and we close upward for  Thus: 

while for 

Thus 

Thus in the transform space, the sum is: 

where we recognized the sum as the geometric series (equation 2.43) with  and  

Now we transform back: 



The integral was computed in problem 1d.. The result is: 

28. Use the derivative rule (7.6) and the symmetry property of Fourier transforms to evaluate the transform of  

We already know that the transform of the function 1 is 

 and so by the symmetry property and the derivative rule: 

Thus 

We can check our result by inverting: 

by the sifting property of derivatives (equation 6.7). Thus 

as required. 

. 
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Chapter 8: Sturm-Liouville Theory 

1. Find the eigenfunctions for the Helmoltz equation 

subject to the boundary conditions 

at  and 

at  

The functions that solve the equation are 

and 

To satisfy the first boundary condition we must choose the sine. Then to satisfy the second we have: 

so the eigenvalues are: 

and the eigenfunctions are: 

2. Find the eigenfunctions for the Helmoltz equation 

subject to the boundary conditions 

at  and 

at  

The general solution of the differential equation is: 

Now we apply the boundary conditions: 

So at 

while at 



The two equations for  and  have a non-zero solution only if the determinant of the coefficients is zero: 

or 

or 

This equation gives the set of eigenvalues. Then: 

and the eigenfunctions are: 

If  and then we get: 

The eigenfunctions are: 

Check: at 

as required. 

Now let  and  Then: 



, Solutions are:  etc. 

3. The displacement of a square, vibrating membrane of side  satisfies the two-dimensional Helmholtz equation 

where ,  is the frequency and  is the speed of waves on the membrane. Suppose the membrane is 

fixed at its edges at  and  Separate variables and solve for the eigenfunctions  Show that 
the system exhibits degeneracy, that is, there is more than one eigenfunction corresponding to a given eigenvalue 

 In the particular, show that there are two eigenfunctions  and  that correspond to the eigenvalue 

 . What symmetry of the physical system causes this degeneracy? (Hints: (a) where are the nodal 

lines for the two modes? (b) what happens if one side of the membrane is slightly shorter, equal to ) Any 
linear combination of the two eigenfunctions is also a solution. Find some of the nodal lines for combinations of 

the modes, eg  How do these modes reflect the symmetry of the system? Can you find an eigenvalue that 
has three-fold degeneracy? If so, what do those modes look like? 

Separating variables, we have  where: 

The separated equations are 

To satisfy the boundary conditions we need the solution  and the eigenvalue  Similarly 

 and thus  The eigenfunctions have the form 

Thus the two eigenvalues  and  have the same eigenvalue. This is a reflection of the fact that the system 

may be rotated by  without change. This rotation changes  to  Changing the length of one of the 

sides destroys the symmtery and removes the degeneracy. The nodal lines for the mode  are at  

 and at   Rotation by  sends one set of lines to the other. The linear 
combinations look like: 

With   we get 

With  the nodal lines are given by 

or 

that is 



The solution that we need, with  is 

a diagonal line. The square has reflection symmetry about this line. 

If we can find a number  that has more than one set of values of  that satisfy the relation 

 , we will have a greater level of degeneracy. For example,  Thus 

the eigenfunctions   and  all have the same eigenvalue- a three-fold degeneracy. The combination 

looks like this: 

These functions also share the rotational symmetry of the square. 

4 A set of eigenfunctions  satisifies the Sturm-Liouville equation (8.1) with boundary conditions (8.2) The 

function  . Show that the derivatives  are also orthogonal functions. Determine the weighting 

function  for these functions. What boundary conditions are required for orthogonality? 

The differential equation is: 

Multiply by : 

Now, as we did before, multiply the equation for  by  subtract and integrate: 

Integrate by parts: 

Thus the integral 



unless  provided that: 

This will be the case if, for example, 

(a)  as in the case of Legendre functions. 

(b)   

(c)  and  

  

(e)  

etc. 

5. Use the recursion relations to show that the derivatives  of the Legendre polynomials are orthogonal on 

the range (-1,1) with weighting function  in agreement with the results of problem 4. 

Using the ladder relations, we have 

Thus: 

Integrating by parts on the right hand side: 

and 

Thus the right hand side is: 

which demonstrates that the  are orthogonal with weighting function  

6. To obtain Fourier-Legendre series we often need to evaluate integrals of the form: 

(a) Start by evaluating and   



This integral was evaluated in the text (Example 8.2). We found: 

for  odd, and zero for  even (except .  

We do the next integral by parts, using the recursion relation (8.39): 

The integrated term is zero, and we can use our first result to do the remaining integrals. The result is zero if  is 

odd, and for  even we get: 

.Next: 

and 

(b) Now working from equation 8.37 we get: 

So: 

(c) Use these results to ''step down'' until you can use your results from (a) to obtain an explicit expression for  



First consider the case  We step down using the result above to get: 

Let's check this against our previous result for 

which checks OK. 

Now if  we get: 

which is zero if  is even and for  odd we get: 

Check against the result for  We got zero for  odd (i.e.  even, as required.) 

which checks with the result calculated in part (a). 

If  Then 

7. We have already verified in the text that the formula gives the correct normalization for  and  Then: 

Now evaluate this at  All terms except the last are zero, and thus: 



and thus 

as required. 

8. Evaluate the integral 

and hence obtain a Fourier-Legendre series for the function  

Start with  and  Then: 

Making the change of variable  

and so 

and 

Indeed the result is zero for all odd  because in that case the integrand is odd. 

Next use the ladder relation: 

and integrate by parts. The first term is: 

Thus 

and using the ladder operator again, we get 

In the second term we use the pure recursion relation: 

and thus 



Rearranging, we get: 

Or 

Stepping down, we get: 

Thus for the series we want: 

we find 

and thus 

We can verify the result by plotting the first few terms along with the function  (black line). . 

Red dashed line, 3 terms. Blue dot-dash line, 4 terms. 
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Chapter 8: Sturm-Liouville Theory 

9. Write Laplaces's equation in oblate spheroidal coordinates (cf Chapter 2 problem 13), separate variables, 

and hence show that the solution requires Legendre functions in both the coordinates  and  Argue that the 
solution exterior to an oblate shperoidal boundary requires the use of the Legendre function of the second 

kind,  

Oblate spheroidal coordinates are defined by: 

We want to find the shape of the constant  and constant  surfaces. First eliminate  

Thus 

Thus the surfaces of constant  are ellipsoids with semi-major axis cosh  and semi-minor axis  

Similarly, by solving for  and  squaring and subtracting, we find: 

so the constant  surfaces are hyperboloids. 

The axis is described by  i.e.  Then  which ranges from  to  as  

does. The  plane is described by  or  or  These choices correspond to different 

regions for  But  is always positive, so we don't need  Here  and  

Next we look at the line element: 

Note: 

and 



Thus 

and 

Now we are ready to write the  operator: 

Laplace's equation is  Next we separate variables: 

Now divide through by  and multiply by 

The final term has separated out: it is a function of  only while the other two terms are functions of  and  

only. Since  is our old friend  we choose separation constant  so that the solutions are 



Then: 

Now multiply through by 

Now we have separated again. We can recognize each of the pieces as Legendre's equation, so the 

separation constant is 

and 

In the  equation, let  

The solutions are: 

In the  equation, let  ,  so 

with solution 

Thus the eigenfunctions are of the form: 

We cannot eliminate the s here because the argument  can become large. 

10. Expand the Legendre function  for large values of the argument, and show that your result agrees 
with the asymptotic form in equation (8.28), modulo a constant. 

Compare 

11. Rewrite the Legendre equation 



in terms of the variable  and obtain a solution as a series in  Show that for large   goes to 

zero as  Show that for  the solution  may be written as in equation (8.28) but with  in 

the denominator instead of  

We use the method of Chapter 3 section 3.3.5. 

Thus the equation becomes: 

The equation has singular points at  and at  We look for a solution of the form 

The lowest power is  which gives the indicial equation: 

with solutions  and  Looking at the power  we obtain the recursion relation: 

or 

With  we have 

which is valid for  leading to the series: 

The series with  is not regular at infinity; in fact this is the Legendre polynomial. The recursion relation 

blows up for  so coefficients beyond  cannot be found. 

For  we obtain 



as required. 

12. In a steady state, the time derivative of the charge density is zero, and so 

So if the conductivity is uniform, we can pull it through the divergence to get: 

and thus  satisfies Laplace's equation. 

In polar coordinates: 

Separate variables: 

As usual, we choose 

so that 

Then 

The solution is a power: 

So  Thus the eigenfunctions are: 

and the solution may be written: 

First we set  because we want our solution to be finite at  (With  we obtain the solution 

 We also eliminate this solution because it is not finite at ) Now our boundary conditions at  
are: 

except 



and 

This is a Neumann problem. Inserting the solution for  we have 

Now we make use of the orthogonality of the trig functions. Multiply both sides by  and integrate. Only 

the one cosine term with  survives the integration: 

while for the sine terms we get: 

Thus: 

and 

Then 

The first term is: 



and is constant.At  only the  component is non-zero: at  and  only the  component 
survives. 

13. A solid sphere of radius  is immersed in a vat of fluid at temperature  Heat is conducted into the 

sphere according to equation 3.14. If the temperature at the boundary is fixed at  and the initial 

temperature of the sphere is  find the temperature within the sphere as a function of time. 

Look for a solution with  (We expect no dependence on the angles because the boundary 
conditions are spherically symmetric.) Then we have 

or 

Let the constant be  so that the solution for  is 

Then the  equation is: 

The secret here is to rewrite the differential operator in the form: 

We choose   to be negative, and the solution is of the form 

Next we choose the sine solution with eigenvalue  so that  Thus the solution is of the form 



Finally, at 

So 

So we get: 

So 

The plot shows  versus  for  1/20 (red), 1/10 (blue), and 1/5(green). The black 
line shows the original temperature distribution (first ten terms) 

14. Use the Cauchy formula together with the Rodrigues formula to write  as a contour integral in the 

complex plane. Take the contour to be a circle of radius  and hence obtain the integral expression 

where the integral is along a closed curve enclosing the point  In particular, choosing the curve to be a 

circle of radius  centered at  we have 
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Chapter 8: Sturm-Liouville Theory 

15. Starting from the relations in section 8.3.5, derive the following recursion relations for the Associated Legendre functions: 

(a) 

Starting with equation 8.37, we differentiate: 

Differentiating again 

Continuing, we get 

Multiply by 

which is the first relation. 

(b) 

Similarly, starting with the pure recursion relation (8.34) 

Do it again: 

Continuing 

Now multiply by 

Using the first relation to eliminate 

Thus: 



From these two relations derive the following: 

(c) 

We want to eliminate the square root: 

Thus 

QED. 

16. Starting from the definition (8.53), obtain the -raising recursion relation: 

Solution: 

Thus 

Combine this result with equation (8.59) to obtain the lowering relation 

Use equation 8.59 with  

Use the previous relation to eliminate 

Thus 

17. Use the results of problem 15 to show that, for  even, 



From 15(a) 

and from 15 (c) 

Thus 

and so 

Now step down: 

Now use equation 8.47 for 

as required. 

18. Show by direct substitution into equation (8.15) that 

 Use the value of the orthogonality integral (8.55) together with the result 

 (eg Gradshteyn and Ryzhik formula 3.621#4) to show that 

Stuffing in: 

The derivative is 

and thus the equation is satisfied. 

If  then 

Thus 

Finally note that for  



and for 

So we also need a factor  Thus 

QED 

19 The integral 

Verify this result for (a)  (b)   and (c)  (d) Stepping down in 

 use proof by induction to show that the result is true in general. 

 so 

as required. 

 and thus 

and finally 

Now we want to show that 

for  First assume that the result is true for some  and  Then 

where we used the result of Problem 16. The first term is: 

which is the result we want. The other terms are: 



We integrate the first term in the integrandby parts: 

The integrated term is zero provided that  Then we have 

by orthogonality relation 8.50. Thus the relation is true for  if it is true for 

 But we have already shown it is true for  (P19 equation1 above) and thus it is true for all  where 

 

20. Using the generating function  (equation 8.32) and the addition theorem (8.65), derive the expansion 

We begin with the result from 

and then use the addition theorem 

as required. 

Hence find the magnetic vector potential due to a circular loop of wire with radius  and carrying current  

where in the last step we changed the meaning of  to be the lesser of  and  and similarly for 

 We now use orthogonality of the  to argue that only terms with  survive the integration over  

and 

Thus 



We can simplify a bit by inserting the value of  First note that  is even if  is even, and odd if  is odd. Since 

 is the th derivative,  will be odd if  is odd and even if  is even. So  unless 

 is even, or, in this case,  is odd. 

Now we can use the recursion relation (8.37) 

Now we use equation 8.47 for  to get: 

Thus: 

21. Verify the result (8.67) 

First we evaluate the Legendre functions: 

for  If 

If  we should get 



There is a pole of order  at the origin. The Taylor series is: 

The  term is the  or  term. Thus the residue is 

Thus 

Compare 

If  but  is any odd integer, then: 

From the soln to Problem 8: 

which is what we want!! 



Now for the proof by induction. We step down in  using eqn 8.59: 

Then using the result of Problem 16: 

So 

Thus 

and so 

So result is true for  if it is true for  Since we have shown it is true for  it is true for all odd 

for any odd  

22. Find the electrostatic potential inside a hemisphere of radius  with potential  on the flat side and 

 on the curved part. 

The solution is of the form 

at   must be zero at  thus we need sine functions  Next we evaluate on the curved part: 

Thus 

The result is zero unless  is even, so we need  odd. Dropping primes, and using the result of Problem 21: 

Thus 



for  For 

and the potential is 

The first few terms are: 

The  term is 

To calculate the  we start with  Do a series expansion of the generating function using Maple: 

 

 

Thus  

Next use equation 8.53. 

 

 

 

 

 

 

Then the  term is: 



At   we have 

This expansion to  appears to be good to about  

At   

The plot shows  versus  
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Chapter 8: Sturm-Liouville Theory 

23. Quantum mechanical treatment of the harmonic oscillator results in the Hermite differential 
equation 

Write this equation in standard Sturm-Liouville form. If the boundary conditions are  as 

 show that the solutions are orthogonal on the range  and find the weight function 

 Solve the equation to find a series expansion for the Hermite functions. What value of the 

eigenvalue  is required for the functions to remain bounded throughout the interval, including 

? (Hint: experience with Legendre functions should prove useful.) Normalize the solutions by 

choosing the coefficient of the highest power  to be  and hence determine the first three 
eigenfunctions. 

We want to write the equation in the form  Expanding out the differential operator, we get: 

Comparing with Hermite's equation, we can multiply by a function  such that 

Thus  and the standard form is: 

Then the weight function is  and 

For the series solution, we use the original form of the differential equation and let  Then 

 

The series converges for , but for large  we get 

and the ratio of successive terms is 



This ratio is greater than 1 for  so that the series diverges as  We can avoid this 

problem by choosing  for some integer  Then  and the series terminates with the 

 term. As with Legendre functions, only one of the two solutions to the differential equation 
terminates. That solution is the Hermite polynomial. Then we find: 

or, in general, the coefficient  of  in the th polynomial is 

Let's find the first 3. 

 There is only one term, and it is a constant equal to  

 There is again only one term, and the solution is  

 There are two terms: 

So 

and 

24. The generating function for Hermite polynomials is 

Use this generating function to establish a pure recursion relation for Hermite polynomials(analogous 

to equation 8.34 for Legendre polynomials). Also obtain the derivative  in terms of the  
(analogous to equations 8.40 and 8.41). 

Differentiate  with respect to  a total of  times to obtain the Rodrigues-type formula 

As with the Legendre functions, we differentiate with respect to 



Then equating coefficients of powers of  for  we get: 

Now differentiating with respect to 

valid for  

Begin by writing  in the form: 

Then 

and also, from the right hand side, 

Now set  . Only the first term in the sum remains, and we get: 

25. By using the Rodrigues formula (Problem 24) for the Hermite polynomials, or otherwise, obtain the 
normalization integral: 

Now integrate by parts: 



Thus 

But 

Thus 

26. Starting with the relation (8.86) derive the Rodrigues-type formula for Bessel functions: 

Continuing in this way, we get 

as required. 

27. A drumhead is a circular membrane of radius  When it is struck, waves propagate across the 

drumhead. The membrane vibrates with displacement  where  and  
satisifes the Helmholtz equation 

where  and  is the speed with which waves propagate across the drumhead. (The speed 

 depends on the tension in the drumhead, among other things.) The boundary condition is that  

at  Separate variables, and find the eigenfunctions. Determine the first three allowable 

frequencies  in terms of the drum parameters  and  

Let  Then 



Multiply through by  to get: 

Once again we choose 

and then the equation for  is Bessel's equation: 

We need a solution that is finite at the origin (the center of the drumhead), i.e.  Then we 

choose the eigenvalues to make  zero at  Thus 

the th zero of  The solutions are of the form 

and the allowed frequencies are 

The zeros are 2.4048  5.5201 and  

  7.0156 

 

Thus the first three frequencies are  3.8317  and 5.1356  

28. Sound waves propagating through a tube may be described by a velocity potential (cf Chapter 2 
§2.4) that satisfies the Helmholtz equation 

where  is the sound speed in the tube. Now assume that for propagation along the length of the 

tube (in the -direction) the potential may be written: 

where  is a function of the transverse coordinates . Because the air cannot 



move perpendicular to the walls of the tube, the boundary condition is 

Write the differential equation and boundary conditions satisfied by , and hence find the 

eigenvalues and the set of allowed frequencies  if 

(a) the tube has a rectangular cross section measuring  or 

(b) the tube has a circular cross section of radius  

In each case show that there is a minimum frequency for waves that propagate along the tube with  
not constant. 

We may write  and thus the differential equation is: 

where the eigenvalue  

(a) With a rectangular cross section, we have 

with 

and 

Now separate by looking for a solution of the form  We have 

Both  and  satisfy equations of the same form: 

with 

and the boundary conditions are also of the same form: 

Thus the solution must be of the form: 



so that  at  Then we choose the eigenvalue  so that  i.e. 

 Doing the same thing for  we find that the eigenfunctions are of the form: 

and the eigenvalues are 

Thus the allowed frequencies are given by: 

The solution with  corresponds to a constant value of  With  constant, the air velocity 
is identically zero, and so there is no wave. Otherwise, 

The minimum frequency occurs for  and either  or  . (For lesser frequencies  

becomes imaginary and the wave does not propagate.) If the larger dimension of the tube is  
then the minimum frequency is: 

(b) With  the differential equation is 

which separates to give 

and 

which is Bessel's equation, with solution 

The boundary condition  at  requires that we choose  to be one one of the roots  

of   Then the eigenvalue  Then 
the frequency is 

With  and   is a constant and there is no wave. Otherwise, the smallest value of  

is  giving a cut-off frequency of 



Compare this with the rectangular guide: the closest equivalent dimension to the radius is one half the 

dimension  and the cutoff is 

which is comparable to that for the circular guide. 

Writing  or  in the case of circular or square guides, we have 

and 

repectively. 

29. If  is the th zero of  show that the Bessel functions satisfy the orthogonality relation: 

We start with the general orthogonality relation (equation 8.6) 

Integrating by parts, the first term on the right hand side is: 

Subtracting the second term, the integrals cancel. Taking  another zero of  , the 
integrated terms are both zero, and so we have 

To obtain the value of the integral if  we differentiate with respect to 

On the right hand side, we make use of the differential equation to get: 



Now let  The first term on the left goes to zero, and we have: 

The contribution from the lower limit is zero for  since  in that case, and is zero for 

 because then the factor multiplying  is  Thus 

which is the required result. 

30. Use the generating function (8.93) to show that 

We start with 

Let  Then 

Now let 

Now subtract the two results: 

For the even terms: 

while for the odd terms 

and 

Then since 



for odd  we may combine the positive and negative terms to get: 

(b) 

This time we set  Then 

The odd terms in the sum are zero, leaving 

as required. 
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31. Show that 

Start with: 

and 

Multiply these results together: 

Now multiply both sides by  and integrate over the range  to 2

 By the orthogonality of the exponential functions, only the term with 

 survives on the left, and the terms with  on the right: 

as required. 

Now let  and  to get: 

32. Show that 

We use the technique from Appendix VIII. 

Since the series for  starts with  the integrated term is zero at  provided that 

 and the integrand vanishes, so, using the large argument expansion of the Bessel functions, we are left with: 



The first term  as  because of the factor  Thus we are left with: 

and thus 

Then as  we get: 

This agrees with GR 6.538#2 with  

Note that the Bessel equation may be considered as an eigenvalue problem with eigenvalue 

with   and the weighting function  Our proof shows that 

if  is not equal to  and 

 is an even integer. Thus the even order Bessel functions or odd order Bessel functions satisfy a second 

orthogonality relation. This is somewhat analogous to the orthogonality of sines or cosines on the half range  

33. At time  the surface of the water in a pond has the form 

and 

By taking the Fourier transform of the wave equation with two spatial dimensions, find the displacement 

 at later times. 

Thus 

and thus 

where (a) 



and 

Thus 

We may make use of the integral expression (8.92) for the Bessel function to obtain: 

Now multiply both sides by  and integrate 

Thus 

The initial disturbance oscillates in time. 

34. Evaluate the integral 

Now we let ,  and use the methods of Chapter 2 §2.7.2: 

The integrand has poles at  (for  and 

Of these, the poles at  (order  and at  are inside the circle. 

(The plot is a graph of  versus x. All values are between  and 0. ) 



Writing the integrand as 

The residue at  is 

To find the residue at zero we expand in a series, 

The residue is the coefficient of  in this series, that is, we need  or 

Thus our integral is: 

The sum may be evaluated using equation 2.42:



Thus

For  we have the nice result 

35. 

The result is 

if  and 

if  

36. Show that the first zero (other than zero) of the Bessel function   is an increasing function of 

 that is 



and so on. 

First note that each Bessel function is positive for sufficiently small values of  as indicated by the small argument 

expansion (8.80). Similarly, for  the derivative is also positive for sufficiently small 

. The function increases from zero, then decreases to the first zero. Thus the first zero occurs at  where 

 is negative. Now from relations 8.89 and 8.90: 

So 

Evaluate at  to get: 

which is therefore positive, and also 

is negative. If  is negative then  for  

QED 

We still need to show that  We know that  and therefore  Since  by 

assumption,  must be the first minimum of  . Furthermore, 

and evaluating at 

and is therefore negative. These results show that  

37. A pendulum has steadily increasing length 

 Show that the equation that describes small oscillations of this pendulum is: 

Change variables to  and 

 and hence show that the general solution may be expressed in terms of Bessel functions. Find the solution if the 

pendulum is released from rest at an angle  at  (  



The torque about the support is: 

and the angular momentum with respect to the same origin is 

Thus 

So for small oscillations: 

as required. 

Change variables to  Then  and 

The equation becomes: 

Multiplying by  gives 

where now prime means  Now let  

which is Bessel's equation of order 1 (compare with equation 8.69), with solution: 



Here we must include  in the solution because the argument is never zero. If the pendulum starts from rest when 

 then 

and 

So 

and thus 

The denominator is the Wronskian of the two solutions, and equals: 

Using the large arument form of the Bessels, we can evaluate the constant: 

Thus 

and the solution for  is 

Check the dimensions:  is a length, and so 

as is required. The plot shows  with  and the dimensionless time variable  

We used the recursion relation 8.90 to evaluate the derivatives:  and similarly for 



 The numerical values are easily computed using EXCEL (``bessely'' is the Neumann function). We find 

 and  

38. The equation that describes the angular displacement of a vertical pole or column is 

where  increases downward from the top of the pole,  is the Young's modulus, 

 is the moment of inertia (see also Chapter 3 §3.2.3) and 

 is the mass per unit length. Make a change of variables to  

 and hence show that the solution may be expressed in terms of Bessel functions. Show that there is no solution 

that fits the boundary conditions  and  unless the pole has a minimum length 

 Find an expression for  in terms of the physical parameters of the pole. 

Let  Then 

Now change variables:  and 

The differential equation becomes: 

Next, with 

and 



Thus 

This is Bessel's equation of order 1/3, so the solution is: 

or, in the original variables: 

Then 

Using the series 8.73 with 

and the derivatives are: 

Thus 

Thus the boundary condition  is satisfied if we choose  Then: 



and so  Then to satisfy the second condition, we must have 

Thus  must be one of the zeroes of  Thus 

 can take on only a specific set of values, and in particular there is a smallest value corresponding to the first zero of 

 That value is: 

or 

39. Establish the addition theorem for Bessel functions. 

We start by expanding the function  where  and  are vectors in the 

 plane,. in the complete orthogonal set of functions : 

By symmetry in  we have 

Now let  The only non-zero Bessel function is  so

From the result of problem 34 in the limit  we conclude that  Thus 

Since this result is valid for any value of  we conclude that 

Note also that this expression gives correct results in the limit  (Problem 31) and in the limit  

40. Starting from the definitions 8.100, 8.76 and 8.78, show that:: 

where  is not an integer. 



as required. Also 
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41. The potential on a plane is  for  and zero for  Find the 
potential everywhere. 

Since the system is axisymmetric, only  appears in the solution, which has 
the form 

where, to ensure that the potential decreases as we move away from the plane, 

the minus sign applies for  and the plus sign for . 

Thus 

On the axis 

where we used GR 6.611#1 or the result of Problem 34b 

42. A cylinder of height  and radius  has the top and bottom grounded. The 

potential on the wall at  is  Find the potential inside the cylinder. 

Again we have axisymmetry, so only  terms contribute. The potential 

should be finite on the axis at  so we exclude the  function. Thus the 
potential is of the form (compare with Example 8.5). 



Now evaluate the potential at 

This is a Fourier sine series, and we find the coefficients in the usual way: 

Thus 

The first plot shows the first 9 terms in the expansion of  for 

 

The second plot shows  with  



43. A cylinder of height  and radius  is grounded except for its base at  

On the base the potential is  Find the potential inside the cylinder. 

Again we have axisymmetry, and we must choose the eigenvalue to make the 

potential zero at  To make the potential zero at  we use the 
hyperbolic sine function. 

where 

We used GR 6.554#2 to evaluate the integral. . Thus 

44. (a)Use the series for  to show that its Laplace transform is 



(b)Then use the recursion relation 8.87 to find the Laplace transform of  
Extend the result to show that 

(c) Use the convolution theorem to establish the relation 

Compare with the series expansion 

The series are the same, and thus 

(b) Also 

and by the derivative rule: 

First assume the result is true for some value of  We have just shown it is true 



for  and  Then using the recurrence relation (8.90) 

Taking the transform 

since  for  Simplifying: 

hus the result is true for  if it is true for  Since it is true for  it is 

true for all  

(c)  is the convolution of  with itself. The transform is thus 

This is the transform of  (Table 5.1) and thus 

as required. 

45. Obtain expression (8.126) for  from the expressions for  and  and 



the recursion relation (8.120). 

46. Starting with the recursion relations (8.86) and (8.88), derive the relations: 

and 

The recursion relation (8.86) is: 

Let  then 

The second relation is: 

Again let 

47. Use proof by induction (Appendix III) to establish the Rodrigues-type formula 

Start with the relation from problem 46: 



So the result is true for  Now assume the result is true for  Then 

so the result is true for  Thus it is true for all  

48. Use the recursion relations to show that the orthogonality relation (8.130) is 
equivalent to (8.129). 

We start with the recursion relation 

So if  is a zero of  then  

Upon squaring, the minus sign disappears, and the equivalence is proved. 

49. Starting from the definition (8.76), show that 

Hence show that 



Divide through by  and the result follows. 

Using the series expansion for  we have: 

As in the text, we can rewrite the gamma function: 

and thus 

as required. 

50. Starting from relations 8.111 and 8.112, establish the recursion relations for 

the spherical modified Bessel functions  

and 

From 8.111 we obtain immediately 



For the derivative, using 8.112 we have: 
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51. The Fresnel integrals 

and 

may be expressed as a series of spherical Bessel functions. First show that 

and obtain a similar expression for 

 Use the recursion relation to do the integration, and hence establish the result 

Determine a similar expression for  

Let  Then  and the integral becomes: 

Then using the expression for  we have 

as required. 

Next we use the recursion relations. A most useful relation for our purposes here is between equations 8.120 and 8.121.: 

Thus 

As  increases, the first term approaches zero, as we show below. The second term is the result we want. Thus 

as required. 

To show that the first term is zero, we do the integral by inserting the series 8.122 for  



Using the result above equation (8.124) in the text with : 

Thus 

and so 

Now we investigate the limit as  Let  Then, using Stirling's formula 

we have 

where we have dropped terms that decrease as  The right hand side is 

where 



Continuing to simplify, we have 

As  the dominant term in this expression is  and thus the expression  as  Since 

   as  then  

Thus 

A similar argument works for the second integral: 

where we used the result of Problem 5. Now we step up using the recursion relations, as before: 

52. Sound waves in a spherical cavity satisfy the differential equation  for  with  at 

 Find the eigenvalues  for the problem and hence find the allowed frequencies  for sound waves 
inside the cavity. 

Following the procedure in the text, we find the solutions to be: 

The eigenvalues are determined by the condition: 

Thus  must be one of the zeros of  

Using the recursion relations: 

With 



The solutions of this equation are the solutions of the equation 

A simple numerical algorithm gives , 7.725251837 and 10.90412166 as the first three values. 

Thus the first allowed frequency is  and so on. 

With 

The solutions are:  5.94037074 and 9.205840071 (Dashed line =  solid line =  

The second freqency is  which is lower than the value found from  

53. Electromagnetic waves in a spherical cavity may be described by a mathematiccal problem similar to that in problem 

52, with . The boundary conditions depend on the polarization. Find the allowed frequencies if the boundary 

condition is  

Following the procedure in the text, we find the solutions to be: 

Here we need  These values are tabulated (eg Abramowitz and Stegun, p468). The first few values are: 

 1.16556 (  2.460536 (  3.632797 (  and 4.604 (  Since  the frequencies are: 



54. The modified spherical Bessel functions are defined as  and 

 Using the expression 8.99 and the result of problem 8.40, verify the expressions for the modified 

spherical Bessel functions  and  

As in the text we expand the  function. 

Thus: 

as required. 

Now 

So 



Thus 

QED 

Use proof by induction to show that 

From the recursion relation in Problem 50 with 

so the formula works for  Now assume it works for some value  Using the recursion relations, we have: 

So the result is true for  Thus it is true for all  

55. We may model the force between particles in an atomic nucleus by a 3-D square well potential  

 with  for  Schrodinger's equation for this system takes the form: 

Write the differential operator in spherical coordinates and show that the solution may be written in terms of spherical 
Bessel functions. Find the energy of the lowest energy level. 

The equation is of the form (8.114) in the text and thus the solution is 

where 



inside the well. Outside the well  which is imaginary if  is negative (a bound state), and we need a 

solution that decays exponentially. That solution is the spherical  function (compare equation 8.105), 

 The boundary conditions are continuity of both  and  Thus 

and 

This is a transcendental equation for the energy values  Let and  Then 

and 

We use the recursion relations to eliminate the derivatives: 

A factor of  cancels, leaving 

or 

For  we insert the explicit expressions for the Bessel functions, using equations (8.124) and (8.125) 

Now using the result of problem 54 

and 



Thus the eigenvalue equation becomes: 

Rearranging: 

The plot shows the two sides of equation (1 Pr55) for  The solutions are at , 0.5, 

 0.877565, and  Thus the lowest energy level is: 

Plot with  



Plot for  

For a solution,  must have at least one zero. One solution is always  but this is not a 
physical energy level. To have another zero, the function must have a max or min, i.e. 

for some value of   Thus 

Since the sine lies between -1 and +1, we can find a solution if  

56. The density of neutrons in uranium is described by the equation 

where the  (the diffusion coefficient) and 

 (the net production rate) may be taken to be constants in space and time. Solve the equation using separation of 

variables. Look for a solution with spherical symmetry that satisfies the boundary condition  at 

 Show that the density increases exponentially if  exceeds a critical value 

 and determine that value in terms of  and  

We look for a solution  Then 

Both sides must separately be constant, so 

and then 

The solution of this equation is the spherical Bessel function  Since we need  at 

 we must choose  to be one of the zeros of  From equation (8.124), 



and thus the first zero is at  Thus 

The density increases exponentially if  or 
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1. Determine the velocity of an electron driven by an electric field 

 in the presence of a constant, uniform magnetic field  Choose the axis along 

 but do not make any assumptions about the direction of  If there are  electrons per unit volume, write the 

current in the form . 

The equation of motion of the electron is: 

The solution will be of the form  where 

The component is: 

The  and components are coupled: 

and 

Thus 

Now write  so 

and then 

The the current density is 

which may be written as a tensor product 

where 



2. Starting with the expression  for a particle in circular motion, derive the expression (A.6 ) for the inertia 
tensor. 

For a element  we have 

Then integrating over the body, we have: 

3. Compute the inertia tensor for a uniform cylinder of radius  and height 

 Hence find its angular momentum when it rotates with angular speed  about (a) an axis through its center and 

along its length, (b) an axis through its center and along a diameter, and (c) an axis through its center making a 45  
angle with each of the axes in (a) and (b) 

The inertia tensor is: 



The off-diagonal terms are: 

and 

Thus 

(a) With  

(b) With  

and  With 

In this case,  is not parallel to  

4. Show that the outer product  of two vectors obeys the transformation law for a rank 2 tensor. 

which is the correct transformation law for a rank 2 tensor. 

5. Show that the inner product 



 of a rank 3 tensor and a vector obeys the transformation law for a rank 2 tensor. 

which is the correct transformation law for a rank 2 tensor. 

6. Show that the Kroneker delta tensor  has the same components in every coordinate frame. 

We apply the transformation law: 

7. Show that, if a tensor  is symmetric in one frame, i.e. 

 then it is symmetric in every frame. Similarly show that the property of anti-symmetry (  is 
preserved under coordinate trasnformations. 

If  is symmetric, then: 

so  is also symmetric. Similarly, for an antisymmteric tensor, we find 

8. The following sets of components are defined in 2-dimensional Cartesian space: 

(a) 

Does this set of components transform as a tensor? Why or why not? 

We may write the tensor components as: 

Since  is an outer product,  is a scalar and  is a tensor, this set of components transforms as a tensor. 

Repeat the problem for the following sets of components: 

(b) 

This set of components may be written: 

So we need to investigate how the set of components  transforms. 



where 

Thus 

and 

Thus 

If instead we have a reflection, we must change the sign of the terms in the bottom row of each matrix. This leads to 

and 

Thus  like  transforms as a tensor density. Thus  transforms as a tensor density. 

We may also form the scalar density 

for arbitrary vectors  and  and use the quotient theorem to confirm the previous result. 

(c) 

This set of components may be written: 

which is an outer product, and thus this set of components transforms as a rank 2 tensor. 

(d) In 3-dimensional space, 

This set of components may be written: 



an outer product of the tensor density  and the vector  Thus this set of components is a rank 2 tensor density. 

Alternatively, we may form the set of components 

 and since this is a vector density, by the quotient theorem,  is a tensor density. 

9. The magnetic moment tensor has components: 

where  is the current density, and the integral is over all space. 

(a) Show that  is antisymmetric for any steady, finite current distribution. 

Note that: 

Now integrate both sides. The integral of the divergence on the LHS converts to a surface integral at infinity, which is 
zero. The last term on the right is zero if the distribution is steady. Thus 

and the tensor is antisymmetric. 

(b) Show that the corresponding cross product (equation A.7) reduces to the usual magnetic moment vector 

 in the case of a planar current loop. 

For a current loop, 

Then 

where  is the area element equal to one half the parallelogram formed by  and  and  is the normal to that 

area. If the loop is planar, then  is constant and 

10. The electric quadrupole tensor is given by: 

Calculate the quadrupole tensor for a set of four point charges, 2 of charge  and two of charge 

 at the corners of a square of side 

 The charges alternate in sign, so that charges of equal sign are at opposite ends of the diagonals of the square. 

The force on a quadrupole charge distribution placed in an electric field is 



Find the force on the square when it is placed in an electric field  

 with its normal at angle  to the axis and its center at the origin. 

The charge density is the sum of four delta-functions. Start with a coordinate system in which the charges lie in the 

plane, with coordinate axes along the diagonals of the square. Then: 

and 

All the other components are zero. 

The electric field is given in a different frame, rotated by  from the first. So we rotate the quadrupole tensor into this 
coordinate system: 



The force is given by:

First we compute the vector

Then compute the divergence

Finally we take the gradient

Since there is no dependence on the coordinates, there is no change when we evaluate at the center of the square (

. 

Another method:



Then 

Then 

Let's check the result. If  the charges are at   and   Thus the 
forces are 

which agrees with the result from the quadrupole tensor. 

If  the charges are at    and at   Then as expected. 

which again agrees with the tensor result. 
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11. Show that the components of the Levi-Civita symbol 

 transform as a tensor density under coordinate rotations and reflections. 

Let us compute the components: 

According to equation 1.71, the right hand side is the determinant of the matrix, 

If any two of  are equal, then two columns are equal and the determinant is zero. If 

 equal 1,2,3, we have the determinant of the transformation matrix, which is +1 for rotations and -1 for reflections. If 

 equal 1,3,2 (or any even permutation of this) then the matrix is the transformation matrix with two columns interchanged, 
and the result changes sign. Thus 

as required for a tensor density. 

12. Starting from the components of the velocity vector in Cartesian coordinates, transform to spherical coordinates to find the 

components of  in the new system, and hence write the velocity vector in spherical coordinates. (c.f. Example 4.) 

The metric tensor in spherical coordinates is: 

and the transformation matrix has components: 

and thus, since 

Then the transformed velocity vector has components: 



as we might have expected. Adding back the basis vectors, we get: 

13. In a region of space the electric scalar potential has the form  

(a) Working in Cartesian coordinates, compute the gradient to obtain the electric field components. Transform to a spherical 
coordinate system using the appropriate transformation law from section 4. 

(b) Write the potential in spherical coordinates, and compute the gradient using the operator . 

Confirm that both methods give the same electric field. 

(a) The components of  are 

 Now we transform. Note that these are covariant components, so 

(b)  Thus the gradient is 

which is the same result. 

Note that to write this as a vector field, we need to raise indices, and multiply by the unit vectors. This gives 

and thus 



as expected. 

14. Write the components of the gradient form in (a) cylindrical coordinates and (b) spherical coordinates. Use the metric tensor to 
raise indices, thus mapping to the corresponding vector. Finally multiply by the basis vectors to obtain the conventional expression 

for  

(a) In cylindrical coordinates, we start with the gradient form: 

and then raise indices, to obtain the vector components: 

and thus the gradient vector is: 

(b) In spherical coordinates, the metric tensor is: 

and its inverse is: 

The gradient form is: 

and the corresponding vector has components: 

Multiplying by the basis vectors, we have: 

15. Use equations (8) and (9) in section 4 to show that the relation  is true in general. 

as required. 



16. If the tensor  is symmetric,  show that  and that 

 Can you find a relation between  and  Why or why not? 

We cannot find a relationship between  and  because the indices do not match up properly: 

 is up in the first expression and down in the second. 

17. Which of the following relations between tensor components could possibly be true? Say what is wrong with the incorrect 
expressions. 

(a)  

(b)  

(c)  

(d)  

(a) is incorrect: the expression on the left has one free index;  On the right there are two free indices:  and  

(b) is incorrect. On the left both indices are up, but on the right one free index (  is up and one  is down. 

(c) is possible. 

(d) is incorrect. On the right the index  is repeated three times, thus this expression is meaningless. 

18. In special relativity, space-time is described by four-component vectors. The position vector has components 

 and the metric is 

The Greek letters signify indices that take on the four values 0,1,2,3. The Lorentz transformation matrix relating two coordinate 

systems moving with relative speed  along the axis is: 

We use the Gaussian unit system in this problem. The electromagnetic potential is described by a 4-vector with components 

 where  is the electric scalar potential and 



 is the magnetic vector potential. The electromagnetic field tensor has components: 

Find the components of the field tensor in terms of  and  

Two particles, each with charge  and mass  are moving along lines parallel to the  axis and a distance 

 apart. Each particle moves with speed 

 Start in a reference frame in which the two particles are at rest. Compute the components of the field tensor in this 
reference frame, and hence find the force acting on each particle. Now transform the field tensor to the lab frame, and again 

compute the force on each particle. Verify your result by computing  and 

 in the lab frame using Coulomb's law and the Biot-Savart law. 

Let's compute the tensor components one at a time. The tensor is antisymmetric, so there are 6 independent components, equal to 

the number of components in  and  

We will obtain the other components of  from  and  Then: 

and 

Thus the tensor components are: 

In the rest frame, there is only an electric field. We put the -axis along the direction of motion, and the 

-axis along the line between the particles. Then the field at the position of the second particle has only a 

component, of magnitude  Thus the field tensor is: 

and the force between the particles is along the axis and has magnitude  

To transform to the lab frame, we use the Lorentz transformation with velocity in the -direction. Thus: 



Thus in this frame we have an electric field  and a magnetic field 

 These results are consistent with the Biot-Savart and Coulomb laws in the case  (

 The force between the particles in this case may be computed from: 

19. Using the metric of Lorentz space-time and the electromagnetic field tensor (see problem 18 above) verify that an 

electromagnetic wave has the same field structure (   in any inertial frame. 

If the wave propagates in the direction, then 

But also 

So 

Then the field tensor has components: 

Now apply the Lorentz transformation: 



We now have three components to  and . The dot product is: 

So    The magnitudes are 

and 

as required. 

Now if the wave propagates in the direction, we may rotate the axes so that  has only a 

-component, in which case  has only a -component, and . Then we have: 

Performing the Lorentz transformation, we find: 



so the fields have the same components, and only the magnitude has changed, to  

20. What invariants can you form from a tensor 

 Compute these invariants for the electromagnetic field tensor in Lorentz space-time (cf Problem 18) 

The invariants are  and 

 The first is obtained by lowering the index, and taking the trace of the resulting matrix. Since 

 is antisymmetric, the result is zero. To compute the second, we must lower both indices. 

Then the invariant  is the sum of the products of the elements of the two tensors, that is 

 Thus as we change frames, the fields maintain their character as predominantly electric (

 predominantly magnetic (  or for a wave,  
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21. In Lorentz space-time, the wave 4-vector has components 

 Use the Lorentz transformation matrix 

 (see Problem 18) to find the components in a second frame moving with velocity 

 with respect to the first. What is the result if (a)  and 

 Compare with the non-relativistic Doppler shift formula, and comment. 

The transformed vector has components 

If  then 

which is the non-relativistic result multiplied by the factor  If 

 there would be no Doppler shift in the non-relativistic case, but here we have 

and there is a Doppler shift, called the transverse Doppler shift. It is due to time dilation. 

22.Use the metric  for Lorentz space-time (see Problem 18) to compute the line element 

 The proper time  is defined by the relation  Compute the proper time interval 

 between two neighboring points on the world line of a particle moving at speed 

 (Let the points have coordinates  and  where  and similarly for 

 and ) Express your result in terms of the time interval   and 

 Compute the components of the 4-velocity 

 of a particle and compute the invariant product  Comment. 

and thus 

Thus 

The velocity has components: 

The invariant is: 

The result is independent of the particle's 3-velocity components, and is clearly invariant. 

23. The set of components  



 may be used to form the tensor 

 dual to  (Compare with equation A.7) 

(a) Show that the components of  transform as a tensor. 

(b) Find the invariant  if  is the electromagnetic field density defined in problem 18. Comment. 

In 4-dimensions 

In this spacetime, 

 since the Lorentz transformation matrix is symmetric. Also the elements of 

 are the same as  except  which changes sign. Using the properties of , we have: 

Now if any two of the indices  are the same, then the terms will cancel in pairs, and the result is zero. 

Let  Then 

Similarly: 

The other components may be computed similarly to show that 

as required. Thus  transforms as a tensor. 

(b) First note that 

Then 



and similarly 

and 

Thus 

The tensor  may be obtained from  by replacing  by  and  by  Thus 

Thus 

 is an invariant under Lorentz transformations. In particular, if this dot product is zero in any frame, it is zero in all frames, that is, the fields are 
either perpendicular or one of them is zero. 

24. Use Gauss' law to find the electric field inside a uniformly charged sphere. Compute the necessary components of 

 and hence find the divergence of this electric field in spherical coordinates. Show that the divergence equals the (uniform) charge density. 

The electric field is 

We start with the metric tensor: 

Then the only non-zero derivatives are ,  and  Then 

So 

Since  is diagonal, the only non-zero terms have  Thus: 



The only non-zero terms have  and  Thus: 

Then with 

The only non-zero terms have 

Then the only non-zero values have   or 

Finally, 

So: 

Then the divergence is: 

In this coordinate system, the electric field vector has only one component, so the first term is . Then: 

as expected. 

25. In two-dimensional flat space described with cylindrical coordinates, a vector 

 is in the radial direction. Displace the vector to a neighboring point, and compute the new components in terms of the displacement 

 Compare with relation (A.23) in the text and hence compute the components 

 of the affinity. Perform the same operations with a vector in the  direction to find the remaining components of 

 Hint: remember that the basis vectors are not unit vectors in this system. 

The vector has components  When displaced (Figure A.3 in the text), the new component is 

 to first order in  Similarly 

(Remember that  Thus 

Then 

Thus  



So  and  
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Optional Topic B: Groups 

1. Show that the set of permutations of two elements is a group. What is its order? Write the 
multiplication table for this group. How many classes are there? 

The elemnts are:  (do nothing - the identity element), and  (integrchange the two elements). 
The order of the group is two, and the multiplication table is 

There are two classes, each containing a single element, since 

and 

The group is abelian, as you can see from the multiplication table. 

2. The symmetry group of a square contains those operations that leave the square unchanged. Show 
that this group has 8 elements, and write the multiplication table. What are the classes? Are there any 
subgroups? 

The elements are rotations about an axis perpendicular to the square through its center, through the 

angles: 0,   and 3  together with reflections about the symmetry lines (bisectors of the 

horizontal and vertical sides, and the two diagonals). Let's call these reflections   and  
The multiplication table is: 

The rotations, togther with the identity, form a cyclic subgroup of order 4. There are several subgroups 

of order 2. Each of the following elements, together with the identity, forms a subgroup:  and each 
of the 4 reflections. Each of the rotations forms a class by itself. For example, 

and 



Now 

Thus and  are additional classes. 

3. Show that the set  forms a group under algebraic multiplication. Write the multiplication 
table. How many classes are there? Are there any subgroups? 

The Table is: 

Thus the set is a group. The elements form pairs:  and  are each their own inverse, while  and  
are inverses of each other. Each element forms a class by itself. For example: 

Thus there are four classes. The elements  form a subgroup, since  and 

 

This group has the same structure as the rotation subgroup of the symmetry group in problem 2. We 
can construct an isomorphism that maps one to the other. An example is: 

This mapping preserves the operation: 

and 

The results are the same. 

4. Show that there are two groups of order four and determine their multiplication tables. 

We can label the elements  One possible group is a cyclic group in which   



and  This group can be represented by rotations in a plane, with  equal to a rotation by  

Thus we can also represent    (cf Problem 3). 

A second group can be formed from two distinct elements  and  with  Then either  

or  In the first case we would have 

and 

so the group is abelian. Then 

If  then  Finally 

and this gives a consistent multiplication table:  This group is called the 

Vierergruppe. 

If we try to form a group with   we find 

so  But this element must be either  itself or  If  then  giving 

a contradiction. If  then  and thus  also a contradiction. The 
second case is therefore excluded, and there are only two groups of order 4. 

5. Show that any group or order  is isomorphic to a subgroup of  

Label the group elements  through  Then multiplication by any element  causes each element  

to convert to another element  we can write this as a permutation of the numbers  Each  

is thus identified with a permutation, and the group must be isomorphic to a subgroup of  

6. Show that unitary matrices of the form (2) form a group under matrix multiplication. 

The unit matrix is unitary and so it is in the set. The product of two elements is: 



Furthermore: 

and so the product is of the correct form. The set is closed under multiplication. The inverse of 
element 1 above is given by 

Thus 

Thus 

Then 

So the inverse is: 

Check: 

as required. Thus this set is indeed a group. 

7. Show that in any Abelian group, each element forms its own class. 

In an Abelian group,  Thus 

for any element  Thus each element is in its own class. 

Since the number of irreps equals the number of classes, and  the order of the group, 
each irrep must have dimension 1. 



8. Under addition, any two matrices add to form another matrix of the same form, since the matrix 
elements add. Thus the sum is also in the set. The identity is the matrix with each element equal to 

zero, and the inverse of  is . Thus the set forms a group under this 

operation. To see the isomorphism, we just map  to  The mapping is 1-1 and onto. 

Under multiplication, we have: 

which is also in the set. The identity is the unit matrix with  and  The inverse is 

 which is also in the set provided that  and  are not both 

zero. Now let's compare with the multiplication of complex numbers: 

Thus the mapping  ''preserves the operation'' - it is a homorphism. The 

mapping is 1-1 and onto the set of complex numbers with zero excluded. We have to exclude zero 
because it has no inverse. Thus the two groups are again isomorphic. 

9. The quaternions are 4-dimensional complex numbers of the form  where  

and  are real numbers, and the quantities  and  obey the multiplication rules: 

and 

(a) Show that the set  forms a group under this multiplication. 

To show that the set is a group, we construct the group multiplication table. 



Each element has an inverse: The identity  and also  each form their own inverse. The inverse of 

 is  and so on for each of the elements. 

(b) Show that  and  may be represented by the matrices: 

and 

Determine the classes of this group. 

Let's check the matrix multiplication: 



and 

as required. 

Now we find the classes. As usual the identity is its own class, as is  The elements conjugate to  

are  itself and: 

Similarly the elements conjugate to  are  and of   Thus there are 5 classes in the group. 

(c) Determine the number and dimension of irreps of this group, and find the character table. 

(d) Is the representation in (b) reducible? If so, how? 

There are also 5 irreps, one being the trivial rep. 

Thus   and  For the 1-D reps, the characters must obey the multiplication 
table. Thus 

and 



From these relations we deduce the following character table: 

Character table 

class 1 -1

rep 1 1 1 1 1 1
rep 2 1 1 -1 -1 1
rep 3 1 1 1 -1 -1
rep 4 1 1 -1 1 -1

rep 5 2

Now we use orthogonality to find the other relations: 

Adding all four equations, we find  and thus all the other values are zeroes. 

(d) Is the representation in (b) reducible? If so, how? 

The character of the 4-rep is  and so this rep decomposes into  

10. Show that the integers  through 4 form a group under the operation of multiplication mod 5. Write 
the multiplication table. What is the identity element? How many classes are there? Is the group 
abelian? 

The identity element is 1 and the multiplication table is: 

As usual, the identity element forms its own class. Let's find the others: 

So this class contains the single element 2. 



and 

A similar thing happens with the last element. Thus each element forms its own class. The group is 
abelian. 

This group is not isomorphic to the symmetry group of a square since the group structure is different. 

11. Consider the mapping  that maps the group of rationals to the group of integers by 

Is the mapping a homomorphism? Why or why not? 

It is not, because 

whereas 

The two results are not equal, and so the mapping is not a homomorphism. 
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Optional Topic B: Groups

12. Show that all elements in the same class have the same period. 

If   then 

 
Continuing in this way, we find 

 

Thus the period of   equals the period of   

13. Show that if a set of elements   forms a class of a group   then the set   of the inverses 

of   is also a class. 

The elements   and   where 

 

are in the class   Then 

 
So 

 
and thus 

 

Thus the elements   also form a class. 

14. The center   of a group   is the set of elements that commute with every element in the group. Show 

that the center is an Abelian subgroup of   

First we show that the center   is a subgroup. The identity is in   because the identity commutes with 

every element. Then if     then for any element     and   Thus: 

 

so   is also in   The inverse of   is   Any element   for some   in   and thus 

 

So   also commutes with every   and so is alos in the set. Thus   is a subgroup. 



The subgroup is abelian since every member   commutes with every element in   and thus with every 

element in   

The center always contains at least one element: the identity. 

15. A homomorphism   maps group   to group   The Kernel of the homomorphism is the set of all 

elements of   map to the identity element of   Show that the Kernel is an invariant subgroup of   

The identity is in   

 

Thus   is the identity of   If   and   are in   then 

 

Thus   is also in   Also 

 
But also 

 
so 

 

and   is in   Thus   is a subgroup. 

Now if the subgroup is invariant, then we must also have 

 

 

and so   is in   and the subgroup is invariant. 

16. A one-dimensional translation operator   translates a function along the   axis by an amount 

  where   is a fixed step length:   

(a) Show that the set of operators   forms a group that may be represented by the complex numbers 

  What are the corresponding basis functions? 

(b) Work out the orthogonality relation (14) for this representation, and comment. You will have to make 
some changes to account for the infinite order of the group. 

First of all let's check the group properties. There is an identity:     is the inverse of   and 

 
Thus the product of any two elements is also an element of the group. This demonstration also shows that 



the group is abelian. The other group properties, such as associativity, follow trivially. 

For an Abelian group, every irrep is 1-dimensional. The given set of numbers is an irrep, because they 
obey the group multiplication law: 

 

The basis functions are   Then 

 

as required. Different irreps have different values of   

The orthogonality relation is: 

 

Because the order of the group is infinite and   is a continuous variable, we have to change from the 
Kronecker delta to the delta function: 

 
which is the expected completeness relation for Fourier series (see, e.g., equation 6.16). 

(c) Now let the operator translate by an arbitrary amount     What are the 
generators of this group? 

We use the representation found above, with   Then   and near the identity 

 

Thus the generators are the values   and   is already expressed in terms of its generators in this 
representation. 

17. The operations that preserve the symmetry of this molecule are (i) rotation about its symmetry axis by 

  and (ii) Reflection about the symmetry plane. Each of these elements is is its own inverse, 

  and   Thus the group has order 4. 

 
Each element forms its own class, thus there are four irreps, each of dimension 1, and the character table 
is: 



 
Now we look for a 3-dim rep to describe the transformation of a vector. The rotation about the symmetry 

(  axis is decribed by 

 

which has trace   and the reflection in the   plane is described by: 

 

with trace   The product   is reflection in the   plane: 

 

Thus the character is   and thus the rep decomposes as   The trivial rep is 
included and thus we can find an invariant vector. This molecule can support a permanent electric dipole 
moment. 

A pseudo-vector transforms differently under reflection, and the character becomes   and 

so the rep decomposes as   The trivial rep is not included, so this molecule cannot support 
a permanent magnetic moment. 

18. The molecule SbS  is square-pyramidal. Four S atoms form a square base with the Sb atom at the 
center. The fifth S atom sits at the top of the pyramid. Determine the symmetry group for this system. What 
is the order of the group? Work out the multiplication table. How many classes are there? Determine the 
character table. May this molecule possess a permanent electric dipole moment? 

The symmetry group includes 

(i) rotations by     3  and 2  about the vertical symmetry axis. We call these operations 

    and   These four elements form a cyclic subgroup of   

(ii) Reflections in the two vertical planes perpendicular to the sides of the square. These elements are 

  with   



(iii) Reflections in the two vertical planes along diagonals of the square:   with   

There are eight elements in all and the multiplication table is: 

  

1               
1 1               

        1         

      1           

    1             

          1       

            1     

              1   

                1

The classes are: 

(i) The identity 

(ii)   

(iii)   

(iv)   

(v)   

Since there are 5 classes there are 5 irreps and in order to satisfy the relation   four of them 
must be 1- dimensional and one has dimension 2. For the 1-dimensional reps, the characters satisfy the 

multiplication table. Thus       Thus each of the characters is 

  Also   The table so far looks like: 



  

Now we use orthogonality. If the character of rep 2 is orthogonal to all the rep-1s, we must have 

  and all the other unknowns are zero. 

Now we use a 3-rep that transforms a 3-D vector in space. The matrices representing the   subgroup are 
rotation matrices. We have 

 

Thus the character of this rep is   and so the decomposition is:   

Since the trivial rep is included, we conclude that a fixed vector remains invariant under the group 
symmetry, and so an electric dipole moment is possible. 

19. The Lorentz group has generators that are 4  matrices with mostly zero elements. The matrices 

  are given by: 

 

and so on. (The non-zero elements of   are the   th elements in the top row and the first column, where 

the first element is labelled with   not 1. ) Similarly, the generators   are given by: 

 

(The non-zero elements of   are   where   is the sub-matrix formed by removing the top row and 



first column. ). 

Find the group element generated by   and also by   

 
Now 

 
and thus 

 
Thus 

 

This represents a velocity transformation to a frame moving with speed   Compute the 

product of the two group elements   and   Hence show that the elements generated by   do not 

form a subgroup. Do the elements formed by the   form a subgroup? Find the class of elements 

conjugate to   For   we have: 



 
and 

 
Thus 

 

which represents a rotation by angle   about the   axis. 

 



This element cannot be generated by the   s alone, so the   s do not generate a subgroup. The   s do 

however. We can see this by noting the the 3  matrices form the rotation group, and the extra 1 in the 
00 element does not affect this conclusion. 

The other subgroups are boosts along a single axis, or rotations about single axis. Each is subgroup is 

generated by a single   or a single   These subgroups are Abelian. 

20. Show that the transformations   (where   and   are real numbers and   form 

a group. Form a two-dimensional representation of this group that acts on the vectors   

First let's show it's a group. 

The product of two transformations gives a new transformation: 

 
which is of the required form. 

 

The inverse of the transformation   is the transformation   where 

 

and this element is also of the required form. The identity is the transformation   with   and 

  The group is not Abelian: 

 

We can construct a 2-rep 

 

the corresponding vectors have components   

 
as required. 

21. A homorphism   maps a group   to a group   Show that the image   in   is isomorphic to the 

factor group   where   is the kernel of the homorphism (Problem 15). 

From problem 15,   is an invariant subgroup. We contruct a mapping   from   to the factor group by 

  the coset of   This is an isomorphism because: (a) the mapping preserves the 



operation. 

 

because   is an invariant subgroup and   is an isomorphism. 

(b) The mapping is 1-1. Suppose  Then 

 

Thus   must be in   

 

Thus the two cosets are the same. Conversely, if   then   is in   ,   the 

identity of the quotient group, and hence   

Thus the mapping is an isomorphism, as required. 

22. A group   has an invariant subgroup   If element   of group   has period   where   is prime, 

and   is not a member of the subgroup   then element   of the factor group   also has period   

If   has period   then   and   Then if   since   is invariant, 

 
and continuing in this way we find 

 

and so   has period   

We should check that   for any   But suppose it were, then 

 

Then since   is a subgroup,   is in   for every integer   and   for some   Thus for 

every integer   there is an integer   such that   

If   is prime,   and then   
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Optional Topic C: Green's functions 

1.Use the division of region method to find the Green's function for a damped harmonic oscillator. Hence find the response of 

the oscillator to the input  for  

The differential equation satisfied by  is 

For  we have  where 

We need a solution that is zero as  so for   while for 

Now we impose the condition  at 

Then 

Now integrate the differential equation across the boundary at  and use the result that  at  

and so 

Thus 

Note the required symmetry:  

Then with the given input,  for  For 

So 

for , and, for 



The integral contains terms of the form 

where 

For  we get 

Thus, for 

which satisfies the initial condition  

For  we have: 



As  the result is zero, as expected. At  we have 

while from equation (Pr 1 equation 1) we have 

The results are the same, as expected. 

2. Find the Green's function for a beam supported at one end (cf Chapter 5 Problem 11) using a Laplace transform method. 

The equation for  is 

with boundary conditions  and  The transformed equation is: 

Thus 

where, for the moment,  and 

 are unknown constants. We can find them later using the known boundary conditions at : 

 

Inverting the transform using Table 5.1, and using the shifting property in the first term, we get: 

Thus for 



and 

and then, from Pr 2 equation 1, 

Thus 

So we get 

The result has the form expected for the"division of region method", and also has the expected symmetry 

(  

3. Find the Green's function for a wave on a string of length : 

Using the following method: 

Fourier transform the equation in time: 

then use the division of region method to solve the resulting equation in  

First let  Then  satisfies the equation: 

For  the solution is  while for  the solution is . At 

Then integrating across the boundary at  we get 

Thus 

Thus 



and thus 

where  

4. Find the Green's function for the diffusion equation: 

by taking the Fourier transform in space and using the divsion of space method in time. The boundary conditions are 

 at  and at  

Taking the Fourier transform, we get 

For  the equation is: 

with solution 

To satisfy the boundary condition at  we choose  in region I (

 Then integrating the differential equation across the boundary at  we get: 

Thus  for  and for 

Complete the square: 

Thus 

Source  



First note that  for  For  we get: 

Complete the square: 

Thus 

Compare this result with problem 7.22. 

5. Show that we can use Green's theorem (§5) to obtain a solution for  where  satisfies the Helmholtz equation 

with a source function  Determine the solution for  in terms of the Green's function when 

 satisfies the Dirichlet boundary conditions  a known function, on the boundary surface  

Define  as the solution of the equation: 

and  similarly: 

Then 

The terms in  cancel, leaving 

which is the same relation we had for Poisson's equation. Let the Dirchlet Green's function 

 satisfy equation (Pr 5 equation 1) with boundary conditions  on 

 Thus the solution for Dirichlet conditions is: 

6. Find the Green's function for the one-dimensional Poisson equation 



with boundary conditions  at  and  Hence find the solution for  when 

(a)  

(i) Division of region method: 

The equation satisfied by  within each region is 

with solution 

For 

while for 

At 

Thus 

and 

Integrating the differential equation across the boundary, we have 

Thus 

Then 

Check: 

as required. 

(b) 



Check:

as expected. 

(ii) Eigenfunction method: 

The normalized eigenfunctions of the Helmholtz equation are: 

Thus, since the Poisson equation has eigenvalue 

In the two cases we have: 

(a) 

where we used orthogonality of the eigenfunctions to evaluate the integral. 

(b) 

Let's look at the integrals: 

and 

Thus 



The eigenfunction method works best for source (a) while the division of region method works best for source (b). 

7. Use a division of space method to find the Green's function for the one-dimensional Helmholtz equation in the region 

 with  at  and  Find the Fourier sine series for 

 and hence show that your result agrees with the result of Example A.2. 

Division of region method. Within each region, the appropriate solution is a sine. 

Integrating across 

Thus 

From Example 2, the Green's function is 

We want to show equivalence between these expressions, so we find the Fourier series for the first expression. 

where 



We may simplify the two fractions as follows: 

Thus 

Thus 

in agreement with the result of Example 2. 

Now with the source and the first version of G, we can find  

 for  

There are three regions to consider. For  we have 



For  the solution is

For  we have 

The plot shows this solution and the one from Example 2 (the first 2 terms have been plotted) with 



. . They are identical. 

8. Sometimes we may expand the Green's function as a series of eigenfunctions even if the differential equation is not of 
Sturm-Liouville form. The governing differential equation for the displacement of a beam is equation 3.11: 

A beam of length  rests on a support at each end so that the boundary conditions are 

. Show that the Green's function may be expanded in a series of eigenfunctions, and determine the form of 
the Green's function. Use it to find the beam displacement when it is subjected to a load 

 Compare with Chapter 4 problem 15. 

The governing differential equation is equation 3.11: 

The equation for the Green's function is: 

The eigenfunctions are solutions of the related equation 

with  The solutions to the eigenfunction equation that satisfy the boundary condition at  are: 

To satisfy the second condition at  we need: 

and so the eigenvalues are: 

We still need to normalize the functions. We choose the constant  so that: 

and so the normalized eigenfunctions are: 

Now let 

Then 

Now stuff into the de and use the orthogonality: 



and thus 

and the Green's function is (cf equation C.11 with  replaced by ) 

Now we use this Green's function to find the displacement with the given load: 

We can do the integral by parts: 

and so the displacement is: 

This series converges very fast. 

Problem 8. Displacement of the beam

The solution is the same as that found in Chapter 4. 

9. Find the Green's function for heat transfer along a rod with insulated ends. The relevant differential equation is: 

and the boundary conditions are  at  and  



. Treat the problem as a two-dimensional problem, and use method 1 in section C.4, dividing the region in time. 

The differential equation for  is 

For   we have: 

Separate variables to find the eigenfunctions: 

We choose the separation constant to be  Then 

and 

So 

To satisfy the boundary conditions at  and  we choose the cosine function, and the eigenvalues are 

Then 

Now we divide space in time. For   . Thus we have: 

where 

Then equation () becomes 

We multiply by  and integrate along the rod. On the left, only one term survives the integration. 

Now we may rewrite  as 

 and integrate across the boundary at 

Thus 



and 

The 

 term is just a constant corresponding to the initial uniform temperature of the rod. The result shows the expected 

behavior: high frequency spatial variations (large  are smoothed out faster than low frequency ones. 

10.Verify that equation (C.34) gives the correct result  in the limit  from above. 

Limit 

Because of the exponential, as  approaches zero the integral is dominated by values of  near  So expand 

 in a Taylor series: 

Change variables to 

Then 

Now provided that  remains positive, the upper limit in  becomes infinite. Thus: 

The second (and subsequent) integrals remain finite so long as 

 remains positive, so in the limit these terms go to zero. 
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Optional Topic C: Green's functions 

11.Find the Green's function for the wave equation in three space dimensions, using spherical coordinates. The wave equation is: 

where  is the displacement, 

 is the Laplacian operator in three dimensions. Transform the equation in space and time, and solve for the . 

The transformed equation is 

which has the solution 

as before, but here  is the magnitude of the wave vector  The solution is then: 

The integrand has two poles at  on the real axis. We want the result to be zero for  and for 

 we must close upward, so the poles must be below the path of integration. Thus for  we have: 

where we used the result of Chapter 6, problem 13. 

Then if the source is  we get 

Change variables to  with  fixed. Then 

and 

we have 

As in the one-dimensional case, the displacement never goes negative. 

12. Find the Dirichlet Green's function for the Helmholtz equation in a circular region of radius 



. Obtain the result as a double sum over appropriate eigenfunctions. 

The equation for  is 

where  is a two-component vector The eigenfunction equation is: 

As in Chapter  we write the operator in polar coordinates to obtain: 

Separating variables,  we have: 

Thus  and 

This is Bessel's equation (8.56) with solution 

We must choose  so that  that is,  the th zero of 

 Thus the eigenfunctions we need are 

with eigenvalue  Next we must normalize these functions. Since 

and

(equation 8.96), the normalized eigenfunctions are

Thus from equation C.11 extended to two dimensions, the Green's function is: 

As in the one-dimensional case, the solution does not exist if  equals a resonant frequency 

. Convince yourself that the result is dimensionally correct. 

13. Find the Neumann Green's function for the one-dimensional Poisson equation: 

with boundary conditions  at  and 

 Express your answer as a series of eigenfunctions. Hence find the potential  if  for 

 and zero otherwise, and the charge density is zero on the bounding surfaces (  at 

 and . 

The eigenfunctions satisfy the equation: 

with solutions  and  To satisfy the boundary conditions we choose the cosine and take 



 We also need to normalize the functions by multiplying by Thus 

Next we find the potential. 

The second term in equation C.38 (the surface integral) is zero. Thus 

Let's check this answer. First note that it is dimensionally correct (charge/( length). The second derivative is 

Compare with the cosine series for the source: 

where 

So the potential we found satisfies Laplace's equation in the volume, as required. 

The plot shows the potential 4  versus  

14. Use a Fourier transform method and cylindrical coordinates to find the Green's function for the wave equation in two dimensions. 

Transform 

Thus 

In polar coordinates, 



With the poles  in the lower half plane (that is, the path of integration passes over the poles) we find for  

where  

(The integral is GR 6.671#7, or see problem 8.34a with ) 

This agrees with Morse and Feshbach pg 842. 

15.Using the division of space method, find (a) the Dirichlet and (b) the Neumann Green's function for the interior of a sphere of radius 

 

The boundary surface has radius  and so for the Neumann case the boundary condition for  is 

Thus we have: 

Region I:  

Region II: 

where 

Thus for  

while for 

and so 

 is not yet determined. Thus 

Continuity at 



Making use of the orthogonality of the  we have in the Dirichlet case: 

and thus 

and for the Neumann case 

and for 

Now we integrate the differential equation across the boundary at  

Now write  Multiply both sides by 

 and integrate over the whole sphere: 

Next multiply by  and integrate from  to 

In the Dirichlet case: 

and so 

and 

For the Neumann case: 

while for  



and thus, choosing 

16. (a) Find the Dirichlet Green's function for the half-space  using Cartesian coordinates. 

Dividing space in  the appropriate eigenfunctions are 

Thus in region I, 

and in region 2, 

Continuity at 

Thus 

which defines  Then'' 

which exhibits the symmetry in  and  

Now 

Now write , multiply by  and integrate over  and 

Performing the integrations, we have: 

Now drop the primes on  and  rewrite and integrate across the boundary at 

So



Thus 

(b) Let       Then 

Each integral is of the form: 

where  on the unit circle and 

The poles are at 

and 

and 

Only the minus sign is possible, in which case 

which is always true for positive  Then 

and 

the sum of the potentials due to the point charge and its image, as expected. 

17. Find the Dirichlet Green's function for Poisson's equation in the interior of a sphere of radius 

 as a triple sum over appropriate eigenfunctions. 

The eigenfunctions are the soloutions of the Helmholtz equation  and thus are 

(See Chapter 8 Section 8.5.). The corresponding eigenvalue is 

where  is the th zero of  The  are already orthonormal, and the normlized  are (equation 8.130) 



Thus 

18. Obtain a relation analogous to equation (C.37) for the diffusion equation 

Define the Green's function through the equation 

Apply your result to the example in Section C.5. Apply the sine transform in space to the equation 

and obtain the Green's function. Show that the solution (C.34) may be expressed in terms of 

 and that this solution is consistent with the general result you found above. Hint: Note that since 

 . 

We follow the method in section C.6, but here we integrate over both space and time to obtain: 

Compare with equation C.35. Then letting   and using equations 1 Pr 18 and 2 Pr 18, we have 

where we used the fact that  on  Then performing the integrations on the left: 

Then since  is zero for  this reduces to: 

Thus combining with the right hand side, we have 

which gives the solution for  in terms of the source 

 the initial conditions throughout the volume and the boundary condition throughout time. 

Now we turn to the problem in the text. Using the sine transform as in the text, we get 

where  The solution is (c.f. equation C.32): 

and transforming back, we have 



and zero otherwise. Now complete the square. If  then 

Thus 

Then 

and so the solution (C.33) is: 

Note that the outward normal is in the negative  direction so this is consistent with our general result with . 

19. Find the Dirichlet Green's function for Poisson's equation in the interior of a hemisphere of radius . 

(a) Choose  

In this case we choose the polar axis as well as the axis along the flat side. Then the plane is at  and 

 and so the function of  that we need is . The Green's function is of the form 

Note that the  are orthogonal on  . For then: 

Write 

We insert this expression into the defining equation, multiply both sides by 

 and integrate over the angles. The range of integration for  is 0 to 

 On the left hand side, only the terms with  and  survive the integrations, and we have 

As usual, we multiply by  and integrate across the boundary at  Dropping the primes on  and 

Thus 



(b) Choose  

This time we choose polar axis perpendicular to the plane. Then the plane is at  and so we need the odd 

s. (i.e.  is odd). The Green's function is of the form 

Note that the  are orthogonal on  if  is odd. For then: 

and thus 

Stuff into the differential equation, multiply by 

 and integrate over the angles. The range of integration for  is 0 to 1. 

Again we multiply by  and integrate across the boundary at 

Thus 

(c) Using one of the two Green's functions, (a) or (b), evaluate the potential inside the hemisphere if 

 on the spherical surface and  on the flat face. 

Using the result of (b), the potential is 

where  and thus 



The integral over  gives zero unless  so 

Using the recursion relations for the 

so at 

which is valid for  (  

Now we have 

Now let's do the integral over  The first term must be split into two parts. For  we have: 

For 

Thus 

The first few terms are: 



Using the result of (a), the solution goes as follows. 

Then 

The integral reduces to an integral over the flat side, with normal  at  and  at  Thus 

and 

Then the potential is: 

Only  odd survives. 

The integration over  is independent of  and gives the same result that we have already obtained. 

Integrating over  we write 

For 

For  the only permissable value of  is  

For  we have  and 

and 

Thus 

The first few terms are: 



To compare with our previous result, 

we use the addition theorem. (See the discussion following Example 8.3.) 

The results are the same. 

20. Obtain the Green's function inside a cylindrical tube (Section C.7.4) by dividing space in  

This time we have 

At 

Let 

Then 

and 

and 

Integrating across the boundary: 

Multiply by the eigenfunctions e  and integrate. 



Mulyiply by  and integrate across the boundary 

Now stuff in: 

The term in square brackets is the Wronskian: 

We can use the asymptotic form of the functions to determine the sign.  and  we have 

and so the sign is negative. 

and thus 

I 
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Optional Topic D: Approximate evaluation of integrals 

1. Use the method of steepest descent to evaluate the asymptotic form of the Gamma function 

First let 

Next we write the integrand as an exponential in : 

This is of the general form (D.2) with  and  Then 

and 

Thus 

and 

Then, applying the general result D.6, we have 

This is Stirling's formula. 

2. The modified Bessel function  has an integral representation 

Use the method of steepest descent to find the asymptotic form of  as  



The integral is of the standard form with 

Thus  Then 

where we chose to put the deformed contour  through the point , on the original 
contour. We also have 

and 

Thus 

in agreement with Chapter 8 equation 8.105. 

3. The Bessel function may be represented by an integral 

where the contour  is shown in the figure. Use the method of steepest descent or stationary 
phase, as appropriate, to derive the asymptotic form (8.83) 

For complex  the function  is analytic and has both real and imaginary parts. So 
we use the method of steepest descent. First rewrite the integral in the standard form with 

 Then 

Our contour runs through two of these points, at  Then 

Thus 



If we deform the contour to go through the point  along the line  

(choosing  in the expression for  then  goes from negative to positive and 

 so  goes from negative to positive. At  we have to choose 

the  sign,  and again  goes from negative to positive along the line 

 

The contribution from each saddle is 

and adding the two contributions, we get: 

as required. 

4. Expand the function  in equation (D.7) in a Taylor series about the stationary point, and 
show that there is no contribution to the integral from the second (linear) term in the series, if 

the expansion of the phase  is truncated at the quadratic term, as in equation (D.8). 

Equation (D.7) becomes: 

The first term has already been evaluated in the text. Using the same methods, the second 
term is: 

We may do the integral by the change of variable 

to obtain 



The integral over  is zero since the integrand is an odd function. Thus the second term in the 
Taylor series does not contribute to the result. 

5. The function  has the integral expression 

where the path of integration goes from  to zero along a path in the lower-half plane that is 
the mirror image of the path in Figure 1. Verify the asymptotic form 8.85 for this function. 

The solution follows the method in the text, with the following changes.  

So  and  Thus the new path  must pass through  at an angle 

 . Before  the difference  has a negative real part on this path and 

 so  is negative, as required. 

and thus 

as required. 

6. An alternative integral expression for the Bessel functions is: 

where 

1.  for  use contour  and  

2.  for  use contour  and  

3.  for  use contour  and  

and the contours are shown in the figure. Evaluate the integrals for large values of  and verify 
the asymptotic forms in Chapter 8. 



Problem 6

Thus 

and 

Since  must be on or near the path  we take  for  and  for  so 

 

and then 

so  and  Thus 

Thus the chosen path moves diagonally through the point  The For  the difference 

 has a positive imaginary part before  and negative after. Thus  must be 

positive when  is negative, so we need the minus sign, and  for  For  the 

difference  has a negative imaginary part before  and negative after. Thus 

 must be negative when  is negative. Again we take the positive sign, and  



 for . Finally, then: 

and 

These expressions agree with the results in Chapter 8. 

For  we have contributions from both saddles, and we obtain 

as required. 

7. The Airy integral 

arises in the study of diffraction. The path of integration lies slightly above the real axis. Use the 
method of stationary phase to show that 

The phase is 

The stationary point is off the real axis, so we deform the path to go through one of these 

points-- the one at  We can do this because the integrand has no singularities between 
the two paths. (Recall that the path is above the real axis.) Then 

and 

The asymptotic form is (equation D.9): 

as required. 



8. The amplitude of a signal arriving from a distant source after propagation through a 
dispersive medium may be wriiten as a Fourier integral of the form: 

where  is the dispersion relation for the medium (see, e.g, Jackson Chapter 7). Use the 
method of stationary phase to show that the largest amplitude signal is contributed by 

frequencies with group speed  where  is the distance from source to receiver, 

and find an approximate expression for the amplitude at time . 

The stationary phase condition is: 

or  the distance travelled by the signal at the group speed  

By equation D.9, the amplitude is approximately: 

where all derivatives are evaluated at  and  is a solution of the equation  If there 
is more than one solution, then we must add the contributions from all the solutions. 

Obtain an explicit form for the solution if  and  is a constant. 

Thus 

and the stationary phase condition is 

or 

There is no solution for  as expected. 



Evaluating at 

Also 

and 

Putting it all together, we have 

Thus the final result is:
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Optional topic E: Calculus of variations 
1. The speed of waves in a medium varies with  as  What is the path of a ray? This model 
describes the propagation of seismic waves through the Earth's outer layers. If the waves start at   
find the value of  at which the waves return to the surface as a function of the initial slope of the ray 

. Also determine the total time of travel for each ray. 
The time of travel is 

Here the integrand is independent of  and we may use equation (E.6). 

or 

Thus 

Inserting the initial conditions (  at  we have 

Then 

We integrate this expression to obtain 

We may integrate immediately, to obtain: 

and inserting the initial conditions, 

Thus 

The solution with  that satisfies the condition  at  is 

Equivalently, 



Thus 

The path is a circle with center at   and radius  
The diagram shows the paths corresponding to different values of  Solid red line -  , purple dotted line 

 black dot--dash line,  blue dashed line  

The waves return to the surface at 

in a time 

To do the integral, let 

For  we find  

2. Find the path of a light ray through a medium whose refractive index increases linearly with depth:  
The ray follows the path of minimum time: 

Applying the Euler-Lagrange equation: 

we have 

This simplifies to 



where  is a constant. Thus 

If  at  then 

Integrating, we find 

Let  Then 

If the path starts from the origin,  Then 

and 

The path is shown in the figure. The ray bends as it travels. 
3. Rework problem 2, reversing the roles of the labels  and  Is the result the same? Which method is easier? 

Here  is horizontal distance and  is vertical distance. Now we use equation 



Put in the initial conditions: 

and thus 

Let  Then

If  at  then 

and 

Here's the path- it is the same. 

The methods are equivalent. The integrations are slightly easier in problem 1. 
4. Repeat problem 2 with refractive index function  
The Euler-Lagrange equation becomes 



If  at  

Now let  so that 

Then 

with solution 

and hence 

If  when  then 

and so 

If  then sin  and  Then the solution is: 

Check: 



They agree. 
5. The brachistochrone: A smooth wire runs between two fixed points   and   Find the shape of 
the wire such that a particle sliding without friction oin the wire reaches point  in minimum time. Assume that 
the particle starts from point  with speed  Hint: set  and obtain  and  as functions of  Show 
that the coordinates of the two fixed points are sufficient to determine the intitial and final values of  and the two 
integration constants. Determine an explicit solution in the case   Plot the shape of the 
wire. 
We may find the speed of the particle at any time from conservation of energy. 

Thus 

and the time taken to go from  to  is 

The problem is now in our standard form, and we may apply the Euler-Lagrange equation. Since the integrand 
does not depend explicitly on  we may use equation (5): 

Squaring both sides, we have: 

The trick here is to let  so that 



So 

Thus 

Thus 

Thus 

We have four conditions for the 4 unknowns   and : 

Thus in the special case  we can take  and 

If  then 

We can solve this transcendental equation for  graphically or numerically. 



black- LHS; red- RHS

The solutions are 3.   and 0.72958151  
Then 

The solution is then: 

Here's the path: 

6. Show that the Sturm-Liouville problem (equation 8.1) arises from the problem of finding the extremum of the 
integral 

subject to the constraint 

with the boundary conditions (8.2). 

which is equation 8.1. 
7. Show that the catenary (Example E.3) is symmetric about the midpoint, that is,  
For  he slope of the cable is negative, and the integration takes the form 



which gives the solution: 

giving 

as required. 
8. Show that the curve that encloses the greatest area with a fixed perimeter is a circle. 
Let the curve be described by the function  Then the area is 

and the perimeter is 

The integrands do not depend explicitly on  so the appropriate equation is: 

where 

Thus 

Let  Then 

So 

and 

and thus 

Thus 



This curve is a circle. 
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Optional Topic E: Calculus of variations.

9. Investigate the problem of finding an extremum of the integral 

 
subject to the constraint 

 

where   is the Hamiltonian operator 

 

and   and   vanish at   and   Show that the resulting differential 
equation is the Schrödinger equation. 

Hint: first integrate by parts to eliminate the second derivative. 

We want to find an extremum of the integral 

 

 
The first term is: 

 
The integrated term is zero, so 

 
The Euler-Lagrange equation is 



 
which is the Schrödinger equation. 

10. Using polar coordinates, write the Lagrangian for a particle moving in the 

potential   and form the Euler-Lagrange equations. Show that 
the equation in the angular coordinate indicates conservation of angular 
momentum. 

 
Thus 

 
Thus 

 
and this is the angular momentum. 

The second equation is: 

 

This is just the   component of Newton's law,   

11. A spherical pendulum is a mass free to move on the end of a string of 

length   Write the Lagrangian in terms of the spherical angles   and   , and 
hence find the equations of motion. Show that one possible motion is the 



conical pendulum with constant   What is the value of   in this case? 

 
The Largrange equations are'' 

 
Thus 

 
and 

 

With   we retrieve the simple pendulum equations. 

Now use the first equation to simplify the second: 

 

If   constant, then we have the conical pendulum with 

 
and hence 

 

12. Consider the one-dimensional motion of a particle with potential energy 



  that is independent of time. Show that The Euler Lagrange equations 
may be written in the form of equation (5). Give a physical interpretation of this 
equation. 

 

Since   does not depend explicitly on time, we may write the Euler-lagrange 
equations in the form: 

 
Thus this equation states that the total (kinetic plus potential) energy is 
conserved in this system. 

13. The Lagrangian for a vibrating string may be written 

 

where   is the displacement of the string,   is the mass per unit length, 

and   is the tension. The first term in the integrand is the kinetic energy and 
the second is the potential energy. Determine the Euler-Lagrange equations for 
the system, and comment. 

Here we have two independent variables, so: 

 

and the   equation is: 

 
Setting the integrand to zero gives the wave equation for the string. 

14. As an alternative approach to problem 13, we may expand the 

displacement   as a Fourier series in     



 

Write the Lagragian as a function of the generalized coordinates   and the 

time   What are the Euler-Lagrange equations now? 

 
Thus 

 
where we used the orthogonality of the sines and cosines to evaluate the 

integrals. Now   has one independent variable (  ) and infinitely many 

independent variables   Applying Hamilton's principle, the Euler-Lagrange 
equations take the form: 

 

The solution for each   must be of the form: 

 
cf equation 4.28. 

15. A volume   is formed by rotating a curve   defined for 

  around the   axis. Given that the curve is symmetric about the 

  axis,   ,   and   show that the curve 
that gives the maximum volume for a given surface area is a circle and the 



corresponding volume is a sphere.. 

The surface area is: 

 
and the volume is 

 

We can solve our problem by finding an extremum of   The integrand, 

  does not depend on   explicitly, thus equation 5 

becomes: 

 

 

If   at   then   

Then 

 

If   when   then   Then 

 

Now if   at   then   



 
and the curve is a circle. 

Note that   and so   at   thus   

16. The Lagrangian for a particle moving under the influence of 
electromagnetic fields is 

 

where   and   are given functions of position. Find the equations of motion, 
and hence show that the force acting on the particle is the Lorentz force 

  

The Euler Lagrange equations are 

 
Thus 

 
as required. 

17. Show that the shortest distance between two points on the surface of a 
sphere is a great circle. Hint: you may place the polar axis through one of the 
points. 

The distance between two neighboring points on the sphere is: 

 

But on the surface of a sphere,   is fixed, so if the path starts on the polar axis 

(  the distance to a point with coordinates     is 



 

where the path is described by   The Euler-Lagrange equations are: 

 
So 

 

Since   at the starting point,   must equal zero, and thus 

 

and   is constant along the path. This is a great circle. 
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