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Introduction

This book is intended as a “refresher” course in mathematics for scientists, engin-
eers, and technicians. It begins with a review of arithmetic, and progresses
through intermediate and advanced topics, including algebra, trigonometry, geo-
metry, coordinate systems, calculus, differential equations, complex numbers,
series, logarithms, and digital logic.

It is assumed that you have already been exposed to the topics in this book. If
you haven’t — for example, if you have never before seen calculus — you should
take a basic course on that subject first, and use this book as a supplement and
as a future reference. But maybe you took calculus in college, and that was 20
years ago! The concepts are still in your mind, but they’re no longer right up in
front. In that case, this book can bring things back to the surface, so you can
again work easily with concepts you learned a long time ago.

Each chapter ends with a “Questions and problems™ section. You should
feel free to refer to the text when solving these problems. Answers are in the
appendix. In some cases, descriptions of the problem-solving processes are
given in the answer key. Keep in mind that many problems in mathematics
can be solved in more than one way. So if you get the right answer by a method
that differs from the scheme in the answer key, don’t worry. You might even
find a better way!

In recent years, electronic calculators have become available to an extent
that renders much of the material in this book purely theoretical and “aca-
demic”. Computers can render three-dimensional geometric problems to a
high degree of accuracy, while providing beautiful color illustrations that you
can orient any way you want. To find the sine of an angle or the logarithm of a
number, you can punch it up on a calculator you bought for $6.95 at the depart-
ment store, and get an answer accurate to 10 decimal places. Nevertheless, it’s
helpful to understand the theory involved, so you should at least glance at all
the material in this book.

Xix
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xx Introduction

Most people are “strong” in certain areas of mathematics, and “weak” in
others. In your job, you probably need knowledge of some fields far more than
others. If you're lucky, your strongest knowledge will correspond to the field you
use or need the most. But if you're like most people, there will be differences. For
example, I'm pretty good at calculus and analysis, and not so good at probability
and statistics. But in my current work, I need to have a functional knowledge of
statistics more than I need to differentiate or integrate functions. As a result, |
found myself working harder, as I revised this book, on the probability and statis-
tics sections than on the calculus sections. When you use this book as a
“refresher” course, keep in mind that you might need intensive work on subjects
you don’t like or are not good at.

The material here is presented in a “fast-and-furious” format. There’s a lot of
information in a small space. You'll sometimes find your progress must be
measured in hours per page, rather than pages per hour. If you get stuck some-
place, dont worry. Just skip ahead or go back, work on something else for a
while, and then come back to the hard stuff. And of course, you can always refer
to more basic texts to reinforce your knowledge of subjects where you are weak.

Stan Gibilisco



Acknowledgments

My thanks are extended to Darrel VanderZee, computer consultant and
mathematician, for reviewing the manuscript, offering suggestions, and making
corrections.

xxi

Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.



This page intentionally left blank.



Part 1

Arithmetic as an
outgrowth of
learning to count
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CHAPTER

KFrom counting to
addition

We've all seen people count. You put a number of things in one group, move them
over to another group one at a time, and count as you go. “One, two, three...”

We learn to save time counting by spotting patterns. Here are several ways in
which you can arrange seven things.

CiC2 s
1L ||I \
Ly g

counted

COUNTING uncounted
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4  From counting to addition

b A T il i Q # 0 nA 7 o
L T L L Wy g™ W™ g
th # i I 0 7 ) # f
ng? g™ S T Ll 1 e 1L 1 L

m' 0 i f i i @ ) f
Wi i S Wi Qg i
\

l i f @ 0y i
LT L g Mg

\ I @ | f
@ Wiy Gy Gy
) d
Wiy

oE
h""lmlm|n|m|I1||H”"m “"l\nH|m||m||\|m|m|" These are Some of
the ways Seven things
@ @ can be arranged.
""“Inmmunuml"“'ﬂ i yn?

'l

I
Wi

Counting in tens and dozens

When you have a large number of things to count, putting them into separate
groups of convenient size makes the job easier. People in most of the world use
the number 10 as a basis or “base” for such counting. It is called the decimal sys-
tem, from the Latin decem, which means ten. Thus, 2 groups of 10 are 20; 3 are
30; 4 are 40; and so on.
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It is easier to count Big Numbers in TENS
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TEN  TWELVE

ELEVEN

four
dozen

or in DOZENS

not much used nowadays

Tens aren’t the only size of group (base) that people have used. At one time,
many things were counted in dozens (twelves). Eggs and other things are still
bought in dozens. This system is called the duodecimal.

Writing numbers greater than 10

When we have more than ten, we state the number of complete ten groups with
the extras left over. Thus, 35 means 3 tens and 5 ones left over. The numbers are
written side by side. The left-hand number is tens and the right hand number is
ones: 35.

o OOOOOOOOOE

wies 0000000000

wts OOO OO OO0
OOOOE

IS WRITTEN
ﬂ AND FIVE ONES LEFT OVER
WRITING NUMBERS BIGGER
TENS [ONES THAN TEN

3 5 WHEN THERE ARE ONES LEFT OVER,
WRITE THEM IN THE ONES PLACE.




6 From counting to addition
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IS WRITTEN
AND NO ONES LEFT OVER @
TENS |ONES
WHEN THERE AREN'T ANY ONES LEFT OVER,
WRITE ZERO (0) IN THE ONES PLACE. 3 0

Why zero is used in counting

If we have an exact count of tens and no ones are left over, we need to show that
the number is in tens, not ones. To do this, we write a zero (0) as the right-hand
number in the ones place, which shows an exact number of tens, because there is
nothing left over for the ones place. Zero means “none.”

Man’s earliest computer: the abacus

Various kinds of abacuses have been around for thousands of years. The one
shown has a number of rows of beads, separated so that one bead is in one space
and 4 beads are in another, all in the same row. First, we show how to count with it.

Start with the bottom row. All of the beads are pushed to the left. You count 1
and move one bead to the right. Notice the little diagrams underneath that show
what it looks like to count to 9. After you've moved all 4 beads to the right on the
“4” count, push them all back to the left and bring the one bead to the right for
the “5” count. So, the one bead represents 5. To count 6, start moving the 4
beads over again.

If you want to count 9, what do you do? The successive rows of beads repre-
sent “registers.” Move a bead to the right in the next row up, and return all of the
first row to the left. The bead represents 10. The second row contains the tens
beads.

Other kinds of abacuses might be used differently, but the idea is the same.
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NOW WHAT?

By tens and hundreds to thousands

The abacus represents numbers well. A better way to visualize numbers is to
think of packing many things into boxes. This box holds 10 things (apples, for
example) each direction. So, each layer (this box would be rather large) contains
100 apples.

If you have 10 of these layers, with 100 in each layer, the box contains 1,000
apples.

Just imagining packing in this manner helps us to understand numbers.
Thus, the 2 full boxes each contains 1000. The one part-filled box contains 5 full
layers (500), 6 full rows on the next layer (60), and 3 ones in an incomplete row.
The whole number adds up to two thousand, five hundred and sixty three (2,563).



COUNTING IN THOUSANDS

8 From counting to addition
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Don’t forget the zeros

When a count has leftover layers, rows and parts of rows with this systematic
arrangement idea, you will have numbers in each column. However, if you have
no complete hundred layers (as at A) the hundreds place will be a zero. That is
three thousand and sixty five (3,065). You might have no ones left over (as at B)
or no tens (as at C), or even no tens or hundreds (as at D).

In each case, it’s important to write a zero to keep the other numbers in their
proper places. For this reason, zero is called a “placeholder.” I repeat, don’t forget
to use zeros!

WRITE IT SAYIT

A 3 complete thousands

Three thousand
and sixty five

w | thousands
< | hundreds
o | tens
w | ones

Four thousand
three hundred
seventy

3 hundreds

& | thousands
w | hundreds
~1 | tens
< |ones

[72]
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3|5|§(2| five hundred
S|=1=1°! and four
2151014

4 Al

Three thousand

%

mv)
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md)

mi—q

:i'gmg d eieh
ones el 5| =l=| and eight

Sl=lgls &
No tens or 3lolols
hundreds

zeros are important!
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Beyond thousands: millions and more

Maybe you can imagine stacking thousands of boxes so that the boxes represent a
whole new set of counting. Here one complete box that contains one thousand
apples is magnified in a stack of many similar boxes. In this picture, the million
stack is nearly complete.

In the million stack, each layer contains one hundred thousand (100,000),
each row contains ten thousand (10,000), and each box contains one thousand
(1,000). So think of those commas as marking off according to the size of “box”
you count in for the time being.

A THOUSAND
NBOXH

Rt
\E\
\\\ ]
NN Y
R VRN
\\\ \\\ Ve
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\\\\\\\\\ // »
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NN N INL TN AT 47
N TNL N NN « //
NN INL TN N |~
N INL INL INL N d //
NN N N N AT
K N N N N L~ //
\K\ N N N //
N N TN Ve %
\\\\\\\////
N N A // A MILLION
\\\\ // P "STACK"
\\//

Different ways of viewing big numbers

Take another look at the abacus to see how useful it is. Each row represents a suc-
cessively higher counting group, or register, by 10 times. Thus, with only 6 rows
you can count to one million (actually, up to 999,999, which is 1 short of one mil-
lion). If you had 9 rows you could count up to one billion. Each three digits are
marked with a comma to “keep track” of the number.
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HUNDRED
THOUSANDS

TENS OF
THOUSANDS

UP TO ONE MILLION

THOUSANDS

o

HUNDREDS

TENS

HUNDRIEDS
TENS
ONES

HUNDREDS
ONES

HUNDREDS
TENS
ONES

{
|
{

BILLIONS OF OF OF
MILLION THOUSAND ONES

Addition is counting on

Now that a method of counting is established, a method of calculating can be
developed. The first step is addition. Suppose you've already counted 5 in one
group and 3 in another group. You put them together or add them and what do
you have? The easiest way to picture this situation is to count on. People count
on their fingers all the time if they don’t have their “addition facts” memorized.

If you memorize your addition facts, that’s fine. But nothing is wrong with
counting on: it just takes longer. Some make an addition table, like a multiplica-
tion table (such as in chapter 3) and use that till they remember all the addition
facts. Do what’s best for you.

To Add

m m m O o W W and W G i @
1 i 141 Ry L I 1L e Wi 1L 1) 11 T 21

FIVE THREE

continued
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Count On

FIVE AND THREE ARE EIGHT
5+3=8

Adding three or more numbers

Here is a principle that those who invented the “new mathematics” gave a fancy
name. Put simply, it says that you can add three or more numbers in any order.
Suppose you have to add 3 and 5 and 7. Whatever order you add these three num-
bers, the answer is 15. This principle extends to however many numbers you
might have to add. It becomes more important when we start adding together
numbers with more than just the one digit.

add together

three five and seven
O QOO0 OO0

three and five are

eight
OOOOOOOD

eight and seven are

fifteen

OO0

three, five, and seven are fifteen
no matter which two you add first!
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seven five and three

LY OO0 OOW

seven and five are

twelve

QOO0

twelve and three are

fifteen

OO0 L0

BIG NUMBERS ARE ADDED IN THE SAME WAY

HUNDREDS| TENS ONES
ADD

TOGETHER 1 2 3
AND 3 2 4

ONES 5 and 4 are

TENS 2 and 2 are

HUNDREDS 1 and 3 are

THE TOTAL IS 449
Four Hundred and Forty Nine
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Adding larger numbers

So far, you have added numbers with only a single figure or digit—ones. Bigger
numbers can be added in just the same way, but be careful to add only ones to
ones, tens to tens, hundreds to hundreds, and so on.

Justas 1 and 1 are 2, so 10 and 10 are 20, 100 and 100 are 200, and so on. We
can use the counting-on method or the addition table for any group of numbers,
so long as all the numbers in the group belong. That is, they are all in the same
place: one, tens, hundreds, or whatever.

So,let’sadd 125 and 324.Take the ones first: 5 and 4 are 9. Next the tens: 2 and
2 are 4. Last the hundreds: 1 and 3 are 4. Our result is 4 hundreds, 4 tens, and 9
ones: 449.

Notice that we are taking short cuts. We no longer count tens and hundreds
one at a time, but in their own group, tens or hundreds. If you added all those as
ones, you would have 449 chances of skipping one, or of counting one twice. So,
the short cut not only makes it quicker, it also reduces the chances of making a
mistake.

Carrying

In that example, we deliberately chose numbers in each place that did not add up
to over 10, to make it easy. If any number group or place adds to over 10, you
must “carry” it to the next higher group or place.

Suppose you had to add 27 and 35.Take the ones first: 7and 5 are 12. That is, 1
ten and 2 ones. The 1 belongs in the tens’ place. Now, instead of just 2 and 3 to
add in the tens’ place, you have the extra 1 that resulted as ten “carried” from add-
ing 7 and 5. The 1 is said to be carried from the ones’ place.

This carrying goes on any time the total at a certain place goes over ten. For
example, add 7,358 and 2,763. Starting with the ones: 8 and 3 are 11: we write 1
in the ones’ place and carry 1 to the tens’ place. Now, the tens: 5 and 6 are 11, and
the 1 carried from the ones makes 12. Write 2 in the tens’ place and carry 1 to
the hundreds’ place. Now, the hundreds: 7 and 3 are 10, and 1 carried from the
tens’ makes 11 hundreds. Again, write 1 in the hundreds’ place and carry 1 to the
thousands’ place. Now, the thousands: 7 and 2 are 9, and 1 carried from the hun-
dreds make 10 thousands. Since neither of the original numbers had any ten thou-
sands, write 10 thousands and finish, because nothing is left to add to the 1
carried this time. The answer is 10,121.

Another example: suppose you now have to add 7,196 and 15,273. Start with
the ones: 6 and 3 are 9. Write nine in the ones’ place and nothing is left to carry
to the tens’. Next, 9 and 7 are 16. Write the 6 and carry the one to the hundreds.
Now, the hundreds: 1 and 2 are 3, and the 1 carried makes 4. Again, none to
carry to the thousands. So, in the thousands: 7 and 5 are 12. Now, carry 1 to ten
thousands, where only one number already has 1. 1 and 1 are 2 for the ten thou-
sands’ place. The answer is 22,469.
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TENS ONES
ADD|{ 2 7
AND 3 5
step 1. ones
TENS ONES
ADD
AND
step 2. tens
TENS ONES
CARRYING
carried makes
Thousands| Hundreds Tens Ones
add 7 3 5 8

and
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Ten
thousands | Thousands| Hundreds Tens Ones
#» 7 1 9 p
1 5
1S
2 2

CARRY LEFT-OVER NUMBERS TO
THE "PLACE"AT THE LEFT

Successive addition

A calculator performs addition by adding each number by counting on, like this
book showed you how to do. But it does it ever so much more quickly than people
can. Trace it through to see how it does it, then do it on your own calculator.

The old-time way

Older people learned to add by columns. Each way gets the right answer if you
don’t make a mistake. At the top of page 17, we take the same five numbers that
were added on the previous section and add them the old way.

First, the ones. 6 and 3 are 9; 9 and 3 are 12; 12 and 2 are 14; 14 and 6 are 20;
write 0 in the ones’ place and carry 2 to the tens’ place.

Maybe it’s best to count the carried number first so that you don’t forget it.
Some people add it last, just be sure. Now, the tens: 2 carried and 7 are 9; 9 and 2
are 11; 11 and 4 are 15; 15 and 4 make 19; 19 and 7 make 26; write 6 in the tens’
place and carry the 2 to the hundreds’ place.

Do the hundreds’ place the same way: 2 carried and 4 are 6; 6 and 5 are 11;
skip the number that has no hundreds’ place; 11 and 5 are 16; 16 and 3 are 19;
write 9 in hundreds’ and carry 1 to the thousands’.

Now, the thousands”: 1 carried and 3 are 4; 4 and 5 are 9; skip the next; 9 and 6
are 15; and no thousands are in the last number; write 5 in the thousands’ place
and carry 1 to the ten thousands’.

Finally the ten thousands: 1 carried and 1 are 2; 2 and 2 are 4; and that’s all
there is. So, the answer is 45,960, the same as we got the other way.
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ADD TOGETHER
Ten
thousands | Thousands { Hundreds Tens Ones
1 3 4 7 6
2 5 S 2 3
4 3
6 5 4 2
3 7 6

and
Step 1 Ifl>are

and

Step2 [>"°

Step 3 0>

Step 4 ﬁ>are

This is how an Adding Machine adds.

Successive Addition (contd.)

ADD

TOGETHER

Ten
thousands

Thousands

Hundreds

Ones

1

3

4

2

5

5

4

5

9

Or you can add the same numbers this way.

carried

carried

carried

carried



18 From counting to addition

Checking answers

Already, the same five numbers have been added in two different ways. Before cal-
culators made it so easy, bookkeepers would use two methods, usually those
shown here as the 2nd and 3rd, to check themselves. First, they would add the
numbers by columns, starting at the top and working down, as you did in the last
section. Then, they would add the same numbers starting at the bottom and work-
ing up.

Inthe units’ column that would go 6 and 2 make 8; 8 and 3 are 11; 11 and 3 are
14; 14 and 6 are 20. Each column should have the same answer, whether you
add from the top or bottom. Now, calculators are used so much more, but that is
no guarantee that you won’t make a mistake. A good plan is to add up with the cal-
culator as well as to add down.

376 and 6,542 are 6,918; 6,918 and 43 are 6,961; 6,961 and 25,523 are
32,484; and 32,484 and 13,476 are 45,960.

You see the advantage of using more than one method. The partial sums that
you move through on the way are different. You only reach the same answer at
the end. The likelihood that you would enter the same wrong number twice
under these conditions is much reduced. If you get different answers, work each
one again until you find where you made your mistake.

Three Ways to Add — Two Ways to Check
your Answer

wy Q|
32| 2128
x<lz< | S| 2213
2LEg| 2|2 ||z
22 B8 |&|7|°
Bl Bl R T
K y
Y
Y
I y
Y
u y
r
-
1st
ADD WHOLE

NUMBERS
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Weights

Modern scales read weight digitally. You might have seen another kind of scale
in a doctor’s office. The old-fashioned grocer’s scales are now antique items, but
knowing how they worked helps understand math.

Those scales had two pans supported from a beam pivoted across a point
(fulcrum) at an equal distance on either side of the fulcrum. When the weight in
both pans was equal, the scales balanced: the pans were level with one another.
When the weights were unequal, the pan with the heavier weight dropped and
the other rose. To use such scales, the grocer needed a set of standard weights,
shown here.

Standard (avoirdupois) weight, still used in English speaking countries, does
not follow the metric or “10 times” scale. Instead, it has 16 drams to an ounce,
16 ounces to a pound, 28 pounds to a quarter, and 4 quarters (112 pounds) to a
hundredweight, 20 hundredweights (or 2240 pounds) to the ton, often called the
long ton because a ton of 2000 pounds is used more today.

A set of weights consisted of those shown at the top of the diagram over-
leaf—just 12 of them, unless the grocer wanted to measure more than 15 pounds.
With these weights, if the scale was sensitive enough, he could weigh anything to
the nearest dram.

Suppose you have to weigh a parcel. First, put the parcel in the pan on the left.
Then, put standard weights on the other pan until the scale tips the other way.
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Ifa 1-pound weight doesn’t tip it, a 2-pound weight is tried. It still doesn’t tip.
But the 2 and 1 together, making 3 pounds, does tip it. So, the parcel weighs
more than 2 pounds, but less than 3. He leaves the 2-pound weight in the pan
and starts using the ounce weights.

8 ounces doesn’t tip the scale. If 4 ounces are added, to make 12 ounces, it
doesn’t tip. But the 2-ounce weight, which brings the weight up to 2 pounds 14
ounces, tips it. If the 1-ounce weight is used instead of the 2-ounce weight, the
scale still doesn’t tip. So, the parcel is more than 2 pounds 13 ounces and less
than 2 pounds 14 ounces. If you want to be more accurate, follow this method
until it balances with 2 pounds, 13 ounces and 3 drams.

?CD @ ﬁﬁ A SET OF

Ounces WEIGHTS
Pounds
D 1 dram 9 1 ounce = 16 drams
S 2 drams 5 1 pound = 16 ounces
@ D 3 drams 2 ounces
T 7
4 drams 3 ounces 2 pounds
® 5 drams @ 4 ounces ;
6 drams 2
®® 8 3 pounds
@ @ D7 drams 5 ounces
8 drams @ (23 6 ounces
C 5 4 pounds
.—UPT
15 DRAMS @@ 7 ounces
g ﬁ 5 pounds
U ounces
ETC. — UPTO 2
15 OUNCES 6 pounds
2
COMBINING 7 pounds
STANDARD WEIGHTS
TO USE ON A BALANCE o
’I\ 8 pounds
ETC. — UP TO ANY
NUMBER OF POUNDS
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PARCEL WEIGHS ...

more than 2 pounds less than 2 pounds
12 ounces 14 ounces

more than 2 pounds less than 2 pounds
13 ounces 13 ounces and 4 drams

more than 2 pounds BALANCES AT 2 POUNDS
13 ounces and 2 drams 13 OUNCES AND 3 DRAMS

WEIGHING A PARCEL

21
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Liquid and dry measures

The common measures of quantity (bulk), both liquid and dry, are pints, quarts,
and gallons. Although they are not the same, unless you are measuring water
(which isn’t dry), each measure has 2 pints to a quart, and 4 quarts to a gallon.
The metric measures of all these units will be covered later.

3 QUARTS

2 QUARTS

el

1 QUART

<> vas
— L

1 Pint 1 Quart 1 Gallon

Questions and problems

1. Does it make any difference in the final answer whether you count them (a)
one by one, (b) in groups of ten, and (c) in groups of twelve?

2. Why do we count larger numbers in hundreds, tens, and ones, instead of one
at a time?

3. The figure zero (0) means none. Why then should we bother to write down this
number?

4. What are (a) 10 tens and (b) 12 twelves?
5. What are (a) 10 hundreds, (b) 10 thousands, and (c) 1,000 thousands?

6. By counting on, add the following groups of numbers, then check your results
by adding the same numbers together in reverse order. Finally, use your pocket
calculator:

@ 3+46+9 (b)) 4+5+7 © 24743
d 6+4+8 (© 14+3+2 () 44242
@ 5+8+8 () 9+8+7 (@ T+1+8
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7. Add together the following groups of numbers: in each use a manual method
(without using a calculator) first, then verify your answer with a calculator.
Practice using different methods:

@ 35,759 + 23,574 + 29,123 + 14,285 + 28,171
(b) 235+ 5,742+ 44 85,714 4 71,428
© 10,950+ 423+ 6,129+ 1+ 2
d) 12,567 +35,742+ 150 + 90,909 + 18,181
© 1,000+ 74+ 3594 9,091+ 81,818

8. How does adding money differ from adding numbers?

9. Add together the following weights: 1 pound, 6 ounces, and 14 drams; 2
pounds, 13 ounces, and 11 drams; 5 pounds, 11 ounces, and 7 drams. Check
your result by adding them in at least three ways. If you get different answers,
find your mistakes.

10. What weights would you use to weigh out each of the quantities in question 9,
using the system of weights. Check your answers by adding up the weights you
name for each object weighed.

11. In weighing a parcel, the 4-pound weight tips the pan down, but the 2- and
I-pound weights do not raise the parcel pan. What would you do next to find the
weight of the parcel (a) if you want it to the nearest dram; (b) if you have to pay
postage on the number of ounces or fractions of an ounce?

12. How many inches are in 2 yards? (First, add the number of inches in 3 feet to
make | yard, then add the inches in another yard to make 2 yards.)

13. A fleet of cars needs oil changes. Three of the cars require 5 quarts each, two
require 6 quarts each, four require one gallon each. How many gallons of oil
does the owner need? Write down the number of quarts for each car (4 for the
ones that use a gallon), add them up, and count off 4 quarts for each gallon.

14. If the owner can buy quarts at 90 cents and gallons at $3.50, to be econom-
ical, how will he buy the oil?

15. A woman buys three dresses at $12.98 each, spends $3.57 on train fare to
get to town, and $5.00 on a meal while she is there. How much did she spend
altogether?



CHAPTER

Subtraction

Subtraction is counting away

Just as addition is counting on, subtraction is counting away, or counting back.
Start with the total number, count away the number to be subtracted, then see
how many of the original number remain.

Many people have more trouble with subtraction than addition. If you do,
make a subtraction table, like the one shown at the top of page 25. From what
you know so far, you can subtract only a smaller number from a larger one. That
will not always be true. More information on tablemaking is included in the multi-
plication chapter.

SUBTRACTION IS COUNTING AWAY

five

THREE FROM EIGHT IS FIVE
8-3=5

24
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Subtraction

SUBTRACTION
TABLE

CHECK SUBTRACTION BY ADDITION

TOTAL NUMBER
A

\

et

|

O‘ q g f O O
> i > 1 l aff aV I
A g’ gt Ugppm” Wy’

EIGHT J

NUMBER LEFT NUMBER SUBTRACTED

A A
A}
| y

1 r
J \

g m”"”H i
three s
from eight are

Wy

J
J

five J and \ three
are

EIGHT | CHECK

25
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Checking subtraction by addition

It is most important, all through mathematics, to be sure that you have the right
answer. That is why we use at least two ways of adding, one to check the other. In
subtraction, an easy way to check the answer is to reverse the process by addition,
to see if we get the number we began with.

Borrowing

In addition, if the one’s figures added to ten or over, it carried into the tens’ figure,
and so on. In subtraction, this process is reversed. Suppose you must subtract 17
from 43.

First, subtract the ones. But 7 is larger than 3. You could subtract 7 from 13.
So, “borrow” a ten to make that 3 into 13. 7 from 13 leaves 6. Taking away the 1
that was borrowed from the ten’s column leaves only 3 from which we can take
the 1. So, 17 from 43 is 26.

BORROWING
tens  ones
FROM | 4 3
TAKE 1 7 tens  ones
S Add|{ 2 | 6
tens
2 orges And 1 7
10 borrowed 1 3 f—
from
leaves 7 from
leaves tens ones
——_el
2 6
—
_____ = 1| 7
tens  ones 1 | carried
—>{ 3
4| 3
1 1
CHECKING
17 from 43 leaves 26 2 6 |a—
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Now, check the result by adding 26 and 17. In the ones, 6 and 7 are 13. Write
the 3 and carry the 1 to the ten’s column. In the ten’s column, 1 carried and 2 are
3,and 1 is 4. So, 26 and 17 are 43, which checks back with the number you
began with. Your answer should be right because you would have to make two
very special mistakes to return to the correct original figure. Usually, if you
make two mistakes, the final result would be even further from the correct answer
than if you only made one.

Subtracting with larger numbers

Now that you have the idea, try some really big numbers. Here 17,583 is sub-
tracted from 29,427. Work through it yourself. You will have to borrow from the
hundreds for the tens, and again from the thousands for the hundreds. Go over
this carefully. When borrowing, some people like to cross out the original figure
and reduce it by 1. Thus, at the hundred’s figure, you are subtracting 5 from 3,
which, with 1 borrowed from the thousand’s, is 13. Then, in the thousands, sub-
tract 7 from &, not 9.

Finally, (as shown on the next page) turn it around and add 17,583 and
11,844. Carry in the same places that you borrowed and you should return to the
original number in the top line of the subtraction.

v:félw

o S i
FROM| 2 | 9 | 4 | 2 | 7
TAKE| 1 | 7 | 5| 8 | 3

v 2w

a8

: 2 g
¥

228 2z % 8

FE E =T & 8

21914 | 2|7

borrowed
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175 8 -
S c:n) Q v v
THE SAME IS
CHECKING
L1715 8]3 TRUE OF
LARGER NUMBERS
ADD 1|1 81| 414
carried

Subtracting cash

Cash is no more difficult to subtract than other numbers are. The only difference
is in the dollars and cents. Start at the cents and work back. If you take a larger
number of cents from a smaller number, you have to borrow a dollar.

$ ¢
Jrom— 2| 1|36 |4].]7 |3
subtracting borrowed
cash
take 1141716 |31.12 19
61610 1].]14 ]| 4| |e—
add 1141716 3].121|29
CHECKING
and 6|60 1].14]| 4 |e—
carried
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Making change

This idea of counting on, or using addition to check subtraction, is often used by
sales clerks when making change. Suppose you bought something for $3.27 and
use a $5 bill for payment. Subtraction will show that you should get $1.73 in
change. The clerk figures the bill (or maybe the cash register does it—most new
ones do), then “proves” it by giving you change, as shown.

Making Change

SALESMAN
HANDS OVER
MERCHANDISE SAYING,
"$3.27"

CUSTOMER
OFFERS FIVE
DOLLAR BILL.

AND THREE PENNIES, THEN TWO DIMES
SAYING, "28, 29, 30." SAYING, "3.40, 3.50."

NEXT TWO
QUARTERS, FINALLY
SAYING, "3.75, A DOLLAR BILL,

4 DOLLARS." SAYING, "5 DOLLARS."
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Putting 3 pennies in your hand, he says, “$3.27, 28, 29, 30.” Then, he puts 2
dimes in your hand, saying “$3.40, 50.” Next 2 quarters, saying “$3.75, $4.00”
Finally, he gives you a dollar bill, saying “$5,” which was the amount you tended.
What he did was check the change by adding it to the cost of what you bought, to
come to the amount you tended in payment.

Subtracting weights

Suppose a mother wants to weigh her baby, who is too big for baby scales and too
wriggly to get a reading on ordinary scales. The mother weighs herself holding
the baby in her arms, then weighs herself without the baby. The difference,
obtained by subtraction, is the baby’s weight.

If she weighs 156 pounds holding the baby and 121 pounds without the baby,
then the baby weighs 156 — 121, or 35 pounds. That minus (—) sign is the sign
used to indicate subtraction, just as a plus (+) sign indicates addition.

WEIGHING BY SUBTRACTION
121

Mother and baby weigh 156 pounds
Mother only weighs 121 pounds

So baby weighs 35 pounds

check Mother weighs 121 pounds
Baby weighs 35 pounds

So mother and baby weigh 156 pounds
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Using a balance

You might not see the balance used often today. If you can get some old-fashioned
scales, it’s a good exercise. If not, you must imagine it.

Suppose you are weighing something that eventually you find weighs 3
pounds 14 ounces. In the traditional method, you would put the parcel in one
pan and a selection of weights in the other pan. You'll have 1- and 2-pound
weights, and 8-, 4-, and 2-ounce weights.

The other method uses subtraction (backwards addition, however you want
to view it). The parcel weighs just under 4 pounds. So, put small weights in the
pan with the parcel and find that it balances with the 2-ounce weight in the parcel
pan, and the 4-pound weight in the weight pan. So, the parcel weighs 2 ounces
less than 4 pounds or the weight of the parcel plus 2 ounces equals 4 pounds.

There are 2 ways to use a balance

METHOD 1

Parcel weighs less than 4 pounds BALANCES AT
more than 3 pounds 67 3 POUNDS 14 OUNCES

Many tries later

METHOD 2

Parcel weighs less than 4 pounds ~ PARCEL AND 2 OUNCES
more than 3 pounds BALANCE 4 POUNDS
EXACTLY

So the parcel must weigh 3 POUNDS 14 OUNCES
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Subtracting liquid and dry measures

Another application for subtraction is when figuring the mileage of a car. You
cannot measure the gas used on a trip, because you no longer have it. For exam-
ple, you began the trip with 20 gallons in the tank. If you could measure what is
left in the tank, you would find 11 gallons. But the gas gauge might not be that
accurate.

At the beginning of the journey, you filled the tank. You took the trip. Then,
you filled the tank again. It needed 9 gallons, so you used 9 gallons. You automat-
ically check the subtraction when you refill the tank.

XTRA GAS

Liquid or Dry Measure

Start journey Finish journey— Refill tank—
with a tankful— 11 gallons left takes 9 gallons
20 gallons
start with 20 gallons

finish with 11 gallons
USED ON JOURNEY 9 GALLONS in tank (finish) 11 gallons
refill takes 9 gallons

full tank again 20 gallons
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Questions and problems

1. Make the following subtractions and check your results by addition, both by
hand and using your calculator.

@ 69 (b) 123 (¢) 543  (d) 762 (e) 509
— 46 - 81 - 37 - 371 —410

® 263 (g 4321 () 6,532 () 11,507
— 74 -1,234 -2,356 — 8,618

2. A refrigerator’s list price is $659.95. A local discount store offers a $160 dis-
count on this item. How much would you pay at this store? Check your result by
addition.

3. A lady purchased items priced at $2.95, $4.95, $3.98, $10.98, and $12.98.
After adding up the bill, the store clerk offers to knock off the extra cents, so she
would pay only the dollar amount. The lady has a better idea. Why not knock the
extra cents off each item? How much more would she save if the store clerk
accepted this suggestion.?

4. A child wants to weigh her pet cat. The cat won’t stay on the scales long enough
to get a reading. So she weighs herself with the cat, then without it. With the cat,
she weighs 93 pounds. Without it, 85 pounds. How much does the cat weigh?

5. A recipe calls for 1 pound 12 ounces of rice. You have an old fashioned scale to
measure it with. All the pound weights are there, but the only ounce weights that
have not been lost are the 1- and 4-ounce weights. How can you weigh the 1
pound 12 ounces? Prove it by showing that the scale balances.

6. You are studying a road map on which town B is between towns A and C.The
map shows only selected distances. Between A and B, it shows 147 miiles.
Between A and C, it shows 293 miles. If you want to go from B to C, how far is it?

7. A freight company charges partly on weight and partly on mileage. The dis-
tance charge is based on direct distance—even if the company’s handling might
necessitate taking it further. A package addressed to town B had to travel from
A to C, which is 1,200 miles, and back to B, on the direct route between A and
C, which is 250 miles. What distance is the charge based on?

8. A man has a parcel of land along a 1-mile frontage of highway. He has sold
pieces with frontages of 300 yards, 450 yards, 210 yards, and 500 yards. How
much frontage does he have left to sell?



Multiplication

A short cut for repeated addition

Suppose you go into a store and buy 7 articles for $1 each. The cost is $7. That’s
easy, but suppose the articles cost $3 each. Now, to find the total, you must count
$3 seven times.

It Takes Less Time to MULTIPLY Than to Add

@ @ @ » three ONE
@ @ @ mp and three are six Tgo
@ @ » and three are nine TI—XZE
@ @ m)> and three are twelve FXR
@ @ mp and three are fifteen FSE
@ » and three are eighteen SY(
@ * and three are twenty-one. SEZN
\ v J

Seven threes added together are twenty-one A}
or
Seven times three are twenty-one

7X3=21

34
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This problem leads to the next step in calculating. This short cut remembers
what so many counts of any particular number add up to. At one time, children
learning arithmetic would spend hours memorizing printed multiplication
tables, often without knowing why they’d need such things. If you were lucky
enough to remember that 7 times 3 equal 21, you got the answer more quickly.
However, many people who “knew” that answer could not tell you why 7 times
three are 21.

Use of tables

The multiplication table was one of man’s earliest computers: a ready way of get-
ting answers without having to do all that adding. So to understand it, and see
more about how numbers “work,” make you own multiplication table, such as
the one shown here. Start with the numbers along the top and down the left side.

Now, count in twos, and write the results in the next column, under “2 times.”
Each next figure down the column is 2 more than the one above it. Now, do the
same thing with the “3 times” column, adding 3 for each next figure down the
column. Continue until you have done the “9 times” column.

MULTIPLICATION TABLE

Patterns in numbers

If you counted carefully enough, your table should be right. The idea of making
your own is so you know that the table is true. That way, using it will not be
“cheating,” which is what some teachers say about students who use printed
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tables. You will be using what you have already done and verified. So, how do you
verify it?

The simplest check is odds and evens. An even number is one whose one’s fig-
ure is 2, 4, 6, 8, or 0. An odd number has a one’s figure of 1, 3, 5, 7, or 9. Notice
that the only places where you have odd numbers are where both the number at
the top of the column and the beginning of the line are odd. If either of them are
even, the number in that space is even.

Now notice the column and line opposite 5. These are shown by themselves
in Part A. All the numbers have a one’s figure of either 0 or 5.

Another thing you might notice is that any multiplication can be found in
two places, except where the number is multiplied by itself. Thus, 3 times 7 is
the same as 7 times 3. This rule is true for every combination of two different
numbers.

Another interesting set is the column or line against 9. Notice that each suc-
cessive number has one more in the tens and one less in the ones, and also that
adding the two digits together always makes 9.

2[3]4]5]6]7]879 213[4[5]6]7(8]09
times times
2 10 2]
3] 15 3] 21
4] 20 |4
5|0 1015 120125 [30 3540 |45 5|0
Ecﬁ 30 Ecd
7 35 7] 21
8 40 8
9] 45 9]
(A) CHECKING THE FIVES (B) CHECKING BY SYMMETRY
2[3Ta]5]6]7]8]9 21314]5[6]7[8]9
times times
2 18 2| [4 8
3] 27 i 9 15
4 36 4] 8 16 24
18 45 28 15 25 35
BE 54 67 24 36 48
7 63 7] 35 49 63
8 79 8 48 64
9] [1g[27136|45|54(63]72]81 9] 63 81
(C) CHECKING THE NINES (D) CHECKING BY DIAGONALS

Some PATTERNS in numbers make useful CHECKS
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Now take the diagonal where numbers are multiplied by themselves. These
numbers are called ‘squares.” We’ll see why later. Complete the box of figures by
writing a “1” at top left. Now, notice the difference between successive places
down the “square” diagonal. 1 and 3 are 4. 4 and Sare 9. 9 and 7 are 16. 16 and
9 are 25 and 11 are 36. 36 and 13 are 49. 49 and 15 are 64. 64 and 17 are 81.
Each step adds the next odd number from the one you added last.

Now, take diagonals the other way. 1 either way from 9 finds 8. 1 either way
from 16 finds 15, and so on. Moving away from the “square” diagonal along the
other diagonal always drops by 1. If you pursue this direction, you would find
that the next answer drops by 3, and so on. This information is very useful later on.

How calculators multiply

The table we just examined only goes up to 9 times 9. Years ago, children had
learned up to 12 times 12, or even 24 times 24. What a chore! In the tens (or
“decimal’) system, all we really need is up to 9 times 9. Multiplying by 10 merely
adds a zero to the end. 5 times 6 equal 30. 5 times 60 are 300. 50 times 60 are
3000. Whichever number you multiply by 10, the product gets multiplied by 10
(using an extra 0), too.

Calculators use this fact. Actually a calculator does not multiply. It keeps on
adding. But because it does so much faster (one addition in about a millionth of
a second) it adds more quickly than you can multiply.

If you enter 293 times 135, here is what the calculator does inside (see page
38). Starting from zero in both “registers,” it takes the first digit of the multiplier,
here  (representing 100), moves the product up by the multiplicand (that’s the
fancy name for 293 in this case) in the product register, at the hundreds place
and by 100 in the multiplier register. Since no more hundreds are left, it now
moves to the tens, which it moves up by 3 additions. Finally, it moves up 5 times
for the units place in the multiplier to find the product 39,555. The calculator has
merely done addition to complete what people do by multiplication.

Putting together how people did it

Simple multiplication, just using the facts in the table you constructed, is easy. But
people have to multiply bigger numbers, like the one at the top of page 39.To do
it, you must multiply every part of one number, the multiplicand (as it used to be
called) by every part of the other number, the multiplier. You can multiply in any
order, so long as you do it systematically, so as not to miss any. You could multiply
as another exercise and let your calculator assemble it.

Let’s take it in order, from left to right in each number, the multiplicand first
in each case. Few people ever learned to do it that way. Maybe they would have
understood it better if they had, before learning the usual ways of shortening
what you write down.
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How calculators multiply
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0
0
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0

1
1

1

1

1

1

1

1

3

9

2

3

3

3

3

3

9

9

9

9

9

21930

2191310

21913|0

0101000

219131010

219(3]0]0

31212]3]0

3[{511(6]0

3(8(0(9]0

318,383

3/8{6|7|6

3(8(9(6|9

3]9(2)6|2

319(5]15|5

MULTIPLIER

PRODUCT
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Putting together how people did it

Multiplicand Multiplier Subproduct Cumulative Total

200 X 100 = 20000 20 000
90 X 100 = 9 000 29 000
3 X 100 = 300 29 300
200 X 30 = 6 000 35300
90 X 30 = 2700 38 000
3 X 30 = 90 38 090
200 X 5 = 1 000 39090
90 X 5 = 450 39 540
3 X 5 = 15 39 555

Carrying in multiplication
In addition, carrying is used as a way of saving what had to be written down.
Multiplication can do the same thing. It also helps us to be systematic.

3,542 3,542

X 7 carried X 20 carried
321 <% @/
24,794 70,840

These are what you really do.
However you can save space
and check on the
the correct places by
combining the
calculations

3,542 -
X 27 You can save time by
7 X 3,542 ———>24,794 not writing this zero

20 X 3,542 —=> 70,84<}%/‘ .. but remember to

95,634 leave space for it.
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Here’s another example that will show this rule better: 3,542 multiplied by
27. First the ones: 7 times 2 are 14; write 4, carry 1. The tens: 7 times 4 are 28,
with 1 carried makes 29; write 9 carry 2. The hundreds: 7 times 5 are 35, with 2
carried is 37; write 7, carry 3. The thousands: 7 times 3 are 21, with 3 carried is
24.That finishes 3,542 x 7:24,794.

Now do the tens part, which equals 70,840, in the same way. Sometimes you
don’t write the zero, just space the last digit (4) over, so it’s in the tens column.
The whole thing is written down in one “piece” or algorithm, as the professional
mathematicians call it. This is essentially how people performed multiplication
before we had computers.

A matter of order

As the Introduction showed, at one time “new math” consisted in multiplying
from the other direction. Here, the same multiplication has been performed in
the reverse order: first the 20, then the 7 where, on the previous page, the 7 was
multiplied first, then the 20. The answer is the same either way, provided no mis-
takes are made.

The importance thing in long multiplication by hand is to do it systemati-
cally. If the multiplier has three or more digits, work consistently, either from left
to right or from right to left.

3,542
X 27
20 X 3,542 ————> 70,840
7 X 3,542 ———> 24,794 , SAME ANSWER

95,634

IT DOESN'T MATTER WHICH YOU DO FIRST
YOU'LL GET THE SAME ANSWER

Using your pocket calculator to verify this process

When you have a pocket calculator, it is easy to punch in one number, then the
multiply sign, then the other number, and finally the equals sign. Bingo, you have
the answer, all complete. This method doesn’t help you see how it’s done. Here’s
how you can do that.

Assume you have a calculator with a single memory, which is the simplest
type. Multiplying 7 by 2, it gives you 14, which you enter in memory with the
MS button. Now, multiply 7 by 40, which gives you 280. Add this number to the
14 with the M+ button. You can read what you already have by pressing the MR
button. Finish multiplying by 7 and the MR button will list your answer “long-
hand:” 24794.
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7 7 | X 7 2 2| = 14 |MS 14

7 7| X 7 40 40 | = 280 | M+ 280 |MR 294
7 7 | X 7 500 | 500 = 3500 |M+] 3500 |MR| 3794
7 7| X 7 | 3000 | 3000 ]| = 21000 |[M+| 21000 |MR| 24794
201 20 | X | 20 2 2| = 40 | M+ 40 IMR| 24834
201 20 | X | 20 40 40 | = 800 [ M+ 800 |[MR| 25634
201 20 1 X | 20 500 500 = 10000 | M+| 10000 |[MR| 35634
20| 20 | X | 20 ] 3000 | 3000 =1{ 60000 |M+| 60000 |MR| 95634

Now, you can go on multiplying by 20. With a single memory, you don’t see
the “times 20 part separately, as you did in longhand. The final answer is the
same. If you have a calculator with more than one memory, you can store each
part in a separate memory and then add the contents of the two memories.

Skipping zeros

When you multiply longhand, don’t forget the zeros, if your multiplier has a zero
in it. When you pass zero, there is no point in writing a line of zeros, because
zero times anything is still zero. But don’t forget that, in this case, after multiply-
ing by 20 (the tens figure), the next one is the thousand figure, which moves to
the left two places instead of one, because the multiplier has no hundreds figure.

23,056 , 23,056 23,056
1,024  carried ﬁ> 1,024 'fl> 1,024 -
T 2% 92,224  carried 92,224
92,224 1 461,12}—
461,120 23,056,000

23,609,344

In multiplication too,
zeros are used to keep figures in their "places."

Either number can be the multiplier

We tend to use the “shorter” number as the multiplier, because it looks like less
work. It isn’t: you still have to multiply every digit in one number by every digit
in the other, but it looks simpler. Here are two examples where the same two
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numbers are multiplied together, swapping places for multiplicand and
multiplier.

Of course, you can verify this very easily with your pocket calculator.
Whichever way you punch in the numbers, e.g., 3542 x 27 or 27 x 2542, you
will get the same answer, 95634. This principle is given a fancy name in one ver-
sion of the so-called “new math.” Don’t bother with it, just remember that it’s
true.

CHECKING

original work check work

3,542
27

24,794
70,840

95,634 < SAME
ANSWER >

23,056 1,024
1,024 23,056

92,224 6,144
461,120 51,200

23,056,000
23,609,344 <7 SAME
ANSWER

Using subtraction in multiplication

Sometimes it’s convenient to make complicated calculations in your head, instead
of relying on a calculator. Although a calculator isn’t “interested” in short cuts,
they can be a big help when you do things in your head. It is also a useful way to
verify your result—even in your head!
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Here are two examples of using subtraction, instead of addition, in multipli-
cation. When I show some people this “trick,” they say “I didn’t know you could
do that!”

The multiplier 29 is 1 less than 30. So, multiply by 30, which is much easier
than multiplying by 29. Then, subtract once times the original number, which is
itself. Check it in the usual way; you will find the same answer.

In the second example, 98 is 2 less than 100. This example is even easier.
Multiplying by 100 just puts two zeros to the right of the original number.
Subtract twice the original number, to represent —2 in the multiplier, and you
have the answer. Multiplying by 2 is much less work than multiplying by 8 and
then 9 and adding them together, which is what has been done to verify the result.

If you don't like all that work longhand, do it on your pocket calculator.

By subtraction

¥

By addition

W

47,362

47,392

29 29

30 X 47,392 » 1,421,760 9 X 47,392 » 426,528
minus plus

1X 47,392 » 47392 20 X 47,392 » 947,840

1X47,392 » 1,374,368 29 X 47,392 » 1,374,368
SAME ANSWER |

63,257 63,257
98 98

100X 63,257 mp- 6,325,700 8X 63257 mp- 506,056
minus plus

2X 63257 mp- 126514 90 X 63,257 map 5,693,130

98 X 63,257 WM 6,199,186 98 X 63,257 W 6,199,186

SAME ANSWER l
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Multiplying by factors

Here’s another way that works very well with certain numbers. Suppose the mul-
tiplier is 35. That happens to be 5 x 7. Instead of multiplying the whole original
number by 5 and by 30 and adding the results, you can multiply first by 5, then
multiply that result by 7. As is shown here, both ways give the same answer. You
can verify this answer on your pocket calculator, too.

BY ADDITION BY FACTORS

~ ~

5X 7=35
23,657 23,657
35 5
5X 23,657 wp 118,285 5X 23,657 wmp 118,285
30X 23,657 wp- 709,710 7
35X 23,657 wmp 827,995 7X 118,285 W 827,995

SAME ANSWER ‘

Multiplying with weights

When you use systems that are nondecimal (not based on the 10 system) multipli-
cation is complicated a little. Some pocket calculators are equipped to make
such conversions, but you need to know what to do if yours isn't when you
encounter such a problem.

Suppose you have to find what 25 times 1 pound 3 ounces is. You can multiply
the pounds by 25, and you can multiply the ounces by 25. But 25 pounds, 75
ounces isn’t the way you'd normally express that weight! Anything over 16 ounces
must be converted into pounds.

Convert 16 ounces to an extra pound and subtract the 16 ounces. Doing this
procedure 4 times converts the 75 ounces to 4 pounds and 11 ounces. Now, add
the 4 pounds to the 25 pounds, so the total is 29 pounds 11 ounces. You could con-
vert the 75 ounces to pounds by dividing by 16. However, the remainder would
still have to be converted back to ounces.
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Your calculator will convert 75 ounces to 4.6875 pounds. If you subtract the
4, that leaves 0.6875 as the part over 4 pounds. Multiply that by 16 to convert
back to ounces, and you have 11.

PROBLEM IN WEIGHT
25 X 1 pound 3 ounces

25 times 3 ounces 1s 75 ounces
-16

or 1 pound 59 ounces
-16

or 2 pounds 43 ounces
-16

or 3 pounds 27 ounces
-16

or 4 pounds 11 ounces

25 times 1 pound is 25 pounds

25 times 1 pound 3 ounces is 29 Pounds 11 Qunces

Multiplying lengths

Multiplying lengths is similar, except that the English system uses 12 inches to the
foot, 3 feet to the yard, etc., instead of the decimal or metric system. Where neces-
sary, we have to make the same kind of conversions between inches, feet, and
yards. See the example on page 46.

Multiplying measures

In the same way, if you multiply a measure by a fairly large number, it is usually
convenient to change the unit of measure in which we express it. See example at
the bottom of page 46 and top of page 47.

Suppose you multiply 3 pints by 250. The answer is quite easily found to be
750 pints. But quantities this large are usually given in gallons, not in pints.
Remembering that 8 pints are in a gallon, you can proceed to count off in eights.
This procedure is quite long (unless your calculator does it). From 750, 8 can be
subtracted 93 times and 6 pints are left over. If you divide 750 by &, you have
939, gallons. The calculator would read 93.75.
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MULTIPLYING LENGTHS

How much lumber is needed
to cut off 5 pieces 10 inches long?

S times 10 is 50 inches
—12

or 1foot 38 inches
-12

or 2 feet 26inches
-12

or 3feet 14 inches
—12

or 4 feet 2 inches

st CUT
2nd CUT
3rd CUT
4th CUT

=
-]
o
=,
e

Istpiece § 2ndpiece § 3rdpiece y 4thpiece y 5thpiece
10|inches 20|inches BO‘inches 40|inches 50{ inches

-

IIIIIIIIIII |Illllllllll|llllIlllllllllllllllllLlL

1 ft. 2 ft. 3 ft. 4 ft.
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MULTIPLYING MEASURES

|:> One motor crankcase takes 3 pints of oil <:|

RN
|:> How much is needed for 250 motors? <:|

250 times 3 pints is

or 1 gallon

or 2 gallons

or 3 gallons

or 4 gallons

750 pints
742 pints
734 pints
726 pints
718 pints

AFTER SUBTRACTING 8

FROM PINTS AND ADDING 1
TO GALLONS 93 TIMES (IF YOU
DIDN'T MAKE A MISTAKE) . ..

or 93 gallons

6 pints
3 quarts

3
2 gallon
4g

3
93 4 gallons

[:> There MUST be an easier way! <:|
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Questions and problems

1. Multiply the following pairs of numbers together as shown: check your
results by using the upper number as the multiplier in each case.

(@ 357 (b 243 (¢ 24 (d 37 (o) 193 () 187
x 246 x 891 x 36 x 74 x 764 X 263

2. Multiply the following pairs by using subtraction to make the working sim-
pler. Verify your results by the more usual method.

(@ 2,573 (b)y 7,693 (©) 4,497 (d) 5,396 ) 7,109
x 19 x 28 x 18 X 59 x 89

3. Multiply the following pairs by using factors of the second number. Check
your results by long multiplication.

@ 1,762 (b) 7,456 (¢ 8,384 (d) 9,123 e) 1,024
x 45 x 32 x 21 X 63 x 28

4. An airline runs 4 flights per day between two cities, every day except Sunday,
when it runs 2. How many flights a week is this?

5. The same flight (question 4) is also made only twice on the 12 public holidays
of the year. How many flights are made per year (based on 52 weeks)?

6. A mass-produced item costs 25 cents each to make, and $2 to package. The
package cost is the same for a packet of one or of many thousand. What is the
cost for packets of:

@1 (b 10 (©25 () 100 () 250 (f) 1,000 (g) 5,000 (h) 10,000

7. If you ignore the manufacturing cost, how much is saved by packaging the
items of question 6 in packets of 250 instead of 100? (Assume a total quantity of
500.)

8. On a commuter train, single tickets sell for $1.75. You can buy a 10-trip ticket
for $15.75. How much does this save over the single-ticket rate?

9. On the same train, a monthly ticket costs $55. If a commuter makes an aver-
age of 22 round trips a month, how much will he save by buying a monthly ticket?

10. An employer offered an employment contract beginning at $500 a month,
with a raise of $50 a month every year for 5 years. The contract expired after the
6th year. Employees bargained for a starting figure of $550 a month, with a raise
of $20 a month every 6 months. Which rate of pay was higher at the beginning
of the sixth year? Which rate resulted in the greatest total earnings per employee
for 6 years? By how much?
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11. A manufacturer prices parts according to how many are bought at once. The
price is quoted per hundred pieces in each case, but the customer must take the
quantity stated to get a particular rate. The rates are $7.50 apiece for 100, $6.75
apiece for 500, $6.25 apiece for 1,000, $5.75 apiece for 5,000 and $5.50 apiece
for quantities over 10,000. The rate for any in between quantity is based on the
next lower number. What is the difference in total cost for quantities of 4,500
and 5,000?

12. Small parts are counted by weighing. Suppose 100 of a particular part weigh
2 % ounces and you need 3,000 of the parts. What is the weight?

13. A bucket that is used to fill a tank with water holds 4 gallons and 350 bucket-
fulls are required to fill the tank. What is the tank’s capacity?

14. A freight train has 182 cars each loaded to the maximum which, including the
weight of the car, is 38 tons. What is the total weight that the locomotive has to
haul?

15. A car runs 260 miles on one tankful of gas. It has an alarm that lets the driver
know when it needs refilling. If the journey requires 27 fillings and at the end,
the tank is ready for another, how long was the journey?

16. Two railroads connect the same two cities. One charges 10 cents per mile, the
other 15 cents per mile. The distance between the cities is 450 miles by the first
railroad, but 320 miles by the second. Which company offers the cheaper fare?
By how much?

17.One airline offers rates based on 14 cents per mile for first-class passengers. Its
distance between two cities 1s 2,400 miles. Another airline offers 10 cents a mile
for coach, but uses a different route, marking the distance at 3,200 miles. Which
fare is cheaper? By how much?

18. The first airline (question 17) offers a family plan. Each member of a family,
after the first, pays a rate that is based on 9 cents per mile. Which way will be
cheaper for a family (a) of 2? (b) of 3? and by how much?

19. A health specialist recommends chewing every mouthful of food 50 times.
One ounce of one food can be eaten in 7 mouthfuls. A helping of this food consists
of 3 ounces. How many times will a person have to chew this helping to fulfill
the recommendation?

20. An intricate pattern on an earthenware plate repeats 9 times around the edge
of the plate. Each pattern has 7 flowers in the repetition. How many flowers are
around the edge of the plate?
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Division

Division began as counting out

Before the days of electronic calculators and computers, division was a short cut
for counting out. To divide 28 items among 4 people, you would keep giving one
to each of the four until the items were all gone and then see how many each per-
son had. This form is shortened by using the division sign (=), and this equation
is written: 28 ~4 = 7.

Divide 28 items among 4 people

DOOOOOOO®O®
PO ® 284
OB ®® E®

First Method

@@@ @@ ﬁ@@ @@
Q.. "OO.. ¥O®... ¥@ ...

etc. until we finish

OXO6 ® @® ® @ ®®
©B O OGO ©O®
@ @ @ @ @ @

SEVEN SEVEN SEVEN SEVEN
28 divides into 4 groups, with 7 in each group

50
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Second Method

ceo oo Bloee Mee
eee Y00 Yo Y06 ®
e® 00 60 06

SEVEN SEVEN SEVEN SEVEN

How a calculator does it

A calculator uses a repeated process of subtraction to divide 45355 by 193. 100
times 193 is 19300. For the moment, leave out the comma to mark thousands.
Subtracting 19300 from 45355 leaves 26055. That’s 100 times. 26055 is still
greater than 19300, so it subtracts the same number again, leaving 6755. That’s
200 times. Now, it drops by 10 to 1930.That subtracts from 6755 three times, leav-
ing, in succession, 4825, 2895, and 965, while adding 10 to the quotient “column”
(called a register in calculator parlance) each time. That’s 230 times. To finish, it
subtracts the plain number, 193, five times and the quotient column is 235.

DIVIDEND
415/3|5|5 DIVISOR | 1|93
119/3(0|0 1{0(0
216(0|5(5 1{0f0
1/9]13|/0]0 11010
6(7|5|5 2(0]0
119]3(0 110
41825 21110
119]3(0 1{0
2181915 21210
119]3j0 110
916(5 2130
11913 l
717(2 2131
1193 1
50719 201312
193 1
3186 2{3]3
1|93 1
11913 21314
1{913 1
QUOTIENT 2 3 5
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Division is multiplication in reverse

Just as a calculator performs multiplication by repeated addition, it also performs
division by repeated subtraction. In fact, this pattern in mathematics is useful to
follow through. Each process that we learn has a reverse and each reverse process
provides a way to check the one it reverses.

Addition Subtraction
4+7=11 11-4=7
four plus seven equals eleven eleven minus four equals seven
four and seven are eleven four from eleven leaves seven

Subtraction is the reverse of Addition

Multiplication Division
4 X T7=128 28+4=17
four times seven twenty-eight divided
equals twenty-eight by four equals seven
four sevens are twenty-eight four goes into twenty-eight
seven times
7
28 =7 or 4/28

4

Division is the reverse of Multiplication

Dividing into longer numbers
Though few people do this, it’s useful to have a multiplication table for the divisor,
in this case 7, at the side. This table enables you to subtract the number in the quo-
tient all in one “bite,” rather than one piece at a time (like the calculator does).
The remainder each time is less than the divisor, so “bring down” the next digit
or figure and continue for the next place in the quotient.

Here is what you really do, then how it is usually written.
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IN DIVISION
WE START WITH
THE LARGEST £
FIGURE AND 25,3
WORK TOWARD _ £285

THE SMALLEST I

1,743:7 [ 3.

MU-L:IPLICATION T7ABLE 5'1,700 +7=|200| 1,400 and 300 left over
+
¥ times 388 ¢ Y l
2 are 14 340 +7=| 40| 280 and 60 left over
3 are 21 —— 3 +¥
4 are 28 60 «
5 are 35 63 +7=| 9 63 exactly
6 are 42 ¥
7 are 49 249 | Answer
8 are 56
9 are 63 "
Usual Way of Writing
249 Answer
3\ /6 4mmm |cft-over figure (usually carried in head)
7 / 1,743

34 e (17 — 14, carry down the 4)
63 S (34 — 28, carry down the 3)

Multiplication checks division

You can always check division by multiplication, whether you do it the old-fash-
ioned way or on a calculator. Using a calculator, you would punch in /743, then
-, then 7, then =, and the calculator would read 249. Now, with 249 still reading,
punch x then 7, then = again, and it will read 1743.

“Why do this?” you might ask. This procedure confirms that you hit the cor-
rect keys. If the last figure isn’t the one you began with, since the calculator doesn’t
make mistakes, you probably hit a wrong button somewhere.
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CHECK YOUR DIVISION BY MULTIPLICATION

DIVISION Since
7 divides
249(:1 “into 1,743
7/ 1,743 249 times

d1v1ded l |
into
Check THEN —
MULTIPLICATION
249 times 7
imes 249
7 <i] ) t e(;fals
36 {— carried 1,743
1,743

More about how a calculator does it

Look back to How a calculator does it. The calculator has to “know” that its first
subtraction will be 100 times. To do this procedure, it begins with 1 times, then
tries 10 times and 100 times. If it finds that the dividend is larger, it will increase
to 1000 times. If it finds that the divisor is larger, it will drop back to 100 times.

After subtracting 100 times twice, it tries the third time, finds that the divi-
sion is bigger, so it drops back to 10 times. The same thing happens when it has
subtracted 10 times three times. The fourth time it finds that the divisor is bigger,
so it drops back to the plain number as shown on opposite page.

Dividing by larger numbers (the people way)

Here is an example of why we suggested having the multiplication table at the left.
23 is not in your regular multiplication table. Of course, you might try at each
place, without the table, and save a little time. But it is more “methodical” to pre-
pare the table first, so you can see at a glance of the table what the next digit is.
For example, 23 into 149 seven times is 161. That number is too large, so it tries
six times, which is 138. Then 138 is larger than 119, so it must be 5 times. Finally,
the last digit (conveniently) is exactly twice. What happens when it isnt exact?
The answer follows shortly as shown on page 56 at the top.
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DIVISOR ACCUMULATOR
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1
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56 Division

23
23
23
23
23
23
23
23

X X X X X X X X
© % N B WP

46
69
92
115
138
161
184
207

652

23/W

138

115

46
46

Multiplication as a “check again”

With larger numbers as divisors, it’s more important to check your techniques
because you have more chances of making a mistake. These mistakes occur
both when you do it by hand and when you use a calculator.

In Long Division . ..

652 ANSWER
23 /14,996 <
. . . Long Multiplication
is the Check J
CHECK
652
23
1,956
13,040
14996 [ |

Division by factors

In multiplication, you used multiplication by factors. It also works in division, if
the divisor has factors. For example, 28 is 4 times 7. So you can divide the divi-
dend by 4, then by 7. You can also multiply by factors to check the answer.
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DIVIDING BY FACTORS
Divide 37,996 by 28
4 X 7=28 so...
1,357 answer
234
7/ 9,499
133
4 /37,996
Ay \ X
1,357 1,357
28 /37,996 __ 4
28 5,428
9.9 7
84 37,996
1,59
40
196
196
MULTIPLICATION
LONG DIVISION AS CHECK| BY FACTORS AS CHECK

Which method is best?

The previous page showed that, whether you used long division or factors, the
same answer was produced. Any number in the multiplication table (and many
more) can use factors. So, which method is best?

It’s a matter of preference. With a calculator, maybe there’s not much point in
using factors. With longhand, you have another way to check your work (see
example on page 58).

When a remainder is left

In the section, Dividing by bigger numbers (the people way), 1 asked what happens
when division doesn’t “come out” exactly? Try it on a calculator: you'll see.
Doing it longhand, for example, 37 divides into 10,050 271 times, with a remain-
der 23. What does that mean? How does it relate to the string of figures that a cal-
culator reads out? See example at top of page 59.



58 Division

With these numbers, you have a choice:
Factors or Long Division

MULTIPLICATION TABLE

BOEDnD
10/12|14|16{18

15118(21}24|27
20(24128 (32|36
25(30(35]40|45
30(36|42| 48|54
35|42149( 56|63
40148156 |64|72
45154163 (72|81

It's so much P
quicker

I always feel safer this way

It depends on
which you like
the best!
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Division doesn't always come out exactly even

|72
a
63}
[+4
too big %gg
Q ZES
271

37 37 37/10,050

__é _2 I__J:> 7.4
111 74 2,65

——>2.59
37 37 60
8 1 ——> 37
206 259 —| 3. What does this
number mean?
37 37 37 divides into 10,050
2 1 271 times,

What does the remainder mean?
Take a simpler example. Pursue the dividing-out picture that the chapter started
with. Dividing 25 into 6 shares gives each share 4, with one over the remainder
number 25. What do you do with the remainder?

Suppose they were pies. You'd take the 25th pie and divide it into 6 equal
parts, then give each of the 6 people 1 part, in addition to 4 whole pies.

This is the origin of fractions. The part, one sixth, is written as 1/6. The bot-
tom number is called the denominator, the number of possible pieces. The top
number is called the numerator, the number of pieces that you actually have.

Divide 25 by 6

ODOOOOOOO®O® O

BB WEEO GO
C) @ ® @@

continued
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four four four four four four
Using 24 makes 4 each in 6 groups.
WHAT ABOUT THE ODD ONE (25) ?

OO O 00 OO OO @@
PO OO O ®® OO

Divide Number @ into six equal parts.

Each part is one-sixth of the whole.
The fraction one-sixth is written ¢ 5

25%6:43
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How a calculator handles fractions

Now, let’s start on what a calculator does with fractions. If you divide 25 by 6, it
will read out 4.16666. . . . Here’s what the little thing does. Down till the quotient
accumulator reads 4, it follows what you already know. However, it just doesn’t
stop. Had you punched in 2500 divided by 6, it would read 416.66. . . . Following
the description in What does the remainder mean? your answer would be 416 1/6.

The calculator adds a decimal point when it goes beyond zero in the ones
place. Look at it this way: 25 is the same as 25.0000. Call that “25 point zero,
zero, zero, zero.” The zeros only make a difference where they “hold a place,”
with “real numbers” before and after them, or where they keep the real numbers
away from the ones place.

A division such as 6 into 2500 would go on forever. Each 4 can be divided by
another 6.

2[s|pIviDENp 6| DIvisorR [ | QUOTIENT
- n — ACCUMULATOR
< _\_
6 n u
1[3 ~\7
: || -
7 -\;—3-
6 1] [ ]
1o _\T
6 R
4|0 \4.1
ol6 0].0]1
3l 4 T~
06 ol.o|1
2[8 \4.12
0|6 0[.0]1
2{2 \4.13
0[6 olol1
1|6 T~
o6 0i.0[1
1|0 \4.15
0|6 0[.0[1
0140 \4.16
0lo[6 ol.olo|1
0[3)4 ~|4]al6]1




62 Division

Fractions that have multiple parts

In What does the remainder mean?, the 1 left over divides into 1/6 part each. Here,
we do the same thing again, with 30 divided by 7. You get to 28, with 4 each, and
the remainder is 2—that is, 2 parts are left over. So, the fraction is 2/7:
Numerator 2, denominator 7. 7, the bottom number, indicates that each whole is
divided into 7 parts. The 2 on top indicates that each gets 2 of those one-seventh
parts. That’s all that fractions really mean.

DIVIDE 30 BY 7
OOOOOEEOG®® O
DO OO GO ®
@) @@ e @ e e &

1 2 3 4 5 6 7

O @0 OO @O ®® ®® O

96 (96 D@ B @e) @O

F FOUR FOUR FOU FOU

—— ey

-
-
-

REMAINING 2 ARE DIVIDED INTO 7 PARTS
30:7=41%

Decimal equivalents of fractions

Previous pages have shown how a calculator turns a fraction into a decimal.
That’s what it does, naturally—if anything is natural about a calculator! Now,
look at what a calculator does with a few simple fractions. Here are a few that
convert to relatively simple decimals:
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1
o * 10/10

More difficult fractions

Those fractions turned into relatively simple decimals. The harder ones are those
that always run off the end of the calculator’s space. 416 1/6 was one. Here’s
another that looks simple: 1/3. But when you divide 3 into 1, after bringing down
zero after zero, you get an unending string of 3s. Earlier generations had a useful
trick to avoid having to keep writing 3s; they put a dot over the 3 to indicate that
it keeps repeating.

repeating.

fum—

=NIT,

o= Ol= o= wi

. 1st Method

0.3333333 ...
3/1.0000000

1
3
0.1666 . .. 1016
6/1.0000 6
0.111... 1
9
1

9/1.00
0.083333 ...

O 1 =0.083
2 /0.16666666 12

0.8333
6/5.0000
5

6 =0.83

2nd Method

1
5X6

=0.1

0.166266 .
i3 carried
0.83333 . ..

SO

YY)

SO

SO

SO

. point three
=03 recurring
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L _os
2

1 _o2s
4

1

L 02
5

L 0125
3

1 _o1
10

Here we show some more fractions that end up with one number that keep

Some decimals
would go on
forever with
one number...

5 2 3 1 1

3rd Method E_6+6_3+2

l— .

3—0.333

1

2—0.5

5 .

6~0.8333
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Where more figures repeat

In all the fractions in the last section, the decimal equivalent, which is what your
calculator always gives you, ended up with one figure that kept repeating.
Another kind of fraction first shows up in the decimal equivalent for 1/7. Here, 6
digits repeat. Interestingly, for numerators 1 through 6, the decimal equivalent
uses the same sequence of repeating digits, starting at a different place. The old
way of indicating the repeating digits is to put a dot over the digits that repeat.

Notice that when you multiply the repeating decimal for 1/7 by 7, you get a
row of repeating nines. This number virtually is the same as 1, because it falls
short of 1 by an infinitely small number. This problem leads to an idea for convert-
ing repeating decimals to equivalent fractions.

... and some keep it going with groups of numbers

1. 0.142857142857 1 _ 0142857
7 7/1.000000000000 7

ST NS N
2 . 0.285714285714 2 _ 0385714
7 7/2.000000000000 7

or 2 X % =2 X 0.142857 = 0.285714
% -7 X 0.142857 = 0.999999 = 0.9

09+00=1 and 0.0=0
so 0.9=1

Decimal for one eleventh and others

When your denominator is 11 and the numerator is 1, .09 repeats. If the numera-
tor is 2, .18 repeats, and so on, until 10/11 = .90 repeating. As before 11/11,
being the same as 1, comes t0 .99 repeating. Here is a clue. 1/11 is the same as 9/
99, because 9 x 1115 99. Do you begin to see how to handle this problem?

The decimal for 1/7 has 6 recurring digits. On page 65 are the recurring
decimals for 1/17 and 1/19. Notice that each has one less number of digits than

the denominator. The one for 1/17 has 16 digits. The one for 1/19 has 18 digits.
Do you wonder why?

1 0.0909 i .. Decimals recur in
I 11/10000 11=909  Pairs for Elevenths
2. 01818 2 _ ..

11" 11/2.0000 11"
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1 . .
OR 2 X ﬁ=2>< 0.09=0.18

3 .. 4 .. 5 .. 6 .
= = = =0. = =0. = =0.54
11 0.27 11 0.36 11 0.45 11
7 .. 8 . 9 . 10 ..
= =0, = =0. = =081 5=090
11 0.63 11 0.72 11 0.8 11
11 -
1= 099=09=1
L - 0.076923 2 _0.153846 3 - 0530769
13 ) 13 13
These numbers used for These numbers used for (six numbers
1 3 4 9 1012 256 7 81 for thirteenths)
13, 13,13, 13,13,13 13,13,13,13,13, 13
1 - ; (sixteen numbers
7= 0.0588235294117647 for seventeenths)
and
L 0.05263157804736842]  (cighteen numbers
19 for nineteenths)

Converting recurring decimals to fractions

Although recurring decimals are easier to handle when you know what they
mean, using old-fashioned fractions is often easier. How can we convert a recur-
ring decimal to a fraction? Shown here is how to do it when only one digit recurs.
Nonrecurring digits represent that many tenths, hundredths, thousandths, or
whatever place the digit is in. Then, a recurring digit represents that many
ninths—zeros after the 9 in the denominator to put it in the right place value.

Always check your result by dividing top by bottom, calculator style, to see if
you get the decimal that you began with.

Using 9's to convert recurring
decimals to fractions

Oi—l 1111111 ...
9 9999999 ...
- 3_ _1_

0.3= 9 3

0_16___l+£ 9,6_15_1

continued
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8 3 _24.1 _25 1

8,3 2 1 _25_5
083 = 16%90=30%36 30 " 6
02083 2 8 . 3 _600 24 1

10 T 1,000 7 9,000 3,000 " 3,000 '3,000

_ 625 125 25 5
~3000 600 120 24

0.208333
5 6 /1.250000

Check ——
e 4><6':>4/5.00

Where more than one digit recurs

Inthis case, you just use as many 9s as digits that repeat. Then, cancel down to the
simplest form of fraction and check your result by dividing numerator by denom-
inator to see if you get your original recurring decimal. Some of this technique is
explained further after the next question and problem section.

WHEN THERE ARE MORE THAN ONE
RECURRING DECIMALS, USE A 9 FOR
EACH IN ITS PROPER PLACE!

045= 4 =5%9 _5

11X9 11

17 = 47 .
0.47 = 09 0.474
99 /47.00

Check 39.6

99 39.6

5 . 7.40

=3 FIGURE 6.93
4 REPEATS 370

396
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0729=72 = 8L = 27

999 111 37

DIVIDE TOP
AND BOTTOM
BY 9 BY 3 . .
0.7297
Check 99 /27.0000
37 37 550
1 32 <10
259 9 74 74
333 FIGURE 360

REPEATS 333

270

Questions and problems
1. Make the following divisions:

@@ 7)343 () 9)729  (©) 8)4928  (d) 5)3265 (¢) 3)6243
() 2)7862  (g) 4)3936 (h) 6)3924 (j) 13)3081
(k) 11)16324 () 17)6443 (m) 19)8341 (n) 23)28382

Check your answers by multiplication.

2. Make the following divisions by successive (division by factors) and long divi-
sion; if your answers do not agree, check them with long multiplication:

@ 15)3600 (b) 21)15813 () 25)73625 (d) 28)10136

3. Make the following divisions and write the remainder as a fraction, using
whichever method of conversion you like best:

@ 7)3459 (b) 8)23431 (c) 9)13263 (d) 3)14373
© 6)29336 (f) 17)8239 (g) 28)34343 (h) 29)92929

4. A profit of $14,000,000 has to be shared among holders of 2,800,000 shares
of stock. What is the profit per share?

5. Total operating cost for an airline flight between two cities is estimated as
$8.415. What fare should be charged so that a flight with 55 passengers just
meets operating cost?

6. A part needs a special tool that costs $5,000. With this tool, the machine
makes parts for 25 cents each. But the price must also pay for the tool. If the tool
cost is to be paid for out of the first 10,000 parts made, what will be the cost of
each part?
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7. A freight car carries 58 tons (1 ton = 2000 pounds), including its own weight,
and runs on 8 wheels. Its suspension distributes the weight equally among the
wheels. What is the weight on each wheel?

8. A man makes 1,200 of a certain part in 8 hours. How much time is spent for
making each part?

9. A package of 10,000 small parts weighs 1,565 pounds. The empty package

weighs 2.5 pounds. How much does each part weigh (hint, convert the pounds
to ounces)?

10. Another package weighs 2,960 pounds full and 5 pounds empty. One part
weighs 3 ounces. How many parts are in the full package?

11. A narrow strip of land, 1 mile long, is to be divided into 33 lots of equal width.
How wide is each lot?

12. On atest run, a car travels 462 miles on 22 gallons of gas. Assuming perfor-
mance is uniform, how far does it go on each gallon of gas?

13. A particular mixture is usually made up 160 gallons at a time. It uses 75
gallons of ingredient 1, 50 gallons of ingredient 2, 25 gallons of ingredient 3,
and 10 gallons of ingredient 4. If only 1 gallon is required, what amounts of each
ingredient should be used?

14. Find the simplest fractional equivalent of the following decimals:

@ 0.875 (b)) 0.6 () 0.5625 (d) 0.741 (¢ 0.128

15. In the following decimals, all the digits after the decimal point repeat. Find
their fractional equivalents.

@ 0416  (b) 021 () 0.189  (d) 0.571428 () 0.909

Check each by dividing back to decimal form again.



CHAPTER

Fractions

Different fractions with the same value

In the previous chapter, you did some things that you might not yet understand, or
had difficulty doing. In this chapter, you can “catch up.” Seeing a fraction as a
piece of pie helps. Notice that the simple fraction 1/4 can be cut in smaller pieces
without changing its value as part of the whole.

22 2_11 18 6
22 2 14 42 6

10 .5
25 5

3
7

Factors help find the simplest form—cancellation

A fraction might have large numbers for both the numerator and denominator.
See whether the fraction can be reduced to a simpler form. A calculator that han-
dles fractions will automatically find and present them in their simplest form. If
your calculator cannot handle fractions, you must know how to calculate them
yourself.

69
Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.
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Always Find the Factors in a Fraction
%0 "8~ 3
1,280 128 64 8

455 _ 5X91 _ _S5X7xX13
462 2 X231 2X3X7X11

5x%x13  5X13 65
2X3XNXX11 2X3X11 66

by canceling 7's

If the numerator and denominator both end in zeros, you can strike off the
same number of zeros from each. If both are even, divide both by 2.

Sometimes the factors aren’t so obvious. Here, for the fraction 455/462, is one
way. After checking the factors of each, they both contain a 7. If 7 is a factor of
both the numerator and denominator, divide both by 7.

Spotting the factors

Here are rules for spotting factors. If the last digit of a number divides by 2, then
the whole number does. This rule can go further. If the last 2 digits divide by 4,
the whole number does. If the last 3 digits divided by &, the whole number does.
That leads to a whole series of checks for powers of 2: 4, 8, 16, 32, etc. A similar
set works for powers of 5: 25, 125, 625, 3125, etc.

Rules also exist for 3s and 9s. Add the digits together. If the sum of the digits
divides by 3, the whole number does. If the sum of digits divides by 9, the whole
number does.

The check for dividing by 11 is more complicated. Add alternate digits in two
sets. If the sums are identical, differ by 11, or differ by a multiple of 11, the whole
original number divides by 11.

FINDING FACTORS

IF THESE TWO FIGURES DIVIDE EXACTLY
BY 4, THE WHOLE NUMBER DOES

51,7561

23.128 I':> IF THESE THREE FIGURES DIVIDE EXACTLY
’ BY 8, THE WHOLE NUMBER DOES

12 46 exactly
138 1+3+8—12?_4 3/ 138 CHECK FOR 3
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15 exactly
135 1+345=9 9/ 135
CHECK FOR 9
18 82 exactly
738 7+3+8=183=2 9 /738
28'q3r 243+7=12 2,577 exactly
b
by 8+ 4= 12 11728,347 CHECK FOR 11
prp— 8 4 G = 17 79 exactly
869 17-6=11 11/ 869

MG

Rules for finding factors

That covers finding simple numbers as factors: 2, 3,4, 5, 8, 9, 11, etc. If 2 and 3
both “go,” then 6 is a factor. No easy check exists for 7.

When finding factors, try primes—numbers that won’t factorize into smaller
numbers.

This table shows factors of numbers and identifies primes up to the number
20. We have to try each prime when looking for factors. Isn’t there an easier
way?

HOW FAR SHOULD YOU TRY FACTORS?

Factors of 139? 19%
2 X 2 23 1+3+9=13 5.7/ 139
3 X ? 11: 1+9=10
5 X ? 3
7 x 9 7
11 X 2

- So 139 is a prime number
12 X 12 =144 — too big

Factors of 493? ;
2 X ? 7057
3 X 9 2:3:449+3=16 5. 7/ 493
5 X 7 4+3=7
7 % 2 g 722 374
11 X ? 29 exactly 13/ 493
13 X ? 17/ 493
17 %2 493 =17 x 29
19 X 2
23 X 23 =512 —too big
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How far to try

A useful principle can save you from wasting time when looking for factors.
Remember the multiplication table—that line of squares down the diagonal? It
goes far beyond the numbers in the table. Look at it this way: If a number does
not have at least two factors, it must be prime. So, if it has any factors at all, at
least one of them must be smaller than the nearest square.

Look at these two examples. The nearest square to 139 is 144. If 139 has any
factors, at least one of them must be less than 12. After trying up to 11, none of
them work, so 139 must be prime.

The square of 23 is larger than 49 3. Try squaring each number before you try
it as a factor. 23 squared is 529. Try all the primes up to 23. When you reach 17,
you will find that 17 divides into 483 29 times. So, the factors of 493 are 17 and 29.

[ I:> 2 Prime number
l:> 3 Prime number
4 =2X2
I:> 5 Prime number
6 =2 X3
|:J‘> 7 Prime number
8 =2X2X2
THESE ARE 9 =33
IMPORTANT 10 =2X5
NUMBERS ¥ I:_>11 Prime number
TO TRY 12 =2X2X3
r:> 13 Prime number
14 =2X7
15 =3X5
16 =2X2X2X2
I:> 17 Prime number
18 =2X3X3
l:> 19 Prime number
i 20 =2X2X5

Squares and primes

Suppose you want the factors of 8,249. The table of squares show that the square
of 91 is 8,281. Try primes up to 89, the last one before 91. You will find that 73
and 113 are factors. If you had reached 89 with no factor, the original number
(8,249) would have been prime.



similar sequence begins at 91 and runs up to 109.

Fractions

When making a table of squares, look for patterns, like you did with the much
simpler multiplication table. Look at the middle column. The last two digits run
the squares of 9 down to 0 and then up to 9 again for the square of 59.This occurs
because the square of 50 ends in double zero and twice 5 (the first digit) is 10. A

PRIME
NUMBERS,
1-100
TABLE OF SQUARES, 1-100

NO. SQ. NO. SQ. |NO. SQ. NO. SQ. NO.| SQ. 2
1 1 | 21| 441 |41] 1,681 |61] 3.721 | 81| 6,561 3
2| 4 |22] 484 [42] 1,764 |62] 3.844 | 82| 6,724 5
3 9 [23] 529 [43]1.849 |63] 3,969 | 83| 6.889 IZ
4| 16 |24| 576 |44]| 1,936 | 64| 4,096 | 84| 7.056 3
51 25 |25 625 |45]2.025 165] 4225 | 85| 7,225 17
6| 36 |26| 676 |46]2.116 |66] 4.356 | 86| 7.396 19
71 49 [27] 729 [47]2,209 t67] 4,489 | 87| 7,569 23
8| 64 |28 784 |48] 2304 |68] 4,624 | 88| 7,744 g?
9| 81 |29]| 841 |49]2.401 |69] 4.761 | 89| 7.921 27
10| 100 [30] 900 [50[2,500 [70] 4900 90| 8,100 4
11| 121 |31] 961 |51] 2,601 |71] 5041 | 91| 8.281 43
12| 144 |32 1,024 522704 | 72] 5,184 | 92| 8464 | 47
13| 169 |33] 1,089 |53 2,809 |73| 5320 | 93| 8640| 33
14| 196 | 34| 1,156 |64 2,916 | 74| 5476 | 94| 8.836 g?
15| 225 | 35| 1,225 | 55| 3,025 | 75] 5.625 | 95| 9,025 e
16| 256 | 36| 1.296 | 563,136 | 76| 5776 | 96| 9216| 71
17| 289 |37] 1,369 |57 3.249 | 77| 5929 | 97| 9.409| 73
18| 324 | 38| 1,444 |58 3.364 | 78| 6,084 | 98] 9.604| 79
19| 361 |39] 1,521 |59]3.481 |79] 6,241 | 99| 9.801 gg
20| 400 [40] 1,600 [60] 3,600 [80] 6,400 [100]10,000| o

Factoring with a calculator

Of course, a calculator can help you make such a table. It can also help you find
factors. The easy way is to put the number of which you want factors in memory,
then keep withdrawing it with the MR (memory recall) key to try the next
prime. If it displays a number with a decimal, you don’t have a factor. When you
hit a factor, the readout is a whole number.

Thus, in the example on the next page, when you get to 73, the calculator

reads 113. Here’s how it goes:
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Enter 8249 Press M in or M+ (making sure that the memory is empty)
Enter divideby 7 and =reads 1178.428571 Press MR and
" "

11 " 749.9090909 " !
" " 13 " 634.5384615 " !
" " 17 " 485.2352941 " !
" " 19 " 434.1578947 " !
" " 23 " 358.6521739 " !
" " 29 " 284.4482759 " !
" " 31 " 266.0967742 " !
" " 37 " 222.9459459 " !
" " 41 " 201.1951220 " !
" " 43 " 191.8372093 " !
" " 47 " 175.5106383 " !
" " 53 " 155.6415094 " !
" " 59 " 139.8135593 " !
" " 61 " 135.2295082 " !
" " 67 " 123.1194030 " !
" " 71 " 116.1830986 " !
" " 73 " 113 That’s it!

Adding and subtracting fractions

If your calculator handles fractions, it keeps finding the simplest form for you. But
it helps if you know what it’s doing. If your calculator doesn’t handle fractions, it
will calculate everything in decimals. This system is difficult to verify, unless you
do it yourself, the old way.

Remember: in adding or subtracting fractions, they must have the same
denominator. For instance, to add 1/2, 2/3, and 5/12, both 1/2 and 1/3 can be
changed to 12ths. 1/2 is 6/12 and 2/3 is 8/12. Now just add numerators, because
they are all 12ths: 6 + 8 + 5 = 19. 19/12 is more than 1. Subtract 12/12 for 1.
1 7/12 is the answer.

% _ 1% MAKE EACH
ADD —~+ 24+ 2 DENOMINATOR
2 3 121 2 8  THESAME
312
1 2 5
273 12
6 + — + i - !2 - 1_
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Suppose you must subtract 3 3/5 from 7 5/12. 60 is the common denomina-
tor. 3/5 15 36/60 and 5/12 is 25/60. You cannot subtract 36 from 25. So you bor-
row 1, converting it to 60ths. Now, subtract 3 36/60 from 6 85/60. 36 from 85 is
49. 3 from 6 is 3 and the complete answer is 3 49/60.

To Add Fractions, Each One Must Have the SAME DENOMINATOR

Subtract 3 3 from?7 el

S 12

1. Common denominator = 60

3 3 X12 36 5 5X5 25
2. — = = — and —_ = = —
5 5X12 60 12 12X5 60
36 25 25 25 60 + 25 85
3. Because = is biggerthan —,change 7— to 6+1 —=6 * =6
60 60 60 60 60 60
85 36 49
4. 62 3232 0r732 33 38
60 60 60 12 5 60

Finding the common denominator

How do you find a common denominator? Sometimes it’s easy. It’s not always so

obvious. Older textbooks had a routine for the job, but it wasn’t easy to under-

stand. Here’s a way you can understand. See illustration at top of page 76.
Suppose you have:

1/4+1/3+2/5+1/645/12 +3/10 4+ 7/30 + 4/15.

Find the factors of each denominator: 4 = 2 x 2; 3 and 5 are both prime; 6 is
2x3;12182 x 2 x 3;101s2 x 5;301s2 x 3 x 5;and 151s 3 x 5.

Our common denominator must contain every factor that is in any denom-
mator. The factors are 2, 3, and 5. The common denominator is
2 x 2 x 3 x 5 =60. Now convert all the fractions to 60ths. The numerators are:
15+20+244+10+ 25+ 184+ 14 + 16, which adds up to 142. Reduce the
final form, because both divide by 2, yielding 71/30. Taking out 30/30 for a
whole 1, twice, the answer is 2 11/30.
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Add together 1_ 1 1_ 1 5__5
T 1 2 1 5 3 7 4 4  2x2 6 2X3 12 2X2X3

ot —+—+—+—+—
43 56 12 10 30 15 3 3 7 .

10 2x5 30 2X3X5
22
3%5

15420+ (2X12=24) + 10+ (5X5=25) + 3X6 = 18) + (7 X2 = 14) + (4 X4 = 16)
2X2%X3X5=60

142 71 11
e T
60 30 30
same answer

142 22
or o - 2— = 2%%

5_

Sometimes the working denominator is not so obvious!

Calculators that ““do”’ fractions

Some pocket calculators “do” fractions. Knowing how to use fractions and know-
ing calculator limitations can help you understand more about fractions and dec-
imals. Individual calculators might use different ways of keying the problem in,
but the way it works is similar. The readout might also differ. See the example at
the top of the facing page.

Enter 4 and 2/7. Other keys change the readout first to 30.7, called in the old
parlance an improper fraction, meaning that its value is more than 1; then to
4.28571428 . . ., its decimal form.

Now, multiply by 7. The calculator will read 30. Divide by 7. It does not give
you 4 and 2/7 again, but the decimal form, 4.28571428 . . . Do some of the things,
adding, subtracting, multiplying, or dividing fractions that this book has shown
you. The calculator will give the same answers, always presenting them in their
simplest form.

These methods will help you understand just what your calculator does
and how it does it. In turn, this knowledge will help you understand the whole
process.
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Significant figures

Just how accurate is the figure you look at? Ask yourself how reliable the number
is that you look at. Devices that give you numerical information might be either
analog or digital. Some think that digital is much more accurate. However, num-
bers can be deceptive.

Suppose you talk about a 150-pound man. Does he weigh exactly 150
pounds—not an ounce more or less? Is he between 149.5 and 150.5 pounds, or
is he between 145 and 155 pounds? The answer depends on what figures in that
number 150 are “significant.”

If the 0 is just a placeholder, then if he weighed less than 145 or more than
155, the number would be stated as 140 or 160. If the 0 is “significant,” then 150
means that he weighs from 149.5 to 150.5 pounds. If he weighed less than 149.5
or more than 150.5, the number would be 149 or 151.
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ACCURACY IS RELATIVE...IT DEPENDS ON
mWHAT YOU ARE FIGURING

A

~

0 -
v v =
A g 3
140 150 160 Z 83
POUNDS © 3

1LB 16%“4‘
< o~ =
I/ 24%

For it to mean not an ounce more or less than 150 pounds, the weight should
be written as 150 pounds, 0 ounces.

The word significant should tell you that other figures are not significant. The
following pages will show why this point can be important.

Approximate long division: why use it

Long division is something you can’t “tell’ a calculator. Most students had trouble
with it because they didn’t understand it. Suppose you divide 150 by 7. Your calcu-
lator gives you something like 21.4285714 ... You are tempted to believe all
those figures. Now apply what the previous page said. If 150 means more than
145 and less than 155, which means only two figures are significant (the 1 and
5), then dividing by 7 could yield something between 145/7 and 155/7, which
read out as 20.71527571...and 22.14285714...The only figure that doesn’t
change is the 2 of 20!

The other figures, in any of these answers, can’t be reliable. You could say the
possible “spread” is from 20.7 to 22.1. Now, if the 0 of 150 was significant, the
result can be from 149 5/7 to 150 5/7, which read out as 21.3571428 and 21.5 (sur-
prise, 150.5 divides by 7 exactly!) Now the “spread” is reduced to between
21.357 and 21.50.

Suppose you have 153 (an extra significant figure) to divide by 7. Examine the
possibilities here.
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APPROXIMATE LONG DIVISION
DIVIDE 153 by 7:

21.857142(857... )
7/ 153.000000

154
153.5 -1
153 , POSSIBLE "SPREAD"
1525 ——

152 . .
21.7857142(857...)

7/ 152.5000000

21.9285714(285...)
7/ 153.5000000

21.9)28571 ——
21.Q)57142 | POSSIBLE "SPREAD"
w85714 -

Even this figure is doubtful
NOT LESS THAN 21.7 POUNDS
OR 22 POUNDS TO THE NEAREST WHOLE POUND

Longhand procedure

Suppose that you have to divide 23,500 by 291 and you believe those end zeros in
the dividend aren’t significant. You could assume it was between 23,450 and
23,550, perform both divisions, and then decide what was significant. But long-
hand, that’s a lot of work! The practice was to draw a vertical line where figures
begin to be progressively more doubtful.

You could divide between the “limiting values” as the possible errors,
because only so many figures are significant, then you could guess at the most
probable value. This procedure is illustrated at the top of page 80.

—

Using a calculator to find significance

Exploring shows what you can do with a calculator that wouldn’t have been prac-
tical longhand. Take values that represent the biggest variation on either side of
the stated value, then deduce how accurate the answers will be. Notice that in
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80.75601 DIVIDE: 23,500 BY 291
291 [ 23,5 |oo
23218
~ 2200
2103.7
16.30
14.55
1.750
1.746
400
291
Figures this side of line get
progressively more doubtful
APPROXIMATE METHOD:
80.76
291 | 23,500
23,28 Nearest third
220 significant figure
7X 29 —> 203 80.8
17
5X3=15

6 X 3 = 18 ——>nearest

Finding the limits of accuracy

0.89 0.62

290.51235[80.0 291.5123540.0
8% 290.5 —>23 280 8X 291.5 —>23 280
02X 291 260 0% 292 180
8X 29 ——>232 6X29 ——>174
28 6
9X 3 ————>27 9% 3 >6

1.06 0.45

290.5123580.0 291.51234§0.0
8X 290.5 —>23 2Mo 23 2Mo
310 0X 292 130
1X29]——>29 1 4X29 ——>116
0X 29 19 14

6X3 ——m>18

5X3 15 (nearest)
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division, both numbers (the dividend and the divisor) can have a number of sig-
nificant figures. An answer cannot have more significant figures than the number
with the least number of significant figures used as “input” for the problem.

Approximate long multiplication

The same methods for long division work for multiplication, as shown here for
multiplying 5.32 by 2.91. It also applies to addition or subtraction. Suppose you
add 55 to 1,000,000. What does that million mean? It could mean “give or take”
500,000. More likely, it would mean “give or take” 50,000. Even at that figure,
adding 55 is unlikely to make a difference. That is an extreme example. The result
of any operation can only be as accurate as the “weakest link” which in that case
would be the million figure. Only in rare instances would the number 1,000,000
mean exactly that number, not 999,999 or 1,000,001.

Multiply 2.91 by 5.32
HHPY Y 291

5.32
14.55
873
582 These figures
15.4812 are doubtful

5.32
291

2 X532 ——p>10.64

09X 53 ——p 4.79
001 X5 c—> 5

1548  Nearest third figure 15.5

Questions and problems
1. Arrange the following fractions in groups that have the same value:

1/2,1/3,2/5,2/3,3/4, 3/6,4/6,4/8, 3/9,4/10,4/12,
8/12,9/12,5/15,6/15, 6/18,9/18, 8/20, 10/20, 15/20, 7/21

2. Reduce each of the following fractions to its simplest form:

7/14, 26/91, 21/91, 52/78, 39/65, 22/30, 39/51, 52/64,
34/51, 27/81, 18/45, 57/69

3. Without actually performing the divisions, indicate which of the following
numbers divide exactly by 3,4, 8, 9, or 11:

@ 10,452  (b) 2,088 () 5841  (d) 41,613
© 64,572 (f) 37,848
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4. Find the factors of the following:
(@) 1,829 (b) 1,517 (©) 7,387
(d) 7,031 (e) 2,059 (f) 2,491
5. Add together the following groups of fractions:
(@ 1/5+1/6+4/15+3/104+2/3
(by 1/84+1/3+5/18+7/12+4/9

© 1/44+1/541/64+1/10+1/12
(d) 4/7 +3/4+7/12 + 8/21 + 5/6

and reduce each to its simplest form.
6. Find the simplest fractional equivalent for the following decimals:

@ 0.875 (b)) 0.6 () 0.5625 (d) 0.741 (¢ 0.128

7. Find the decimal equivalent of the following fractions:

@ 23 (b @45 (@ 56
© 67 (O 78 () 8/9

8. Find the decimal equivalent of the following fractions:

@U3 b Usd ©US @ 16
© 17 (O U8 (2 1/9

9. Find the fraction equivalent to the following recurring decimals:

@) 0.416 (b) 0.21 © 0.189
© 0571428 () 0.909 () 0.090

10. What is meant by significant figures? To illustrate, show the limits of possible
meaning for measurements given as 158 feet and 857 feet.

11. Using the approximate method, divide 932 by 173.Then by dividing (a) 932.5
by 172.5 and (b) 931.5 by 173.5, show how many of your figures are justified.
Noting that 932 and 173 have three significant figures, what conclusion would
you draw from these calculations?

12. Divide 93,700 by 857 using an approximate method. Then by dividing 93,750
by 856.5 and 93,650 by 857.5, show how many of your figures are justified. Can
you shorten your method still further to avoid writing down meaningless figures?

13. (a) List all of the prime numbers less than 60. (b) Using this list, how can you
test a given number to determine whether or not it is prime? (¢c) What is the largest
number you can test in this way, using this list?
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14. Find the differences of the following pairs of fractions. Reduce the result to
standard form with the lowest possible denominator.

@ 3/4—1/16 (b) 11/13—1/7  (© 16/20 —3/8
) 255/100 —1/10 © 23/17 —1/34



CHAPTER

Area: the second
dimension

Scales of length: units and measurement

So far, this book has dealt with counting various things, such as money, weights,
measures, etc. The things have been place in rows, in squares, or stacked into
cubes to conveniently visualize the count.

Now, see how math can help to relate different measures together. Suppose
someone asked you to multiply 17 oranges by 23 pears, what would you do? You

You can’t multiply ORANGES by PEARS...
or inches by gallons, or tons by miles

84
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can multiply 17 by 23. But the answer is 391 what? It doesn’t make sense!
However, multiplying a length by a length can make sense. The second dimension
is a result of these multiplications, as you shall see.

Length times length is area

You probably already guessed that multiplying a length by a length produces an
area. If a piece of wallpaper 27 inches wide is 108 inches long, its area is 27 inches
times 108 inches. The answer is in square inches. The answer is deduced from
the way you began counting: laying articles in rows and thus building squares or
areas of other shapes.

If you lay 27 square inches in a row, then line 108 rows of 27 square inches,
the total area (the wallpaper in the question) is 27 times 108 square inches. If
you count the little squares, you will find 2,916 square inches.

But you can multiply Yo
INCHES by INCHES.

inches inches
108 X 27

=2916
square inches

What is square?

We are used to the shape we call square, that we’ve probably never bothered to
define it. Counting those square inches, you probably thought of them as measur-
ing 1 inch “each way.” But if you measure 1 inch along four edges, you might not
end up with a square. What makes it a square?

The fourth side must end where the first side began. Also, opposite sides must
be parallel. Even then, the figure still might not be square. The angles must be
what we call “right” angles. See the example at the top of page 86.
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What is Square?

FOUR
EQUAL SIDES

BUT THEY
MUST MEET

OPPOSITE SIDES
MUST BE PARALLEL

{

T — |
BUT EVEN THIS
IS NOT SQUARE

The right angle
What is a right angle? Look at what the phrase originally meant.

Suppose a carpenter makes a table. He must attach its four legs to the table
top. All four legs should be attached at one particular angle so that the table
stands securely (unless you use some fancy means to hold the table). This was
called the right angle, from which the word originated. Other angles are wrong

angles, without some extra construction to strengthen them.

Diamonds do not have
the RIGHT angles.

So they will not always fit.

0
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Squares always fit because
they have RIGHT angles.

W&/ \l\\l

Different shapes with the same area
Take a piece of drawing paper 22 inches by 30 inches, cut it across, and rejoin it to
be 44 inches by 15 inches. The area is the same both times because it’s the same
paper, just rearranged. 22 x 30 is 660 square inches. 44 x 15 also is 660 square
inches.

The same number of square inches could be arranged into almost any num-
ber of different shapes.

All these shapes are 660 square inches.

2 — 15"
22" >
44n'
]
:?j o E— 22“ ——— 10“
66"

continued
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22"
\
—

30"

60"

Square measure

In linear measure—measuring along a line in a single direction—each foot has
12 inches and each yard has 3 feet. But how many square inches are in a square
foot or square feet are in a square yard?

That’s easy to figure out. When we were counting, 10 rows of 10 is 100, which
is 10 times 10. So, 12 times 12 or 144 square inches are in a square foot.

Notice one more thing: 6 square inches are different from a 6-inch square. A
6-inch square is a square, each side of which is 6 inches long, so it contains 6
times 6, or 36 square inches. 6 square inches could be an area 6 inches long by 1
inch wide, or 3 inches long by 2 inches wide, or even 4 inches long by 1 1/2 inches
wide, each of which multiplies out to 6 square inches.

12 inches = 1 foot

144 square inches =
1 square foot

Jfeet = 1 yard
9 square feet = 1 square yard

6 square inches

Converting square units
into other square units

6-inch square
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From oblongs to triangles

Allthe areas that have been considered so far have had four sides with right angles
between the sides. Mathematicians call such shapes rectangles, a word of Latin
origin, which means ‘having right angles.” An easy way to understand areas of tri-
angles is to think of a triangle as a rectangle (oblong) cut in half diagonally.

Notice that this is a special kind of triangle with a square corner. Other kinds
of triangles will be described later on.

™\

—

~
|

OBLONG

AREA = LENGTH TIMES BREADTH
= 8 inches X 6 inches

= 48 Square Inches

SQUARE-CORNERED TRIANGLE

AREA = HALF LENGTH TIMES BREADTH

= % X 8 inches X 6 inches

= 24 Square Inches

Parallelograms

So far, squares and rectangles have been covered. What about other four-sided
shapes that have parallel sides, but not right angles? Geometry distinguishes two
kinds, just as squares and rectangles have right-angle corners. If the four sides
are equal, it’s called a rhombus, or in common terms, a diamond. If the sides are
unequal, it can be called a rhomboid or a parallelogram.

The illustration at the top of the next page shows that, if the sides of a rect-
angle are kept the same, but the angles are changed (it’s now a parallelogram) its
area decreases, until eventually it disappears, when it “squashes” into a straight
line.
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PARALLELOGRAMS
square oblong diamond (rhomboid)
(rectangle) (rhombus)

AS A RECTANGLE IS CHANGED INTO A RHOMBOID,
ITS AREA DECREASES

Area of parallelograms

One way to find the area of a parallelogram is to take it from a different rect-
angle—one that has one pair of sides the same as the parallelogram, but the
other two sides are shorter. The straight-across distance between the first two
sides is the same as the distance between those two sides in the parallelogram.

1. Sides 10" and 15" 2. Same parallelogram
Distance squarely Sides 10" and 15" Distance
between 15" sides is 8" between 10" sides is 12"

15 inches

9 inches
15 inches

AREA OF :
PARALLELOGRAM 15 inches
= area of oblong
= length X breadth
= 15 inches X 8 inches AREA = 10 INCHES X 12 INCHES
= 120 SQUARE INCHES =120 SQUARE INCHES

i SAME ANSWERS v CHECK |
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Away of seeing that the rectangle has the same area as the parallelogram is to
note that the parallelogram turns into the rectangle by moving the same size of
triangle from one end to the other.

Area of acute triangles

Any triangle that is not square cornered, can consist of two square-cornered tri-
angles, each of which is half of a corresponding rectangle. The two rectangles,
put together, form one larger rectangle. And the two square-cornered triangles
form one larger triangle.

The dimension of the rectangle side that is between the two smaller rect-
angles also becomes the vertical height of the triangle, if the two sides joined
together are seen as the base. In the example on this page, the triangle breaks
into two square-cornered triangles, each with one side 12 inches and two other
sides are 5 inches and 9 inches, respectively. The whole side, the base of the tri-
angle,is 5 + 9 = 14 inches. 12 inches is its vertical height.

The entire rectangle contains 12 x 14 = 168 square inches. So, the area of
the triangle is half of the rectangle, 84 square inches. A rule begins to emerge.
The area of a triangle is half of the base times the vertical height.

S inches 9 inches /\ %
,.E . . [ /-
) % w w B0
8 & |8 \O. ) acute- obtuse—
@ 5° § ’%} 'Fé _".;. angled angled
| < ~ & « = triangle triangle
[
_ g £~ acute-angled corner
3 inches] 2 inches D\ obtuse-angled corner
14 inches base
Area of Left Area of Right Area of Combined
Oblong =5" X 12" Oblong =9" X 12" Oblong = 14" X 12"
= 60 Square Inches PLUS = 108 Square Inches > = 168 Square Inches
Square— Square—
Comered 1 Cormered 1 1
Triangle = > X 60 Triangle = e) X108 Triangle = > X 168

= 30 Square Inches rPLUS = 54 Square Inches > = 84 Square Inches

HALF|BASE |TIMES |VERTICAL HEIGHT
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Area of obtuse triangles

An obtuse triangle has one angle wider than a right angle. At the way it is on this
page, the vertical height “overhangs” the base. The main triangle is a larger right
triangle with a smaller one taken away from it. So, each triangle is half the corre-
sponding rectangle and the formula holds good, although the vertical height is

measured outside the base of the main triangle.

—— = AREA OF AN OBTUSE TRIANGLE
. 7 inches
32 inches
25 inches
‘T 0 of |2
=5 -5 3)
= £ &Sf |E
(]
£33 &
[
>
25 inches
base 32 inches )
inches
Area of
Area of Small Area of
Large =24"X 32" Right = 24" X T Left =24" X 25"
Rectangle Rectangle Rectangle
_ _ = 600 Square
=768 Square (g = 168 Square Inches
Inches Inches
Area of Area of
Large Small Area of
Square- 1 Square- 1 Left 1
Comered = > X 768 Comered = 5 X 168 Obtuse = 5 X 600
Triangle or Triangle or Triangle
= 300 Square
= 384 Square MINUS = 84 Square Inches
Inches Inches
—L:>HALF BASE |TIMES |VERTICAL HEIGHT
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Area of triangles

You can turn that same triangle around, using its longest side as base, instead of
one of the shorter sides. Now, find its area in the same way that you did for the
acute triangle. Notice that so long as you take the vertical height from the base
to the remaining angle (corner), the formula is true and gives the same answer
for the same triangle.

—— = AREA OF A TRIANGLE

The answer
is the same
whichever side
is used as Base.

NS}

2
%Qr

15 inches

20 inches 20 inches
base 40 inches

Area of Each Area of
Small Rectangle = 20" X 15" Big Rectangle =40" X 15"

= 300 Square Inches X 2 = 600 Square
Inches

Area of Each AREA OFBIG
Square-Cornered = 5 X 300 TRIANGLE = > X 600

Triangle or or
150 Square Inches X 2 = 300 Square
Inches

:>HALF BASE |TIMES |VERTICAL HEIGHT

[
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Metric measure

For many years, inconsistency in systems of measurement made learning arith-
metic difficult. 12 inches to the foot, 3 feet to the yard, 220 yards to the furlong,
and 8 furlongs to the mile. Then, 4 gills to the pint, 2 pints to the quart, and 4
quarts to the gallon in liquid measure.

Several measures of weight are used. The common one is avoirdupois: 16
drams to the ounce, 16 ounces to the pound, 14 pounds to the stone, 2 stones to
the quarter, 4 quarters to the hundredweight, and 20 hundredweights to the ton.
Some of these measures have not been used in recent years.

Troy weight, used for jewelry, has 24 grains to the pennyweight, 20 penny-
weights to the ounce, and 12 ounces to the pound. Isn’t it confusing?

Some countries have adopted the metric system, in which every measure is
based on 10s. This system is certainly easier to learn. The problem is that so
many people already learned to use the old systems, so the new ones, though sim-
pler to learn, are strange to them.

Such a change involves making practical changes. For example, plywood is
made in sheets 4 feet by 8 feet. What is that in meters? It comes out to an awkward
fraction. What do we do? Change the standard size for plywood sheets or describe
the present size with rather awkward numbers?

Metric Measure

T SYSTEMS
OLD > TROY WEIGH OF
ns =
SORE D 2 gt e {IMEASURE
RMESCG 2 Yy, g 20 4% 2 | Jound
L‘NEX“(;\\CS = ard quij]{r/J‘\\ / 4@0 12 ounces =
3 feet ™ ) gunton® Uy ey, R
20 Yatds Y e 4 &90‘9,? NEW
5\1(\0“%5 Q//Oq
Same
4 ounce?
VOIRDUPQOIS WEIGHT
16 drams = | ounce
16 ounces = | pound
2,000 pounds = 1 ton MONEY
4 faﬂfll‘ggh@i 100 centimes = 1 franc
Pennjeg ;1 pbenny LINEAR MEASURE
20 shillings hilling 100 centimeters = 1 meter
=1 Pound 1,000 meters = 1 kilometer
All different multiples ATl decimal e WEIGHT
12X 3X 220X ecimat multiples 1,000 grams = 1 kilogram
4% 20X 24 X 10X 100X 1,000
16X ETC.
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The metric system

Metric has advantages in scientific work. This book won’t have to get into that. To
use it, for people accustomed to older systems, requires conversions. Here are
the conversions for linear measure. As you go through, I'll let you know about
metric units in other measures.

CONVERSION between METRIC and ENGLISH UNITS

100 centimeters = 1 meter

0 10 20 30 40 50 60 70 80 90 100
1 meter = 39.37 inches
3

1 2
0 12 24 36 39
NN EN INNENEEENE Nl ANNE R RS REE NS RN |
12 inches = 3feet=1yard
e S~ 1 foot 36 inches = 1 yard
/ ‘\
/ ~
7 \\
rorrr [ 1 square 1 square inch =
0 1 2 centimeter 6.45 square
254 cm centimeters
| 1 inch J

1 square inch

Area problems

Simple area problems are concerned with an amount of area, using whatever
square units are appropriate. However, sometimes these problems are a matter
of “fitting” something into a space of stated dimensions. Areas are not always
simple in shape. So, you need ways to figure more complicated shapes.

If the shapes are square-cornered, but more than a simple rectangle, several
ways might be used to figure them. Shapes other than rectilinear (having straight
sides) are covered later in this book.

Problems, such as papering a wall can, in turn be complicated by a pattern,
which must be matched on adjoining strips. Tiles or material that comes in stand-
ard square or oblong pieces give another kind of “matching” problem: how do
you cut pieces to fill the space so as to minimize wasted pieces? Many of these
problems can be worked out by making detailed trial calculations. Examples are
shown on the next two pages.
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METHOD 1
l | |
12 ft 7 6 ft
- |
\
piece (1)
oft | 15X 9=
135 sq ft
IX 5= |<3fix]
15sq ft
e ,
i 7 ft piece @) :\\\l
4 ft 8X 4= |
32 sqft !
< 11 ft |
METHOD 2
| 18 ft—— |
18—-—..— ——————————————— F
14 piece (1D 12X 1 =12 sq ft
72
180 |
252 '
14 ft piece () 1
5X3= |
15 sq ft
: piece @
1 IX4=
¥ 28saft

Find the Area of this Floor

piece @) 6X 1=6sqft

outside area
is 18 X14 =252

actual area 197<;

piece (1) 135
piece ) 6
piece @ 9
piece @ 32
piece (5) 15

area = 197 <_—

square feet

(Check same answer |
piece 1) 12
piece @ 15
piece (3) 28

55

square feet
subtract 55

square feet
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122"
< 27" "> .
14" Papering a Wall ...
= Five panels must be allowed. Each 86"
go'| st | 2nd | 3rd [ 4th | 5 long. Total 430" or 35 feet 10 inches
panel | panel | panel | panel ﬁ Avoid joins in panels. If 30-ft rolls are

used (360"), this will do 4 panels: 344",
Last panel must start new roll.

/
Pattern - When there's a pattern
/repeats If pattern has to match, length must be allowed
every to next larger complete pattern length. 80" is
86 20" not enough. Needs 100" so 30-ft roll will only
do 3 panels (300").
Remaining 60" is waste.
Nif2131415164718 Tiling a Floor ... with square tiles
2 All pieces must be counted as well as whole
3 tiles. 8 4 = 32 tiles needed.
4
| 1st way" L 2nd way |
_\L |< 130 | = 130" s
9 [ 1]2]3[4]s}e6]7)8]9]i0]11 1{2]3]4{5]|6]|7}8]|of10f11|1213[14[ T
2
3 2
P 3
5 10X 11 00 S
6 =110 tiles 5 C trles
=
6
8
5 7
10 AAL
o e ... with oblong tiles
12" ‘ Area 90" X 130"
Tiles 9" X 12"

1st way saves 10 tiles
over 2nd way.
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Questions and problems

1. Find the area of the following rectangles:

(@) 54 inches by 78 inches (b) 13 feetby 17 feet
(¢) 250 yards by 350 yards (d) 3 miles by 7 miles
(¢) 17 inchesby 5 feet (f) 340 yards by 1 mile

2. What is a right angle? Why is it so named?
3. How many square feet are in (a) 5 square feet, (b) a 5-foot square?

4. Find the area of square-cornered triangles, where the sides by the square cor-
ner have the following dimensions:

(@  Sinches by 6 inches (b) 12feetby 13 feet
(¢) 20 yards by 30 yards (d) 3 miles by 4 miles
() 20 inches by 2 feet (f) 750 yards by 1 mile

5. A field was thought to have four straight sides. Opposite pairs of sides
measure 220 yards and 150 yards respectively. But the field does not have square
corners. A measurement between the opposite 220-yard sides finds that the
straight-across distance is 110 yards. Find the area of the field in acres (an acre is
4,840 square yards).

6. A parallelogram has sides 20 inches and 15 inches long. The straight-across
distance between the 20-inch sides is 12 inches. Calculate the straight-across dis-
tance between the 15-inch sides. (HINT: use the fact that the area can be calcu-
lated in two ways.)

7. Find the area of the following triangles:

(@) base 11 inches, height 16 inches
(b)  base 31 inches, height 43 inches
(¢c)  base 27 inches, height 37 inches

8. Two sides of a triangle are 39 inches and 52 inches. When the 39-inch side is
used as the base, the vertical height is 48 inches. What is the vertical height when
the 52-inch side is used as the base?

9. A piece of property has two square corners. The side that joins these square
corners is 200 yards long. Measuring from each square corner, the two adjoining
sides are 106.5 yards and 265.5 yards. The fourth side, joining the ends of these
sides is 250 yards long. What is the acreage of this property? (HINT: treat this
area in two parts, an oblong and a square-cornered triangle.)
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10. A piece of property measures 300 yards by 440 yards. The owner wants to
keep a smaller piece inside that piece that measures 110 yards by 44 yards and
sell the rest. What is the area he wants to sell?

11. Find the area of the floor in the drawing.

ROOM DIMENSIONS
I/ 7'0" \JI l/ 573" \Jl
A A
T 2'0” 2l0|| T
40" Y Y 46"
—r—
30"} |[DOOR
40" WINDOW| 90"
E 6‘9”
Y
7'0”
4'6"
WINDOW
Y — Y
1/ < 6'0” |
| 2!3" 2'3" |

12. The walls of the room in question 11 are 7-feet high. Doors and windows at
the positions shown, run from floor to ceiling. What is the total surface area of
the walls?



CHAPTER

Time: the fourth
dimension

What is dimension?

Things can be measured with different scales. You might use inches or centi-
meters to measure length, for instance. But whichever system you use, it still mea-
sures length. That is the first dimension. Breadth, depth, height, and width can
be measured with the same units, inches or centimeters. If you measure only one
of them, that 1s still the first dimension.

Measuring area is the second dimension. Two dimensions multiplied
together are an area. Using a third dimension changes an area into a volume.
Just as the second dimension is in square units (square inches or square
centimeters), the third dimension, volume, is in cubic units (cubic inches or cubic
centimeters).

<~LENGTH —>| times

LENGTH

LENGTH

100
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Later, volume is related to measure and weight. For now, the fourth dimen-
sion needs our attention: time.

The fourth dimension: time

How can time be a dimension? Think about it. We use a variety of ways to measure
it. The ancients used sand in an hour glass. Until recently, we used spring-wound
or weight-driven clocks or watches. Quartz electronic instruments use frequency
counted off digitally, as a measure of time. More than measuring time, here we
relate it to other measures, making it a fourth dimension.

A measure is “in” a dimension. The length (or width) of a desk is a specific
number of inches, though the measure goes on beyond the ends of your desk.
Just so, when we measure time, we measure a particular duration of time, but
time goes on, beyond the piece we measure. Time is a dimension.

<—PERIOD - - A MEASUREMENT OF ———

TIME

O O O O
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Using time to build more dimensions

Combining length one way with length another way forms an area. Similarly,
combining time with length or distance, forms speed. Suppose you walk at a
steady rate and an even pace to go a mile in 15 minutes. If you don’t change that
pace, you will go another mile in the next 15 minutes. In an hour (60 minutes)
you'll go 4 miles. Our speed is 4 miles per hour (mph).

Keep it up, and you'll do 4 more miles in the next hour, and so on.To find dis-
tance travelled, multiply speed by time. The same is true of driving. If you drive
60 miles per hour, you go a mile every minute. In 60 minutes (I hour), you will
2o 60 miles.

To know speed, you must know how far in how much time. If you travel 300
miles in 6 hours at a steady speed, you must be doing 50 miles every hour. Six
hours at 50 miles each hour is 300 miles. Speed is distance (a length dimension)
divided by time.

Speed 1 mile every 15 minutes 4 miles per hour
1 mile 2 miles 3 miles 4 miles

- Distance + Time = Speed
60 MILES PER HOUR

ek g g

Speed X Time = Distance
60 MILES
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Average speed

Inthe last section, it was assumed that speed was steady. It isn’t always. On a 300-
mile journey, you might go 30 miles the first hour, 45 miles the second, 60 miles
the third, 55 miles the fourth, fifth and sixth hours. A total of 300 miles are tra-
velled in 6 hours. So, the average speed is 300/6 = 50 miles an hour. You probably
didn’t travel at a steady speed all the way. Sometimes you went faster, sometimes
slower. This measure is called average speed. It is the steady speed necessary to
cover the distance in the same time.

Finding Average Speed

300 miles

30M—><45M ><—60M 55M 55M 55M

OO0

L L L JL

30Mph 45Mph 60Mph 55Mph  55Mph 55 Mph

Total distance 300 miles
Total time 6 hours

Average Speed 9%0— =50 MPH

FIGURING SPEED FOR A SPECIFIC DISTANCE

i —> i

60 miles in 1 hour 1 mile
(60 minutes)

Start 1 mile in | minute

1 mile in 40 seconds

(2m' te)
3 inu

@ Lap is 3 miles; time is 2 minutes 3% hour)

. 1
Speed is 3 + — =90 mph
peedis 3 + o p

60+%=90mph
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Watch your car’s speedometer. You will find that you can seldom go at a
steady speed for a whole hour, or even for a few minutes. Measuring the distance
covered every hour shows the average speed during that hour.

Instead of noting the distance travelled every hour, you might notice your
speed on the speedometer every few minutes. The speedometer will show how
your speed varies during each hour. Perhaps you have to brake to a stop during
the hour. What does that do to the average? Later, calculus will help you answer
that problem.

A racing driver watches his speed closely. Each lap of track might be 1 mile
long. Speed for the lap can be figured by timing that lap. If the lap is made in
exactly 1 minute, the speed is 60 miles per hour. If a mile requires 40 seconds, he
would drive 1 1/2 miles in 60 seconds, which would be 90 miles per hour.

LAP TIMES
DRIVER| 1| 2|3 }4]|5|6|7 1819|110

SPEEDS | 6 | 5|4 [3.5] 4 [3.5([55]45]4 |4

[ J

Averages per lap

Lap Miles Average
number Time Miles per hour of speeds
1 6 5 50+ 10= 5
2 5 5 60 6
3 4 5 75 7.5
4 35 5 85.7 8.57
5 4 5 75 7.5
6 35 5 85.7 8.57
7 5.5 5 54.5 5.45
8 4.5 5 66.7 6.67
9 4 5 75 7.5
10 4 5 75 V
Complete run | 44 50 > 68.17 70.26
WHICH IS THE

RIGHT AVERAGE?
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A lap is 3 miles and the time is 2 minutes (1/30 of an hour). Dividing 3 miles
by 1/30, which is the same as multiply by 30, gives the speed as 90 miles per hour.

Suppose you time a 50-mile race, made by driving 10 laps on a 5-mile course.
The times made by one driver for the 10 laps were 6, 5,4, 3.5, 4, 3.5,5.5,4.5, 4
and 4 minutes. The total time for 50 miles was 44 minutes, an average speed of
68.17 mph.

You could calculate the average speed for each lap and then average the
speed over 10 laps. Each represents the speed for 1/10 of the total distance. So,
shouldn’t the average be found by adding together the speed for each lap and
dividing by 10? Doing that gives an average of 70.26 mph, a different figure.
Which is right?

The reference quantity

Speed (movement) involves two dimensions: distance and time. Which is more
important? Usually, time is. You want to get somewhere, but you want to know
when. Time will pass whether you go fast or slow. So, the distance is measured
against time, miles per hour. Miles are referred to the time required to travel.

MINUTES  Average of minutes

Lap number Time Miles PER MILE per mile
1 6 5 1.2 +10= 0.12
2 5 5 | 0.10
3 4 5 0.8 0.08
4 3.5 5 0.7 0.07
5 4 5 0.8 0.08
6 35 5 0.7 0.07
7 5.5 5 1.1 0.11
8 4.5 5 0.9 0.09
9 4 5 0.8 0.08
10 4 5 0.8 008~
Ve
Complete 44 50 68.17 0.88

Run —/:

0.88 minutes per mile
= 0.88 X50 = 44 minutes for 50 miles.

THE REFERENCE  MILES PER HOUR (TIME)
QUANTITY: MINUTES PER MILE (DISTANCE)
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In the previous section, distance was the reference used: time was
measured every 5 miles, rather than distance every so many minutes. That is
why the discrepancy occurs.

Look at slowness instead of speed: minutes per mile, instead of miles per
minute. We don’t usually measure in minutes per mile. The figures would be 1.2,
1,0.8,0.7,0.8,0.7,1.1,0.9, 0.8, and 0.8 minutes per mile. Adding the figures pro-
duces 8.8 minutes. As each was taken over 5 miles, not 1, 50 miles will require 5
times 8.8 (44 minutes), an average of 68.17 miles per hour.

HOW PROPORTION
OF TIME AFFECTS AVERAGE

Y 30 mph for 1 hour » 30 miles

| 30 mph for 10 min
60 mph for 50 min

miles
Olmiles

55 miles per hour

T

60 mph for 40 min 4 40[miles

30 mph for 20 min miles
0

el

50 miles per hour

30 mph for 30 min o 15[miles
60 mph for 30 min 4 30)miles

45 miles per hour

| 30 mph for 40 min « 20[miles
60 mph for 20 min ¢ 20|miles

40 miles per hour

30 mph for 50 min 4 25|miles
60 mph for 10 min 4 10|miles

35 miles per hour

H 60 mph for 1 hour « 60 miles

PN
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Changing the average

Suppose you travel for 1 hour. Assume that you went 30 mph for the whole hour:
you will have gone 30 miles. Now suppose that for the last 10 minutes you go 60
mph: you went 25 miles at 30 mph and 10 miles at 60 mph, a total of 35 miles.
The average is now 35 mph. The rate increases as more time is travelled at the
higher speed.

Making up time

Now suppose you have 45 miles to go and an hour to do it in. At a steady speed
that would be 45 mph. But suppose you go at 30 mph for 10 minutes—that’s 5
miles travelled. Now you need to go 40 miles in 50 minutes—48 mph. That’s just
3 mph faster than going steady all the way.

40 miles and
50 minutes. Needs

48 mph

30 mph for 10 min
5 miles leaves

30 mph for 20 min
10 miles leaves

35 miles and
40 minutes. Needs

52.5 mph

30 miles and
30 minutes. Needs

30 mph for 30 min
15 miles leaves

60 mph

30 mph for 40 min 25 miles and
20 miles leaves 20 minutes. Needs

75 mph

30 mph for 50 min 20 miles and
25 miles leaves 10 minutes. Needs

120 mph

30 mph for 1 hour 15 miles _ _ _
30 miles leaves BUT NO TIME!
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Rate of growth

Speed and rate of growth are similar ideas, rather like comparing the hare and the
tortoise method of travel. In terms of minutes or hours, growth might be imper-
ceptible. You can measure time in days or weeks. You can measure growth in
inches or feet.

The rate of growth raises another question of reference quantity. If a seedling
is 2 inches high today, and tomorrow it’s 10 inches high, that sounds like fast
growth. However, if a 30-foot tree grows to 30 feet 8 inches by tomorrow, you'd
have to look twice to see if it had grown overnight at all. When you add 8 inches
to 2 inches, that’s a big growth. But added to 30 feet, 8 inches doesn’t seem like

much.

BOTH GROW 8 INCHES, BUT ONE DOESN’T
SEEM AS SIGNIFICANT AS THE OTHER

30 feet 8 inches

30 feet grows to

! 10 inches

A

2 inches
grows to
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Fractional increase
The seedling grew from 2 inches to 10 inches, increasing 4 times yesterday’s
height. The 30-foot tree added 2/3 foot (8 inches), which is only 2/3 divided by
30, as a fraction of the height of the tree: 2/90 or 1/45.

Considered as a fractional increase, the seedling adds 4 times its height, the
tree only 1/45, although both actual measurements are 8 inches. Using fractional
increase as a reference, the seedling grows 180 times as fast as the tree.

—

Seedling grew 41—1' of its

original height ...
GROWTH IS 4 TIMES ... while the tree only
grew ‘% of its

original height

ORIGINAL HEIGHT

i

Percentages
Percentages are a standard way to express things as a fractional reference.
Percentages were developed before decimals to make working in fractions easier.
Decimals might be easier to understand directly, but percentages were used so
long that they became a habit for many purposes.

Percentages began because fractions are clumsy. If you were asked which is
the bigger fraction, 2/5 or 3/8, could you answer just by looking at them?
Converting to decimals makes it easy: 2/5is 0.4 and 3/8 is 0.375. So, 2/5 is larger.
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WHICH IS BIGGER? £ or 3

5 8
1. BY FRACTIONS COMMON DENOMINATOR IS 5 X 8 = 40
2 2X8 16 3 _3X5 15
5 5X8 4 8 8X5 40

THIS IS BIGGER THAN THIS l

2. BY DECIMALS

2. 04 % = 0.375 04 0375

5 5/2.0 8 / 3.000

3. BY PERCENTAGES
2 2X20 40

5 5%20 100

= 40%

3 3x125 375
g 88X 125 100

= 37.5%

PERCENTAGE ALWAYS RELATES TO
STARTING FIGURE

STARTS AT 2 INCHES; GROWS TO 10 INCHES
Growth is 8 inches which is 4 times starting height

4 times is 400 or 400%
100

STARTS AT 30 FEET; 5
GROWS 8 INCHES MORE(; FOOT)
Growth is 2 + 30 = 2 = 1
3 90 45
0 20 2
45 _ 9 9

= 2%

& |

100 ~ 100 _ 100
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Percentages use 100 as the denominator, so the numerator can often be a
simple number. You can see that percentages, like decimals, make it easier to
compare fractions at a glance. 40% is obviously more than 37.5%.

Another reason for using percentages is that they always refer to the starting
size or number. If you say something grew 8 inches, you don’t know whether to
think if that’s fast or slow, unless you know how big it was at the beginning. For the
seedling, itis400%. For thetree,itis2/45 x 100 =200/45 = 2 2/9% or 2.222%.

A percentage is a number divided by 100, taken as a fraction of the number
that you started with.

Percentages with money

When dealing with money, you often hear about percentages. If railway or airline
fares increase, it’s usually figured as a percentage. Dividends are paid as a percen-
tage, so that everything can be divided fairly.

Flat rate increase:

Everybody pays $1 more.

Scents (__J g0esupto

Percentage increase:

Everybody pays 10% flﬁth) more.

1
5 cents goesupto Sad = 55 cents
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A railway company has to raise fares because costs have increased. It would
not be fair to charge everyone $1 more. That would raise a 5-cent fare to $1.05
and a $30 fare to only $31.

If the profits for a company are $10,000, $50 would be given to each of the
200 stockholders. One stockholder might have invested $1, another $100,000.
Would it be fair for each of them to get $50 of the profit?

Such things are worked out on a percentage basis. If the railway’s costs rise
from $100,000,000 to $110,000,000, that is a 10% increase. To get this money
back in fares charged, each should increase by 10%. Thus, the 5-cent fare would
then only increase to 5.5 cents (probably 6 cents), and the $30 fare would go
to $33.

Similarly, if profits are $10,000 on a total investment of $2,000,000, the rate
is 5%. The stockholder who invested $1 gets 5 cents. The one who invested
$100,000 gets $5,000 dividend.

Percentages up and down

One thing to watch in percentages: always use the starting figure of a transaction
or calculation as the 100% point.

Suppose a man buys property for $100,000 and its value increases, so he sells
it for $125,000. He’s made 25% profit on the deal: it cost him $100,000, he recov-
ered his $100,000, and made $25,000 more. The profit is $25 for every $100 of
the starting price.

The value decreases, so the second man sells it for its original price of
$100,000. Being back to its original price, after having gone up 25%, you might
think it dropped 25%. But it hasn’t. The second man paid $125,000. Of his origi-
nal investment, he gets $100,000.

The loss is still $25,000, but now it’s a fraction or percentage of $125,000, not
of $100,000. The loss is 20%. He lost $20 for every $100 of his purchase price.
$20 x 1250 = $25, 000.

FIRST MAN /\ﬁ

l [ E ]
Buys — for $100,000
|| ||| T E
Sells it for $125,000
Profit $25,000 22990 _ 550

100,000
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SECOND MAN i

1501
Buys ! = for $125,000
H II|E

T

Sells it for $100,000

Loss $25,000 22:000

125,000 20%

A 25% increase is the same fractional change, reversed, as 20% decrease.
Smaller percentages come nearer to being the same, either way. For larger per-
centages, the difference is larger. An increase of 100% is doubling, but the reverse,
which is halving, is a decrease of only 50%.

Graphical representation of facts

Visual presentation of statistics is common these days. Commercials use it all the
time—even if their “facts” are questionable! Visual comparison conveys an
impression more quickly and effectively than numbers can.

So, graphic presentation is widely used. Lengths replace numbers. Suppose
you want to show your club’s growth in membership. The figures for successive
years are: 47, 52, 65, 73, 76, 77, 85, 96, 110.To show this growth, you draw lines

GRAPHS REPRESENT 110
THE FACTS VISUALLY
MEMBERSHIP ¢

76 7

MEMBERSHIP

1953
1954
1955
1956
1957
1958
1959
1960
1961

73

N <t VO~ 00 N O
VNN N wm o O D
[= e N e Se N e e e T e S e
—_— e e = e o e
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or blocks to represent the number of members for each year. If you draw each
member at 1/16 inch, 100 members are 6 7/8” high. Having drawn the lines,
equally spaced, to represent 1-year intervals, you have a visual picture of member-
ship growth. You can place the lines either horizontally or vertically.

Graphs

Visual presentations can help in many ways. A club might want to show how
many members belong to certain groups: engineers, doctors, lawyers, salesmen,
factory workers, shop assistants, truck drivers, musicians, etc. They could list
these occupations as percentages or a number of lines could be placed side by
side, as on the previous page. But here, the idea is to show how much each is, of
the whole. So, a square of suitable width is marked off in 100 units and each
group is given a space, which represents that percentage of the total. Since the
total is 100%, all the widths together must fill the box.

MEMBERSHIP COMPOSITION

&
5 S S e Sl s
— 2 Z - ” 2| =
2 [+4 7]
= 2 & cE | 822 =
o @) 84l = T < = S
Z 3 Z 2% | “5 2] S
21 8 | S || "2 8|53
= — <|=| =
E
SALESMEN 3% GRAPI__IS
How a Graph is Made
or<] X2
Each tenth divides by ten
MUSICIANS ENGINEERS again making 100 parts
11% 13% i
TRUCK

DRIVERS
8%

SHOP
ASSISTANTS

13% engineers 13%

FACTORY

WORKERS 18% LAWYERS

Circle divides into 10 parts

SALI;:E/MEN 15% (each 36° on a protractor)
(7]
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Another way that is sometimes favored, is to divide a circle up in the same
way. Its circumference is divided into 100 parts (10 are shown here to make it
clearer). Then, divide the circumference according to the percentages in the
groups and draw lines from each marker to the center.

Graphs are also used to help make calculations. Suppose tests on an electric
motor relate electrical wattage input to horsepower output. Results are tabu-
lated—from electrical power running “light” with no mechanical output, to elec-
trical power inputs for various horsepower outputs.

Suppose you have ajob that requires an unlisted amount of horsepower. How
do you calculate the electrical power it needs? A graph makes the job easier.
Mark points on squared paper to show all the figures in the table, then join the
dots made. You need not know anything about electricity to do this graph.

Find the amount of electrical power that is needed for the new job by reading
it on your graph. This process is called interpolation.

Graphs can show a lot of things that are not obvious from the figures used to
make them. They also are useful to check figures. In making the tests tabulated,
you read meters to write down numbers. A meter might have numbers on its
scale at 20 and 30, with 9 unmarked lines in between. The reading should be 23,
but maybe you wrote 27 by mistake. All the other readings are correct.

Power Electrical Electric Motor Mechanical
Supply Wattmeter Hosepower
‘ Meter

1,600 1404
1,400 Wa

1,200 T THIS IS
1,000 : INTERPOLATION

846 | A

654 L4

600 474

o
400 ,Q’\ =P
200 LAZT-306 AN
ﬁ'g150
o 1
02 04 06 08 1.0 12 14
MECHANICAL HORSEPOWER

BUT WHAT ELECTRICAL POWER FOR 0.5 HORSEPOWER?
563 WATTS

ELECTRICAL WATTS
oc
8
N

Horsepower 0{02({04|06} 081101214
Watts 150 | 306 | 474 | 654 | 846 |1,050]1,266]1,494
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GRAPHS HELP FIND MISTAKES

50

40 74
30 A
= MISTAKE =t/
S 20 /' , %%22

10 A1

// \
o /M I\

1 2 3 4 5 6
QUANTITY A

QUANTITY B
20 30
uanty[ o T s 4 Vs | s
A / This was the reading
QUANTITY 0 2751 75 1425 27 133.75| 46.5 when rechecked
A . 5 |14 . :
%
F
£ 50
. Z 40
The same basic =
information— £ 30
<
presented =20
different ways Z 10
[
Al
g 0 5 10 1520 25 30 3540 45 50
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= ]
= 80 J " Overall Average ~
172} = r=r o) - - - . [ad]
A 60 = 6 A\
m 2 \
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You plot your graph using your figures. All the points line up nicely, except
the one that you wrongly copied as 27. This point immediately gives you a clue
where you made the mistake. So, you take that reading again and find that you
misread the meter.

Modern meters have digital readings. You could copy the numbers down
wrong. Nobody is exempt from making occasional mistakes.

The same basic information can often be presented in a variety of different
ways. Going back to the race track situation from earlier in this chapter, here are
some ways to show the driver’s performance visually. Here visual can have two
meanings: watching him go around the track or using graphs that analyze his per-
formance visually.

Questions and problems

1. How far will a car go at 35 mph for 36 minutes? (HINT: find what fraction 36
minutes is of one hour.)

2. A riverboat makes a water speed (at which its motor propels it through the
water) of 10 mph. The river has a downstream current flow at 2 mph. How fast
does the boat go (a) upstream? (b) downstream?

3. How long will the riverboat in question 2 take to make a journey of 96 miles (a)
upstream? (b) downstream?

4. Traveling at a water speed of 10 mph, the riverboat burns half a ton (1 ton is
2000 pounds) of fuel per hour. How much fuel does the boat use on its 96-mile
journey (a) upstream? (b) downstream?

5. If the boat slows down to make the downstream journey in the same time as
the upstream one, and if that reduces fuel burned in proportion to speed reduc-
tion, (a) Will reducing the downstream speed save fuel? (b) How much? (c) What
would be the percentage saving (on the round trip)?

6. If the boat reduces its water speed on the upstream run, will it save fuel or use
more? How much? What percentage.

7. A man invests $50,000 in stock. For the first year, it pays a dividend of 5% on
his investment. At the same time, the value of his stock rises to $60,000. If he
sells the stock, how much profit will he make (a) in cash? (b) as a percentage?

8. During early weeks of growth, a tree’s height is recorded every week. For 5
successive weeks, the heights are 16”7, 24", 36", 54", and 81”. What is the percen-
tage growth per week for each of the 4 weeks? What is the percentage for the
whole month?
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9. Make a graph of the tree’s growth for the month. From the graph, estimate
the height of the tree in the middle of the second week.

10. A race track has an 8-mile lap that consists of 5 miles with many hairpins,
corners, and grades. The remaining 3 miles has straights and banked curves. The
best time any car can make over the 5-mile part is 6 minutes, but the 3-mile sec-
tion lets drivers “open up.” Two drivers tie for the best on the 5-mile part, but
one averages 90 mph on the 3-mile part, and the other averages 120 mph. Find
the average speed for each on the whole lap.

11. A car is checked for mileage per gallon and is found to give 32 mpg on
straight turnpike driving. How far will it go on a tankful if the tank holds 18 gal-
lons?

12. A company needs printed circuit boards for which two processes are avail-
able. The first needs a tool that costs $2,000, then makes boards for 15 cents
apiece. The other uses a procedure that initially costs $200, then makes boards
for 65 cents each. Find the cost per board, assuming the total quantity ordered
1s:100, 500, 1,000, 2,000, 5,000, and 10,000 units, by each process.

13. Plota graph of the cost per board by the two processes (question 12) for quan-
tities from 1,000 to 10,000 boards. For how many boards would the cost of both
processes be the same?

14. Driving a car at a steady 40 mph produces a mileage of 28 mpg. Driving the
same car at 60 mph reduces the mileage to 24 mpg. On a journey of 594 miles,
how much gas will be saved by driving at the slower speed and how much longer
will the journey take?

15. A man pays $200,000 for some property. After a year its value rises 25%, but
he does not sell. During the next year its value drops 10%, after which he sells.
What profit did he make on his original investment (a) in cash? (b) percent?
Why was it not 25 — 10 = 15% profit?

16. After all allowances and deductions have been made, a man’s taxable income
is $120,000. How much tax will he pay at 20% on the first $30,000 and 22% on
the rest?

17. A square-cornered triangle with 12-foot and 16-foot sides against the square
corner has the same area as a parallelogram with opposite pairs of sides that are
10 feet and 16 feet long. What is the distance between the 16-foot sides?

18. An aircraft gains altitude at 1,000 feet per minute. How long does it take to
climb to its flying altitude of 22,000 feet? If its forward speed while climbing is
360 mph, how far does it travel while climbing?
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19. An aircraft in level flight has a speed of 420 mph, but it consumes fuel at half
the rate (per minute) compared with climbing. How far can the plane fly level,
using the same amount of fuel used in climbing to 22,000 feet?
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CHAPTER

First notions leading
into algebra

Shorter methods for longer problems

As problems get more complicated, so does the arithmetic to solve them. People
invented multiplication and division to shortcut the repeating of addition and
subtraction. Algebra began to handle more involved problems, where older short
cuts didn’t help much. Even that has become more complicated now that com-
puters and calculators use algebra. Taking these problems one step at a time
makes it easier.

This page shows a relatively simple problem that algebra helps: fencing for a
double-fenced enclosure. Two things are fixed: the length of the inner enclosure
must be 3 times its width and the spacing between the two fences must always be
3 feet.

This can set two kinds of problems. Given enclosure size, how much fencing
is needed? Given a length of fencing, how big an enclosure will it make? The first
question can be answered by the arithmetic tabulated; no algebra is needed. The
information at the top of the next page shows the arithmetic that is needed for
this part. The second isn’t so simple.

Outer Fence Inner Fence— PROBLEM
@How much fencing?

@ How large is the enclosed area,
with a given amount of fencing?

123
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1 213 4 5 6 7 18 9 10 11 12|13
4€—————Inner Fence > € Outer Fence ——=3 TOTAL
2pieces | take |2pieces| take | TOTAL|2pieces| take |2 pieces| take |TOTAL| BOTH
width | length | (width) (length) (width) (length) FENCES
10 30 10 20 30 | 60 80 16 | 32 36 72 1 104 | 184
15 45 15 30 | 45 { 90 | 120 | 21 42 51 102 | 144 | 264
20 60 20 | 40 60 | 120 | 160 | 26 | 52 66 | 132 | 184 | 344
25 75 25 50 75 | 150 | 200 | 31 | 62 81 162 | 224 | 424
30 | 90 30 | 60 | 90 [ 180 [ 240 [ 36 | 72 96 | 192 [ 264 | 504
35 [ 105 ] 35 70 | 105 | 210 § 280 | 41 82 | d11 | 222 | 304 | 584
40 | 120 | 40 80 11201240 | 320 | 46 | 92 | 126 | 252 | 344 | 664
P THIS | PLUS 6(2x3) = {This ]
This = THIS > | THIS > PLUS 6= )ﬂ THIS |
] Ts =’E§ ‘
|1 @E& T4 = THIS @s: THIS
s || pLus [ s ][ s ThIs || PLUS [ THIS |-
THIS »- PLUS » THIS |=[ THIS
Graphical
700 - 1
2 bod= presentation
g 600 58 p ofdata
[-P] 4» [
2 an shown in
£ 500 aaR i an table above
g Rr
< 400 as .
- 3.42 A - n N
8 L1l A
& 300 1T
= 204€ Y,
s L 27 feet 3
o =y I
= 20007 84— wide
100
0 10 20 30 40
Width of inner enclosure (feet)
e 16
456 =440+ — or
500 P 20
/] AN
480 4 4 of space
460 . 5
$1- Each space
440 ¥ is 20
424 A _
400 > So 4 is—or
y y 20
—gmof a space

24 25 26 27 28 29 30
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Graphs check arithmetic and find solutions

With all the steps in the calculations, you might make a mistake. By graphing your
results you can find mistakes. The results should be on a straight line or on a
smooth curve (according to the type of problem). A point that isn’t on the line or
curve, alerts you to a mistake.

Make the graph with squared paper. Choose a scale that uses as much paper
as possible without making the values awkward to read. Here, each small space
represents 20 feet of fencing. The problem says you have 456 feet of fencing, so
the graph shows that the width of the inner enclosure can be 27 feet.

Algebra: a more direct way
The methods of the last two pages are quite long. They involve making the same
series of calculations several times with different numbers. A pocket calculator
makes these problems easier than they used to be. However, it’s still a long way
around, especially if you only want one answer. See example on top of page 126.
Without actually using algebra, first write all the pieces, in terms of either
width or feet, and add them. The total length of fencing is 16 widths + 24 feet.
You calculate each answer in the table with this formula, using only one multipli-
cation (x 16) and one addition (+24). Or, turn everything around with a process
you will become more familiar with in algebraic terms.
This is an equation:

Total length of fencing = 16 widths + 24 feet.

The words on either side of the equals sign have the same value; they are dif-
ferent ways of naming the same amount. Next, if you subtract 24 feet from each
side of that equals sign, the statement or equation will still be true. Each side will
be 24 feet less. Now you have:

Total length of fencing — 24 feet = 16 widths.

Divide both sides by 16 and it will still be true. Each side will be 1/16 what it
was before.
Length of fencing — 24 feet, all divided by 16 = width.

w2 pieces each [ 1 width |long =[ 2 widths |

~t=F 2 pieces each [3 widths Jlong =[ 6 widths |
= 2 pieces each| 1 width |long =
and 6 feet| and

2 pieces each | 3 widths |long =| 6 widths |
and 6 feet| and
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otal len 0 1 = 1 L
find total length & eneme Lo e
. Total length of fencing is 16 X 25, then add 24 feet
of fencing
25
X16 -16 X 25 = 400 ft ool 13
150 add —> 24 ft — | o o 21
250 Answer 1  total = 424 ft P
400
Total fencing length Reverse Process 456
@ is 456 ft: find width Subtract 24 ft ——24
and length of enclosure 432

Divide by 16 41432

4\108
27 ft wide, and 3 X 27 = 27

81 feet long I

Answer 2

Writing it as algebra
Writing problems of this kind can be shortened by using the first, or some conve-
nient letter, to stand for each original measurement or quantity in the problem.
You could write w for width. Length is specified as 3 times the width, so
write length as 3w, meaning 3 times w. Finally, write f for the total length
of fencing.

When using algebra, as in arithmetic, always be careful that units are consis-
tent. Here they are all in feet. Do not use some in inches or yards, and others in
feet.

Total length of n encing = idths feet

The single letter can stand for these

Since the whole problem is stated in feet the word is not necessary

BUT the whole problem must be [stated in the

same units
Standard Letters

The same problem, using standard letters, is
y=16x +24
where: x = width of enclosure in feet
y = total length of fencing in feet
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When you start in algebra, a lot of questions arise that many teachers don’t
answer, so most people eventually give up. Through this book, I try to answer
questions as they logically arise.

Different ways of writing in arithmetic and algebra

In arithmetic, we write numbers using figures in a row. Thus, 23 is 2 tens plus 3
ones. In algebra, ab isn’t a tens and b ones, but ¢ multiplied by b. Get used
to this, because it’s the way everybody does it.

Asyou look at such new things, ask yourself, “What’s this new way of writing
mean?” That’s one difference between arithmetic and algebra, of which you’ll
see more as you go on.

Different kinds of algebra exist. The kind that’s been taught in schools for
years is “school algebra.” In it, ab is a times b and xy is x times .
Sometimes, a period, often above the line, is used for multiplication.
Sometimes, even a times sign is used, but a times sign is too easily confused
with the letter x.

Computer algebra is somewhat different from “regular” algebra. One differ-
ence is that multiplication is shown by an asterisk between the letters: a x 5.”

ARITHMETIC ALGEBRA
163 means 100 16w means 10
plus 60 plus 6
plus 3 [ all multiplied by w
To multiply 16 by 3: To multiply 16 by x:
multiply 6 by 3 18 multiply 6 by x 6x
multiply 10 by 3 30 multiply 10by x  10x
Add together 48 A total of 16 times x  16x
16w + 24 means:
16 is multiplied by w,
but 24 is not

What does 16w24 mean? It has no definite meaning

Brackets or parentheses

When many older folks learned algebra, the use of brackets or parentheses, was
standardized. Some uses that you will see today were considered unnecessary.
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Computers use algebra that has changed that somewhat. But the principles
haven’t changed.

Parentheses are used today because we often want to know which to do first,
add or multiply, for instance.

Some remember the rule, “do the inside brackets first.” Others think better
about why to do that. What is inside the parentheses is regarded as a single quan-
tity. Thus, “w + 6” is enclosed in parentheses, meaning that all of it is multiplied
by the “2” outside the parentheses.

2(w + 6) means 2 MULTIPLIED by w + 6
If wis 15, 2(w + 6) is 2 X 21 = 42 <{—=—+ Different

2w + 6 means 2 MULTIPLIED by w; then add 6
If w is 15, this means 2 X 15 = 30; add 6 makes 36 <}/

That's why brackets are used

In arithmetic In algebra
23 means 20 ab means a times b
plus 3 Ifais2andbis 3;
ab=2X3=6

Rewriting the Problem

Inner fence: 2 sections w and 2 sections 3w
=2w + 6w = 8w
Outer fence: 2 sections w + 6 and 2 sections 3w + 6
=|2(w+6)| + | 23w +6)
Total fence = 8w + 2(w + 6) + 2(3w + 6)
=8w+2w+ 12+ 6w+ 12

=@+2+60)w+12+12

= 16w+ 24

Using more than one set

Inthe previous section, two expressions in parentheses used the same w to derive
lengths in the outer fence for width and length. The inner fence didn’t
involve parentheses. If you want to calculate how much lumber it requires,
assume that you need 12 feet of lumber for each foot run of fence, whether
inner or outer. Multiply the total length of fence by 12, so put a different
pair of parentheses around this section of equation.

Four kinds of parentheses are commonly used. Some call them all parenthe-
ses, some call them all brackets. Call them what you like, so long as you know
how to use them.
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HOW MUCH LUMBER FOR STAKES?

12 feet needed for every foot run of fence
Total footage of lumber = 12[8w + 2(w+ 6) + 2(3w + 6)] ft

T

Note use of brackets within brackets

Four kinds of brackets can be used, when needed.

Parenthesis, or round —>( W + 6 )

Square >[w+6]
Brace >{w+6 )
Vinculum > w+6

A problem expressed by algebra

For any kind of algebra to be useful, you must be able to write a problem into it.
Don’t make x mean anything for the moment so that it can mean anything
about which you might have a problem. x comes into the problem 3 times.
First, as the number itself. Then, as a number that is 4 times another number
that is 5 more than x. Finally, as a number that is 2 times a number that is
3 less than x. These three numbers added together are 210. How do we
solve it to find out what x was to begin with?

The problem requires 3[x+4(x+5)+2(x-3)]=210
you to: A T A A A AA A A

@Take X

@ Take x, add 5
multiply by 4

@ Take x, subtract 3
multiply by 2

@ Add @, @ , and @ together

multiply by 3

@ This makes
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Removing the parentheses to solve it

We solve the previous equation by removing the parentheses, following the rule as
explained, starting from the inside ones.

4 times x + 5 1s 4x + 20. 2 times x — 3 1s 2x — 6.

Multiply each part of what’s inside the parentheses by what’s outside it. Then,
collect the pieces inside the big parentheses. Add the three x terms: 1 (don’t write
the 1 in algebra), 4, and 2. That makes 7x. Add two plain numbers, 20 and —6.
20 — 6 = 14. Now, you can multiply the whole thing by 3 more easily: 21x + 42.

An easier, more direct way exists in this case. If 3 times what’s in the big par-
entheses is 210, then each must be 1/3 of 210 (70). 7x + 14 = 70. If you subtract
14 from both, the new numbers will still be equal. 14 — 14 is 0. So,
Tx+ 14 — 14 =70 — 14. 70 — 14 = 56. So 7x = 56. Divide both sides by 7
x = 8.That’s the number you wanted to know.

Check it. First, you have 8. Then, multiply 5 more than 8 (which is 13) by 4.
That makes 52. Finally, multiply 3 less than 8 (which is 5) by 2. That makes 10.
Adding together: 8 4+ 52 4+ 10 = 70. 3 x 70 = 210, which is what the problem
said to start with.

Solving the Problem

3[x+4(x+5+2(x-3)]=210

*
[ [ 22N
Ix+4x +2x =7x 20-6=14

3[7x +14]1=210

Ny

+ 3 (both sides), gives 21x +42 =210
7x+14=70
* Subtract 42: 21x =168
Subtract 14: 7x = 56
Divideby 7. x =8 Divide by 21: x=8

Same answer

Putting a problem into algebra

Here’s a problem where algebra could help. Eleven young people (some boys,
some girls) went to eat together. Each boy ordered something that cost $1.25.
Each girl ordered something that cost $1.60. The total check came to $16.20.
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One way of writing the problem is shown. Each price was written as a number of
nickels. You could also write it in dollars, but that would involve decimals.
Whatever units you use, stick to them throughout the problem.

11 meals served Each girl's meal costs
to boys and girls $1.60 or 32 nickels

Each boy's meal costs
$1.25 or 25 nickels

Total check is
$16.20 or 324 nickels

How many boys? How many girls?

X I1-x
Cost of boys' meals »25x nickels
Cost of girls' meals //>32(1 1 /«— x) nickels
Total cost > 25% +32(11 ¥x) =324 ¢

This is the problem expressed in algebra

Solving it by removing the parentheses

After removing the parentheses, the —x on the left is bigger than the +x, so the x
term is minus. You can change all the signs. If two minus quantities are equal,
the same two plus quantities will be equal too. You can look at the same thing as
taking away the minus quantity from both sides. If you subtract a minus quantity,
it is the same as adding a plus quantity. See example at the top of page 132.

Think about it carefully. Understand it, then make the rule you can most
easily use yourself. However you do it, it comes down to 28 = 7x or 7x = 28.
Dividing both sides by 7, x = 4 (meaning 4 boys), which leaves 7 girls.

Checking your answer and your work

Always check your answer against the original problem statement. 4 boys at $1.25
1s $5. 7 girls at $1.60 is $11.20. Added together, this makes $16.20, which the pro-
blem gave as the total bill (as shown on page 132).

Now, look at the algebraic statement to see what it means. In that statement,
352 — 7x = 324 (or the equivalent, if you did it in dollars), 352 nickels is the
price it would have been if they were all girls (i.e., no boys, the x figure was zero).
that’s $17.60. The 7x means that every boy makes the bill 7 nickels (or 35 cents)
less. The 324 nickels are the actual bill ($16.20).
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Solving the Problem
+25x + 32(11 —x) =+ 324

+25x +352-32x =+ 324

+352-7x =+ 324 Minus becomes plus

Plus becomes minus
+352-324=+7x

28 =7x x=4

4 boys 11 —-4= 7 girls <—
Each boy pays $16.20 + 4 or $4.05
A

Answer 1 Answer 2 Answer 3

CHECKING YOUR ANSWER

4 boys at $1.25 = $5.00
7 girls at $1.60 = $11.20

Total check $16.20

Checking each statement

25x +352-32x =324
> 352 -T7x =324 <

All girls would make So the actual

the check nickels check is nickels
;_l For each boy the I
check is 7 nickels less

Magic by algebra

This trick is good to use at a party. Ask each person to think of a number (not say
what it is) and write it on a piece of paper. Then, tell them to: Add 5. Multiply by
2. Subtract 4. Multiply by 3. Add 24. Divide by 6. Subtract the number you first
thought of. Give them time to do each, before you give the next instruction.
Finally you announce that their answer is 7.
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The fact that they all thought of different numbers, but all have the same
answer (if they didn’t make a mistake) seems like magic. However, you can
prove that it works by using x to stand for any number. The fact that x disappears
at the end shows that the answer will work for any number.

% Think of a number X

Add 5 X+5

(3) Multiply by 2 2(x+5)=2x + 10
@ Subtract 4 2x+6

(G Multiplyby3  3(2x +6) =6x + 18
Add 24 6x + 42

(@ Divide by 6 Xx+7
Subtract x

Subtract x

Simplify: 3[2(x+5)-4]+24

% 7
12
B3 24
@ 20
B 60
84
@ 14
8 Think of a number X
Add 5 X+5
(3) Multiply by 2 2(x +5)
(@) Subtract 4 2x+5)-4
(5) Multiply by 3 3[2(x + 5) - 4]
Add 24 3[2x +5)—4] + 24
(D Divide by 6 3[2(x + 5) - 4] + 24

6
3’[2()(+5)—4]+24_X
6

3[2x+10-4]+24
X= - X

6

6

|—>=3[2x+6]+24__x=6x+18+24_x=6x+42 .

6

6 6

=x+7-x=7
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@f Boat travels at 30 mph
=~ in still water.

Water moves downstream
< Water x mph at x mph. Boat's speed
downstream is (30 + x) mph.

CREC

In 10 minutes, he goes 1
(30 + x) miles.

He drifts for 30 minutes at
pre=—Soah ~ x mph. Total distance
~ - . downstream is

£(30+X) +7x.

e 1 (Bo+x)+ L miles—s} .
6 2 He drives upstream at

@A“-(— 130 %) miles = (30 — x) mph for 20
3 ~ ~~— minutes. This brings

him back L (30— ;
Multplying out: 5 + Lx+ 1x—10 -1 X)K : 3 (30 - x) miles.

6~ 2 He finishes & (30 +X) +3 X~ 3 (30— x)
miles downstream from starting point.

@ ~<—— Water is flowing at x mph '@ Boat
T T Emiles_____— 1] In 10 minutes drive

downstream log

(+)

1 ]
moves & X miles.

Boat is 5 miles
. from log.

5 miles e %x —! In next 30 minutes,
(+) +) boat stays 5 miles
]E ~ — from log. Both drift
AM’\M/\:\I\-\_\MM/\M\MAMMMW

% x downstream. Log

< (:‘_) > is now %x from start.
5 miles
< ) In driving back, boat

® N passes log, finishes
‘\"""D;D 5 miles upstream.
— X .
e L~~~ Log is now X miles

Downstream is + downstream. Final

Upstream is — position of boat is
Boat going upstream travels — (x — 5) miles
downstream.

Speed is boat's water-speed —
less speed of water — (—) = +

because water is still going downstream
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Minus times a minus makes a plus

This problem is difficult to understand without something you can visualize.
Suppose a man rents a boat with a motor, which will drive it at 30 miles per hour
in still water. First, he drives it downstream for 10 minutes. Then, he drifts with
the current for 30 minutes. Finally, he heads upstream for the remaining 20 min-
utes. Where does he finish, relative to his starting point?

You don’t know how fast the river is flowing, so write an x for the river’s rate
of flow in miles per hour. This variable gives us an expression for his final position,
in miles downstream: 5+ 1/6x 4+ 1/2x — 10 — (—1/3x). The minus is times a
minus because heading upstream is the opposite direction. If the river was not
flowing, he’d go 10 miles upstream (the —10). Since the river is flowing at x
miles/hour, he floats less than 10 miles upstream by 1/3x miles, which turns out
to be downstream, because that’s the way the river is flowing. Since he’s heading
upstream, it slows him down: minus times minus.

Solving the problem

Now, use an imaginary floating log to solve a problem of that kind. The boat’s
position, relative to the log, will be given by the numbers without x. In one hour,
the log floats x miles downstream. You can substitute values for x to get a variety
of “answers.”

Collecting the number terms, +5and —10, he finishes 5 miles upstream from
wherever the log finishes. If the stream is flowing at 5 miles/hour, the log travels

Starting @

point
Water flows at 5 mph.
| Boat finishes 5 miles

. o above log, which is

D miles T~ D:> 5 miles dgownstream.
So boat is back at
starting point.

©

Water flows at 4 mph.
5 miles “J< > Boat finishes 1 mile
e o ——=1 __ upstream; x-5=-1

1 mile —> l«——

X = 6 miles

—_ - ; Water flows at 6 mph.
. D:D Boat finishes 1 mile
i~ dOWNStrEAM:; X — 5 = +1

1 mile —» —

e~ X = 4 miles
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5 miles downstream, so he finishes where he started. If the stream flows at 4 mph,
he finishes 1 mile upstream from his starting point. If the stream flows at 6 miles
per hour, he finishes 1 mile downstream from his starting point.

Arithmetic numbers in algebra
Earlier in this chapter, the difference in writing arithmetic and algebraic numbers
was shown: numbers in a row represent, for example, thousands, hundreds, tens,
and ones. Algebraic letters in a row represent numbers multiplied together—in
school algebra, not always, as you shall see later. To understand this distinction
better, use algebra to solve number problems.

If you don’t know what the digits of a number are, you would write them, for
example 100a + 105 + ¢; a is the hundreds’ digit, b the tens’ digit, and ¢ the ones’
digit.

ab means a times b
56 means 5 tens plus 6 ones

Ifais5 and bis 6
10a + b is 56
10a + b could stand for ANY two-figure number in arithmetic

Any three-figure number could be 100a + 10b + ¢
where a, b, and c, are the figures

Number problems

Suppose someone notices that a certain number’s ones’ digit is twice the tens’
digit, but adding 18 to the first number reverses its digits. What number have you
got? You could try a few numbers until you find the one that “works.” Algebra
gives you a more direct route.

Assume that the ten’s digit is x, then the tens’ digit means 10x. The ones’ digit
is twice x (2x). So, the whole number is 12x. Now, add 18.that’s 12x + 18. What
was the units’ digit is now the tens’ digit. The tens’ digit in the new number is 20x
instead of 10x. The unit’s digit is just x instead of 2x, so the new number is 21x.
Write an equation putting these two descriptions together.

12x+ 18 =21x

Subtract 12x from both sides or move the 12x to the other side by changing
its sign (however you prefer to think of that), and get 9x = 18 (or 18 = 9x). x is
2 and the original ones’ digit is twice that (4). The numbers are 24 and 42.
Check: 42 — 24 = 18.

That problem was easy. Theyre not all that easy, but the same method
works. Working with them helps you to understand the differences.
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A Number Problem

1st Number
is X » number is 10x + 2x = 12x

Add 18 This makes 12x + 18

tens
ones

But this makes the

2nd Number » which is 20x + x =21x

—> These are the same number, so

12x + 18 =21x Subtract 12x: 18 =21x-12x =9x

Check 18=9x,s0x=2

First number is 24
Add 18

Total is 42, which is the original number reversed

Questions and problems

1. When a certain number x is subtracted from 12, the result is the same as
when the number is multiplied by 2. Write, and solve, an equation to find the
unknown number x.

2. When a certain number y is multiplied by 19, the result is the same as when
the number is added to 36. Write, and solve, an equation to find the unknown
number y.

3. Solve the following “word equations” for the unknown number z:

(@) zdivided by 2, and then added to 10, equals 20
(b) 4 times the quantity (z minus 7) equals 0
(¢) 10 divided by z then added to 7, equals 12

4. Suppose x = 5and y = 7. Then what is the value of xy? Why isn’t it 57? How
can 57 be expressed in terms of x and y

5. Simplify the following expressions:

@ S[Bx —2(5x+7)]—9
(b) 14+ 2[x + 5Q2x + 3)]

6. Write down and simplify an expression for the following: a number has 5
added, then is multiplied by 3; the same number has 6 added, then is multiplied
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by 4; finally, it has 7 added, then is multiplied by 50. Add these three results
together.

7. A number has 3 added, then is multiplied by 4; the same number is multi-
plied by 4, then 3 is added; these two results are added, multiplied by 5, and 6 is
added to the total. Write down this expression and simplify it. If the total is 361,
what was the original number?

8. A professional society’s membership is $20 per year for full members and $8
per year for student members. Membership totals 2000 with annual dues of
$35,200. How many members and how many student members do they have?

9. The ones’ digit of a number is 2 more than its tens’ digit. Multiplied by 3, the
tens’ digit is what the ones’ digit is. What is the number? (HINT: use x for the
tens’ digit.)

10. Atwo-figure number has a one’s digit that is 1 more than the tens’ digit. When
the number is multiplied by 4, the ones’ digit is what the tens’ digit was, and the
tens’ digit is 3 times the first ones’ digit. What was the original number? (HINT:
use x for the original tens’ digit.)

11. Use algebra to show that in any number where the ones’ digit is 1 more than
the tens’ digit, adding 9 will reverse the digits.

12. Use algebra to show that in any number where the one’s digit is greater than
the tens’ digit, adding 9 times the difference between the digits reverses them.
(HINT: use « for the tens’ digit, a + x for the units’ digit.)

13. By substituting various values of x into the following two expressions, say
what is different about them. Show why the second is unique:

@ Gx+7)/(x+1)
(b) Bx+9)/(x+3)

14. In each of the following expressions, y is on one side and an expression con-
taining x is on the other. In each case, make a transposition that will put x by itself
on one side, with the correct expression containing y on the other.

(@) y=x+5 (b)y=3-2
1

(€) y =6(x+2) (d)y=m

_Sx+4

(€)y=3x-7 O y= 3



First notions leading into algebra 139

15. Show that the following equations cannot be solved for x.

4x—5)=4x—18
S5x+3=5x-7
2x +16)/4 = (x +12)/2

16. Make a graph showing several x and y values for each of the following
equations. By doing this, you will see that equations (a) and (c) are fundamentally
different than equations (b) and (d). What is the difference?

@ y=x+2

b y+1=xBx-1)
© S5+x=2-2y
d x=2py -1

17. Choose any number. Add 6 to this number. Multiply the resulting sum by 3.
Then from this, subtract 12. Divide the result by 3. Finally, subtract the number
you chose to begin with. The answer will always be 2. Write down a series of
expressions showing how this “magic number” problem works.



CHAPTER

Developing ““school”
algebra

Orderly writing in algebra

Although parentheses can show multiplication, removing the parentheses to per-
form the multiplication needs understanding, so you can see how algebra is like
arithmetic. Your pocket calculator does it in arithmetic. It’s not easy to get your
calculator to do it in algebra.

Here are examples, in order to increasing complexity. First, multiplying by a
number (outside the parentheses). Next, multiplying by x times a number (3x).
Then, multiplying two parentheses together, each of which contains a “term” in
x (a number times x), with a plain number.

Finally, two parentheses, each containing a different “variable,” one called x
and the other y. When both parentheses contained the same variable (x), multi-
plying x by x produced x°.

LONG MULTIPLICATION in ALGEBRA

@ 4(x + 3) x+3

4
4x + 12

@ 3x(5x + 7) 5% +7

3x
15x2 +21x

140
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@ (3% + 4) (5% + 6) 5%+ 6
3x+4

20x + 24
15x 2 + 18x
15x2 +38x + 24

@ (Tx + 6) (5y + 4) Sy + 4
TX+6
30y + 24
35xy + 28x
35xy + 28x + 30y + 24

Indices show “place” in algebra

Compare how generations of students once wrote long multiplication in arith-
metic (before pocket calculators did it for them), with something similar in alge-
bra. Successive places in arithmetic, moving left in columns, stand for that many
of successively bigger “powers” of 10. Furthest to the right are the ones (not mul-
tiplied by ten at all). Next, a number of tens; then, a number of hundreds (10
times 10); then, a number of thousands (10 times 10 times 10).

In algebra, the “places” are separated by plus (or minus) signs. Successive
places, moving from right to left, contain plain numbers furthest to the right;
next, a number times x; then, a number times x squared; and so on.

In arithmetic, you know the relationship between figures in successive
places. They always are in steps of 10 :1. In algebra, no fixed relationship between
successive quantities exists. But it is consistent; x always has the same value in
the same problem—even if you don’t know what the value is. If x is 3, then x
squared is 3 times 3, or 9, and successively higher powers are 27, 81, 243, and so
on. If x is 5, then powers move up through 25, 125, 625, and so on.

|Arithmetic| | Algebra I

23547
6473 x2+ 3x+2
70641 5% + 4
94188 4x> +12x + 8
141282 5x3 + 15x2 + 10x

15140721 5%3 +19x2 +22x + 8
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Dimension in algebra

Different places, according to the power of x involved, also correspond to succes-
sive dimensions. When you multiply a length by a length, the result is an area.
Multiply the area by another length and the result is a volume. That is why x
times x is called x squared, and x times x times x is called x cubed. A cube is the
simplest form of volume.

On this page, you have multiplied mixed numbers (something times x times a
simple number), one of which stands for a square (this one has an x” in i) and
the other represents a simple dimension, to get a cube. First, use numbers times
x, x squared, and x cubed. Then, use letters instead of numbers, «, b, ¢, d, e.
Here, a, b, ¢, d, e represent numbers, which you can fill in, if you know them.

If yousubstitutea = 3, b = 5,¢ = 4,d = 7, and e = 6,thisis the same as the
numbers you used first. The letters allow you to fill in any other numbers, and
the general form as it is called, gives you the answer in terms of powers of x.
When such letters are used, x, y, and z are variables, but a, b, ¢, etc., are called
constants.

Constants can have different values, but these values remain constant in a
particular problem.

3x2+ 5x+ 4 ax> + bx + C
X+ 6 dx + e
18x2 + 30x + 24 aex 2 + bex +ce
21x3 + 35x2 + 28x adx> + bdx?2  +ecdx
21x3 +53x2+ 58x + 24 adx® + (ae + bd)x2 + (be + cd) x + ce

ac+bd=18+35=53 be+cd=30+28=58 ce=24
| Both methods agree I

Expressions, equations, etc.

In old-time school algebra, students learned equations. In that use, an equation is
a type of statement with an expression on either side and an equals sign (=) in

ad =21
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100
90
80
> &
5) Y=56f -
R i 9220
— T 1T x=
5 i
20 ___r/_ \\
10 =TT TR )
el T
o 11 T [T 11
5 10 15 20 25
Values of x

Solve for y when x = 17

Solve for x when y = 65

3x+5 is an expression
3x+5=y is an equation using that expression
3x+5=65 is an equation to be solved for x

the middle. For the problem being worked, the quantities on either side of the
equals sign are equal.

That sounds obvious? Well, later came inequations and more. An inequation
is like an equation, except that two expressions are not equal, which school alge-
bra shows with an . Some statements use the signs > meaning “is greater
than,” and < meaning “is less than,” to be more specific.

Next came “truth” statements, which simply tell whether such equations or
inequations are true or false. Computers use such statements with similar signs,
except that they use > < or < > (take your pick, they both mean the same)
instead of #.

An equation as an action statement

A school algebraic equation is a simple statement. It might be true or not true. It
never represents a state of change. In school algebra, states of change come later
in studies called calculus.

Computer programs use an equals sign quite differently—as an action state-
ment. It looks like an equation, but it isn’t. Failure to understand this difference
causes many problems for would-be computer programmers.
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STATEMENTS
SCHOOL COMPUTER

= EQUATION =

# INEQUATIONS >< Or <>

> GREATER THAN >

< LESS THAN <

>  NOT GREATER THAN =<

< NOT LESS THAN =>

TRUTH TABLE

Here is a simple example. In school algebra, the equation x + 2 =9 can be
true only if x is 7. If true, it is equally true written the other way around:
9 = x + 2. Complicate it a little with an equation, such as, x +2 = 2x — 3. You
can still find a value for x for which the equation is true. Try 5. No other value
“works” in that equation. It’s a good school equation.

Now look at this: x = x + 2. In school algebra it’s impossible. It cannot be
“true.” No value of x can make it 2 more than itself. But to a computer that, writ-
ten exactly like an equation in school algebra, is an “action statement.” After the
computer “reads” the statement, it means x is 2 more than it was before.

It would go like this. Maybe x has a value of 7. The computer reads
x = x + 2. Now, x has a value of 9—2 more than it was before.

In school algebra, x = 7 and 7 = x both mean the same thing. A computer
could read x = x + 2, but not x + 2 = x. However, it could read x = x — 2.
Confusing? Start thinking about it now, you will understand it better when you
gettouse it.

Using an equation to solve a problem

Suppose a problem reduces to the following facts: three consecutive numbers, the
first is divided by 2, added to the next and divided by 3, added to the third and
divided by 4, which yields the 4th consecutive number. You need to find these
numbers, which would be difficult by arithmetic.

In algebra, write the first three numbers as x, x + 1, and x + 2. Then, doing
what the problem says yields the 4th number, which will be x + 3. Algebra derives
the right numbers directly. In arithmetic, you can only guess at various numbers
until you hit the right ones.
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| Using an Equation to Solve a Probleml

[ A number, x, is divided by 2 X
2
The next number, x + 1, is divided by 3 x+1
< 3 5
The next one, x + 2, is divided by 4 X Z
X x+1  x+2
| These results are added: 5 + + 1
=11—2 (6x+4(x + 1) +3(x +2) |
=l‘—2 (6x+4x+4+3x+6
= 1 { 13x + 10 }
12

to any three consecutive numbers.

But the three we want give a fourth consecutive number, x + 3; so:
11—2{ 13x+10}=x+3

Multiply by 12: 13x + 10 =12(x + 3) = 12x + 36

Subtract 12x + 10; X =26 -ed
26,27 28 As requir
CHECK 5+§+Z=13+9+7=29

Simultaneous equations

Often a problem can be solved with only one variable. Sometimes it is easier to use
two or more variables. If you know that 4 times one number plus 5 times another
number add up to 47, and 5 times the first number plus 4 times the second num-
ber add up to 43: how would you find the answers?

The numbers can be found in several ways. Don’t think that one way is the
only right way. Sometimes you can even spot a way that’s easier than the “text-
book™ way.

Here the textbook way “eliminates” one variable. To do so, multiply one equa-
tion, both sides, by 4, and the other one by 5, then subtract one product from the
other. That gets rid of one variable: 4 times the Ist is 16x + 20y = 188. Five
times the 2nd is 25x + 20y = 215. Subtracting the Ist from the 2nd is 9x = 27.
So x = 3. From either equation you can then get y = 7. Check it for yourself.
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SIMULTANEOUS (O axrsy=a7
EQUATIONS @) 5x+4y=43
®4x+5y=47 Sy =47 - 4x y=7:1;-(47—4x)

Sx+4y=43 4y=43-5
@ X+ Y * y= L @3-5x
4
10
=Y
T ] d
§ y =7 1 1 -
z 7 | _ y =5 @7 -4x)
—/ X=3— 7/
o
N 2 [
—\\ — y=i(43—5x)
0
5 10 J
Values of x At this point ) both are true

®4x 34+5x7=12+35=47

v

CHECK
@5x3+4x7=15+28=43

The previous method is graphical. However, one student who couldn’t do
algebra saw 9 “miscellaneous unknowns” in both equations, but one had 5 x’s
and 4 y’s, and the other had the other combination. He concluded that y must be
4 more than x. Putting y = x +4 into either one produced the equation
9x = 27. From that point, the method was the same.

Simultaneous equations solve a fraction problem

Suppose you have a fraction. You don’t know what its numerator and denomina-
tor are, but someone says that subtracting 1 from both creates the fraction 1/2,
but adding 1 to both makes the fraction 3/5.

Write x/y for the original fraction. Subtracting 1 from each gives the first fact
(equation). Adding 1 to each gives the second fact (equation). See how these
answers are converted into a pair of simultaneous equations.
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First fact: -;%i = %
Fractionis — 3
y Second fact: 21— =2
y+1 5
@ Multiply by 2(y —1): X~ D=y=1 5y
2x -2 =y-1
5 =3 1
@ Multiply by 5(y + 1): e+ )=30+1) Sx -3y=-2

Sx+5 =3y+3

Solving the problem

Here are a few examples, the first of which is the fraction problem from the pre-
vious section that shows how to eliminate one variable. First, multiply one or
both equations by numbers that will make the variable to be eliminated have the
same coefficient (a fancy word for the number in front of the variable). Then,
either add or subtract the two equations in that form. If the signs are the same,
subtract. If they are opposite, add.

Here is athird problem, reduced to two equations so that you can concentrate
on the algebraic method. Study each of the three examples on these pages, so
you understand how to use this method, called eliminating one variable. Always
check your results.

SOLVING SIMULTANEOUS EQUATIONS -
Method 1

2x-y=1 @

PROBLEM 1 Sx—3y=-2 @ To eliminate y

Multiply @ by/ E:"y 3
3y=-"2

Signs are the SAME, so SUBTRACT@

Substitutein () 2x 5-y=1  y=10-1=9

cos 5 5—-1_4_1

CHECK Fraction is 5 —9 1782
5+1_6_3 v

9+1 10 5

continued
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PROBLEM 2 Z +y=30 Q@ To eliminate y

Multiply (1) by / mw 90
3y=1

Signs are the OPPOSITE, so ADD (2)

=91
) . X =91 =+ 7=13
Substitute in @ 13+y=30 y=30-13=17
13+17=30
CHECK
4X13-3X17=52-51=1 V

SOLVING SIMULTANEOUS EQUATIONS
Method 1

PROBLEM 3 , 5, _4 @ To eliminate y

12x-7y=7 (2)

Multiply (1)) by 7 7x [+) 21y =280
Muitiply @ by 3 36x 2ly= 21
Signs are OPPOSITE, so ADD  43x =301
x=301+43=7
Substitute in @ 7+ 3y =40 3y=40-7=33
y=33+3=11
CHECK 7+3 X 11=7+33=40 /

12X 7-7X11=84-77=7

Solving by substitution

In the three sets of equations so far, you used the first method, eliminating one
variable. The following method can often be a short cut. The section of simul-
taneous equations introduced it at the end. Interestingly, the student who “dis-
covered” it was having problems with algebra! The method is demonstrated here
more formally. Again, don’t forget to check your result.
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Most teachers came to rely on published answers to check their results. This
led to students doing the same thing—if they could get the answer book.
Checking your own result not only avoids such “cheating™ In life, when you use
mathematics, you don’t have an “answer book.”

In recent years, many engineering projects have failed because the designers
didn’t know how to check their work. The Golden Gate bridge is still going strong.
Many more recent bridges have plunged people into the drink below because
they failed. The habit of checking your work could save lives when you get into
the work world!

SOLVING SIMULTANEOUS EQUATIONS
Method 2

PROBLEM 4 7x+2y=90 (1)

Rearrange to give
sx-y=1 (2 geDtog

Value for y: y=8x-1
Substitute in @ Tx+2@8x-1)=90
7x + 16x -2 =90
23x =92 x=92+23=4

Substitute in @ y=8X4-1=3]

CHECK TX442X31=28+62=90

8X4-31=32-31=1

Solving for reciprocals

The example at the top of page 150 shows a different kind of simultaneous equa-
tion: one in which variables appear as reciprocals, or in which it is easier to solve
for reciprocals. Study this example in which we solve for 1 /x and 1/y, instead of
for x and y. Notice particularly why solving for the reciprocals is easier for some
kinds of problems.

One thing you should learn from studying simultaneous equations is that you
can often save time by using common sense to find the easiest way, rather than
following a set routine for all such equations.
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SOLVING for RECIPROCALS

2.3 _14
PROBLEMS  ++3=35 (U o
s 4 1 To eliminate y
Xy 30
: 12 56
Multipl by 4 e
ply @ y Yy "1
Multipl by 3 12_3_1
P @ d y 30 10
. 23_56, 1 _112+3 115 _23
Signs are OPPOSITE, so ADD ;—E+ 530 T30 "6
. - 5 4_1 4_5 1 _25-1
Substitute in @ 3_7_30 y_6 30_—30
4 24 4 1

Alternative
Multiply @ by 15xy 30y + 45x = 14xy ’

Multiply @ by 30xy 150y - 120x =xy o

The other way is much easier

CHECK 2,.3_1,3_5+9_14
6 5 375 15 15
5 4_25-24 1 /
6 5 30 30

Long division clarifies how algebra works

These days long division by algebra has little practical use. It does help to under-
stand how algebra works, and it is particularly helpful in developing an
understanding of dimension. Compare the two ways of doing long division
shown at the top of the facing page, in arithmetic and algebra. You should be
able to “figure it out,” and do the examples in the Question and Problem section
at the end of this chapter. Look at this exercise to see how people used to solve
these problems.



Arithmetic

279
153142687

306

1208

1071
1377
1377
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Algebra
4x’+ 7x-=3
3x +5112x> + 41x2 + 26x — 15
12x3 + 20x>
21x% + 26x
21x% + 35x
- 9x 15
- 9%x—15

Long division finds factors in algebra

This chapter covers finding factors in arithmetic—you still need that. Students of
mathematics will find it important in algebra, but not in everyday use, as it was
once. Here is a parallel between finding factors, in arithmetic and in algebra for
you to study. Try the simple exercises that follow.

Find factors of
Arithmetic Algebra
370 3x2-x —13
79 129299 <:: | x—5 3x3-16x2—8x + 45 <|__lt
237 3x3 — 15x2
559 — <2_38x
% - x2+5x
—13x +45
—13x + 65

Remainder, so 79 is NOT a FACTOR ﬁ -20

353

83 | 29299
249
439

415

249

249

83 and 353 ARE FACTORS

Remainder, so x — 5 is NOT a FACTOR

x2-T7x+9
3x +5 | 3x3 — 16x2 — 8x + 45
3x3 + 5x2
—21x2-8x
—21x2 —35x

+27x + 45
27x + 45

3x+5and x 2- 7x + 9 ARE FACTORS
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Questions and problems
1. Perform the following multiplications:

@ x+Dx—-3) (b (x=3)x—-9)
© x+Dx-1 @ x+DE*—x+1)

2. Perform the following divisions. In each case, check your result by
multiplication.

¥ —2x—3 ¥ —8x+ 15 xz—y2 Mo =Xt 4+ 4

—— ®) © (@

(@) x—3 X+ x42

3. Use long division to find the factors of:

(@) x*+2x—35
b) x¥*+x*—5x—5
© ¥*+x*—TIx-3

NOTE: each of the above has two factors.

4. Solve the following pairs of simultaneous equations. If there is no solution,
explain.

(@ 4x—8y=2and —3x+5y=-5
(b)) 2x+3y=0and 7x -2y =2
(© y=2x+4andy=-2x—06
(d y=4x+2andy=4x—-2

5. A rectangle has certain dimension. Making it 2 feet wider and 5 feet longer
increases its area by 133 square feet. Making it 3 feet wider and 8 feet longer
increases its area by 217 square feet. What were its original dimensions? A good
question for simultaneous equations.

6. Divide the number ¢ into two parts, such that a times one part is equal to b
times the other part. If ¢ is 28, ais 3 and b is 4, what are the parts? It might be
easiest to find the second part first.

7. A fraction is somewhere between 3/4 and 4/5. Adding 3 to both the numera-
tor and the denominator makes the fraction equal to 4/5, but 4 subtracted from
each makes the fraction equal to 3/4. What is the fraction?

8. In another fraction, adding 1 to both the numerator and the denominator
makes the fraction equal to 4/7, but 1 subtracted from each makes the fraction
equal to 5/9. What is the fraction?
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9. Adding 1 to the numerator and denominator of another fraction makes it
equal 7/12, but 1 subtracted from each makes it equal to 9/16. What is the
fraction?

10. The highest two of four consecutive numbers, multiplied together, produce a
product that is 90 more than the lowest two multiplied together. What are the
numbers?

11. Work with five consecutive numbers yields the fact that if the middle three
numbers are multiplied together, they are 15 more than the first, middle, and last
numbers multiplied together. What are the numbers?

12. A man has an option on a piece of land. He was told that the measurements
were 50 feet longer than it is wide. The survey shows that it is 10 feet less in width
than he was told. The seller offers him an extra 10 feet in length. Does he get the
same total area? If not, how much does he lose on the deal? Does it depend on
the actual dimensions?
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CHAPTER

Quadratics

Problems with two or more answers

Simultaneous equations come from problems that have two or more answers at
the same time. Quadratics begin a kind of problem where different answers are
possible, not at the same time, but as alternatives: either of two answers or sets
of answers could be correct.

To see that these definitions mean, suppose you have 80 feet of fencing to
enclose a four-sided area. What area does it enclose?

Assuming it is rectangular in shape, it has two sides of each of two dimen-
sions. So, if the sides are W feet wide by L feet long, 2W + 2L = 80, or
W + L = 40. Its area is W times L. By substituting . = 40 — W, the area can
be written W (40 — W) square feet, which will multiply out to 40 — W2 Or
using the conventional x, for the first dimension (which was width), and y for
area, the equation is: y = 40x — x°.

A more specific comparison calls the equations in the last chapter /inear,
referring to a form that could be written: y = ax + » (where a and » are con-
stants). Then, quadratics can take the form: y = ax? + bx + ¢. Writing in letters
for constants makes such equations a “standard form” into which any problem
can be expressed.

| ] | l | ] 1 | 1 | | 1 l 1 J i }

x feet 80 feet of fencing
l ] ] ]
40 — x7 AREA - 40 — x Avea = x (40— )
fet | ENCLOSED | feet BN
I 1 I |
x feet

154
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1st
Method

2nd

X 01 5 Tiwo]15] 212 ]3035 | 4
40-x | 40 135 |30 | 25| 2011510 5| o
Area
ey o | 175|300 | 375 | 400 | 375 300 | 175 | 0
Same Answers —
X 0] 5 10 15] 207025 ]30]35] 40
20x | 0 | 200 | 400 | 600 | 800 | 1000 | 1200 | 1400 | 1600
X2 0 | 25 | 100 | 225 | 400 | 625 | 900 | 1225 | 1600
A
s 2| 0 | 175 | 300 | 375 | 400 | 375 [ 300 | 175 | o

Quadratic graph is a symmetrical curve

From LINEAR to QUADRATIC

y=ax+b y=ax?+bx+c

Method

If you plot the values of 40x — x°, against x, you can get a curve. If x is either 0 or
40, 40x — x? has a value of zero. When x is 20, 40x — x> reaches a maximum of

400.

In this particular problem, x represented one side of a rectangle whose two
sides added up to 40. The two pairs of values were the same, just reversed. Later,
you will come to pairs of answers that are not simple reversals.

400 e
A ‘s\
- ’ N
B ! N
“é 300 7 N
s / \
= /7
2 4 \
s 200 7 A )
k- r Y
/ \
l, \\
100 4
/7 \
/ \
4 \
0 5 10 15 20 25 30 35 40
Length of side x feet
40 35 30 25 20 15 10 5 0

Length of other side (40 — x) feet
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Solving a quadratic equation

Suppose you know that, as well as using 80 feet of fencing, it encloses an area of
300 square feet. One way to solve this problem would be to write:
40x — x* = 300. Then, rearrange this equation to make something on one side
equal to zero on the other side. The equation reduces to: x* — 40x + 300 = 0.

Why would we do that? This procedure will be clearer later. For now, notice
what happens if you plot values of the left-hand side, x* — 40x + 300. Here, the
curve is inverted and the position of the values are changed to straddle the hori-
zontal zero line. The zero line becomes the locator of the solutions because the
solution was written: x> — 40x 4 300 = 0.

This changing around is called transposition. It reproduces the same curve in
a different position.

40x — x2 =300

Transpose: —
40x -x2-300=0

or x2-40x+300=0
X 0 5 10| 15 20 25 301 35| 40
x 2 0 251 100 | 225] 400] 625| 900 | 1225] 1600
40x 0 200 | 400 [ 600 | 800§ 1000|1200 | 1400 | 1600
x 2—40x 0 |-175]-300(-375|-400|-375|-300-175] O
x2-40x+300] 300 | 125 | O =75 |1-100] =75 | © 125 | 300

+300 Y |
8 +200 “ ,'
5% \ y
8 . +100 ¥
25 . ’
% 100 Sl a”
-200

0 5 10 15 20 25 30 35 40

Values of x

TRANSPOSITION: Same Curve - Different Position
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Using factors to solve equations

The expression: x? — 40x 4 300 can be factorized into two linear factors:
(x — 10)(x — 30). Multiplying those expressions, x — 10 and x — 30, yields our
first expression: x* — 40x + 300. Now, see something else about the curve on
the previous page.

Plotting lines that represent x — 10 and x — 30, these become zero when
x = 10 or when x = 30. Notice that the quadratic curve passes through the zero
line at the same values of xas x — 10 = 0 or x — 30 = 0.

So, finding the factors of an expression, formed by transposing an equation to
something equal to zero, gives the solutions of that equation. If the factors have a
minus sign (as here), the solutions are the corresponding plus quantities. later,
you'll see that if the factors have (or one of them has) a + sign, the corresponding
solution has a — sign.

FACTORS i ~L
x* — 40x + 300 = (x — 10)(x — 30)
X 0 5 10 15 20 | 25 30 35 40
x-10 -10 | -5 0 +5 | 410 | +15 | +20 | +25 | +30
x-30 30 | 25 20| -15] -10| -5 0 +5 | +10
(x~-10)(x - 30)] +300 | +125| 0 -75 | =100 | =75 0 [+125|+300

+300 +30
7 -~
] Ei
+200 P\, o +20
N\ S ¢ 5
W 1N - 7 =
o +100 — X2 ,* —X +10 =
5% N X X % %
2 - 0 X e < 0 25
@
23 x’\%é 7 25
S ~ 7 &~
> —1000E |l -10 =2
= Q |
. X 0 .
-
x:)'( -30
0 5 10 15 20 25 30 35 40

Values of x

Combined value is zero
when EITHER factor is zero
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Finding factors to solve quadratics

To find factors, you need rules to help. You find these rules by examining the
coefficients of each term to see how they are constructed. Each factor, for the
kind of expression you are using (of the form: ax® 4+ bx + ¢ = 0, where b and ¢
might be either + or —) will be “so many” x, plus or minus a number.

In each expression, numbered (1) through (@), the coefficient of x* is 3. If it
has simple factors, one of them must be x plus or minus a number, and the other
must be 3x plus or minus a number. In all of these expressions, the numeric
term is 15. So, in the two factors, one must have plus or minus 3 and the other
must have plus or minus 5. Or else one must have plus or minus 1 and the other
must have plus or minus 15.

If the sign in front of the number (in this case 15) is plus, then the signs in the
factors must be either both plus or else both minus, and the coefficient of x is the
sum of the two cross products. If the sign in front of the number is minus, the
signs in the factors must be opposite; one minus and one plus, and the coefficient
of x is the difference between the two cross products.

Study this system carefully, until you can find the factors fairly easily.

Finding FACTORS to SOLVE QUADRATICS

@ © ©, ®

32+ 14x + 15 3x2-14x+ 15 3x2+4x-15 3x2 —-4x-15

1] vy =) 1l I vy (o)) 1l 1] =)} ¥ ] Hi fop) wvy ]

e 1w o ||I lll o en I III i o ||| -I!IF e

X v oen X A

TX xae Zwox IXex XoowX
— |

x+3) 3x+5) x-3) 3x-3) (x+3) 3x-5) (x-3) 3x+5)

How factors solve quadratics

Those first factors in the section “Using factors to solve equations” were simple.
Those in the last section get a little more difficult. The lines for the factors on the
graph are not parallel lines. Taking example 2, the thing that is the same as in the
previous section is that the solutions come at the two places where the straight
lines cross the zero line.
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Make sure you understand the points these diagrams show:

1. How the solutions are derived from the points where the graphs cross
the zero line

2. How the root (answer) that corresponds to the factor has the opposite
sign.

3. Itsvalue is the numerical part of the factor, divided by the coefficient of x
(or whatever variable you use).

3x2 —14x+15=0 :} (x-3)(3x-5)=0

+20 When| x-3=0
/

9 _+15 and
SR When [3x-5=0
2| x+10 |
8 =
G
>l |45 x-3)3x-5)=0

|

x\_/

Of
— x=3
‘50 5
Values of x
3x=35
5 2
orx=§=1§
If factoris x = { X =0
X = 3 X = 3

Value of x for "root" corresponding to factor
has > OPPOSITE SIGN

When factors are even more difficult to find

Factorizing is a simple method of solving quadratics when factors can be found
casily. Then, show some that are not so easy. For the expression: x° — 6x + 6,
you need two numbers of the same sign (which will be minus) that, multiplied
together, make 6 and are added together to also make 6.

You can try fractions, but they never work out exactly. The other example is
also difficult. You need a way to find such factors more directly than by trial and
error.
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EXPRESSION FACTORS

{x25x+6=0I > (x=2)(x=3)=0
Easy

X2-6x+5=0I >(x—1)(x—5)=0

Not X2-6x+6=0 >
S0
X2-63x+10=0 C——">

easy
Completing the square

The whole purpose of adopting algebra was to find more direct ways of working.
Remember that. By completing the square, you can stop searching for factors. It
can be understood by using a geometrical figure.

Your expression starts in the form: ax® + bx +c¢ =0. Notice that if
N = (x + n),then N? = (x + n)* which, multiplied out, is: N* = x>+ 2nx + n°.
Here, you show the correspondence between the algebraic expression and a geo-
metrical figure. Study it carefully.

Go back to those equations that did not factor easily. Take them in the reverse
order. Because 2n from our formula is 6 1/3, n must be half of that, 3 1/6.To find
n? square 3 1/6. 3 1/6 is 19/6. Squaring that (both numerator and denominator)
is 361/36 (10 1/36).

COMPLETING THE SQUARE

A direct method for solving quadratic equations

N >
n nx — n?
A
x2 nx
X N=x+n
X > n
Big Square
N2 = (x +n)2 = | x?|+2nx|+n?2
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Completing the Square
nx n2
N2=(x +n)?
x2 nx

5 Completing
Add n< the Square

[

|

i l
Expression !

-

Rearranged i ;1 Iis

1 ! 1 : *1
X2—6§X+10=O:X2—6§x=—10 -3¢
|

. 19X 19 _ 361 1
2 19X19 _ 361 _ 01
ndis e =36 =103

]
]
1 ]
| 1
6452 | or 19 1 x2— 61 L 04
1—0315 2n'so :OrF b x? - 3%+ 103 = 1055 - 10
| | 1
I ] ] _L
1 =
. : : 36
| 1 ) ) 5
= o iso(e-3) "= (3)
i : :
| | ]
X2—-6x+6=0 :x2—6x=—6 ! -3 !
| | ]
: \ ! n2is3 X3=9
: : X2 _6x+9=9_6
| | ] :3
| | 1
| | [}
|
: . | So (x-3)’ =3
[ H ]

Both sides need to be changed so that the left side has the number 10 1/36.
Then, 1/36 is on the right side, which is the square of 1/6. The other side isn’t so
easy, although it looked easier at first. The square is 3, so the root must be the
square root of 3.

Completing the solution by completing the square

The previous section had two equations in which both sides of each equation was
a square, although the second one didn’t look like it. A square can have a root
(the number that makes that square) that is either positive or negative. So, the
first one can have x — 3 1/6 equal to either 4+1/3 or —1/3. The possible answers
are 3 1/3 or 3. The second one leads to 3 plus root 3 or 3 minus root 3 as the
possible answers.
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O] «-3H*=?

(FIRST EQUATION)

1,_ 1
So (x—36)—+60r—

1
6
1__1 =23l
If x_36_+6 X—-36+

1
6

]
w
|

> Two Answers

W
=

1 _
If X_36——'6— X =

(2)] x-37=3

(SECOND EQUATION)

-
]
W

So (x=3)=+A30r—A3
If x—3=+#3 x=[3+ 43

Two Answers

If x-3=-43 x={3- A3

Checking the answers

Don't forget to check your answers. Go through each of the original equations,
substitute in each solution you found to see that the equations are true.

Checking the Answers
1 10X 10 100 1
@ x=33 ’=3x3 =9 =1l
bix=Dx ¥=10 —a11

or x=3 x2=9 Both answers check

x2-63x=9-19=~10




Quadratics 163

@ x=34+A3 x2=3242x3X N3+ W32=904+6N3+3=12+643
6x = 6(3 +43) =18 + 63

—6x=12+6N3— (18 +643)
=12+6M3-18-6N3=—6
x=3-N3 x2=32-2x3xW3+432=9-6N3+3=12-6A3
6x = 6(3 —N3) = 18 — 643

Both answers check
—6x=12-6A3 - (18 - 643)

=12-6N3-18+64N3=—6

What the answers mean

You might wonder how completing the square can have two answers. The con-
struction in “Completing the bill” explains. Only one solution seems obvious.
After all, one area will fill the space.

Look at the significance of N> = (x — ). Here, x is the big square and the
final square that represents N2 is smaller, so x> is diminished by two quantities
nx. Notice how drawing the two rectangles, which represents 7 times x overlap,
by another square that is x°.

So, as you found in algebra, the geometrical construction supports it:
N2 =x* —2nx +n°.

Go over this formula carefully to be sure you understand it.

Geometric Interpretation for the Two Solutions
x could be either 3 or 3%

<—-——x=3%——>

n—> x=3

/ nx n

%\

t
N2 3%
\ when x =3
4

\ \

N2=(x-n)2 h

= x2 - 2nx + n?

l\)

k—~=—+
j¥'S]

=3

o4
/

>

1
N2=(+—é)2 when x = 33

N2=(-7)? whenx =3
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Comparing methods

Ifa problem can be solved in two or more ways, making a comparison can help in
two ways: you can pick the best method for a particular problem, and you can
gain a better overall understanding of the methods.

What the factor method means, when looked at as geometry, is shown below.
Writing an equation with zero on one side, if it factors, can represent a rectangle
where each factor represents one of its dimensions. When either of its sides is
zero, its area is zero. Factors find what those values are.

Look at the completing the square method in steps. You start with a similar
general form: x* 4+ bx + ¢ = 0. The coefficient of x* is optional, but eliminating
it makes the equations easier to solve. First, rearrange it so that the number is
on the other side with the sign changed. Now, the left side has an incomplete
square. The third step is to complete the square, and the fourth is to add the
same to both sides. Now, you have a complete square on the left, so the fifth
step is to take the square root of both sides. Finally, transpose the roots so that
you have a statement that lists the two values of x (or whatever variable your
equation uses).

METHODS of SOLVING QUADRATICS

Method Factor ‘;f/lhat it
Method s
X+e

1. Expression
ax2+bx+c¢=0

2. Find Factors
(dx+e)fx+g)=0

Simpler but

less definite

(dx +e)fx + g)
fx+g

Suchthat df=a dx e
ef+dg=b At these
c=¢ by @ two values,
& area i1s zero
3. Solutions are g

£
d d
+
xz_% - > 27° fx+g=0
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The geometry shows what it means. This method is more involved than just
finding the factors, but it always gets an answer, which finding the factors cannot
do so easily.

“Completing the Square”’

Method
Method What it means
Q Either of these Q
. values of x

1. Expression satisfy / this )

x2+bx+c=0 /5(1“"‘reex_><§b>
2. Rearranged (;)

xZ+bx=-c ‘V

1 1 4—1 bt lbz— =

3.nis= b,son’== b’ 2 4 X

27 4

}z\ +&b2—-c

4. Complete Square
1 b2-¢

2 1o 1
X +bx+4b I
5. Take square root /
(+ b) / b -
—bz—c

4

More involved,
but positive

6. Transpose

=L+ [l
X = 2b_ 4b c

Formula method

The formula method really applies the completing the square method to derive a
formula, into which you substitute the constants if the problem can be expressed
in that general form. The form of the answer shown on this page might look differ-
ent from the one that is generally given in textbooks. This example is to relate it
better to the geometric way of visualizing it. The more common form is:

—b +b? —dac
2a

X =



166 Quadratics

Formula Method
Using Algebra on Algebra

General Form of Quadratic Equation:

ax2+bx+¢=0

Reduce so Coefficient of x? is 1: divide by a

b c
X2+ -x+-=0
a”"a

Transpose for Completing the Square:

X2+ E X =— E
a a
Complete the Square: nis b r12=b_2
2a da
b2 b2 ¢
X24—x+5 =2 =
a” "4a> 4a° a
Take the Square Root:
X+ E =+ b_2 _ E
2a T V4t a

® © 6 6 00

Transpose to get Final Formula:

__bt [/pr ¢
x__—_ —_—— —
2a 4a- 4

Solving by formula

Once you reduce the problem to the standard form, the formula method is just a
matter of substituting the numbers. Work through the same equations solved by
factors. Pay particular attention to the signs, since you should have already
learned to do them by factors.

Here are some more quadratics that are solved by formula. No. 5 (on page
168) follows the same method of examples 1 through 4. You might not immedi-
ately spot the square root of 169, but you can check it by multiplying 13 by 13.
No. 6 (on page 168) needs to be rearranged before the formula can be used, by
multiplying through by x and then transposing.

No. 7 (on page 168) is the first of a kind where the final result on the right
doesn’t have a simple root. You need the square root of 8, which is something
less than 3. So, one answer is a small fraction (an unending decimal) and the
other is slightly less than 6. That sign (which you’ll find on a calculator button)
means the square root of, and it is called a surd.



Quadratics
SOLVING BY FORMULA
Qo““““ N Wéwh .\ For ax?+ bx + ¢ = 0
w _ Stigils - Xz‘zhai’\/%;i—%
n

3x24+ 14x +15=0

®

a=3

__ 14, /196 15 b=14

6~V 3 c=15

1. @_4§=_1+ﬁ=_z+z= 3]0 [

3-V 9 9~ 3-Vo 373 or -3

@ 3x2-14x +15=0

a=3
x=14+, /196 15 b=-14

- 36 3 c=15

®

a=3

__ 2, /4,15 b=4
X"‘gf §+§ c=-15
2, Ja, 45 2 \/29 2,1 5
==+ 4 =-_ £+ L= =24+ =

3=V 979 T3V 9 TTFIIT 373

@ 3x2-4x — 15 =0

—4

~15

+ 3

>
H
Wi Wt
|+
O |
+
w5
oo
g
w

167
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@ 6x%-5x =6

Rearrange: 6x>— 5x -6 =0

»d
il

rol e
I+
‘[\J
(s
+
f=2}

b
]

ol
t+
[\)
wh
Eﬁ
Bl
B

_ 94
-
=2 413_ 8 18 2 3
-2 RT3

1 1

+=-=5-=

@ X X 5
Multiply by x: x4+ 1 =25§x

Rearrange: x2—25—6x +1=0

@ x+1=6
X

Multiply by x: x2+ 1 = 6x

Rearrange: x’—6x+1=0

=3+ 48 = 3—«/_8 or 3+«/§

(I =l -]
o n
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Checking results

Always check your results, by substituting back into the original equation or the
original problem. In quadratics, you have two solutions to check.

5 2y 2525 __14x5_ 70
@ X = 3 3x2= 3><9 3 14x —3 3
324+ 14x +15=20 10 15=_45 L 152_15+15=0
3 3 3
x==3| 3x2=23%x9=27 14x=-14%x3=-42
3x24+14x+15=27-42+15=42-42=0 Both Check v/
@ X = 3 ox 6X9 2><3 3 5x 3
2, -8 _ _m)=8+10=
6x “— 5x 3 3 3 6
x—2 6x 6><4 3><2 > 5x 2
6x2sx=21_13_12_g¢ Both Check ¢
2 2 2
1 1_ 1 _51
@ X_S X 5X+x 55
Both Check v/
_ 1_1 1_+<1
X=95 <"3 x+X 55
1 3+V8
=3-y8] - =3+ 3 8
(@) |x=3-V3 x 3-V8 G- V3G + VB Ve Ve

+—=3—V§+3+V§=6
X

~3+y8| L=—1 3-V8 __3_ 4%

x 3+y8 G+ yD3-5)

+l=3+\/§+3—\/_8=6 Both Check v/
X
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A quadratic problem

Sometimes a problem leading to a quadratic equation seems to have only one real
answer. Being realistic people, we naturally ask what the other answer means. If
we don’t, we should.

For example, a picture to be framed is twice as long as it is high. The frame
provides a 3-inch margin around all sides. The total area, frame and picture, is
260 square inches. What are the dimensions of the picture?

Making x the height and 2x the length of the picture, the dimensions of
the frame will be x4+ 6 and 2x 4+ 6, which multiply to (x + 6)(2x 4+ 6) =
2x% + 18x + 36 as the area. The question lists the area as 260 square inches. So,
the equation can be reduced to x* + 9x — 112 = 0. Solving it, you find the two
answers that are characteristic of quadratics, 7 or —16.

The positive answer is easy. The picture is 7" x 14”. The frame is
13” x 20", which multiplies to 260 square inches.

A PROBLEM . Whatarethe

picture dimensions?

Total area = 260 square inches

(x+6) (2x + 6) =260
2x2 + 18x + 36 =260
2x2 4+ 18x-224=0
x2+9x-112=0

By formula a=1

+ /814112

>
1
|

c=-112

+
14
3o

[
I
Do oo e

H
ﬁp
NG

N

=

oo

Il
~J
o
=

|
—
jo)l

POSITIVE ANSWER NEGATIVE ANSWER
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Obviously a picture with negative dimensions has no practical meaning.
However, it could have a mathematical meaning. The picture dimensions are
—16" x —32". By adding twice 3” each way, the frame dimensions are
—16" 46" x =32" 46", or —10” x —26", which also multiplies to +260
square inches.

Questions and problems

1. Find the factors and thus say what values of x make the following expressions
equal to zero:

@) x> +7x—8 (b) 3x* —16x+ 13
© 7x* —48x—7 (d) 30x? — 73x + 40

2. Solve the following by completing the square:

() x* —4x =45 (b) x> —6=x
© xX*—Tx+7=0 d ¥ —12x=4

3. Solve the following quadratics by formula:

() 5x2—2x—7=0 (b) 7Tx* —4x —3=0
©x-+=2% @ x+L=10

X

4. Solve the following quadratics and explain anything unusual you observe
about the solutions:

@ 5 =3x-2=0 () 5X’-3x=0 @ 5 —3x+55=0

5. A quantity is required, such that adding twice its reciprocal will produce a sum
of 4. What is the quantity? Leave surds in your answer and check both results.

6. Anenclosure’s length is 10 feet less than twice its width. Its area is 2800 square
feet. Find its dimensions. Explain the negative answer as well as checking the
positive answer.

7. Extending each side of a square area by 6 feet makes its area 4 times as big.
Find the original side length and explain the negative answer.

8. Find three successive numbers whose sum is 3/8 the product of the lower two
numbers. (HINT: take x as the middle number.) Explain the less obvious solu-
tion.

9. In mowing a lawn 60 x 80 feet, how wide a strip around the edge must be
mowed for half the grass to be cut? Explain the second answer.
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10. At a party someone tried to run a “think of a number” game and gave the
instructions: think of a number, double it, subtract 22, multiply it by the number
your first thought of, divide it by 2, add 70, and subtract the number you first
thought of. The answer (he said) was 35. Only two people, who had used different
numbers, had that answer. What two numbers did those two use?

11. The height of a small box is 1 inch less than its width and the length is 2 inches
more than its width. If the total area of its sides is 108 square inches, what are its
dimensions?

12. The negative solution to question 11 leads to another set of dimensions whose
total surface area is also 108 square inches. What are these dimensions?
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CHAPTER

Finding short cuts

Difference of squares is always sum times difference

You probably already noticed that when two factors have the same terms with
only the sign between them changed, the resulting product is the difference
between the terms, each squared. This statement, like any other in school alge-
bra, can be reversed. You can factorize ¢* — b? into (a + b)(a — b). Or you can
multiply the same terms, (¢ + b)(a — b), to yield a* — .

This statement might seem unimportant, but it begins some surprising short
cuts that you can make in calculating. Using a calculator doesn’t tell you about
them. If you ask people who “do it in their heads” quicker than you can hit your
calculator’s buttons, you will find they use such short cuts.

a2 -b%2| = [ (a+b)a—-Db)
Example Proof
a=9% b=6 a—b
a+b
a?=81 ab — b2
b2=36 a? — ab
a+b=15
a-b=3
So, 81-36=3x%x15 81 15
—36 X3
45 45

173
Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.
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DIFFERENCE OF SQUARES
= SUM X DIFFERENCE

b=
Y

<—a — b—>]

A
(o
Y

MULTIPLICATION  Multiply 37 x43:

37 =40-3
Short Cuts A3=40+3
So 37X 43 = (40 — 3) (40 + 3) = 402 32
=1600-9
=1591
N\
Check by Long
Multiplication
43
37
301
129 ||
1591

] Same Answer
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Sum and difference in geometry

The sum and difference principle can be seen in geometry, as well as in algebra. If
you take the smaller square from the bigger square here, you are left with the
shaded area. Cutting the upright piece off and laying it end-on to the other
piece, the resulting rectangle has the dimensions: @ + b and a — b.

It’s just a matter of spotting the easier way once you know the principle.
Suppose you have to multiply 37 by 43. If you spot that 37 is 40 — 3 and 43 is
40 + 3, it’s quicker to think, 40 squared is 1600, 3 squared is 9, so 37 times 43 is
1600 — 9, which is 1591.

If you aren’t sure, check it by long multiplication or with your calculator. It’s
always good to check, anyway. See examples on the facing page.

Difference of squares finds factors
It also provides short cuts in algebra. x* + x* + 1 has no odd powers of x, so you
might think of x? as the variable and thus think of it as (x%)? + (x%) + 1.
x% 4+ x4 1 doesn’t have factors (not simple ones, anyway), so you think that
making x a square doesn’t make it have factors, either.

However, if you notice that (x 4+ 1)* is x> + 2x + 1, then [(x?) + 1] is
x% 4+ 2x% + 1. That is x> more than the expression you want factors for, and x? is
also a square. So, the expression: x* + x> + 1 is the difference between two
squares.

Written that way, the factors are: [(x? + 1) + x] and [(x* + 1) — x], which
you can turn into a more conventional order: (x? + x + 1) (x> — x + 1). Check
the equation by multiplying out.

Factorize: x* + x% + 1

x4 +2x24+1=(x2+ 1)

So:

x4+ x2+1=(x2+1)2 -x2

Factors are: (x2+ 1 +x)(x2+1-x)
More usually written:

x24+x+ D 2-x+1

XZ—x+1
CHECK X2+ x+1
xZ-x+1
+x3-x2+x
x4—x3+x2

x4 +x2  +1
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One way to find a square root

Years ago, students learned a routine to find square roots that was not explained
to them. Understanding it paves the way for understanding not only square
roots, but a lot of other things that computers do.

Earlier in this book, I asked for the square root of 8. The square root of 9 is
easy. First, look at squares and the square roots of easier numbers in arithmetic,
algebra, and geometry, using numbers that “work-out.”

See how this works for a square root that is a 2-digit number (the square has
3 or 4 digits). Here the problem 37 squared is 1369 is worked through forward
and backward.

You can use the same method to find square roots that have more than 2
digits. Here, a third digit is added to the root, and the square has 6 digits. Now,
look at how math students used to set it—before calculators would do it for them.

The first thing they did was to mark off the digits in pairs from the right. Why
do that? For example, the square root of 9, which is 1 digit, is 3; but the square of
90 (2 digits) is more than 9% (81) and less than 10% (100). So, a 1-digit root can
become a square that has 1 or 2 digits. That is why you mark the digits in pairs;
to know whether the first digit of the root is taken from a number between 1 and
10 or one between 10 and 100.

Next, enter the first digit of the root, on top, and try for the second digit. If the
first digit of the root is a, we subtract ¢® from the square line. What is left must be
2ab + b So, double a, leave a space for b, try various values for » and multiply
both a and b by b, which gives 2ab + b* for that place. Subtract again.

Now, the first two digits of the root are @ and the remainder is a new 2ab + b*.
Go on like that through however many digits you need.

SQUARES
Arithmetic Algebra Geometry
Square of 32 Square of (a + b)
a+b a b
32
12 a+b
< ab+ b2 a a? ab |a
64 a’+ ab
9 -
3% 3 in a2 +2ab + b? b ab b2 |b
100's b
Twice 5 a
3X 2in Area =a? + 2ab + b?
10's
2X2in | Rootis 10a+b

I's - Square is 1002 + 20ab + b?
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FIND the SQUARE ROOT of 1369

»a \I
l< 30 >
-+ T ~
100 { 100 | 100 110a] !
! ; Tens: 30% is 900; 407 is 1600
30 | 100 | 100 | 100 : 10a : Square root is between 30 and 40
! J' 2 times 30a + a° is 1369 — 900 = 469
| |
100 { 100 | 100 '10a :
Y | e e a e le — _I
10a | 10a | 10a | 22| | 7 (imes 30is 60 302= 900
Looboootoo o 7 |2x30x7 = 420
60 | 469 )
42 7= 49
49 (30 +7)% = 1369
gna
a =17
aZ =49
The square root of 1369 is 37
tens
tens? X —ft—> 2 X tens X units

/ units //2)(3)(7:42

In tens
In hundreds place
place
In units CHECK 37
place 37
259
900 111
420

49 1369
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Find the Square Root of 139,876

Answer
&6& s | Try 68
S
(Hundreds)? W e ™ g
2 4
(Hundreds) Tens 31918716
=
6 41918
X " 4169
7 4 2191716
X 2191716
2X (Hundreds &% "~~~ "
288888 g =2
andTens) 5 §§ § g—g ﬁ :i:)
S:::
£ £ 5T
e R and E_‘.
5
F
1st Step
(Hundreds)® +. . . . . .90000
2 (Hundreds X Tens) +. . 42000
(Tens)2. . . ... ..... 4900

“CONTINUED” SQUARE ROOT
Find the Square Root of 2

2X1

Y

544 Too grea

744

2X 14

2X 141

Y

S N
- S s?*‘\&
O e ™ o
1. 4 1 4
2. 00 00 00
1
5 1. 00
X 4 —> 96
" 4 00
X | ——s 2 8l
e |4 [t 19 00
X 4 —> 1 12 9
6 04 00
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“Continued” square root

In the procedure where the square is a number of digits with no decimal fraction,
you marked digits in pairs from the right. Where the square has a decimal fraction
part or where the root might do so, mark places in the square from the decimal
point each way. Where you have no decimal point, the right end of the number is
where the decimal point would be. Where the root continues, perhaps indefinitely,
you have a decimal part to the root.

The square root of 2 (a well-known number in mathematics) is found by this
method. Later, other methods of finding, not only square roots, but other roots
are shown. See bottom of page 178.

Importance of place in square root

It is always important to watch place. This has occurred before—in division, for
example. But with square roots, using the wrong pairing can produce a wrong
set of digits and a wrong decimal place. Remember, mark off the digits in
pairs—each direction from the decimal point.

A similar, but much more complicated method, can find cube roots. Years
ago (before my time) some schools taught that method. Now, when a calculator
will probably do it anyway (a lot faster) knowing how to do it “by hand” is rather
pointless. Being more complicated, it has more opportunities for making
mistakes!

In SQUARE ROOT, watch "PLACE"!

® ©

6. 1 5 ¢ 1 9. 4 7
37. 94 00 00 | 3 79. aq 00
36 1
121 1. 94 20 [2 7.
NOTE: Zero
X 1 .
L2l X9 2 6l is added to
1225 73 00 384 [18. 40 complete
X5 61 25 X 4 15. 36 a pair
12300 [11 75 00 3887 | 3. 04 00
X9 11 07 81 X7 2. 72 09
67 19 00 31 91 00

0] 004100(.00|00]00
Mark off in PAIRS of places

FROM DECIMAL POINT
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Importance of signs in successive roots

Looking at this pattern leads to discovering a whole new branch of mathematics.
The square root of a positive number can be positive or negative. If you pursue a
cube root, you'll find that the cube root of a positive number must be positive
and the cube root of a negative number must be negative.

Now take the fourth root, which is the square root of the square root.
Obviously the root can be either positive or negative, but something seems to be
missing. The first square root can be either positive or negative. We can take the
root of the positive root again, but is the negative root just left hanging sort of use-
lessly?

It begins to look as though you should have 2 square roots, 3 cube roots, 4
4th roots, and so on.

Let's consider
SIGNS

g ﬁ Square a2
Roots

SQUARE +a ~a
+ax +a=a2 ~aX—a=a?
‘ Cube a3
CUBE Root a
Cube -a3
Root -a

—aX-aX-a=-a

yO .

FOURTH Fourh '\

Square .2 —_a2

+a/\—a ?

Imaginary numbers

Studying this problem led to a concept that is now called imaginary numbers.
Once negative numbers weren't “allowed”™ they didn’t represent real things.
Then, it was found that they could be used in calculation to get valid answers.
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The roots on the previous page are “real” roots—roots that mean something
physical (even the negative ones).

So you can handle these imaginary numbers, but you need a sign to separate
them from real numbers, just as the minus sign separates negative numbers
from positive numbers. The symbol mathematicians picked to do this was the
letter i They write an 7 in front of the number. Thus, just as “—” “times Yisa
positive, itimes 7 is a negative.

Just as a negative times a negative is a positive, and 3 negatives multiplied
together is another negative, itimes i is a negative. 3 i’s multiplied together is —i;
4 i’s multiplied together is another positive again, and so on.

% <C

IMAGINARY NUMBERS Real rootsV+1=+1or-1
Imaginary rootsV -1 =+ior-i
i?2=-
Fourth Roots
Fourth Power a4
Squares }32\ —/ az\-

Roots +a —a +ia —ia

Cube Roots Suppose (a +ib)> = 1

a+ib

X a+ib

=a2 +2iab+i2 b?

X a+1b
=a3+3ia?b+3i2ab? +i3 b —> a3+ 3ia’b-3ab?—ib® Thiscan=1,if

Imaginary parts vanish @ 3a’b=blor3a’=b’
b=*V3a

and
Real parts = 1 > @ a2 —3abl=1

Imaginary numbers find the other two cube roots

The pattern suggested that we should have 3 cube roots, but the old arithmetic
only found one. We can approach finding the other two in several ways. First, try
algebra. Let’s look for the cube root of +1.
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Write (a 4 ib)’ = 1 and multiply it. Notice the sign changes (including from
imaginary to real, or vice versa). This gives &® + 3a’b — 3ab® — ib>. This must
be 1, which has no imaginary part.

The real part is > — 3ab® = 1 because the equation can only be true if the
imaginary parts “disappear.” So, the imaginary part must satisfy another equa-
tion: 3a*h — b> = 0. That can be true if » = 0, which makes the real part what
we are familiar with: > = 1 (a = 1). Taking ib out as a factor, the equation can
also be zero if: b* = 34*. Now substitute this piece into the real equation. This

equation is: ® — 94° = 1, which turns to 8¢° = —1. So a = —1/2. So, b is 3
times a® (—3/4). Then, b is the root of — — 3/4:
+iv/3
2

You can take the square root of the 4, but write root 3 with a surd.

A “real” number, as mathematicians call them, does not have an Z, but an
imaginary number does. A number that has both parts is called a complex num-
ber. Imaginary numbers and complex numbers appear in a later chapter. In this
chapter, it’s enough to realize they exist.

IMAGINARY NUMBERS Three cube roots

/Substitute for <
@ b’= 3a’ @ a’~3ab? = 1

a3—9a3 =1
-8a% =1
ad =—

b

Il
|+

3
| a =
2

|
|
W
=
]
I+

\
/
IRl
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Simultaneous quadratics
Sometimes a problem with two variables has two possible solutions that are given
by quadratic equations. Suppose a rectangular area is enclosed on only three
sides. Those three sides require 20 feet of fencing to enclose an area of 48 square
feet. What are the dimensions of the fence?

From this problem, you get the equations shown, using dimensions ¢ and b: a
for the two sides and b for the one side.

Equation 1: 2a+ b =20 Equation 2: ab =48

This problem looks difficult, compared with what you have done before. One
way to eliminate work here is to square equation 1. (2a + b)* = 400, multiplies to:

4a* + dab + b* = 400
By subtracting 8 times equation 2: 8ab = 384, you have:
4a* — dab + b* = 16.

Now, taking the square root, you get 2a — b = 4, but that answer can be +4.
This equation leads to 2 sets of answers. The square root of
4a* + 4ab + b* = 400 can only be +20, because that was in our original equa-
tion. Now, you have two sets of answers: 8 by 6 or 12 by 4.

_,L}< a - . 22 + b =20
¥ What are the dimensions
H of aand b? 2. ab = 48
Square @ : 4a2+ 4ab + b2= 400
Multiply @ by 8: Bab =384
Subtract: 42— 4ab+b%= 16
(2a-b)*= 16
2a-b=14

NOW @ 2a+b=20

@ 2a-b=4 OR 2a-b=
When2a-b=+4, addmg@and@ gives 4a =24

a= 6
Substituting 12 + b =20 > b= 8
When 2a - b =-4, adding @and @ gives4a=16
a= 4

Substituting 8 +b =20 | b= 12
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Always check!

I can never stress checking enough. Again, don’t use the answer book; it doesn’t
check your work. Go back over your work yourself. Verify it by using the two
sets of answers in the original problem.

Twosides 6 feet and one side 8§ feet add up to 20 feet of fencing, which enclosed
48 square feet. Two sides 4 feet and one side 12 feet alsoadd up to 20 feet of fencing
and it also encloses 48 square feet. This time, because the problem is not symmetri-
cal, you find two answers that are not reversals of one another.

T CHECK

Solution 1
6f

2X6+8=20
l 6xX 8 =48

Il 1 J
< 8 >
T Solution 2
4 2X4+4+12=20
4% 12=48
|< 12 >

Questions and problems
1. Using the difference-of-squares method, find the following products:

(@) 63 x 77 (b) 85 x 95
(¢ 117 x 123 (d) 193 x 207
(e) 49 x 51

Using long multiplication (or a calculator) to check your results.
2. Find the square root of the following numbers:
(@) 179,776 (b) 20,164

© 456,976 () 9,920.16
© 12,769
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3. Find the square root of the following numbers (correct to three decimal
places:

(@ 30 (b) 50
(©) 60 (d 70
(e) 80

4. Solve the following pairs of simultaneous equations.

@ x+y=20andxy =96 (b) x —y=>5and x* + )* = 53
©) 3x+y=34andxy =63 (d) x—y=6andx2+y2:26

5. The force exerted by wind is proportional to the square of the wind speed.
Suppose a wind blows at 30 miles per hour, and exerts x amount of relative force
on objects in the physical environment. Then how much relative force is exerted
by a wind blowing at the following speeds? Calculate your answer to two signifi-
cant digits.

(@) 10 miles per hour (b) 20 miles per hour
(¢) 40 miles per hour (d) 60 miles per hour
(¢) 100 miles per hour

6. The intensity of a light beam varies according to the inverse of the square of
the distance. Suppose that, at a distance of 10.00 feet, a light beam has a relative
brilliance of x “light units.” Then how bright will the beam be at the following
distances? Calculate your answers to four significant digits.

(@) 2.000feet  (b) 5.000 feet
(c) 15.00feet  (d) 25.00 feet
(e) 100.0 feet

7. Abox hasavolume of 480 cubic inches and a surface area (all six rectangular
sides added together) of 376 square inches. It is 6 inches high. Find the other two
dimensions.

8. A rectangular area has to be enclosed with fencing. It is known to have an
area of 10 acres (435,600 square feet). Assuming that the area is square, with
660 feet on each side, 2460 feet of fencing are bought. Since the area is rectangu-
lar, the fencing covers only three sides and exactly half the fourth side. What are
the dimensions of the area?

9. Suppose, in the previous question that the fencing was 110 feet short of com-
pleting the enclosure. What are the dimensions? Why do the alternative answers
in question 8 differ, but for this question, the dimensions are the same in opposite
order?
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10. Two numbers multiplied together are 432; one divided by the other leaves a
quotient of 3. What are the numbers?

11. Add the following pairs of complex numbers. Note that in this problem and
the next two, the square root of —1 is represented by j. This is common among
engineers, as opposed to i, which is common among mathematicians. You should
get used to seeing it both ways.

(@ 2+4j2and 1 —j4 (by =2 —j6and 9 — ;2
(© 1+, 2and 1 —;2 (d) =2 —j3and2 +;3

12. In each of the following pairs of complex numbers, subtract the second from
the first. (Hint: Multiply the second number by —1 and then add.)

(@ 74+j7and 1 + j4 (by —2+j10and —3 — ;2
(c) 6+j6and 6 —j6 (d) —4 —j5and —4 43

13. Find the products of the following pairs of complex numbers.

(@ 84 2and 1 —;2 (by —3—j0and 3 — ;2
() 0+j2and 7 — ;2 (d) 6 —j3and 6 + /3
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CHAPTER

Mechanical
mathematics

Relationship between force and work

Force 1s a measure of “push.” A truck with a heavy load begins to move steadily
when it is pushed. If the truck has a lighter load, the same “push” will make it go
much faster. See the illustration on page 188.

Alternatively, more push can move the heavier load more quickly, too.

Measure of force

Force is needed to start and stop movement. However, little force is needed to
maintain movement if the “bearings are well oiled” to offset friction. With no fric-
tion, movement would continue unchanged indefinitely, until some force would
change it. For simplicity, assume that no friction exists; force is needed only to
start, stop, or change motion. See the example at the top of page 189.

From observation, force is proportional to: the weight to be moved, and to the
acceleration (rate at which motion increases) or the deceleration (rate at which
motion decreases).

One unit for measuring force is the poundal. It is the force needed to acceler-
ate (or decelerate) a weight (usually called mass) of 1 pound so that it changes its
velocity by 1 foot per second every second.

The metric unit of force is a dyne. 1 dyne accelerates a mass of 1 gram 1 cen-
timeter per second per second.

Whatever units you measure force with, they are mass times acceleration—
mass multiplied by distance, divided by time squared. That is what “per second
per second” means (it isn’t a misprint!). You will better understand this concept
later.

187
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FORCE and WORK

Force

—>

A heavy load moves
1000 pounds slowly when pushed

X, O O
>

Movement

Forcei
> A light load is moved more
i quickly by the same effort

10
pounds
42 ©

A heavy load moves faster
when pushed harder

1000 pounds

o) @)
>

Movement
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Force
Force is needed to start
and stop movement
\ 1000 .
pounds But very little force
is needed
T L to maintain steady speed

—— O] ©

Force is proportional to: @ weight moved

acceleration
(or deceleration)

Poundal is force that will accelerate

1 pound by a velocity of
1 foot per second, in every

1 second
Dimension of Force
¢ In poundal units: pounds X feet
seconds 2

Mass X length (or distance)

time?

e In metric units: Dyneis  grams X centimeters

seconds 2

Speed and distance

The “per second per second” sounds confusing at first—as if I repeated myself by
mistake. Look at it in a way that avoids this repetition.

Assume that you travel by car at 40 miles per hour. For the next minute, you
accelerate steadily so that 1 minute later, you are moving at 60 miles per hour.
This acceleration is 20 miles per hour per minute. Although exact repetition is
avoided, ‘per hour, per minute’ is still used. These measures are two different
units of time. “Per hour per minute’ is not a standard unit of acceleration, but it
helps to understand the principle by not using confusing repetition.

Ifacceleration is steady, the average speed during that minute will be midway
between the start and finish speeds of 50 miles per hour. The distance travelled
during that minute will be the same as if this average speed had been used for
the whole minute: 5/6 mile.
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During
1 minute
speed
increases
steadily
from
40 to 60 mph

1 MIN
Time

SPEED and DISTANCE

40 + 60

Average speed for 1 minute is =50 mph

1 minute is 61—0 hour

3

} . 1
50X — =
So distance is 06

Acceleration was 20 miles per hour per minute

mile

Acceleration and distance

A standard unit of acceleration is feet per second per second (ft/sec?). Assume
that a steady acceleration of 10 ft/sec? from a standstill is used.

At the start, you are not moving. After 1 second, you will have accelerated by
10 ft/sec? to a velocity of 10 ft/sec. The average velocity for the first second will
be 5 ft/sec?, half way between 0 and 10. So, you will travel 5 feet during this first
second.

During the next second, the velocity will change from 10 ft/sec to 20 ft/sec,
an average of 15 ft/sec. Thus, you will travel 15 feet in the 2nd second, a total of
20 feet from our start. The average over 2 seconds is 10 ft/sec, which will take
you 20 feet in 2 seconds—the same result.

During the 3rd second, the speed increases from 20 ft/sec to 30 ft/sec, an
average of 25 ft/sec, to travel 25 feet, a total of 45 feet. Over the 3 seconds, the
average is 15 ft/sec (45 feet).

You can tabulate distances travelled for any number of seconds from the
start. If we plot the result as a graph, the resulting curve is a quadratic.
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Acceleration in feet per second per second (ft/sec2)

Assume acceleration is 10 ft/sec?

Speed
At beginning| Atend Average for
Number of second|__©f second of second second Total distance
from start Feet per second from start
Also distance
in feet
Ist 0 10 5 5
2nd 10 20 15 20
3rd 20 30 25 45
4th 30 40 35 80
5th 40 50 45 125
= 150 |
L125
Rr 2 cowo.  ACCELERATION
§ 75 /L Quadratic and
3 39/ DISTANCE
A o
12345
Time in seconds
General Formula Specific Example
Total time from start t 5 seconds
Speed at start 0 0
Speed at end of time at 50 feet/second
1
Average speed 5 at 25 feet/second
1
Total distance from start 7 at? 125 feet
Algebraic
Note on Dimension Symbol Quantities Units
Acceleration a is length (distance) feet
time? second?
Speed (Velocity) at or v is length (distance) feet
time second
1
Distance >at*or d is length (distance) feet
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Mathematics develops formulas to give the answer directly, from any partic-
ular set of facts. If ¢ is the total time from the start (when speed is 0, a standstill),
the speed at the end of this time is a7 (a times 7) feet per second (ft/sec). So, the
average speed between a start of 0 and a finish of az ft/sec is at/2 ft/sec. Since
the time is 7 seconds, the distance travelled from the start is ar* /2 feet.

The results will agree with those worked out step by step on the previous page
if you use @ = 10. Notice that acceleration uses units of length (distance) per
time per time, such as feet per second per second. Thus, acceleration has the
dimensions of length/time?, or in units: feet/second?.

Velocity results from multiplying acceleration by time, and thus it is length/
time (length divided by time once), in units, such as feet/second or miles/hour.
Distance covered, measured in feet or miles, is obtained by multiplying velocity
by time.

Force and work

Force is a measure of push or pull, as stated earlier. Work (as a mathematical
term) is a measure of what is done by that push or pull. If nothing moves, as
when you lean against something, the force is there, but no work is performed.
Work results when an applied force causes movement.

Force is a mass times acceleration. Work is proportional to applied force and
distance moved. Work is force times distance, so it must be mass times accelera-
tion times distance. Distance moved, using constant acceleration from a stand-
still, is ar?/2. So, work is mass times acceleration times az*/2. Since velocity is
acceleration multiplied by time, this can be simplified to mv? /2.

FORCE is mass X acceleration

Symbols Quantities Units
f=ma mass X length | pounds X feet
my - . .
= time? n seconds 2

or poundals

grams X centimeters

~ seconds 2
or dynes
‘ 2
WORK is the result  w = mad mass X length’ pounds X feet 2
of FORCE applied time? 2
for DISTANCE seconds
or foot-poundals
1
d= ) at?, sow = 5 ma? t 2 grams X centimeters?
7 seconds 2
az\ti,orv:at, { or ergs

sow--lmv2
2
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® ©,

Examples
Accelerate { 1000 pounds ).............. 10 ft/sec? ........ 5 ft/sec?
Force used ....... e 10,000 poundals ... 5000 poundals
Distance moved..J....ccooninieiinnninns 80 feet.....covviinenn. 160 feet
Time required..... .} 4 seconds................ 8 seconds
WOrK dONe...coevevso oo 800,000 foot-poundals

Final speed ..........}.....ccoc. T, ... 40 ft per second

1
2

X 1000 X 1600v

Units of work are the foot-poundal, (the work done by a force of 1 poundal
moving through 1 foot), and the erg, the work done by 1 dyne moving through 1
centimeter.

The formula mv?/2 represents the work of bringing a specific weight to a
certain velocity, regardless of the acceleration. If the acceleration is 10 ft/sec?,
80 feet and 4 seconds are required to reach a velocity of 40 ft/sec. If the accelera-
tion is 5 ft/ secz, it requires 8 seconds and 160 feet. Either way, 800,000 foot-
poundals will move 1000 pounds from standstill to 40 ft/sec, although time and
distance differ. Work is given directly by the formula mv?/2. You do not have to
know time or distance—only the mass and final speed.

Work and energy

Work and energy use the same units, because they are the same at different times.
For example, an archer pulls back the string of his bow. The string is pulled back
by a force that is equal to (or a littler greater than) the tension of the string. The
archer’s energy transfers to the bow string as work. The amount of work that is
needed to pull the bow string back is stored in the bow as energy, which ultimately
sends the arrow on its flight.

When the archer releases the arrow, the string’s thrust accelerates it to flight
velocity. This work transfers the energy of the drawn bow to the energy of the
arrow in flight.

Energy is a capacity for doing work and, conversely, work is the transfer of
energy, from one form or place to another. So, both use the same units: foot-
poundals or ergs, according to the system of units employed.

When the energy is in the form of a mass in motion, the appropriate formula
is mv? /2. This formula can be used for the work needed to attain this motion or
for the energy stored by it.
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WORK and ENERGY

ENERGY WORK
is a capacity for doing is the transfer of ENERGY
work from one form to
another

Units are the same for both

foot-poundals

ergs

Energy and power

Power is a rate of doing work, or of transferring energy from one form to another.
As work is force applied over a distance, power is force applied over a distance
within a specified time.

You already know the units used, but an example will illustrate the relation
between power and the other quantities. Assume the question relates to horse-
power vs. the weight of a car.

For example, one motor unit develops a power of 290,000 foot-poundals per
second, and another has twice the power, 580,000 foot-poundals per second.
Coupled with these powers, different weights must be moved. One is 1500
pounds, the other is 3000 pounds.

Energy is measured in the form mv?/2. So, power must be in the form:
mv?/2t. Transposing this, using the symbol p for power, the time for a mass to
reach a given velocity is nmv?/2p. From this formula you can find the time taken
by:

1. The smaller power unit with the smaller weight
2. The smaller power unit with the greater weight
3. The greater power with the greater weight
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POWER is a rate of doing WORK
or of transferring ENERGY

WORK or ENERGY is FORCE woliyo Mass X length?  foot-

applied for a DISTANCE 2 time? poundals
or ergs
POWER is FORCE applied )
2
for a DISTANCE within a p=mv?  massX length®  foot-
2t time3 poundals
TIME per second
or ergs
per second
Examples 1 2 3
Power (foot-poundals/sec) 290,400 290,400 580,800
Weight (mass) pounds 1,500 3,000 3,000
Time to 30 mph [ 44 ft/sec] 3 sec 10 sec 5 sec
60 mph [ 88 ft/sec] 20 sec 40 sec 20 sec
90 mph [132 ft/sec] 45 sec 90 sec 45 sec
vZm
= —
2p

If you want to, you can complete the set by taking the greater power with the
smaller weight!

Tabulate the time needed in each case to reach 44, 88, and 132 ft/sec, which
are the speeds that correspond to 30, 60, and 90 miles/hour. Notice that the
time needed is related to the square of the speed to be reached. At constant
acceleration, speed is proportional to time. At constant power, acceleration must
diminish as speed increases.

Gravity as a source of energy because of position

To keep the units basic (1 pound, 1 ft/sec? etc.), gravity has been left out of force,
work, and power. This force can be realized only by working along a level road
or surface horizontally. The constant vertical force of gravity that acts around
us, however, provides a convenient means of storing and concentrating energy.

A pile driver illustrates this principle. First, work is done by lifting a weight
against the force of gravity. The weight is not accelerated upwards, but it is lifted
steadily against a constant force—gravity pulling downwards. Just as energy or
work is force times distance, this energy takes the form of distance lifted times
weight.
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GRAVITY PROVIDES SOURCE
of ENERGY
due to POSITION

Height lifted

|

Work lifting weight stores energy Loosing weight,
gravity speeds weight down.
Energy drives the pile

Moving twice the distance requires twice the work, stores twice the energy.
Velocity is not involved . . . yet. Less power requires more time to do the same
amount of work.

When the weight reaches the top, it is released to drop on the pile. Gravity is a
mutual pull between earth and any mass. Doubling the mass doubles the pull
(weight). So, in freefall, any object will drop at the same acceleration—approxi-
mately 32 ft/sec’.

As the object accelerates downwards, it stores energy at the rate of mv? /2, as
a result of its motion. When it hits the pile, this stored energy is concentrated for
a very short time, thrusting the pile downward. The momentary force is many
times the weight caused by the steady force of gravity on that mass. In metric
units, the force of gravity is equivalent to an acceleration by a force of about 981
dynes per gram.

Weight as force

From that illustration, you can see that weight provides a steady force acting
downwards as a result of the gravitational pull between the earth and any mass.
The force is found from the mass on which gravity acts, multiplied by the accelera-
tion of gravity, which produces 32 feet/sec” or 981 centimeters/sec’. The force
that is needed to prevent the weight from falling is equal to the pull of gravity on
the weight.

As the pull of gravity accelerates the weight downwards at 32 ft/sec’, the
force of gravity on a mass of 1 pound must be 32 poundals. On a 2-pound weight,
the force will be 64 poundals, and so on.
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WEIGHT is a STEADY FORCE
acting DOWNWARDS

A weight falls, pulled by Force needed to prevent weight
gravity, with an acceleration falling is equal to gravity's pull
of 32 feet per second per second on the weight

On a 1-pound weight, the force of gravity is 32 poundals
On a 2-pound weight, the force of gravity is 64 poundals

A pound, the gravitational unit of force,

is equal to 32 poundals

Thus, a mass of 1 pound provides a gravitational force of 32 poundals.
Otherwise stated, when you use gravity on a mass of 1 pound, it becomes a
l-pound weight, exerting a force of 1 pound (32 poundals in absolute non-
gravitational units).

For this reason, in basic or absolute force units, the mass is 1 pound.
However, in gravitational units, the weight is 1 pound.

Gravitational measure of work

In gravitational measure of work, force does not have to accelerate a mass.
Gravity exerts a force continuously on everything, pulling it downwards. If some-
thing doesn’t fall downwards, it’s because an equal force supports it, pushing it up.

Ifa 10-pound weight (gravity acting on a 10-pound mass) rests on the floor, it
presses on the floor with a weight (force) of 10 pounds. Correspondingly, the
floor pushes upward against the weight with a force of 10 pounds to prevent it
from falling.

Does the floor change its upward force according to what is on it? Yes. If you
hold the 10-pound weight, your feet press on the floor, and the floor presses on
your feet with a force that is 10 pounds more than just you standing on the floor.

All the time that these forces balance, they are forces in equilibrium. If the
floor cannot provide that much upward push, it collapses, and work (although
probably destructive) is done. See illustration at top of next page.
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Gravitational Measure of Work
FOOT-POUNDS

To lift a weight against the pull of gravity requires work.
One pound requires a force of one pound.
To lift it 1 foot requires 1 foot-pound of work.

A foot-pound is = the gravitational unit of work

1 foot-pound = 32 foot-poundals

HOW MUCH ENERGY is NEEDED
to MAINTAIN CONSTANT ACCELERATION?

Time

Constant acceleration

Start | 1 pound 1 foot per second per second

1 second % Inlst "1 foot-poundal

second 2
= foot | 1
- In 2nd I _ 1.
2 seconds ’I/% second 2- 3~ 12
2 feet
o In3rd ,1 ,_,1.
3 seconds ) . second 12727273
42 feet Ath
N 7 In 4t 1 _ 1.
4 seconds — ’ second 843 =33
In 1 second from start % foot-poundal
Work | is | force | (1 poundal) W " W "
times | distance = = at? nyoom SRS S
2 2

i 4 " " " 8 " "
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Energy for constant acceleration

It is simplest to assume that acceleration is constant, which means that velocity
increases at a uniform rate, such as 1 {t/sec?. This strategy is convenient because
as well as being a steady growth in velocity, acceleration represents a steady
force. However, it does not correspond with a constant rate of work, transfer of
energy, or power. The faster an object goes, the more power is needed to maintain
the given force.

Work is force times distance. So, maintaining the same force at higher speeds
requires (or produces, depending on viewpoint or situation) more work, energy,
or power. As shown in the example at the bottom of the facing page.

Kinetic energy and velocity

At constant acceleration, such as when a weight falls by the pull of gravity, energy
builds in proportion to time squared. This rule occurs because energy is propor-
tional to velocity squared.

ENERGY is PROPORTIONAL

to VELOCITY SQUARED
Start 1sec 2 sec 3 sec 4 sec Acceleration: 32 ft per second per second
> 16 ft Weight: 1 pound
/4
é Force: 1 pound
| 64 ft blolol o
g1%(212]2
A=l | =
144 ft Velocity 0 |32 | 64| 96(128] ft per sec

Drop (total) 0 | 16 | 64 |144|256] ft
Energy 0 |16 | 64 |144(256] ft-pdls

AN 256 ft Velocity v =at
% ey e= bz
nergy e=smv
2160 r 400 =
o Energy 3
£128 Veloo: ft 320 §
= t
2 96— 2561 240 &
D \ o
9@2 & 64 /,144 160 &
> -
5 32 7 80 %D
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Viewed another way, energy is proportional to force times distance. But as
distance, at constant acceleration, increases in proportion to time squared,
energy and distance both increase as time squared. Constant acceleration
means velocity grows in direct proportion to time.

Thus, the two ways of referring to energy conform: kinetic energy is energy
caused by motion; it is proportional to velocity squared. Potential energy is energy
caused by position; it is proportional to force and distance moved against that
force.

Potential energy must be built from movement. Aslong as start and finish are
both the same or at some constant velocity, movement is not involved in the calcu-
lation, as it is with kinetic energy.

In the pile driver, for instance, a little more force is needed to start its upward
movement. While it ascends at a constant rate, force and movement are both con-
stant. A little less force is used to reach the top, if it stops before being released.
The overall work needed to lift it is weight times height lifted, in foot-pounds.

Acceleration at constant power

The rate of work (power) at constant acceleration, increases with velocity, requir-
ing progressively more power during acceleration. For many purposes, accelera-
tion at constant power is close to what happens. By rearranging the formula that
relates kinetic energy and power:

mv2/2 = pt

So if power p and mass m are both constant, velocity must increase with the
square root of time.

Assume that constant power enables the accelerated mass to reach 100 ft/sec
in 20 seconds. You can calculate the velocity at any time during the 20 seconds.
It has been calculated here for 4-second intervals. You can do it without knowing
the mass or power involved.

For the full 20 seconds, velocity reaches 100 ft/sec. 100 squared is 10,000.
Divide this number in proportion to time: 2000 for 4 seconds, 4000 for 8 seconds,
6000 for 12 seconds, and 8000 for 16 seconds. Then, take the square root to find
the velocity at each of these times in ft/sec.

100
-
"g 80 /
= o 60
8 o
L 0
§ 20

N4
4 8 12 16 20
Time in seconds
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. 2 .
Time (Veloc1ty) Velocity
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887 [ 6400 123 [400
6209 369
8942 [19100 1262 g;gg
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50576
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49 8000.
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7 mv 2 =pt| mand p are constant

Notice that acceleration is much faster at the beginning. Then, as velocity
builds, acceleration drops. That particular figure was not included, but half the
final speed is reached in only a quarter of the time. The faster an object goes, the
slower its speed increases.

A stressed spring stores energy

Another way to store potential energy is with a spring, rather similar to the
archer’s bow from earlier in this chapter. First, assume that the spring supports
only the weight that is attached to it. This weight will figure in the energy inter-
changes discussed in the following pages.

Now, progressively apply more force (than the 1 pound) to compress the
spring. To compress it 3 inches requires an additional 2 pounds of force. A 6-
inch compression requires 4 pounds, 9 inches, a 6-pound extra force.

The force that is applied to compress the spring by 1 foot, uniformly grows
from 0 at the start to 8 pounds at the finish. So, the average force over the 1 foot
of compression must be 4 pounds. Thus, the energy stored in the spring, when it
is compressed, is 4 foot-pounds (4 x 32 = 128 foot-poundals). The energy will
remain stored as long as the 8-pound force holds the spring compressed.
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A Stressed Spring Stores Energy

2 pounds
v 4 pounds
1pound | 3in g 6 pounds
| 1pound | (o g 8 pounds
- L | 'Pound ] gin v
TS 1 pound .
> R 12 in
TS > 1 pound
S \
TS < >
- - > > <>
> > g ~e—
> S <
- S - >
TS <l >
—— > e S
—— -
<> <> TS = —
Spring Force of Force of Force of Force of
supports 2 pounds 4 pounds 6 pounds 8 pounds
1 pound compresses compresses compresses compresses
weight spring spring spring spring
3 inches 6 inches 9 inches 12 inches
J
Y
Average force 4 pounds
Distance moved 1 foot

Work = Energy stored 4 foot-pounds
or 4 X 32 = 128 foot-poundals

Spring transfers energy

Assume that the force holding the spring compressed is suddenly released. The
spring starts to accelerate the 1-pound weight upward with a force of 8 pounds
(which was just removed). As it goes upward, the accelerating force will diminish,
but the velocity will continue to grow because the accelerating force disappears
only when the extra 1-foot compression has all been decompressed. To find what
happens to velocity, remember that both methods of considering energy must
always agree. The total energy doesn’t change.

When the spring is half decompressed (to 6 inches), the force has dropped to
4 pounds (128 poundals). The average force represented in this compression is 2
pounds (64 poundals), and the distance over which this average force is com-
pressed is 6 inches (1/2 foot). So, the remaining potential energy is
64 x 1/2 = 32 foot-poundals. Of the original 128 foot-poundals, 96 must have
been turned into kinetic energy. This equation must be mv?/2; m is 1 pound, so




Mechanical mathematics 203

v* must be 2 x 96 = 192. So, v is the square root of 192 (13.856 ft/sec). When the
spring is fully decompressed, all the energy is kinetic, so now v* = 256 (v = 16
ft/sec).

TRANSFER of ENERGY

16
1 d
ﬁ poun ft/sec

13.85
ﬁ 1 pound ft/sec

SPRING SPRING HALF SPRING FULLY
COMPRESSED DECOMPRESSED DECOMPRESSED
Force = § pounds Force = 4 pounds or 128 pdls  All energy transferred:

or 256 pdls Average force: 64 pdls 128 ft-pdls :é_ my 2
Energy = 128 ft-pdls Distance compressed:;— ft v2=256
: - v =\ 256 =16 ft
All encrgy potential Energy store:ci. 32dft pdls /sec
nergy transferred: All Kineti
| 3.85 128 -32= 96 fipdls = o my?2 [ TTEY HETC
1| 92. m = | pound; so 1 6.
L v2=192 2|s6.
23 [ 92 I
v =\/192 = 13,85 ft/sec —
69 26 | 156
268 | 2300 E - 156
2144 nergy: —
2765 [ 15600 ;ﬁ ﬁ:’;ggﬁa]
13825

Resonance cycle

The transfer of energy from potential to kinetic in the spring and weight arrange-
ment forms the first part of a resonance cycle. The weight moves upwards at 16
ft/sec. The spring now starts to decelerate the weight because the spring is going
into tension (pulling down, instead of pushing up). For each 3 inches upward
about the neutral position, it will apply a tension of 2 pounds until it reaches a
foot, where the tension becomes 8 pounds.
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ENERGY TRANSFER

Resonance Cycle Tension Force
8 pounds

Ay

Upward Velocity 1 pound

Downward velocity

16 ft/sec 16 ft/sec
Con;;());iseSIOH 1 pound I 1 pound Co%[;iismn
8 pounds 8 pounds
- — >
= = M
i pound TS — > 1 pound
> D
— TS — > —
—— TS — > —

As with the compression, the average force of tension over the foot of move-
ment is 4 pounds, so the potential energy will again be 4 pounds (128 foot-
poundals). All of the energy is again potential and the weight is momentarily
stationary.

Having reached this extreme, an equal acceleration downward starts the sec-
ond half of the cycle. A similar interchange of energy continues until the neutral
position is again reached. At this point, all the energy is again kinetic and the
velocity will be 16 ft/sec downward, steady (for the moment)—neither accelerat-
ing nor decelerating. Then, as it continues downward, compression starts again,
until the weight comes to rest fully compressed, 1 foot down, with an 8-pound
force pushing it back up.

This process would go on forever, but the energy gradually transfers to other
forms. Friction will absorb some of the energy. The excursion and velocity slowly
diminish and the weight eventually stops.

Travel and velocity in resonance system

You started with an assumed compression of 1 foot, which led to a maximum
velocity of 16 ft/sec. Suppose the initial compression is only 6 inches, or that
friction has decreased the excursion to this magnitude. The maximum force is
now 4 pounds, instead of 8 (128 poundals, instead of 256). The distance over
which the average force was 2 pounds (64 poundals) is now compressed to 6
inches, instead of 1 foot. So, the maximum potential energy is 32 foot-poundals.
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When the weight passes through the neutral position, all this energy will become
kinetic; v* will now be 64, so vis 8 ft/sec.

Notice that halving the travel also halves the maximum velocity reached. The
object travels half the distance at half the speed, so it performs the entire cycle in
the same time. Interestingly, regardless of the magnitude of the oscillation, res-
onance still requires the same time.

This principle is used in the balance wheel of clocks or watches, the pendu-
lum of grandfather clocks, and many similar devices—not just mechanical, but
also electrical, electronic, and atomic.

Maximum Travel and Maximum Velocity
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Maximum yAy et Ay
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—— <
— > — >
L J [\ J
Y Y
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Max. force: 8 pounds Max. force: 4 pounds

Energy stored: 4 ft-pounds, 128 ft-pdls ~ Energy stored: 1 ft-pound, 32 ft-pdls

Max. velocity: Max. velocity:
V2=256 V2:64
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53 5%
-
SE8%5 S588
-2 5 3 T2 £
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Half the travel, half the speed Same
Twice the travel, twice the speed/ Time
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Questions and problems

1. Suppose a car accelerates uniformly from standstill to 40 miles/hour in 3
minutes. How far will it travel in that 3 minutes?

2. In the next 6 minutes, the car increases its speed at a steady rate, from 40
miles/hour to 60 miles/hour. How far will it travel in these 6 minutes?

3. The same car brakes to a stop in 30 seconds. If the deceleration is uniform
during these 30 seconds, how far will the car travel before it stops?

4. From the fact that 1 mile = 5280 feet and 1 hour = 3600 seconds, find the
speeds in miles/hour that corresponds to 88 ft/sec.

5. During takeoff, an aircraft builds up a thrust that accelerates it at 16 feet/
sec?. Its take-off speed is 240 miles/hour. Find the time from releasing the brakes
until the plane lifts into the air. How much runway is required?

6. A gun can use cartridges with pellets of two sizes, one that is twice the weight
of the other. If the heavier pellet leaves with a muzzle velocity of 150 ft/sec, find
the muzzle velocity of the lighter pellet, assuming that the explosive charge
develops the same energy in each case.

7. A car’s motor and transmission develops constant power during maximum
acceleration. This particular car can reach 60 miles/hour in 20 seconds. In how
long will it reach 30 miles/hour? 45 miles/hour?

8. If the weight of car and drive (in question 7) were 3000 pounds, what time is
necessary to reach the three speeds, 30, 45, and 60 miles/hour, when an addi-
tional load of 1000 pounds is carried?

9. Find the power developed by the motor and transmission of the same car in
foot-poundals per second.

10. A spring and weight resonance system can be changed, either by altering the
weight or the spring. By figuring the effect of such change on maximum velocity
reached from a given starting deflection, deduce the effect of (1) doubling the
weight, (2) halving it.

11. Using the accompanying graph of distance versus time (see following draw-
ing), make rough estimates of the speed of the object, in meters per second, for
the instants of time corresponding to 1, 2, 3, and 4 seconds. Explain how you
deduced these results.
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Distance,
meters
10T

8_._

T For Problem 11, Chapter 12

Time, seconds

12. Using the accompanying graph of speed versus time (see following drawing),
determine the approximate acceleration of the object, in meters per second per
second, for the instants of time corresponding to 1, 2, 3, and 4 seconds. Explain
how you deduced these values.

Speed,
meters per second
10T

8_._

For Problems 12 and 13, Chapter 12

0 ] ] ] ] ] ] ] l ] ]
T T T T T T T T 1

0 1 2 3 4 5
Time, seconds
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13. Assuming the object described by the above drawing has a constant mass,
and there is no friction, tension, nor gravitational influence, how does the applied
force vary qualitatively with time? Explain how you know this. (Think of a mass
in outer space, propelled by a small rocket.)

14. The accompanying graph (see following drawing) shows speed versus time
for an object that moves faster and faster for a while, and then slows down. Thus,
the curve appears somewhat “bell-shaped.” Qualitatively, how does the accelera-
tion vary with time? When is the acceleration greatest? When is it smallest?
What is the acceleration when the elapsed time is 2 seconds?

Speed,
meters per second

10

For Problem 14, Chapter 12

0 ——ttt—t—+—t—+N
0 1 2 3 4 5
Time, seconds
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CHAPTER

Ratio In
mathematics

Proportion or ratio

Thus far, proportion and ratio have been covered with respect to the simple idea
of similarity. However, isolating ratio or proportion from the quantities that pro-
portion relates will be covered in this chapter.

A fraction is one way to express a ratio: it is the relationship between the
numerator and denominator. Different numbers can be used to write the same
value as a fraction—the same relationship between the numerator and
denominator. In earlier times, not used so much these days, proportion was
more explicitly conveyed with colons and an equals sign.

One application that sets the scene for later concepts is the use of ratio or pro-
portion, relative to such things as projecting images, shown here. This concept is
sometimes called aspect ratio. The standard TV screen aspect ratio is 4:3.
Movie screens have various aspect ratios, particularly since wide screens became
popular.

In school arithmetic, text books used exercises of the type shown here. The
student had to complete the statement or fill in the gap. Always, the relationship
was between specific quantities, such as dimensions. We must realize, that a ratio
(proportion) has no dimension of itself. The ratio might even be the relationship
between two dimensions, in inches, feet, numbers, etc.

Manipulation of ratio

The manipulation on the previous pages were done in arithmetic textbooks. As
school textbooks work into algebra, formulas replace rules when dealing with
numbers.

209
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SIZES are DIFFERENT
but PROPORTIONS
are THE SAME
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LETTERS can be USED to REPRESENT RATIOS
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Applying the principle to bigger problems
A man’s will states that his estate is to be divided between his three sons, in pro-
portion to their ages. The amount of the estate is $78,000, and their ages are 53,
47, and 30. How much does each get?

First, assume that the basis of the proportion is $x per year of age to each per-
son. This means the sons get $53x, $47x, and $30x, respectively. That adds up to
$130x. You know that total is $78,000. So, the equation is:

130x = 78, 000
x = 600

Substituting into the statements, they receive $31,800, $28,200, and $18,000.
To check, add these amounts. They add to $78,000 and prove that the answer is
correct.
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A PROBLEM based on PROPORTION

Ages... 53 47 30
Money... $78,000. How much each?

$x per year of age
53x + 47x + 30x = 130x = 78,000

78,000
x= =55~ =600

Son aged 53 years gets $600 X 53 = $31,800

n n 47 " " $6OOX 47 = $28,2OO
1 no3p 0 I $600X 30 =$18,000
CHECK—> add up $78,000

Three triangles the same SHAPE <

use the same three angles

Size is fixed by length of sides
Each has three sides

in the same proportion

same three angles
same shape [
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Shape and size

Ratio and proportion form a good basis for showing the distinction between
shape and size. This principle can be shown with triangles, the simplest geometric
figure with straight lines for a boundary (see example at bottom of facing page).

If atriangle is expanded in proportion, its respective sides maintain the same
ratio, one to another. It has the same shape, but it differs in size. Since it has the
same shape, it also has the same angles. All angles marked 1 are equal. Those
marked 2 are also equal, as are those marked 3.

The sides with one crossmark have the same proportion to the sides with two
crossmarks in each triangle. The proportion between sides with two and three
crossmarks, or between sides with one and three crossmarks, are the same in
each triangle—or with any others that have the same shape.

So, triangles that have the same shape have the same angles. Although their
sides might be longer or shorter, they are in the same proportion.

About angles in triangles

When two straight lines cross (mathematicians use the work intersect), the oppo-
site angles are equal. To prove this statement, draw square corners at the intersec-
tion, based on each of the lines. You can easily see that any pair of angles
numbered 1 and 2 have a total angle of two square corners. One pair of square

®

Any angle 1 + angle 2 = 2 square corners
So angle 1 = other angle 1

Also with parallel lines @

Angles in Triangle
add up to two square corners

Shape of triangle fixed by TWO angles
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corners consists of top angle 2 and left side angle 1. Another pair consists of top
angle 2 and right side angle 1. The total is the same, two square corners, and
both use the same angle (2), so the two angles (1) must be the same. Similarly,
you can show that the two angles (marked 2) are equal.

Next, if two parallel lines intersect a third line, the angles at the intersections
will be equal, if taken in correct pairs. To show this: complete a rectangle with
square corners. As with the single intersection, you can now prove that angles
numbered | are all equal, as are all angles numbered 2.

In any triangle, its three angles always add up to two square corners. To show
this statement, extend one side at one corner and draw a line parallel to the oppo-
site side. Because of their positions, relative to parallel lines, corresponding angles
(marked 1 and 2) are each equal. Where the side is extended are three angles num-
bered 1, 2, and 3, that add up to two square corners. So, the corresponding angles
inside the triangle (also numbered 1, 2, and 3) must also add up to two square
corners.

Use of square-cornered triangles

A square-cornered triangle becomes a very important building block in other
shapes and sizes, whether in triangles or in more-complicated shapes. Any trian-
gle can be divided into two square-cornered triangles. Unless the original triangle
is square cornered, the division into two square-cornered triangles can be made
in three ways. In the triangles shown, one such division is done with a thin line,
the other two with dashed lines.

Use of the
SQUARE-CORNERED
TRIANGLE

Any triangle can be divided into twe
square-cornered ones — three ways

@ The perpendiculars always intersect at one point
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If all the angles are acute, all three ways of dividing into two square-cornered
triangles are additive, so the original triangle is the two square-cornered ones
added together. However, if one angle of a triangle is obtuse (wider than a square
corner) two of the possible divisions require a difference, rather than a sum. The
original triangle is the larger square-cornered triangle minus the smaller one.

An interesting fact about these divisions, which I will not prove here, is that
the three dividing lines from the corners of the original triangle, formed by mak-
ing them perpendicular to the opposite side, always intersect at a single point.
Perpendicular means the two lines create two square-cornered angles. In an
acute-angled triangle, the point of intersection is inside the triangle. In an
obtuse-angled triangle, the point is found only by extending all three perpen-
diculars (dotted lines). This exercise begins to show the importance of square-
cornered (right) triangles as building blocks.

Angles identified by ratios

Angles determine the shape of a triangle and also the ratio of its sides. In an ordin-
ary triangle, any of the three sides can be changed to alter all three angles, so the
relationship between the side ratio and the angle becomes rather involved. One
angle is fixed as a square corner (right angle). Because its three angles must add
up to two right angles, the other two must always add up to one right angle.

In a right angle, the longest side opposite the right angle, is called the Aypo-
tenuse. A triangle that uses this angle and a right angle can have only one shape,
because all three angles are fixed. Regardless of how big (or small) you draw the
triangle, the ratio is the same for the particular angle of interest. This ratio identi-
fies the angle uniquely. No other angle can have the same ratio.

1 4 The greater the angle IDE%A[:II‘{T?ES
4 (up to a square corner)
//I ! tﬂe larggr the ratio ANGLE

b —

Wb
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o "\,
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)
I
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side opposite _ 1 _
longest side
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If you begin with a small angle and gradually increase it toward a right angle,
the fraction that represents the ratio (side opposite/ hypotenuse) is always greater
for greater angles.

Special fact about the right triangle

The proof'shown here is the original, because it works for any square cornered tri-
angle, not for just one. Some proofs rely on cutting the big squares into fancy-
shaped pieces, then rearranging them to compose the two smaller squares.
These proofs only work for that particular triangle.

The Pythagorean theorem says that the area of the squares (based on the two
sides alongside or adjacent to the square corner) always adds up to the area of
the square on the longer side (opposite the square corner in the triangle, called
the hypotenuse). This theorem is expressed by 4% + B> = C>

The prove it, as shown in 1, drop a perpendicular from the square corner
onto the opposite side (hypotenuse) and extend it across the big square. Now (2)
you have completed two triangles, shown shaded. They must be equal. The angle
between sides (1 and 2) of each triangle consists of the same angle of the original
triangle, plus a square corner; so both angles must be the same. Sides (1 and 2)
are the same because they are sides of the same squares. You can see that the trian-
gles are the same, just rotated by a square corner from one another. So, they
must have the same area.

In 3, the square at the right is based on (or under) the blackened line, and it is
the same height (measured downwards from the line) as one of the triangles. The
shaded part of the big square sits on the same base (blackened line) as the other
triangle, and they are the same height, measured a different way, because you
are using a different side as base. The square and the rectangle (shaded in 3 must
each be double the area of the triangles (shaded in 2). As the triangles in 2 are

Conventional Pythagoras proof
Let ABT be a right-angled triangle having the angle BAT right; I say that the square on BT is equal to the squares on BA, AT
For let there be described on BT the square BAET, and on BA, AT the squares HB, OT" (Eucl. i. 46} and through A let AA be drawn
parallel to either BA or TE and let AA, 7T be joined. Then, since each of the angles BAT, BAH is right, it follows that with a straight line
BA and at the point A on it, two straight lines AT, AH, not lying on the same side, make the adjacent angles equal to two right angles;
therefore T'A is in a straight line with AH (Eucl. i. 14). For the same reasons, BA is also in a straight line with A©. And since the angle
ABT is equal to the angle ABA, for each is right, let the angle ABT be added to each; the whole angle ABA is therefore equal to the whole
angle ZBT. And since ABis equalto BT, and ZA to BA, the two AB BA are equal to the two BT, ZB respectively; and the angle ABA is
equal to the angle ABT. The base AA is therefore equal to the base ZT', and the triangle ABA is equal to the triangle ZBT (Eucl. i4). Now
the parallelogram BA is double the triangle ABA, for they have the same base BA and ave in the same parallels, BA. AA (Eucl i.41). And
the square HB is double the triangle ZBT, for they have the same base AA and ave in the same parallels ZB, HI'. Therefore, the parallelo-
9 gram BA is the equal to the square HB. Similarly, if AE, BK are joined, it can also be proved that the
parallelogram T'A is equal to the square OT. Therefore the whole square BAET is equal to the two
squares HB, OI'. And the square BAET is described on BT, while the squares HB, ©T are described
H on BA. AT Therefore the square on the side BT is equal to the squares on the sides BA, AT
A Therefore in right-angled triangles the square on the side subtending the right angle is equal to the
squares on the sides containing the right angle—Quad Erat Demonstrandum.

A A E
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equal, their doubles must be equal (i.c., the shaded square is equal to the shaded
rectangular part of the big square).

Now, do the same thing in steps 4 and 5 to show that the other shaded square
(5)is equal to the other part of the big square. Finally (6), since the smaller squares
are equal to their respective rectangular parts of the big square, the total area of
the smaller square must equal the area of the big square. Taken slowly in steps
like that, it is not difficult to see, but you might need to read it twice.
Fundamentally, this principle in geometry and trigonometry has the name of the
famous Greek mathematician—Pythagoras.

THE SQUARE-CORNERED
PYTHAGORAS N
&
1 ) Divide Big Square by O@Q )
perpendicular from QSQ A
square corner
BZ
A’ + B2 =C?
2
2
1
Triangles are the same:
have two sides the same; . )
and ame angle; same One triangle is
triangle is turned a h}flf Sguarl‘:”lf .
4 quarter-turn. and the other half is a

rectangle. So the square
equals the rectangle.

Big Square, two oblongs, equal
to two little squares together
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Names for angle ratios

As you proceed in studying mathematics, the use of ratios to identify angles
assumes a more important role. You need names to identify them. These names
are the terminology of trigonometry.

The right triangle used to identify the ratios has three sides. The ratio of any
two of its three sides identifies an angle. In picking those two sides, you have
three possible choices. These three basic ratios must be defined and named.

The sine is opposite side/hypotenuse. Each particular angle is written with
“sin,” followed by a letter or symbol to identify that particular angle. A is shown
by the angle. This angle ratio will be written sin A.

The cosine uses the ratio adjacent side / hypotenuse. For the same angle, write
it as cos A.

The tangent uses the only remaining combination, side opposite/side adja-
cent. Writeit as tan A.If you previously learned that a tangent is a line that touches
the circumference of a circle, this usage is different.

The little diagrams at the left show how to remember the relationship of the
ratio to the angle. The line with the arrow is the numerator. It leads to the side
that forms the denominator of the ratio. Remember that these names (sine,
cosine, and tangent), represent ratios, not lengths. A ratio identifies the angles,
regardless of how large or how small the triangle is drawn.

corner

side opposite

side adjacent

Name Definition Written

sine =  Side opposite sin A

/A longest side
cosine - side adjacent cos A
A longest side

side opposite
side adjacent

tangent = tan A

These are the names used in TRIGONOMETRY
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Spotting the triangle

Remembering the ratios in trigonometry, without looking back, requires as much
time and practice as learning the multiplication tables in arithmetic. What can
be more confusing, needing more care, is spotting the right sides for the ratio
when the angle is not in the position used in the previous section. Regardless of
where the angle is, you must construct a right triangle (or use one that’s already
there) one way or another. Then, the ratio follows the definition. A sine is always
side opposite over the hypotenuse, according to how the triangle is disposed.
The other ratios follow similar layouts. Here are some possible positions that you
might encounter:

The top triangle repeats the arrangement from the previous section.

The next triangle tips the right-angled triangle the other way up.

The third triangle is the same triangle as the first, but the angle you refer to
is different.

The fourth triangle has the angle at the bottom, with the right angle at top
left.

These are only a few of the possible positions that you might encounter. You
must get accustomed to identifying the sides of the appropriate right triangle so
you correctly identify the ratios.

Identifying

the Ratios

SINE COSINE TANGENT

N 2N

]

A

side adjacent
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Degree measure of angles

If you already know about degree measure for angles, you might wonder why a
right angle is not called a 90-degree angle. Degree measure for angles is more
modern than the recognition that a certain angle is a “right angle.”

Degree measure for angles requires a complete circle (rotation) in a flat sur-
face, 360 degrees. A half rotation is half of 360 (180 degrees). A quarter rotation,
which is a right angle, is thus 90 degrees. Acute angles are less than 90 degrees,
and obtuse angles are more than 90 degrees (but less than 180 degrees).

Two special angles, other than 90 and 180 degrees, are based on two special
triangles. The first is an equilateral triangle, which has all three equal sides. It
also has all equal angles, and a unique symmetry. All three angles are 60 degrees.

The other special angle comes from a right triangle, which has two shorter
equal sides. Since the three angles must add up to 180 degrees, and one of them
is 90 degrees, the other two must each be 45 degrees. This triangle is called a
right-isosceles triangle. Isosceles means “having two equal sides.”

MEASURING ANGLES IN DEGREES

@ 900

360° Half circle Quarter circle
Full circle ~ 99°80°0 110°100°90°
60°
50°
40°
30°
20°
(e}
o 90°
Acute angles Obtuse angles
TWO SPECIAL TRIANGLES

Square corner
(right angle)

Equal sides
Equal angles

Two sides equal
Two angles equal

Equilateral Right Isosceles
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Finding trig ratios for certain angles

The special triangles from the last section help us to find ratios that correspond to
special angles they contain. All angles of the equilateral triangle are 60 degrees.
When you draw a perpendicular line from one corner to the opposite side,
another angle forms on each side of the upright. Taking one of the right triangles,
you know two of its angles, 90 and 60 degrees. So the third angle must be 30
degrees. Another way of seeing this, is that the perpendicular cuts the top angle
in half.

If the equilateral triangle has sides 2 inches long, the half side will be 1 inch.
From Pythagoras, calculate the perpendicular. The square on the 2-inch side is 4
square inches. The square on the I-inch side is 1 square inch. So, the square on
the perpendicular must be 3 square inches. Its length must be the square root of
3. From this fact, you can calculate all three ratios for both a 30-degree angle
and a 60-degree angle.

RATIOS of 30° and 60° ANGLES

1.732
22_4 3.00
1
4-1=3
] DI 2.00
) 1.89
343 [1100
2o 1 1 1029
Equilateral Triangle 3462 | 7100
6924
176
ANGLE SINE COSINE | TANGENT %—
05
2/—‘ 1 2/1 3 _j 1
RATIO 3 V3 3 S = 107|333
30° i 2 2 1 1/:_5 749
1147 [8433
DECIMAL 0.5 0.866 0.5773 8029
11543 | 40433
2/ 53 7 1 3 3 34629
s0o| RATIO /l‘/§ 2 1 2] 41 1
DECIMAL |  0.866 0.5 1732
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The right isosceles triangle

The right isosceles triangle enables you to calculate the ratios for 45 degrees. In a
right isosceles triangle, the two equal angles must add up to 90 degrees, so each
angle is 45 degrees. If each side by the right angle is 1 inch, the square on the
hypotenuse must have an area of 2 square inches. Its length must be the square

root of 2.

Two other special angles are 0 and 90 degrees. They are difficult to visualize
because they have no triangle. In theory, it only has 2 sides—the third side
dropped to zero length. That gives you the figures to use. Thinking of 90 degrees,
the side opposite and hypotenuse are equal, and the adjacent side is zero. Now,
you can make a limited table of values for angles 0, 30, 34, 60, and 90 degrees.

RATIOS of 0°, 45°, 45°
and 90° ANGLES
1+1=2 o) :
W2y =2
74| 1?=1 45° =~ 90°
, ANGLE | SINE | COSINE | TANGENT
1°=1 . W2Aa 1 |Vv2s 1 1
Ratio "/]1 = = 1 =
45° 2 2= 1
et L]
) 49 Decimal| 0.707 0.707 1.0
1407 {10000 90°
9849
ANGLE  SINE COSINE TANGENT
0 0_ l_ 0_
0 1= (==
o 1 0_ 1_
90 ;=1 =0 5=
1
—= |tan = 100
1
(1)0 0° 0 1.0 0
1000 120 = 1000 30° 0.5 0.866 | 0.5773
0 lian= e 45° 0.707 0.707 1
60° 0.866 0.5 1.732
90° 1.0 0 oo
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Other angles

That selection is rather limited. Until recently, this book had used tables (a sample
of which is on the next page). Now, it’s easier to use a pocket calculator (many
have these functions included). To understand mathematics, you should learn
where such tables come from. A calculator works out the value for the angle you
enter, but with tables, you must find the number (in the table) and perhaps inter-
polate between the values (listed in the tables).

Even using a calculator, you can make mistakes with the data you enter.
Knowing what to expect can help. Study the following diagram and table.

Use of SINE - COSINE - TANGENT TABLES
ODOOOOE

To infinity
[ [b]
3 | 2w )2 g
< < w2 Q
= @)
QO 900
AN
2 W
1.732 & v
<& 20°4>.3420<F70°
A
S
0.866
0.707 ~ |
0.577 Cog 45° 45°
1'1(:“
0.5 © © =
Sl E&l=| 2
0 3 =1 = c
0° 30° 45° 60° 90° Sl2]l< | &

Angle degrees

Using trigonometry in problems

Three examples on page 225 show how to use, either the table from
the previous section or your pocket calculator to solve problems that involve
trigonometry.

Example 1 An observation point at sea level is 20 miles from a mountain peak.
The elevation of the peak above sea level is 5 degrees, viewed from this point.
How high is the peak?

The relationship involves the adjacent side (a distance of 20 miles), the height,
the opposite side, and an angle of 5 degrees. This is the tangent ratio. From the
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Tangent Angle Sine Cosine

0.0000 0° 0. 1.0000 90° °°
0175 1° 0175 9998 89° 57.29
0349 2° 0349 .9994 88° 28.6363
0524 3° 0523 9986 87° 19.0811
0699 4° .0698 9976 86° 14.3007
0875 5° 0872 9962 85° 11.4301
1051 6° .1045 .9945 84° 9.5144
1228 7° 1219 9925 83° 8.1443
.1405 8° 1392 .9903 g82° 7.1154
.1584 9° 1564 9877 81° 6.3138
1763 10° 1736 9848 80° 5.6713
1944 11° 1908 .9816 79° 5.1446
2126 12° 2079 .9781 78° 4.7046
2309 13° 2250 9744 71° 43315
2493 14° 2419 .9703 76° 4.0108
2679 15° .2588 9659 75° 3.7321
2867 16° 2756 9613 74° 3.4874
3057 17° 2924 .8563 73° 3.2709
3249 18° .3090 9511 72° 3.0777
3443 19° 3256 9455 71° 2.9042
3640 20° .3420 9397 70° 2.1475
3839 21° .3584 9336 69° 2.6051
4040 22° 3746 9272 68° 2.4751
4245 23¢ .3907 9205 67° 2.3559
4452 24° 4067 9135 66° 2.2460
4663 25¢° 4226 .9063 65° 2.1445
A877 26° 4384 .8988 64° 2.0503
5095 27° 4540 .8910 63° 1.9626
5317 28° 4695 .8829 62° 1.8807
.5543 29° A848 8746 61° 1.8040
5774 30° .5000 .8660 60° 1.7321
.6009 3r° 5150 .8572 59° 1.6643
6249 32¢° 5299 .8480 58° 1.6003
6494 33° .5446 .8387 57° 1.5399
6745 34° 5592 .8290 56° 1.4826
7002 35° 5736 8192 55° 1.4281
7265 36° 5878 .8090 54° 1.3764
7536 37° .6018 7986 53¢ 1.3270
7813 38° 6157 .7880 52° 1.2799
.8098 39¢ .6293 1771 51° 1.2349
.8391 40° .6428 7660 50° 1.1918
.8693 41° .6561 7547 49° 1.1504
9004 42¢ .6691 7431 48° 1.1106
9325 43¢ .6820 7314 47° 1.0724
9657 44° .6947 7193 46° 1.0355

1.000 45° 7071 7071 45° 1.0000

|

Cosine Sine Angle Tangent
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»
Height?
20 miles >
105,600
20 miles = 20 X 5280 ft = 105,600 ft 5° Wg)@
. M »
o _ height 739.2
tangent 5° = 105,600 105,600 ft 528
‘ o _ height 9.240
From table: tangent 5° = 0.0875 0.0875 = 105.600
Height = 0.0875 X 105,600 ft = 9,240 ft

@ ; T
' _ height

tangent 84° = 20

[
=
of)
From table:
tangent 84° = 9.5144

‘B

i o

’I

!

| helght —95]44
0

helght =0.5144 X 50 ft

—>| |« s0ft
= 47572 ft

50.
0.9397 |47.000

i~
< 46.985

0.015

Lengt[,

) o ¥
sine 70° = length

47 ft

From table:
sine 70° = 0.9397

AT 09397
length
47

length = 09307

=501t
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table or from your calculator, tangent 5 degrees is 0.0875. The calculator on my
desk gives 0.0874887—a little more accurate than the table! The height is 0.0875
times the 20-mile distance. Convert the figure to feet by multiplying by 5280 and
you have the peak height, 9240 feet. How accurate was that 20 miles or the
5-degree elevation do you suppose?

Example 2 A high building is viewed from 50 feet away, from its vertical wall.
The angle to the horizontal line of sight is 84 degrees. How high is the building?

This problem again involves the tangent. The table gives tan 84 as 9.5144. My
desk calculator says 9.514364. The table is correct to 4 decimal places. By multi-
plying this figure by 50 feet, the height of the building is 475.7; round it off to
476 feet.

Example 3 A ladder must reach the roof of a building 47 feet high. The slope of
the ladder, when rested against the building, should be 70 degrees. What ladder
length is necessary?

The solution involves ratio of opposite side to hypotenuse, which is sine, but
it’s the inverse. Sine 70 degrees is 0.9397 in the table, near enough. Dividing 47
by 0.9397 gives the needed ladder length as a very small fraction over 50 feet.

These three examples use two of the ratios. Any problem like this involves
ascertaining which ratio you need and writing and solving the equation to find
the answer.

Questions and problems

1. The aspect ratio for a television picture is 4: 3. A wide-screen movie is trans-
mitted so that the picture fills the full height of the TV screen. What proportion
of the width must be lost at the sides, if the aspect ratio of the movie picture is
2:17 (Sketch this screen, to help you grasp the question).

2. Another way of transmitting the picture in question 1 would be to include the
full picture width and mask off an area (top and bottom), where the picture does
not fill the TV screen. What proportion of the TV screen will be masked off (top
and bottom).

3. A man wills his estate to his 5 children—3 boys and 2 girls. It calls for each to
get an amount proportional to his or her age at the time of his death; however,
the boys get twice the rate for their ages that the girls do. When the will is made,
the boys’ ages are 40, 34 and 26, while the girls are aged 37 and 23. If the father
dies the same year, what will each receive from an estate of $22,100?

4. If the father of question 3 lives 10 years after making the will, the estate has
not changed in value, and all 5 are still living, how much will each get?
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5. The two sides of a right triangle that adjoin the right angle are 5 inches and 12
inches long. What is the length of the hypotenuse (opposite the right angle)? Find
the length by calculation, not by construction and measurement.

6. A highway gradient is measured as the rise in altitude divided by the distance
along the pavement surface. An 8000-foot length of straight highway maintains
a gradient of 1 in § (1/8). Find the altitude gained in this distance, and the amount
by which the distance measured horizontally falls short of 8000 feet. Use the
Pythagorean theorem, not tables.

7. At a distance of 8 miles, the elevation of a mountain peak, viewed from sea
level, is 9 degrees. Some distance further away, still at sea level, the elevation is 5
degrees. What is the height of the peak, and the distance of the second viewpoint?

8. A railroad track stretches for 3 miles at a gradient of 1 in 42 up; then, 5 miles
of 1 in 100 up; then, 2 miles level; followed by 6 miles of 1 in 250 down; 4 miles
level, and finally 5 miles at 1 in 125 up. How much higher is the finish point than
the starting point?

9. A house is to have a roof slope of 30 degrees that is gabled in the middle. The
width of the house is 40 feet and the roof is to extend 2 feet horizontally beyond
the wall to provide snow protection. What distance—from the ridge of the gable
to the guttering—is needed for rafters?

10. By how much could the rafter length be reduced in the house (question 9) by
making the roof slope 20 degrees?

11. A house wall is 50 feet high and a ladder used to scale it is 60 feet long. How
far from the base of the wall must the ladder be placed for its top to just reach
the top of the house wall? Finish this question two ways: first, calculate it with
the tables (or a trig calculator) to four significant digits; second, calculate it
directly by the Pythagorean theorem.

12. Inthe drawing overleaf, all length units are in centimeters (cm). Assume the
lengths and angle measures to be exact; for example, the angle is
45.00000...degrees and the base length is 88.00000...cm. From the data
given, use the Pythagorean theorem to derive the length of side x to four signifi-
cant digits.

13. Use trigonometry, not the Pythagorean theorem, to derive the length of side y
in the drawing to four significant digits.

14. Use trigonometry to derive the measure, in degrees, of angle ¢ in the drawing
to the nearest tenth of a degree.

15. Use trigonometry to derive the measure, in degrees, of angle r in the drawing
to the nearest tenth of a degree.
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For Problems 12 through 16, Chapter 13

44 cm

44 cm

L 88 cm

16. Find the measure of angle » in the drawing to the nearest tenth of a degree by
using a method that does not involve trigonometry.
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CHAPTER

Trigonometry and
geometry conversions

Ratios for sum angles

As the examples showed, sometimes we need angles other than 0, 30, 45, 60, and
90 degrees. In this chapter you need to learn two things:

1. Sin(4 + B)isnotequalto sin 4 + sin B. It doesn’t work like removing the
parentheses in algebra.
2. The formula for what sin(4 + B) does equal.

First to show that removing parentheses doesn’t “work.” Here: make A4 30
degrees and B45 degrees. Sin 3015 0.5.Sin 4515 0.7071. Adding the twois 1.2071.

You know that no sine (or cosine) can be more than 1. Why? the ratio has the
hypotenuse as its denominator. The most that the numerator can be is equal to
the denominator. A sine or cosine can never be greater than 1, so a value of
1.2071 must be wrong.

sin(A+B) sinA +sinB

“ISNOT EQUAL TO '

229
Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.
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Wanted sine, cosine, or tangent, of whole angle (A + B)

Sine 30°=0.5 0.5 +0.707 = 1.207
Sine 45° = 0.707 S0

Sine (30° + 45°) = sine 75° =7
Sine (30° + 45°) | does not equal | sin 30° + sin 45°

Sine of an angle is never more than 1

Finding sin(A + B)

The easiest way to find sin(A4 + B), uses the geometrical construction shown here.
The big angle, (4 + B), consists of two smaller ones, 4 and B. The construction
(1) shows that the opposite side is made of two parts. The lower part, divided by
the line between the angles (2), is sin A. The line between the two angles divided
by the hypotenuse (3) is cos B. Multiply the two together. The middle line is in
both the numerator and denominator, so each cancels and leaves the lower part
of the opposite over the hypotenuse (4).

cosAsinB mAcosB+cosAsinB
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Notice the little right triangle (5). The shaded angle is A4, because the line on
its top side is parallel to the base line. Similar right triangles with an angle 4
show that the top angle, marked 4, also equals the original 4. The top part of the
opposite (6), over the longest of that shaded triangle, is cos A. The opposite over
the main hypotenuse (7) is sin B. Since the side marked “opposite” (7) is in both
the numerator and denominator when cos 4 and sin B are multiplied together,
cos A sin B is the top part of the original opposite—for (4 + B)—divided by the
main hypotenuse (8).

Now, put it all together (9). Sin(A4 + B) is the two parts of the opposite—all
divided by the hypotenuse (9). Putting that into its trig form:
sin(4 + B) = sin A cos B 4 cos A sin B.

Finding cos(A + B)
A very similar construction finds the formula for the cosine of an angle made
with two angles added together.

2 o
Adjacent /cos (A+B)

sinfA + B) =
sinAcosB + cosAsinB

cos(A+B)=
cosAcosB — sinAsinB

sinAsinB >
cosAcosB — sinAsinB
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Using the same construction (1), notice that the adjacent side is the full base
line (for cos 4), with part of it subtracted at the right. Each part must use the
same denominator, the hypotenuse of the (4 + B) triangle.

The full base line, divided by the dividing line between angles 4 and B, is
cos A (2). This dividing line, divided by the hypotenuse of (4 + B) triangle, is
cos B (3). So, the full base line divided by the hypotenuse is the product
cos A cos B (4).

Now, for the little part that has to be subtracted. The shaded part (5) repre-
sents sin A, which multiplied by the shaded part (6) is sin B, which produces the
other piece you need (7). The subtraction produces cos(A4 + B) (8) so that the
formula we need is:

cos(A4 + B) = cos Acos B — sin A sin B

Finding tan(A4 + B)

A complete geometric derivation of the formula for tan(A4 + B) is complicated.
An easy way is to derive it from the two formulas that you have already done. In
any angle, the tangent is equal to the sine divided by the cosine. Using that fact,
tan(A4 + B) = sin(4 + B)/ cos(A4 + B).In away that does it, but you can expand
that to:

tan(4 + B) = [sin A cos B + cos A4 sin B]/[cos A cos B — sin 4 sin B]

Divide through top and bottom by cos 4 cos B, which turns all the terms into
tangents, giving:

tan(4 4+ B) = [tan 4 + tan B]/[1 — tan 4 tan B]

tan (A + B)

sine cosine tangent

opposite . adjacent _ opposite % Tongest _  opposite
longest longest Tongest adjacent adjacent

sin A
——=tan A
cos A sin(A+B) _

sin B cos (A + B) =tan (A +B)
tan B

cos B
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_ sin (A +B) sin AcosB + cos AsinB
tan (A + B) " cos(A+B) T cosAcosB - sinAsinB

sin A cos B + cos A sin B
cos AeGs B o6s A cos B
cos A cos B sin Asin B
e6s Ae6s B cos A cos B

tan A + tan B
" l—-tanAtan B

Ratios for 75 degrees

Show the ratios for sine, cosine, and tangent by substituting into the sum formula,
then reducing the result to its simplest form, before evaluating the surds. After
making the basic substitutions in each case, the rough work is in shading—to
show how the result is reduced to the simplest form for evaluation.

sin 75°

= sin (30° + 45°) = sin 30° cos 45° + cos 30° sin 45°

1+ /3 _ N2+46 Ji=1414 =ix L3 L
573 - a4 W:& 272 272
0660 3803 L W3 066

413.863 242 '

cos 75°

= cos (30° + 45°) = cos 30° cos 45° — sin 30° sin 45°

3-1 _ W6-42 N 6=2449 =”£—§X%2—1 71__
242 4 \5:1'4]4 2
0.259) 1035 3.1
4/1.035 =55 002
tan 75°

= tan (30° + 45°) = tan 30° + tan 45°
1 —tan 30° tan 45°

N3+1 __ (W3+DP  _4+243 !
B3-1 WB-DGB+) 3-1  _ A3+

4+243 1-

=3.732

—

N3+
=5

e
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If you use your pocket calculator for evaluation, it will probably make no
difference whether you simplify the expressions first or just plow through it!
Everything depends on the calculator: some do make a difference, some don’t!

Ratios of angles greater than 90 degrees

So far, ratios of acute angles (between 0 and 90 degrees) have been considered.
Other triangles with obtuse angles (over 90 degrees) might go over 180 degrees
in later problems. To simplify classification of angles according to size, they are
divided into quadrants.

A quadrant is a quarter of a circle. Since the circle is commonly divided into
360 degrees, the quadrants are named by 90-degree segments. 0-90 degrees is
the 1st quadrant, 90-180 the 2nd, 180-270 the 3rd, and 270-360 the 4th.

Drawing in lines to represent the quadrant boundaries, with 0 or 360 hori-
zontal to the right, 90 vertical up, 180 horizontal to the left, and 270 vertical
down. Now, use this method for plotting graphs.

Progressively larger angles are defined by a rotating vector, starting from
zero and rotating counterclockwise. Horizontal elements are x: positive to the
right, negative to the left. Vertical elements are y: positive up, negative down. The
rotating vector is r. So, the sine of an angle is y/r, the cosine x/r, and the tangent
v/x. The vector r is always positive. So, the sign of the ratios can be figures for
the various quadrants.

Here, the signs of the three ratios have been tabulated for the four quadrants.
Alsohow the equivalent angle in the first quadrant “switches” as the vector passes
from one quadrant to the next. In the first quadrant, the sides were defined in
the ratios for sine, cosine, and tangent. As you move into bigger angles in the
remaining quadrants, the opposite side is always the vertical (y). What was called
the adjacent is always the horizontal (x). The hypotenuse is always the rotating
vector (r). You will begin to see a pattern to the way these trigonometric ratios
for angles vary.

90° .
First Quadrant
Second ° T y+ y+ T
Quadrant =
% < X- X+ —>
180° 15
adjacent 360°
(x) < X- X+ —>
Third Fourth l B _
Quadrant Quadrant y y l
270°

Radius always +
r2 = x2 + y 2
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RATIOS in the FOUR QUADRANTS

sin + sin
cos cos b 4+
tan - tan
— +
sin B sin —
cos cos +
tan + tan —
Quadrant Angle Sine Cosine | Tangent
+ + +
1st A y =+ T =+ T =+
o T Z - _ +
2nd 180° — A y = + T = - = -
o - - _ = —_
3rd 180° + A T = e - = 4
- r _ - o= _
4th -A T = - T =+ T =

Ratios for difference angles

Now, you have two ways to obtain formulas for difference angles. First, use a
geometric construction, such as the one that was used for sum angles, reversing
it so that (4 — B) is the angle B subtracted from the angle A.

In reasoning similar to that which was used for the sum angles, presented
here somewhat abbreviated, are the sine and cosine formulas:

sin{A — B) = sin A cos B — cos A sin B
cos(A — B) =cos Acos B +sinAsin B

and

Geometrical
Construction

continued
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sin(A — B)
sin A
cos B
A =
A A-B
sinAcosB — cosAsinB = sinAcosB — cosAsinB
sin B cos(A-B)
sin A
s

cosAsinB + sinAsinB = cosAcosB + sinAsinB

Sum and difference formulas

The second method of finding the formula for difference angles uses the sum for-
mula already obtained, but makes B negative. From our investigation of the
signs for various quadrants, negative angles from the 1st quadrant will be in the
4th quadrant. Making this substitution produces the same results that arrived
geometrically in the previous section.

Finding the tangent formula follows the same method, either going through
substitution into the sine and cosine formulas, or more directly, by making
tan(—B) = — tan B. Either way you get:

tan(4 — B) = [tan A — tan B]/[l 4 tan 4 tan B]

sin (A — B)

sin (A + [-B)]) sinAcos [-B] + cosAsin [-B]
sinAcosB + cosA (—sinB)

sinAcosB — cosAsinB

cos (A -B)

cos {A + [-B]) cosAcos [-B] — sinAsin [-B]
cosAcosB — sinA (—sinB)

cosAcosB + sinAsinB

tan (A +[-B]) tanA + tan [-B]
1— tanAtan[-B]

tanA —tanB
1 — tanA (-tanB)

tanA — tanB
1 + tanAtanB

il

tan (A — B)




sin 15°

i

cos 15°

tan 15°

sin (45° —30°%)

cos (45° - 30°)

tan (45° — 30°)
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sin 45° cos 30° — cos 45° sin 30°

L3 1 oL _pas9

N27 2 2702

cos 45° cos 30° + sin 45° sin 30°
1 1 1 NE]

—_ % =+ —x M= =0.966

22T R%%

1
tan45°—tan 30° _1-,/3
1 +tan45°tan30° 4, 1

3
N3-1
N-—  =2-43=0.268
I\/§+l —_

Ratios through the four quadrants

You can deduce a few more ratios with the sum and difference formulas. You
already did ratios for 75 degrees. Now, do those for 15 degrees. These formulas
give ratios for angles at 15-degree intervals through the four quadrants. Plotting
them out for the full 360 degrees, you can see how the three ratios change as the
vector sweeps through the four quadrants.

Both the sine and cosine “wave” up and down between +1 and —1. Notice
that the “waves” are displaced by 90 degrees, one from the other. This fact
becomes important later.

Angle| Sine |Cosine {Tangent

1] 0 1 0 .l\) L = —_ o " IS

15| 259 ] 966 | 268

30°y .5 866 | 577

a5 | 707 | 707 |1 ¥—¢a

60° | 866 | .5 1.732 FAVRSNG

75o| 966 | 259 [ 3732 /

90° | 1 0 oo / 2

105 | 966 | —259 |-3.732 -7 3

120° 866 -5 -1.732 7 7

135° | .707 | =707 |- 7

150° | s —866 | —.577 N[/

165° | 259 | —966 | —.268 X

18¢° | 0 iy 0

195° | —259 | —966 268 V/ N\ 5
210°| -5 | 866 | .57 AN ngens
225°| 707 [ =707 [ 1 \

240° | -.866 | -5 1,732

255° ] ~966 | -259 | 3732 fange,,, \\ o

270° ] -1 0 o 1\ \?&,

285° | —966 | .259 [-3.732 \N \%

300° | —866 | 3 -1.732 AN \

315°f 707 | 707 [

330° | -5 866 | —577

345 | —250 | 966 | -.268

360° | 0 | 0
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The tangent starts out like the sine curve, but quickly it sweeps up to reach
infinity at 90 degrees. Going “offscale” in the positive direction, it “comes on”
from the negative direction on the other side of 90 degrees. Going through the
180-degree point, the tangent curve duplicates what it does going through 0 or
360 (whichever you view it as). At 270 degrees, it repeats what it did at 90 degrees.

Pythagoras in trigonometry

A formula can often be simplified, as was found by deriving the tangent formulas
from the sine and cosine formulas, and changing it from terms using one ratio to
terms using another ratio. In doing this, the Pythagorean theorem, expressed in
trigonometry ratios, is very handy.

Assume that a right triangle has a hypotenuse of 1 unit long. Then one of the
other sides will have a length of sin 4 and the other of cos 4. From that, the
Pythagorean theorem shows that: cos® 4 + sin? 4 = 1. This statement is always
true, for any value of A.

A little thing here about the way it’s written. Cos?A4 means (cos 4). If you
wrote it cos A2, the equation would mean something else. A is a number in some
angular notation that represents an angle. 4> would be the same number squared.
Its value would depend on the angular notation used, so it’s not a good term to
use. What is meant is the angle’s sine or cosine squared, not the angle itself.

The Pythagoras formula can be transposed. For instance, two other forms
are:cos’ 4 = 1 — sin” A, and sin? = 1 — cos? 4.

The PYTHAGORAS
PRINCIPLE and
ANGLE RATIOS

cos? A +sin2A =1

cos? A =1—sin?A

sin’A = 1 —cos?A

cos’ A

cosA =V 1 —sin2A

sinA =V 1 —cosZA
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Multiple angles

The sum formulas, along with the Pythagorean theorem, are used for angles that
are 2, 3, or a greater exact multiple of any original angle. Here, give formulas for
2A and 34.The same method is pursued further in Parts 3 and 4 of this book.

The sum formula works whether both angles are the same or different:
sin(4 + B) or sin(4 + A). However, sin(A4 + A4) is really sin24. So, sin24 is
sin A cos A + cos A sin A. They are both the same product, in opposite order, so
this statement can be simplified to sin 24 = 2 sin 4 cos A.

Similarly, cos24 = cos Acos A — sin A sin A, which also can be written:
cos2A = cos’ A —sin* A. Using the Pythagorean theorem, change that to:
cos2A4 = 2cos” A — 1. Finally, tan24 = 2 tan A/[1 — tan’ A].

Now, the triple angle (34) is used just to show how further multiples are
obtained. Basically, it’s as simple as writing 34 = 24 4+ 4 and reapplying the
sum formulas. But then, to get the resulting formula in workable form, you need
to substitute for the 24 part to get everything into terms of ratios for the simple
angle A.

Work your way through the three derivations shown here. You can see that it
will get more complicated for 44 and more (in Parts 3 and 4 of this book).

MULTIPLE ANGLES Derived from Sum Formulas

SINACOSA + cosAsinA
= 2s8inAcosA
= 2sinA \/1—sinZA

sin 2A |=sin (A +A)

coS 2A [=cos (A+A) = cosAcosA — sinAsinA

= cos?A —sin?A = cos?A — (1 —cos2A)
= 2cos?A -1
tanA + tanA 2tanA
= A+A) = =
tan 2A |=tan(A+A) = T A tanA —ta? A
or
SinAcosA
A | = sin 2A _ _2sinAcosA _ 2702 A
tan "~ cos2A cos?A —-sin2A  cos?A _ sin?A

cos?A  cos?A

2 tanA
1 -tanZA
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MULTIPLE ANGLES Ratios for 3A

sinAcos2A + cosAsin2A

= s$inA{cos2A - sin 2A) + 2cosAsinAcosA
= sinA(1 — 2sin2A) + 2(1 — sin?A) sinA
= sinA(3 —4sin2A) or

= 3sinA —4sin’A

sin 3A | =sin(A+2A)

cos 3A | =cos(A+2A) = cosAcos2A —sinAsinZA

= cosA(2cos? A — 1) — 2sin 2AcosA

= cosA(2cos?A — 1) - 2(1 — cos ZA)cosA
= 4cos’ A - 3cosA

tanA + tan2A
| — tanAtan2A

i

tan 3A =tan (A + 2A)

2tanA
1 —tanZA
2tan® A
1 —tan® A

tanA +

tanA(1 — tan A) + 2tanA
1 —tan? A —2tan2 A

3tanA — tan3A
1 —3tan? A

Properties of the isosceles triangle

You have already seen that a right triangle is a useful building block for other
shapes. An isosceles triangle has slightly different uses. But the fact on which
these uses are based is that an isosceles triangle has two equal sides and two
equal angles opposite those two sides. A perpendicular from the third angle (not
one of the equal ones) to the third side (not one of the equal ones) bisects that
third side. That is, it divides it into two equal parts, making the whole triangle
into mirror-image right triangles.

With isosceles triangles, any triangle, except a right triangle, can be divided
into three adjoining isosceles triangles, by dividing each side into two equal
parts and erecting perpendiculars from the points of bisection. Where any two
of these bisecting perpendiculars meet, if lines are drawn to the corners of the
original triangle, the three lines must be equal, because two of them form the
sides of an isosceles triangle. So, the perpendicular from the third side of the
original triangle must also meet in the same point.

This statement is true, as we show here, whether the original triangle is acute
or obtuse. The difference with an obtuse-angled triangle is that the meeting
point is outside the original triangle, instead of inside.
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What does a right triangle do? Perpendiculars from the mid-point of the
hypotenuse to the other two sides will bisect those two sides—you get two out of
three! The meeting point happens to sit on the hypotenuse.

Two sides equal

The ISOSCELES Triangle

Perpendicular bisects angle
between equal sides, and base

Two angles equal

ANY TRIANGLE can be DIVIDED into
THREE ADJOINING ISOSCELES
TRIANGLES

These two sides
are equal

So are these two

Therefore, these two
must be equal
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Angles in a circle

A basic property of a circle is that its center is at an equal distance from every
point on its circumference. This equal distance is the radius of the circle.

If you draw any triangle inside a circle, the perpendiculars from the mid
points of its side will meet at the circle’s center and radii from the corners of the
triangle will divide it into three isosceles triangles.

Now, if you name the equal pairs of angles in each isosceles triangle, 4, 4, B,
B, C, C, you find that the original triangle has one angle 4 + B, one angle
B+ C, and one angle 4 + C. The three angles total 24 + 2B + 2C. This, you
know, adds up to 180 degrees.

In any isosceles triangle, the angle at the apex is 180 degrees minus twice the
base angle. Because of the fact deduced in the previous paragraph, 180 — 24
must be the same as 28 + 2C, for example.

Consider the angles that are opposite from the part of the circle, against
which the top left side of the triangle sits. The angle at the centre is 2B + 2C, as
just deduced. The angle at the circumference is B + C. You will find that, for any
segment of a circle, the angle at the center is always twice the angle at the circum-
ference.

The proof on the previous page leads to an interesting fact about angles in
circles. Instead of identifying the angles with a side of a triangle, use an arc
(portion of the circumference) of the circle. The important thing is the angle
that corresponds to the arc at the center. A part of the circumference of a circle
that is identified by the angle at the center is called the chord of the circle.

Circumscribing

/ circle

180° - 2B

180° - 2A

-1 80° — 2C

2A + 2B + 2C = 180° (main triangle)
Angle at center on base: 180° — 2C =2A + 2B
Angle at apex (on circle) on} A+B

same base

The angle at the center is twice the angle at the circumference
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Any angle drawn touching the circumference, using this chord as termina-
tion for the lines bounding the angle, must be just half the angle at the center.
Thus, all the angles in a circle, based on the same chord, must be equal. Suppose
that the chord has an angle of 120 degrees. The angles at the circumference will
all be exactly 60 degrees.

A special case is the semicircle (an exact half circle). The angle at the center
is a straight line (180 degrees). Every angle at the circumference of a semicircle
is exactly 90 degrees (a right angle). Any triangle in a semicircle is a right
triangle.

Each of these
angles

this angle

Every angle on the same chord is equal

Every angle in a
semicircle is a
right angle

I
V 180° or two

right angles

Definitions
The previous pages have often used angles that add up to either a right angle (90
degrees) or to two right angles (180 degrees). When two angles add up to 180

degrees (two right angles), they are called supplementary. When two angles add
up to 90 degrees (one right angle), they are called complementary.
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DEFINITIONS:
Supplementary angles Complementary angles

r/ /N

T'wo angles that make up 180°, Two angles that make up 90°,
or two right angles, or one right angle,
are supplementary are complementary

Questions and problems

1. The sine of angle A4 is 0.8 and the sine of angle Bis 0.6. From the various rela-
tionships obtained so far, find the following: tan A, tan B, sin(4 + B),
cos(4 + B), sin(4 — B), cos(4 — B), tan(4 4+ B), and tan(4 — B), without
using tables or a calculator’s trig buttons.

2. Atthe equator, Earth has a radius of 4000 miles. Angles around the equator
are measured in meridians of longitude, with a north-to-south line through
Greenwich, England as the zero reference. Two places are used to observe the
moon: one is Mt. Kenya, on the equator at 37.5 east of Greenwich; the other is
Sumatra, on the equator, at 100.5 east. How far apart are these two places, mea-
sured by an imaginary straight line through the Earth?

3. If sights were made horizontally from the observation points in question 2
(due east from the first, due west from the second), at what angle would the lines
of sight cross?

4. At a certain time, exactly synchronized at both places, a satellite is observed.
In Kenya, the elevation of a line of sight, centered on the satellite, is 58 degrees
above horizontal, eastward. In Sumatra, the elevation is 58 degrees above hori-
zontal, westward. How far away is the satellite? Use the distance between the
points calculated in question 2.

5. The cosine of a certain angle is exactly twice the sine of the same angle. What
is the tangent of this angle? You don’t need either tables or calculator for this
question.

6. The sine of a certain angle is exactly 0.28. Find the cosine and tangent with-
out tables or the trig functions on your calculator.
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7. The sine of a certain angle is 0.6. Find the sine of twice this angle and three
times this angle.

8. Find the sine and cosine of an angle exactly twice that of question 7.

9. Using 15 degrees as a unit angle, and the formulas for ratios of 24 and 34,
find the values of the sines of 30 and 45 degrees.

10. Using 30 degrees as a unit angle, find the values for the sines of 60 and 90
degrees.

11. Using 45 degrees as a unit angle, find values for the tangents of 90 and 135
degrees. Confirm your results from the quadrant information on page 237.

12. Using 60 degrees as a unit angle, find values for the cosines of 120 and 180
degrees. Confirm your results from the quadrant information on page 237.

13. Using 90 degrees as a unit angle, find values for the cosines of 180 and 270
degrees. Check your results from the quadrant boundary information on page
237.

14. Using the tangent formulas for multiple angles and the tables, find the tan-
gents for three times 29, 31, 59, and 61 degrees. Account for the changes in sign
between three times 29 and 31 degrees and between 59 and 61 degrees.

15. The sine of an angle is 0.96. Find the sine and cosine for twice the angle.
16. A problem leads to an algebraic expression of the form 8cos” 4 + cos 4 = 3.

Solve for cos A4, and state in which quadrant the angle representing each solution
will come. Give approximate values from tables or your calculator.
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CHAPTER

Systems of counting

Degrees of accuracy

The system of counting that you use affects the accuracy of some calculations in
what might seem to be an erratic way. One example can be seen in taking the
square root of 3, with the decimal system. Follow the method from part 2 for
taking the square root of 2.

APPROXIMATIONS
Find 1/3
1. 7 3 2 0
3. 00 00 00 00 X1 =1 <E”E
1
2712 00
1 89 @ 17%1.7 17
343 111 00 1.19
10 29 2.89 Error 0.11
3462 [71 00
69 24
34640 1 76 00 @ 1.73 X1.73 1.73
1.211
519
2.9929 Error 0.0071

@ 1.732X1.732 1.732

1.2124
5196
3464
2.999824 < Error 0.000176

249
Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.



250 Systems of counting

Notice how each “place” in the decimal system, yields a closer approxima-
tion to the square root of 3. To test it, see how close squaring the root brings you
to the square you started with: 3.

The first place is 1, which squared is only 1—an error of 2 from the true
square of 3. Had 2 been used, the answer would have been closer: a square of
4—an error of 1. But our rule is to stay below the true value. Another method
could use the closest value before going to the next step.

The second place comes closer quickly. 1.7 squared is 2.89, reducing the
error to 0.11. the third place, 1.73 yields a square of 2.9929—an error of 0.0071.
The fourth place, 1.732 comes a lot closer, making a square of 2.999824—an
error of 0.000176.

Fractions in extended system counting

If you used a septimal (7s) system, a fraction of 1/7 would be 0.1—completely
accurate with only one place beyond the point (not a decimal point, if this system
is a septimal). In the decimal system, the fraction that results from dividing by 7
isn’t so easy.

Follow the same error-noting procedure. Though noting the progressive
reduction of error is similar, of more interest is the kind of decimal fractions that
repeat.

FRACTIONS and DECIMALS
) . 1
Decimal equivalent of: 7
0.142857 Error
711.000000 | I | \
7 0.1 = — 2 = =
3 10 < > 7 10
28 14 7 7 1
20 _ 4 _ 7 A 1
14 0.14 100 50 49 50
60
56 0142 = 142 _ 71 a1 3
40 ' 1000 500 497 500
35
50 (.1428 = 1428 _ 357 357§ _L
Repeat 49 10000 2500 2499 | 2500
I—-—> 1
014085 — 14285 _ 2857 2857 ]
100000 _ 20000 19999 | 20000
0.142857 — 142857 142857 ]
1000000 999999 §1000000
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These problems should make you ask how accurate or reliable the figures are.
What does an error of 1 part in 1 million mean? whether you happen (which is
very unlikely) to be using a septimal system instead of a decimal one, just how
precise is 1/7?

Orders of magnitude

The orders of magnitude begin another whole new concept in mathematics. To
show another angle of this concept, suppose you are approaching an area that
consists of a perfect square. To get the area you need more accurately, you add or
subtract a little bit to or from both dimensions. Starting with a square of dimen-
sion L each way, you either add or subtract small pieces S to or from each dimen-
sion. The change in area consists of two small, long slices (dimensions L by S)
and one very much smaller piece that measures S both ways. The smaller S is,
relative to L, the smaller S squared, relative to SL.

You could extend this concept to a similar adjustment on a cubic volume.
Now, starting with a big cube, L each way, you add or subtract 3 slabs that are L
square and S thick, three sticks that are L long by S square, and one very tiny
cube that is S cubed. If S is 1/10 of L (and it might be much smaller), then S
cubed is 1/1000 of L cubed.

AREA
VOLUME

2 pieces
LXS

£
1 piece 1 piefe [ picce
LXL SXS SREXS

3 pieces
LXSXS

1 piece

LXLXL | T

3 pieces
LXLXS
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ORDERS of MAGNITUDE

1+ a
1+ a

1+ a
, ) __a+ @
(1+a) =1+2a+a <: 1 1+2a+ a2

1+ a
1+2a+ a?
a+2a’+ a
(1+a) =1+3a+3a +2 {——= 1+3a+3’+ &
1+ a
1+3a+3a2+ a

) ) \ A a+3a% +3a3 +a*
(1+a) =1+4a+6a +4a +a <}m 1+4a+6a2 +4a3 +a*

If
a (1 + ay? (1+a) (1+a)
i is is is
0.1 1.21 1.331 1.4641
0.01 1.0201 1.030301 1.04060401
0.2 /IT\ 1.[7]28 2.0736
1+2a+a? 1+3a+3a% +a3 1 +4a + 6a% + 4a’ + a*

You can show the same progression algebraically. To do this, if ¢ is a small
fraction, then powers of «, az, @, a4, etc., consist of a descending series of orders
of magnitude. Notice that successive powers of a have a series of coefficients
which, if you take the fourth power, are 1,4, 6,4, and 1.

Still lingering in our familiar decimal system, you substitute different values
for a, and show how changing it changes the successive powers of (1 + a). If a is
0.1, successive powers begin to “spill over” into earlier “places.” Up to the 4th
power, the first two digits are 1.1, 1.2, 1.3, but at the 4th power, 1.5 would be
nearer.

If a is 0.01, higher powers of a do not interfere with the first term, which is
now in the second decimal place. Drop what follows the second place, the first
two places are now 1.01, 1.02, 1.03, and 1.04. Further terms in that 4th power
only make it 1.0406 in the 4th place.

However if a1s 0.2, the later terms much sooner intrude into earlier ones. The
blocked figures show this intrusion.
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Systems of counting

Before electronic digital devices were invented, we used counters with little wheels
that carried numbers. The numbers that showed through the front window were
like those that electronic digital devices display. If you took the cover off the rest
of the wheel, you could see how it work, which helped you understand number
systems.

The right-most wheel counted from 0 to 9 on a decimal system. When it came
to 9, it would move from 9 to 0, and move the next wheel from 0 to 1. Every time
the first wheel passed from 9 to 0, the next wheel would advance 1 more, until it
returned to 9. Then, two wheels would read 99. As the first wheel moved from 9
to 0 this time, the next one would also move from 9 to 0, and the third wheel
would move from 0 to 1, making it read 100.

fefs/a/8 /s/sf8f9 [sfefgfo fefefsf7f\ [8f8/of8f
9/9{9{9 9191910 91919(1 9791818 21970149
olotololol{ofolol1l0][ojolol2]0] « « « ¢« « [0f0[Ol0]|0]{OlO]1]O]0
AERERE 1111112 1111113 1111110 111211
2\ 2\2\2 2\ 2\213 2\ 2\2\4 2\ 2\2\1t 2\ 2\3\2
/afefaf9 [sfsfafo (8887 /sfs8fo[s8 s/af1/8
91910]0 919j0/1 9/{9/0/8 9/9{1J9 9j9f2{9
olfoli1]oflo]of1]{2f0]= » «{olol1[9{0}{o]ol2[0]0]* * *{ol0]3{0]0
1111212 1111213 1111210 1111311 1111417
2\2\31\3 2\ 2\3\4 2\ 2 1 2\ 2\ 4\ 2

8/8/7(8 [sfs8f7][7 [8fofg[8 fsfofsfo g/o/8/[7
9791819 9/9[/8]8 9j0f9/9 9/0j/91/0 9101918
olo]alo]o]e * elojoiolold]lo[1fofol0flol1]jof1]0]® * *lof1{of9]0
1111011 1{11040 11247111 12 {112 1121110
2\ 2\ 1\ 2 2ZN2\1\1 2y 3\ 2\ 2 2\3\2 \1
YEYETE s8fof7/8 fafol7][7 8/0/8/8 8/1/8/8
9/0/0/9 9/0/8(9 9{0(8]8 fo9f1l9]9 [9{2/9]9
ol1]1 o]0l » [0[1{9i0l0f* « [0[1(o[o9]0){c{2lolo]0|* *lol3]0f0]0
11241211 1121041 1121010 131111 1141111
2\3\3\? AEASAW ACIVAEAY 2\ 4\ 2\?2 P\5\D\?
s/7/8[8 8l[7[7]8 Bl7f777/\ fofsfsfs8f\ fof8f8(9
9/8/9/9 s/818/9 9/8/{81/8 0191919 0{9{9140
o[ofolof0] = » *lofo]|ofo]0]= = ={ololalo]0|l1[ololof0|{1lo]lof1]0
1104141 1101011 1101010 FAERERE 2111112
2V 1 \2\2 2y 1\ \1\?2 2V TNV 1V 3\2\2\2 3\ 2\2\3

DECIMAL IN TENS

1
1234567890
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Duodecimal system

The decimal (base ten) system is not the only system that you could use. Years ago,
some cultures used the duodecimal system—counting to twelve instead of ten.
To use a wheel-counter system, you would need two more numbers on each
wheel. In the wheels shown here, the extra symbols are # and e for ten and eleven.
Modern digital systems more often use base 16, called the hexadecimal system.

At /7 el fe/N Al e fesf\ [tft]e]t [t]ife]e
cejejel8 ejleje|d ejelejt ejel0je elel0/0
glojofalotiololeltjoitofo]olel0]iofO]1jO)0¢l0fo]1{1]0
RIRYRE Tiitel U110 Ti1 1211 Tl1l1212
2\2\2\e \"EVEAVACVAY A VAV AVAVAY AV AVA AW 2\2\3\3
nine ten eleven twelve twelve
and one
[Tt ]ef7 [ifi]e]s [tltfef9 Hfifoftf/\ Alifofe
elel0]8 elel0]9 elejOft elelije elef1]o
ofol1lo]oflofol1lt]l0|lo]o]l1lel0|lofof2]o]0])(0fol2]1]0
T{th210t 1i1l21e 7311210 1111341 1111312
2\2 \3 \e 2\2\3 %0 AVAELY AVAUAW Z\2\4\3\
twelve twelve twelve and two twelves two twelves
and nine and ten eleven and one
Nnfi/7/0 ffefeftf\ ftftf8f9
ejel8lt elef9]e ejel8]o
olojoleiti{ololt]o]o]loloft 110
T\ t{0 T\ 111 Ti1lel? In the DECIMAL system
232 \e \1 2\2\€\2 2\2\0\3 R lacestothe
nine twelves ten twelves ten twelves lsufi cessive pt vel
and eleven and one eft represent successively
higher powers of ten:
afifsfof\ f1ftf9]t AN K 96; 10 is ten;
elef9ft efeftle ejejt . .
ololtlel0][o]olelo]0| [oTolel1]0 100 is 1 hundred;
11lel0 T {1101 711012 1000 is 1 thousand.
2\ 2\0\1 2\2 \1 \2 2\ 2\ 1\3
ten twelves eleven eleven twelves
and eleven twelves and one In the DUODECIMAL system
10 represents twelve;
[Tt t9 t9 A 5 t/i/\ /1 5: 1 oe 100 is twelve twelves
ele e ele e e .
ololelel0| o1 {olo]0] (o1 {o 10 or 1 gross;
B R  BVAERE RVAERW 1000 is twelve gross,
ACAGAN AVAVAW AVAVAE and so on.
eleven one gross one gross
twelves and one
and eleven
DUODECIMAL IN TWELVES
1

123456789te0
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The first six letters of the alphabet complete the single digit numbers up to what
would be called 15.

Decimal
01 2 3 456 7 8 9 10 11 12 13 14 15
Hexadecimal
01 234546 789 A B C D E F

In the decimal system, “10” (one zero) means ten. In the duodecimal system,
“10” means twelve. In hexadecimal, “10” means sixteen. To get some exercise in
different systems, use duodecimal for a bit. You will see why calculators or compu-
ters use hexadecimal on the inside—they usually read out in decimal.

Conversion from decimal to duodecimal

Why work in duodecimal when it’s never used? Because something unfamiliar
makes you think, it makes it easier to understand what is used. Hexadecimal is
based on binary (base two), which is not as easy for systems that use a larger
number base, because it’s difficult to see something that is only two state (like
yes or no) as counting. So, look at conversion from decimal to duodecimal.

To find how many times a number counts up to twelve, you divide the number
by 12 in the familiar decimal system. The remainder at the bottom is the number
of ones left over after a number of complete twelves in the quotient have been
passed on to the twelves counter. Then, divide by 12 again. This time the remain-
der is eleven. In duodecimal, all numbers up to eleven must use a single digit, so
e is used. You can follow through the rest of this conversion. The duodecimal
equivalent of decimal 143131 is 619¢7.

Convert decimal 143131 to duodecimal

11927 993 82 6 —>61 9 ¢ 7
12143131 12/11927  12/993  12/82 Sty
12 108 96 2
23 112 33 10
12 108 24 ort
111 47 9
108 36
33 11
24 ore [
91
84
A
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Conversion from duodecimal to decimal

How do you convert from duodecimal to decimal? Simply reverse the process.
Using duodecimal, divide the duodecimal number by ten however many times
is necessary. You need at least the tens’ column of the duodecimal multiplication
table. You were probably familiar with the twelve times column—enough to do it
fairly easily. However, this way you need to use the ten times column in the twelve
system. This system is unfamiliar and it makes you think.

Go down the ten times column. Ten times two are 18.That means 1 twelve
and 8, which you would more normally call twenty. Twelve and eight make twenty,
don’t they? Next, ten times 3 are 26, meaning 2 twelves and 6. Two twelves are
24, and six make what is normally called 30. Finish to the end of the column.

DUODECIMAL MULTIPLICATION TABLE

3141516 |7[8[9])t]e

6| 8|t |10]12]14[16]18] 1t
9 10113 |16 |19]20 |23 J26]29
1014 [18 [20 [24 |28 |30 )34 )38
13118 21 [26 [2e|34)39)42)47
10116 (20126 |30 |36 )40 |46 §50]56
12 [19 |24 |2e |36 |41 |48 [53 |5t |65
14 120 |28 |34 |40 |48 |54 [60 J68 |74
16 123 [30 139 [46 |53 [60 |69 |76 |83
18 [26 |34 |42 [50 | 5t |68 |76 |84 |92
1t 129 |38 147 |56 {65 [74 |83 |92 |t

Lol =l fo)¥ B o 1 \8)

@ |~ |NO|OIN NN B W] >

Convert duodecimal 6+9¢e7 to decimal

8349 93 e 12 1 c=p143131L
t{6t9e7 t18349 t[9e3 tlee t]12 AT

68 76 92 t t
79 a E 1_6 —4 |Ch€Ck |
2% 92 92 18
3e 29 1 31 N
a2 L Original decimal
77 310 number on
76 previous section

1

Binary counting

The difficulty about working in binary is that each place has only two “states,”
which are 0 and 1. You don’t count “up to” something and then move to the next
place. If you already have 1, the next 1 puts it back to 0 and passes a 1 to the next
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place. If you have a row of 1s, then adding another 1 shifts them all back to 0, and
passes a 1 to the next place (from right to left).

In the window panel here, the decimal number equivalent replaces the binary
numbers. In the binary system, every place would be eithera 1 ora 0.

e e

0 0 0]0 0 [0] [o
oJoJoJo]o] [oJoJoJol1] ToToJol210] [oToTol211] [oTolalo]e] [oJo]4]o]a
w6s[a[2[1] [e[3]4]2 16]8]4] [1] [16]8]4 16/8] [2]1] [els] [2]

0 1 2 3 4 5

0lo o[o]o 0] 0] [0] [o] [o] o] [ofo
olol42]0] [ool4]2]1! [o[8]ololo] [ols]oJol1] [o]8]ol2l0] [o]8]c]2]1
e8] 1] [168 i) [al2]1] [l [a2] [i6] [&] (1] el [4]

6 7 8 9 10 11

AR olo] [o] oloJo olofo 0] 0] 0]
olslaloTo] [ol8lalol1] [of8lal2]0] [ol8]4]2]1] [1s]loJoJoTo] [ie[ooTo]1
6] 2[1] e 2] |16l (1] [16] glal2]1 gl4]2

12 13 14 15 16 17
0] [o] [0 olo] [o] [0] o] [o] [o] [o] [o]o 0] [o]o
16loTol2Tol leloTol211] ltelolalo]o] [telol4l0]1] [16lo]4]2]0] [6lo[4]2]1

gla] [l [8]4 3] 2[1] 3] [2 s [l 5]

18 19 20 21 22 23
0lo 0[o0 [o] [oTo] [0] oJo] [oJo] [o]o]o oJoTo] [o
16l loTolo] [elslolol1l lte[s[o{2]0] [t6[s{o]2]1] [te|8]4loo] [ie[8]4]o]i

41211 412 4] 1] 4] an 2]

24 25 26 27 28 29
olofolo olololo
16[8[4]2]0] {6[8]4]2]1 BINARY COUNTING

1
30 31

Converting decimal to binary

Here, at the top, values of places in binary that have a 1 instead of a 0, are listed as
decimal. Start with the number in decimal form, 1546. First, the 11th column of
binary, is 1024. that puts a 1 in the 11th column of binary. Subtract 1024 from
1546, leaving 522. Next, the 10th column in binary is 512, so subtract 512 from
522, leaving 10, and put a 1 in the 10th column of binary. With 10 left, the next
binary digit that you can use is the 4th column, which is 8. So we pass over the col-
umns from 9th to Sth, put a 1 in the 4th column, and subtract 8§ from 10 (leaving
2).The 2 puts a 1 in the 2nd column of binary, which finishes the conversion.

To complete what the previous section began, the table on the next page lists
the binary equivalents for decimal numbers from 1 to 30.
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11 10 9 8 7 6 5 4 3 2 1| Column
1024 [ 512 | 256 | 128 | 64 [ 32 | 16 8 4 2 1 [ Value

DECIMAL NUMBER
Contains column 11 1546
1024
522
column 10 312
10
column 4 8
2
column 2 T 2
BINARY NUMBER |i1|i|o|ofofofo|1|o|1]0
Decimal | Binary | Decimal| Binary | Decimal [ Binary
Number | Number | Number | Number | Number | Number
1 1 11 1011 21 10101
2 10 12 1100 22 10110
3 11 13 1101 23 10111
4 100 14 1110 24 11000
5 101 15 1111 25 11001
6 110 16 10000 26 11010
7 111 17 10001 27 11011
8 1000 18 10010 28 11100
9 1001 19 10011 29 11101
10 1010 20 10100 30 11110

Binary multiplication

Although you enter data into your calculator or computer in the familiar decimal
notation, they all use binary to perform all of the mathematical functions that
they perform. Try running a sample multiplication, basically as your calculator
does it. Suppose you multiply 37 by 27. First, it must convert each number to bin-
ary, which it does as you enter the numbers. I'll simplify it a bit by converting it
to true binary, instead of one of the biquinary conversions that make it easier for
the calculator, but more difficult for you to understand. That comes later.

On the facing page are the conversions of 37 and 27 to pure binary.

Here is multiplication in binary, set out as you would set out ordinary long
multiplication, but in a system where no numbers above 1 are “allowed.” Every
digit must be either 1 or 0. What it really amounts to is adding together the
sequence of digits that represent 37 at every “place” where a 1-digit is in 27.

Four 1-digits are in 27, so the three 1-digits in 37 (with Os interspersed) are
entered 4 times in the proper places (to represent “27 times”) and added. You
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can show them all added at once. However, the calculator does it. Every two Is
return that place to 0 and pass a 1 to the next place to the left.

Working from the right, the first three places each have only one 1, which
appears in the sum. The fourth place has two s, which make a 0 in that place
and pass 1 to the fifth place, which already has a 1 of its own, so it becomes 0
and passes a 1 to the sixth place. This place already has two 1s, so that place
goes to 1 again and passes a 1 to the seventh place, where again two 1s are. This
place now has a | and it passes a 1 to the eighth place. The eighth place has no
Is, so the 1 passed is entered and that’s the end of the “passing left.” The remain-
ing two places each have a single 1, which gets “brought down.” The product, in
binary, is 1111100111.

Convert the binary number back to decimal, by putting the decimal equiva-
lent of each binary place where a 1 is. Adding the decimal equivalents comes to
999.To check, multiply 37 by 27, the old fashioned long way.

“Which is the long way?” you might ask. The binary way seems long to you.
The only reason a calculator does it so quickly is that it performs millions of
“operations” per second. It goes the long way around and calculates more quickly
than you can via the short way that you are familiar with.

Multiply 37 X 27 by Binary

Convert to binary:

ER;
6th place 7L g g’g
32 = 82
5
3rd place 4 1] 1
—1 21 2
1st place 3] 4
P | -1 4] 8
f
10010 1<IL‘—”‘“ 5| 16
— 61 32
27 7| 64
5th pl
place 16 8 | 128
11 9 256
4th place 8 101512
3
2nd place 2
1
Ist place 1
\L =
o <
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BINARY MULTIPLICATION

37 = 100101
27 = 11011
100101
100101
100101
100101
tt1t11o0011t L

Convert to decimal 2421
i’ 128
> 256
>512
999 <__
Check 37
27
259
74 Same

999 <j answer

Alternative binary conversion

Here is another way to convert decimals to binary. It uses a table of binary equiv-
alents for numbers from 1 to 9 in each decimal place. To illustrate its use, the two
numbers for division on the next page are converted to binary below the table.

Notice that the binary equivalents for a particular digit bear no relationship
to one another—from one column to the next. You cannot shift a decimal
point or multiply by ten by making a similar shift in binary. I'll return to what
calculators or computers do about this problem in a minute.

Binary division
Binary division shows what you learned in part 1 of this book in a rather dramatic
way: division is really repetitive subtraction. Subtracting the binary for 37, which
is 100101, in the top places of the dividend is exact with no remainder. What is
left is the binary for 37 in the last place. So, the quotient, in binary, is 1000001.
To interpret the binary number back to decimal, use some more subtraction
in binary and apply the table from the previous section. The first subtraction is
the binary for 100, which leaves 11101. For the binary of 20, which leaves 1001,
subtract the binary for 9. So working through binary, dividing 4773 by 37 leaves
129 as the quotient.
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ALTERNATIVE BINARY CONVERSION

Conversion Table

1000 1111101000 | 100 1100100 | 10 1010 |1 1
2000 11111010000 | 200 11001000 | 20 10100 [2| 10
3000 101110111000 | 300 | 100101100 | 30 1110 (3] 11
4000 111110100000 | 400 | 110010000 | 40 | 101000 |4 | 100
5000 | 1001110001000 | soo [ 111110100 | 50 | 110010 |5 101
6000 | 1011101110000 | 600 | 1001011000 | 60 [ 111100 |6 110
7000 | 1101101011000 | 700 | 1010111100 | 70 | 1000110 |7 | 111
8000 | 1111101000000 | 800 | 1100100000 | 80 | 1010000 | 8 |1000
9000 | 10001100101000 | 900 | 1110000100 | 90 | 1011010 |9 {1001
Divide 4773 by 37
4773: 4000 111110100000
700 1010111100
70 1000110
3 11
4773 1001010100101
37: 30 11110
7 111
37 100101
DIVIDE 4773 by 37
1001010100101 by 100101
10000001
100101 | 1001010100101
100101 10000001 |
100101 100 ———— 1100100
20 ————10100
1001
Check 9 — 1001
129 <}jCheckI:>@ —
374773
37
107
14
333

333



262 Systems of counting

Special calculator binary

You noticed that binary digits for various digits in decimal changing with each
decimal place makes conversion complicated. When you enter a digit on a calcu-
lator, the first digit appears on the right. When you enter the next digit, the first
digit moves left and the new one appears to its right. If the calculator had to con-
vert the digit to the new binary sequence for the next place, the system would be
very complicated.

So, the calculator allocates 4 binary places for each decimal place, which
requires very little more “room” in the calculator’s memory than pure binary
would. In effect, the calculator now “works” in decimal, but uses 4 “bits” of binary
to convey each place of decimal.

Decimal True Place
Numerical Binary Biquinary
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

Indices

In any system of numbers, binary, octal, decimal, or hexadecimal (or even some
others that are not in common use), the place of a number indicates a power of
the number on which the system is based. In the binary system, according to
where the 1 appears, it represents some power of 2. In the 4th place, it is the 3rd
power of 2, which is 8. Here is a comparison between powers of 2 and powers of
10.

From this example, you can see some rules for using indices that help us take
further short cuts in multiplication and division. First, remember that multiplica-
tion and division are short-cut methods for performing repeated addition and
subtraction. Now, indices are short-cut methods for repeated multiplication and
division.
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4 =32

1024 pi0]  INDICES  [10,000.000000 1010
512 22 l2x 2x 2x 2 =24 1,000,000,000 10°
256 8 1MNX 10X 10X 10= 104 100’000,000 108

= X X x Xx X=X e
128 27 X% Xen X X X2 X" 10,000,000 X \ 10
64| | Each | | 2° \d 1,000,000 || Each || 108
35| | line 25 n times 100,000 line 10°
X 2 X10
16 24 10,000 104
8 2} 1,000 10°
2 5 The zero power of >
2 any quantity is 1 100 10
2 2! 10 10!
1 20 1 10°
3 27! 0.1 Each || 107
i 272 0.01 line || 192
" ) +10 3
3| | Each | | 2 0.001 10”
i | tine [T 0.0001 ~ 7 10*
172 [T 0.00001 M
N 72 0.000001 1076
LV ] 0.0000001 1077
L -8 0.00000001 10°°
sﬁz 29 0.000000001 1072
o 2710 0.0000000001 10710
X*x XP=x®*B®
R b X’x X?=X?>
a times b times 93 % 22 =95
8 N\ s A N\
LX X X XX XX XX X XXX, 8§ x 4 =32
Y
Total a + b times
X xPox@® XS ax?=x3
a times G
4 A 3
XXX XXX XX (a-b) XX XX XX XxX
=X X X-- times
XXX XXX imes XxX
b\t(imes X7+ X=X
XxX 1
Pt 2227 XXXxXXXxX X3
32+-4=8 1
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Suppose you have to multiply x? by x”. The product is x*"?). You can easily
see it if you write x multiplied by itself a times, then multiply the product by x
multiplied by itself b times. The total number of times that you multiply x by itself
is a + b times. To illustrate, assume that « is 3 and & is 2; x* multiplied by x*
makes x°. Numerically, 2° is 8, 2% is 4, and 2° is 32. 8 x 4 = 32. It checks.

Now try division. Dividing x by x”, the quotient is x* ?. You can check this
answer by multiplying x by itself a times the numerator of a fraction and using x
times itself » times for the denominator. You can cancel b times the number of
x’s in the numerator and leave a residue of x’s in the numerator that is (a — b)
times. To illustrate, make « = 5 and b = 2. x° divided by x? equals x°. If you
used 2 for x, x° is 32, x? is 4, and x° is 8. 32 divided by 41is 8.

Roots: inverse of powers

Here, you must distinguish between the inverse of a number and the inverse of a
power. A minus index is the inverse or reciprocal of the number raised to the
power, indicated by the index. Roots are the opposite of powers. For example,
because 2% is 4, 42 45 2:2%is 8,508 is 2; PART 16, so 164 s 2,and so on.

Fractional indices represent roots. The 3/2 power of 4 is 8, the square root of
4is 2, and 2% is 8. Reversing this process, 82/ is 4. You can find other numbers
in roots by the process of square root. For example, 2!/? (the square root of 2) is
1.414, etc.; 8'/% is twice this. Why? Since 4!/% is 2 and 2'/% is 1.414, (2 times 4)/?
is 81/2 (twice 1.414), which is 2.828.

You are not restricted to square roots, or indeed to any specific roots. Now, a
whole new field of numbers is opened.

1
2" =4 42 =2
2% =38 1
4% =16 8’ =2
1
4%=8 16 =4
2
1 5
22 = 1.414.... 8" =4
1
82 =2.828....
3
2°=2.3828.... \
2’ =32 325 =2
2
32°=4 |
3 322 =5.656....
32° =8
4
325 =16

What about other fractions?
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Surds and indices

Introducing surds is actually going back to a virtually obsolete way of writing
roots. Before the fraction index notation introduced in the previous section came
into vogue, it was customary to use a surd in front of a number to indicate its
square root. Thus, a surd in front of x represented the square root of x, the same
as x'/2. Putting a 3 in front of the surd indicated the cube root of x, instead of
the square root. Putting a small » or any other letter or number in front of the
surd likewise represented a specific root. If the number under the surd has a
power b and an « in front of the surd, the expression can be written as: x”/%. A
surd followed by a vinculum over (line over the top of) &* + b* is the root of the
whole expression. This expression can be written: (¢ + b°)"/2.

=

VX = X
3 L
VX = x3
VX = x°
ST T

1
\/a2+b2 — (az_,_bz)z

Questions and problems

NoTE: The questions and problems on these pages are not in graded order. They
assume a knowledge of earlier parts of this book. If you have difficulty with a
problem, try others first and then return to the one that is difficult. These
questions are designed so that you have to exercise some initiative in applying
the principles that have been introduced up to this point.

1. Find the decimal equivalent of the fraction 1/37. Determine the error that
occurs when this decimal equivalent is found to three significant digits.

2. Using the binary system, multiply 15 by 63 and convert back to the decimal
system. Check your result by directly multiplying the decimal numbers.

3. Using the binary system, divide 1922 by 31 and convert back to the decimal
system. Check your result by directly dividing the decimal numbers.
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4. Find the values of the following expressions:

@ 167 (b) 243°° (9 25"
d 64*° (o 343%°

5. Convert the following numbers from decimal to binary. As a check, convert
them back.

@) 62 (b) 81 © 111
(d) 49 © 98 ) 222
(2) 650 (h) 999 @) 2000

6. Convert the following numbers from binary to decimal. As a check, convert
them back.

@) 101 (b) 1111 () 10101
@ 111100 (@ 110111000110

7. Multiply 129 by 31 in the decimal system. Multiply the binary equivalents of
these numbers. Suppose an error is made in the second digit from the right in
the second number in the decimal product, so 129 is multiplied by 41 instead of
by 31. Suppose a similar error occurs in the binary system, so the second digit
from the right in the second number is reversed. Compare the relative error in
the decimal system with the error in the binary system.

8. Evaluate the expression (a* + b%)'/? for the following values:

@ a=4 andb =3 (by a=12and b =5
(c) a=24 andb =7 (d)y a=40and b =9
(€) a=60 andb =11 (f) a=84andb =13

(g) a=112and b =15

What does each pair have in common?

9. Evaluate the expression (a* + b*)"/? for the following values:

@ a=8 andb =6 (b) a=15andb =8
(c) a=24andb =10 (dy e=35and b =12
() a=48and b = 14 (f) a=63andb =16

What does each pair have in common?

10. Write as simple decimal numbers, without fractions, the following
expressions:

(a) 100° (b) 100'/2
© 10072 (@ 1002
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From these four values, find the values of the following expressions by the method
of adding and subtracting indices:

© 100*%  (f) 1007
(g) 100°¥*  (h) 1002

11. Using a calculator’s square root function button only, evaluate the following
to at least three decimal places:

@) 100Y*  (b) 100Y/%
© 100V (@) 1003

12. Asthe value of the exponent in the previous problem is repeatedly cut in half,
that is, 1/64, 1/128, 1/256, 1/512, and so on, what number will the expression
approach? Why?

13. Find values, correct to three decimal places, for the following:

@) 32! (b) 32°2 (¢ 3293
@ 32 (@) 32%° (r) 32°°
(g 327 () 32°% @) 32

14. Evaluate the following expressions, using a calculator if you wish. Where
applicable, render expressions to at least three decimal places:

@ (107 =252 (b) (36* —8%)!/? © (282 —21%H'/3
@ (5> —3HH © (17> —15H)Y¢ () 65612
(g) 6561 /2 (h) 65614 () 6561 /4

() 6561'% (k) 6561 /8
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CHAPTER

Progressions

Arithmetic progression

Whatever system you use in arithmetic or in algebraic numbers, a series of num-
bers can show some kind of regular pattern, which will help you to develop and
check that series in various ways. Such a pattern is unlike the ones in multiplica-
tion tables. They depend on the system or notation that was used: decimal, octal,
hexadecimal, binary, or whatever. These patterns exist independently of the base
in which you write them.

Here are some arithmetic progressions. Four are numerical. First is the
counting number system itself. Second are the even numbers. Odd numbers
would be similar, but starting with 1 and adding 2 for each successive number.
Third are the numbers that are divisible by 3. Fourth are the numbers that also
add 3 to each term, but begins with 1 instead of 3.

123 4 5 6 7 ... ARITHMETIC PROGRESSION
246 8 1012 14 ...,

3691215 18 21.

14710 13 16 19

a, a+d, a+2d, a+3d, a+4d....

@ is 1st term

@ is difference between one term and the next

6th 7th
term term

268
Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.
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The algebraic series gives the general form of an arithmetic progression, or
series of numbers, where « is the first term and each term is d more than the
previous one. If the numbers diminish, instead of increase, d would have a
minus sign.

The geometric construction shows the relationship of a series of terms that
are represented by a series of equally spaced vertical lines. Each line is longer
than its neighbor to the left by the same amount.

Geometric progression

On the previous page, each term differs from the previous term by the same
amount, added or subtracted. In geometric progression, each term is multiplied
by the same amount to get the next term. Just as the difference in arithmetic pro-
gression can either add or subtract, so the ratio of one term to the next in geo-
metric progression can either expand or contract successive terms.

Here are some samples of geometric progression. In the first one, each term
is twice the previous one. In the second, it is 3 times the previous one. In the
third, each term is 1.5 times the previous one. In the fourth, the process is
reversed: each term is half of the previous one. In the fifth, each term is 2/3 of
the previous one.

1, 2, 4, 8, 16....

1, 3, 9, 27, 81.... a, ar, ar?, ar>, ar?

16, 24, 36, 54, 81 ... @is Lt term

L1 11

27478716 @is ratio between one term and the next
9,6 422,11

=

<] st term>

<«——-———7nd term

¥

<3rd term—=>
<—5th term——>
<«——7th term————>

<———4th term—————>
<——6th term——
<—8th term—>
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The algebra gives the general form for all geometric progressions. a is the first
term and r is the ratio by which each term is multiplied to find the next term.

The geometric construction shows the two types. At the left is an expanding
series. At the right is a contracting, or as mathematicians call it, a converging
series. Notice that the expanding series quickly “runs away” (goes off scale),
while the converging series gets smaller and smaller, indefinitely. The construc-
tion in each case uses similar right triangles to represent the changing ratio.

Harmonic progression

A third kind of progression has been taught in schools. It is not used as often as
arithmetic and geometric progressions. Other progressions are none of these
three. You can learn something about progression in general by studying these
three types.

The easy way to understand harmonic progression is as reciprocal of arith-
metic progression. Instead of each term increasing by d (a constant amount), it
is diminished by being divided by an arithmetic series. If the first term is «, the
second term is ¢ divided by | + d, the third divided by 1 + 24, and so on.

Inthe first numerical example, dis 1. Inthe second, dis 1/2. Inthe third, dis 1
again, but the first term is 1, not 60 (as in the first series).

These patterns in numbers serve a variety of purposes that will be developed
as you study them. They form basis for series that calculate trig ratios for any
angle and many other things.

60, 30, 20, 15, 12, 10,
60, 40, 30, 24, 20, 173, ...

1,

B | —
W=
-

=
il —
N =
~

a, a y a 4 a bl a ] a 9 e
l+d 1+2d 1+3d 1+4d 1+5d

Patterns in Numbers such as ~1

will help ARITHMETIC SJON
@ Check working GEOMETRIC ROC‘?‘ES
: : HARMONIC |[¥
@ Find more direct methods

@ Find answers that eluded other methods
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Sum of an arithmetic series

Often, to find the answer, you must sum a series by adding all its items. The long
way would be write down all the terms and add them up. Where many terms
are, you have two ways of getting the sum.

If you know the first term, a, the last term, ¢, and the number of terms, 7, then
the total is 7 times the average term. Because the terms increase (or decrease) uni-
formly, the average term is midway between first and last. The midpoint can be
found by adding together the first and last and dividing by 2. So the sum is
2(a+1¢)/2.

If, on the other hand, you don’t know the last term, but know the first term, ¢,
the difference, d, and the number of terms, the last term is a + (7 — 1)d. So, sum
of the first and last is: @ +a+ (n — 1)d or 2a + (n — 1)d. Now, use the first
method and simplify: n[2a + (n — 1)d]/2. This equation can be simplified to:
na + n(n — 1)d/2. The symbol universally used for the sum of a series is a
Greek capital sigma, X.

First term: a

Second " a+d

Third " a+2d
Fourth " a+3d

Nth " a+(n-1)d

a,a+d,a+2d,a+3d,....,a+(n-1)d

Last term
(4

With n terms
: Average term
First term I a+d SUM=n a+/l
a : 2 2
lasttermé€ =a+ (n—1)d
2 n (Greek capital (2a +(n—1) d)
! sigma sum|=n N2
means
n(n-1)d
Sum of terms 1 through n > 111 =na+ (—2—)—

continued
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@ Add together 3, 5,7,9, 11, 13, 15

First term: a= 3
Last term: ¢=15
Number of terms: n= 7

S0 = a(344)
ST =738 - 2(8) - 1xo

[{> Find the sum of -7, -4, —1, +2,
+5 ....t0 12 terms
.

+ 2 -7
5 -4 First term: a=-]
8 -1 Difference: d= 3
11 ~12 Number of terms: n=12
14 n n{n-1d
17 2 1 = na+——2————
» S : _ ~12X7+12XHX3
2
26 396

—84 + 198

126-12=114 = -84+ =2
\ = 114

Sum of a geometric series
This problem is not so simple, but the trick that you learn here is helpful with
series that you will study later.

Because « is a factor common to all the terms, it can be put outside paren-
theses with a list of all the multipliers inside. Now, if you multiply every term by
ratio r, they all move one to the right. In one line, you have r times the sum.
However, it begins with r times « and ends with " times «. The original sum has,
inside the parentheses, terms that begin with 1 and finish with .

Assuming that r is greater than 1, subtract the original sum from r times the
sum. All the middle terms disappear, because they are all the same. Inside the
parentheses, —1 and " is left. The sum on the other side of the equation is multi-
plied by » — 1. So, the sum can now be found by dividing both sides by r — 1.
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GEOMETRIC PROGRESSION a4, ar, ar?, ar?, ar®, ....

Sum of terms 1 to n:
n
First term: a 2] =a+ar+ar2+ard3+ ... +ar? 24 arn-|
Rati . =a[l+r+r2+r3+ . 4+rn-24prn-1]
afo: r

The n™ term: ar" !

How to simplify this < 7

Multiply both sides by r:

n
erI =ar[l+r+2+r3+. 400240l

4 N

P VP W W
=a | r+r24+r3+r4. 4! 40

Subtract S n

.. =a [l+r+r2+4+r3 +r4 ... +rn-! ]
original '
(r—1) Erl‘ =a |-1 P
Divide both - | All the middie
sides by (r — 1) terms disappear
n _a(m-1)
z1 -1

(D[ Find the sum of 10 terms  1,2,4,8, 16 ....

=R
oo
—_ D

n _a("-1)
2] T _1

r—1

1 2-1 1
4 = 1023

0
510 _27 1 10241

continued
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(2)| Find the sum of 7 terms 4, 12, 36, 108 ...

a=4 n 3
n a(r"-1) 3= 27
r=4 PR g
g 1 r—1 3 = _2__71_
7
; 2’1/ =4><3(3_ 1—1) 216
Check 12 37 = 2187
36 _4X(2187-1) _ 4X 2186
108 - 3-1 B 2
324

972 =4372
2916
4372

Here, you sum a couple of geometric series, one to 10 terms, the other to 7
terms. In each case, verify the result by doing it “the long way.” Actually, you
probably won’t have to use this formula very often, but it’s worth hanging on to
for those few occasions when it is useful.

Look on the checking as a sort of reversible process. If you haven’t used the
formula for some time, you might not feel sure about it. Do it “the long way,”
then by formula, which will prove two things: that you didn’t make a mistake in
doing it the long way and that the formula “works!”

Converging series

The series you have considered so far have been expanding or diverging: each
term is larger than the one before it. This occurs because r is greater than 1. In a
converging series, each term is smaller than the one before it.

A story exists about an Eastern potentate who offered a philosopher a reward
for some work. He offered him a chess board with grains of wheat on each of its
64 squares. He would put 1 grain on the first, 2 grains on the second, 4 on the
third, 8 on the fourth, and so on, until he got to the 64th square. It didn’t sound
like much, until he figured it. The grand total is 2% —1, which is
18.,446,744,073,709,551,615 grains! That was more wheat than he expected!

When ris less than 1, 7" is less than 1. If n is large—especially if you sum the
series to infinity, ¥ is zero. So, the sum of the series reduces to a very simple
expression.

written

When | ris greater than 1 r 1
& <. _read | >

every term is greater than the one before it.
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For example: r =2
1,2,4,8,16,32,64 .... This is a DIVERGING SERIES

[written

When ris less than 1 r < 1
read

every term is smaller than the one before it.

For example: r = %
1
4

8421+ 11
+4,2. 1,5, 7,2 - This is a CONVERGING SERIES

Sum of a converging series

Because the order of both the numerator and the denominator are reversed by
making the series converge, the result is still positive.

An interesting thing happens if you sum to infinity. You continue until the
series disappears into nothingness. When r is less than 1, #" becomes zero by
making » infinity. So, the formula becomes very simple: a/(1 — r).

zrll =a[l+r+r24134.. +ro-]

Multiply by r

rEl =a[ r+r2+rd+ Lttt
Lower line
is smaller,
sO subtract

a-n=| =al ~r7]

Divide
n a(l-rn)
by(-1 2| ===

In an endless series

TO INFINITY n=e || nisinfinity

r< 1 D So increasing powers of r
become smaller, and r* =0

oo _a(l-r*) _a(l1-0)

zl 1-r B l-r

_a
l1-r




276  Progressions

Rate of convergence

You can see how the use of different series for the same calculation can often
make the work easier. The sum of three different series produces a value of 4 at
infinity.

The first one is 1, 3/4, 9/16, 27/64, etc. Notice that the sum to 6 terms is
3295/1024: still quite far from 4, although it seems logical that it will eventually
get there.

The second one is 2, 1, 1/2, 1/4, etc. Notice that the sum to 6 terms now is
3 15/16. It’s already only 1/16 short of its ultimate value of 4.

The third one is 3, 3/4, 3/16, 3/64, etc. Notice that the sum to 6 terms is now
3 1023/1024—only 1/1024 short of its ultimate value.

Each of these series has a successively greater rate of convergence than the
one before it.

@ Sum of series 1,3 , 9 , 27 .to infinity
-1 6 64
R D N
r==- 1 1-r 31
4 "7 3
n=oo
3,9 27 8
ittt ﬁ 1204234 Eventually
3 5 47 13 295
PROGRESSIVE TOTALS 0y 13 23 247 311 328
reaches 4
@ Sumof series 2,1, L, 1 1o infinit
3 o infinity
a=2
oo 2 2
1| ZiEn ==t FOR EACH
2 1 5 3 SERIES,
1 = oo o SUMTO
2+l 2"3i"§"ie”  Eventually | INFINITY
PROGRESSIVE TOTALSE> 3343232308 NIS.4
reaches 4 ) otice
difference
@ 3 3 3 ] in rate of
Sum3of series 3, T to infinity convergence
a=
©_ a 3 3
= - =" ===4
=l 21705 173
4 i 2
n=oo
3 3 3 3 3
A E* o *25% " lo2a" Eventually
3 255 1023
PROGRESSIVE TOTALS ) *# is RERE
reaches 4
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Permutations

Permutations have many practical applications. If gamblers used it, they’d realize
how great the real odds are and probably quit gambling. With 10 horses in a
race, basically each one has a 1 in 10 chance of winning. If one or two are better
runners than the others, the others have less than 1 in 10 chance of winning. But
why waste time? Gamblers will keep losing more money than they win!

In this example, 7 horses can pass the winning post. Any one of the 7 can
come in first. For each winner, 6 are left that can come in second. So, the possible
first and second place are 7 times 6 (42). For each first two, 5 choices are left for
third place. This makes 210 possibilities for the first three places.

To find the order of the rest, the possibilities are: 7 x 6 x 5 x4 x 3 x 2 x 1.
Maybe that 1 is redundant: he’s the only one left! However, it means that 5040
orders are possible.

In how many orders can
7 articles be placed?

0000060060

There are 7 choices for Ist place. Then ....

o o o 10} o [Fd 1G)
0lel0] (OIC]0)] (Bl0[0] (0]6] (Bl0]6] [¥/0]C] (AlO]6,;
OOIEECIEERIEERIOOEIOERIDE®

For each 1st, there are 6 choices for 2nd place
This makes 7 X 6 = 42 choices for 1st and 2nd place

For each of the 42 1st
Q 9 and 2nd choices, there

are 5 choices for 3rd
© © ® place. 42X5 =210

@ @ choices for places 1,
2,and 3

For each of the 210 1st,

o G @ 2nd, and 3rd choices,

there are 4 choices for

@ @ ® @ 4th place. 210X 4 = 840

choices for places 1, 2,
3,and 4

For each of the 840 1st, 2nd, 3rd, and 4th choices,

Q 9 e 0 @ @ @ there are 3 choices for 5th place.

840X 3 = 2520 choices for places 1, 2, 3,4, and 5

For each of the 2520 1st, 2nd, 3rd, 4th, and 5th

O 0O 0O O O E © choices, there are 2 choices for 6th place.

2520X 2 = 5040 choices for places 1,2, 3,4, 5,and 6

When 6 places are filled, only one is left for the remaining place

7 articles can be arranged in 5040 different orders
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Factorial notation!

How many ways can so many be taken from so many? The usual symbols
for expressing this are k articles chosen from an available n. Examining the
figures used so far, you could write that n(n — 1)(n —2)...(n — k+1).
Mathematicians use a shortened way of writing these equations and calculators
use the same method to make the calculation, factorial notation. The accepted
symbol is an exclamation point after the number. Factorial notation is defined as
the product of every integral number from 1 up to the number marked.

The permutation of k articles taken from an available # is the product of all
the numbers from 7, down to the number: n — k + 1. That seems to be the sim-
plest form. But calculators use another way to arrive at the answer. If you divide

HOW MANY PERMUTATIONS OF k ARTICLES
TAKEN FROM AN AVAILABLE n?

There are n choices of 1st place
For each of these, there are n — 1 choices of 2nd place
For each of these, there are n — 2 choices of 3rd place

TOTAL: n(n-1) (n-2) choices for
first three places

[n— (k- 1)] or [n — k + 1] choices of k th position,
oratotal of n (n— 1) x .... x (n —k + 1) choices for k places

FACTORIAL NUMBERS 1x2x3x4 .... xnis called
FACTORIAL n
written |n or n!

nn—-1x....x(n-k+1)is (n+'k)'

nn—Dx...x(n—k+ 1D <K (nA-1) X ... X 3XZXY
<0 -kZDX ... X2K2KY

How many permutations of 3 articles taken from an available 10?

10X9X 8 =720 10X 9OXBXTXO6X 5X4X3X2X1
TXO6X5X4X3X2X1
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factorial n (written n!) by factorial (n — k) (written (n — k)!), by canceling the
shorter string of numbers from the longer, you are left with a product of all the
numbers from (n — k+ 1)ton

Pocket calculators provide an x! button that will factorially read out whatever
number was entered when that button was pressed. It won’t work if you enter a
fractional number or if you enter a number whose factorial expansion is too big
for the calculator to handle.

Combinations

Calculating permutations considers the order in which the articles were chosen.
In combinations, order is not important. If you must pick 3 letters from the first
10 letters of the alphabet, A though J, you have 10 choices for your first pick, 9
choices for second, and 8§ for third. That multiplies out to 720 possible choices.
Suppose your choice picks the first 3 letters, A, B, and C. These could have been
picked in any order. 6 different orders exist for which you could pick just the first
3 letters.

So, permutations take order into account. Combinations deal only with
which ones are picked, in any order. Pursuing the 10-letter choice from which
you picked 3: 720 possible choices exist (taking sequence into account).
However, if you only want to know which 3, any order, divide 720 by 6, which
is 120.

ODOOOOEE®O®OY

PERMUTATIONS of 3 taken from 10 includes

ABC )
ACB
BAC 6 different orders of
BCA s each combination
CAB
CBA

How many COMBINATIONS of 3 taken from 10?

10X9X8 _ 720 _
3x2xT - 6 -1

How many COMBINATIONS of 7 taken from 10?

Each 3 taken leaves 7, so it should be the same answer

10X 9><8><,7><ﬁ><5><%= 10X9X8 _ 120
AXBXIXHKIX2XT ~ 3X2X1
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COMBINATIONS OF k TAKEN FROM n

|
PERMUTATIONS of k taken from n are (n—fk—),
This i . p n!
1S 18 tt =
1S WwWritien n k (n — k)'
n P k n!
COMBINATIONS of k taken from n are = -
Kl -~ (K k!
This is wri n!
1S 1S written n Ck = m
BECAUSE C n __n
n“k Tk ™M TR
Thereforen C K = n C (n—K)

The symbol for permutations is P, with two subscripts, one in front of the P
and one after it. The one before it says how many the choice is from. The one
after it says how many are chosen. The formula for permutations of & taken
fromnis: n'/(n — k)!

The symbol for combinations is C, written in the same style. The formula
for combinations of & taken from n is: n!/(n — k)!k! Notice that the same formula
also gives the number of combinations of (k — n) taken from n. What this says
is that the number of ways that a certain number, &, can be taken from a bigger
number, n, is equal to the combinations of those left in the same case. This
fact might seem obvious if you think about it. Still, it is a useful fact when
calculating.

Powers of a binomial

A binomial is any expression that consists of two terms, with either a plus or a
minus sign between them. For a general form of binomial, write: (¢ + »). When
such an expression is raised to successive powers (squared, cubed, fourth, etc.), it
generates a successively more complicated series of terms, each of which consists
of a power of a, of b, or a product of both powers.

You can multiply successive expressions of the general binomial (« 4 ») to
get the pattern of terms that form. In any of the powers of the binomial, start
with « raised to that power, followed by terms that consist of successively lower
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powers a, multiplied by successively higher powers of b, until you get to the last
term, which is b raised to the same power. Each of the product terms, with powers
of both ¢ and b, has a numerical coefficient.

First, investigate the pattern of these coefficients by forming a pyramid, asis
shown here.

a+b<——jig a binomial

multiply by ... a+b
a2 + 2ab + b? is (a+b)*
multiply by ..cccceereninn a+b again
a’ +3a%b + 3ab? + b? isa+b)’
a+b

a% + 4a3b + 6a2b? + 4ab> + b?

Power Index Coefficients
1 1 1
2 1 2 1
3 1 3 31
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 3521 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

o

1 10 45 120 210 252 210 120 45 10 1

Binomial expansion

Write out the expansion: (a+5)". It is: (a+b) (a+b) (a+b) (a+b)...n
times. Now, multiply all those terms together. First, is simple: the first term of
each is ¢". Next, is almost as easy: take n — 1 of a’s and 1 b. You have n of those.
Now, it begins to get involved: the combinations in which you take n — 2 a’s and
2bs.

After going through this step, write the general term in the whole expansion.
It has 3 parts: the coefficient, which is the combination of k [you are at the
(k + Dthterm] «’s taken with n — k b's; then, " *; and finally 5*; all multiplied
together.
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(a+b) is
(a+b)a+b)(a+b)(a+b)(a+b)....ntimes
Coefficeint of a" is 1. All first terms multiplied together.

Terms in 2"~ 'b are each (n — 1) terms a, multiplied by one term b.

There are n combinations like this.

Terms in a" - 2b 2are each (n — 2) terms a, multiplied by two terms b.

Combinations are nC2

Each term in the EXPANSION has three parts or factors

n k an—k bk

@ VA Z__ The coefficient
Exponent of the first term
Exponent of the second term

-1 -2 —
@+b)" =" +nd" b+ C, a" b 4.4 +...+nab" '+ b"

GENERAL TERM
This is the (k + 1)™ term

Binomial series

Notice something here about the writing. Up till now, to indicate multiplication,
the “times” sign has been used. Now, use a dot, like a period. To avoid making it
look like a decimal point, keep the dot above the line. This measure saves space
when you have a lot to write.
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BINOMIAL SERIES
Expand (a + b)’
2

(a+b)n=a"+nan_1b+nCzan_zb +.... C.a b +...

n(nul)a"“2b2+ n(n—l)....(n—k+1)an_k

5 1

7-6-5a4b3+7-6-5'4a3b4+““
32 4342

b+

~1
=a+na"” b+

(a+b)=a +7a b+726 b+

These two the same; from here on repeat ——>

—a’+7a°b +212°b%+ 352 b° + 3527 b* + 212°b° + 7ab®+ b’

5

10 > 100,000
. 5 b
Find 13 by + 5 . 1() 3 > 150,000
expanding (10 + 3)° | 2 «10° 32 ——>10+10°-9 —> 90,000
13 ¢ 2197 +224010% 033 ——> 10+ 10%+ 27 — 27,000
X13 | X 13 .
13 2197 +50103°———>50.81 ————> 4,050
39 | 6591 s
132=169 | 28561 =13* +3 > 243
X13 | X 13
169 | 28561 =| 371,293
, 07| 85683
13° 22197 371293 = 13°

CHECK

Completing some patterns

For some pages now, strange “ground” has been covered. When you do that, it is
always good to check your bearings to see where you're going. First, find out if
the binomial series will work when the value of 7 is such that the series continues
forever—a nonterminating series.

Try expanding (4 + 1)'. Obviously, 4 + 1 = 5 and the —1 exponent takes
the reciprocal of 5. The result should be 1/5. Following the rules, the expansion
reducesto 1/4 —1/6 +1/64 — 1/1024 ... In this geometrical series, r is —1 /4.
The sum to infinity is ¢/(1 — r). So, 1/4 is divided by 5/4, which reduces to 1/5.
As a geometrical series, it “works.” As far as you've taken it (only 4 terms) the
value is 205/1024. 205/1025 would be exactly 1/5. Pretty close!

Another example is (4 — 1)~', which should be 1/3.In 4 terms, it is 341/1024;
341/1023 is exactly 1/3.
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BINOMIAL EQUIVALENT of INFINITE GEOMETRIC

Expand (4 + 1)'] a=4,b=1Ln=-1[4+1=55"=4

@+ D=4 c1ya +(“+‘2)4‘ 1“2"3) 4% Py

]l e—2e-3s —4) 457
4436241

15 65 255 1025

Expand (4 — 1" la=4,b=—1,n=—1[4-1=3, 3“1_%

G- l=a a7 + (";‘2)4‘3(_1)% 1‘—2‘3) e’y
Lo 1
64 *256 1oz Ty
_——
| 3
21 85 31
64 256 1024

21 85 341
63 255 1023

=g+

......................................

1
4

| 5|u'<_a\|"‘

—
w

Expand(:1 —I)‘l %_Iz;r’(l—r S a

L) OO )

2r 3r2 4.3
a a a’r
=a+—+—2+ 3
a a a

e e a
=a +ar+arl+ar?+... Sum to infinity = 15

Using binomial to find roots

The previous pages might seem like mathematical exercises. Actually, you were
becoming familiar with a new technique—the use of series of making calcula-
tions. Now, you will see how it can be used to shorten the method for finding
square roots.

Here, use three different expansions to find the square root of 2. The first one
is (1 + DY2 The second is (9/4 — 1/4)'/2. The third is (49/25 + 1/25)"/2.
Notice that each is a method of writing root 2.

Look at the results. The first looks as if it might get there eventually, but it
hasn’t got very close after 5 terms. The second has 4 terms to get it correct to 4
places of decimals; certainly an improvement. The third has 4 terms to get it cor-
rect to 6 places of decimals.
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FIND v2 BY BINOMIAL SERIES

@(1+1) = +( )1“‘”(1)+( ) 7 ay +(

+16 T

. 1. 375 1 4375 1.3984375
-0.125 + 0.0625 - 0.0390625

~f— OO —

> 1.5
n 0.083333
2 2 7776 1416667
t 0002315

1414352
>0.000129
1414223

12!

wn

L
2

L
625 *

1.4

1 0.0142857
70 REZ YR T 1A%
t 0.0000729

1.4142128
00000007
1.4142135

nl
-
-
—
O\
&l
Sl
Ll\
O\
KJ\

.
*3°F

DO —

G

o] —
.

G

s

w

i~ | Wil
-
—

Making a series converge

Notice how you went about making the series in the previous section. You wanted
a square root, so you made the first term of the binomial a perfect square. That
way the first term of the series would be a simple root. The second term was also
a square. Computing the successive terms was relatively simple. The better con-
vergence was obtained by making » much smaller than a.

You have proved that the binomial “works” for finding square root with an
infinite series, and you can find a result to a given accuracy more quickly. Next,
you can use it for other things, as you did with the square root.
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Making a Series Converge

,_.
~—

1
(1+1)2 1

I
o
1]
o
=
1]
—

L1
2 8 16
I

._.
—

9 1}4

173

(4_9+1_ 3
25725

W
e+
i
=)
o
®
]
LRV

2 432 7776

—

1 1 1
70 13720 1344560

w1
[

1]
B~
o
[=n
]

=

1

il

L=
.
(V)

1oL 2 [ 3
383 =48 3.
(8+20° =8 +3 -2+ 5

1 I 3 -3
=2 16 72 2592 15552
2.00000 <—! J

+ 0.16667 «— Next coefficients

2.16667 1,2, 5, 8, 11
— 0.01389 3 3 3 3 3
2.15278 5¢4032
+ 0.00193 = 14

215471 -7
~0.00032
2.15439 6-
+ 0.00006
215445
— 0.00001 |
315444

PN
wnl—
a|—

X

Ol
FNE

x 2e
3
2.1544 Ratio between successive terms

Questions and problems

1. Identify the following progressions according to type: arithmetic, geometric,
or harmonic. State the first term and the value of d or r.

@ 1,5,9,13,17
(b) —9,-3,3,9,15

© 16,12,9,6-3/4,5-1/16

(d) —81,54, —36,24, —16

(© 1512, 1260, 1080, 945, 840, 756
M) 1,172, 1/4, /8, 1/16, . ..

(2) 1,2,4,8,16,...

2. Sum the following series:

@ 14+34+54+7+9+...(through the 20th term)
(b) 234+25427+...+694+71+73
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(© 5+ 10+ 20+ 40 + 80 + ... (through the 11th term)
(d) 5—10420 — 40+ 80 — ... (through the 10th term)
() 100 + 50 4+ 25 + 12.5 + ... (through the sixth term)
() 100 — 50 4+ 25 — 12.5 + ... (through the sixth term)
(g) 100 — 50 4+ 25 — 12.5 4 ... (through the seventh term)
(h) 6+ 17428 + 39 4 50 + ... (through the 19th term)

3. Sum the following infinite series, if the series converges to a finite sum. If the
series does not converge, so indicate:

@ 1+1/2+1/4+1/8+1/16+...
) 1+1/2+1/3+1/4+1/5+...
© 900 4+90+9 + 0.9+ 0.09 + ...
) 10— 6+3.6—2.16 4+ 1.296 — . ..
(©) 700 4210 + 63 + 18.9 +5.67 +. ..
) 104+9+8.1+729+6.561 + ...
(2) 180 — 144 + 1152 —92.16 + ...
(h) 256 + 128 + 64 + 32+ 16 +...

4. Evaluate the following permutations:

@ s0P3 (b) 10Ps © 12Ps
@ 10Ps4 © 7P

5. Evaluate the following combinations:

@ 50Cs3 (b) 10Cs © 12Cs
d 10Cy © 71Cs

6. A new telephone area code is created. This opens up a new block of seven-
digit telephone numbers. The only numbers that cannot be assigned are those
whose first digit is a zero. How many different seven-digit telephone numbers
can be assigned in the new area code?

7. Suppose that an additional restriction is placed on the telephone numbers in
the previous problem: the first digit cannot be a zero, one, or nine. How many dif-
ferent seven-digit telephone numbers can be assigned in this system?

8. Twvelve horses run in a race. If all the horses have equal ability:

(@) What are the odds that you can name the correct winner?

(b) What are the odds that you can name the horses that come in first and
second, but not necessarily in order?

(¢) What are the odds that you can name the horses that come in first and
second in the correct order?



288 Progressions

9. Inthe same race as the one in the previous problem, what are the odds that a
particular horse will come in among the first three?

10. Assume the following:

e There are 200 billion (2 x 10'!) stars in our galaxy besides our sun.

e To support life as we know it, a star must resemble our sun and have at
least one earthlike planet.

e The chance of an earthlike planet evolving life as we know it is one in five.

¢ Six percent of stars resemble our sun.

e Ofthese, three percent have at least one earthlike planet.

Given these premises, how many planets in our galaxy can be expected to evolve
life as we know it?

11. You have read the following statistics:

(a) One out of every five males over the age of 18 has had a speeding ticket
within the past 12 months.

(b) One out of every 10 females over the age of 18 has had a speeding ticket
within the past 12 months.

(¢) Men and women frequent singles bars in equal numbers.

You choose a person at random in a singles bar where, presumably, everyone is
over 18 years of age. What is the probability that you will choose a person who
has had a speeding ticket within the past 12 months?

12. Suppose you choose one man and one woman at random, in the same bar as
in the above problem. What is the probability that you will choose a man and a
woman who have both had speeding tickets in the past 12 months?

13. Atossed coin is equally likely to land heads or tails. For two tosses, the prob-
ability of the coin landing heads both times is one in 2% or 1/4. For three tosses,
the probability of the coin landing heads in every case is one in 2° or 1/8. For
four tosses, the probability of the coin landing heads in every case is one in 2% or
1/16. In general, if the coin is tossed 7 times, the chances of it landing heads
every time is 1/2". Based on these facts, suppose you toss a coin 14 times and it
comes up heads every single time. What is the probability that it will come up
heads on the 15th toss?
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CHAPTER

Putting progressions
to work

Rates of change

The relationship between a quantity and its derivative (rate of change) can provide
short cuts in calculating. In fact, as well as being relatively simple, these rates are
sometimes the only way to find an accurate result. To understand the principle
involved, consider a car travelling along a highway.

The rate at which it moves along the highway is speed (velocity). A stationary
car doesn’t move. Change from being at rest to moving, or from moving to moving
more rapidly, is acceleration. By means of acceleration, velocity is increased.
So the rate at which velocity is increased is acceleration, as was described in
chapter 12.

Before radar speed guns were invented, police timed the movement of a car
between two points. If the time was less than what travelling at the legal speed
would require, the driver got a ticket. A smart driver might see the first cop and
slow down before he got to the second. The time check would show that he wasn’t
speeding, even though he was when he saw the first cop. Radar speed guns
stopped this practice by reading speed at an instant, instead of averaging it over
a distance.

RATE of CHANGE <> of POSITION is Velocity

“—=> of VELOCITY is Acceleration

4{% e

1 mile 2 miles 3 miles 4 miles

VELOCITY? ACCELERATION?

289
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Weight and Spring Resonance

Velocity Spring force Velocity Spring force This is where
downward is  is accelerating  upward is is accelerating  we came in
compressing  upward expanding downward
spring spring
But how do you find POSITION
VELOCITY
ACCELERATION

at any particular instant?

The weight and spring resonance system, also described in chapter 12, shows
how velocity and acceleration change during its movement. How do you check
those facts? Infinitesimal calculus, which is really quite easy, despite its imposing
name, helps study all these problems.

Infinitesimal Changes

Relationship between quantities x and y of form y=x" J

Infinitesimal increase in x: X + dx
Corresponding increase in y: y + dy

y +dy = (x +dx)"

Binomial
(x +dx)" =x"+nx "~ ldx +Il—(nz—_12 X2 dx)? ...
dx @07
Because ~ =();2—:0 — doubly infinitesimal infinite
convergence
(x+dx)" =x"+nx " ldx
y+dy =x"+nx""'dx
y =x"
dy = ox"'dx or ﬂ=nx“"
dx

The rate of change of y with respect
change in x at instant y = x" is:
nx" !
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Infinitesimal changes

Any relationship can be plotted as a graph. Any graph can have an algebraic
equation to express the relationship that was plotted. Some equations are simple,
some are complex. Those that relate to the real world have two types of variables:
independent and dependent. In an equation, such as y = x”, x is the independent
variable, on which the value of y depends, so the dependent is also variable.

Increasing x causes yto increase. Looking at one point on a graph doesn’t tell
you the rate of y’s increase. A stretch of the graph, like timing the car over a dis-
tance, can tell you the average rate of y’s increase.

Infinitesimal calculus lets you calculate speed at a point, like the radar gun
measures it. The idea is simple. To measure slope at a point, measure change
over an infinitesimally small “piece” of the graph.

The very small change in y, divided by the very small change in x that caused
it, gives the slope at that point. Use the symbols dx and dy to represent infinitesi-
mally small changes. Compared to x and y, they are too small to be measurable.

DERIVATIVE of a LINEAR EQUATION

o A
Yy =X >‘;=1
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N
r> d_X=2X

Here is the general solution for the slope of a graph for y = x”". The binomial
expansion is used to expand (x + dx)”. Then y = x" is subtracted from the
expression for v + dy = (x + dx)", to leave an equation for dy in terms of dx.

The smaller you make a change, the smaller the higher powers become. If
dx/x = 0 (but is comparable with dy), (dx)? /x* completely vanishes.

Now apply these principles to a few cases and see how it “works.” Apply it to
the simplest possible equation, y = x. Dividing dy by dx, after subtracting
vy = x, we have dy/dx = 1. This statement is easily seen to be correct, because
for every change of 1 in x, y also changes by 1.

Take the next power of x, y = x>. From the formula in this section,
dy/dx = 2x. Plotting the curve for y = 7, for values of x from —5 to +5, draw a
smooth curve through the 11 points.

If your curve represents the true curve for y = x7, you can draw triangles
under the curve with a base length of 1, and a slanting side that just touches the
curve at the same slope as the curve. In each case, the vertical height of the tri-
angle is 2x for the particular point.
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Values of dy/dx can be plotted as another graph (this time a straight line),
which shows the slope of the first curve at every point.

This time, try the graph of y = x*. From the formula, dy/dx = 3x>. For
higher powers of x, the scale for y has to be changed to get the graph on the
page. Draw tangent triangles for the unit horizontal base and measure the height
to verify the formula. Then, plot a graph for dy/dx.

Notice that the cubic curve, unlike the square curve or parabola, curves
upward for positive values of x, and downward for negative values of x. Its slope
is always upwards, except when x = 0, where it is momentarily horizontal, the
zero slope. The slope is equally positive for the same values of x, positive and
negative.

Take one more power of x for the time being: y = x*. Changing scales again,
plot from x = —5 to x = +5. This curve is similar to that for y = x?, in that
values of y are positive for both positive and negative values of x. Of course, the
curvature is quite different. Correspondingly, the curve for dy/dx is again nega-
tive when x is negative, because the y = x* slope is downward (from left to
right). Once again, the triangle constructions verify the formula result.
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Successive differentiation

In the preceding pages, the slope of the curve was found by a single differen-
tiation, dy/dx. Some problems require successive differentiation. For example,
velocity is a rate of change of position. Acceleration is a rate of change of velocity.
So, acceleration is a second differentiation of position; the first gives velocity, the
second gives acceleration (or deceleration), and the third gives the rate of change
of acceleration. Because acceleration changes, it must have a rate of change.
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Starting with y = x*, successively differentiate to find these successive deriv-
atives (as mathematicians call them). Previously the simplest equation, y = x”
was used. It seems obvious that a constant will transfer to the derivative. The
work here confirms it:

If y = ax", then dy/dx = anx"~!

d d?2 d3 d*
= 4 ..,_y,,: 3 ___)1 = 2 __._y. = ___y =24
y=x"l |5¢ 4x Y 12x o 24x X 2
600 \
500 [\
400 X\
e 12 y = ax"
300 a7y _ o2
\\ dx? y+dy=a(x+dx)"
200 \ =a (xn+ nxn_ldx)
100 = ax ™+ anx™ ldx
08y _ o4y y =a
L dx3 dy = anx ™ dx
- 100
prd
dy n-1
—200 / —Z = anx
/ dx
— 300 /d
dY _ 443
— 400 i(lix 41"
_spol 11

Differentiating a complete expression

Suppose an equation for y in terms of x contains a whole expression, with several
terms that involve different powers of x. In general form, this might be
y=ax" + bx" + ... It could continue to any number of terms, so only two are
taken here.

Increasing x by dx, substitute x + dx for x, each time it occurs in the original
equation and increase y by dy (to make y + dy). Using the same method as on
previous pages, you have:

y+dy = ax™ + amx™ = ldx + bx" + dnx"dx
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Subtracting the parts that correspond to y, the parts that correspond with dy are
left:

dy = amx™ Vdx + bnx""'dx

Dividing through by dx gives an expression for dy/dx that shows that dy/dx is
equal to the sum of differentiations of individual terms in the original expression.

Put in sample numbers: y = x> —50x° 4+ 520x. The derivative is:
dy/dx = 5x* — 150x% + 520. Notice that where the original term has a minus
sign (as does 50x°) the term in the derivative also has a minus sign.

Work through the example in the previous section with tabulated values of y
and dy/dx, term by term, from x = —6 to x = 46. Study the curves. Where the
curve for y reaches a maximum or minimum, the curve for dy/dx passes through
zero value. Momentarily, y is neither increasing nor decreasing.

Where the curve for y crosses the zero line, except at the ends, where both
curves go “off scale,” the dy/dx curve is at a maximum positive or negative. At
those points, the slope of y reaches a maximum, either up or down.

y+dy=a(x+dx)" +b(x +dx)"
=a[x" + mx™ 'dx]+b [x" +nx""" dx]
= ax™ + amx™ " 'dx + bx" + bnx" 'dx

y = ax™ + bx"

amx™ ' dx

+ bnx"'dx

d

' 4+ bnx" !

a{- =amx™"

=x’ - 50x* + 520x

| | I
a=1|| a=50 ||a=520
n=>5 n=3 n=1
¥ v ¥
5x* — 150x%2 + 520 (x%)

Example




Putting progressions to work 297

ld
x | x'-50x°+ 520x = y x—150x+520- o

\\% N I_——

_ 7776 + 10800 — 3120] 96 [ 6480 — 5400 ¢ + 1600
—5 _3125 +6250-26001 +525 [ 3125-3750 @] —105
—4 | —1024 +3200-2080] +96 | 1280-2400 @] —600
—3 | — 243 +1350_ 1560 —453 405 — 1350 @] - 425
_2 _32 +400-1040] -672 80 —600 @ 0
-1 -1 +50 —520] —471 5 —150@1 +375
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4 | +1024 3200+2080] —96 | 1280—2400 @] 600
5 | +3125 —6250+2600] —525 | 3125-3750 @] — 105
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600
5{25 — 520 \
dy 471
400 pt
\ x_ 35| [Q315
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an \ 96 0 f o 0
d 0
dy o\ i
dX — 200 - 105\ / I \
\ \ |/ /I \
— 400 425 ¥4
\ 453 —471
- 600 - 600\T/ /
| 2672
-6 -4 -2 0 2
X

Successive differentiation of movement

The successive differentiation of movement can be applied to movement (for
example, a travelling car). Time is the independent variable because whatever hap-
pens, time continues. Distance is the dependent variable because it depends on
time, speed, and other things. Time never depends on anything, so it is always
the independent variable when considered in relation to other variables.

From the variables of time and distance, which usually have either the sym-
bols t and d or x and y, the successive differentiations are called derivatives. The
first derivative, distance measured against time, is velocity. The second derivative
is acceleration, the rate of change of velocity. Rate of change of acceleration has
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no name. Its units would be feet per second cubed! These relationships can be
demonstrated during 5 successive time intervals.

At first, everything is stationary. Distance (from any other point) is fixed.
Velocity and acceleration are both zero.

For the second interval acceleration increases, assume a steady rate, shown
by the straight slanting line. Velocity will increase with a quadratic curve.
Distance will begin increasing with a cubic curve.

For the third interval, acceleration holds constant, so velocity increases
steadily in a straight line segment. That part of the distance curve will be
quadratic.

For the fourth interval, acceleration decreases back to zero. Velocity follows
an inverted quadratic curve and distance approaches a straight line.

For the fifth interval, acceleration is again zero. Velocity is constant (a hori-
zontal straight line) and distance is a steeply sloping straight line.

You can learn quite a bit about derivatives by studying these relationships.

e

TIME: Independent variable
DISTANCE: Dependent
variable

VELOCITY: Rate of change
of distance

| ACCELERATION: Rate of
Zero Constant change of velocity

) velocity
velocity CHANGE OF
i Decreasmg ACCELERATION

Velocity and

_}
acceleration :
Acceleration
ZEero
Zero

Increasing acceleration

Constant

Constant
distance

Distance, Velocity,
(Change of ) Acceleration

Circular measure of angles

Angles can be measured in a variety of ways, but all are virtually ratios. Degree
measure divides a complete circle (rotation) into 360 degrees. The number of
degrees show how much of a complete rotation the angle is. Advocates of metric
wanted to divide the circle into 100 parts, which they call grades. This measure is
sometimes used, but the principle is the same as the others.

Dividing a circle into quadrants is quite basic. All methods of measuring
angles are essentially a way to take the circumference, divided by the radius, as a
ratio. By this definition of an angle, none of the well-known measures results in
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convenient numbers. Many parts of mathematics define an angle as the ratio of
the arc length around the circumference, divided by the radius.

The circular measure of angles, as this is called, fits with definitions of tri-
gonometric ratios. Sine, cosine, and tangent are all ratios that identify an angle.
None of them is conveniently proportional to all angles. Sine and tangent begin
at small angles, in direct proportion to the angle, but this proportionality breaks
down long before the first right angle. The cosine begins at 1 and decreases, slowly
at first, reaching zero at the first right angle.

Arc length, measured along the circumference and divided by radius, is
always proportional to the angle that the ratio identifies. The circular measure of
an angle is stated in radians.

Measuring distance around the circumference, the first semicircle (180
degrees) accommodates a little over 3 radii. A whole circle accommodates twice
as many, a little over 6 radii. The ratio of the length of a semicircular arc to its
radius has the universal symbol 7 (the Greek letter pi). For the present, use its
approximate value of 3.14. On this basis, a right angle is half of 7 radians. Using
this equivalent, assign radian values to angles to correspond to degree measure
for 60, 45, 30, and 15 degrees.

MEASURES of ANGLES
30 20
£3 G
(o)
50 0 0o
® of
70 70 80
@ By degrees: 360 to a circle @ Dividing a revolution or
or complete revolution circle into 100 parts
P
&
&/ \%
Sy Zn
< %,

(4) By RADIANS

length of arc

Angle in radians = -
radius

|
:

@ By quadrants: 4 to a circle
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Tabulating the radian equivalents for these angles, as well as the values for
sine and tangent that you calculated in Part 2, notice how close the three figures
are at 15 degrees. For very small angles, the figures are even closer. As the angle
increases, the divergence becomes greater.

opposite &&v‘ opposite

I
. osite L adjcent oposite anglein _ _arc
e = adios T Tadius tangent adjacent  radians "~ radius
T is approximately 3.14
Angle .
degrees | radians Sine Tangent
180 |3.14 0 0
0/2m 90 | 1.57 1 oo

60 | 1.047 [ 0.866 | 1.732
45 (0.785 | 0.707 | 1.000
30 [0.523 | 0.500 [ 0.577
15 10.2617] 0.259 | 0.268

As angles get smaller these figures
become more nearly identical

=™
—
(@]

e~
&

&

[¢']

=

—

[ )
Y
opposite

radius

Differential of angles

Circular measure allows you to apply the principles of differential calculus, con-
cerning infinitesimal changes. As already pointed out, for very small angles, the
ratio for the sine is almost the same as its circular measure (in radians). So, for
nearly zero angle, sin dx = dx. Because the adjacent equals the hypotenuse at
zero angle and 1/1 =1, cosdx = 1. These values are true, regardless of the
value of x, because they concern only the infinitesimally small angle, dx.

Suppose y = sin x. Apply the sum formula to the right-hand part of y +
dy = sin (x + dx). Substituting sindx = dx and cosdx =1 gives: y +dy =
Sin x 4+ cos x - dx

Take away the original part: y=sinx
This leaves: dy =cosx-dx
Dividing both sides by dx : dy/dx = cos x

Similarly, if y = cos x, again use the sum formula and substitute for cos dx
and sin dx: dy/dx = — sin x.
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INFINITESIMAL CHANGES of ANGLE

For infinitely small angles, using radian measure

1 — ] dx sin dx = dx
1 cosdx =1

If y=sinx y + dy = sin (x + dx)

= sInXcosdx + cosxsindx
4 =ginx +cosx ¢dx
y =sin x

cosx »dx
dy
— =CO8S X
dx
If y=cosx y + dy = cos (x + dx)

= cosxcosdx — sinxsindx
=cosXx —sinx « dx
=Cos X

—sinx « dx

Successive differentiation of sine wave

These facts about trigonometrical ratios help draw the sine-wave curve (for both
sine and cosine); drawing the curves also provides a better picture of this relation-
ship. Here, values between 0 and 2 radians (0 and 360 degrees) for sin, dy/dx of
sin x, cos x, and so on, are tabulated and the curves are drawn. Notice that differ-
entiating the sine yields the cosine, differentiating the cosine yields minus the
sine, differentiating minus the sine yields minus the cosine, and differentiating
minus the cosine yields plus the sine.

The angle shows both degree measure and radian measure. A radian is
slightly less than 60 degrees. If you marked off 1 radian, a straight line from zero
would reach avalue of 1 at 1 radian. Also, at the 60-degree point, the slope is pre-
cisely half that starting at zero.
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Finding series for sine

This fact about sine and cosine curves helps relate the quantities that are repre-
sented by these ratios to actual angles (measured in radians). Although better
ways show up later, this basis will calculate ratios for all angles, not just the simple
angles in Part 2. Notice the style of writing that is used to save repeating the
dependent variable.

Instead of writing, ‘If y = sin x, the dy/dx =" or whatever the variables are,
substitute what it is that you make y equal to. So, write “d/dx sin x =,” which is
read as “d by dx sine x equals.”
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y = sin x, dy =:>> -4 sin x Shortened method of writing
dx dx

Suppose i, x —ax + bx2 +cx? +dx* +ex’ +fxS +gx7 + ...

then L sinx=a +2bx + 3cx? +4dx3 + Sex* + 6fx5 + 7gx® + ...

dx
Or Cos x =
[ . 2 . 3 . 4 . 5
thendcl_xw”:/,zb + 302X + 493dx 2 + Sedex? + 6o5fx 4 + Tobgx5 + ...

or —sin X =
SO sin X = —2b

also =

Whenx=0

isinxorcosx:l;soa=1 >> icosxor—sinx=0; so(2)b=0
dx dx

—3e2c=a soc=-35 —-433d=b=0 d=0
—5+¢de=c soe=5T3.2 —65f=d=0 f=0
—Tebg=¢ sog=~,r6—.5—%m
a=1b=0c= %,d—ﬂ,e=§1? ,f:(),g=—71T

. 3ox3 X7

S X=X -Gyt oyt

What helps derive this series is that the 4th derivative is the same quantity
repeated, or the second derivative is minus the same quantity. So, first write sin x
as a series of powers of x with different coefficients, which you need to find values
for.

Differentiate the series of sin x, term by term, to yield d/dx sin x, which must
also be cos x, as already shown. Pursuing this, differentiate it term by term to
yield d/dxcos x, which must also be —sinx. Reversing signs, you have two
expressions (series) for sin x. Both expressions consist of a series of powers of x.
So, the respective coeflicients must be the same, which lets you calculate them.

The last form begins with —25b, which has no counterpart in the first one.
When x is 0, sin x is 0, so —2b must be 0, too. The term —3 - 2¢ is equal to a.
You know that for small values of x, sinx = x, so ¢ must be 1 and ¢ must be
—1/3! As b was zero, d must also be zero. Next, —5 - 4e = ¢, which you already
know is equal to —3 - 24, so e must be +1/5! (minus times minus makes a plus).
You have developed a series for sin x, in terms of powers of x, when x is the
angle in radians.
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Finding series for cosine

To find a similar series for cosine, the procedure is the same. When x = 0,
cosx = 1. The first term is 1 without a power of x(x"). Following through, you
get another series, which uses the terms that the sine series left out.

To try out these series, in the sine series, put x = 0.5. That number is slightly
less than 30 degrees. This measure converges rapidly, allowing sin 0.5 to be evalu-
ated to 6 places of decimals after only 4 terms.

Suppose cosx=a+bx+cx? +dx? +ex? +fx° +gx6 S SO
d
then a;“’s"}= b +2cx +3dx2 +4dex®  +56x*  +68x5  # o
or — sin X
i—sinx
dX }:
Or — COS X
SO COSX =
also =
Whenx =90
cosx=1 soa=1
— cosxor—sinx=0 sob=0
dx —32d=b=0, d=0
-2c :a,socz—-l
2
—4e3e=c,50e = L ori
4e3¢2 4!
1 1
— He5g = s - - 0or — —
L T R
{ x2+x4 X6+ 4th term 1s less than
cosx=1-% +—= =+ ...
2 "4 6! L or 000002

@ 500,000
Suppose x = 0.5 (slightly less than 30°) /—
1

11 1 1 1 Ist  0.500000

SinX=5 -z 2+ 555 5040 128 " 2nd — 0.020833
@ 0.479167
Suppose x = 1.5 (slightly less than 90°) 3rd + 0.000260
cosxoq Lo 1 81 1 729 0.479427
2 4724 16 720 o4 4th —0.000002
-1-2,2_ 8 0.479425
8 128 5120 sin 0.5 = 0.479425
4th term 15 0.01582 | So many more terms correct fo six
places

are needed for correspending accuracy



Putting progressions to work 305

For the cosine series, try an angle of x = 1.5, which is slightly less than 90
degrees, so its cosine is less than 0.1. The 4th term evaluates to 0.01582...(in
decimals). Many more terms are necessary to find an answer that is correct to 6
places.

Questions and problems
1. Find dy/dx for the following functions:

@ y=53

(b)) y=x*+3x-5

© y=Ex+35)x-2)

d) y=x"+cosx

© y=4x"—4x* —4x—4
() y=sinx+2cosx

(g v=>5x"+2x

(h) y:x72—|—4x74

2. Suppose a car starts from a stationary position and accelerates at a rate of 5
miles per hour per second. How far will the car travel in 10 seconds?

3. Inthe previous problem, how fast will the car be moving, in miles per hour, at
the end of 10 seconds?

4. Suppose the car in problems 2 and 3 stops accelerating (acceleration
becomes zero) at the end of the 10 seconds, and continues indefinitely at this
zero acceleration rate. How far will the car have traveled from its initial position
20 seconds after it first started?

5. Anobject in free fall, in the gravitational field of the earth, accelerates down-
ward at a rate of 32 feet per second per second (32 ft/sec?), assuming there is no
effect from air resistance. Suppose you drop a lead ball (heavy enough to render
air resistance irrelevant) off a building 20 stories high, where each story is 10
feet. How long will it be, in seconds, from the time the ball is dropped until it hits
the ground?

6. In problem 5, how fast will the ball be traveling, in feet per second, when it
hits the ground?

7. Refer to the graph of acceleration versus time in the following drawing.
Suppose a car starts out traveling at a speed of 44 feet per second. Write an
equation for the speed of the car v, in feet per second, as a function of time ¢, in
seconds, based on the information given in this graph.
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8. Write an equation, based on the information in the above drawing, for the
displacement s, in feet, of the car as a function of time ¢, in seconds. Assume
that when¢t=0,s = 0.

9. Based on the information in the above drawing and the derived equations,
how fast will the car be traveling, in feet per second, after the following lengths
of time? Express your answers in decimal form, to four significant digits.

(a) 1.000sec (b) 2.000 sec
(c) 5.000 sec (d) 10.00 sec

10. Based on the information in the above drawing and the derived equations,
how far will the car have traveled, in feet, from its starting point, after the follow-
ing lengths of time? Express your answers in decimal form, to four significant
digits.

(a) 1.000sec (b) 2.000 sec
(c) 5.000 sec (d) 10.00 sec

11. Refer to the graph of voltage versus time in the following drawing. The curve
is a sine wave. The maximum voltage is +8.00 volts, and the minimum voltage is
—8.00 volts. Write down an equation for the voltage V" (at any given instant) as a
function of time ¢.

12. How rapidly, in volts per second, is the voltage in the above drawing changing
at the following times? Use a calculator if you need one, and express your answers
to four significant digits.
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Voltage
10

-10 For Problems 11 and 12, Chapter 17

(@ t=0.000sec (b) t=2.000sec
(c) t=2.500sec (d) t=5.000sec
(e) t = 6.000sec () t=7.500sec

13. What is the measure, in radians, of the following angles? Use a calculator and
specify to at least four significant digits.

(@) 10.00 degrees (b) 30.00 degrees
(c) 75.00 degrees (d) 145.0 degrees
(e) 220.0 degrees (f) 300.0 degrees

14. What is the measure, in degrees, of the following angles? Use a calculator and
specify to at least four significant digits.

(@) 0.2000 radians (b) 0.5000 radians
(¢) 1.000 radians (d) 1.700 radians
(¢) 2.200 radians (f) 3.500 radians

15. Assume that the earth makes one complete revolution around the sun, rela-
tive to the distant stars, in exactly 365.25 days. Given this information:

(@) How many degrees of arc does the earth advance around the sun in one
day? Express your answer to five significant digits.

(b) How many radians of arc does the earth advance around the sun during
the month of April, which has 30.000 days? Express your answer to five
significant digits.
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CHAPTER

Putting
differentiation to
work

Differential of sine waves

The previous chapter showed that successive differentiation of sine waves results
in the same equation with its starting point shifted. Starting at sin x, successive
derivatives are cos x, —sin x, — cos x and back to sin x. It was particularly ecasy,
taking y = sin x, with x in radians. The angle might be proportional to x in
radians, but often it is not directly x radians. If the angle is in degrees, it has to be
converted into radians for this method to work. Sometimes the quantity is not
really an angle at all, but is something that trigonometry can represent as an
angle.

sin2dx = 2dx
cos2dx =1
q;}-
/ 00%
5 77 )
ot y + dy =sin2 (x + dx)
/ o+ = sin2xcos2dx + cos2xsin2dx
8 - = sin2x + 2dx » cos2x
‘rij S, = sin2x
f Lo - dy = 2dx » cos2x
//%\ /%\o T dy
N 87 =L = 2cos2x
dx

308
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sin3dx = 3dx
cos3dx =1

y +dy =sin3 (x + dx)
= sin3xcos3dx + cos3xsin3dx

stnadx = adx
cosadx =1

= sin3x + 3dx ¢ cos3x
y + dy = sina (x + dx) y = sin3x

= sinaxcosadx + cosaxsinadx = 3dx ¢ cos3x
= ginax + adx * cosax
y = s1nax Q}’_ = 3cos3x
dx
dy = adx = cosax
d .
dy _ — sin ax
gy - Acosax dx

Assume the equationis y = sin 2x, instead of y = sin x. Following the same
method, dy/dx = 2cos2x. Next, take y = sin 3x. The derivative is dy/dx =
3 cos 3x. Finally, using a general multiplier, a, if y = sin ax, dy/dx = acos ax.
Using the shortened form of writing: d/dx sin ax = acos ax.

Sinusoidal motion

Using the simple equation: y = sin x, the slope of the curve at the zero (starting)
point is equal to its magnitude at maximum, which is why the cosine has the
same amplitude as the sine wave. When the multiple constant @ was introduced,
a times as many waves were in the basic period, so the slope of the original wave
is a times as steep. The amplitude of the derivative is multiplied by «

Now assume the equation y = A sin bz represents some motion with passage
of time, ¢. 41s the maximum movement from its average position and y is the dis-
tance from this reference position at time z. b is a constant rate that shows how
fast the thing moves every time it passes through the zero (reference) position
and thus, how many times it will make its complete excursion back and forth in
a given time.

Velocity is the first derivative, given by dy/drt. It figures to dy/dt = Abcos bt.
Acceleration is the next derivative, given by the equation:

d*y/df* = —Ab* sin bt

Notice that the maximum velocity occurs every time that the object passes
through zero (reference) position and zero velocity occurs at each extreme. Zero
acceleration occurs at the zero position, when velocity is a maximum, and is a
maximum at each extreme.

Notice that the zero position and the zero acceleration coincide. Maximum
excursion and maximum acceleration also coincide. Acceleration is 5* times posi-
tion (in whatever units are used) and it is of the opposite sign. When position is
maximum upwards, acceleration is maximum downwards, and vice versa.
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y = A +sin bt

—  Position

J]H HITA,
—— 110[ “ll

TyVelocnty max. Azem
— = . max. \e Zero velocit .
dt Ab « cos bt Tveloctity velocity l ’ velocity i,l:izgity
dy
dt
7
* acc:lleilrxa‘tiolrllsz ZeT0/ Ze10
Zero acceleration I acceleration
acceleration * max. :
. —t—— / acceleration
—— Acceleration ¥
dzy 5 d’y
q- Ab" e sin bt dt?
! J

Harmonic motion

This fact about systems in mechanics, electric circuits, acoustics—in fact every
branch of science—explains the cyclic interchange of energy, called harmonic
motion. Part 2 showed that such a system has a characteristic period (oscillation
time) regardless of the amplitude of movement. There the movement was called
resonance.

Harmonic motion is the name given to the movement it makes during the
cyclic period, which is sinusoidal. In this particular example, the pressure and
movement are sinusoidal. In an electrical system, the voltage and current would
be sinusoidal. In an acoustic system, the air flow and pressure variation would
be sinusoidal, and so on.

The natural relationship is fixed by quantity 4. Only at one frequency, which
makes bt = 27, will this natural relationship hold, where energy interchanges
with no external force applied. The value of b” is fixed by the stiffness of the spring
and by the mass of the moving weight. Change either one and b* changes, which
results in a different natural resonance frequency.
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Displacement = A = sin bt

Velocity = Ab cos bt

Acceleration = Ab” (- sin bt)
- bi=2x -
Downward :
Acceleration Downward Acgeleration Ab”
1 AR?
2
W
1'- '|_ A
2

HARMONIC MOTION f\j

Linear or nonlinear relationship

Pure harmonic motion at a specific frequency occurs only if the spring is linear—
the relationship between the amount of compression or tension and the force pro-
duced is a straight line graph. In a linear spring, if every inch results in a force of
15 poundals, the force for successive inches will increase in uniform steps, 15,
30,45, 60, 75, etc., both ways.
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However, a spring might not be linear. The extra force might increase as the
spring becomes more fully compressed. Instead of increasing 15, 30, 45, 60, and
75 for successive inches, the figures might run 16, 34, 54, 76, and 100. In tension,
the effect might be reversed, so successive forces of tension, at inch intervals,
read 14, 26, 36, 44, and 50 poundals. Such a spring is nonlinear, because the
force is not proportional to displacement.

15 poundals/ in
i - .
Q Compression Tension
S
o8
o I e I I O O R I I
p < < < < < ] ) < = ]
B E|E|EE|E|E|E|E|E
= = S = = 3 S S E = =
E|c|E|&2|&2|E|el&|&|2]|¢t
z v o vy o v v o v < vy
d — o < =l o~ — (38} <t O ~
Compression Tension 5n
4”
2” 3!! T
1" 2” 3” 4” 5” ]” %
0 2]
= - T - T - - T - O - B - B - T
S 3
| E|E|E|E|e|ElE|E|E|E
c = 5 = 3 3 = 5 5 5 5
z| E| 2| &|e|&lz|le|a|e)t
[ o
o <+ < N < O ©
= — o v = < — ~ A 3 R
St
e
=
w . .
Z. Compression Tension

Nonlinear relationships

Plotting the force/displacement relationship tabulated in the previous section as
a graph, you find that it can be resolved in two components. The linear part is
the same as the linear spring—15 poundals for every inch. Then, the square-law
part is proportional to the square of displacement. Because displacement is in
opposite directions, one is considered positive, the other negative. So, one way
the square-law component will add to the linear force. The other way, it will
partially cancel the linear force.
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Now, assume the movement is somehow made sinusoidal so that the force
produced is determined by the sinusoidal variation in position. You can show
this position by plotting motion and force separately, each against time. By plot-
ting each, you are using the curve at top left as a “transfer characteristic.” For
each point in time on the motion sinusoid, you project the corresponding point
on the transfer curve horizontally onto the corresponding time point on the
force curve.

On the last graph, the dashed line is a true sinusoid, and the solid line curve is
the force produced by this nonlinear spring. The top part is more pointed and
the bottom part is flattened.

100
75
= 50
E
3 25
& Sd
0 r=
g
ot
S 25 P /,
50 =11
4
75
5"
Compression Tension
__ Displacement S
\\
™
e
poannf
P Linear Spring
(_
i

Nonlinear Spring

Analysis of nonlinear relationships

By replotting the curve on the right of the previous section, you analyze it. The
equation for the transfer characteristic can be written: f = 155 + s%, where s is
in inches and /" is in poundals. On the transfer curve, s is the independent variable
time.
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Substituting the movement equation into the transfer characteristic, you have
a term in sin” ar. Transposition in the bottom left panel converts the sin” az term
to a form that contains cos 2at, a double-frequency sinusoid. This component is
usually called a second harmonic, because its frequency is twice that of the basic
(fundamental) movement frequency.

<« Complete “period” of movement —
1009 90° 180° 270° 360°

1T T T T T 1
f = 75sinat + 12.5 — 12.5cos2at
75 / _ \ sin
2z A N My
23
g 50 L’ )
£ | s / | 12,5 - 12.5 cos2at
é ——;r’:"—:\-\:— T2 ’————‘“\:“—— +12.5
40 N
25 A d
\ y,7
\ K4
50 ‘\\ /4
7515inaEt A 1’
e T m 3% 2m
2 2
at——>
s = Ssinat s = Ssinat

General form for displacement with time | [Particular example

¥

cos2at = 1 - 2sin” at f= 155 + 5% = 15 (Ssinat) + (Ssinat)’
2sin? at = 1 — cos2at =75 sinat + 25 sin“at
sin? at = % (1 — cos2at) / \(A

f =75 sinat + 12.5 - 12.5 cos2at

Symmetrical nonlinearity

The nonlinearity considered in the last two sections wasn’t symmetrical. The top
of the wave was stretched and the bottom was compressed. This relationship is
asymmetrical. Consider a symmetrical nonlinearity, in which both top and bot-
tom are compressed. You might think of it as a spring, but it can apply to many
things.

Both ways, for greater displacement, force ceases to be proportional. You find
that this nonlinearity is equivalent to adding a cubic term to the transfer charac-
teristic. The equation takes the form: / = as + bs>. In the example shown, con-
stants ¢ and b are 125 and —1, respectively.

Making a similar transposition, the sin® ar term gives a combination of a
sinat term and a sin 3atr term. When substituted into the main equation, the
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sin at term reduces the amplitude of the fundamental, but the sin 3az term helps it
follow the original amplitude as it leaves the zero line, and flattens it as it
approaches maximum amplitude. Study this concept carefully.

600 F
500 h
» 400
= 300
9
g 200
2 100 F
: 0
o 100
g 200 /
= 300
400 v
500 ‘
600 3
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Displacement S
[t
/
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-1 g
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N\, Nonl; .
T~ onlinear Spring
«Complete “period” of movement >
0 90° 180° 270° 360°
% 1625 sinat
500 1,7 TS 11— 531.25 sinat
)74 e |~ 1531.25 sinat + 31.25 sin3at |
%) —
g V4 A = 2__93.75 sinat + 31.25 sin3at
E “f -’"*:—_——-T 93, sTna + si
2 o=t A4~y o422 -1~ I <k -93.75 sinat
| 3. <F-1--T N\-A ~7 s
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s = Ssinat s = Ssinat
General form for displacement with time | Particular example l

¥ ¥

f=125s - s* = 125 (Ssinat) — (5sinat)’

= 625sinat — 125 sin’ at
sin3at = 3sinat — 4sin’ at

4sin® at = 3sinat — sin3at

= 625sinat — 3—? sinat + % sin3at

= 625sinat — 93.75sinat + 31.25sin3at
= 531.25sinat + 31.25sin3at

.3 3. 1 .
sin” at == smat — - t
3 1 4sm3a

Multiple components of power sinusoids

The previous pages have discussed the simplest form that asymmetrical and sym-
metrical nonlinearity can take. However, the departure from the linear might
not be exactly a square or cube term—or even a combination of both. It might
have higher power terms. Any curve can be resolved into a power series that
involves successively higher powers of at (the independent variable).

sin‘at sin’at
cosdat = cos?2at — sin’ 2at sindat = 2sin2atcos2at
=2cos?2at — 1 = 4 sinatcosat (cos2at — sin “at)
cos2at = 1 — 2sin?at cosdat = 1 — 8sin”at + 8sin*at
cos? 2at = (1 — 2sinat)? sin5at = sinatcos4at + cosatsindat
= 1 — 4sin?at + 4sin?at = sinat (1 — 8sin”at + 8sin*at)
cosdat = 2 cos?2at — 1 + 4 sinatcos 2at (cos 2at — sin Zat)
= 1 — 8sinZat + 8sin*at = sinat {1 — 8sin®at + 8sin“*at
8sin%at = 4 — 4cos2at +4 (1 —sin?at) (1 — 2sin?at)}
cos4at = — 3 + 4cos2at + 8sin*at = sinat {5 — 20sinat + 16sin “at}
8sin*at = 3 — 4cos2at + cosdat = 5 sinat — 20sinat + 16sin’at

(205in3at = 15sinat — 5sin3at

) 1
sin ‘at = ] {3 —4cos2at + cosdat } sinSat = — 10sinat + Ssin3at + 16sin at

16sin’ at = 10 sinat — Ssin3at + sinSat

1
sin’ at =16 { 10 sinat — Ssin3at + sin5at}
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Look at 4th and 5th power terms. A pure 4th power term results in sin” az.
Follow down the substitutions that lead to sin*ar = 1/8 {3 — 4 cos2at + cos
4at}. The 4th power adds both second and fourth harmonics, as well as a zero
line offset. To get a pure 4th (if for some reason you'd want it) added to the funda-
mental, you must add a 2nd power term as well.

The method is similar with 5th power. Follow down the substitutions that
lead to:

sin® at = 1/16{10sin at — 5sin 3ar + sin 5az}

So, this modifies the fundamental, as well as adding (or subtracting from) the
third harmonic and providing some of the fifth.

Fourth power term in transfer characteristic

To make the treatment more general, use x and y for the independent and depen-
dent variables of the transfer curve. These variables could apply to any of the
many things where harmonic motion can occur. Assume that the equation is:
y = 32x + 8x*, and take variations of x between +1 and —1.

40
. / A
oo |1y =32x 4 8x* =/ ) \\
[T
10 4 /£ \
T ~ - ): = 8X 4 _ /4 L N / \
y O b o - L~ 13 il
~-10 ’/
\ f
i— 20 ’/’/ k\\ /
30 4<pY =32 N
e ¢ [ 11 Y
-1 0 +1 Time ——>
40 <~—Xx—>
q {32sinat + 3 — 4cos2at + cos4at |
30 // LN\ 32sinat
A \
20 1‘ \ [ 3 —4cos2at + cosdat
T 10 A N {4 3 — 4cos2at
y O él Z f;:::-‘:% -] ﬂe_ii\ L 3
l/_ 10 \\ / cosdat
N
~20 N4
- 30 A N4
0 T n 3n 2n
2 2
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The sharpening of the upward peak and blunting of the downward one is
even more abrupt than when nonlinearity was caused by just the square term.
The resulting transfer curve “stays with” the straight part (fundamental) more
closely for some distance, then leaves it more rapidly.

In place of the input sine wave, the resultant wave is analyzed in terms of har-
monics, as obtained by the algebra. You should begin to see by now that algebra,
geometry, trigonometry, and calculus are not separate subjects, as once taught,
but are different “tools” in mathematics.

Combination of power terms

The last few pages show how to investigate successively higher power terms. By
following the expression in “multiple components of power sinusoids,” the fifth
power makes the combination of fundamental, third, and fifth harmonics almost
cancel a region near the “zero line,” and depart suddenly at the ends. Third and
fifth harmonics are additive in their effects near the peaks—either accentuating
or flattening them, according to the sign of the fifth power term.

Power terms do not usually come alone—especially the higher order ones.
The fourth will usually have some second with it. The fifth will usually have
some third with it. Sometimes odds and evens will combine.

To illustrate, assume a transfer curve that represents the equation:

Y= 100x — 4x% + x*

Nearer to the zero line, the x? term causes a downward bend. Then, as the curve
extends outwards, the x* terms overtakes it, causing an upward bend at the ends.

'100x —4x %+ '4\?3—
y= X —4x 4+ x
+ 300 /"
+ 200 ——200-
,I
A +100 7/
3 X I, 97 /‘
N -
M ol —“t--, -:"'/
/_’4’_)(2 P “\‘
v —100[ /
- 103
,I
- 200 ~ 200
- 255 —/
— 300 7100x

A
v
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Now, substitute this transfer curve into a sinusoid of the form x = A sinar.
This equation gives a general expression for the resultant wave of the form
shown in the box. Substitute different values for 4 into the coefficients and tabu-
late the results to show amplitudes of fundamental, offset, second, and fourth har-
monics. Notice that the signs of the offset and the second harmonic change as
the amplitude increases. Only the fourth harmonic stays in the same direction,
however, it’s very small at smaller amplitudes, so it has a negligible effect. At an
amplitude of A = 2, the second disappears.

The points on the output, for values of 4 at 1, 2, and 3, are marked on the
curve shown in the previous section. Later, this book defines maximum and mini-
mum points more specifically.

y=100x ~ 4x*+ x*{———"1 x = Asinat

y = 100Asinat — 4A% sin®at + A* sin*at
—4A%gin%at = — 2A? + 2A? cos2at

4 A4 4
A sin*at = % —% cos2at + % cosdat

4
y= I_QOAsinat + ELY

l

tn 28
1 1
+12 3
31 31
+13—§ 3%
2

2.5 250 |[+2 2 | —7L| 43
30 | 300 |+113 |-225 | 10}

Multiples and powers

Finding expressions for multiple angle functions in terms of powers of unit angle
functions can be pursued systematically, as shown here. The first step is to extend
the multiple angle formulas as far as you need—a step at a time. Using sum for-
mulas, first find expressions for sin 24 and cos 24; regard 24 as (4 + A). Next,
regarding 34 as (24 + A), you find expressions for sin34 and cos3A.
Regarding (n + 1)A4 as (4 4+ nA), substitute already found expressions for sin nA
and cos nA.

The tabulation takes this as far as 6 4. The working is not shown. You might
wish to work each step through to see how it “works.”



320 Putting differentiation to work

MULTIPLES and POWERS
sin2A = 2sinAcosA cos2A = cos?A - sin® A
=2cos?A -1
=1-2sin’A
sin3A = 3sinA — 4sin® A cos3A = 4cos’ A — 3cosA
sindA = 4sinA (2cos’ A — cosA) cosdA = | — 8cosZA + 8cos? A

=1 - 8sin’A + 8sin* A
$inSA = SsinA — 20sin’ A + 16sin’ A €0sSA = 5cosA — 20cos’ A + 16cos® A
$iN6A = cosA (6sinA — 32sin® A + 32sin° A) cos6A = 32c0s® A — 48cos* A + 18cos? A — |

=1-18sin?A + 48sin A — 32sin® A

sinZA =

% (1 —cos2A) cos?A =% (1 + cos2A)
sin’A = [11 (3sinA — sin3A) cos?A =Al, (3cosA + cos3A)
sinA = % (3 - 4c0s2A + cos4A) cos*A =% (3 + 4cos2A + cosdA)
sinSA =11_6 (10sinA — 5sin3A + sinSA) cosSA =% (10c0SA + Scos3A + cosSA)

sin® A =3L2 (10 — 15c0s2A + 6cosdA — cosbA)  cosSA =3L2 (10 + 15c0s2A + 6¢cosdA + COSOA)

For the even powers, both sin” 4 and cos” A use a form of the expression for
cosnA, and substitute it for the lower powers. For the odd powers, take the
expression for sinnA to get sin” 4 and the expression for cosnAd to get cos” 4
with similar substitutions. Here again, only the results are tabulated. Try a few to
see how todoit.

Notice that the expressions for even powers all have a constant term, but the
odd powers do not. This pattern is because the even powers cause an asymmetri-
cal effect.

The substitutions used to derive the expressions in the previous section
become involved in detail working. Nothing was difficult and the routine became
familiar with practice, but the very number of substitutions made means that a
mistake could creep in at any point. We need a simple means to check the results.
Although the checks shown here are no absolute guarantee that an expression is
correct, if they follow the pattern, and the numerical coefficients check out cor-
rectly, the answer is much more likely to be right.

Use two angles for each check: 4 =0 and 4 = 7/2, which is 90 degrees.
Whatever the multiple, 74 is always 0 when 4 is 0, so sin n4 should always be 0
and cos nA always 1 in this column. For the 90-degree column, 74 should always
be n right angles. So, for sin nA4, the sequence will be +1.0, —1.0,and +1...and
cos nA will have the same sequence, beginning at 0 instead of 1.

Inthe powers’ table (0)" is always 0 and (1)" is always 1. So, sin” 4 will always
be 0 for A = 0 and 1 for 4 as a right angle. Similarly, cos” 4 will always be 1 for
A = 0and 0 for 4 as a right angle.
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<« CHECKS:A=0 and A=700°) P>

Quantity

sin2A = 2sinAcosA

cos2A = cos? A —sin? A

sin3A = 3sinA — 4sin’A

cos3A = 4cos’ A — 3cosA

sindA = 4sinA (2cos’ A — cosA)

cosdA =1 —8cos?A + 8cos* A

sinSA = 5sinA —20sin’ A + 16sin® A

cos5A = 5cosA - 20cos? A + 16cos® A
sin6A = cosA (6sinA — 32sin® A + 32sin’ A)
cos6A = 32c0s%A ~ 48cos* A + 18cos? A ~ |

A=0

24001 =0

1-0=1

30 -40=0

4e] =301 =1

440 (2-1)=0
1-8+8=1
540 — 200+ 16:0=0
Sel — 2001 + 1621 =1
1(620 — 320 + 32:0) =0
32-48+18-1=1

I
A—2

2¢10=0
0-1=-1
el —4e1=-1
40 -3.0=0
4] (2¢0-140)=0
1-80+80=1
S5¢1 - 201 + 161 =1
540 -20-0+160=0
0(6°1 — 321 + 32+1)=0
0-0+0-1=-1

sin A =% (1 —cos2A)

cos’ A =% (1 + cos2A)

sinA = i (3sinA — sin3A)

cos?A =i (3cosA + cos3A)

sin*A =% (3 —4cos2A + cosdA)

cos*A =% (3 + 4c0s2A + cos4A)

sinA =1L6(10sinA - 5sin3A + sin5A)

cos’A =1L6(10005A + 5c083A + cos5A)
sinA =31—2(10 — 15c082A + 6c0s4A — cos6A)

cosbA =3L2(10 + 15cos2A + 6cosd4A + cosbBA)

%(1-1):0
%(1+1)=1
%(0—0):0
%(3+1)=1
%(3—4+1)=0
§(3+4+1):1
11—6(0—0+0)=0
%(10+5+1)=1
%2(10—15+6—1)=0

1
35(10+15+6+1)=1

%(1+1)=1
%(1-1):0
i(3+1)=1
i(0+0)=0
%(3+4+1)=1
é(3—4+1):0
1l6(10+5+1)=1
1l()(0+0+0)=0
3L2(lo+15+6+1):1

1
ﬁ(10‘15+6'1)_0

Allthese check columns should have either 0 or 1 in the appropriate pattern.
If one of the coefficients in the detail working has gone wrong, it will almost
inevitably cause a different result in one or both of these checks.

Formulating expressions to specific requirements

These expressions for sin n4 and cos n4 and for powers of sin 4 and cos 4, using
algebra on the trig functions, can derive an expression that meets any requirement
that you choose. Previously, the expression resulted in a zero coefficient of
cos 2at when A = 2. Suppose you wanted an expression so that this term disap-
peared when 4 = 5?7

You want an expression in the form: y = x + ax? — bx* so that by substitut-
ing the time variable, x = A4 sin ¢z, the coefficient of cos 2¢t disappears when
A = 5.This equation leads to a ratio between the coefficients ¢ and 5. So long as
the coefficients are in this ratio, the coefficient of cos 2¢t will disappear when
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A = 5.To tie the coefficients down to definite values, rather than just a ratio, when
A = 5, the coefficient of cos 4ct must be 1.

For the coeflicient of cos2ct to disappear, bAY? must equal a4** or
A% = a/b. For this to occur when 4 = 5, a/b must be 25. For the coefficient of
cosdct tobe 1, bA*® must be 1. That makes b = 8/625, in decimal form 0.0128.
Because a/b is 25, 25 times 0.0128 is 0.32.The expression that you want is:

y = x+0.32x* — 0.0128x*

To check, substitute x = 5sin ¢t into that equation and satisfy yourself that
the cos 4ct coefficient is 1.

Findaand b

y = Asin ct + a (Asin ct)’— b (Asin ct)*

_ Asi aA’ aA’ 5 3bA*  bA* 5 bA* 4
= Asin ¢t + =5~ ——5-cos2ct — T g~ + 75 c0s2ct — g cos 4 ct
Required: b—A4 =£ A2=2-25
22 b
bA* _ _8_8
K b =3 =625
bis—§—0r00128 ais—8—0r032

Check

y=35sinct+4-4cos2ct—3+4cos2ct—cos4ct
=Ssinct+ 1 —cos 4 ct

Combining algebra and trigonometry

Algebra, such as that in the previous section, often helps solve trig problems.
Suppose a problem reduces to the trigonometric equation: 3cos2A4-+
8sin A = 5.You could solve this equation by hunting for a value of A4 that satisfies
that equation. However, algebra gives us a more direct way.

First use the substitution cos 24 = 1 — 2 sin® A4 to bring all the functions of
A into the form of sin 4 and its powers. Now, the equation is 3 + §:

sind —6sin°A4 =5
Rearranging this as a quadratic, it is:
6sin’ A4 —8sind+2 =0
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Dividing through by 2 makes it simpler. Now, solve the equation as a quad-
ratic. It doesn’t matter that the variable is sin 4 instead of x or some more familiar
variable. The formula method gives values of sin A4 as 1 or 1/3. If the problem
required it, you can now give angle 4 appropriately.

Check the answer(s), either in the original problem (which wasn’t given here)
or in the form. In this case, both answers check.

Solve 3cos2A + 8sinA =5

cos2A = 1 - 2sin’A
3cos2A =3 - 6sin® A
3c0s2A + 8sinA = 3 + 8sinA — 6sin’A =5

6sin?A — 8sinA +2=0 3sin?A —4sinA + 1=0

Check
IfsinA=1,cos2A=-1

3cos2A +8sinA=-3+8=35

If sinA =l , COSZA :Z
3 9

3c0s2A + 8sinA =2+5=19_5
373 3

Questions and problems

1. Refer to the following drawing, which depicts the motion of a heavy weight
oscillating with a spring. Assume the maximum positive (upward) and negative
(downward) displacements to be precisely 6 meters and minus 6 meters, respec-
tively. Also assume the period of oscillation to be exactly 3 seconds. At what
points in time (values of 7) is the velocity of the weight the greatest positively?
What is the velocity, in meters per second (m/sec), at these points? Express your
answers to three significant figures.

2. At what points in time is the velocity of the weight greatest negatively? What
is the velocity in m/sec at these points? Express your answer to three significant
figures.



324  Putting differentiation to work

Displacement,
meters

10

Time,
seconds

10

For Problems 1 through 8, Chapter 18

3. At what points in time is the acceleration of the weight greatest positively?
What is the acceleration in m/sec” at these points? Express your answer to three
significant figures.

4. At what points in time is the acceleration of the weight greatest negatively?
What is the acceleration in m/sec” at these points? Express your answer to three
significant figures.

5. Suppose the tension of the spring is increased so the weight oscillates at the
third harmonic of the original frequency, but the positive and negative peak
amplitudes (excursions) remain exactly 6 and —6 meters, respectively. At what
points in time is the velocity of the weight maximum positively? What is the velo-
city, in meters per second (m/sec), at these points? Express your answers to
three significant figures.

6. Inthesituation of problem 5 at what points in time is the velocity of the weight
greatest negatively? What is the velocity in m/sec at these points? Express your
answer to three significant figures.

7. Inthe situation of problem 5, at what points in time is the acceleration of the
weight greatest positively? What is the acceleration in m/sec? at these points?
Express your answer to three significant figures.

8. Inthe situation of problem 5, at what points in time is the acceleration of the
weight greatest negatively? What is the acceleration in m/sec” at these points?
Express your answer to three significant figures.

9. Using the formulas for multiples and powers (page 320), find the following.
Assume all angle measures are in radians. You may use a calculator; express
your answers to four significant figures.
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(@) sin® (7/2) (b) cos’ (/3)
© sin® (/4) d) cos’ (37/4)
© sin’ (7/3) () cos® (27/5)
10. Using the formulas for multiple components of power sinusoids (page 316),

find the following. Assume the angle 8 is 35 degrees in all cases. You may use a
calculator; express your answers to four significant figures.

(@) sin* (20) (b) sin* (36)
© sin* (40) (d) sin* (56)
© sin’ (36) () sin’ (26)
(g) sin’ (36) (h) sin’ (46)

11. Using the formulas for multiple components of power sinusoids (page 316),
find the following. Assume the angle 6 is 55 degrees in all cases. You may use a
calculator; express your answers to four significant figures.

(@) sin* (26) (b) sin* (36)
© sin* (46) ) sin® (56)
© sin’ (36) () sin’ (26)
(g) sin’® (36) (h) sin’® (46)

12. Suppose you twirl aball around on a string that is 10 feet long, as shown in the
following drawing. The ball makes one complete revolution around your body
every 2 seconds, exactly. What is the tangential speed of the ball in ft/sec? Use a
calculator and express your answer to four significant figures.

13. Assume the ball whose motion is shown in the above drawing rotates in a
horizontal plane. What is the northward-moving component of the ball’s speed
at the instant the ball is traveling towards the northwest (45 degrees west of
north)? Express your answer to four significant figures.

North

1

Tangential motion

Ball

For Problems 12 and 13, Chapter 18
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theory

The concept of functions

An expression that contains a variable is a function of that variable. You have
already considered several functions without calling them that. Powers of x, trig
functions of x, and many more still to come are all functions of x.

General Group
y = ax"

[FSI ]

y

—w—>

=2
¥y=33
<«——Xx—>
y = asinx =
y = acosx
y = asin3x
General Form y = atanx

y = f(x)
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You worked through some examples where functions could be differentiated,
term by term. Here are examples of various functions in general groups. The
family y = ax”, for which the derivative is: dy/dx = anx""'. Trig functions can
be assembled as a series of such terms. A related group has the general form:
y = a/x". Another way of writing that, as in the section of indices, would be:
y = ax ".Then, the general form gives the derivative as: dy/dx = —an - x "™,
which can be switched back to its original form: dy/dx = —an/x"'.

To work with functions in general, since they can take various forms, a gen-
eral form is: y = f(x), which is read “y is a function of x” or “y equals f of x.”
This expression can mean any function of x, with the implication that it is a func-

tion for which you already can derive the derivative.

Two functions multiplied together

Assume that y = uw, where « and v are each (different) functions of x (they don’t
have to be different, but this procedure would be pointless if they were the
same). You want to know dy/dx.

This general form assumes the independent variable x. If you increase x by
dx to x + dx, then from derivatives that you already know, u will increase to
u + du and v will increase to v + dv. Saying increase could mean decrease if the
sign happens to be negative. As y = ww, then: y+ dy = (u + du)(v + dv).
Multiplying out, the right side has four terms. The first is uv, which corresponds
to y. The next two are udv and vdu, and the fourth term is the product of two in-
finitely small changes, which makes it negligibly small—even in infinitely small
terms. So, the fourth term is meaningless; throw it away. After taking away the
finite part, y = wuv, you are left with: dy = udv + vdu. By dividing through by dx,
the equation is in its more complete form.

Derivative of Two Functions Multiplied Together

If u=fi(x) and v=~£(x)

and y=uv
. dy
Find Ix
y=uv
y +dy =(u+du) (v +dv)
= uv + udv + vdu + dadv
y =uv

dypy=ud vy du
dy = udv + vdu dx T T dx dx
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Checking the formula

A general proof like that on the previous page is rather vague and difficult to
visualize. Does it really work? To begin with, try it on something you can check.

x7 is equal to x* times x°. You already know that d/dy y is 7x%. Try it as a
product, x* times x*. Make u = x* and v = x>, du/dx = 4x° and dv/dx = 3x°.
The next step: udv/dx = x* times 3x%, which multiplies out to 3x%; vdu/dx = x*
times 4x°, which multiplies to 4x°. Adding the two together is 7x°. The same
answer.

Here’s another one: y = 2x.You know the direct way that dy/dx = 2 cos 2x.
Also sin2x = 2sin xcos x. That’s a product. Make » = sinx and v = cosx.
Leave 2 outside the parentheses. du/dx = cosx and dv/dx = —sinx. So,
udv/dx = —sin® x and wvdu/dx = cos’ x, which, put together, is cos2x =
2(cos x — sin” x). You already established that cos2x = cos? x — sin”x. So,
dy/dx = 2 cos 2x,which again confirms the method.

PRODUCT FUNCTIONS
Checking ones we know
_d_l1.= 4x3
gx
&— 3X2

du
@ y = sin2x > = 2sinxcosx ax o
| TP %
dx

=2 [sin X (— sin X) + COS X * COS X

K\ =2 [cos?x — sin?x]
Same answer \
=2 cos2x
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Using the product formula

In each of the previous problems, you left the answer in the simplest form that was
derived from this method. Different forms could be used. The best form to use
would probably depend on the rest of the problem.

The second example uses a reciprocal function of x with a trig function.
Next, you derive a quotient formula. This one could be done either way. In the
section “Checking quotient functions,” it will be treated as a quotient to get the
same answer.

USING FORMULA
@ y = x 3sin2x du s
[u] dx - 3x
X
dy _ 3 34 ol
= =X~ *2c0s2x + 3x°*51n2x
dx . Q = 2c082x
= 2x3cos2x + 3xZsin2x dx
@ y = sin2x u = sin2x du = 2¢0s2X
x3 dx

dy _ 3sin2x | 2cos2x
dx x4 x3 dv

2cos2x  3sin2x dx
x3 x4

or

One function divided by another

Turn to one function divided by another. y = u/v, where « and v are both func-
tions of x. As usual, add dy to y, duto u, and dv to v—each corresponding to an
addition of dx to x. So, y + dy = (u + du/(v + dv). Multiplying both sides by
v + dv and multiplying out the left side, you have a doubly infinitesimal product.
dydv,which you “throw away” and leave an equation with yv on the left. So, divide
through by v and you have: y + ydv/v + dy = (4 + du)/v. ydv/vhas no business
with a y in it, or on the left, so substitute y = #/v and put it on the right. Now,
you have: v+ dy = u/v + (vdu — udv)/v”*. Subtract the part that you began
with, y = u/v, then: dy = (vdy — udv)/v*. Put the dx denominators in to com-
plete the expression.
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Ifu=f(x)andv="1f,(x)and y =4

A%
Find(h/
dx T
Y=y
u+du
y+dy_v+dv

(y+dy) (v+dv)=u+du
yv + ydv + vdy + dydV = u + du

.. dv _u+du
Divide by v >> Y+y7+dY——v—"

Substitute foﬁ

Checking quotient functions

Here, use that formula on two examples that you already know the answers to.
First, turn the powers-of-x thing around: x* is the quotient of x” divided by x°.
Using this formula, you find the same answer that was obtained directly:
dy/dx = 4x°. See the illustration at the top of page 331.

Then, do the other one that was regarded as a product in “Using product for-
mula” u =sin2x and v = x> (where the product formula used: v = 1/x%).
du/dx = 2cos2x, as before. vdu/dx = 2x> cos2x and udv/dx = 3x” sin 2x.
Putting them together with +7, which is x°, as the denominator, and canceling
the x’s in numerator and denominator, produces the same answer.

Using the quotient formula

A simple application of the quotient formula is to find the derivative of tan x
because tan x is sin x/cos x. Writing » = sin x and v = cos x, the derivatives
are: du/dx = cos x and dv/dx = — sin x. Substituting into the formula and sim-
plifying, dy/dx is (cos> x + sin® x)/ cos* x. Dividing through by the denom-
inator, this becomes dy/dx = | + tan” x. Also, the numerator is 1, by the trig
form of Pythagoras, so dy/dx can also be written: 1/ cos x.
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s
_(-3x’
ame answer = g
SN
. du
sin 2x u = sin 2x a= 2 cos 2x
y=—7"
X3 V= X3 Q- 3 2
dx
9127(3- 2 cos 2x — 3x2e sin 2x
dx X6
=2(:05 2x 3 sin2x
X3 x4

Using Formula

. du
u=sinx —=cosx
X

sin x
D y-unx-
Cos X d
A\ .
V=C0$SX —=-8inx

dy _cos®x — (—sin®*x) _cos? x + sin’x

dx cos® x cos? x

1
=1 +tan’x

cos?x
@ X244 u=x2+4 %sz
y= sin 2x dv
dy _2xsin 2x ~ (x2+ 4) 2 cos 2x v =sin 2x a=200$2x
dx sin22x

_2x 2+
sin 2x  tan 2x « sin 2x

=2x cosec 2x — 2 (x 2+ 4) cot 2xecosec 2x

1 1 |
—— = cosecant . = secant ———— = cotangent
sime cosine tangent

written  ¢sc written  sec written cot
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For the second example, take y = (x° + 4)sin2x. Using the formula
and making the substitutions, it simplifies to something that still looks rather
cumbersome.

You are digging into more frequent uses of functions that involve reciprocals
of sine, cosine, and tangent. Other functions enable these equations to be written
more simply. The cosecant is 1/sine, the secant is 1/cosine, and the cotangent is
1/tangent. These terms are abbreviated to sec, ¢sc, and cot, respectively.

Function of a function derivative

Although you might expect this section to be more involved that the ones that
covered products or quotients of derivatives, actually it’s simpler. The derivation
is simple algebra. If v = f(1) and u = f(x), then because dy/dx is too compli-
cated to write directly, du is used as an intermediary. Multiplying together dy/du
and du/dx, each of which is relatively simple, the du’s cancel and leave dy/d-x.

To illustrate and check the method, take » = sin’ x.To make u the intermedi-
ary, it must be sinx. So, ¥ =sinx and y =u’. Differentiating in stages:
dy/du = 5u*, which is 5sin* x. Then, du/dx is cos x. So, the product derivative

is: dy/dx = 5sin® xcos x.

If y = f(u) and u = f(x)

dy _dy, du
dx ~ du” dx
Example y = sin’x A
5
=1
QX = 5u*scos x = 5 sin*xcosx Y
dx

Alternate method as check
5

y = sin

dy 1
Ix —1—6(10 cos x — 15 cos 3x + 5 cos 5x)

1 . . .
X =E(10 sin X — 5 sin 3X + sin 5x)
cos 3x =4 cos*x — 3 cos x

cos 5x =5 cos x — 20 cos>x + 16 cosS x

1
=1—6(10 c0s X + 45 cos x — 60 cos® x + 25 cos x — 100 cos?x + 80 cos’ x)
=1—1—6(80 cos x — 160 cos®x + 80 cos’x)

=5cos x (1 -2 cos?>x + cos*x) =5 cos x (1 — cos?x)?
=5 cos x sinx

the same as 5 sin*x cos X
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To check this equation, convert sin’ x to functions of multiples of x (chapter
18). differentiate this term by term. Now, substitute back for cos 3x and cos 5x,
collect and simplify, to find the same answer in somewhat different form.
Sin® x = 1 — cos® x, so sin x = (1 — cos” x)°. After this substitution, the result
is the same.

Equation of a circle

An interesting use for the function of a function formula is to find the derivative of
the equation for a circle. In its simplest form, this equation is x> + * = .
Radius is constant, so #* is constant. Turning it around and taking the square
root, you have an expression for y. The plus or minus sign in front of the surd
means that y can be positive or negative. Actually, a circle has four combinations
of the same numeric value of x and y. Both x and y can be either positive or nega-
tive and give a point in each quadrant.

The method of finding the derivative is to make u equal to (¥ — x?)
and y = u'/%. An interesting way to check the result in all 4 quadrants, is to take
the half right angles, where x and y are each r divided by root 2. The slope is
unity at each of these points, but of changing sign. By checking, each answer is
correct.

y2= 12 x2
X y =+ Vri-x?
y
/-r T gl:tlu_% (—2X) u =r2__1x2
\J i ' i y =*u’
- —2x
*2Vr2-x?
<X —> ¥x
= A/r2—x?
d 95 ¥,
Whenx= £_T a_ V2 2 =F1
V2 dx 5 12 _r
r<— —
2 V2
When x and y are both the same sign, the slope is -1
" opposite signs " +1
Whenx =0, dy =0 Whenx =r, dy is undefined
dx dx
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Successive derivatives of tangent function

If you had difficulty finding the derivative of tan x in question 6 of chapter 17, it
will have been cleared up in “Using the quotient formula.” Now, apply the func-
tion of a function formula to finding successive derivatives of the tangent. Sine
and cosine functions run in cycles and come back to the original in the 4th deriva-
tive, but not so with the tangent.

The first derivative of y =tanx was 1 + tan’x. Make u = tanx and
3’ = 1 + u*. This notation is another one used to save space: ' (called y prime)
is the 1st derivative of y and it means the same as dy/dx. 2, 3, or more primes
are used to indicate the 2nd, 3rd derivative, etc.

Using the function of a function formula, obtain the second derivative. To
find the 3rd derivative, substitute # and v for factors in the 2nd, and use the form
y" = 2uv. In the same way, make similar substitutions in the successive deriva-
tives and use the product formula.

Notice that successive derivatives of tan x have a growing complexity of
terms that involve higher powers of tan x: each derivative uses powers up to one
higher.

y = tanx

dy _ 2 ]
T 1 +tan“x (see p. 3-87)

[

u = tanx
y'=1+u?

2}’ 2
&7=2u(1 + tan<x)

=2 tanx (1 + tan2x)

dy dv du
dx_z‘z{“a”a}

=2 {tanx * 2tanx (1 + tan®x) + (1 + tan?x) (1 + tan?x)}

y" =2uv
u=tanx v =1+tan’x

=2 (1 +tan’x) (1 + 3tan®x)

”l:2uV
dty dv du y2 »
dx4_2{ud_x+v&} u=1+tan‘x v=1+3w
W = tanx

=2 {(1 + tan’x) 6tanx (1 + tan®x) + (1 + 3tanZx) 2tanx (1 + tan>x)}
= 4tanx (1+ tan®x) {3(1 + tan®x) + (1 + 3tan2x)}

= 8tanx (1 + tan’x) (2 + 3tan?x)

y', y", y" are first, second, and third DERIVATIVES of y
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Integration is the reverse of differentiation

Having now gained some familiarity with differentiating a function (also called
finding its derivative) it’s time to look at the reverse process. What’s that?
Differentiation plots a growth rate (or the reverse). The reverse takes growth rate
and builds whatever grows, called integration. You will see this system better as
you progress.

Slope, found by differentiation, uses an infinitely small change in x to produce
infinitely small change in y. If you add an infinite number of these infinitely
small pieces, you have x and y, respectively. If you add all the pieces of y (called
dy) together, you have y.

If//(x)is y', two names for the same infinitesimal piece, then the reverse pro-
cess builds the original x and y. This process is expressed with the integral sign,
which is an old-fashioned long letter s. Integration finds what function, when dif-
ferentiated, will produce the derivative that you began with.

Another sign is also used, with difference explained later: the Greek capital
sigma (X). From the differentiating you have done, you can start on integration
just by taking the reverse process.

Ify=f(x) y is a function of x

dy = f'(x)dx dy is a first derivative of the same
function times dx

dy is an infinitely small change in y, corresponding to an infinitely small change
in x, identified as dx

If the infinitely small changes are added together, the whole is

dy=y f'(x)dx = f(x)
DIFFERENTIATION CORRESPONDING INTEGRATION
y =ax" g—i=anx“" y=anx"~! fydx = ax®

a gy D - a n+l
y = ax fydx "
y = asinx gx = 4COSX y = acosx f ydx = asinx
x y = asinx fydx = - acosx

Integration consists of finding what function,
when differentiated, will give the one we start with
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Patterns in calculations

Reviewing the study of mathematics, always begin with a positive process, then
reverse it to produce a negative process. After counting, you got into addition,
which was reversed to make subtraction. After shortening multiple addition to
make multiplication, it was reversed to parallel multiple subtraction, making divi-
sion. Then, indices brought powers, then reversed it to find roots.

In each, what began as a negative process, searching for a question to produce
an answer, later developed into a positive approach to eliminate the search.
Integration has a similar relationship to differentiation.

POSITIVE PROCESS REVERSE
Addition | 5 and 3 make | ? 5and| 7 | make 8

Stimes| ? | are 15

Multiplication | S times 3 are | ?

Powers | S to the 3rd poweris | 7 ? | to the 3rd power is 12¢

d

Differentiation| gy of ax"is | ? Integration % of | 7 |isanx"-

The constant of integration

When you differentiate a function, you find its slope at a point or at a whole
sequence of points. However, saying that a road has a certain slope (1 in 16, for
example) doesn’t state how high the road is. It could be at sea level or on top of a
mountain.

Looked at mathematically, the three equations here each begin with
V= x> — 12x. Then there is a constant that is shown as +8, nothing, or —8. All
three equations give the same derivative because derivative of the constant is 0
(e.g., nothing).

By reversing the process, you have no direct means to find the constant. So
you must leave room for an unknown constant, called the constant of integration.

If the road began at sea level, then integrating over any distance would find
the height of the latest point above sea level.
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The Constant of Integration

+ 50 3
4R\ peii o Y= X0— 12X+ 8
PN v
VI/ TN\ 1AL y=x’-12x—8
+10 NN
N
v oA AN\ g_y
X
Y. For ALL of these,
VRN LT,
/ \NT A/ =312
-20 -40
N
-4 0 +4
X—> Reversing the Process

2-12)dx =x*12
.‘- Gx Jdx=x X T a constant that

fixes the LEVEL
of the whole curve

called THE CONSTANT of INTEGRATION

Definite integrals

This more specific use for integration is practical. The general integral (above) has
mainly atheoretical value. A definite integral “adds it up” between definite values.
It specifies that the curve starts at a certain point and follows the derivative to a
new point.

The integral is written the same way as for the general integral, but limits are
put against the long S. The lower one is where it begins, the upper one is where it
ends. Next, the integral (the general one, less the constant) is put in square par-
entheses, with the limits outside at the right. Then, substitute the values of the inte-
gral, first at the upper limit, then at the lower limit, which you subtract from the
value at the upper limit.

In the graph, the general integral is plotted without the constant of integra-
tion. When substituting in the lower value, you could make the starting point by
inserting a constant of integration that would make the point zero. However, it is
not necessary, because you subtract this value from the upper value. Whatever
you make the constant, it disappears when you subtract one value from the other.

By substituting x = —2 and x = +1, the second produces —11 and the first
produces +16. By subtracting the first from the second, the change is —27.
Substituting values x = 42 and x = +3, the same process produces the change
of y in this range as +7.
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THE DEFINITE INTEGRAL Integral ydx between

b
fa ydx limits of a and b

¢ 3 b Substitute valuesof x = b
+40 X [f(x)]a and x = a into f(x)
1\ +30 \\ | vty o uooor iy
>
St 20 \ No constant necessary
Cmgu
g +10 y=3x2-12
o X = [+2[+3
J/ 0 y=[0I[+15
] .
-10 { : ﬁ .
from @ 18 o
=20 |
—4 0 | | +4
2k 1] 0 [+1] Fromx=~2 |—%Fromx=+2
y—|0'—9|—12— | tox=+1,y tox=+3,y
is negative is positive
f_+21 ydx is J‘:; ydx is
(3~ 12x]) [x3- 12x153
=(1-12) (=11 =(27-36) (-9)
~{~8+24) —(+16) —(8-24) —(-16)

Finding area by integration

A most useful application for integration is for finding areas, volumes, and similar
things. If y is a succession of infinitely small elements in an area or volume, the
sum of these elements over a certain range of the curve that is represented by
this function will be the area under the curve, which consists of an infinite number
of infinitely narrow strips. From the infinite to the finite!

To prove that this method works, take the larger shaded area. The equation of
the upper side is: y = 1/2x + 7. The integral (working the differential formula
backwards) is: 1/4x% + 7x. By making substitutions for x =2 and x = 10
(which were arbitrarily chosen when the equation was written; any other combi-
nation could be used) and subtracting the area is 80. Checking it by the geo-
metrical formula proves that you have the right answer.
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If y represents the height of continuous
succession of infinitely small elements
of an area,

Ll

A

—tc—>

|
!

’ | ‘J“\”‘ gives the area under curve y,
X X2 between points x| and X ,
X —>

Finding Area by Integration

071
Area=£ (EX +7) dx

_[1 , ]10
= Zx +7x2
_ (100 ) (i )
—(4+70 - 4+14
=95 - 15 = [80]

CHECK |i>Average y =%(g +12)=10

Area = base X average height

=8 x 10 = [80]

Area of a circle

The area does not have to be under a curve. Here, the area of a circle is found by
two methods. In the first, the element of area is a wedge from center to circumfer-
ence, taken at angle (in circular measure) x. The element has an area 1/2 base
times height. The height is », and the base is rdx. So, the area of the element is
1/ 2 dx. Angle x is the variable. Integrating produces 1/ 2/” x. the lower limit is
zero, the upper one is 2. Substitute and subtract (subtracting zero doesn’t alter

the upper limit), gives the well-known formula: 7.

Total area is

21:12
fo 2rdx

2n
s i

=(rr?) - (0)

=[]

continued
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Alternative

Area of | ELEMENT|

is length x breadth f; 2 xdx
=21 X *dx

Total area 1s

= (rr?) - (0)

=[ar?]

The other method uses a thin ring at radius x from the center. Here, the area
of the element is the length of the ring, 27x times its thickness, dx. Integrating
that from zero to r gives the same well-known result. Compare the methods care-
fully until you understand how each is done.

Curved areas of cylinders and cones

With cylinders and cones, you could find the area two ways, as with the circle. For
the cylinder, the length of the element is 27 and its width is dx. Integrating from
zero to /1 (the height), produces what, in this case, is fairly obvious, 2zr4. For the
cone, instead of being 7'[1”2, it is 7r/, and / is the slant height of the cone.

Area of Cylinder Curved Surface , .. ¢ [ELEMENT] is

Q length X breadth

=2r rXdx

h
= [2 Jtrx]

=(2nrh) - (0) =2xnrh

h
i A Total = Io 2nrdx

Area of Cone Curved Surface Radius of cone base = r
Slant height of cone = ¢

Area of [ELEMENT] is

length X breadth

=27rx & X dx

/ N 7
/

[+,

=(nrf)-(0)=nr/
Same answer can be found using
angular integration, as with circle
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Surface area of sphere

Move a ring around the sphere from one “end” (if you can imagine a sphere
having an “end!”) to the other. Measure the position of the ring by angle x. By
taking angle x from zero to 7 radians, the ring will cover the entire area of the
sphere’s surface.

The circumferential length of the element is 2777 sin x. Its width is rdx, so area
is 27777 sin x dx. Integrating from zero to 7: the integral is: —27r° cos x. When x
is 7, cos x is —1, so the minus times minus makes a plus. When x is zero, cos x is
+1.So, —cos x is —1. Again, minus times minus makes a plus. The answer adds
to dorr?.

Another way to calculate it would be to use the distance along the axis as the
variable, from —r to +r. The function produced is more involved and not so easy
to integrate, but the result is the same.

6 Surface area of sphere = ﬁ: 2nr?sin xdx
axis
n
= [— 2nricos x]
o]
:(211;r2)—(— 21 rz)

= |4nr?

Circumferential length of
surface element = 27r sin X

) Width of element = rdx
sin x

Area of element = 27tr2sin xdx

Finding volume by integration

The same method can be used to find volumes. See the illustration at the top of
page 342. As the element of an area is a line of width (dx), so the element of a
volume is an area of thickness (dx). Taking the volume of this wedge, the area of
the element is the area of the base multiplied by x//: wtx/l. The thickness is dx, so
the volume of the element is wzxdx /[ Integrating, with respect to x, produces
wix” /21. Substitution again is simple because x starts at zero. The volume is wi/ /2.

Volume of a pyramid

To make the formula more general, 4 is used to represent the area of the base and
an element of volume at x is taken from the apex. Follow the same method down
through. The difference is that the area is proportional to the square of the dis-
tance from the apex: (x//)°. See the example at the bottom of page 342.
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FINDING VOLUME BY INTEGRATION

/\t

)

\€ X >\(— dx

Volume of Wedge

Area of element = wt ’;

Thickness of element = dx

Volume of element =t xdx

— /

Volume of whole wedge

_[fwt
V[

xdx

_Wt2/

()0

2

I\

VOLUME of PYRAMID

Area of base = A
Area of element

X \2
=A (h)
Thickness = dx
Volume of element

X \2
dV-—-A(h) dx

~ Volume of whole pyramid V = J“’ pa¥ dx

L6+1
(@) 0)

3
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VYolume of cone

The method on the previous page for finding the volume of a pyramid can also be
applied directly to the volume of a cone. Its base is a circle whose area (see
“Area of a circle”) is 71

Notice that, as compared with the curved surface area, the height is the verti-
cal height, which is measured perpendicular to the base; not the slant height,
which is measured up the surface.

Another method to find the volume of a cone uses an element that is a cylin-
drical shell of radius x. Check it through; the answer should be the same.

Method 1

Areaof base A = Tr2

Volume = Ah

X
3

= Tr2h

v 3

h dx
T
Method 2

Area of element, surface of

cylinder M

"2n —x)h
Volume of element = jo —x({r——l dx

23

ﬂ\ = (anh——ganh)—(O)
= ngzh

As before

i
it
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Volume of sphere

Here again, you have a choice of methods to find the volume. The first method
takes “slices” of the sphere (very thin, of course) and the second takes cylindrical
shells. Taking slices, x goes from —r to +r. The cylindrical shell method
takes values of x from zero to ». However, the volume of the element has a product
function. If you remember the differentiation, it’s not difficult. The first method
is simpler.

Thickness = dx

Volume of element = n(r 2_x 2) dx
+1
Volume of sphere =I n(rz— X 2) dx
—r

+r

(g3 T3y _( 3 mr3
=(nr 3)(r+3)

= —nr3

3

/@\‘
(L I =[x - Tgtx3]
ﬁ
~—

Area of element = 4 Tx \/rz— x 2

Volume of element = 4 Tx \r’— x 2 dx

Alternative Method

Questions and problems

1. Using the product formula, find the derivative of the product of the functions
u and v when:

@ u=2x+3 and v=x
(b) u=x*—6x+4 and v=3sinx
(¢) u=sinx and v =cosx

du=x"—4 and v=-2x"+42
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2. Using the quotient formula, find the derivative of the quotient of the func-
tions v and v when:

@ u=-3x—6 and v=x"+2
(b) u=x"+2x and v =sinx

() u=sinx and v=3+4cosx
d u=3x"—4 and v=—2x"

3. In rectangular coordinates, the slope m of a line whose equation is
y = mx + b, where b is a constant, is dy/dx. Find the slope of a line tangent to a
circle centred at the origin and having a radius of 3 units, when the point on the
circle through which the tangent line passes corresponds to the following angles
counterclockwise from the x axis:

(@) 10 degrees (b) 55 degrees
(c) 105 degrees (d) 190 degrees
(¢) 300 degrees (f) 1 radian
(g) 2radians (h) 4 radians

4. Suppose an oscilloscope shows a waveform like the one in the following
drawing. Assume each vertical division represents exactly 1 volt (1 V), and each
horizontal division represents exactly 1 millisecond (1 msec). The peak signal
amplitudes are exactly plus and minus 5 V. The ramps are straight lines. Assign
t = 0 for the time at the origin (the center of the display). This waveform is passed
through a circuit called a differentiator, which produces an output waveform
that is the derivative of the input waveform. Draw a graph of the output wave-
form. Include the maximum and minimum amplitudes.

+5V

1 msec—>| |1—

SV
For Problems 4 through 7, Chapter 19
5. Suppose the waveform in the above drawing is passed through two successive

differentiator circuits. Draw a graph of the output waveform from the second dif-
ferentiator. Include the maximum and minimum amplitudes.
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6. Suppose the waveform in the above drawing is passed through a circuit called
an integrator, whose output is the mathematical integral of the input. Draw a
graph of the output waveform. Include the maximum and minimum amplitudes.

7. Suppose the waveform in the above drawing is passed through two successive
integrators. Draw a graph of the output waveform, including the maximum and
minimum amplitudes.

8. Evaluate the following indefinite integrals and check your results by
differentiation:

@ [4x’dx (b) [6xdx
© [9x%dx d [x*dx
(© [2cosx dx () [—4sinx dx

9. Evaluate the integrals from problem 8 as definite integrals, with limits of —1
and +1. Assume angle measures to be in radians.

10. The following drawing shows the quadratic function, that is, a function of the
formy = ax® + bx + ¢, where a, b, and ¢ are constants. First the area under this
curve between the following points on the abscissa:

@ x=-2 and x=
by x=0 and x=1
c) x=—-1 and x=
(dx=-1 and x=4

For Problems 10 and 11, Chapter 19

11. Find the derivative of the function shown in the above drawing. Then find the
area under the resulting curve between the same abscissa values as in problem 10.



CHAPTER

Combining calculus
with other tools

Maxima and minima

Finding maximum and minimum points of a function, by means of differentials,
is easy to do and can be a big help in many ways. When slope is zero, a function
momentarily does not vary. If elsewhere it varies, the value identified by the zero
derivative is either a maximum or a minimum in the function itself.

To plot a curve for y = x* — x* — 18x% + 27x, tabulate values of x and cor-
responding values of y, then mark them out on paper to plot the curve. The table
here lists nine value sets. For some curves, nine points would be enough to draw
quite an accurate curve, but not when such high powers are included.

Maximum Minimum
ih N\
| TN
y and dx y
* dy
0 dx
— X —>
dy
dx

Find the maximum and minimum points on
y = x4 x3-18 x2+ 27x

347
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Values 4 3 2 Values
_Plot a graph I> of x X -x? |-18x2 | +27x of y

-4 +256 [ +64 | —-288 | — 108 | -76
-3 + 81 +27 | -162 | —-81 [ -135

-2 + 16 + 8 -72 -54 | -102
-1 +1 +1 - 18 =27 -43
0 0 0 0 0 0

+1 +1 -1 - 18 + 27 +9
+2 +16 -8 -T2 +54 -10
+3 + 81 =27 | -162 | +81 =27

+4 | +256 | —64 | —288 | +108 | +12

Maximum and minimum points

On the graph paper at the left, the nine points are marked. Although they give an
idea where the curve goes, they are not precise enough to be sure that it is accu-
rate. A greater number of points might help, but the difficult spots are the maxi-
mum and minimum points. Apparently, a minimum is at or near x = —3, a
maximum is at or near x = +1, and another minimum is at or near x = +3.
The derivative dy/dx = 4x> — 3x% — 36x + 27 is a cubic equation in x, which
can have 3 roots.

Try x+3 as a factor to represent the root at x = —3. It factors to:
(x 4 3)(4x? — 15x + 9). Finding the roots of the second factor can now be solved
as a quadratic. They are x = 43 (the factor is x — 3) and x = +3/4 (the factor is
4x — 3). Now, you know that the two minima are precisely at x = —3 and
x = 43, and the maximum is at x = 3/4. This information is a big help when
plotting the curve accurately at these points.

+10 'M'axi'mlllm'? X | A
4 "
x
L %1
@ X / N |
Minimum ?
_50 X
[
3 3 [
!
~ 100 7!
X
\ II
. >
% Mllmlml{m K N
-4 +4

ENES



Combining calculus with other tools 349

% = 4x3—3x2-36x + 27 = (4x - 3) (x2=9) = (4x - 3) (x — 3) (x + 3)

Maximum or minimum when4x -3=0 x= %

x-3=0 x=3

Xx+3=0 x=-3

_3 4 81 3227 281 _ 81
x—4 x-256 x—64 18x—8 27x = )
5
y—lOE6

Point of inflection

What might be even more difficult by simply plotting points, without help from
the derivative, is a curve of the type represented by: y = x* — 6x + 8x. Six
points are tabulated, from x = —3 to x = +2. Without better knowledge, you
might look for a mistake in the region between x = 0 and x = —1. It doesn’t
look like a smooth curve.

Values < loex2 | +8x Values
of x of y

-3 81 |—-54|-24| +3
-2 16| -241-16|-24

y = x* 6x 2%+ 8x

—1 1] -6 -8]-13
10
* 3 0 ol o] o] o
+1 1 -6 +8 +3
* * +2 16| -24+16] +8
A O P ?
+ 10
/
e
Yy_10 I 0
®
Y 10
\1_20 l
. N_Iinimpm? -20
-3 -2 -1 0 +1 +2
«—X——>
d

d—i=4x3— 12x + 8

=4 {x*-3x + 2}
=4(x+2)(x%=2x+1)



350 Combining calculus with other tools

The derivative is: dy/dx = 4x> — 12x + 8.This equation can be factored to:
4(x +2)(x — 1)(x — 1). Notice that the two identical roots are x = +1.
Mathematically, both a maximum and minimum occur at x = +1. Such a point
is called a point of inflection. It means that, right at the point of the root
(x = +1), the curve is momentarily level.

Second derivative gives more information

Go back to the function considered in “Maximum and minimum points.” The
second derivative is: d*y/dx* = 12x* — 6x — 38. Equating this to zero finds two
more special values of x. These roots are x = —1.5 and x = 42. The second
derivative has points where the first derivative has maxima or minima. A maxi-
mum in the first derivative is a point of maximum slope in the original function.

\

+10

dy =
dx
N

60.75

o
_—

-'-_‘

y = x* x3-18x 2+ 27x

d
d

o

d’y

x 2

(=

—i = 4x3-3x 2% 36x + 27

=12x%-6x - 36

+ 50+ 100

-76 - 133

-3 —135<——0 |+ 90~<4— Minimum

-2 - 102 +55 |+24 Maximum
— 1.5 -72.5625 +60.751<-0<1—

“1|  -43  [+56 |-18 | Slope+

0 0 +27 |- 36 - Maximum

+ 75+ 10.019531251-0  |-33.75

1 +9 -8 —30 Maximum

+2 - 10 — 25— 0-<1 )

+3  —21<=—1-0 |+54 \S ope —

+4 + 12 +91 |+132

Minimum
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Most often, the second derivative finds points of maximum slope in the orig-
inal function. Whichever it finds, it provides more information that enables the
original function curve to be plotted more accurately.

More help from second derivatives

Now, it’s time to take two more functions of x. The second derivative has two
roots, x = —1 and x = +1.The original curve has a maximum slope at x = —1.
The other point is the one that was already identified as the point of inflection,
which is a minimum slope—zero!

“
+100\

Vi
1 \Curvel (y=+67
0 \\ /‘/JX_/

1 y=-24>5t=7 y=+3
y=-13 =_77/ \

Curve 2 ﬁ

XiJ—189

-4 -3 2 +1 +22+3
X —

Curve 1
y =x*6x2+ 8x

gx=4x3—12)(+8
Y oax+2) (x 1)

\

x=—2 x=+1
Minimum Inflection
& y 2
e 12x%- 12

Curve 2
y = x4 6x%+ 72x
dY _4x312x+ 72
dx
=4 (x +3) (x’>-3x + 6)

=+16
=0
+ 80
+ 64

x=-3 No real
Minimum roots of x
d? y _ 2
vk 12x4-12

Inflection

Max. Slope: -4+ 12+ 8
Min. Slope: +4 - 12+ 8

Max. Slope: -4 + 12 + 72
Min. Slope: +4-12+72

Maximum and Minimum Slopes
atx=-1 x=+1
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The other curve merely changes the coefficient of the x term. Because it
doesn’t reach the second derivative, it will have the same roots. Here, you see
what happens when the curve is tilted—what changing the x coefficient does.
Instead of a point of inflection, it has a point of minimum slope.

If the x coefficient was changed the opposite way, the coincident maximum
and minimum at the point of inflection would be separated, and that point
would become one of maximum negative slope. The first derivative would have
three different roots, instead of having two of them coincident.

Maximum area with constant perimeter

One practical use of differentiation is to find such a maximum. Derive the for-
mula for the area of this oblong with constant perimeter. It is a quadratic:
area = x(p — x) (when the perimeter is 2p). The derivative is: dA/dx = p — 2x.
The derivative is zero when 2x = p or x = 1/2p. So, the maximum area is when
the oblong is a square with equal dimensions both ways.

Had the area been kept constant, the perimeter varied, and the minimum
perimeter solved for, the result would have been the same.

Maximum Area

OBLONG { Constant Perimeter

Perimeter = 2p

¢ —>

Area=x (p-x) = px — x> p-x
%=p—2x This is zero whenp=2x or X =1
dx 2
!
2

1 square
p—x=p—§p or also =

Boxes with minimum surface area

The previous section shows that the best shape of an area for minimum perimeter
is square. So, how high should a box be for minimum surface area?

Assume that the volume is V" and the base is x square; the height must be
V' /x*. You have a top and bottom that each have an area of x?, and four sides
that each have an area of x times V' /x%, which reduces to ¥ /x. So, the total surface
area is 4V /x + 2x°. Differentiating, dA/dx = —4V /x* + 4x, which will be zero
when V' = x3, making the height equal to the sides of the square base. In other
words, the figure is a cube.
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To make this exercise more interesting, suppose that the box only needs the
square base—no top. Now, the total area is 4V /x + x*. Differentiating,
dA/dx = —4V /x* 4 2x, which will be zero when ¥ = 1/2x°, making the height
half the length of the square sides.

BOX Constant Volume +
Minimum Surface Area 12
X
Surf; T d b 2x? -
urface area: Top and bottom 2x
. KX \}/X ﬂ'{
Four sides 4x = Xz =
X X
Total surface area =L%/ +2x2
di (ﬂ+ 2x2) = —4—\; +4x  This is zero when x3=V
X X x Cube
VY«
2
Surface area: Bottom x?
OPEN-TOPPED BOX
4V
Four sides 4x » XQ =—
X X

4V
Total surface area = —+x 2

4 i\—]+x2)=m4—\;+2x This is zero when x3=2V
dx X X

x3 LV x3

V=7 Helght—;—m—

D | >

Height is half side length

Cylindrical container with minimum surface area

The volume of a cylinder is 7+°h. The surface area is 77 for both top and bottom
and 2zrh for the curved surface. The total surface area is: 2zr(r 4 /). To obtain
only one variable, write /1 in terms of the constant }” and the variable r, which is:
h =V /mr*. Now, the equation for total area becomes: 4 = 27* + 2V /r. The
derivative is: dA/dr = 4mr — 2V /r*. The derivative is zero when: > = V' /27. To
find A, substitute in the expression for / already found, /2 = 2r. Twice the radius
is diameter, so the minimum area is when height equals diameter.
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Suppose you want a cylindrical container with no top. Following the same
method for the open box, the height needs to be equal to the radius—half the
diameter. In short, if a closed container is cut in two, two open containers of
minimum surface area are formed.

CYLINDRICAL CONTAINER

Minimum Surface Area for Constant Volume

VOLUME

SURFACE AREA A =2nr?
+2xrh
+27r (r+h)

: (top and bottom)
(curve surface)

To get only one variable substitute h =l2
r

A=2nr (r+ lz) = ome2e 2
r r
2V

To find minimum %—A =4nr- = This is zero when
r r

OR ri=Y.
21

Substitue to find h: h = lz

Tr
_2mr’
nr?

Diameter equals height

Same Container Without Top

A =nr?+ 2nrh

—nr2+ 2Y
r
d—A=27tr--2—V This is zero when 7mr3=V ORr3:X
dr r2 n
vV _®rl
h:—:—:r
nr? mr?

Height equals radius, or half diameter
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Conical container

What is the best shape for an ice cream cone? You want one in which the cone will
accommodate a given volume with minimum surface area.

Volume is: V' = 1/37/°h. Surface area: 4 = ¢ which, to put / “in the pic-
ture,”is 4 = r(r* + h*)"/?. Substituting to get 4 in terms of ¥ and r, then substitut-
ing that into the one for A, differentiating and equating to zero, you find that 4,
for minimum surface area, is equal to root 2 times r (diameter divided by root 2).

Do you not see many ice cream cones this shape? Maybe the manufacturer
doesn’t want to give you so much ice cream for the cost of the cone!

CONICAL CONTAINER

Constant Volume Minimum Surface (Curved)
VOLUME V = %nr h

SURFACE AREA A =nr/
=nr Vri+ h?

iute h=3Y . A mnrveze V0 o afrzpa OV
Substltuteh—mz..A—nr\/r + ord —\/n r'+ 3

2
aa__ 1T (4n2r3—1—§-§—, ) This is zero when 272 r®=9V2
r

dr 2 Vn2r4+9l22 2nr3=3v
T

3
Substitute to find h: h = 3Y. =21 __ /5,
r? wr?

Equations for circles, ellipses, and parabolas

At left is the equation (in its simplest form) for each of these curves. Using those
equations, both the circle and ellipse are centered at the origin (where both x
and y are zero). The parabola is different.

At right is a more general equation for the same curve, which is not so cen-
tered. Deriving these general forms is a simple matter, merely substitute (x — @)
for x and (y — b) for y, in the original simple form, the multiply out. Notice that
the relationship between the second-order terms (those that involved x or y
squared) is unchanged by this shift. This fact lets you recognize curves that are
circles, ellipses, or parabolas from their respective equations, when you might
otherwise not be sure what they are.
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In the circle, the » represents radius. In the ellipse, two constants replace it,
designated ¢ and s. They are half the principal axes of the ellipse. These principal

axes can be regarded as maximum (major) and minimum (minor) diameters of
the ellipse.

SECOND ORDER CURVES

ry / ry_b

] 1. Circle b \éaéx—a}
J o|N_~

General (x - a)2+ (y — b)2=r?
2 2

: 2 - X~ ¥ _
Special x 2+ y2=r? Orr_2+l'_2_l x2+y2| —2ax - 2by + a2+ b2 = r2

[ y-b
4 \[h 2. Ellipse Lolcas{x-2 /
< ~—=

2 V)
General (x-a) + by _ 1
e p)

1

X2 y? s
Special =+ =5 =1 — s
s
“ D T T
¢ & ¢ & g s

\

y 3. Parabola bl a X—-a
I x )

Special y = fx 2

General y — b = f(x — a)?

‘—2afx—y+fa2+b=0

Directrix, focus, and eccentricity

On the previous page, the parabola was the “odd man out,” as compared with
the circle and the ellipse. A circle is generated with a compass that has its point

at the center. An ellipse is generated with a little more complicated device that
uses two centers to elongate it. But a parabola?
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An alternative way to generate curves describes these curves more effec-
tively. If you drove around a circular track, you would not have a compass attach-
ing you to the center of the track! You would direct your course with the steering
wheel. Paralleling that idea, visualize going along a parabolic course, positioning
yourself by two things; a focus and a directrix.

For the parabola, you keep the two distances, from the focus and the direc-
trix, equal. That distance, at a given point, is designated ». Where the focus is
opposite the directrix, those two distances are each f (called focal length).
Drawing a line through the focus parallel to the directrix, you can divide the u,
measuring your distance from the directrix, into 2f and y.

Fact 1 relates to the » that measures your distance from the focus. Fact 2
relates to the other «. Combine them, rearrange, and you have an equation that is
of the same form as a parabola. The condition described here is, in fact, another
way to generate a parabola. Because the two us are equal, this curve has an eccen-
tricity of 1 (unity).

DIRECTRIX and FOCUS

Distance of curve from focus and

PARABOLA directrix is EQUAL at all points

. That a curve satisfying this
PROOF condition is a parabola

Focus Fact 1: x2+y2=u?

\ M ;E u=y+2f e=l

Combine 1 and 2: x2+ y2 = (y + 2 f)?
=y 2+ Afy + 4f?
[x2] - 4ty —4r2=0

Which is an equation for a parabola

Directrix

The ellipse and the circle

Make eccentricity less than 1. Use the same method, but the distance from the
focus is eu instead of u. Apply the same two facts and combine them, as you did
for the parabola. Finish with an equation for the curve that takes the same form
as an ellipse.

As eccentricity (e) decreases, the distance from the directrix increases, and
eu gets to be closer to f in value. If you make eccentricity zero, the same equation
simplifies so that it represents a circle, and f is then 7.
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Distance of curve from focus and
ELLIPSE directrix is constant ratio at all points

Distance from focus on axis = f
Distance from directrix on axis =1
e

PROQOF: Thata curve satisfying this condition
" is an ellipse

Fact 1: x%+ y?=e?u’ Fact2:y+f(l + é)=u

Directrix Combine 1 and 2: x2+ y2=¢e? [y +f (1 + é )2

=e’y2+2ef (I +e) y + f2(1 + e)?

Rearrange X 24 (l—ez)y2 —2ef(l +e) y=f2(l +e)?

Which is an equation for an ellipse

Focus N r . . .
¢ As e becomes smaller, distance from directrix

X becomes greater; focus is nearer center of
ellipse; ellipse becomes more like a circle

f
e A CIRCLE is a second-order curve with

an ECCENTRICITY

x?+y2=f2 (fisthenr)

Directrix

Relationships between focus, directrix, and eccentricity

Look at these three curves in terms of the new parameters. The circle has a single
focus, which is the center. The directrix removes itself to infinity. In fact, because
it’s removed to infinity, you could regard it as being at infinity in every direction.
A circle of infinite radius would be a straight line. Viewed as an algebraic equation
for a circle the second order terms, x? and 7 are equal.

The ellipse has two foci at finite distance from each other. The ellipse is sym-
metrical about those two foci. An ellipse is eccentric. Mathematically or numeri-
cally, that eccentricity is greater than zero (the circle’s value) but less than 1. Like
the circle, its algebraic equation has two second order terms, x> and 1, but their
coefficients are not equal. With two symmetrical foci, it has two directrices at
finite distances.

The parabola can be viewed (more about this later) as having two foci: one
finite and one infinite. Its single directrix is at a distance equal to the focal length,
thus eccentricity is 1 (unity). Its algebraic equation has only one second-order
term.
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S
U
M
M
A
R
Y
Focus Single 2 Finite 1 Finite 1 Infinite
Directrix At Infinity 2 at finite distance Single
Eccentricity 0 <1 =1
2nd-Order
Terms Equal Unequal Only one

Focus property of parabolas

Rearranging the equation for a parabola forms an equation for x in terms of the
focal length and y. Now, look at the angles at a specific point on the curve, 6
between a line from the focus and the parabola’s axis, and ¢, the slope of the
curve at the same specific point. Tan 6 is equal to y/x. Tan ¢ is equal to dy/dx.
Using these facts, you can deduce the relationship 6 = 2¢. This relationship

about the parabola is important.

A

Equation of Parabola

0
If this is O y=2Vix+f
8=2¢
y
9» Check 9x_Y
dy 2f

\f y

2 2
_y -4t
=4

Focus Af f
_y _ y _41
tan 6 X =V ap? tan¢ =
4_.1‘
2tan ¢ y _ 4fy
tan 2 ¢ 1 —tan2¢ . 4f _y2_4f2
_;1_2_
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Focus property of ellipses

Applying the same idea to an ellipse, write equations for the minor and major
axes. For convenience, « and b are half of each. Relating these to the coefficients
of x* and yz, finish with conversion factors, write the ratio of @/b, in terms of
eccentricity ¢, and a value of e, in terms of the ratio a/b (or more precisely, b/a,
because it yields the square root of a number less than 1).

RELATION BETWEEN MAJOR AXES
and ECCENTRICITY of ELLIPSE

Equation of Ellipse x2+ (1-e?) y2-2ef (1 +e) y = f2(1 + e)?

5 F Whenx =0 (1-e?)y%2ef(l+e)y—fXl+e)2=0

l1-e o 5
_ef.,.\/ef fd+e)

2 \ / Yo Via—e? " T1-e

l1-¢
s _of + f

N e

. 242
a = Half major When y = % y2= (16_ 2)2
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Reflection properties of ellipses and parabolas

The angular relationship of the parabolas explains why a light source at the focus
reflects from all points along the surface of the parabola into a parallel beam.
An optical law of reflection is that angle of incidence equals the angle of reflec-
tion. The fact that angle ¢ is half of angle 6 means that the angle of the line from
the surface point to the focus is equal to the angle between the surface point and
the line parallel to the axis.

Extending this to the ellipse, instead of focusing into a parallel beam as the
parabola does, an ellipse focuses from one focal point to the other.
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REFLECTION PROPERTIES
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Hyperbolas: eccentricity greater than unity

The circle has zero eccentricity; the ellipse is less than unity; the parabola has an
eccentricity of 1. So, what happens if the eccentricity is greater than 1? The result
is a curve, called a hyperbola. Look at the equations: for the circle, the coefficients
of x? and 1? are equal; for the ellipse, they are unequal; for the parabolas, one is
zero; for the hyperbola, one reverses its sign.

2 y2
Hyperbola (% - )51_2 =1

'«<— Ellipse directrix

Focus of hyperbola

Focus for
A Ellipse

&— Hyperbola directrix
|
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Another parameter helps define hyperbolas. To derive it, write the algebraic
equations in yet another form. For the circle, the equation: x* 4+ y* = #* is divided
through by 2, so the left-hand side consists of two ratios squared, which together
make 1. For the ellipse, the half axes are labeled ¢ and 5. The sum of x*/¢° and
17 /5% is 1. The hyperbola reverses one of these signs, so the difference is equal to
1. For the parabola, one of these second-order terms disappears.

Asymptotes

The new parameter that helps construct these curves is called an asymprote. It is a
straight line through the origin (the point where x = 0 and y = 0) whose equation
is: x/y = q/s. The curve approaches this line more and more closely as it moves
further from the origin. Notice the various lines identified in the previous section
for the complementary ellipse and hyperbolas.

On this page, notice one particular hyperbola, the right hyperbola. An ellipse
has two pairs of complementary hyperbolas, both of which use the same pair of
asymptotes. A right hyperbola has two identically shaped curves; both touch a
central circle.

2+y2—e2 2 u—x+f(]+—)
—eZ[x+f(l+—)

-, =e2x2+2ef(e+ ) x+f2(e+1)?
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Second-order curves

To prepare for the next step, which relates all of these curves to conic sections,
notice the different characteristics of these curves. A circle has a single focus
and only 1 curve. Viewed as a special ellipse, you could say that it has a single
focus because the two elliptical foci coincide. It’s not difficult to understand zero
eccentricity—that’s what “round” means to some people! Both second-order
terms have equal coefficients. Its directrix is at infinity in any direction.

An ellipse begins eccentricity which, by the definition given in mathematics,
is less than 1 for any completed curve (circles and ellipses). An ellipse has two
directrices that are parallel with the minor axis and closer to the ellipse as the
ellipse itself elongates. Its equation has two second-order terms that are unequal
but the same sign.

A parabola is a marginal curve—the first one not to complete itself within
finite dimensions. Theoretically, it has 2 foci, one finite, the other infinitely
removed. Its eccentricity is 1 and it has only one second-order term.

A hyperbola goes a step further than the parabolas by having 2 finite foci
and 2 directrices. The hyperbola’s eccentricity is greater than unity, second-
order terms are opposite sign, and it is characterized by asymptotes.

SUMMARY | CIRCLE | ELLIPSE |PARABOLA
1 Finit

Focus Single 2 Finite | In;?riife
Curves 1 1 1

Directrix At Infinity 2 Finite 1 Finite
Eccentricity 0 < 1 =1

Second-Order Equal Unequal Onl
Terms Same Sign | Same Sign nly one
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Conic sections produce second-order curves

Here is another way to relate this succession of second-order curves. A circle or
an ellipse is seen as a section through a cylinder at right angles for the circle and
obliquely for the ellipse. Also, slightly less obviously, they can be seen as sections
through a cone (4). Making a cut parallel to the opposite face of the cone (5) yields
a parabola. Cutting more obliquely results in hyperbolas because the cutting
plane intersects both cone extensions. You can visualize the extended cone by pic-
turing the slanting side that protrudes beyond the apex and turning it “inside
out,” or giving that part a negative volume. If the plane cuts parallel to the cone’s
axis (8), the sloping sides of the cone coincide with its asymptotes. If it cuts obli-
quely (11), the hyperbola still has asymptotes, but they do not coincide with the
side of the cone. The dashed lines (12) indicate the asymptotes in that case.

Questions and problems

CONIC SECTIONS

Circle
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1. Find the point (x, y) on the graph of the function y = f(x) = —3x% + 2x + 2
at which the function attains its maximum value.

2. There are infinitely many points (x, y) on the function y = f(x) = 2sin x 4 2,
at which the slope of the function is maximum. Write a general expression for
these points.

3. Suppose you are standing on a vast, frozen lake in the middle of the night, hold-
ing a flashlight. The beam from the flashlight is cone-shaped. The outer face of
the light cone subtends a 20-degree angle with respect to the axis (the ray corres-
ponding to the beam center). How can you aim the flashlight to form a circular
region of light on the ice?

4. Inthe situation described in problem 3, how can you point the flashlight so the
edge of the region of light forms an ellipse on the ice?

5. Inthe situation described in problem 3, how can you aim the flashlight so the
edge of the region of light forms a parabola on the ice?

6. In the situation described in problem 3, how can you aim the flashlight so the
edge of the region of light forms a half-hyperbola on the ice?

7. Determine x and y intercepts, local maxima, local minima, and points of
inflection (if any) for the following functions. Specify the points as ordered pairs

(x, y),where y = f(x).

(@) f(x)=2x" -5 (b) f(x) = (x> + 3)(x — 4)
© f(x)=2tanx (d) f(x)=—3cosx

8. Using the information you obtained in the previous problem, plot graphs of the
functions given. Intercept points, local maxima, local minima, and points of
inflection (if any) should be labeled. Otherwise, the curves can be approximately
drawn.
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CHAPTER

Introduction to
coordinate systems

Two-dimensional systems of coordinates

Systems of coordinates can be used to locate points in a plane or in space, and to
describe lines, areas, volumes, and shapes within the same systems. Most of the
time, shapes were considered entities. The rectangular system of coordinates, by
using x and y as coordinates for graphs, was touched on. However, they were
used more as plots of quantities than as dimensions in a system of measurement.
This chapter begins to cover how to specify the precise position of a point in a
plane of two dimensions, or in three-dimensional space.

Graphs that use rectangular coordinates are usually in the form of a “box,”
with values of x plotted horizontally between specific values and values of y
plotted vertically between other specific values. The origin is a concept drawn
from systems of coordinates.

Mark the origin with an “O.” In plane rectangular coordinates, the X and Y
axes both pass through O; the X axis horizontally and the Y axis vertically. A
position in those coordinates is measured by values of x and y; x is measured hor-
izontally and y is measured vertically. Convention makes the values of x to the
right of the origin positive and values to the left negative. Values of y above the X
axis are positive and those below are negative.

Plane polar coordinates also use an origin. Instead of having two axes that
the rectangular kind use, it has just one reference axis. The position of a point is
measured by the direct distance from the origin and by the angle the line measur-
ing that distance makes to the reference axis.

Before moving on, notice the equivalence between the two systems. First,
assume that you know the location of a point in rectangular coordinates, as x, y.

366
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To convert them to polar coordinates, the radius r is the square root of the sum of
the squares of x and y. Angle 6 has a tangent of y/x. At one time, the English used
a negative index after the ratio symbol. This would be written tan~' y/x. The
method commonly used today is arctan y/x, which represents exactly the same.

The other conversion is simpler. If the polar coordinates are r and 6, the
equivalent rectangular coordinates are x = rcos 6, y = rsin 6.

P P

T(xv Y) / (r, 9)
- -é y  Rectangular / Polar
X |
axis 0|]—x—> Reference axis
ri=x2+y? r =Vx2+y?
P Yy _ y
tan 0 =< 0 = arctan X

Equivalence r f
0 y
¥

the angle whose tangent is

y=r18in 0 X =rcosf

Equation of a straight line

You have written many equations that represent straight lines (also curves). A
general form for a straight line, in rectangular (sometimes called cartesian for
Rene Descartes, a 16th-century French philosopher) coordinates is: v = ax + b
(see figures at the top of page 368). Here, « is the ratio between rates of change of
x and y (or dy/dx) and b is the point where the line crosses the y axis. At the y
axis, xis 0, so at that point: y = b.

Making direct substitutions for y and x, the equation in polar coordinates
becomes r sin 6 = ar cos 6 + b.That, too, is the general form. Both forms are sim-
plified considerably if the line passes through the origin. Then, » =0, y = ax,
and 6 = arctan ¢, where 6 is constant, not a variable angle, as in the general
equation.

Equation for a circle

In general terms, we write an expression, using rectangular coordinates, x and y,
the circle’s radius, R (using a capital R here, to avoid confusion with the » polar
coordinate), and the coordinates of its center, « and b. If the circle is centered on
the origin all the terms with « or b in disappear, leaving the more familiar form:
x? + 17 = R? (see figure at the bottom of page 368).

By substituting, x = rcos 6 and y = rsin 8, we derive an expression for the
same circle in polar coordinates. The two terms #* cos” 6 + r* sin” 6 add together
to make 2, and all the other terms are transferred to the other side.
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EQUATION of a STRAIGHT LINE

© / /
5y
7 //#
3
y y
=
// ) ° /8
b
! y
' 0 X 0 X
_ y_.,b I
y=ax+b ;-a+~)—(~ y=ax =2
b _dy
6=arc tan (a + ) A= ix O=arctana
r=V/xTr @xsby  |bisintercept f=VxT R
On y axis
General rsinB=arcos0+b Special b=0
EQUATION of a CIRCLE

2, y2= R2
x —a)2+ (y — b)2=R? Ty
( )*+(y—b) 2. R2 [=R
x2- 2 ax + a2+ y %= 2by + b’=R? .
s Special
=Xty a=0 b=0

=R2+2 ax + 2by —a’— b?
X =rcosO y=rsin6
r2= R%+ 2ar cos 0+ 2br sin 0 a?— b?
r’-2[acos®+bsind] r+ a2+ b2)-R?=0

General
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Three-dimensional systems of coordinates

Both these systems can be extended to the third dimension. Just as two coordi-
nates in either will specify a point in a plane, three coordinates will specify a
point in three-dimensional space.

In the rectangular system, add a third direction mutually at right angles to
the other two, usually called the Z axis. Coordinates x, y, and z completely locate
a point P in three-dimensional space, with respect to origin O and axes X, Y, and
Z.

The polar system can use an additional angle in several ways. It still uses an
origin and a reference axis as the starting point. The simple method is to use a
reference plane in addition to the reference axis. A plane that contains the point
P and the reference axis will have a specific angle to the reference plane. That
angle has the symbol ¢, the Greek letter phi. Then, starting from the reference
line, within the plane already defined by ¢, measure angle 6, the Greek letter
theta, to the radius », which measures the distance from the origin. Thus, the
point is completely defined by r, ¢, and 8. As in rectangular coordinates, it is
specified by x, y, and z.

p
(T’B’(P);

y axis
-\

o
,b‘&*‘ X

Spherical Polar

z =rcosH
X =rsin Bcosd

y =rs8in Osin¢

2 2

=x2+yl+z

Vx2+y?
z

y

X

r

0 = arctan

{ = arctan
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Equations of line and plane in rectangular coordinates

In a plane, the only linear form is a line. Three-dimensional space has two linear
forms: a line and a plane. The equation for a line in three-dimensional space is
really two equations. Using the intercept designation from the linear equation in
a plane, « is the slope of the line, with reference to the XY plane: ¢ = dy/dx.This
equation denotes the slope of the plane that contains the line in the XY plane. b
is the intercept of the plane that contains the line on the YZ plane. Next,
¢ = dy/dz is the other direction and d is its intercept on the XY plane. This data
enables the equation to be written: y = ax +b = cz 4+ d.

The other linear form is the equation for a plane. Just as a simple equation
represents a line in a plane, so a simple equation represents a plane in three-
dimensional space. Using the XZ plane as the reference, ¢ can be the intercept of
the plane on the y axis, a the slope dy/dx, and b the slope dy/dz. To avoid confu-
sion with the coordinate angles in polar coordinates, use the angles « and B (the
Greek alpha and beta) to correspond with their tangents, ¢ and 5. This identifica-
tion helps to identify angles, as well as the slopes with which they correspond.

Equation of Line in Three Dimensions

o]
> y=ax+b=cz+d
b d
a= % b is y intercept on yz plane
d .
X axis
) ¥ _dy d 1s y intercept on xy plane
r&f'\% fs) dz
T

Equation of Plane in Three Dimensions

y=ax+bz+¢

%
— tana=Y _ tan p= Y d
a=tano= gt b = tan p= c %a//

dz j

¢ is intercept on y axis
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Equations in spherical polar coordinates

Using the equivalent from “Three-dimensional systems of coordinates,” convert
each set of values on the previous page to spherical polar coordinates, and make
a double equation with two equals signs, as for rectangular coordinates.
Regarding this as two equations, you can derive separate equations in polar coor-
dinates. Both coordinates are necessary to define a line. By itself, each defines a
plane. The line that the two equations put together defines the intersection
between the two planes. The substitutions convert the rectangular coordinate
equation for a plane to one that uses spherical polar coordinates.

Any of these expressions, like virtually all equations that include trig func-
tions, can take a variety of forms. Use a conversion that changes slope factor a of
the rectangular system to angle v (Greek psi) so tany = a. You could write
arctan ¢ instead of . Use whichever is most appropriate in a specific problem.

EQUATION of LINE in
SPHERICAL POLAR COORDINATES
X =rsinfcosd y =r sin0sin ¢ z=rcosO
A

I sinOsin ¢ =ar sinBcos ¢ + b= cr cosG+3

sinq)—acosct)=rsgle a sin Ocos ¢ +g=0cose+%
Make a =tan y siny = 1a >
+a

cosy = r_—_—l-:az b—;——gzccose—asinecosq)

sinp—acosd=\/1+a’sin (¢ -V¥)
V/1 + aZsin (¢ — arctan a) =

rsinB
EQUATION of PLANE in
SPHERICAL POLAR COORDINATES
x =r sin Bcos ¢ y =1 sin Osin¢ z=rcosf

rsin0sin ¢ = ar sinBcos ¢ + brcos6+ ¢

s . c
sin Osin ¢ — a sinBcos ¢ — b cos 6=;

\/1 + aZsin Bsin ( ¢ — arctan a) — b cosf="

r
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Three-dimensional second-order curves

Equations can represent any three-dimensional shape. Equations for cones and
other simple shapes are equally simple. Here is one that is not so easy. It can be
viewed as a parabolic curve rotated around the Y axis, touching the origin. In
rectangular coordinates, it is y = a(x” + z2).

Suppose you need to know the volume that is enclosed under this three-
dimensional shape, within a square area defined in the XZ plane as 2s each way.
To tie down the dimensions of the parabola, the height of the solid at its corners
(where it is a maximum), is /2, measured parallel to the Yaxis.

The simplest method to solve this problem uses multiple integration in two
directions. This is the same as simple integration, done one after the other. It
makes no difference which direction is taken first. In this case, it is obvious
because the x and z dimensions are interchangeable, however, even if they weren’t
it makes no difference.

MULTIPLE INTEGRATION

Example
Rectangular parabolic section:
y=a(x%+z?%)
Element = ydxdz
=a (x2+ z%) dxdz

Maximum value of y = a (s2+ s2)
a= __h._ = 2 asz
252 =h

Volume =|*[" —h—(x2+ z?) dxdz \/
—s J—s 282

=J+SL X—3+XZ2 +Sdz=J.+sL|:2—83+2,SZ2:|dZ

- 252 | 3 - - 252 | 3

_h {2s3z+2sz3 TszL [@ﬁi} _ 4hs?
252 3 3 | 282 [ 3 3 3

Questions and problems

1. The following drawing is a graph of a straight line. The x- and y-intercept
points are shown. Draw a graph of this curve in polar coordinates, substituting r
for x and 6 (in radians) for y. Restrict 6 to the range 0 to 2.

2. Draw a graph of the curve in the drawing in polar coordinates, substituting »
for y and 0 (in radians) for x. Restrict 8 to the range 0 to 2.
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For Problems 1 and 2, Chapter 21

3. The following drawing is a graph of a curve in polar coordinates. Values of 8
are shown in degrees. Draw an approximation of this curve in rectangular
coordinates, substituting x for 8 and y for r. Consider only positive values for all
variables.

90

(,0) = (1,135)

[

45 degrees

\1 2\3\\4 5
—/

270
For Problems 3 and 4, Chapter 21

180

X

4. Draw an approximation of the curve in the above drawing in rectangular
coordinates, substituting y for 6 and x for r. Consider only positive values for all
variables.

5. Determine the equation of Line A (a straight line) in rectangular three-space
shown in the following drawing.
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(X,y,Z) = y Line A
(2.4,0) 6

Line B

(x.y,2) =

(0,0,5)
\4

(X’y’z) =
4 (5,1,0)

-6
For Problems 5, 6, and 7, Chapter 21

6. Determine the equation of Line B (a straight line) in the above drawing.

7. Determine the equation of the plane containing Lines A and B in the above
drawing.
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CHAPTER

Complex quantities

Imaginary quantities

Imaginary numbers were introduced in Part 2 of this book to show how you
could find extra roots that aren’t in the ordinary numbering system. Once man-
kind didn’t accept fractions—only whole or integral numbers could be counted.
Then, people could only count positive quantities, negative numbers were impos-
sible. Finally, the square root of a negative number was allowed. What else can
be had?

It’s a help to think of numbers as being measured in various directions.
Negative numbers are measured in a 180-degree reversal from positive.
Imaginary numbers allowed another pair of directions: 90 and 270 degrees.
Complex angles combine positive or negative real numbers with positive or nega-
tive imaginary numbers.

To get this concept clear, a geometric illustration in rectangular coordinates
visualizes the relationship. Multiplying by a negative produces rotation through
180 degrees. Multiplying by a negative again produces another rotation through
180 degrees, which brings us back to the original positive. With simple positive
and negative numbers, you don’t need to decide whether the rotation is clockwise
or counterclockwise. When you multiplied by imaginary operator Z you thought
of it algebraically as root minus 1. Geometrically, think of it as rotating through
90 degrees, and use the counterclockwise rotation because dependent variable y
uses upwards for positive values.

Now, every time you multiply by £ as well as performing the numerical multi-
plication, the vector (as it is called) is rotated counterclockwise through 90
degrees. Multiply by i again and this time a second 90 degrees completes 180.
Because i was defined algebraically as root minus 1, when you square it, it
becomes — 1. Multiplying by 7 four times results in a positive real quantity again.

377
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IMAGINARY QUANTITIES

i1 Quantities
neither (B>
nor <O

— Quantities  + Quantities — +
< : < 5 >
4t 1
—real + real
v
—i
IMAGINARY OPERATOR i
+1i +1
Xl = —
\Xi . \
i
0 >+ —< 0 >+
+1 +1
1XiXi = ~1

IX1X1X1 = +
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The complex plane

These rectangular coordinates can now be regarded as a complex plane, in which
you can plot quantities that are part real and part imaginary. The real part is
measured right for positive and left for negative. An imaginary part is measured
up for positive and down for negative. The complex quantity can be written
algebraically as: a + ib.

If both parts are positive, the quantity is in the first quadrant. If the real partis
negative and the imaginary part is positive, the quantity is in the second quadrant.
If both parts are negative, the quantity is in the third quadrant. Finally, if the real
part is positive, but the imaginary part is negative, the quantity is in the fourth
quadrant.

Now look at the cube root of —1 (see Part 2, where it was the cube root of
+1). The root in the first quadrant is at what would be called 60 degrees, and it
could be called the first cube root of —1. Now squaring that puts the product in
the second quadrant, at what would be called 120 degrees. Cubing it verifies it as
a cube root, by turning 180 degrees, on the negative end of the real axis.

a+ib
ais—
bis + b
O a
ais— ais+
bis— bis—

(l+i£)2:l+i£_§
2 2 4 2 4

—__1_+i.ﬁ
2 2
(l+i¢/“3_ P_1,53.43.3.3 ;3,43
2 2 8 4 2 24 4 2
8 8

Complex quantities

The Pythagorean theorem, whether you think in terms of geometry, trigonome-
try, or algebra, shows that the magnitude of each root, which is the length of the
vector from the origin, is 1. You have taken three steps with the cube root of —1.
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Suppose that you start with the same quantity in the second quadrant (120
degrees), and write in the polar coordinates as 1, with the angle at 120 degrees.
Multiply this first cube root of +1 by itself, to get the square at 240 degrees, and
again to get the cube when it is 360 degrees, which proves that the quantity you
began with is the cube root of +1.

Check your work with this technique to gain confidence in the use of com-
plex quantities.

See the complex quantity interpretation of the three cube roots of +1. Cubing
the first root at 120 degrees multiplies that angle by 3, making 360 degrees,
which is the same as 0, thus it is positive. Cubing the second at 240 degrees multi-
plies that by 3, making 720 degrees, where it becomes positive after two revolu-
tions. Cubing the third at 360 degrees (ak.a. 0 degrees) makes either no
revolutions, keeping it positive or 3 revolutions, where it arrives at positive again.

In the last two sections, everything was kept simple by taking only quantities
that had a magnitude of 1. How are quantitics with magnitudes other than 1
represented? Look at the cube root of 8. Using the method already used a few
times now, the first cube root of +8 is —1 plus i root 3, which is 120 degrees.
Now, multiply that by itself and simplify: —2 — 72 root 3. Multiplying by the root
again returns the answer to +8; the imaginary part disappears to prove that the
cube root is correct.

O N X
f“ o)
A3

1 .
=oyti= 11200

WAV 1..3.43.3.3 .3 /3
__+1__ = _ _ — e N —_ e )
(2 7 8 1472 T2ty

=— g2 =1 1/360°

COMPLEX
QUANTITIES



Complex quantities 381

Three Cube Roots of 1

120° 240° 360°
3 X 120° = 360° 3 X 240° =720° 3 X 360° = 1080°
1 Revolution 2 Revolutions 3 Revolutions '

—1+iN3 =2/120°
C1+in3’=1-i243-3 =-2-i243 = 4/240°

1+iV3) =—1+i3¥3+9 =i343-9-1= 8/360°

+i| CubeRootof8 is-1+iJ3 or2/120°
or—1—iy3 or2/240°
i3 or 2/360°

x (= 1+iv3)
- \ ! +

+8

X (= 1+iv3)
x (= 1+iv3)

—2-i243
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Multiplying complex quantities
Now confirm the method by multiplying any two complex quantities. You have
two quantities, each written in two different ways: in rectangular coordinates as
real and imaginary parts or in polar coordinates as a magnitude and an angle.
In the picture, two quantities set out, each beginning at the positive real (X) axis.
Beginning at the magnitude of the first quantity and multiplying each part of the
second by the magnitude of the first, erect the third shaded triangle. This triangle
brings you to the product, in magnitude and angle, or it can be read in rectangular
coordinates as real and imaginary parts.

Study the diagram to see how the quantities that appear in the algebra are
reproduced in coordinate geometry.

a+ib=|r/e c+id =|s/¢
(a+1b) (c+id)=ac—-bd +1i(ad + bec)

MULTIPLICATION

a=rcosB

b =rsin 6
wy —

C = scos0

d=ssin®

ac —bd +1{ad + be)
=TS [cose cos ¢ — sinOsin ¢]

+ irs E:ose sin ¢ + sinBcos q)]

ad ) )
= rs$scos(e+ +1ussmn{o+
a+ib=r/0 ( ¢) ( ¢)

Product of Magnitudes

+  Sum of Angles

Reciprocal of complex quantities

If the quantity « + ib has a magnitude r that is greater than unity, its reciprocal
will have the magnitude 1/r, which will be less than unity. The larger shaded area
uses unit magnitude on the positive real axis for its base, and the magnitude » of
the quantity « + ib for its top side. Scaling this area down to make the longest
side fit unit magnitude on the positive real axis, the side that was 1 in the bigger
triangle is now the reciprocal of the original complex quantity, in both magnitude
and polar angle.
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The algebra shows how to calculate these values. Having a complex quantity
in the denominator is not easy to handle. However, multiplying top and bottom
by a — ib, the denominator becomes the sum of two squares, which reverses the
sign of the imaginary part in the numerator.

In the study and use of complex quantities, a quantity such as a — ib is called
the conjugate of a + ib, or vice versa.

RECIPROCAL EXPRESSIONS

a =rcosO

b =rsin 0
A r =Va’+b?

at+ib=r/0

a+ib

1 _ 1 ><a—ib

Or —%=avi Xach

. _a—ib _a-ib
22— (ib)? 2+ b?

Division of complex quantities

The next logical step is division. Take two complex quantities and divide one by
the other. From the actual size of the divisor (shaded are in left part of sketch),
change the magnitude of the longest side to fit the longest side of the dividend,
maintaining its shape or proportion. The quotient is then the side of the propor-
tionate area of the divisor that was unit positive on the real axis before it was
reduced.

As the right part of the sketch shows, the angle of the quotient is found by
subtracting the angle of the divisor from the angle of the dividend. Magnitudes
are simply divided, represented by r/s. Check the consistency of the methods
that represent the operation, shown here.
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DIVISION

a+ib=r/0 a+ib

ct+id=s/¢

a+ib
c+id
0
a = rcosB 1 _ ¢
a+ib=r/0 b= rsin O SCOS( ¢)_cz+d2
. ¢ = scos0 1 . _d
c+id=s/0 d = ssin gSln(—(b):m

atib_r sg_

c+id s ‘
_r B .. 3 _ac+bd+i(bc—ad)
=3 [Cos(e &) +isin (0 (1))]— 242

Rationalization

You have already performed rationalization without naming it as such. In com-
plex quantities, rationalization is what simplification is in fractions and similar
subjects. A complex quantity is a simple combination of a real part and an ima-
ginary part. Complex quantities can, as numerators, share the same denominator,
as a matter of convenience or simplicity, but the denominator should be entirely
real. Otherwise, the real and imaginary parts of the numerator are not truly real
and imaginary, but each are complex.

Take a simplification that consists of two complex quantities multiplied
together in the numerator and two more multiplied together in the denominator.
When these quantities are multiplied, the numerator and denominator can each
be simplified to single real and imaginary parts. Now, to rationalize, the numera-
tor and denominator are each multiplied by the conjugate of the denominator,
so only the numerator contains both real and imaginary parts. If desired, the
whole quantity can be written separately: as a real part and as an imaginary part.
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Rationalization Eval (a +ib) (c +id)
valuate i) (g + ih)

(a+ib)c +id) =ac ~bd + i(bc + ad)——| Write k = ac — bd;/=bc + ad
=k+i/ <~

(e +if)(g + ih) =eg - th + i(fg + ehy—=| Write m = eg — fh; n = fg + eh
=m+ in —

(a+ib)(c+id) _k+i/ _ (k+i/)m—-in) km+Zn+i(/m—kn)

(e+if)(g+ih) m+in  (m+in)m—-in) m2+ n?
3 +i4)(5 — i6) _ 15+24+i(20-18)
Example - = T416+i3-8)
_ 3942 _ 39+
10-i5 52 -il)
« |21 (39422 +iD)
2 +il T 522+ 1),

78-2+1(4+39) 76+i43
5X5 B 25

Checking results and summarizing

It is easy to make mistakes when handling many numbers—even if you use a cal-
culator! Often, the numbers happen to be convenient for making some relatively
simple checks. Here, the first factor in the numerator has the same magnitude as
the first factor in the denominator. One factor is 3 + i4 and the other is 4 4 i3.
The magnitude of both is 5. So, the whole expression will have the same magni-
tude if these two factors are removed; only the angle is changed. You could
check to see that the magnitude is the same with these two factors removed.

Study the summary about complex quantities. First, study which quadrant a
quantity falls in, according to the sign combination of its real and imaginary
parts. Next, study the significance of addition, subtraction, multiplication, divi-
sion, powers, and roots, in terms of magnitude, angle, and real and imaginary
parts.

You cannot add or subtract magnitude and/or the angle of complex quanti-
ties; you have to work on the real and imaginary parts. In multiplication and divi-
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sion, magnitudes multiply and divide, but angles add and subtract. For powers
and roots, the magnitudes take powers and roots, but angles multiply and divide
by the indices. Any of these operations can be performed with real and imaginary
parts by using the operator, i.

MAGNITUDE (3 +i4)(5 - i6)
CHECK (4 +13)(1 -12)
Magnitude is 1 7 5-1i6 _ (5-16)(1 +1i2)
1-i2 1+4
_5+12+i(10-6)
5
76 +i43 _|\V/5776 + 1849 _ /7625 _\/305X25| _17+i4 _| /289 + 16
25 25 25 25 5 5
V305
_ 54305 _/305 = 5
25 5
R(Same Magnitude?
SUMMARY
a + ib ~a+ib ~a~ib a—ib

1st Quadrant 2nd Quadrant | 3rd Quadrant 4th Quadrant

Operation — + - X = ()" W
Magnitude — X = ()" W
Phase — + - Xn +n

Real - + —

Imaginary — + —

Use of a complex plane

This understanding of complex quantities led to the use of a complex plane in var-
ious ways, which we sample later. In the earlier graphic representation of quanti-
ties, the quantity measured horizontally was x and vertically was y. Sometimes ¢
was horizontal. The independent variable was horizontal and the dependent was
vertical.

The independent variable has a plane, so it can be complex. The real part is
measured left or right, but the imaginary part is measured at right angles to it.
The direction for the dependent variable is vertical.

Here, a relatively simple example uses a complex plane that shows two prop-
erties of this kind of presentation. At all points, magnitude of y is measured verti-
cally. Quantities x and iz are in the complex horizontal plane. To make the
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working easier to follow, y is expressed as a complex fraction—real and imagin-
ary parts in both numerator and denominator.

At a point where the denominator is zero (1), the value of y goes to infinity,
called a pole. Where the numerator goes to zero (2), the value of y is zero, called
a zero.

+y Dependent +ix or + iz
variable (y)
-X + X —X +X
0 <—> 0
Independent
-y variable (x) —ixor—iz
Complex Plane
Dependent
Ty variable

_/Tx or iz
/ 0 4+
_— X

Plane of Independent
Variable

X+iz—(3+i4)
Y= i¥iz+3_-14
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Quadratic roots with complex quantities

Earlier quadratics problems were craftily avoided where the quantity under the
surd, in the formula method, would be negative because such a problem would
have “no real roots.” You probably thought the problem could not be solved.
With imaginary numbers, such a problem can have an imaginary or complex
solution with very definite mathematical meaning—no figment of the imagina-
tion!

Here are two examples. In the first, the quadratic uses real quantities that
result in conjugate complex roots. In the second, the quadratic itself is complex
and has complex roots that are not conjugate. So, quadratic equations “work”
with complex quantities, as well as with real ones.

®x2+x+1=0 By formula x=—%i'\/:11'—1
1
2

_ 1 143 _ 1 iy, _
Xx=—3-"3- X’=-3+—3 x4 x+1=0¢

@x2+ix-1=0 By formula x=—1%i —%+1
1.3
2— 2
3 .1
+=_
orX5-iz
1 . . ]
Check lelzé—li 1x=%+1\‘/2—3 x2=%—1é—3 x2+ix-1=0 ¢
3 1 1 . 1
X=—‘/T—1§ 1x=§—1l/i§— )(2=§+11é—3 x2+ix-1=0 ¢
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Roots by complex quantities

From the pattern summarized in “Checking results and summarizing,” you can
simplify finding roots by using complex quantities. For example, you know that
32 has a fifth root that is 2. But your advancing knowledge of mathematics sug-
gests that 32 has 4 more roots. What are they? You could develop a set of simulta-
neous equations, but an easier method is more visual. Rather obviously, these
roots are of magnitude 2, with angles that divide the four quadrants into five
parts. Using values of sine and cosine of these angles, we can derive the complex
roots.

2 [144° 2/72 The 5 Fifth Roots of 32

2 [360°

2/216°
2 [288°

1 2[cos72° + isin72°]

2 2 :cosl44° + isin144°j 2[— cos36° + isin36°]

3 2[cos216° +isin216° |

2 |:— €0536° — isin36°]

4 2[cos288° + isin288° |

2[+ cos72° — isin72°}

5 2:cos360°+isin360°: = 2
Roots 0.618 + 11.9022
~1.618 + i1.1756

2

Questions and problems

NoOTE: In these problems, the square root of —1 is denoted by j, not i. You should
get used to this notation because it is commonly used by engineers.

1. Multiply 0.6 + j0.8 by 0.8 + j0.6. Verify that the product is pure-imaginary
and has a magnitude of 1.
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2. Square each of the quantities in problem 1. Then multiply the resulting comp-
lex numbers together, and verify that the product is pure-real and has a mag-
nitude of 1.

3. Solve the following quadratic equations. Include imaginary, complex, and
real solutions.

@ x*—2x+2=0 (b x> —2x+10=0
© 133 —4x+1=0 d x*—j2x—10=0
© x*—2x—8=0

4. Find the six 6th roots of 64. Express the coefficients in decimal form to three
significant digits. Plot the corresponding vectors on the complex plane.

5. Find the ten 10th roots of 1,024. Express the coefficients in decimal form to
three significant digits. Plot the corresponding vectors on the complex plane.

6. Find the nine 9th roots of 512. Express the coefficients in decimal form to
three significant digits. Plot the corresponding vectors on the complex plane.

7. Refer to the following drawing. Find the sum of these two complex numbers.

+j
3+35
- Each division
represents
one unit
Lo N I N N
uE ES N E B R R’ (RN B B R R
2-73

For Problems 7 through 14, Chapter 22

8. Plot the vector denoting the sum of the complex numbers shown in the above
drawing.

9. Find the product of the complex numbers shown in the above drawing.
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10. Plot the vector denoting the product of the complex numbers shown in the
above drawing.

11. Divide the complex number shown by the second-quadrant vector by the
complex number shown by the third-quadrant vector in the above drawing.
Express the coefficients in decimal form to three significant digits.

12. Plot the vector denoting the quotient you found in problem 11.

13. Divide the complex number shown by the third-quadrant vector by the com-
plex number shown by the second-quadrant vector in the above drawing.
Express the coefficients in decimal form to three significant digits.

14. Plot the vector denoting the quotient you found in problem 13.

15. Refer to the following drawing. Find the product of these two complex
numbers.

Each radial division +
represents one unit

N | !
AV 2&/

J

For Problems 15 through 17, Chapter 22

16. Plot, in polar coordinates, the vector denoting the product of the complex
numbers shown in the above drawing.

17. Convert the product vector from problems 15 and 16 to standard complex
form—that is, to the form a + jb, where ¢ and b are real and j is the square root
of —1. Express the coefficients to three significant digits.
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CHAPTER

Making series do
what you want

A pattern to a series

Returning to the study of series expansion, you can make the formation of a series
for any function easier by looking for the patterns by which they can be made.
Most series of a given type conform to a certain pattern. Assume here that the
series takes the form of rising powers of x as the basic variable. It might begin

with a constant, which is x°, after which follow terms in x, x%, x

3 x4, and so on.

Three samples of this type are: binomial expansion of (a + x)", sin x, and cos x.

Binomial

a4 nan ! "*"("27 D n2,2, 0= 13)|(n—2) gy M= l)(n‘: Din-3) .y 4 0= l)(n—25)'(n—3)(n—4) 545

. x* x5
—» SINX = X T *?!'
2 4
> cosx =1 —% +%
2 3 4 5
fx) =0+ [, @) x + 10 35 FCRT SRCET oL

n = 0 1 2 3 5
f, (x) (2+x)"n(a+x)" 'n(n-tHa+x)" In(n- 1n—2)a + )" nn—1)xn—2)n—3Na+x)"*n (n—1)(n - 24n - 34n —4)a + x)"°
f,(0) a na"! nin—Da"?  a@-1Nn-2)a""* n(h-Xn—2)}n-3)a"* nin—1)n-2}n-3)n-4)a™?’
f(x) a +na""x+n(n—I)a“’l);—j+n(n—I)(n—2)a""‘§!l+n(n—I)(n—2)(nA3)a'“’:—:+n(n—l)(n—2)(n—3)(n—4)a"’5§—j
f, (x) sinx cosX — sinx — COSX sinx cosX
f, (0) 0 +1 0 -1 0 +1
T f(x) X i WX
at 5t
f, (x) cosX —sinx —cosx sinx cosx — sinx
£,(0) 1 0 -1 0 +1 0
Ly £ (x) 1 R o
2! 4!
392
Copyright 1999 The McGraw-Hill Companies. Click Here for Terms of Use.
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The panel shows the basic pattern, called the Maclaurin series. If f(x) is the
function that you want to expand into a series, find the successive derivatives of
the function, as in the second line under the panel (below the 7 line). Then, find
the value of this derivative when x = 0, which you write in the next line. This
value, divided by factorial n, becomes the coefficient of x” in the expansion. This
number is then written in the last line, and it agrees with the original series (as
derived earlier). When no term exists for a given power of x, the value of that
derivative when x is zero is also 0.

Pursuing the pattern

Now you have a tool to let you expand a function series more quickly. Try the
expansion of (¢ + 1/x)". You run into trouble right away! When x is zero, the
function’s value is undefined. You need another rule: you cannot take just any
function of x. You must choose it so that all values of the function and its deriv-
atives, when x is zero, are defined.

Now, look for a function that fits a need you have found. The derivative is
either equal to or is proportional to its value at each point. It forms the basis for
natural rates of growth or decay. If the slope is upwards, it’s growth; if downward,
it’s decay. In both, the rate of change is proportional to the value at the instant.
This function does not yet have a name.

a+ L)L 2 £(0) = (a +?)
(a+3)

Must use x so that all values of f,,(0) are defined
To find f(x) so that f, (x) =f(x) orf; (x) =—f(x)

f(x) f(x) A
f,(x)
=f(x)
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Natural growth and decay functions

The easiest way to find a series for such a function is to use the method used for
the sine and cosine series in Part 3. Only alternative derivatives appeared in that
final series, here every one does. Equate each successive term in the derived
expansion: first, b = a; then, ¢ = b/2; d = ¢/3, e = ¢/4; and so on. By multiply-
ing the successive coefficients (the function is given by ¢, the constant), outside
of the parentheses, which contain a series that begins 1 + x, subsequent terms
take the general form x"(n!), the nth power of x divided by n factorial.

Try another approach. Expand (a + 1/n)". Show the expansion, while 7 is
still finite, in two forms. However, make » huge and it changes, because n — 1 is
substantially equal to n. All those large n’s cancel, leaving just the reciprocal fac-
torial series, which is the same as f(x), if youmake x = 1 and ¢ = 1.

If you use the binomial expansion of (1 + 1/n)™, and again make n huge, the
expansion becomes the same as f(x) for any value of x, not just x = 1. What
does this expansion show you?

It demonstrates that the expansion of (1 + 1/n)", when 7 is huge, represents a
“number” to which is given a universal symbol, e. If this number is raised to the
power of x, which makes ¢*, you have the function you are looking for. If
f(x) = e* then f'(x) = ¢* also. In the way of writing used earlier, if y = ¢, then
also dy/dx = ¢".

f(x) =a+bx +cx? +dx3 +ex? + x>+

f7(x) = b+ 2cx+ 3dx2+ dex+ 5fx 4+
b=a c=gd=§ e=% £ =2
f(x) =a [1+x+22+ x4 "5+ ]
BINOMIAL APPROACH
(1 N %) Sl M) 1 0= D) 1 a0 Do 20=3) 1
D) CDEDE)

If nis huge,

1) 1,111
(1+rl =1+ ldg4m+ gt

Same as f(x) whenx=1anda=1
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nx

1 I nx(nx—1) 1 nx(nx—1}nx-2) 1 nx(nx-Dnx-2)nx-=3) 1
(1+H) =1+nx -+ =+ 30 —f+ (4’ X )n

) C) ) | )R Em)

+

=1+x+

If n is huge,

XS
(1+ ) —l+x+—+— 4’ 5 +....

Same as f(x)

If(1+ %)nx —e=l+l+t L1,

2 R 5
Then (1 + %)"x SIS P TSNS LV SO SOV

Value of ¢

Calculate the value of e which you can do on your calculator, to more decimal
places, if you wish. Enter | in memory. Dividing 1 by 1 is still 1. Add that into
memory. Dividing by 2 provides 0.5. Add that into memory. Dividing by 3 pro-
duces 0.16666. Add that into memory. Keep dividing by the next higher integer
till you have enough decimal places.

3 L 1666666
t4 L 0416666
+5 5 0083333]|
s6 5, 0013888
+7 ___, 0001984
=8 , 0000248
29 5 0000027
+10___ 5 0000002
=11 . 0000000
27182818

continued
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f(x) = e
=1 +ax+a2)(2+a3x3 a4x4 asxs
2! 3! 4! 5!
3,2 ady3 a5yd
f(X)= a+alx+3X 20X, X,
2! 3 4!
202 3.3 o4 4
= a[1+ax+ax 42X ,ax +]
2! 3! 4!
= ag?

Series for arctan x

As an exercise in using the series from “A pattern to a series,” find a series for
arctan x. First, find the series of functions: f'(x), /”(x) and f'’(x), when
f(x) = arctan x.

If y =arctanx, then x =tany. You already know that dx/dy =1+
tan? y = 1 + x%. So, dy/dx = 1/(1 + x%). that is //(x). From there on it’s easy,
using the quotient formula. Having done a few, you substitute in x = 0.
Arctan 0 = 0. f'(x) = 1. f”(x) is 0 again. /"'(x) = —2, and so on. Writing the
series in the form from “A pattern to a series” and simplifying,
arctanx = x — x° + x7° =X 4 ..

fx)=arctanx  f0=r—5 5 =15 i"z) N =%—13+L1‘2)13)
f(0) =0 £,(0) =1 £,(0)=0 £,0)=-2

£,(x) =—2?1"Erl ;j;j ) £ () =2 (1(1 10222; 2

£,(0)=0 £,(0) = 24

£(x) = x-%x%% X5 .. = x_"—;+§

Concept of logarithms

From this point on, we introduce two alternative symbols for e: the lower case
Greek epsilon (€) and the Arabic "ayn (€). You should get used to seeing these.
The inverse function of y = €* has some unexpectedly useful properties. To
keep up with the convention of making x the independent variable and y the
dependent, start by writing the equation the other way: x = €. The inverse of
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this equation is read, “y equals log to the base € of x.” “Log” is short for the word
logarithm, a word that is derived from the Greek that means “words about num-
bers,” the study of numbers. The “arithm” part is also used in “arithmetic.”

What the statement means is that to obtain x, € has to be raised to the power
y. Thus it is the exact inverse of the statement x = €”: the same fact, stated the
opposite way, starting at x to find y, instead of vice versa.

No simpler way exists to define a logarithm. A better understanding of what
logarithms are comes from using them or applying them in mathematics. The
graph shows values of x corresponding to values of y at 1, 2, and 3. Logarithms
allow you to calculate values of y for values of x between 1, 2.7183, 7.3891,
20.085, etc. Having calculated such inbetween logarithms to any required accu-
racy, multiplication and division can be replaced with simple addition and sub-
traction, and indices can be replaced with simple multiplication and division.

x=gY
0 1 Inverse y = log_x
orlog x =y

If log x=m eM=x
log y=n g" =y
xy=8m+n

loge xy =m + n ..o i

Similarly logE

A gap in the series of derivatives

At the top of the next page, the functions of x are listed in the form f(x) = ax”
with their derivatives in the form f’(x) = anx""'. The table is plain sailing for
positive values of n and for negative values of n. You can even go down to frac-
tional values of 7, positive and negative, but a gap shows up in the sequence of
derivatives at n = 0. As the derivative’s coefficient gets near zero, its index
approaches —1, but it never gets there!

Here is a derivative with no function for it to belong to: /'(x) = 1/x. But what

is f(x)?
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n f(x)=ax" f (x)=anx""'  Another Approach
1 ax a Needed
2 ax? 2ax
3 ax? 3ax?
-1 a/x -a/x?
2 a/x? —2a/x3
-3 a/x3 —3a/x*
0.5 a/x /2 1/2ax 1?2
—0.5 ax-1/2 —1/2ax-3/2
0.1 ax 01 0.1ax0¢
Coefficient

f(x) = coe x° f (x)=1/x

0 approaches zero

What is ?

Logarithmic function in calculus

Start with the inverse function: x = ¢”.You can differentiate this function, giving
dx/dy = € = x: that is how € was defined. The reciprocal of that is what you
were looking for: dy/dx = 1/x.So,if x = €’,then log, x = y.That is the missing
function in the series.

However, applying Maclaurin’s series to this one sets a problem because /(0)
is undefined. The logarithm of a number is the power to which € must be “raised”
to produce that number. You need some other way to find this series.

If x=¢ 3 =¢'=x Another Approach
y
Needed
dy _1
dx X
Logex =y
f(x) = log,_x f, (x) =%
1 1
f(x) = log_x f,(x) = f(x)=- 22
f(0)=-2? £,(0)=? £,0)=-2
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Functions of ¢

You calculated a series for € and €' in the section, “Natural growth and decay
functions.” It represents natural, or exponential growth (or decay). As x increases
in linear increments, €* increases in exponential increments: its rate of growth is
proportional to itself, €. Fairly obviously € *, which is the same as 1/¢", yields
the same series of terms, but with signs alternately changed to plus and minus.
You can find this by substituting (—x) for x in the series.

You can also find the series for €™ and € ™ by making a similar substitution
in the original series. Here, you have evaluated the terms for the —x series for a
short distance.

2 3 4 5

x_ © X XX
8—1+x+2!+3!+4!+5! +....
2 3 4 5
x4 XX XX 2 _
— € =1 x+2! 3!+4! ! +o... 1'=—1
%] .
1'=-—-1
, 2 ] 4 'L 5
e¥=1+ix-L B L X )
207 31 T 417 5 ‘= 1
3 4 L5

dx_ g . X0 X7 Xt ix
e I THL TRl i

g~ ':||+ terms — terms
1.0 1.0
0.5 0.16666667
0.04166667 0.00833333
0.00138889 0.00019841
0.00002480 0.00000276
0.00000028 0.00000002

1.54308064 1.17520119
1.17520119 !
£ '="0.36787945

Relationship between exponential
and trigonometric series

Did you notice the similarity between the series for sine and cosine, and the expo-
nential series in the previous section? If you multiply sin x by Z every term in the
series is multiplied by i Now, you can put these together so that € consists of
cos x and i sin x added together, and that e ™ consists of cos x — i sin x.

You can turn that equivalence around by simply adding and subtracting
those equations and dividing them by 2. So, you have a family of exponential
functions. The real series is representative of exponential growth and decay.

Imaginary series combine to make the series for sine and cosine.
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3 5 2 4

i = . SN S =1 X _

SINX =x-— 30 + gy cosx =1 N + a0
fy 3 .

iy o iy X0 I
ISINX =1X — 3 + g T

iX . "
€ =cosx+isinx g~  Exponential growth
€ =cosx —isinx e*  Exponential decay
cosx = £ +e™ g™ | Both combinations

2 and - of real and imaginary

) gi* _ g-ix . trigonometry (sin and cos)

SX == €™ J functions

Convergence of exponential and trigonometric series

The term in these four series are all the same: only the pattern of signs changes.
So, from term to term, each will have the same rate of convergence. Here, to
show how rate of convergence changes with values of x, successive terms are tabu-
lated. The bigger x is, the further into the series expansion before the terms turn
to converge. Notice that, whatever finite value x has, the series eventually begins
to converge.

et e . X x X x’ x8
g=ix 2! 3l Py 51 6!
x=0 0 0 0
x=1 0.0416 0.0083 0.00133
x =2 0.6 026 004
x =3 3375 2025 1.0125
x=4 1 4 8 853 568

Significance of exponential series

To see what the series do, the example at the top of the facing page shows a succes-
sion of plotted terms, both for € and € *. In the first, adding successive terms
sweeps the curve upward, and each term brings in further curvature when the
preceding terms are inadequate to reach the exponential.

Inthe negative series, the effect is more easily seen. Alternate terms, by them-
selves, pull the curve alternately up and down, but the overall effect is an exponen-
tial decay curve. Study these curves and pursue the series further, if you wish.
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Significance of "

Following the same method for €, real and imaginary terms are plotted sepa-
rately (see figure on top of page 402). The first real term is a constant. Successive
terms pull the curve up and down, approaching something that looks like an
expanding sine wave.

The first imaginary term (second term of the series) is a linear upward slope,
which represents the beginning of a sine wave. Beyond this slope, the combination
is similar to the real terms.

Remember that the real and imaginary terms are quite separate entities in
the complex quantity. If you could visualize them in the complex plane, the effect
would be rotational—especially if you could combine positive and negative ima-
ginary series, according to the formula in, “Relationship between exponential
and trigonometric series.” However, the imaginary terms can be isolated as a
series by adding the conjugate series, which is what the formula does.

Complex exponential functions

Functions, such as €' or ¥ ™, are complex exponential functions in the sense

that the exponential base (¢) is raised to a power or uses an exponent that is part
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Significance of €*

+5

Complex exponential functions

Real
of

g2t =g ¢® = ¢ (cosb + isinb)
a-ib _ La L-ib_ ,a L.
€ =g € =g (cosb —isinb)
a+ib a—1ib
£—+__8........__ = ea cosb
2
Real part of £**™ or € is €*cosb
at
part g - € | Cosmt
Exponential Sine-wave
Coefficient Curve
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real, part imaginary (see figure at bottom of page 402). These numbers should not
be confused with imaginary functions of ¢, such as €, which are complex quanti-
ties or complex functions of x, but are not complex exponential functions of x.

Notice that the conjugate pairs of complex exponential functions can be
combined to produce a real function. The writing can be simplified by assuming
the conjugate to be used to obtain the real function, but instead using only one
of the pair with the words, “the real part of.”

Whichever method of expression you use, the complex exponential function
(either a conjugate pair of them or the real part of one) is a convenient way to
represent a sine-wave curve with an exponential coefficient.

Complex p plane

The complex p plane is the significance of the real part of the complex exponen-
tial function or of the conjugate pair. The envelope lines at top and bottom follow
equations: €' and —e*'. Between these amplitude boundaries, as amplitude mar-
kers, is the expanding cosine wave of stated angular frequency. Angular fre-
quency, using the symbol lower case Greek omega w, is 2w times periodic
frequency.

At the right is the concept of a complex p plane. With axes —a and +a, hori-
zontally, and positive and negative i times angular frequency vertically, the
plane accommodates the complex quantity p = a + iw. The quantity pertinent to
the problem under study is not p itself, but €”. Used this way, the plane represents
exponents of €, and is called the complex p plane.

+10

Real part of

(a+iw)yt

£

at

Negative real
components ()

< ﬁ decay

Positive real +a
components —

growth ::: >

real frequencies (cos ® t)

Image

3
I

For €” wherep=a+i®
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Points on the horizontal axis represent real exponential functions: to the left
for decay, to the right for growth or expansion. Points on the vertical axis are ima-
ginary exponential functions and represent (in pairs, at equal distance from the
origin, above and below) real frequency of unchanging amplitude. Conjugate
pairs of points, located in upper and lower quadrants to the same side of the ver-
tical axis, represent exponentially decaying (left side) or growing (right side)
sinusoids, similar to the one at the left, which would be to the right.

Complex frequency plane

To engineers, the complex p plane is not very “real.” On it, growth and decay are
real elements, and frequency is represented by conjugate imaginary elements. If
performance is analyzed in terms of frequency, it might be more convenient to
regard frequency as a real quantity. To do this, rotate the plane through 90 degrees
by writing p = a + iw = iq. Now, ¢ = —ia. The plane so formed can be called a
¢ plane, from this derivation, or because of its purpose, the complex frequency
plane.

Real frequencies always appear in pairs (positive and negative) of equal
value. Formulas for resonance always involve a solution in the form 2 or %
which always, mathematically, has equal positive and negative roots. In the ¢
plane, simple exponential growth or decay is shown by single imaginary values
on the vertical axis, above or below the horizontal axis. Growing or decaying
sine waves are presented by conjugate pairs, to right and left of the vertical axis,
in which, for this presentation, conjugate has a slightly different significance. The
usual conjugate pair has a real pair of the same sign, with the imaginary pair of
opposite sign. In this use, the imaginary pair have the same sign and the real
pair have the opposite sign.

Ifp=a+io=iq gq=w-ia

Quantity q is in complex frequency plane

S
T 5
=

Image real &) Real frequency
frequency S
(negative) l 8
Q

Hyperbolic functions

The trigonometric functions, such as cosx and sinx, represent an angle in
radians, stated in circular measure. In this measure, 27 radians represent a com-
plete rotation (360 degrees). This relationship is easy to visualize.
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To complete the pattern, just as cos x is equal to a complementary pair of
imaginary exponential functions (so is sin x), you need functions that consist of
complementary pairs of real exponential functions. To correspond with normal
circular measures, these functions are called hyperbolic cosine and hyperbolic
sine. Following the trig ratio pattern, a hyperbolic tangent also exists. These use
the symbols or abbreviations, cosh, sinh, and tanh, adding the / to represent
hyperbolic. In reading, they are pronounced “cosh,” “shine,” and “tank,” which
area easier to pronounce.

These functions are hyperbolic because the ratio is measured along the curve
of a hyperbola, instead of around a circle. Notice that however large a hyperbolic
“angle” becomes, it remains in the same quadrant, unlike the circular measured
angle, which rotates through four quadrants. NOTE: in this diagram, rotation is
drawn the opposite direction from the usual convention for space reasons only.

ix —ix
sinh ¢ COSX = E—;e—

eix _ S—ix
2
X —X
coshx = & ;E

. gX_gx
sin © [a} sinhx = 3

isinx =

2 L4 L6
coshx =1+ +2 %X o .
21 4t 6!

3 x5 7

sinhx =x + -+ 2 4% 4
3t 5 7!

Real ————>

cos0
cosh¢

¢ is HYPERBOLIC angle
EQUIVALENT in £% to
Imag. —> REAL angles 0, real part
0 I of £




406 Making series do what you want

Questions and problems

1. Refer to the following drawing. This is a hypothetical graph of the energy
remaining in a small storage battery with the passage of time. Note that the ver-
tical scale is not linear, but is logarithmic. As a result, the exponential decrement
curve appears as a straight line. This is known as a semilog graph and is common
in scientific and engineering applications. Given the values assigned to the three
points shown, and the fact that the decay function is exponential, find the actual
decay function, letting x represent time and y represent energy remaining in the
battery.

Energy,
watt-hours

1.0 & (0.00, 1.00)

For Problems 1 and 2,
Chapter 23

(1.00, 0.135)

0.1 T
0.05+
(2.00, 0.0183)
0.01 } } } } } } } } } i
0 1 2

Time, hours

2. Given the function you obtained in problem 1, calculate the energy remain-
ing in the battery after the following elapsed time periods. You can use a calcula-
tor. Express your answers to three significant figures.

(a) 10 minutes (b) 30 minutes
(¢) 90 minutes (d) 3 hours

3. Write out, and calculate, a series for the value of e to five terms. Express your
answer in decimal form to four significant digits.
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4. Write out, and calculate, a series for the value of 1/e to five terms. Express
your answer in decimal form to four significant digits.

5. Write out, and calculate, a series for the value of e to five terms, where jisthe
engineering expression for the square root of — 1. Express your answer in decimal
form to four significant digits.

6. Write out, and calculate, a series for the value of 1/e” to five terms. Express
your answer in decimal form to four significant digits.

7. Refer to the following drawing. This is a graph of the radioactivity in the soil
following the detonation of a hypothetical nuclear bomb. The half life, or the
time required for the radioactivity level to fall to 50 percent of its initial value, is
one million years. The decay curve is approximately plotted on a log-log graph,
which is common in scientific and engineering applications. Write down a func-
tion that depicts the curve shown. Let the percentage of radioactivity remaining
be represented by ), and the time in millions of years be represented by x.

Percentage

of radioactivity
remaining

100 7o

50T
For problems

7,8, and 9
in Chapter 23

10t

1 t f—
0 2 5 10
Time, millions of years

8. What percentage of radiation remains after:

(@) 2,500,000 years? (b) 5,000,000 years?
(¢) 7,000,000 years? (d) 10,000,000 years?
(e) 20,000,000 years?

NoTtE: The corresponding points on the curve might not all be shown on the
graph. Express your answers to four significant digits.
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9. After how many years will the following percentages of radiation remain?

(@) 10 percent (b) 5percent
(c) 2 percent (d) 1 percent
(e) 0.1 percent

NotE: The corresponding points on the curve might not all be shown on the
graph. Express your answers to two significant digits.

10. Write out, and calculate to four terms, the series for the following hyperbolic
cosines. Angles are in radians. Express your answers to three significant digits.

(@) coshl (b) coshm/2
(c) cosh?2 (d) coshn

11. Using the exponential formulas on page 405, calculate the hyperbolic
cosines of the following angles in radians. Express your answers to five significant
digits.

@) 0.5 (b) 1.0
© 2.0 d 4.0

12. Write out, and calculate to four terms, the series for the following hyperbolic
sines. Angles are in radians. Express your answers to three significant digits.

(@) sinh 1 (b) sinh /2
(c) sinh2 (d) sinhx

13. Using the exponential formulas on page 405, calculate the hyperbolic sines of
the following angles in radians. Express your answers to five significant digits.

@) 0.5 (b) 1.0
© 2.0 d 4.0



CHAPTER

The world of
logarithms

Logarithmic series

Maclaurin’s series cannot be used to find a series for log x, so another method
must be found. The first step, yielding a basic logarithmic series, changes the vari-
able, a step which is very useful as you proceed into more involved mathematics.
Instead of using log x as the variable, use log(1 + x), which produces finite values
for successive derivatives when x = 0. So, you return to Maclaurin’s series.

1
fx)=log.x f,(x) =3

1
Use f(x) =log (1 +x) fi (0 =7+ f(0)=1
£(0)=log, 1=0 o1 -
o (0) =log, LO=-T s hO=-1
e=1 f 2 f,(0)=2
X) = =
W=t (O
f,(x)=—2% f,(0)=—6
1+x* °
_ . x*, 2x3 e6x*
log (l+x)—x—2! ?'__T .......
_. ox2 . x3 x* xS
- —2 3 - 4 ? -------
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When the coefficients are simplified by dividing by the factorial number
series, they are a sort of harmonic series that doesn’t converge very rapidly.
Numerators are successive powers of x, and denominators are the simple number
series, not the factorial.

You'll want logs of numbers bigger than 2. Here, the rate of convergence is
shown in finding log 2 by this method. Two things slow its convergence: the only
diminishing factor is essentially a harmonic series of the integral number recipro-
cals. It straddles the ultimate value, which means it has to converge much further
to reach its ultimate value.

Find Log 2
onaei- b bob bl
1 ——>0.7833
- 05 ~ 0.1667
0.5 0.6166
+0.3333 +0.1429
0.8333 0.7595
— 0.25 - 0.125
0.5833 0.6345
+0.2 +0.1111
0.7833 0.7456

There must be a Quicker Way

Logarithmic series: modified

Here is a trick that logarithms are made for. If you modify the variable again,
using (1 4+ x)/(1 — x), by the principles of logarithms, the log of this variable
will be the log of (1 + x) minus the log of (1 — x).

First, the series of log(1 — x) was a succession of powers of x divided by the
harmonic succession of integral numbers, alternating in sign. The series for
log(l — x) uses the same numerical terms, but all the signs are minus.
Remember, you're going to subtract it from log(l + x), which turns all those
minus signs positive in the final value.

This method does two things: it knocks out the even powers of x and com-
bines them. The series is contained in big parentheses, multiplied by 2.

To show how much more quickly this series converges, use it to calculate
log 2, which by the first method would take forever. Make (x + 1)/(x — 1) = 2.
That’s another variable change. Solving that equation, the variable in the series is
not I, but 1/3. Since every other term has dropped out, successive terms diminish
by x° (or 1/9). This ratio results in much quicker convergence. It converges so
rapidly that only 4 terms are now needed to obtain log 2 to 4 places of decimals.
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-1
f(x)=log . (1-x) f®=1= f,@=-1
-1
f(x)= O)=-1
f3(x)=‘—i f,(0)=-2
(1—X)3 3
£, (x) =_=6 f,(0)=—6
(1——X)4 4
x2 2x3 6x*
loge (120 ==X =51~ 51 ~ar -
oy X xf
2 3 4
logsitx log,(1 + x) - log,(1 - x)
2 3 4 5
_x Xy oxtx’
2 3 4
P SH. SO SO SO
2 3 4 5
3 5
=2[x+x—+x—+ }
5
For log 2 1+x _, 1+x=2(1-x)
1-x
Ix=1
x=1
3
_ 1 1(1)3 1(15 1 1)7
Log.2 = 2[3+33 t5\3 +73+
| >.6666 |667
>.0246 (914
6913581
>.0016 |461
6930[042
0001 306
Much Quicker Convergence 69311348
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Calculating logarithms

Here you calculate two logarithms to find a comparison in convergence rate. To
calculate log 1.1, make x = 1/21. Successive terms now converge by more than
400 : 1. Three terms of the series produce the log correct to six decimal places.

As you already saw, to calculate log 2, x = 1/3, so convergence is about one
decimal place for each extra term. For accuracy to six places, seven terms are
required.

Now try log3; x = 1/2. The series converges much more slowly, but try
another way. You've already “done” log 2. Log 3 =log 2 +log 1.5, because
3 =2x1.5.S0,find log1.5and add it to log 2. Log 1.5uses x = 1/5 and it con-
verges faster than log2 did. Now you have a quicker reliable 6-figure value
forlog 3.

Log 1.1: x- 1.1 x=21
1 11N 1£1Y%
Log 1.1=2 2 + g(ﬁ)+g(2—l + :|
L e
| > (095238 |1
Log2 =2 —l
Bes = 3 666666 |7
1 (1)3
3\3 024691 |4
L1 (1)5
5\3 001646 |1
L1 (1)7
7 \3 000130 16
L1 (1)9
9 \3 .000011 13
.,,l (1)11
11 \3 .000001 {0
+1 (1)13
13 \3 .000000 |1
693147 12




The world of logarithms

Ly, 1Ly
L0g€3—2|:2+3 > +5 > +

Much slower
convergence than
loge 2

Log 3: ii‘:-—& x=%
BB
2 3 = 1.000000
1£1\3
+1(L = 083333
3(2
e\l
+5 (2 = .012500
11\
+7(2 = 002232
1 £1)?
5 (5) = 000434
11\ _
: 1(2 = 000088
1 1 13
+13(2 = 000018
Ly Log,2 693147
) % 400000
+1(l 3 005333
35
+l(l 3 000128
55
+1 1)7 000003
75
1£1)°
(1 .000000
i 5)
Log,3 = 1.098612

Log 3=Log.2+Log, 1.5

Log 1.5 x=%

3 5
Log 1.5 =2|:%+%(%) + %(%) + J

413

]

In the example at the top page 413, you tackle finding all the logs for integers
up to 10. Notice the short cuts you can take. Log 4 is twice log 2. You can derive
it either from 4 = 2 x 2 or from 4 = 22. Log 5 is log 4 + log 1.25. Log 6 is log
2 +1log 3. Log 7 islog 4+ log 1.75. Log 8 is 3 times log 2 because 8 is 2°. Log 9 is
twice log 3 because 9 = 3% Finally, log 10 is log 2+ log 5.
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Log .4 = 2log.2 1.386294
1

Log 5 = log 4+log 1.25 x=—9- 1.609438

Log 6 = log.2+log,3 1.791759
3

Log 7 = log 4+log 1.75 X=1 1.945910

Log 8 = 3log. 2 2.079441

Log,9 = 2log 3 2.197224

Log 10 = log 2 +log 5 2.302585

Common logarithms

Although all logarithms must be calculated in their basic form to the base e,
sometimes called hyperbolic or Naperian logarithms (from the name of the dis-
coverer of logarithms), they are generally called either natural logarithms or log
base e.

Log ,x=y x=10" Log 10=t e'=10

So x=(e'Y=eY Logx=ty

So Logwx = Log,x

Log.10
Log 2: Log 3:
—10 301030 —10_ 477121
2.302585 6931471 2.302585 [1.0986122
6907755 9210340
23716 1775782
23026 1611810
690 163972
691 161181
2791
2303
488
461
27

- = 23
Log 10=1 Log 100=2 Etc. 2
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If logs used base 10, then log 10 to base 10 is 1. You change the base by divid-
ing the natural logarithm by log 10. The resulting figure is the same number’s
logarithm in base 10.

Using logarithms: multiplication and division

Most students of this edition will use logarithms from their pocket calculator—
it’s so much easier than using tables. A calculator that provides logs has both
kinds, natural and common. The key for common logs is marked /og and the one
for natural logs is marked /n. Both are useful.

The examples on this page were prepared from 4-figure log tables. Your cal-
culator probably lists more figures than the tables did. On my calculator, I enter
log 32 and get 1.505149978; 256 produces 2.408239965. Adding them is
3.9133889944. Using the shift, which reverses the action, the answer is 8192
exactly!

The last example shows another difference with tables. The table only gave
the mantissa—the decimal part. You had to insert the characteristic—the whole
number to the left of the decimal point that tells where the point is in the number
itself. 0.0969 is the mantissa (in 4-figure tables) for the digits 125. The bar over
the 1 indicates that the characteristic is negative. So, the log is —1 + 0.0969. My
calculator reads —0.903089987. However, if 1 enter 1.25 instead of 0.125, it
reads 0.096910013. If the number is larger than 1, the mantissa doesn’t change;
only the characteristic changes as the decimal point shifts.

Multiplication 56 X 35 = 1960

I Log 35 =1.5441
Log 56 =1.7482

Log 1960 = 3.2923

Division 1224 - 36=34
|

Log 1224 = 3.0878
Log 36 =1.5563

Log 34 =1.5315

But 256X 32=8192 Log32 =1.5051
Log 256 =2.4082

39133

Log 8192 =3.9134

64 X 0.125=8

' Log 64 = 1.8062
Log 0.125 = 1.0969
— Log 8 =0.9031

|——1—1—0
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Using logarithms: indices

Here again, the examples on these two pages were prepared from 4-figure tables.
A pocket calculator can find the answers far more accurately. In fact, most calcu-
lators have one key, x”, which saves the use of the log key altogether. However,
just look at this page and “work it over” with a calculator.

Log 12 reads 1.079181246. x 3 makes it 3.237643738. Using the shift and log
produces 1728 exactly. Enter 12 again. Press x”, then 3, and =. The calculator
reads 1728 again.

In the next example, log2 is 0.301029995, the correct answer again.
However, entering log 1024 lists 3.010299957 one more place.

The previous pages used logs or the x” key where the indices were fairly
obvious. Sometimes the answer isn’t that simple. Here’s one: 35%°. Doing it by
calculator logs: Log 35 = 1.544068044. Times 0.8 = 1.235254435. Shift
log = 17.18915135. Using the X’ key produces the same answer.

You could also calculate it by binomial expansion and take it further, if your
calculator is equipped with adequate memory and paren features. You needn’t
recalculate each term. After the second term, you can multiply/divide by the
additional factors. For example, to get the third term from the second, multiply
by 3 and divide by 320, and so on. This series converges very rapidly.

INDICES 12°=1728 Log 12 = 1.0792

X 3
3.2376
Log 1728 = 3.2375

1
1728° =12 Log 1728 = 3.2375
+3 1.0792 (nearest)
Log 12 =1.0792

Six-Figure Log 2 = 0.301030 210=1024 Log 2 =0.3010
X 10 X 10

3.010300 3.0100

Log 1024 = 3.0103

1
102410=2 Log 1024 =3.0103

=10 03010

Roots are more accurate than powers

1 —
0.06254=0.5 Log 0.0625 = 2.7959 N
+4=1.6990 4 Borrow 2

Log 0.5
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35% By Logs Log 35 = 1.5441
X 0.8 =1.2353
Antilog 1.2353 = 17.19

By Binomial Expansion

4, 1 4,1, 6
a5 _ 4.1, 5 5,1, 5. 5 5,1,
(32+3)%= 16 + ge503 + Zo=ee9 4 25 0a5° 27
W.J LW_J § ~ J \ v y
e |
+ 12 <
17.2
~_0.01125 <
17.18875
+_0.00042 <
17.18917
50'° By Logs Log 50 = 1.6990
X 1.5 =2.5485
Antilog 2.5485 = 353.6
By Binomial Expansion
@9+ D' = 343 +15.7.1+ 22931 15005705 1
WJLVJ‘2Y7'L3.2Y343’
343 %—l
+ 10.5 <
353.5
+ 005357 <
353.55357
- 0.00018 <
353.55339 [353.5534] Logs agree to four figures

In this one, 4-figure logs are rather limited. Using the same calculator, either
with logs or the x” key, the result is 353.5533906. The choice of binomial expres-
sion produced all except the last two digits with only 4 terms.
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Of course, your calculator won’t pick up a binomial series for you. That’s just
an exercise to show that the binomial works to check your calculating. How does
the calculator do it? It has built-in programs that run the log series—so fast it
will read an answer in a fraction of a second. Remember, it works in binary,
even though it keeps track of decimal digits. It’s fast, but you have the brains!

Using logarithms with a formula

The formula here relates pressure and volume in the physical expansion and com-
pression of a true gas. It is typical of many application formulas. The quantities p
and v are variable. k and index n are both constants. In this tabulation, £ = 1000
andn = 1.4.

Tabulate values of v from 10 to 30 (assuming this covers the range needed in
our specific problem) and use logarithms to calculate the corresponding value of
p (in the last column). The 3rd column lists values of 0.4 log v as an aid in finding
1.41log v. Tabulating with this method made the work easier before the advent of
calculators.

pv'=k | n=14 k = 1000 p=k/NV"

v Logv 04Logv 1.4Logv 3-1.4Logv Antilog

10 1.0000 0.4000 1.4000 1.6000 39.81
12 1.0792 0.4317 1.5109 1.4891 30.84
14 1.1461 0.4584 1.6045 1.3955 24.86
16 1.2041 0.4816 1.6857 1.3143 20.62
18 1.2553 0.5021 1.7574 1.2426 17.48
20 1.3010 0.5204 1.8214 1.1786 15.09
22 1.3424 0.5370 1.8794 1.1206 13.20
24 1.3802 0.5521 1.9323 1.0677 11.69
26 1.4150 0.5660 1.9810 1.0190 10.45
28 1.4472 0.5789 2.0261 0.9739 9.417
30 1.4771 0.5908 2.0679 0.9321 8.553

iR p AT

200 2.3010 0.9204 3.2214 1.7786 0.6006
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The 4th column subtracts from 3, which is log 1000. To do this on a calcula-
tor, you have a choice: use logs or the x” key. Either way, you have a twist to get k
into it. If & was other than a power of 10, it would complicate matters a little.
One method is to use the 1/x (reciprocal) key, then multiply by 1000 (or whatever
k is).

Finding the law by logarithms

Here, the process of the previous section is reversed. You know that a few pairs of
values for v and p relate, according to a law of the type: pv” = k.This shows how
it was done by logs, again before the advent of calculators. You can use your calcu-
lator here, but the option of using the x” key is not so easy; using the log key is
easier.

Take the logs of the p values: 1.361727836 and 1.176091259. Subtract, getting
0.185636579. Take the logs of the v values: 1.176091259 and 1.301029996.
Again subtract: 0.124938736. Divide the first subtraction by the second:
0.185636579/0.124938736 = 1.485820827, the value for n This calculation
involves use of your calculator’s memory or a scratch pad. Realize that all those
digits are unnecessarily “accurate.” The numbers you began with are probably
only accurate to 2 significant figures.

P (23|15 Findnandk inpv" =k
V| 15|20 Logp+nlogv=Ilogk

(1) 1.3617+1.1761 n=logk
(2) 1.1761 + 1.3010n=logk
Subtract 0.1856 - 0.1249n=0

0.1856
= =148
T T2a9 T ==
Log 1.3010 =0.1142
Logn =0.1720
0.2862 1.1761 + | 1.3010 n
r
Antilog = 1.933_J =1.1761 + 1.93\},3 =3.1091 =log k

Antilog: k=1285
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Questions and problems

1. Refer to the following drawing. These functions are graphed on a log-log
scale. Redraw approximations of the functions on a semilog scale (with the x
axis linear and the y axis logarithmic). Choose scales that are reasonable for the
angle of values in each case.

y (5,1000)

l
T T LI}

D

(=]

[
1
T

(10,500)

(10,200)

For Problems 1 and 2, Chapter 24

2. Redraw approximations of the functions of the above drawing in rectangular
coordinates. Choose scales that are reasonable for the range of values in each
case. The scales need not be the same on each axis, but both axes must be linear.

3. Refer to the following drawing. These functions are graphed in rectangular
coordinates. Redraw approximations of the functions on a semilog scale (with
the x axis linear and the y axis logarithmic). Choose scales that are reasonable
for the range of values in each case.

4. Redraw approximations of the functions of the above drawing in log-log
coordinates. Choose scales that are reasonable for the range of values in each
case. The scales need not be the same on each axis, but both axes must be log-
arithmic.

5. Using the formula log;, xy = log;, x + log;, », find the following products
by adding numbers. You may use a calculator. Express your answers to three sig-
nificant digits.

@) 5.44 « 3.67 (b) 10.5 + 0.567
(©) 36.7 « 2.56 (d) 0.987 « 0.822
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(50,10) (100,10)

(100,4)

For Problems 3 and 4, Chapter 24

6. Using the formula log;,x" = ylog;,x, find the values of the following
expressions to three significant digits. You may use a calculator.

(@) 544> (b) 10.5"
© 36.7%% (d) 0.987°8%

7. If natural logs (base-¢) were used instead of base-10 logs in the calculations
for problem 6, would the results still be valid?

8. If base-7 logs were used rather than base-10 logs in the calculations for
problem 6, would the results still be valid?
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CHAPTER

Mastering the tricks

Trigonometrical series: tan x

Perhaps you can find a series for tan x but aren’t sure it’s right because the succes-
sive derivatives include such long and involved terms. Well, now you can check
your result. This section works the first four terms.

Each successive derivative is found from the previous one by using the func-
tion of a function formula. In each line, first the derivative is found as f(tan x),
then it is multiplied by the derivative of tanx as an f(x), which is always
(1 + tan® x). Thus, the last factor is always multiplied by the longer factor as a
simple algebraic product, again differentiated as f(tanx) and the factor
(1 + tan® x) is appended. This process is more tedious than difficult.

f(x) = tanx

f(x) = tanx f0)=0
fi(x) =1 + tan?x f(0)=1
f,(x) = 2tanx (1 + tan?x) £,(0)=0
£4(x) = 2(1 + 3tan?x) (1 + tan?x) £5(0) =2
f,(x) = 8(2tanx + 3tan’x)(1 + tan2x) f,(0)=0
f5(x) = 8(2 + 15tan?x + 15tan*x) (1 + tan?x) f5(0)=16
fo(x) = 16(17tanx + 60tan3x + 45tan’ x)(1 + tan2x) fs(0)=0

f(x) = 16(17 + 231tan®x + 525tan*x + 315tan®x)(1 + tan2x) f7(0)=16+17

NG SN SUNS V5. N
tanx—x+3+ 15+315+

422
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Series for sec x

The series for sec x method is similar to the working that you did for tan x.
However, the zero and finite terms, when equating the derivative to 0, alternate
with those for tan x. Because the first derivative of sec x can take the product
form, sec x tan x, sec x is a factor of every derivative. Still, it is simpler to write
the rest of the factors in terms of tan x and its powers.

The second derivative is found from the product formula, where u is sec x and
vis tan x. Following derivatives must be treated first by the function of a function
formula and then completed with the product formula.

f(x) = secx

f(x) = secx fl0Oy=1
f,(x) = secx tanx f,(0)=0
f,(x) = secx (1 + 2tan’x) £0)=1
f3(x) = secxtanx (5 + 6tan?x) f:(0)=0
f,(x) = secx (5 + 28tan?x + 24tan*x) £,(0)=5
f5(x) = secx tanx (61 + 180tan®x + 120 tan*x) f5(0)=0
fy(x) = secx (61 + 662tan?x + 1320tan* x + 720tan®x) f(0) = 61

2 4 6
secx =1 +%!+STX!+%+

Series for arcsin x, arccos x

You already found a series for arctan x in chapter 23. The series for arcsin x and
arccos x are found in the same way (as shown at the top of page 423), but they
are not quite so simple as the one for arctan x because the derivative is not quite
so simple. The denominator always contains (1 — x°) with an exponent that has
an odd half, but the method is exactly the same. When the sine is 0, the angle is
0, and no constant term is in the arcsin series. As with other trig series, alternate
terms have zero coefficient.

For the arccos series, the angle whose cosine is zero is 77/2 (commonly called
90 degrees). So, the series has a constant term of precisely this value. After that,
the only difference from the arcsin series is that the following terms all have nega-
tive signs. The arccos is simply /2 minus the arcsin. You should have known
this, but it’s interesting to have the math prove it for us!
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f (x) = arcsinx

If y = arcsinx
X = siny

d
g)—izcosyz'\/ 1 -sin’y=+/1-x d—y _ 1
X

dy

= i = ; 5 7
f(x) arcsinx f(0)=0 arcsinx = x + % +95_x' +2275'x +
=== fO=1 s e
X TR SO SN SN
X 6 40 2
fz(x)=(172)3/2 £, 0)=0
~ T
1+2 %2 rccosx:  f(0) ==
f,x)=—F+=X_ fO)=1 2
3(x) (1 — X2)5/2 3( } dy |
_9x+6x%3 _ dx v 1-x?
f,00 =555 f,0y=0 3 5 7
(1-x%) arccosx =F_x_ X2 _3x° 5x7
9 + 72x %+ 24x* 2 6 N 1k
_ X X —
f500 = =250 B60)=9
3 5
£ (x) = 225X+ 600x >4 12087 4 ()

(1 _XZ)l 1/2

225 + 4050x >+ 5400x 4+ 720x 6
(1- x2)l 3/2

f,(x) = £, (0) = 225

Convergence of a series

The basic binomial series showed how to assess the convergence of a series (see
“Calculating logarithms” in chapter 24). There you used a specific series to find
a certain quantity, rather than using a general series to find a function. The con-
vergence here concerns the range of values for the function, for which the series
does converge, or for which it can be used.

Notice the ratios between successive coefficients in the €* series. They are the
harmonic series of whole numbers, which eventually reach infinity (at infinity).
However large x is made, provided it is still finite, the series will eventually
converge.

In the basic log series [for log(1 + x)], the ratio between successive coeffi-
clents is a fraction that has its numerator, the denominator of the next earlier
term and as its denominator, the numerator of the next term. As the series
approaches an infinite number of terms, this ratio becomes 1 (i.c., the coefficients
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cease to converge). So, the only way that this series can converge indefinitely is for
x tobe less than 1.

In the modified log series, the coefficients again approach unit ratio.
Although the condition for continued convergence is still that x must be less
than unity, the quantity for which you are finding the log is: (1 + x)/(1 — x),
which reaches infinity only when x reaches unity. So, this series can find logs up
to infinity.

Here, we use the term “infinity” in a non-rigorous way, representing it by the
symbol oco.

2 .3 4 o0
Loge*=1l+x+2+24%4 .. + =
21 3 4 ool
Y'Y Y VY Y
Coefficient 1 1 1 1 1 1
ratios 2 3 4 5 oo

Converges provided | X <eo

3 .4 oo
L 1 =x— gy R, "f'i
oge(l+x)=x ) + 3174 + o
Y Y YV Y \%
Coefficient 1 2 3 4 2! =1
ratios 2 3 4 5 oo LT

Converges provided | x <lor(l +x)<?2

1_+_X)_ [ x5 X x_°°:|
Log, T—x =2 R L R -
Y Y V¥ Y
Coefficient 1 3 5 17 0o—2 (=1]
ratios 35 7 9 o T
Converges provided | x<1or
1+x)<°°
1-x

A useful conversion

Chapter 23 showed that the exponential function with an imaginary index is
identical to a complex quantity that consists of a real cosine term and an imagin-
ary sine term. This fact can be used more easily by writing the imaginary expo-
nential function in simpler form, represented by y. Be careful to remember that
y is never a simple quantity, but always a complex one of the form €. Similarly,
1/y is its conjugate complex quantity, € ™.
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After identifying cos x in the form: 1/2(y + 1/y), and sinx in the form:
(1/2i)(y — 1/v), notice the €™ is the same as )" and e ™ is the same as 1/,
and the real and imaginary parts are functions of nx, not of x". With this fact,
you can use some useful conversions. By the same way of writing, cosnx is

120" +1/y"), and sinnxis (1/2H)(y" — 1/y").

A Useful Conversion

g% =cosx +isinx =y Where y is a simpler way
g% = Cosx — isinx = % of writing the complex €*
=1 ( l)
Then, cosx S+ v
. 1 ( 1
n =L(y-2
and sinx =5 (y - 5

ginx = cos nx + isin nx = y"

. . . 1
g =cosnx —1sin nX = —
yn

Then =l(n l)
c , COSnXx 2 y +yn

innx =L n_i_)
31nnx—2i(y v

Power/multiple conversions

These (y + 1/y) and (y — 1/y) forms can easily make conversions from powers of
trigonometric functions to their multiples, and vice versa. It becomes merely a
matter of expanding those binomials and pairing off from the ends.

From this method, it becomes obvious why even powers of both sine and
cosine functions result in cosine multiple functions. With odd powers, the sine
functions produce multiple sine functions, while the cosine functions produce
multiple cosine functions. As you will notice, the results are exactly the same as
those obtained in Part 3 by a much more lengthy method.

The form: (y + 1/y), etc., makes conversion of a compound power combina-
tion easier to follow through. Take sin? x cos* x. Each factor, sin’ x or cos” x, can
be converted to multiple functions by either method.

The forms, —1/40%* —2+1/3%) and 1/160"* + 4% + 6 + 4/)% + 1 /v,
can be multiplied out in one extra line and then converted back to multiple form.
The work becomes very short.
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Even Powers 4. 1 1V 1 4 .1
_ L 2y=_1 4 2 e, 1
cos x_lé(y+y) 16(y +4y +6+y2+y4)

=% [cos4x + 4cos2x + 3]

- —l(_l_)4=l(4_ 26 4 L)
sin®x =gz {y-7 ) =g ¥ dy“+ 6 y2+y4

=l [cos4x —d4cos2x + 3]

8
Odd Powers 5. 1 10,5, 1
_1 5 3 -
COS X 32(y+ ) 32(y + Sy +10y+y y+y5)
116 [ cosS5X + 5cos3x + lOcosx]
5 _ 1) ( 5 3 _10 5 l)
sin’x = =35 (y =33 y°— 5y + 10y y y3 y5
116 [ sinSx — 5sin3x + IOSmx]
sin’x cos’x sin’ x =~%( —% i

4 1 1)4 1(4 2 4 1)
cos*x =—(y+=-)=— 4 ==
16(y y] 16 Yy y+6+y2+y4

=é (cos4x + 4co82X + 3)

sin? xcos* x =—6i4(y“+4y?+6+—+—)(2 2+_..)

64 y: oyt oy

= y6+2y4—y2—4—l2+£+—16]

= — |2+ cos2x — 2cos4x — cosbx ]
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Checking the result

You can verify the previous page result by multiplying out equivalent multiple
functions for sin” x and cos* x. Then, you must find substitutions for cos 2x and
the product cos 2x cos 4x, before you have the answer completely in multiple-
function form.

In integral calculus, conversion from power functions to multiple functions
makes integration much easier. It splits the power product into simple multiple
functions (sum or difference terms) that can be integrated individually.

11_6 (1 - cos2x) (3 + 4cos2x + cos4x)

= 11_6 [3 + COS2X + cOs4xX — 4c0s22X — cos2xcos 4x]

4c0s22x =2 (1 + cosdx)

cos2xcosdx = % [coséx + cos2x]

= 11_6[3 + CO82X + cos4x
-2 — 2cos4x

- %cost — %cosﬁx]

= 31—2 [2 + CO82X — 2c084Xx — cos6x] Same result v

j sin?xcos* xdx = j‘?)l_Z [2 + cos2x — 2cosdx — cosbx ] dx

= 1x_6 +6L4 sin2x “6"12 sindx — 1;—2 sin6x

Integration tools: partial fractions

Another useful tool in integration is partial fractions. An expression such as
(x + 1)/(x* — 4) would be difficult to integrate, unless it could be “broken
down.” In this case, the denominator can be a factor, so it is possible to express
the complete fraction in partial fractions—each with a simpler numerator (an
easier form to integrate).
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The easiest method is to assume that (x + 1)/(x*> —4) is equal to
a/(x +2)+ b/(x — 2),then solve for ¢ and b.

Integrating, the solution takes the form: 1/4log(x + 2)+ 3/41log(x — 2) + a.
That is not its simplest form. Putting the two factors together (adding logs is
the same as multiplying the numbers they belong to) and making the constant
of integration (¢) a factor, the result at least looks much simpler.

x+1 dx x+1 must be reducible to  —2— +
x*-4 x*-4 o X+2 x-2

a b =a(x—2)+b(>{+‘2ﬁ);(a+b)x+2(b_a) a+b=1

+
x+2 x=-2 x2_4 x2_4 1
b-a=3
2
23,23
x+1 _ | + 3 2b ) b_4
x4  4x+2) 4x-2) 5 1 1
a—-2— a—Z

3
dx+5 dx=ilog€(x+2)+%10ge(x—2)+10gsc

1
j 4(x +2) 4(x-2)

=log, C [(x+2) (x _2)3}ll

More partial fractions

The top example on page 430 is solved just like the previous one—only it is
slightly more involved. Each of these examples resulted in denominators with x
having a coeflicient of 1. What if the denominator takes the form, ax + 5? The
next example tackles this.

Working from the differential side: the derivative of log(ax + b) is
a/(ax + b); to get 1/(ax + b) for the derivative, you need to start with
1/alog(ax + b). So the integral of 1/(ax + b) is 1/alog(ax + b), plus the con-
stant of integration of course, unless it is a definite integral.

Product formula in integration

In differentiation, you found the product formula useful. This formula can be con-
verted for integration, although it’s not quite so easy to do. To make the writing
easier, use primes to show derivatives, instead of using d/dx every time. Notice
that primes should be used only when the independent variable is not ambiguous.
However, once you adopt them, you don’t have to write the independent variable
every time.
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512 (x—D(x+2) . 12x - D(x+2)  12x2+ 12x - 24
x-3)E+3)x+1) x=-3E+3HE+D x3)(x+3)x+1)

a __b ¢ _alx*+4x+3)+b(x*-2x-3)+c (x’-9)
x-3 x+3 x+1 E=-3Hx+3)HE+1)

Coefficients of x2: a+ b+ c= 12 a=5

" "'x :4a-2b = 12 b=4
Numeric: 3a-3b—9c=-24 c=3
(x - 1)(x +2) 5 4 3
12 -
5 -3 +DE+1) x-3 x+3 x+1

(x—D(x+2)
X=3)x+3)x+1)

dx =5log (x - 3) + 4log (x + 3) + 3log.(x + 1) + log, C

=log,C (x - 3)(x + 3)4(x + 1)3

1 d
jax+bdx &log‘f(ax+b)—ax+b
d1 1
So, a log (ax + b) = —

1 1
J.ax " bdx = ;loge(ax +b)

Product formula in integration

Differentiation: (uv) =uv' +u'v
uv' = (uv) —u'v
Integrate: suv'dx =uv— Su'vdx
u=x
Example: Ixcosxdx = xsinx —Isinxdx V' = COsX
= XSinx + Ccosx / vV = sinx
u'=

Check di (xsinx + cosx) = sinx + xCosx — sinx
X

= XCOSX
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First, rearrange the formula so that one factor term is on the left and the
other is on the right with the product term. That form is standard for integrals.
From there, it’s easier to follow an example.

Suppose you must integrate x cos x. Assume that « of the product formula is
x, and v’ is cos x on the left side. Now, find v and ' to complete the right side. uwv
is x sin x and the remaining expression integrates easily to cos x.

Check by differentiating the answer. First, d/dx of x sin x, using the product
formula, is sin x 4+ x cos x. Then, d/dxx is — sin x. Putting it together, 4 sin x
cancels — sin x, leaving x cos x, which was what you had to integrate. It checks.

More product formula

Here is an example where the u function isn’t so simple. You must integrate €*
sin xdx. This example has one good point: making u = €*, u’ is also €”.

The formula has a complementary integral on the right, in addition to the
product term: —e”* cos x. Do the same thing and substitute into the first integral.
Now the integral you started with is on both ends, except that it is negative on
the right. Add it to both sides to double it. Divide both sides by 2 and you have
the answer. Again, check with the differentiation product formula to prove that
the answer was correct.

. _— X

fe"smx dx = —€*cosx + [€* cosxdx < :: u=¢€
— T vi= sinx

. . vV = —CO0sX

=—¢e¥*cosx +€£"sinx — 58" sinxdx ' .

u==e&

%je"cosx dx =e¥sinx — €*sinx dx <LI': u = ef
.. - . v'= cosx
—> 2 Ss sinx dx = €*sinx — £*cosx v = sinx

X ol 1 X{ol u = Ex

se sinx dx = 3 €*(sinx — cosx)

d 1 _x,. | 1 ._.x .
—_ = £7(SINX — COSX) =— £7(SINX — COSX) + — €7 (COSX + sinx
Check v/ ) ( ) 3 ( ) 5 ( )

= g*sinx

Another one by product formula

Here is another variation of the general method. Take x> cos x. Completely inte-
grate the terms by applying the product formula three times, each time reducing
the power of x by 1. Substitutions are made at each step and the additional part
of that step adds to the result. Finally, terms are collected to simplify it.
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Running the differential (in two lines that are added to represent the udv and
vdu separately), the coefficient of sin x cancels, leaving x> cos x, the number
your started with, so the result was correct.

jx 3cosxdx

@u=x3 v' = cosx -" ; T 5 )
v=sinx u'=3x2 D x’cosx dx = x”sinx — }3x “sinxdx

r A a
u=3x2 v =sinx 3. )
, = x-sinX + 3x“cosx — }6xcosxdx
vV=—COosX U =6x
A
‘ r A
u=6x V' =cosx 3. 2 . .
. . D = x°sinx + 3x“cosx — 6x sinx + |6 sinxdx
v=sinx u=6

3

= x3sinx + 3x2cosx — 6x sinx — 6COsX

= (x3— 6x) sinx + (3x2— 6) cosx

Check v i l:(x 3_ 6x) sinx + (3x2- 6x) cosx:|

= (3x2-6) sinx + (x3- 6x) cosx

—(3x2-6)sinx +  6X cosx

= x 3cosx

Changing the variable

Often changing the variable helps integration. This problem could be tackled by
the power/multiple conversion method, but changing the variable is more direct.
It has an odd power of cos x. Cos x is the derivative of sin x, so you can write:
cos x dx = d sin x. Make sin x the variable in place of x, which changes the inte-
gral (as shown) in the third line. The independent variable is now sin x, not x. So,
cos” x is equal to 1 — sin” x. Multiplying out, integrate sin” x — sin” x, with sin x
as the variable. This formula is the simplest of all, giving 1/3 sin> x — 1/5sin’ .
Again, the result checks by differentiation.

Partial fractions will not “work™ when the denominator has a surd. To solve
it, you need a new function, so that the numerator, with the dx and the denomina-
tor, each converted to the new variable, simplifies the integral to a form that will
integrate readily.
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In this case, write x = sin 6. The denominator is then cos 8 and dx becomes
cos @ df. Substituting all these parts, the cosine terms in numerator and denomi-
nator cancel, leaving the very simple integral, sin & d6.The result, — cos 6 merely
must be expressed in terms of the first variable, x. A check shows that the answer

1s correct.

Making x = tan 8 works in much the same manner. Follow it through and
you’ll get the idea of what to look for in deciding on the variable that will help.

Icos3 xsin?xdx

COSX = dsinx cosxdx = dsinx
dx
50033 xsinZxdx = jcosz xsin?xdsinx

= J-(l — sin?x) sin? xdsinx
L .3, 1.5

= = sin“x — = sin’ x
3 5

Check v/

ALk~ Lgins
dx [3 SIn-Xx 5Sll’l X:l

s

Check v/

ssinecosede
dx =\——F—=

(sin?x — sin*x) cosx

sin?x (1 — sin?x) cosx

2 3

= SIN“XCO0s” X

If

X =Sino

then \/1 — x 2= cosO

and dx =cos0do

530 = gsmede

= —cos0

continued
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X
j——z dx | If {x=tane
V1+x
then \/1 + x2= secO

and dx = sec26d0

I X dx = tan 0 sec’0d0

ﬁ X = W— 'tan(-)sechG
" sin0
Jcos?0

- [ dcos®
[ sin dcos 0] | s

._.
]

@

0]

O

<

cosB

]
—_
+
e

o

Checkv/ S\ +x? =% e

Slope on logarithmic scales

When you consider the slope of a curve, the quantities are usually plotted on lin-
ear scales—the actual variables. Sometimes the more useful scales are logarith-
mic. For example, the auditory frequency range is logarithmic, by octaves. Most
stimuli, such as hearing, also follow an approximately logarithmic law.
Applications of this nature need to be shown on logarithmic scales. Though the
quantities marked on the scales might be x and y, the scale used to display them
will be logarithmic.

To find the slope of a curve at a point where the function is y = f(x), but x
and y are both plotted on log scales, you need to evaluate dlog y/d log x, instead
of the more usual dy/dx. Treating this as a function of a function at both ends,
the original derivative, dy/dx, must be multiplied by x/y. Notice that nothing is
changed if one function is regarded as being x* instead of x, provided that x* is
substituted for x at all points.

For example, y = 1 — ax® + x* represents a curve shown on log scales of x
and y. In electronics, x might stand for frequency and y for db. Refer the slope to
logx? as the variable. Suppose you need the points of maximum slope.
Maximum slope is now found by the equating second derivative to zero. The
numerator is a quadratic whose roots give the values of x?, where maximum
slope occurs.

The slope (on the log/log scale) is found by substituting these roots into the
first derivative. Notice that when x = 1, the slope of this equation is 1 on this
scale, whatever value « has.
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Slope on log scales
y=1fx)
g)i—f(x) dlogy _dlogy dy _ dx
dx ! dlogx  dy dx dlogx
dlogy 1 dlogx _ 1 dx
dy "y dx T x dlogx
dlogf(x)  x+f(x)
d log x f (x)
dlog f(x2) _ x2f, (x2)
dlog x? £ (x2)
y=1-ax?+ x4
dlogy _ x2(22x —a)
dlogx? x%*-ax?+1
: d2logy _ (x*—ax2+1)(4x2-a)-(2x* ax2) (2x2%-a)
Maximum slopes dlog x2dx? Gt 1)
6 4 2) 2
Numerator 4x6— Sax 4+ (4+a2 )2x -a
—4 x°+ 4ax —ax ; 9 7
7 2 xi= 54 -
—ax*+4 x a— Va2
2(9¢2_ 4_ .02
When x2= Zi /4 1 dlogy _X (2x a)= 2x%— ax
a a2 dlog x? x%-axZ+1 x%-ax2+1
8 4
4
x—;—l"'a 4 —a? l __4+(_h1)4/4 a2
ax?=2%+/4 - a2 __2+(__1),,/4 22
\k N4-2*+(8-22) 2+4-a’t(4-a?) +2V/4 -2+ 4
24 -2+ (4-2a2) 2°/4-at(4-a?)
When x =1 L. 2VA-a%4 14 +2(2%/4-2a?)
dlogy _2-a_, 2v/4—@* (4 - a2) \/4 a2 (2%t~/4 - a2)
dlog x? " 2-a
—1+ 2
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A numerical example of slope on log scales
The general method on the previous page will be clearer with a numerical exam-
ple. Here, ¢ = 1.8. The little diagram at the bottom shows what the working
means.

If desired, the same values can be used to calculate both the curve itself and
its slope at various points, giving a very accurate picture of the curve.

y=1-18x"+x"*

dlogy _x*2x2-1.8)
dlog x2 x*-1.8x%+1

- 2x4-1.8x?
x3—1.8x2+ 1

Zero slope: X*=0or X*= 0.9

d’logy _ (x%- 1.8x%+ 1)(4x?- 1.8) — (2x*~ 1.8xH)(2x 2~ 1.8)

Maximum slopes: ; logx2dx? X 18x2+ 17

Numerator: 4 x5 9x%+7.24 x2-1.8
—4 x5+ 72x%-324 %2

_18x4+4x2-18

222 4[4

=8 Vs !
6

3
_2+5307
8

| 1.
log ' 2
x2=0.627 _ 2408718
scale x220.9 =718
x%=1.595
X—>

]

0.627 or 1.595
log scale

Making the curve fit parameters

Here, the situation is reversed. Instead of finding the maximum slope for a given
equation, find an equation to provide specified maximum slopes. Just work the
same equations found in the section, “Slope on logarithmic scales.” You can also
plot much more detail by having all this extra data.
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y=1 —\/gx 24 x4
; — 2.+ /4 1 = 2t1
Values of x for maximum slope: x 7 / 3 3
=V3or \713
Value of x for slope zero:  x?= 73
Values of curve at these points:
. lo .
o2 Approx y Slope ! 1_g] Approx
X 0g y
1 1
73 0.7598 3 -1 0.3333
V3 1
) 0.9306 2 0 0.2500
1 1.0000 2-43 +1 0.2679
V3 1.3161 1 +3 1.0000

Drawing hints

The curve shown in the graph at the top of the next page is drawn from the data in
the previous section, calculating just two extra points for x = 0.5 and x = 2.
Notice that, in finding points on a log scale, you can use more convenient mea-
sures than the printed scales. For instance, if 5” is a decade of x, 2.5” is a decade
of x* and 1.25” is a decade of x*. So, to find a value of root 3 or reciprocal root
3, measure from the center (a reference value of 1) a distance of log3ona 2.5”
decade, instead of using the 5” measure printed.

Slope is casily aligned by finding points on the x* scale in a 4:1 ratio (2:1
ratio on the x scale), then finding points on the y scale that are 4: 1 ratio for unity
slope (either way, up or down); 16:1 for a slope of 2; 64:1 ratio for a slope of 3
(remembering the scale is logarithmic, so the ratio goes in powers), and so on.
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Questions and problems

1. Determine the value of tan x, using the series expansion, to four terms and
three significant figures, for an angle of exactly 45 degrees.

2. Determine the value of tan x, using the series expansion, to four terms and
three significant figures, for an angle of exactly 1 radian.

3. Determine the value of sec x, using the series expansion, to four terms and
three significant figures, for an angle of exactly 45 degrees.

4. Determine the value of sec x, using the series expansion, to four terms and
three significant figures, for an angle of exactly 1 radian.

5. Using the series expansion to four terms, find the angle, in radians, represent-
ing arcsin 0.500. Express the angle value to three significant digits.
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6. Express the angle from problem 5 in degrees.

7. Using the series expansion to four terms, find the angle, in radians, represent-
ing arccos 0.500. Express the angle value to three significant digits.

8. Express the angle from problem 7 in degrees.
9. What is the minimum value that a real number plus its reciprocal can attain?

10. Refer to the following drawing. This is a semilog graph, with a base-10 log
scale on the y axis and a linear scale on the x axis. A portion of the curve of a
function, y = f(x), is plotted on this graph. Several points are labeled. What is
the function?

y
1000
(8,512)
100 (5,125)
10
14 — 1«
0 2 4 6 8 10

For Problems 10 through 16 in Chapter 25

11. What is the derivative of the function whose graph is plotted in the above
drawing?

12. What is the second derivative of the function whose graph is plotted in the
above drawing?

13. What is the third derivative of the function whose graph is plotted in the
above drawing?

14. Determine the derivatives dy /dx, at the points labeled, for the function whose
graph is plotted in the above drawing. Why does the derivative increase, while
the slope in the graph appears to decrease?
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15. Determine the second derivatives dy/dx”, at the points labeled, for the func-
tion graphed in the above drawing.

16. Determine the third derivatives d° y/dx, at the points labeled, for the func-
tion graphed in the above drawing.
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CHAPTER

Development of
calculator aids

The slide rule

For many years, the slide rule was the calculator most used by engineers and
others. Its basic form could multiply and divide. It did so by adding or subtracting
lengths that were proportional to logarithms of numbers on the scale with which
it was marked. It had movable scales and a cursor to aid in reading where scales
paralleled. Many more scales were often provided to read sines, cosines, tangents,
logarithms, powers, roots, etc.

To multiply 2.3 by 3.7, the 1 onthe movable scale was placed alongside 2.3 on
the fixed scale. Then, the cursor was moved to 3.7 on the movable scale and the
product was read by the cursor on the fixed scale as 8.51.

For division, reverse the process. To divide 8.51 by 3.7, set the cursor to 8.51
on the fixed scale. Bring the mark for 3.7 on the movable scale to the cursor.
Then, read the quotient on the fixed scale opposite 1 on the movable scale.

Slide rules were calibrated with very fine markings, to allow you to calculate,
perhaps to 3 significant figures. Modern digital calculators provide many times
the accuracy.

41
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The simple nomogram

A nomogram is an alignment chart. Using parallel lines, it works like a slide rule,
except that you find the answer by laying a straightedge, such as a ruler, across
the chart. Using linear scales, the reference performs addition or subtraction.
Using logarithmic scales, like the slide rule, it can perform multiplication or
division.

By varying the spacing between the parallel scale lines, the nomogram has a
flexibility that the slide rule does not have: different scales accommodate different
ranges. Although the scale can be finely marked, reading them with the precision
of the slide rule is more difficult. The accuracy of a nomogram is usually not as
good as a slide rule.

Development of a Simple Nomogram

<@ @ @
S B g
- < v 2T 5 +3
el 7 ) 4 4+
A 3 4 T2 .
o y 1+ z Linear
7 4 : Scales
yo A x' Z=X+y 4
‘ 0+ 0 + +0
|<—a—>|<—b—>| <—3 units—> 2 units €<—
100 10° 1000
Z'(a+b)=ax'+ by' 104
100
X Yy 1000 Log
Makex'= 3 ¥'=% 10 ZIOO X Scales
. y 10
Z= a+b 10
1 Zz=Xxy 1 i

Then Z=Xx+y

Multi-formula nomograms

At top left is a slightly different-proportioned set of scales for the same
operation shown in the previous section, but the sum or product appears on one
of the outside lines instead of the middle one (which might not be central). At
lower left, the principle extends to a 4-line nomogram where scales can produce
two results, z and u—one for x + y, the other for x — y. the logarithmic scales
can represent xy and x/y.
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At right is an example of a chart that does this. Notice the length (or range) of
the various scales. The spacing of the lines must be calculated to provide correct
geometry. Always one scale (in this case, the one for ») must have much less
range than the others.

Development of a Two-Formula Nomogram

0 100 10,000 10° 100
~ —|— o . F
A bz =ax'+(a+b)y I
4 X I
JLMake x=X : 103
| L
A C ., L 1000
| y = — 7 == 4
¥ v a+b b i 10
0- u X Z=Xxy |y
a—sfeb Then z=x+y
= ~ 104 x 100 1000 + 10
Ty
ry I 100
T Ty y 10
-1 4, R 10
u
0 0
e— a——>e-b->te—Cc—> 1T 1 1 1
1 unit
1 (b+c)z =cx' +by <—3 units—><—><2 units>

2 (b+c)u=(a+b+c)x —ay

— '_.x '=
F()rz—x+y x——C y lb
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The ratio nomogram

So far, nomograms use parallel lines. This new type uses an N configuration.
The line joining the parallel lines has a scale that gives the ratio of the quantities
on the other two scales. Notice that when the parallel scales have linear scales,
the scale on the sloping scale that connects them is nonlinear. If this nomogram
is used for other than linear scales (such as logarithmic), the connecting scale
presents a changed scale to correspond, which represents the ratio between the
functions for the scale’s dimensioning.
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Development of a Ratio Nomogram
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The reciprocal nomogram

By placing the scale lines in a convergent manner, as shown at the top of the
facing page, the nomogram construction is adapted for use in reciprocal relation-
ships. Compare the convergent linear scales with the reciprocal scales on the
parallel line construction. Of course, this arrangement can be used to make
graphic calculations that are more complex than simple reciprocals.

The graphical chart

The graphical chart, shown at the bottom of the facing page, can have two advan-
tages over the simple nomogram. For 4 variables, for which the nomogram form
was shown, the graphical chart provides greater range for all variables. As a
related secondary benefit, all its areas are equally sensitive. The nomogram
tends to compress readability on center scales, and open it on outside scales. This
disadvantage disappears with the graphical chart.

Another advantage of the graphical chart is that it is complete in itself. You
do not need a straightedge to read it. Like nomograms and slide rules, scales can
use any calibration law that is convenient for the purpose: linear, logarithmic, or
something else.
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Change of scales in the graphical chart

Graphical charts can improve accuracy where nomograms and simpler graph-
ical charts lose it. However, they can become difficult if not impossible to read;
sometimes following one law all the way makes it necessary to cut the scale off
too soon or make the chart size infinitely large without logical reason.

Compare the charts shown below. On the left, straight-line scales for horizon-
tal rulings use linear spacing—the values of y follow a reciprocal law. Radial-
line rulings look linear vertically and reciprocal horizontally. The focus for the
radial lines is off-scale on the left.

At right, the same quantities use change of scale to make the whole chart
more readable. The top and bottom of the chart use log/log rulings, with appro-
priate scales. The middle part approached the advantage of the left arrangement
by using curved rulings that are produced by sliding a ruling template sideways.
The law is still logarithmic horizontally, but it switches to linear vertically, so it
transits from one direction log to the reverse. It removes the focal point, which
was just off scale on the left representation, to a theoretically infinite distance.
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Resolving complex quantities graphically

Graphic ways to resolve complex quantities provide much variety. For positive
real values, the simple chart at top left does it. Then reciprocal, going into the
other two quadrants, looks like the top right, for magnitude and phase. The real
and imaginary components look like the bottom right, making the complete
reciprocal lower two quadrants look like the bottom left.

LINEAR GRAPHICAL REPRESENTATION

00

2 345 oo 543 2 1

l o
30° T T T~ 30° 90° 90
1 I~~~
60° B S 60°
LA P DA I ; .
~ 60 60
AV ANE AR
[ A |
90° 90° 30° 30°
1.008060402 0 02040608 1.0 0°
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Imaginary Components and Phase

1 2345 oo 5432 1

: INVERSION :
™,

Complete Reciprocal Pattern Real and Imaginary Components

Construction for the complex resolution graph

The previous section only showed what the chart looked like; it didn’t say how to
construct it. Rather obviously, it has a serious discontinuity between the positive
real and the negative real half of the circle. Here is a better way before you can
get into construction. Magnitudes between 0 and 1 will be in one half circle;
between 0 and infinity, they are in the other half.

Instead of having both 0 and infinity at the center, as in the previous section,
zero is at the bottom and infinity is at the top. The vertical diameter is the real
axis in the previous section, the horizontal diameter the imaginary axis. The ver-
tical diameter remains the real axis, but the imaginary axis the circumference.
Then, the component resolution curves are drawn in as shown.
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Modified Linear Graphical Representation

Radius of Main Circle is Unity

/— Radius for real component curves = ] _}_ "

. . . 1
"~ Radius for imaginary component curves = X

2x
1+x
0 2x
Radius for magnitude curves =

1-x2

X 2x 2X l 1
I+x 1-x?2 X 14+x
0.2 0.333 0.417 5 0.833
0.4 0.571 0.952 2.5 0.714
0.6 0.75 1.875 1.667 0.625
0.8 0.889 4.444 1.25 0.556
1.0 1.000 i 1.00 0.5
2 1.333 -1.333 0.5 0.333
3 1.5 —0.75 0.333 0.25
4 1.6 -0.533 0.25 0.2
5 1.667 —0.417 0.2 0.167_

Modified linear representation

The modified linear representation shows the complete chart, for which con-
struction was shown in the previous section. This form of chart does accommo-
date all complex quantities—from zero to infinity. The spacing begins to
resemble logarithmic (although it is not mathematically), especially around unit
magnitude, which is the horizontal diameter.

Other possibilities

Before proceeding to a final idea for a graphical resolution of complex quantities,
look at some other possibilities. A slide rule with square-law scales (markings
proportional to the square of the value) would do it. The same set of scales would
produce magnitude with real and imaginary components, but not the angle.
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The two nomograms, set out on different proportions, do essentially the
same functions as the slide rule (but with problems in proportion, which is why
more than 1 nomogram is desirable), except that they also provide an angle
scale. Notice how the scales change the distribution of values.

Another concept in chart design

Take another look at “Modified linear representation.” The scales are open, well-
spaced, and almost logarithmic over a considerable area of the chart. They con-
verge to make reading difficult as the values approach 0 or infinity. The remedy
is to “open out” the top and bottom of the chart to make it really logarithmic, as
shown. Phase is linear, everything else logarithmic. The curves are log sin, made
by sliding the template vertically.

Its disadvantage is minor. In theory at least, the charge on page 449 covers
values from zero to infinity, if reading near either extreme is impossible. This
chart opens up those areas, making them readable, but the chart also never quite
reaches zero or infinity. Take your pick!
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Duality between types of calculators

Before leaving this subject, observing a duality between the calculators is instruc-
tive. The nomogram lines represent variables that are identified by numbers of
arrowheads on arrows that mark the direction of increasing value alongside the
scales. On the graphical chart to the right, similar arrows show direction of move-
ment for the variable to change.

On the nomogram, the alignment straightedge could pivot about a point on
one scale. Such a point on the nomogram becomes a printed line on the chart,
on a scale at right angles to the corresponding arrow. The line that represents the
straightedge on the nomogram corresponds with a single point where lines inter-
sect on the chart. Angular movements on the chart correspond with a column in
space on the nomogram.

The heavily outlined part of the graphical chart corresponds to the area of
calculations that the nomogram can make. Thus, the graphical chart covers
twice the area in this sense.
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Duality Between Nomogram and Graphical Chart

Waveform synthesis

Any repetitive or periodic waveform can be synthesized from a series of sine
waves. Here, over a sawtooth waveform, a series of sine waves are added in
succession to show the idea. The first sine wave has the same frequency as the
sawtooth. The sine wave bears no resemblance to the sawtooth, except that it
crosses the zero line at the same points. Adding a third harmonic (3 times the
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fundamental) “splits the difference” between the sawtooth and the sine wave.
Adding some fifth harmonic again splits the difference and the resulting wave
begins to look like the sawtooth. Add enough odd harmonics and you finish up
with a sawtooth. But how do you find how much of each harmonic to use?

With Fourier’s series, you can write an f(x) to describe the wave you want to
make. This sawtooth would have an f(x) for just one period—a straight line
going from +4 to — A4, to which you can write a linear equation.

Both the sawtooth and the sine waves that compose the line are symmetrical
above and below the zero line over a complete period. However, if you multiply
the two together and integrate the product over the whole period, the result will
only be zero if that harmonic is not present in the synthesis. At the bottom of the
third, the dashed lines show the two waveforms—the sawtooth and the third har-
monic. The solid line is the two waves multiplied together.

In the first half of the sawtooth, the product crosses the zero line where the
fifth harmonic does—the same way. In the second half, it reverses, resulting in a
wave that sits more above than below the zero line in both halves, showing that
fifth harmonic is part of the sawtooth.

Waveform Synthesis

Any periodic waveform can be
synthesized from fundamental
T In and harmonics.

4T

How to calculate their relative
magnitudes?

f(x)sin3x

Average value

of f(x)sin3x
/ f(x) Average value of f(x)

) is zero
~ sin3x
L Average value of sin3x
is zero

In whole period of
waveform average value
of product is zero only
if f(x) does NOT contain
sin3x
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Fourier series

A square wave can be regarded as a switch. It’s a simple function that reverses a
constant value every half period. Reversing the second harmonic at half the fun-
damental period results in a reversed wave that is still balanced above and
below zero. When this is done to third, the first and second half periods have two
half waves up and one down.

This function lets you write the general form for the Fourier series. Each suc-
cessive harmonic frequency’s waveform is multiplied, point by point, by the func-
tion for the waveform that you want to synthesize (or analyze). The product
curve is integrated over the whole period and divided by 7 to find the average
value.

f(x) f(x)sin2x f(x) f(x)sin3x
T 2T 21
’ ’ \/ " \/
No second harmonic Third harmonic
{f(x)sin2x = 0 {f(x)sin3x gives value

General Form
f(x)=ag+a;sinx+asin2x+........... +a,sinnx +...........

+bjcosx+bycos2x+.......... +b,cosnx +...........
a, is average value, if other than symmetrical above and below zero line

Fourier

Series a, = L)Zn f(x)sin nx dx

1
T
Twice average value of product curve
b, = 71_1:50“ f(x)cos nx dx

A triangular waveform

A triangular waveform is obviously a cosine series. But first, the function for a tri-
angular wave is in two parts—two straight line sections. Substituting in Fourier,
each must be integrated separately. A common factor out front simplifies to
—4A4 /7. Inside the big brackets is a series of odd harmonic cosine terms, whose
coefficients are 1 /1%,
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A square wave

Look at the square wave on the next page, which is useful not only as an entity in
itself, but as a step toward other waveforms as well. This is obviously a sine series.
Like the triangular waveform, f(x) has two parts, one for each half wave.
Integrating over the whole period, the amplitude is 44 /zin. Putting the 44 /7 out-
side the brackets, the terms inside are 1 /7 sin nx, with odd values of z only.

Relationship between square and triangular

Now that Fourier has given a series for both triangular and square waves, notice a
confirming fact. A square wave can be first derivative of a triangular wave. A tri-
angular wave has two constant slopes that coincide with the ups and downs of
the square wave.
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An offset square wave

Suppose the square wave “sits on” the zero line, instead of being symmetrically
above and below it. This location produces a constant term. The series turns out
just the same, except for the constant term, which offsets the wave.

n 2n
f(x)0=A ; T(x), =0

A
2n 2n h
,[0 aodxz[agx] =27a,
0
>—
j‘an( yd [A ]n [0]21: A
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sine series

x _
=l - Acosnx] = l . 2A When n 1s odd
T 5 o % n

=0 Whenniseven

e A 2A
Serles_2+ -

sinx +% sin3x +% Sindx + ...

The square wave as a “switching” function

The square wave, either symmetrical or asymmetrical, can be used in a product
function use of the Fourier series. In electrical supplies for electronic equipment,
two kinds of supply rectifiers convert alternating current (which is sinusoidal in
form) to direct current to power the electronic circuits in the equipment.

A full-wave rectifier turns both half waves of the alternating waveform
around, so both “go” the same way. The half-wave rectifier merely accepts one
half of the sine wave and blocks the other one.

In terms of Fourier, the full wave is like applying a balanced or symmetrical
square wave to the sine wave. The half wave is like applying an asymmetrical
square. In each case, the output waveform is the same as if the input sine wave
was multiplied by its respective square wave.

You already have the Fourier series for the square wave, so you can use the
product expression, term by term. Multiply each term of the square wave series
by sin x. Now, each term converts the product sine term (the first one is sin®) to a
difference of cosines. Collect the terms.
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Each series produces a constant, the direct current from the rectifier, plus a
new Fourier series, the alternating “ripple” that rides the dc.

Notice that the constant from the half wave is half that in the full wave. The
half wave also has a sine term that the full wave does not. The amplitude of the
cosine series for the half wave is half that of the full wave.

The illustration here verifies the conclusion that was deduced mathemati-
cally on the previous page. The dotted wave at the top is the first one. The solid
line is the same waveform of half the amplitude. Add this line to an identical
sine wave (peak from baseline) amplitude and you have (bottom solid curve)
the second curve. It's quite simple to verify the conclusion derived from the
calculation.

Series for quadratic curve

The rectified half waves look like part of a quadratic curve. Here, a quadratic
curve is used as the basis for Fourier analysis, assuming that, instead of continu-
ing with the quadratic curve, it uses only the part between — and + (repeating
this part cyclically). This curve yields a cosine series, but the coefficients are dif-
ferent from the half-wave series.

Here is the synthesis of the quadratic simulation curve. At top left is the first
cosine term. At top right are two successively closer approaches. Notice that the
first four terms (the constant, fundamental, and the two harmonics) closely
approach the quadratic curve, except for the “points,” where it levels off to begin
the next period. In rectified waveforms, all the terms have the same sign. The
quadratic curve has terms with alternate signs. At bottom right, the coefficients
are compared.

Series for Quadratic Curve

f +n X 2 oo .
i f(x)_n=A(E) =ap+3 a, Smnx

+37 b, cosnx
+R _ +R X 2 - X2 +n
[ ragdx =2maof TAX) dx = A [:&_21
2AT

_2Am, 1 _ 3
R T P

A
3

+n a,=0 [Obviously cosine series]
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b,=

n—

f(x)= % Az[ 4 cosx + cos2x —

1
T

il

a—

1=

A( ) cosnxdx =

[ Ax?
n

[ Ax?

1o
zl

+7

2AX
n2r2

1 [Ax sinnx — sinnxdx]
-

+7
2Ax X cosn x — 2A
n2w2 n2m2

sinnx + =22 COS NX dx]

]+TC
-T

2 -

222 sinnx + === 2Ax cosn X — A sinnx
n n3m?

2 nn?

+AATC gy o] 4A gy

écos 3 x+lcos 4x ]

9 4

cos X + A cos 2X
Tl:z

\ A 4A

3 x?

A—ﬂ cos X+
3 n?

Az cos 2x —%cos 3x

Zero ref.
for x

Signs all
the same

Signs alternate

Zero ref,

for x

Coefficients
Const. Fund. 2nd 3rd 4th
o7 Cosine 2 4 4 4 4
n 3n 1581 35t 63n
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The finite approach to the infinite

Notice that by adding terms to Fourier, the wave keeps approaching the ultimate
waveform, but it would only “get there” if the series continued out to infinity. For
many purposes, a finite series can come closer.

Instead of synthesizing the square wave from frequencies, use the transfer
characteristic approach from Part 3. By adding extra terms, the “ripples” (over-
shoot that occurs any time you cut off Fourier at finite frequencies), are avoided.
Here, the first three terms are plotted out with the algebra for up to 6 terms.

Here, the coefficients are modified for better comparison and conversions are
added to derive the sine series that will produce the linear power series that is
derived from the transfer characteristics.

Here, you assemble substitutions (for decimal equivalents of total harmonics
for this approach to a square wave) for successive finite numbers of terms—up
to 6. Then, Fourier coefficients are compared which, of course, extend to infinity.

Notice that the last term is always much smaller when it is first introduced.
On the last line, the 11th harmonic has a coefficient of only 0.0002403, where
Fourier has 0.115749. In the same series, the 9th harmonic is more than 3 times
its value when it was the last term.

Such series make the slope that theoretically should be vertical in the square
wave, nearer to vertical, without producing the “ripples” which cut the Fourier
series short of infinity.

Transfer characteristic approach

reerp T Py
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i
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[
[ |
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I I I |
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3
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dthterm: y' =k (1 -3x%+ 3x*-x%)

=kfx-x3+3x5-1 7) f(1y=L0k
y X—-X SX 7x ()35

y =35% —35x3+ 21x5- 77

16
Sthterm: y' =k (1 - 4x%+ 6x%— 4x5+ x¥)
_ 4 1.6 5 4 7.1 9 128
=k{x-2x3+2x5-ZxT+ = f(l)=== k
AR G S D=3
_315x — 420x 3+ 378x5— 180x 7+ 35x°
y...
128
6thterm: y' =k (1 — 5x2+ 10x *~ 10x%+ 5x8- x 19)
5 10.7,5 0 1 256
=k(x——x3+2 S =xTeZx0-= “) f(1)===2 k
y T R R Tl ) =03
g =893x = 1155%%+ 1386x>— 990x "+ 3857~ 63x !

256

Approximations for comparison:

lterm: y= X

2terms: y=  1.5x-  0.5x3

3terms: y= 1.875x— 1.25x3+ 0.375x°

4 terms: y = 2.1875x —2.1875x 3 + 1.3125x° - 0.4375x 7

5terms: y = 2.4609x —3.2812x % + 2.9531x 5 — 1.4062x 7 + 0.2737x°

6 terms: y = 2.7070x —4.5117x3 + 5.4141x° - 3.8672x 7 + 1.5039x ? — 0.2461x !

Conversions: sin’ot = 3 sinmt — sin 3t sindot = 10 sin®t — 5 sin 3t + sin St

4 16

35 sinwt — 21 sin 3wt + 7 sin St — sin 7ot
64

sin’ @t =

126sinmt — 84sin3t + 36sin5mt — 9sin7®t — sin9mt
256

sinmt =

462sinmt — 330sin3mt + 165sin5mt — 55sin7 wt + 11sin9wt — sinl 1ot
1024

sin!! @t =

continued
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Substitutions:  sint sin3wt sinSmt sin7wt sin9mt sinl 1ot com. den.
2 terms,  sin®t 12 8
sinfot -3 +1 "
total: 9 1 "
1.125 0.125 decimal
3terms, sint 240 128
sinot - 120 +40 "
sin*ot  + 30 —15 +3 "
total: 150 25 3 "
1.171875 0.195312 0.023437 decimal
4 terms, sinet 2240 1024
sinfot  — 1680 + 560 !
sinffot  + 840 — 420 +84 "
sinTot -~ 175 + 105 =35 +5 "
total: 1225 2435 49 5 "
1.196289 0.239258 0.047852  0.004883 decimal

Sterms, sinot 80640 32768
sinfwt  — 80640 + 26880 "
sin®t  + 60480 —30240 + 6048 "
sint - 25200 +15120 -5040 + 720 "

sinwt  + 4410 — 2940 + 1260 —-315 +35 "
total: 39690 8820 2268 405 35 "
1.211243  0.269165 0.069214 0.012360 0.001068 decimal
6 terms,  sint 709632 262144

sint  — 887040  + 295680

sin®mt  + 887040 443520 + 88704 "

sinmt  — 554400 + 332640 — 110830  + 15840 "

sin®mt  + 194040 - 129360 + 55440 - 13860 + 1540 "

sinllot — 29106 + 20790 - 10395 + 3456 - 693 +63 "

total: 320166 76230 22869 5436 847 63 b
1.221336  0.290794 0.087238 0.020737 0.003231 0.0002403 decimal

Fourier, compared: 1.273239  0.424413 0.254648 0.181891 0.141471 0.115749

Questions and problems

1. Refer to the following drawing. This is a square wave as it might appear on an
oscilloscope display. Let x be the time in microseconds; Let A be the amplitude
in millivolts. Write down the first five terms of a series representing this wave.

2. For the wave in the following drawing, write down the first five terms of the
representative series where time is specified in seconds, and amplitude is speci-
fied in volts.

3. A log scale can show a 10: 1 range of values. How many such scales, each span-
ning 10" to 10"V, must be placed end-to-end to display the following ranges of
values?

@) 0.2t0 20 (b) 10to 1,000
© 2010 1,000,000  (d) 30,000,000 to 70,000,000

4. Devise a coordinate system that can plot all possible ordered pairs of real
numbers (x, y) within a finite area.
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5. Devise a coordinate system that can plot the entire set of complex numbers

Development of calculator aids

Amplitude,
millivolts

+4

24

10 20 40

For Problems 1 and 2, Chapter 26

within a finite area.

6. An alternating-current (AC) sine wave is half-wave rectified, so the negative
half of the wave is “chopped off ”* while the positive half is left alone. Suppose
the peak amplitude of the AC input is plus-or-minus 100.0 volts. What is the aver-

age voltage of the output, to four significant digits?

7. An AC sine wave is full-wave rectified, so the negative half of the wave is
“Iinverted” (made positive) while the positive half is left alone. Suppose the peak
amplitude of the AC input is plus-or-minus 100.0 volts. What is the average

voltage of the output, to four significant digits?

8. Suppose the AC input in problem 6 is a square wave, rather than a sine wave.

What is the average output voltage in this case?

9. Suppose the AC input in problem 7 is a square wave, rather than a sine wave.

What is the average output voltage in this case?

Time,
micro-
seconds



CHAPTER

Digital mathematics

A signal or variable is digital when it can attain only a finite number of levels or
values. This number is almost always a power of 2, such as 2, 4, 8, 16, 32, etc. A
binary signal has just two levels or states, represented by 0 and 1 (or off/ on, low/
high, red/green, down/up, etc.). This is in contrast to analog variables that fluctu-
ate over a continuous range of levels or values.

A simple analog waveform is shown below. The level, or amplitude, varies
continuously from instant to instant. Also shown is one possible digital approx-
imation of the analog waveform.

Analog Digital

Amplitude Amplitude
Time 1 1 l = Time
Infinite number Finite number
of states of states
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Numbering

People are used to dealing with the decimal number system which has ten unique
digits (in our way of thinking). This probably arose from the fact that humans
have ten fingers, including thumbs, on which to “count.” Digital machines, such
as computers, use schemes that have some power of two unique digits, most
often 2(21), 8(2*), or 16(2*). This is because it is easier for electronic circuits to
deal with groups of switches, each of which has two possible states (off/on). In
these systems, the numerals 10, 100, 1000, etc., don’t represent the same actual
quantities as they do in the decimal system. The numbering schemes are different.
Perhaps if we humans had evolved with only eight fingers, we would be using a
base-8 number system.

Decimal system

The decimal number system is also called modulo 10, base 10, or radix 10. Digits
are representable by the set {0, 1, 2, 3,4, 5,6, 7, 8, 9}.The digit just to the left of
the radix point is multiplied by 10°, or 1. The next digit to the left is multiplied by
10!, or 10. The power of 10 increases as you move further to the left. The first
digit to the right of the radix point is multiplied by 10", or 1/10. The next digit
to the right is multiplied by 102 or 1/100. This continues as you go further to
the right. Once the process of multiplying each digit is completed, the resulting
values are added. This is what is represented when you write a decimal number.
For example,

2704.53816
=2, 000
+700
+4
+5/10
+3/100
+8/1000
+1/10, 000
46,100, 000
=2x10°+7x10*°4+0x 10" +4 x 10°

1 5x107 L3 x 10248 %102+ 1 x104+6x107°
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Binary system

The binary number system is a method of expressing numbers using only the
digits 0 and 1. It is sometimes called base 2, radix 2, or modulo 2. The digit imme-
diately to the left of the radix point is the “ones” digit. The next digit to the left is
a “twos” digit; after that comes the “fours” digit. Moving further to the left, the
digits represent 8, 16, 32, 64, etc. (in our way of thinking), doubling every time.
To the right of the radix point, the value of each digit is cut in half again and
again, thatis, 1/2,1/4,1/8,1/16,1/32, 1/64, etc.

Consider an example using the decimal number 94:

94

=4 x10° +9 x 10'
In the binary number system, the breakdown is:
1011110

=0x2" 1 x2'+1x2°

Tl x24I x2 1 0x2°+1x2°

When you work with a computer or calculator, you give it a decimal number
that is converted into binary form. The computer or calculator does its operations
with zeros and ones. When the process is complete, the machine converts the
result back into decimal form for display.

In a communications system, binary numbers represent alphanumeric char-
acters, shades of color, frequencies of sound, and other variable quantities.

Octal system

Another scheme, sometimes used in computer programming, is the octal number
system, so named because it has eight symbols (according to our way of think-
ing), or 2°. Every digit is an element of the set {0,1,2,3,4,5,6,7}.

Hexadecimal system

Yet another numbering scheme, also used in computer work, is the hexadecimal
number system, so named because it has 16 symbols (according to our way of
thinking), or 2* These digits are the usual 0 through 9 plus six more, represented
by A through F the first six letters of the alphabet. The digit set thus becomes
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F}.

Logic and Boolean algebra

Logic refers to methods of reasoning used by people and electronic machines.
The term is also sometimes used in reference to the circuits that comprise most
digital devices and systems.



468 Digital mathematics

Boolean algebra is a system of mathematical logic using the numbers 0 and 1
with the operations AND (multiplication), OR (addition), and NOT (negation).
Combinations of these operations are NAND (NOT AND) and NOR (NOT
OR). Boolean functions (see top table, page 469) are used in the design of digital
logic circuits.

In Boolean algebra, X AND Y is written XY or X x Y. NOT X is writ-
ten with a line or tilde over the quantity, or as a minus sign followed by the
quantity. X OR Y is written X + Y.

The lower table shows the values of logic functions, where 0 indicates “fal-
sity” and 1 indicates “truth.” The statements on either side of the equal sign are
logically equivalent. The following table shows several logic equations. These are
facts, or theorems. Boolean theorems can be used to analyze complicated logic
functions.

Trinary logic
Trinary logic allows for a neutral condition, neither true nor false, in addition to
the usual true/false (high/low) states. These three values are representable by
logic —1 (false), 0 (neutral), and +1 (true).

Trinary logic can be easily represented in electronic circuits by positive, zero,
and negative currents or voltages.

Fuzzy logic

In fuzzy logic, values cover a continuous range from “totally false,” through neu-
tral, to “totally true.” Fuzzy logic is well suited for the control of certain processes.
Its use will probably become more widespread as the relationship between com-
puters and robots matures. Fuzzy logic can be represented digitally in discrete
steps. For a smooth range of values, analog systems are used.

Electronic logic gates

All binary digital devices and systems employ switches that perform various
Boolean functions. These switches are called logic gates.

Usually, the binary digit 1 stands for “true” and is represented by about plus
five volts (45 V). The binary digit 0 stands for “false” and is represented by
about 0 V.This is positive logic. There are other logic forms, the most common of
which is negative logic (in which the digit 1 is represented by a more negative
voltage than the digit 0). This discussion deals with positive logic.

Basic gates

An inverter or NOT gate has one input and one output; it reverses the signal. An
OR gate can have two or more inputs. If both, or all, of the inputs are 0, then the
output is 0; if any of the inputs are 1, then the outputis 1. An AND gate can have
two or more inputs. If both, or all, of the inputs are 1, the output is 1; otherwise
the output is 0.
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BOOLEAN OPERATIONS
X Y -X X*Y X+Y
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1

SOME THEOREMS IN BOOLEAN ALGEBRA

EQUATION

X+0=X

X*¥1=X

X+1=1

X*0=0

X+X=X

X*X=X

(-X)=X

XH-X)=X

X*(-X)=0

X+Y=Y+X

X*¥Y =Y*X

XHX*Y)=X

X*(-Y)+Y = X+Y

X+Y+Z = (X+Y)HZ = XHY+Z)
X*Y*Z = (X*Y)*Z = X*(Y*Z)
X*(Y+Z) = (X*Y)+H(X*Z)
-(X+Y) = (-X)*(-Y)

A(X*Y) = (X)HEY)

NAME (IF APPLICABLE)
OR identity

AND identity

Double negation

Contradiction
Commutativity of OR

Commutativity of AND

Associativity of OR
Associativity of AND
Distributivity
DeMorgan's Theorem

DeMorgan's Theorem

469
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Composite gates

Sometimes an inverter and an OR gate are combined. This produces a NOR gate.
If an inverter and an AND gate are combined, the result is a NAND gate.

An exclusive OR gate, also called an XOR gate, has two inputs and one out-
put. If the two inputs are the same (either both 1 or both 0), then the output is 0.
If the two inputs are different, then the output is 1.

The functions of logic gates are summarized in the table below. Their sche-
matic symbols are shown in the drawings.

LOGIC GATES AND CHARACTERISTICS

GATE TYPE NUMBER OF INPUTS REMARKS

NOT 1 Changes state of input.

OR 2 or more Output high if any inputs
are high.
Output low if all inputs are
low.

AND 2 or more Output low if any inputs are
low.

Output high if all inputs are
high.

NOR 2 or more Output low if any inputs are
high.

Output high if all inputs are
low.

NAND 2 or more OQutput high if any inputs
are low.

Output low if all inputs are
high.

XOR 2 Output high if inputs differ.

Qutput low if inputs are the
same.
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Logic Gate symbols

- I >

NOT XOR
AND NAND
OR NOR

Binary circuits and symbols

Binary circuits work with signals that attain discrete, well-defined levels. These
systems are actually nothing more than groups of electronic switches. Some bin-
ary digital circuits are relatively simple, but others are complicated almost beyond
imagination. The microprocessor in a personal computer, for example, has so
many digital gates that a legible diagram of it (one that you could read without a
magnifying glass) might occupy several square miles.

Binary symbols are usually represented in a digital code called ASCIT
(American National Standard Code for Information Interchange), which is a
seven-unit scheme for the transmission of data. Letters, numerals, symbols, and
control operations are represented. ASCII (pronounced “ASK-ee) is designed
primarily for computer programming and communications. There are 2’, or
128, possible representations.

Bits and bytes

The use of binary data yields optimum communications efficiency. If multilevel
signaling is required, then all the levels can be represented by groups of binary
digits. A group of n binary digits can represent 2" levels.

A bit is an elementary unit of digital data, represented by either logic 0 or
logic 1. A group of eight bits is a hyte. In communications, a byte is sometimes
called an octet.

One kilobit (Kb) is equal to 2'° = 1,024 bits. A megabit (Mb)is 2'° = 1,024
kilobits, or 1,048,576 bits. A gigabit (Gb) is 2'° =1,024 megabits, or
1,073,741,824 bits.

Data quantity is usually specified in kilobytes (units of 2'® = 1, 024 bytes),
megabytes (units of 2% = 1,048,576 bytes), and gigabytes (units of
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230 = 1,073,741,824 bytes). The abbreviations for these units are KB, MB, and

GB respectively. Alternatively you might see them abbreviated as K, M, and G.
There are larger data units. The terabyte (TB) is 2*° bytes, or 1,024 GB.The

petabyte (PB)is 2°° bytes, or 1,024 TB.The exabyte (EB) is 2%° bytes, or 1,024 PB.

Flip-flops
A flip-flop is a form of sequential logic gate. In a sequential gate, the output state
depends on both the inputs and the outputs. A flip-flop has two states, called set
and reset. Usually, the set state is logic 1 (high), and the reset state is logic 0 (low).
R-S flip-flop inputs are labeled R (reset) and S (set). The outputs are Q and
—Q. (Often, rather than —Q, you will see Q’, or perhaps Q with a line over it.)
The outputs are always in logically opposite states. The symbol for an R-S flip-
flop, also known as an asynchronous flip-flop, is shown at drawing A below. The
logical processes that take place in an R-S flip-flop are shown at A in the table.

FLIP-FLOP STATES

A: R-S flip-flop
R S Q -Q
0 0 Q -Q
0 1 1 0
1 0 0 1
1 1 2 ?
B: J-K flip-flop
J K Q -Q
0 0
0 1 1 0
1 0 0 1
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Flip-flops and triggering

FF Positive- Negative- FF
going going

1T T NV —

~ o

Synchronous flip-flop states change when triggered by the signal from a clock.
In static triggering, the outputs change state only when the clock signal is either
high or low. This type of circuit is sometimes called a gated flip-flop. In positive-
edge triggering, the outputs change state at the instant the clock pulse is positive-
going. The term edge triggering derives from the fact that the abrupt rise or fall
of a pulse looks like the edge of a cliff (drawing B above). In negative-edge trigger-
ing,the outputs change state at the instant the clock pulse is negative-going.

Master/slave (M/S) flip-flop inputs are stored before the outputs are allowed
to change state. This device essentially consists of two R-S flip-flops in series.
The first flip-flop is called the master, and the second is called the slave. The mas-
ter flip-flop functions when the clock output is high, and the slave acts during
the next low portion of the clock output. This time delay prevents confusion
between the input and output.

J-K flip-flop operation is similar to that of an R-S flip-flop, except that the J-K
has a predictable output when the inputs are both 1. Part B of the above table
shows the input and output states for this type of flip-flop. The output changes
only when a triggering pulse is received. The symbol for a J-K flip-flop is shown
in drawing C above.

R-S-T flip-flop operation is similar to that of the R-S flip-flop, except that a
high pulse at the T input causes the circuit to change state.

T flip-flop operation uses only one input. Each time a high pulse appears at
theT input, the output state is reversed. That is, 1 becomes 0, and 0 becomes 1.

Compression

Data compression is a way of maximizing the amount of digital information that
can be stored in a given space, or sent in a certain period of time.

Text files can be compressed by replacing often-used words and phrases with
symbols such as =, #, &, (@, etc., as long as none of these symbols occurs in the
uncompressed file. When the data is received, it is uncompressed by substituting
the original words and phrases for the symbols.



474  Digital mathematics

Digital images can be compressed in either of two ways. In lossless image
compression, detail is not sacrificed; only the redundant bits are eliminated.
In lossy image compression, some detail is lost, although the loss is usually not
significant.

Text and programs can generally be reduced in size by about 50 percent.
Images can be reduced to a much larger extent. Some advanced image-compres-
sion schemes can output a file that is only a few percent of the original file size.

RGB color model

All visible colors can be obtained by combining red, green, and blue light. The
RGB (red/green/blue) color model is a scheme for digital video imaging that
takes advantage of this.

Color is a function of wavelength. When energy is concentrated near a single
wavelength, you see an intense hue. The vividness of a hue is saturation. The
brightness of a color is a function of how much total energy the light contains.
In most video displays, there is a control for adjusting the brightness, also called
brilliance.

Color can be portrayed in a cube

Red Yellow White

R =255

Gray line

Medium
gray
Green
axis

Cyan

Blue

Black .
axis

R=G=B=0 B =127 B =255

A color palette is obtained by combining pure red, green, and blue in various
ratios. Assign each primary color an axis in three-space as shown. Call the axes
R (for red), G (for green), and B (for blue). Color brightness can range from 0 to
255, or binary 00000000 to 11111111. The resultis 16,777,216(256>) possible col-
ors. Any point within the cube represents a unique color.
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Some RGB systems use only 16 levels for each primary color (binary 0000
through 1111). This results in 4,096 possible colors.

RGB colors are commonly expressed as hexadecimal numbers, ranging
from 00 (zero intensity) to FF (maximum intensity) for each color. Red is listed
first, then green, and finally blue, forming a six-digit number to represent a parti-
cular color. For example, you might see FF8040 representing FF for red, 80 for
green, and 40 for blue. The range of values from 00 to FF for each color yields
16,777,216 total possible colors. This scheme is sometimes referred to by graphics
people as “millions of colors.”

Working with truth tables

Truth tables are, in theory, infinitely versatile. It is possible to construct or break
down logic operations of any complexity by using these tables, provided you
have lots of paper and a fondness for column-and-row matrix drawing.
Computers can also be programmed to work with truth tables, although the dis-
plays and printouts get horrible to deal with if the logic functions are messy.

Building up
You can easily build up complex logic operations by means of a truth table. An
example of such a building process is shown in the table below.

TRUTH TABLE FOR -(X+Y)+XZ

X Y z X+Y -(X+Y) XZ (X+YHXZ
0 0 0 0 1 0 1
0 0 1 0 1 0 1
0 1 0 1 0 0 0
0 1 1 1 0 0 0
1 0 0 1 0 0 0
1 0 1 1 0 1 1
1 1 0 1 0 0 0

There are three variables X, Yand Z. Each can be either 0 or 1 (low or high).
All the possible combinations are listed by writing binary numbers XYZ
upwards from 000 through 111. This forms the first three columns of the truth
table. If there are n total variables, there will be 2" possible combinations.

The fourth column lists the values of X + Y, the OR function. Some rows are
duplicates of each other; you write all the resultants down anyway.
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The fifth column lists the negations of the values in the second column; this is
the NOR operation —(X + Y)

The sixth column shows the values of XZ, the AND function.

The seventh column is the disjunction (OR operation) of the values in the
fifth and sixth columns. It renders values for the complex logic operation
—(X+Y)+ XZ

Breaking down

Suppose you were called upon to break down a logical operation, rather than to
build it up. This is the kind of problem encountered by engineers. In the process
of designing a certain digital circuit, the engineer is faced with figuring out what
combination of logic gates will yield the complex operation, say,
XY +—-(XZ)+ YZ.

Proceed by listing all the possible logic states for the three variables X, Y, and
Z in three columns, exactly as in the table below.

TRUTH TABLE FOR XY+(XZ)+YZ

X Y 4 XY XZ (XZ) YZ XY+
(XZ)+YZ
0 0 0 0 0 1 0 1
0 0 1 0 0 1 0 1
0 1 0 0 0 1 0 1
0 1 1 0 0 1 1 1
1 0 0 0 0 1 0 1
1 0 1 0 1 0 0 0
1 1 0 1 0 1 0 1

Next, find the values of XY, listing them in the fourth column. Next, find
values XZ and list them in a fifth column. Negate these values to form a sixth col-
umn, depicting —(XZ). (You might be able to perform the AND and NOT opera-
tions together in your head, skipping over the XZ column. But be careful! It’s
easy to make errors, and in a digital circuit, one error can be catastrophic.) Next,
find values YZ and list them in a seventh column. Finally, perform the OR opera-
tion on the values in the columns for XY, —(XZ) and YZ. A multiple-valued OR
is 0 only if all the individual variables are 0; if any or all of the inputs are 1, then
the outputis I.
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Questions and problems

1. Refer to the following drawing. This is a schematic diagram of a digital logic
circuit with four inputs and one output. Write down a Boolean expression for

this circuit.
W O
O
-3—0 Output
S -
- o—

For Problems 1 and 2, Chapter 27

2. Write down a truth table for the logic circuit shown in the above drawing.
Include columns for each of the four variables, and break down the function into
steps as performed by each of the three logic gates.

3. What is the difference between lossy data compression and lossless data
compression?

4. How many total input signal combinations are there in a logical system with:

(a) two inputs?
(b) five inputs?
(c) eight inputs?
(d) 12 inputs?

5. Draw schematic diagrams of binary digital circuits that represent each of the
following logic functions. Try to use the smallest possible number of gates.
(There are often multiple answers to problems such as these, but engineers strive
for the simplest designs.)

@) —(XY)

(b) —(X+Y)

(©) (=X)+(=Y)

@ (=X)(=Y)

(e) XY +Z)+XY

6. What decimal number values do the following binary numbers represent?

@ 100100 (b) 100111
© 111000 (@ 111110
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7. What octal number values do the binary numbers in problem 6 represent?

8. What hexadecimal number values do the binary numbers in problem 6 repre-
sent?

9. Inthe RGB color model, what colors are represented by the following num-
bers?

@ FF0000 (b) 00FF00
(©) 0000FF () 000000
(¢) FFFFFF

10. Qualitatively describe the following colors in the RGB model:

(a) 800000 (b) 008000
(© 000040 (d) COCOCO
(e) 404040



Appendix

Answers to
questions and
problems

Solution processes are offered for some of the problems answered here. When
such a process is explained, it does not necessarily represent the only way the
problem can be solved. One or more alternative methods might exist that are
easier or more straightforward for you.

Chapter 1

1. The final answers is the same, regardless of whether counting is done one by
oneg, in groups of ten, or in groups of twelve.

2. Large numbers are counted in groups because it is faster than counting one
by one.

3. The numeral zero serves as a placeholder. If the zeros were omitted from a
large numeric representation containing zeros, the sequence of digits would no
longer represent the same number.

4. The answers are;

(@) 100 (one hundred)
(b) 144 (twelve dozen or one gross).

479
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5. The answers are:

(@) 1,000 (one thousand)
(b) 10,000 (ten thousand)
(¢) 1,000,000 (one million)

6. The answers are:

@18 (16 @ 12
@18 @ 6 ) 8
@21 ()24 @) 16

7. The answers are:

@ 130,912 (b) 163,123 (0 17,145
) 157,549 () 92,333

8. There is no difference, except that when cents are included you must place a
decimal point (period) between the second and third digit from the right.

9. The total weight is exactly 10 pounds.

10. To balance 1 pound, 6 ounces, and 14 drams, you would use weights of 1
pound, 4 ounces, 2 ounces, 8 drams, 4 drams, and 2 drams. To balance 2 pounds,
13 ounces, and 11 drams, you would use weights of 2 pounds, 8 ounces, 4 ounces,
1 ounce, 8 drams, 2 drams, and 1 dram. To balance 5 pounds, 11 ounces, and 7
drams, you would use weights of 4 pounds, 1 pound, 8 ounces, 2 ounces, 1
ounce, 4 drams, 2 drams, and 1 dram.

11. The solutions are as follows.

(a) You would experiment with the ounce weights until the presence or
absence of a single ounce weight made the difference between the balance
tipping and not tipping. Then you would do the same with the dram
weights, until the presence or absence of a single dram weight made the
difference between the balance tipping and not tipping. You would then
consider the weight of the parcel to be the heavier of the two.

(b) You would experiment with the ounce weights until the presence or
absence of a single ounce weight made the difference between the balance
tipping and not tipping. You would then consider the weight of the parcel
to be the heavier of the two.

12. There are 72 inches in 2 yards.
13. The car owner needs 10 gallons and 3 quarts in all (43 quarts).
14. In general, it is more economical to buy the gallon. A gallon is four quarts.

Thus the price is $3.60 per gallon (4 times 90 cents) if he buys by the quart, but
$3.50 per gallon (given) if he buys by the gallon. In the scenario of problem 13,
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the cost of 43 quarts (purchased by the quart) is $38.70, while the cost of 11 gal-
lons (purchased by the gallon) is $38.50. It is still more economical to buy the oil
by the gallon in this case.

15. The woman spent $47.51 altogether.

Chapter 2
1. The answers are:
(@) 23 (b) 42 (c) 506
(d) 391 (e) 99 (f) 189

(g) 3,087 (h) 4,176 (1 2,889
2. You would page $659.95 — $160.00 = $499.95.

3. The clerk’s method yields a total price of $35.00, while the lady’s method
yields $31.00. She would therefore save $35.00 — $31.00 = $4.00.

4. The cat weights 93 — 85 = 8 pounds.

5. Place the 4-ounce weight on the pan of the scale, and the 2-pound weight on
the other pan. This is a difference in weight of 1 pound and 12 ounces (remember
there are 16 ounces in a pound). Then add rice to the scale pan containing the
4-ounce weight (leaving the weight there) until the scale balances. The amount
of rice in the pan must then be equal to the difference between the weights,
or 1 pound and 12 ounces.

6. The distance between B and Cis 293 — 147 = 146 miles, assuming all three
towns lie along a straight line.

7. The charge is based on the direct distance between towns A and B. Assuming
all three towns A, B, and C lic along a straight line, the charge will be based on
the difference 1,200 — 250 = 950 miles.

8. One mile is 1,760 yards. The frontage sold is 1,460 yards. There are thus
1,760 — 1,460 = 300 yards left to sell.

Chapter 3

1. The answers are:

(@) 87.822  (b) 216,513 (o) 864
d) 2,738 () 147452  (f) 49,181

2. The answers are:
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(2) 48,887 (b) 215404  (0) 88,686
) 318,364 () 632,701

3. The answers are:

@) 79,290 (b) 238,592 (o) 176,064
) 574,749  (©) 28,672

4. The total number of flights in a week is (4 x 6) + 2 = 24 + 2 = 26.

5. The total number of flights in a year is (26 x 52) —24 = 1,352 — 24 =
1,328.

6. The answers are:

(@) $2.25 (b) $4.50 © $8.25
() $27.00 © $64.50 () $252.00
(2) $1,252.00  (h) $2,502.00

7. Five 100-item packages would cost ((100 x $.25) + $2.00) x 5 = ($25.00
+ $2.00) x 5= $27.00 x 5 = $135.00. Two 250-item packages would cost
((250 x $.25) + $2.00) x 2 = ($62.50 + $2.00) x 2 = $64.50 x 2 = $129.00.
The saving is therefore $135.00 — $129.00 = $6.00.

8. Ten single tickets cost $1.75 x 10 = $17.50. A 10-trip ticket costs $15.75. By
purchasing a 10-trip ticket, you save $17.50 — §15.75 = §1.75.

9. Taking 22 round trips (which is 22 x 2 = 44 one-way trips) with single tickets
costs $1.75 x 44 = $77.00. The saving is therefore $77.00 — $55.00 = $22.00.

10. Under the employers’s plan, an employee would start at $500 a month and get
five $50 raises, so at the beginning of the sixth year, the pay would be
$500 + ($50 x 5) = $500 + $250 = §750 per month. Under the employees’
plan, an employee would start at $550 a month and get ten $20 raises, so at
the beginning of the sixth year, the pay would be $550 + ($20 x 10)
= $550 + $200 = $750 per month, the same rate as under the employer’s plan.
Under the employer’s plan, an employee would make the following amounts:

$500 x 12 = $6,000 during the first year
$550 x 12 = $6,600 during the second year
$600 x 12 = $7,200 during the third year
$650 x 12 = $7,800 during the fourth year
$700 x 12 = $8,400 during the fifth year

for a total of $36,000 during the first five years. Under the employees’ plan, an
employee would make the following amounts:

$550 x 6 = $3,300 during the first six months
$570 x 6 = $3,420 during the second six months
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$590 x 6 = $3,540 during the third six months
$610 x 6 = $3,660 during the fourth six months
$630 x 6 = $3,780 during the fifth six months
$650 x 6 = $3,900 during the sixth six months
$670 x 6 = $4,020 during the seventh six months
$690 x 6 = $4,140 during the eighth six months
$710 x 6 = $4,260 during the ninth six months
$730 x 6 = $4, 380 during the tenth six months

For a total of $38,400 during the first five years. The employees’ plan results in
more total earnings over five years; the difference is $38, 400 —36, 000 = $2, 400.

11. Ifyou buy 4,500 items, you must buy 4 lots of 1,000 and one lot of 500.That is
a total cost of (4 x 1,000 x $6.25) 4+ (500 x $6.75) = $25,000.00 + $3,375.00
= $28,375.00. If you buy 5,000 items, the total cost is 5,000 x
$5.75 = $28,750.00. The difference is therefore $28,750.00 — $28,375.00
= $375.00.

12. Youneed 30 sets of 100 parts to get 3,000 parts (30 x 100 = 3,000).The total
weight is therefore 30 x 2.5 = 75 ounces. This is 4 pounds and 11 ounces.

13. The tank’s capacity is 4 x 350 = 1,400 gallons.
14. The locomotive must haul 182 x 38 = 6,916 tons.
15. The journey was 27 x 260 = 7,020 miles.

16. The cost of a trip on the first railroad is 450 x $.10 = $45.00. The cost of a
trip on the second railroad is 320 x $.15 = $48.00. The difference is therefore
$48.00 — $45.00 = $3.00 per one-way trip. The first railroad is cheaper than the
second (although the trip will probably take longer because the mileage is
greater).

17. A one-way trip on the first airline costs $15 x 2,400 = $360.00; a one-way
trip on the second airline costs $.10 x 3,200 = $320.00. the second airline is
cheaper by an amount of $360.00 — $320.00 = $40.00 per one-way trip.

18. The answers are determined as follows.

(@) For a family of two on the first airline, a one-way trip will cost
($.15+$.09) x 2,400 = $.24 x 2,400 = $576. On the second airline it
will cost ($.10 + $.10) x 3,200 = $.20 x 3,200 = $640.00. Thus the first
airline is cheaper by an amount of $640.00 — $576.00 = $64.00.

(b) For a family of three on the first airline, a one-way trip will cost
($.15+$.09 + $.09) x 2,400 = $.33 x 2,400 = $792.00. On the second
airline it will cost ($.104 $.10 + $.10) x 3,200 = $.30 x 3,200 =
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$960.00. Thus the first airline is cheaper by an amount of
$960.00 — $792.00 = $168.00

19. The total number of chews is 50 x 7 x 3 = 1,050 chews.

20. There are 9 x 7 = 63 flowers around the edge of the plate.

Chapter 4
1. The answers are:
(a) 49 (b) 81 c) 616
(d) 653 (e) 2,081 () 3,931
(g) 984 (h) 654 () 237
(k) 1484 I 379 (m) 439

(n) 1,234
2. The answers are;

(@) 240 (b) 753
© 2,945 () 362

3. The answers are:

@) 494-1/7 (b) 2,928-7/8
© 1473-2/3 d 4,791

© 4,889-1/3 () 484-11/17
() 1,226-15/28  (h) 3,204-13/29

4. The profit per share is equal to $14,000,000.00/2,800,000.00 =
$140/28.00 = $35.00/7 = $5.00.

5. The fare per passenger should be $8,415.00/55 = $153.00.

6. The tool costs $5,000.00 and there are 10,000 parts tobe made. Each part has
a gross manufacturing cost of $5,000.00/10,000 = $5.00/10 = $.50. Parts are
made for $.25 each; therefore the cost of each partis $.50 — $.25 = §.25.

7. Thetotal weight is 58 x 2000 pounds = 116,000 pounds. Each wheel carries
116,000/8 pounds = 14,500 pounds.

8. The total time, 8 hours, is equal to 8 x 60 x 60 seconds = 28,800 seconds.
There are 1,200 parts. Therefore, the time required to make each part is
28,800/1,200 = 288/12 = 144/6 = 72/3 = 24 seconds.

9. The full package weighs 1,565 x 16 = 25,040 ounces. The empty package
weighs 2.5 x 16 =40 ounces. The total weight of the parts is
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25,040 — 40 = 25,000 ounces. The weight of each part is therefore
25,000/10,000 = 25/10 = 23 ounces.

10. The full package weighs 2,960 x 16 = 47,360 ounces. The empty package
weighs 5 x 16 = 80 ounces. The total weight of the parts is 47,360—
80 = 47,280 ounces. The number of parts in the package is therefore
47,280/3 = 15,760.

11. One mile is 5,280 feet. This is to be divided into 33 equal parts. The width of
each lot is therefore 5280/33 = 160 feet.

12. On each gallon of gas, the car travels 462/22 = 21 miles.

13. The quantities must all be divided by 160 to get the amounts needed for 1 gal-
lon. First, convert all figures to fluid ounces. There are 128 fluid ounces to the gal-
lon. Thus, there must be (75 x 128)/160 = 60 fluid ounces of ingredient I,
(50 x 128)/160 = 40 fluid ounces of ingredient 2, (25 x 128)/160 = 20 fluid
ounces of ingredient 3, and (10 x 128) = 8 fluid ounces of ingredient 4 to make
1 gallon of the mixture.

14. The answers are;

@) 7/8 (b) 3/5 © 9/16
d) 741/1000  (¢) 16/125

15. The answers are:

(@) 416/999 (b) 7/33 © 7/37
d) 148259 (o) 10U/111

Chapter 5

1. These sets of fractions have the same value:

172, 3/6,4/8, 9/18, 10/20
1/3,3/9,4/12, 5/15, 6/18,7/21
2/5,4/10,6/15, 8/20
2/3,4/6,8/12

3/4,9/12,15/20

2. The simplest forms of the fractions, in order, are:
1/2,2/7,3/13,2/3,3/5, 11/15, 13/17, 13/16, 2/3, 1/3, 2/5, and 19/23.

3. The answers are:

(@) 10,452 divides by 3 and 4
(b) 2,088 divides by 3,4, 8,and 9
(c) 5,841 divides by 3, 9,and 11



486 Answers to questions and problems

(d) 41,613 dividesby 3 and 11
(e) 64,572 divides by 3 and 4
(f) 37,848 divides by 3,4, and 8

4. The answers are;

(@) Factors of 1,829 are 31 and 59
(b) Factorsof 1,517 are 37 and 41
(c¢) Factors of 7,387 are 83 and 89
(d) Factors of 7,031 are 79 and 89
(e) Factors of 2,059 are 29 and 71
(f) Factors of 2,491 are 47 and 53

5. The answers are:

(@) 8/5,properly written as 1-3/5

(b) 127/72, properly written as 1-55/72

(c) 48/60, reducible to 4/5

(d) 262/84, reducible to 131/42, properly written as 3-5/42

6. The answers are:

@) 7/8 (b) 3/5 © 9/16
) 741/1000 () 16/125

7. The answers are:

(@) 0.666666 ... (b) 0.75

(c) 0.8 (d) 0.833333...
(e) 0.857142857142...

() 0.875 (g) 0.888888...

8. The answers are:

(@) 0.333333... (b) 0.25

) 0.2 (d) 0.166666. ..
© 0.142857142857. ..

(f) 0.125 (g) 0.111111...

9. The answers are:

(a) 416/999

(b) 21/99, reducible to 7/33

(c) 189/999, reducible to 7/37

(d) 571428/999999, reducible to 5/7
(e) 909/999, reducible to 101/111
() 90/999, reducible to 10/111

10. If a measurement is specified as 158 feet, the actual distance is at least
157.50000. .. feet, but less than 158.50000 . . . feet. If a measurement is specified
as 857 feet, the actual distance is at least 856.50000... feet, but less than
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857.50000. . . feet. The margin for error is equal to a span of exactly one foot (plus
or minus exactly six inches) in either case.

11. The quotient, rounded off to three significant digits, is equal to 5.39. Using a
calculator capable of expressing eight digits in the display, (a)
932.50000/172.50000 = 5.4057971, and (b)  931.50000/173.50000 =
5.368876. The only digit that remains the same over this span is the numeral 5.
Therefore, in a practical experiment involving this quotient of measured values,
one could justify the result to only one significant digit: 5.

12. The quotient, rounded off to three significant digits, is equal to 109. Using a
calculator capable of expressing eight digits in the display, (a)
93,750.000/856.50000 = 109.45709, and (b) 93,650.000/857.50000 =
109.21282. The left-hand three digits, 109, are the same over this span.
Therefore, in a practical experiment involving this quotient of measured values,
one could justify the result to three significant digits: 109. The best method of
shortening the process and making it less “messy” is to use a calculator (or better
yet, a computer programmed to determine significant digits).

13. The answers are determined as follows.

(@) The prime numbers less than 60 are 2, 3, 5, 7, 11, 13,17, 19, 23, 29, 31, 37,
41,43,47, 53, and 59.

(b) To test a number to see if it is prime, divide it by each and every prime
starting with 2 and working up the list. If none of the quotients is a whole
number, then the tested number is prime. If any of the quotients is a
whole number, then the tested number is not prime.

(¢) The largest number you can test using this list is 60 x 60 = 3600.

14. The answers are;

@) 11/16 (b) 64/91 () 17/40
(d) 2-9/20 © 1-11/34

Chapter 6

1. The answers are:

(@) 4,212 square inches
(b) 221 square feet

(¢) 87,500 square yards
(d) 21 square miles

(¢) 1,020 square inches
(f) 598,400 square yards

2. A right angle measures 90 degrees (1/4 of a circle). It is so named because it
represents the optimum angle for attaching the legs to a table top.
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3. The answers are:

(@) 5square feet
(b) 25 square feet

4. The answers are;

(@) 15 square inches

(b) 78 square feet

(c) 300 square yards

(d) 6square miles

(e) 240 square inches

(f) 660,000 square yards

5. The area is 220 x 110 = 24,200 square yards. This is 24,200/4,840 = 5
acres.

6. The area of a parallelogram is equal to the length of the base times the height.
Using a 20-inch side as the base and 12 inches as the height, the area is
20 x 12 = 240 square inches. Using a 15-inch side as the base, the height
(straight-across distance between the 15-inch sides) must be such that, when
multiplied by 15, the result is 240 (the area). This height is equal to 240/15 = 16
inches.

7. The answers are:

(@) (11 x 16)/2 = 88 square inches
(b) (31 x 43)/2 = 666.5 square inches
(¢) (27 x 37)/2 = 499.5 square inches

8. The area of a triangle is equal to half the length of the base times the height. In
this case, it is (39 x 48)/2 = 936 square inches. The product of the base and the
height is 1,872 (twice the area). This quantity is a constant, no matter which side
of the triangle is considered the base. Therefore, if the 52-inch side is used as the
base, the height must be 1,872/52 = 36 inches.

9. The property can be divided into two parts: a rectangle measuring 200 by
106.5 yards, and a triangle whose base length is 150 yards and whose height is
200 yards. The area of the rectangle is 200 x 106.5 = 21,300 square yards. The
area of the triangle is (150 x 200)/2 = 15,000 square yards. The total area is
21,300 + 15,000 = 36,300 square yards. An acre is 4,840 square yards, so the
area of the property is 36,300/4,840 = 7.5 acres.

10. Assuming the property is rectangular, the total area is 300 x 440 =
132,000 square yards. The owner wants to keep a piece that measures
110 x 44 = 4,840 square yards. Therefore, the area he wants to sell is
132,000 — 4,840 = 127,160 square yards.
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11. Convert all lengths to inches. Then consider the outside rectangle that mea-
sures 207 by 216 inches. Its area is 207 x 216 = 44,712 square inches. From
this, subtract two rectangles measuring 81 by 84 inches and 24 by 60 inches. The
areas of these rectangles are, respectively, 6,804 and 1,440 inches. The floor area
of the room is therefore (44,712 — 6,804) — 1,440 = 36,468 square inches. You
might want to divide by 144 to obtain the answer as 253.25 square feet.

12. Consider the walls as a set of rectangles, each of which is 7 feet (84 inches)
high. Then starting at the upper left-hand corner and proceeding clockwise, the
areas of the rectangles are:

84 x 84 = 7,056 square inches
24 x 84 = 2,016 square inches
60 x 84 = 5,040 square inches
24 x 84 = 2,016 square inches
63 x 84 = 5,292 square inches
54 x 84 = 4,536 square inches
(window = 0 square inches)

54 x 84 = 4,536 square inches
27 x 84 = 2,268 square inches
(window = 0 square inches)

27 x 84 = 2,268 square inches
84 x 84 = 7,056 square inches
81 x 84 = 6,804 square inches
48 x 84 = 4,032 square inches
(door = 0 square inches)

48 x 84 = 4,032 square inches

The surface area of the walls is the sum of all these areas, or 56,952 square inches.
You might wish to divide this figure by 144 to obtain the answer as 395.5 square
feet.

Chapter 7

1. In an hour, a car going 35 mph will go 35 miles, and 36 minutes is 3/5 of an
hour. Therefore, in 36 minutes, if the car travels at a constant speed, it will go
35 x 3/5 = 21 miles.

2. The answers are:

(@) Upstream speedis 10 — 2 = 8 mph
(b) Downstream speedis 10 +2 = 12 mph

3. The answers are:

(@) To go 96 miles upstream takes 96/8 = 12 hours
(b) To go 96 miles downstream takes 96/12 = 8 hours
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4. The answers are;

(@) The upstream journey takes 12 hours and burns 12 x 1/2 = 6 tons of fuel

(b) The downstream journey takes 8 hours and burns 8 x 1/2 = 4 tons of
fuel

5. To make the downstream journey at a land speed of 8§ mph, the water speed
would need to be cut to 6 mph, or 60 percent of (0.6 times) its former speed. This
would result in the ship burning 1/2 x 0.6 = 0.3 tons of fuel per hour. The jour-
ney would take 12 hours, which would burn 12 x 0.3 = 3.6 tons of fuel, which is
0.4 tons less than before. (a) The speed reduction would save fuel. (b) The fuel sav-
ings for the downstream journey would be 0.4/4 = 10 percent. (¢) Without the
speed reduction, the round-trip fuel burned is 10 tons. With the downstream
water speed reduction, 0.4 tons are saved going downstream but nothing is
saved going upstream. Therefore the total fuel saving for the round trip is
0.4/10 = 4 percent.

6. Suppose the water speed were cut by 2 mph going upstream, from 10 mph to
& mph. Then the land speed would be reduced to 6 mph, and it would take the
ship 96/6 = 16 hours to make the upstream journey. Assuming the fuel con-
sumption decreased in proportion to the water speed reduction, there would be
0.5 x 0.8 =0.4 tons burned per hour. In 16 hours the ship would burn
16 x 0.4 = 6.4 tons of fuel. Therefore, if the water speed upstream were reduced
by 2 mph, the total amount of fuel burned would increase from 6 tons to 6.4
tons. This is a change of 100 x 0.4/6 = 6.667 (or 6-2/3) percent.

7. The value increases by $10,000, and the dividend paid on the initial invest-
ment 1s $50,000 x 0.5 = $2,500. Therefore, the total amount made in cash is
$10,000 + $2,500 = $12,500.This is 100 x $12,500/$50,000 = 25 percent.

8. In the first week, the percentage growth is 100 x (24
—16)/16 = 100 x 0.5 = 50 percent. In the second week, the percentage growth
is 100 x (36 —24)/24 = 100 x 0.5 = 50 percent. In the third week, the
percentage growth is 100 x (54 — 36)/36 = 100 x 0.5 = 50 percent. In the
fourth week, the percentage growth is 100 x (81 — 54)/54 = 100 x 0.5 =
50 percent. For the whole month, the percentage growth is 100 x
(81 —16)/16 = 100 x 65/16 = 406.25 percent.

9. See the following drawing. In the middle of the second week, the height is 30
inches as interpolated from the graph.

10. At90 mph, a car travels 3 miles in 3/90 or 1/30 of an hour, which is 2 minutes.
For the whole lap, this car takes 6 + 2 = 8 minutes. That translates to an average
speed of 8 x 60/8 = 60 mph. At 120 mph, a car travels 3 miles in 3/120 or 1/40
of an hour; that’s 1.5 minutes. For the whole lap, this car takes 6 + 1.5 = 7.5 min-
utes. That translates to an average speed of 8 x 60/7.5 = 64 mph.
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Height,
inches
100

80—+

601

40+

Interpolated height = 30 inches

20+

1

T
0 1 2 3 4 5
Time, weeks

Answer to Problem 9, Chapter 7

At 32 miles per gallon, the car will travel 18 x 32 = 576 miles on 18§ gallons.

12. Using the first method:

100 boards cost $2,000 + ($.15 x 100) = $2,015

500 boards cost $2,000 + ($.15 x 500) = $2,075

1,000 boards cost $2,000 + ($.15 x 1,000) = $2,150
2,000 boards cost $2,000 4 ($.15 x 2,000) = $2,300
5,000 boards cost $2,000 4 ($.15 x 5,000) = $2,750
10,000 boards cost $2,000 + ($.15 x 10,000) = $3,500

Using the second method:

100 boards cost $200 + ($.65 x 100) = $265

500 boards cost $200 + (5.65 x 500) = $525

1,000 boards cost $200 + ($.65 x 1,000) = $850
2,000 boards cost $200 + ($.65 x 2,000) = $1,500
5,000 boards cost $200 + ($.65 x 5,000) = $3,450
10,000 boards cost $200 + (§.65 x 10,000) = $6,700

13. See the following drawing. The figures can only be approximated. Finding the
exact answer requires algebra.

14. At 28 mpg, a trip of 594 miles burns 21.21 gallons of gas (to the nearest hun-
dredth of a gallon). At 24 mpg, the same trip burns 24.75 gallons. Therefore, by
going at the lower speed, the gas saving is 24.75 — 21.21 = 3.54 gallons. At 40
mph, a trip of 594 miles requires 14.85 hours. At 60 mph, the same journey will
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Answer to Problem 13, Chapter 7

take 9.9 hours. Therefore, by going at the higher speed, the time savings is 4.95
hours, or 4 hours and 57 minutes.

15. At the end of the first year, the property value rises by
$200,000 x 25% = $200,000 x 0.25 = $50,000, so it appreciates to a value of
$200,000 + $50,000 = $250,000. During the next year it decreases by
$250,000 x 10% = $250,000 x 0.1 = $25,000, so it depreciates to a value of
$250,000 — $25,000 = $225,000. You can’t simply subtract the percentages to
calculate the final value, because the percentages are not based on the same
amount.

16. The total tax is ($30,000 x 20%) + (($120,000 — $30,000) x 22%) =
($30,000 x 0.2) -+ ($90,000 x 0.22) = $6,000 + $19,800 = $25,800.

17. The area of the triangle is (16 x 12)/2 = 96 square feet. Therefore, the paral-
lelogram also has an area of 128 square feet. Consider one of the 16-foot sides as
the “base” of the parallelogram. Then the “height” of the parallelogram (the dis-
tance between the 16-foot sides) is equal to 96/16 = 6 feet.

18. At 1,000 feet per minute, it will take the aircraft 22,000/1,000 = 22 minutes
to reach an altitude of 22,000 feet. A forward (land) speed of 360 miles per hour
is equivalent to 360/60 = 6 miles per minute. So in 22 minutes, the aircraft will
travel forward 22 x 6 = 132 miles.
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19. Ifthe plane burns fuel at half the rate, a given amount of fuel will last twice as
long. It took the plane 22 minutes to climb to cruising altitude, so it will be able
to fly 44 minutes level. At 420 miles per hour, which is 7 miles per minute, this is
a distance of 44 x 7 = 308 miles.

Chapter 8

1. The equation is 12 — x = 2x.To solve, add x to each side, getting 12 = 3x.
Then divide each side by 3, getting 4 = x.Thus x is equal to 4.

2. The equation is 19y = y + 36. Subtract y from each side, getting 18y = 36.
Then divide each side by 18, getting y = 2.

3. The problems are solved as follows.

(@) The equation is z/2 + 10 = 20. Subtract 10 from each side to get
z/2 = 10.Then multiply each side by 2, so z = 20.

(b) The equation is 4(z — 7) = 0. Divide each side through by 4 to get
z—"7=0.Then add 7 toeach side,soz = 7.

(¢) The equation is 10/z + 7 = 12. Subtract 7 from each side, so 10/z = 5.
Multiply each side by z so 10 = 5z. Then divide each side by 5,50 2 = z,
orz=72

4. The value of xyis 5- 7 (5 times 7), or 35. It is not 57, because in algebra, xy
means “x times ».” The number 57 is equal to (5- 10) + (7 - 1), which in this
case is 10x + y. (NoTE that when addition and multiplication occur in the same
expression without parentheses, you should do the multiplication first.)

5. To simplify, multiply the expressions out, starting with the innermost parts
first. This yields the following sums:

@ —35x— 79
(b) 22x + 44

6. Let the number be x. Then the original expression is 3(x +5) +
4(x + 6) + 50(x + 7). This can be multiplied out to obtain 3x+ 15+ 4x +
24 + 50x + 350, which can be simplified to 57x + 389.

7. Let the number be x. Then the original expression is
S[A(x+3)+4x+3]+6
This can be multiplied out, getting
54x+12+4x+3)+6
which can be simplified to

5(8x + 15) + 6
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Multiplying out again gives
40x + 7546

which can be simplified to 40x 4 81. If the total is 361, then
40x + 81 = 361

Subtracting 81 from each side of this equation gives 40x = 180. Then dividing
through by 40 yields

x = 180/40 = 9/2

8. Let x be the number of full members. Then there are 2,000 — x student mem-
bers. The total annual dues received from full members is 20x dollars; the total
annual dues received from student members is 8x dollars. The overall total
received is 35,200 dollars. This number is equal to

20x + [8(2,000 — x)]
We can write the equation
20x + (16,000 — 8x) = 35,200
Simplifying gives
12x 4+ 16,000 = 35,200
Subtracting 16,000 from each side, we get
12x = 19,200
Dividing through by 12 reveals that x = 1,600.There are thus 1,600 full members
and 2000 — 1,600 = 400 student members.
9. Using x for the tens’ digit, the ones’ digit is +2. The problem tells us that
3x=x+42
Subtracting x from each side, we get 2x = 2. Therefore, x = 1.The tens’ digit is 1,
and the ones’ digitis 1 + 2 = 3, so the number is 13.
10. Letting x represent the tens’ digit, the ones’ digit is x + 1. The original num-
ber is therefore equal to
Ox4+x+1=11x+1
Four times this quantity is the new number, which is

4(11x + 1)
— ddx +4

We are further told that the new ones’ digit is x, and the new tens’ digit is

3(x+1)
=3x+3
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The new number is therefore equal to

103x + 3) + x
= 30x + 30 + x
= 31x +30

Now we know that
44x +4 = 31x+ 30
Subtracting 31.x from each side gives
13x +4 =30
Subtracting 4 from each side tells us that
13x =26
Dividing through by 13 gives us x = 2. Therefore, the original tens’ digit was 2,
and the original ones’ digit was 3, so the original number was 23.
11. For the original number, let the tens’ digit be represented by x. Then the ones’
digit is x + 1. The number is therefore equal to

10x +x+1
=1lx-+1

Adding 9 to this yields 11x + 10. Now suppose the digits in the original number
are reversed. Then the number is equal to

10(x+1)+x
=10x+10+x

which simplifies to 11x + 10. This is, as we already showed, equal to 9 plus the
original number.
12. Let the tens’ digit of the original number be represented by a. Let the ones’

digit be a 4+ x. Then the original number is equal to

10a+a+x
=1la+x

The difference between the digits is equal to

a+x—a
=X

Multiplying this by 9 yields 9x. Adding this to the original number gives us

1la+ x4+ 9x
=1la+ 10x

Now consider the original digits being reversed. This number would be

10(a+x)+a
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Multiplying this out gives us
10a+ 10x +a

which simplifies to 11a + 10x. This is equal to the original number plus 9 times
the difference between the digits, as we showed before.

13. The first expression is meaningless when x = —1, because then, the denomi-
nator is equal to zero, and division by zero is not defined. The same thing happens
in the second expression if x = —3. The value of the first expression changes
when the value of x changes. But this is not true for the second expression. In
this case the numerator is equal to 3(x + 3), which is always 3 times the denom-
inator. Therefore, for all values of x (other than —3, for which the quotient is not
defined), the second expression is equal to 3.

14. The solution processes are as follows:

(@) Subtract 5 from each side to get y — 5 = x. Then transpose to get
x=y-—5.

(b) Add 2 to each side, getting y + 2 = x/3. Then multiply each side by 3,
obtaining 3(y 4 2) = x. Finally, multiply out the left-hand side, getting
3y + 6 = x. Finally, transpose, getting x = 3y + 6.

(c) First, multiply out the right-hand side, getting y = 6x + 12. Then subtract
12 from each side, getting y — 12 = 6x. Next, divide each side by 6, getting
(v — 12)/6 = x. The left-hand side of this expression can be simplified to
get the expression y/6 — 2 = x. Finally, transpose, obtaining x = /6 — 2.

(d) Inthisexpression, firstinverteach side, getting 1/y = x — 1.Thenadd 1 to
each side, getting 1/y + 1 = x. Finally, transpose, obtaining x = 1/y + 1.
(NoTE: These manipulations require that both x and y be nonzero).

(e) First, add 7 to each side, getting y + 7 = 3x. Then divide each side by 3,
getting (y + 7)/3 = x. Next, divide out the left-hand side to obtain
(1/3)y + 7/3 = x.Then transpose, getting x = (1/3)y + 7/3.

() First, multiply each side by 3, getting 3y = 5x + 4. Then subtract 4 from
each side to obtain 3y —4 = 5x. Next, divide through by 5, getting
(3y — 4)/5 = x. Divide out the left-hand side to obtain (3/5)y —4/5 = x.
Finally transpose to get x = (3/5)y — 4/5.

15. Each of these three problems is solved by showing that the “equations” are
not really equations at all, but are actually statements declaring that two different
numbers are equal. In the first example, multiply out the left-hand side, obtaining

dx —20 =4x — 18

Then add 18 to each side, obtaining
dx +2 =4x
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Subtract 4x from each side, getting 2 = 0, which is a false statement. In the second
example, subtract Sx from each side, getting 3 = —7, which is a false statement.
In the last example, multiply each side by 2, obtaining

2x+16)/2=x+24

Then multiply each side by 2 again, getting
2x +16 =2x+ 24

Finally subtract 2x from each side, getting 16 = 24, which is a false statement.

16. The graphs for (a) and (c¢) are straight lines, while the graphs for (b) and (d) are
curves.

17. The sequence of expressions goes like this:

X starting number

xX+6 add 6

3(x+6) multiply by 3

3x + 18  multiply out the previous expression
3x+6 subtract 12

x+2 divide by 3

2 subtract x to get final result
Chapter 9
1. The products are as follows. WARNING: The signs (4 and —) can be tricky!
@) x*—2x—3
(b) x> —8x+15
© x*—1
@ x*+1

2. The quotients are as follows. WARNING: The signs (+and —) can be tricky!

@ x—3
(b) x—5
© x—y
(d) X —x+2

3. The factors are as follows:
@ (x+7(x—53)

(b) (x+ D(x* —5)
© x+3)x*=2x—1)
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4. Solutions exist for (a), (b), and (c), but not for (d). In the first three cases:

@ x=7/2andy =15/2
(b) x=16/25and y = —4/25
(c) x=-5/2andy =—1

The last pair of equations, (d), implies that x is a number equal to itself plus or
minus 1. There exists no such number. Therefore, this pair of simultancous equa-
tions has no solution.

5. Let xrepresent the length and y represent the width. Then the area of the ori-
ginal rectangle is equal to xy. The following equations hold true according to the
information given:

(x+5@+2)=xy+133
(x+8)(y+3)=xy+217

These equations can be multiplied out to obtain:

xy+2x+5r+10=xy+133
xy+3x+8y+24 =xy+217

Subtracting xy + 10 from each side of the top equation, and xy + 24 from each
side of the bottom equation, yields:

2x+ 5y =123
3x+ 8y =193

Multiplying the top equation through by 3 and the bottom equation through by 2
gives:

6x 4+ 15y = 369
6x+ 16y = 386

Subtracting the top equation from the bottom results in this:
y = 17 feet
“Plugging in” to the top equation previously yields:
6x + 255 = 369; therefore 6x = 114 and x = 19 feet
These are the original dimensions: 17 by 19 feet.
6. We are given that ¢ = 28, @ = 3, and » = 4. Let the unknown parts be x and
y. From the information given, these two simultaneous equations result:

x+y=28
3x =4y

The first equation can be changed to y = 28 — x. Using substitution into the sec-
ond equation:

3x =428 —x) =112 — 4x
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This can be solved for x, yielding x = 16. Thus y =28 — 16 = 12.

7. Let the fraction be called x/y. Then, from the information given, we obtain
the following two simultaneous equations:

(x+3)/(v+3)=4/5
(x—4)/(y—4) =3/4
Cross-multiplying these gives two equations that are more straightforward:
Sx+15=4y+12
4x — 16 =3y —12

Solving these yields x = 25 and y = 32, so the fraction is 25/32.

8. Let the fraction be called x/y. Then, from the information given, we obtain
the following two simultaneous equations:

x+1)/v+1)=4/7
x-D/y-1)=5/9
Cross-multiplying these gives:
Tx+7=4y+4
9x—-9=5y-5
Solving these yields x = 31 and y = 55, so the fraction is 31/55.

9. Let the fraction be called x/y. Then, from the information given, we obtain
the following two simultaneous equations:

x+D/p+1)=7/12
(x— D/ —1)=9/16
Cross-multiplying these gives:
2x+12=T7y+7
16x—16=9y—9

Solving these yields x = 23.5 and y = 41, so the fraction is 23.5/41. This is not a
fraction in the strict sense, but a quotient. But it must be in this form to meet the
conditions stated in the problem.

10. Let the numbers be x, x + 1, x + 2, and x + 3. Then according to the prob-
lem,

x+2D)x+3)=90+x(x+1)
Multiplying out each side of this equation yields
PS5 H6=90+x" +x
Subtracting the quantity (x> + x) from each side results in this equation:

4x +6 =90
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Therefore, x = 21. The four consecutive numbers are 21, 22, 23, and 24.

11. Let the numbers be x, x + 1, x + 2, x + 3, and x + 4. Then according to the
problem,

x4+ Dx+2)(x+3) =154+ x(x+2)(x+4)

Multiplying out each side gives us this:
X 4 6x7 +11x +6 =15+ +6x7 + 8x

Subtracting the quantity (x> + 6x7) from each side gives:
Ilx+6=15+4+8x

Solving this yields x = 3. Therefore, the numbers are 3,4, 5, 6, and 7.

12. The man is told the width is x feet, and the length is x + 50 feet. This would
result in an area of x(x 4+ 50) = x* + 50x square feet. However, it turns out that
the actual width is x — 10 feet. The seller offers an extra 10 feet in length, to
make the new length x+ 60 feet. This results in a total area of
(x — 10)(x + 60) = x* + 50x — 600 square feet. This is 600 square feet less than
what he was originally told, no matter what the actual dimensions are.

Chapter 10

1. The solutions are found as follows:

(@) The factors are (x + 8) and (x — 1). The expression is zero when either of
the factors is equal to zero; that is, when x = —8 or when x = 1.

(b) The factors are (3x — 13) and (x — 1). The expression is zero when either
of the factors is equal to zero; that is, when x = 13/3 or when x = 1.

(¢) The factors are (7x + 1) and (x — 7). The expression is zero when either of
the factors is equal to zero; that is, when x = —1/7 or when x = 7.

(d) The factors are (6x — 5) and (5x — 8). The expression is zero when either
of the factors is equal to zero; that is, when x = 5/6 or when x = §/5.

2. The solutions are:

@ x=9%orx=-5

by x=3orx=-2

© x=T+21Y20rx=(7-21Y%/2
(d) x=6+40"*0orx=6—40"2

NoOTE: the “1/2 power,” or exponent of 1/2, indicates the square root.
3. The solutions are:

@ x=7/50orx=—-1
by x=1orx=-3/7
(c) x=5o0orx=-1/5
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Nortk: This formula should first be converted to standard quadratic form,
which is 5x* — 24x — 5 = 0.

d) x=5+24"orx =5-—24"2

Nortk: This formula should first be converted to standard quadratic form,
which is x* — 10x + 1 = 0.

4. The solutions can be found using the quadratic formula. The results are:

@ x=1lorx=-2/5
(b) x=00rx=3/5
(©) x = 3/10; this is the only solution (it “occurs twice™)

5. Let the unknown quantity be x. Then, according to the problem,
x+2/x=4. This can be rearranged to standard quadratic form:
x* —4x +2 = 0. The quadratic formula can be used to find the solutions:
x=2+42Y% or x =2 —2Y% (The 1/2 power indicates a square root, and can
replace a surd.)

6. If we let x be the width, then we can derive the equation x(2x — 10) = 2800,
which can be translated to standard quadratic form: 2x? — 10x — 2800 = 0.The
quadratic formula yields solutions x = 40 feet or x = —32.5 feet. (The negative
value has no practical meaning; it is a mathematical artifact.) The length of the
enclosure is 2x — 10 feet according to the problem; this is 70 feet.

7. Let x be the length of a side of the square. Then the area of this square is
equal to x? square feet. From the information in the problem, we can derive the
equation (x 4+ 6)* = 4x%, which translates to standard quadratic form:
—3x? 4 12x + 36 = 0. Using the quadratic formula, we obtain the solutions
x = —2 or x = 6. (The negative value has no practical meaning; it is a mathem-
atical artifact.) The length of a side of the original square is therefore 6 feet.

8. Letthethree numbersbe x — 1, x,and x + 1.Then according to the problem:
x—1l+x4+x4+1=03/8)[x(x—1)]

This can be rearranged into standard quadratic form: x* — 9x = 0. Using the
quadratic formula, we obtain x =0 or x =9. There are thus two number
sequences that fulfill the requirements of the problem: (8, 9, 10) and (—1, 0, 1).
Both solutions are mathematically valid, although the latter is a bit “strange”
(check it and see!).

9. Let x represent the width of the strip. The outside rectangle is 60 by 80 feet.
Then the length of the inside rectangle is 80 — 2x feet, and its width is 60 — 2x
feet. The outside rectangle has an area of 4800 square feet; thus the inside one
has an area of 2400 square feet. From these facts we know that
(80 — 2x)(60 — 2x) = 2400. This converts to standard form: 4° — 280x
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+ 2400 = 0. Using the quadratic formula, we obtain x = 60 feet or x = 10 feet.
The sensible answer is 10 feet. (If the strip were 60 feet wide, the area actually
mowed would be greater than the area available to be mowed, a practical
impossibility.)

10. A quadratic equation can be obtained from this information:
x% — 12x + 35 = 0. Using the quadratic formula, the solutions are determined
asx=7o0rx=>

11. Let the width of the box be represented by x inches. Then the height is x — 1
inches and the length is x + 2 inches. We are told that the total area of all the
faces of the box is equal to 108 square inches. Therefore:

2x(x — 1) 4 2x(x + 2) + 2(x — 1)(x +2) = 108

This can be converted to standard quadratic form: 6x° + 4x — 112 = 0. Solving
by means of the quadratic formula yields x = 4 inches or x = —4-2/3 (four and
two-thirds) inches. Using the positive answer, the box measures 3 inches high by
4 inches wide by 6 inches long.

12. The “other answer” to the above problem yields a “width” of —4-2/3 inches.
The “height” is 1 inch less than this, or —5-2/3 inches. The “length” is 2 inches
more than the “width,” or —2-2/3 inches. If these numbers are used to calculate
the total surface area of the box, the result is 108 square inches, a meaningful fig-
ure! Think of negative dimensions as representing antimatter. Then you might
imagine that surface area has the same meaning whether an object is made of
matter or antimatter.

Chapter 11

1. The answers are:

(@) 4,851 (b) 8,075

(c) 14,391 (d) 39,951

(e) 2,499
2. The answers are:

(a) 424 (b) 142

(c) 676 (d) 99.6

(e) 113

3. The answers are:

(@) 5.477 (b) 7.071
(¢) 7.746 (d) 8.367
(e) 8.944
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4. The answers can be derived as follows:

(@) Consider that y = 20 — x. Then the equation xy = 96 can be rewritten in
terms of only x, and rearranged into standard quadratic form as
x% = 20x + 96 = 0. Using the quadratic formula yields x = 8 or x = 12
If x = §, then the fact that xy = 96 means that y = 12. If x = 12, then the
fact that xy = 96 means that y = 8. Therefore the solutions, written as
ordered pairs, are (x, y) = (8, 12) or (x, y) = (12, 8).

(b) Consider that x = y + 5.Then the equation x* + * = 53 canbe rewritten
in terms of only 3, and rearranged into standard quadratic form as
237 4+ 10y — 28 = 0. Using the quadratic formula yields y = —7 or
y=2.If y=—7, then the fact that x = y + 5 means that x = —2. If
y = 2,then x = 7. Written as ordered pairs, the solutions (x, y) are there-
fore (—2, —7)or (7, 2).

(¢) Consider that y = 34 — 3x.Then the equation xy = 63 can be rewritten in
terms of only x, and rearranged into standard quadratic form as
—3x? +34x — 63 = 0. Using the quadratic formula yields x =9 or
x=7/3. If x =09, then the fact that xy = 63 means that y =7. If
x = 7/3,then the fact that xy = 63 means that y = 27. Therefore the solu-
tions, written as ordered pairs, are (x, y) = (9, 7) or (x, ) = (7/3, 27).

(d) Consider that x = y + 6. Then the equation x* + 17 = 26 can be rewritten
in terms of only y», and rearranged into standard quadratic form as
217 + 12y + 10 = 0. Using the quadratic formula yields y = —5 or
y = —1.1If y = —5, then the fact that x = y + 6 means that x = [. If
y = —1, then x = 5. Written as ordered pairs, the solutions (x, y) are
therefore (1, —5) or (5, —1).

5. To obtain the relative force figures, let y be the wind speed in miles per hour.
Then, because the force f is proportional to the square of the speed,
1 = (v/30)*x.Thus, the answers are, to two significant digits:

(@) v = 10 therefore /' = (10/30)*x = 0.11x
(b) y = 20 therefore /= (20/30)*x = 0.44x
© y = 40 therefore f = (40/30)*x = 1.8x
(d) y = 60 therefore f = (60/30)*x = 4.0x
© y = 100 therefore /' = (100/30)*x = 11x

6. To obtain the relative brilliance figures, let y be the distance in feet. Then,
because the brightness b is proportional to the inverse of the square of the dis-
tance, b = (10.00/y)*x. Thus, the answers are, to four significant digits:

@) »y = 2.000 therefore b = (10.00/2.000)*x = 25.00x
(b) y = 5.000 therefore » = (10.00/5.000)*x = 4.000x
© vy = 15.00 therefore b = (10.00/15.00)*x = 0.4444x
(d) y = 25.00 therefore b = (10.00/25.00)*x = 0.1600x
© » = 100.0 therefore b = (10.00/100.0)*x = 0.0100x
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7. Letthe dimensions of the box be 6 inches, y inches, and z inches. Then, based
on the information given, we have the following two equations:

6yz = 480 (formula for volume of box)
2(6y) + 2(6z) + 2yz = 376 (formula for surface area of box)

These can be simplified to yz = 80 and 6y + 6z + yz = 188. Substituting from
the first equation directly into the second, the second simplifies further to
v+ z = 18.This can be changed to y = 18 — z, and then the first equation can
be rewritten as (18 — z)z = 80. Converting this to standard quadratic form yields
—2z* + 18z — 80 = 0. Using the quadratic formula, z = 8 or z = 10. We know
that yz = 80.Soifz = 10,then y = &;if z = 8,then y = 10.The other two dimen-
sions are 8 inches and 10 inches. (It doesn’t matter which of these is the width
and which is the depth.)

8. Letthe sides be x and y, measured in feet. Based on the information given, we
can state the following:

xy = 435,600 (formula for area)
2x + 3y/2 = 2,640 (perimeter minus half of side y)

The second equation can be rewritten as x = 1,320 — 3y/4. Substituting into the
first equation above, (1,320 — 3y/4)y = 435,600. Converting to standard quad-
ratic form, we obtain the equation —y* + 1,760y — 580,800 = 0. Solving via the
quadratic formula yields the results y = 1,320 or y = 440. Knowing that
xy = 435,600, this yields the results x = 330 or x = 990.There are thus two pos-
sible sets of dimensions for the enclosure: 1,320 by 330 feet, or 440 by 990 feet.

9. As in problem 8, let the sides be x and y, measured in feet. Based on the
information given, we can state the following:

xy = 435,600 (formula for area)
2x 4+ 2y = 2,750 (available fencing plus 110 feet)

The second equation can be rewrittenas x = 1,375 — y. Substituting into the first
equation above, (1,375 — y)y = 435,600. Converting to standard quadratic
form, we obtain the equation —* + 1,375y — 435,600 = 0.Solving via the quad-
ratic formula yields the results y =880 or y =495 Knowing that
xy = 435,600, this yields the results x =495 or x = 880. The enclosure
therefore measures 495 by 880 feet (x and y are interchangeable). This is simply
a coincidence.

10. Let the numbers be x and y. Then according to the information given:
xy =432
y/x=3

The second equation can be written as y = 3x. Substituting this into the first
equation gives x(3x) = 432, or 3x° = 432. Dividing each side by 3 gives
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x? = 144.There are two solutions: x = —12 or x = 12. Because y = 3x, this gives
respective y-values of —36 and 36. Expressed as ordered pairs, the solutions are
(x,y) =(—12, —=36) or (12, 36).

11. The sums are;

(@ 3—j2 (b)y 7—8
© 2 d 0

12. The differences are:
(@ 6+/3 (b) 1 +j12
© j12 (d) —j8

13. The products are:

@ 12—j14  (b) -9+ /6
© 4-+/14 d) 45

Chapter 12

1. The average speed over this 3-minute period is 20 miles/hour (half the final
speed) because the acceleration is constant. This is 1/3 mile/minute. Thus, in 3
minutes, the car travels 1 mile.

2. Because the acceleration rate is uniform, the average speed for the 6-minute
period is 50 miles/hour, which is 5/6 mile/minute. Therefore, in 6 minutes, the
car will go 5 miles.

3. Because the deceleration is uniform, the average speed for this 30-second
period is 30 miles/hour, or 1/2 mile/minute. Thus, the car will require 1/4 mile
to come to a stop.

4. The speed is 60 miles/hour. First, multiply 88 feet/second by 3,600 seconds/
hour toget 316,800 feet/ hour; then divide by 5,280 feet /mile to get 60 miles/hour.

5. First, convert 240 miles/hour into feet/second. From the previous problem
we know that 60 miles/hour is 88 feet/second. Thus 240 miles/hour is 352 feet/
second. Velocity (v) is equal to acceleration (@) times time (7): v = at, provided
the units are uniform throughout the calculation. Thus 352 = 167, so
t =352/16 = 22 seconds. The acceleration rate is constant, so the average
speed for these 22 seconds is 352/2 = 176 feet/second. The total distance is
therefore 176 feet/second multiplied by 22 seconds = 3,872 feet.

6. The energy is equal to half the mass times the velocity squared; that is,
e = mv* /2. Let the lighter pellet have mass m, and the heavier pellet have mass
2m. Let v be the velocity of the lighter pellet. Then “plugging in” the numbers
from the information given, we obtain the equation 2m(150)?/2 = mv*/2. The
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m’s cancel out from either side; thus the equation solves for v = 212 feet per sec-
ond (to three significant figures).

7. The time ¢ for a mass m to reach a velocity v, given the application of power p,
is given by the formula 7 = mv?/2p. Both m (the mass of the car) and p (the
power) are constants. Therefore, we know that the time ¢ is proportional to v”. If
v = 60 miles/hour, then ¢t = 20; we are given this information. If v is cut in half
(to 30 miles/hour), then 7 must be cut to 1/4 its previous value, or 5 seconds. If v
is cut to 3/4 its initial value (45 miles/hour), then  must be cut to 9/16 its previous
value, or 11.25 seconds.

8. If misincreased from 3000 to 4000 pounds, the right-hand side of the equa-
tion 1 = mv?/2p will increase to 4/3 its previous value. Therefore the left-hand
side, the time ¢z, will also increase to 4/3, or 1.33, times its previous value. The
new times can be derived by simply multiplying the solutions to problem 7 by
1.33; thus for 30, 45, and 60 miles/hour, the required times will be 6.67, 15, and
26.7 seconds respectively.

9. Given that the mass of the car is 3000 pounds in the previous problem, we can
plug numbers into the equation 7 = mv?/2p and obtain 20 = 3000(88)>/2p.
(Remember that 60 miles/hour = 88 feet/second). Solving, we obtain
p = 580,800 foot poundals per second.

10. Recall the formula e = mwv? /2. This can be rearranged to give v = (2¢/m)"/>.

Velocity is therefore proportional to the inverse of the square root of the mass. If
the mass is doubled, therefore, the velocity will drop to 0.707 times its previous
value. If the weight is halved, the velocity will increase to 1.414 times its original
value.

11. Draw tangent lines to the curve as shown in the accompanying figure. A
straight edge, such as a ruler, can be used for this purpose. Then graphically esti-
mate the slopes of the lines at time points 1, 2, 3, and 4 seconds. These slopes are
approximately 1, 1.5, 2, and 3 meters per second, respectively.

12. Using the same method as for problem 11, the slopes of the lines can be
estimated as 3, 2, 1.5, and 1 meter per second per second, for time points
corresponding to 1, 2, 3, and 4 seconds, respectively.

13. The applied force is directly proportional to the acceleration, which is indi-
cated by the slope of the tangent to the curve at any given point. Therefore, the
applied force decreases with time.

14. The acceleration starts out at a very large value, decreases until the elapsed
time is 4 seconds, and then begins to increase slightly after that. The acceleration
is greatest at 0 seconds, and is smallest (that is, largest negatively) at about 4
seconds. At a time of 2 seconds, the acceleration is 0 because the slope of the
curveis 0.
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Answer to Problems 12 and 13, Chapter 12

Chapter 13

1. The wide-screen movie has an aspect ratio of 2:1, which is equivalent to 6:3
(ratio of width to height). The TV picture has an aspect ratio of 4:3. Therefore,
the movie image is 6/4, or 3/2, as wide as the TV image when both have the
same height. This means that the TV image is only 2/3 as large as the movie
image. A total of 1/3 of the movie image is lost (1/6 at either side).



508 Answers to questions and problems

2. In this case, think of the movie aspect ratio (width to height) as 12:6
(2:1 times 6/6), and the TV aspect ratio as 12:9 (4:3 times 3/3). The movie

image is therefore 6/9, or 2/3, as high as the TV image when both are the same
width.

3. To simplify this problem, imagine that all the children get money in propor-
tion to their ages, but double the “effective ages” of the boys. The boys’ “effective
ages” are 80, 68, and 52; the girls” “effective ages™ are 37 and 23. Add these all
up to get 260. Divide the estate, $22,100, by 260 to get 85 “dollars per effective
child year.” Each child’s share is then determined by multiplying 85 by his or her
“effective age.” The boys receive $6,800, $5,780, and $4,420; the girls get $3,145
and $1,955.

4. The boys’ actual ages will be 50, 44, and 36; their “effective ages” will there-
fore be 100, 88, and 72. The girls’ actual (and “effective’) ages will be 47 and 33.
Add these numbers to get 340. Divide the estate (still, presumably, $22,100) by
340 to get 65 “dollars per effective child year.” Now the boys receive $6,500,
$5,720, and $4,680; the girls receive $3,055 and $2,145.

5. Let the length of the hypotenuse be represented by x. Then x* =
12% + 5% = 144 4 25 = 169. The value of x is the square root of 169, or 13.

6. Because the gradient is 1: 8, in an 8,000-foot span of road, the altitude gained
will be 1,000 feet (8,000 divided by 8). To find the horizontal distance, construct
a right triangle with the base, call it x, as the horizontal distance, the height
equal to 1,000 feet, and the hypotenuse 8,000 feet. Then x% + 1,000% = 8,000°.
This solves for x = 7,937 feet (to four significant digits).

7. Let the height of the mountain, in miles, be represented by x. Let x be the
height of a right triangle whose base is 8 miles long. Then
x/8 =tan9° = 0.1584 (to four significant digits). Solving this equation,
x = 1.267 miles. Now suppose the angle is 5 degrees. Let p be the distance to the
mountain; it is the length of the base of a right triangle whose height is 1.267
miles. Therefore, 1.267/y = tan5° = 0.0875. Solving this equation yields
y = 14.48 miles.

8. Convert all distances to feet. We will round off to the nearest foot in each
calculation. For the first 3 miles (15,840 feet), the altitude gained is 15,840/
42 = 377 feet. For the next 5 miles (26,400 feet), the altitude gained is
26,400/100 = 264 feet. For the next 2 miles, there is no change. For the next 6
miles (31,680 feet), the altitude gained is —31,680/250 = —127 feet (or a loss
of 127 feet). For the next 4 miles, there is no change. For the last 5 miles
(26,400 feet), the altitude gained is 26,400/125 = 211 feet. The total altitude
gained is the sum of all these figures: 377 + 264 + 0+ (—127) +0 + 211 =
725 feet.
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9. Consider that each rafter forms the hypotenuse of a right triangle whose base
measures 22 feet; the angle between the base and the hypotenuse is 30 degrees.
Let x be the length of the hypotenuse. Then 22/x = cos 30° = 0.8660. Solving,
x = 25.40 feet.

10. Let the rafter length be y when the angle is 20 degrees. Then
22/y = c0s20° = 0.9397. Solving, y = 23.41 feet. This is 1.99 feet shorter than
is the case with a 30-degree angle.

11. Consider a right triangle whose base is the height of the wall (50 feet), and
whose hypotenuse is the length of the ladder (60 feet). Then the cosine of the
angle between the ladder and the wall is 50/60 = 0.8333.The angle can be deter-
mined, using a calculator, to be 33.56 degrees. Let x be the distance between the
base of the ladder and the wall; this is the side opposite the 33.56-degree angle.
By trigonometry, x/50 = tan 33.56° = 0.6634. Solving, x = 33.17 feet. Using
the Pythagorean theorem, x* + 50% = 60%. Thus x* = 3600 — 2500 = 1100, so
x 1s the square root of 1100, or 33.17 feet.

12. The theorem states that x° = 88> + 44> = 7,744 4- 1,936 = 9,680. Thus
x = 98.39 cm.

13. Consider the 45-degree angle. Its cosine is 0.7071.This is the ratio of the base
to side y; that is, 88 /y = 0.7071. Solving, we get y = 124.4 cm.

14. Thetangent of angle ¢ is the ratio of the 44-cm side to the 88-cm side; “in your
head” you can probably see that this ratio is 1/2. Thus tan ¢ = 0.500. Using a cal-
culator with inverse trig functions, determine that ¢ = 26.6 degrees.

15. The tangent of angle r is the ratio of the 88-cm side to the 44-cm side.
Therefore, tanr = 2. Using a calculator with inverse trig functions, determine
that r = 63.4 degrees.

16. The interior angles of a triangle always add up to 180 degrees. Therefore,
90+qg+r=180. We know that ¢=266. Thus r=(180—-90)—¢
=90 — g =90 — 26.6 = 63.4 degrees.

Chapter 14

1. To find the tangents of 4 and B, we must find the cosines. Recall that
sin? A4 +cos*> 4 =1, for any angle A. This formula can be used to find
cos A = 0.6 and cos B = 0.8. The tangent of any angle is equal to the sine
divided by the cosine. Thus, tanAd =0.8/0.6=4/3 =1.333, and
tan B = 0.6/0.8 = 3/4 = 0.75.The sine of the sum of the angles is:

sin(4 + B) = sin A cos B + cos Asin B
= (0.8) (0.8) +(0.6) (0.6) = 0.64 +0.36 =1

The cosine of the sum of the angles is:

cos(4 + B) = cos Acos B — sin A sin B
= (0.6)(0.8) — (0.8)(0.6) =048 —0.48 =0
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The sine of the difference of the angles is:

sin(4 — B) = sin(A4 + (—B)) = sin A cos(—B) + cos A sin(—B)
= (0.8)(0.8) + (0.6)(—0.6) = 0.64 — 0.36 = 0.28

The cosine of the difference of the angles is:

cos(4 — B) = cos(A4 + (—B)) = cos A cos(—B) — sin 4 sin(—B)
= (0.6)(0.8) — (0.8)(—0.6) = 0.48 4+ 0.48 = 0.96

The tangent of the sum of the angles is:

tan(4 + B) = (tan 4 + tan B)/(1 — tan 4 tan B)
=(4/3+4+3/4)/(1 —(4/3)(3/4)) = (25/12)/0 = undefined!

The tangent of the difference of the angles is:

tan(4 — B) = tan(4 + (—B))
= ((tan 4 4 tan(—B))/(1 — tan 4 tan(—B))
=4/3-3/4)/(1 — @4/3)(—=3/4)) =(7/12)/2 =7/24 = 0.2917

2. The two places are at the base angles of an isosceles triangle. The apex of the
triangle is at the center of the earth (see drawing below). The two equal sides are
4000 miles long. The apex angle is the difference in longitude, which is
100.5 — 37.5 = 63 degrees. Divide this isosceles triangle in half by dropping a
perpendicular from the apex to the middle of the base. Then the hypotenuse of
this triangle measures 4000 miles, and the angle between at the center of the
earth is 63/2 = 31.5 degrees. Side x, which is half the distance asked for in the
problem, is of a length such that x/4000 = sin31.5° = 0.5225. Therefore,
x = 2090 miles, and the distance is twice this, or 4180 miles.

Sumatra

Mt. Kenya

Center of Earth

Answer to Problem 2, Chapter 14
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3. The lines of sight would cross at an angle equal to the difference in longitude
between them. The two places differ in longitude by 63 degrees. Thus the lines
would cross at a 63-degree angle (see drawing below). Actually, when you talk
about lines crossing, you can also consider two supplementary angles. Thus it is
just as correct to say that the lines cross at an angle of 180 — 63 = 117 degrees.

Satellite

Answer to
Problems 3 and 4,
Chapter 14

Distance
to satellite

Sumatra

Mit. Kenya

2090 miles
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4. Refer to the above drawing. The angles between the sighting lines (from the
previous problem) and the direct line connecting the points (through the Earth)
are both 31.5 degrees. This is half of 63 degrees, the angle between the two sight-
ing lines themselves. Consider a perpendicular line from the satellite to the mid-
dle of the base; this creates two mirror-image right triangles whose bases are
each 2090 miles. The angles adjacent to the bases are 31.5 + 58 = 89.5 degrees.
Let x be the distance to the satellite (either from Sumatra or from Mt. Kenya;
they are both the same). By trigonometry, 2090/x = cos89.5°. Solving,
x = 239,500 miles (to four significant digits).

5. We are given the fact that
cosA =2sin4

Therefore, the cosine divided by the sine is equal to 2, and the sine divided by the
cosine is equal to 1/2, or 0.500. This is the tangent of the angle.
6. To find the cosine, use the formula
cos A = (1 —sin* 4)!/*
This determines that the cosine of the angle is 0.96. The tangent is the sine divided
by the cosine, which is 0.28/0.96 = 0.2917 (to four significant digits).
7. To find the sine of twice the angle, use the formula
sin24 = 2sin 4 — (1 — sin® 4)"/?

This yields a result of 0.96.To find the sine of three times the angle, use the formula

sin34 =3sin A4 — 4sin> 4

This gives the result 0.936. (That’s right—the sine of three times this angle is
almost exactly the same as the sine of twice the angle. You can use a calculator
or trig tables to find the measure of the angle, and draw its multiples as vectors
on the coordinate plane. This will illustrate what’s going on.)

8. The sine of the angle has already been determined as 0.96, from the previous
problem. Then use the formula

cos A = (1 —sin* 4)!/?
=(1 —0.96%)"? =0.28
9. Using the table on page 237, note that sin 15° = 0.259. Let 4 = 15°. Let the
square root sign (surd) be represented as the 1/2 power. Then:
sin 30° = sin 24 = 2sin A(1 — sin® 4)"/*
= 0.518(0.933)"/? = 0.500

and
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$in45° =sin3A4 = 3sin 4 — 4sin’ 4
=0.777 — 0.069 = 0.708

This second result is somewhat imprecise because of the limited number of
significant digits in the calculations.

10. Using the table on page 237, note that sin 30° = 0.500. Let A = 30°. Let the
square root sign (surd) be represented as the 1/2 power. Then:

sin 60° = sin 24 = 2sin A(1 — sin® 4)"/*
= 1.000(0.75)/% = 0.866

and

$in90° = sin34 = 3sin 4 — 4sin’ 4
=1.500 — 0.500 = 1.000

11. Using the table on page 237, note that tan 45° = 1.000. Let 4 = 45°. Then:

tan90° = tan 24 = (2 tan 4)/(1 — tan® 4)
= 2.000/0 = undefined!

and

tan 135° = tan 34 = (3tan 4 — tan® 4)/(1 — 3 tan® 4)
= 2.000/(—2.000) = —1.000

12. Using the table on page 237, note that cos 60° = 0.500. Let 4 = 60°. Then:
cos 120° = cos24 = 2cos’ 4 — 1 = —0.500

and
cos 180° = cos 34 =4 cos® 4 — 3cos A = —1.000

13. Using the table on page 237, note that cos 90° = 0.000. Let 4 = 90°. Then:
cos 180° = cos24 =2cos’ 4 — 1 = —1.000

and
c0s270° = cos 34 =4 cos® A — 3cos A = 0.000

14. To find the tangents of the original angles, it is easiest to use a calculator. Let
the angles be called A4, B, C, and D.Then, to three significant digits:

tan 4 =tan29° = 0.554
tan B = tan 31° = 0.601
tan C =tan 59° = 1.66
tanD = tan61° = 1.80

From the formula for the tangent of three times an angle:

tan34 = tan87° = 3tan 4 — tan> 4)/(1 — 3 tan’ A)
= (1.662 — 0.170)/(1.000 — 0.921) = 18.9
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tan 3B = tan 93° = (3 tan B — tan’ B)/(1 — 3 tan’ B)
= (1.803 — 0.217)/(1.000 — 1.083) = —19.1

These answers are somewhat imprecise because the calculation processes
were limited to three significant digits. The change in sign occurs as a result of
the angle vector moving from the first to the second quadrant in the coordinate
plane.

tan3C = tan 177° = 3 tan C — tan’® C)/(1 — 3tan® C)
= (4.98 — 4.57) / (1.000 — 8.27) = —0.0564

tan 3D = tan 183° = (3tan D — tan® C)/(1 — 3 tan’ D)
= (5.40 — 5.83)/(1.000 — 9.72) = 0.0493

These answers are somewhat imprecise because the calculation processes were
limited to three significant digits. The change in sign occurs as a result of the
angle vector moving from the second to the third quadrant in the coordinate
plane.

15. Use the formulas on page 239. Let the angle be A. Then sin 4 = 0.96, and:

sin24 = 2sin A(1 — sin® 4)"/? = 0.538

To find the cosine, remember that for any angle B,
sin” B+ cos’ B =1

and therefore
cos’ B=1—sin*B

The formula for cos 24 on page 239 states that:
cos24 =2cos* A4 — 1

Substituting:
cos24 =2(1 —sin*A) — 1 =1 —2sin* 4 = —0.843
16. Let cos A = x. Then the equation, reduced to standard quadratic form,
becomes
87 +x—3=0
Using the quadratic formula to solve this, we obtain expressions containing the
square root of 97, which is approximately 9.85. The resulting solutions are:
x=0.553 orx =—0.678
Remembering that x = cos A4, a calculator can be used to find the angles, which

are, respectively, 56.4 degrees, which is in the first quadrant, and 132.7 degrees,
which is in the second quadrant.
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Chapter 15

1. Dividing 1 by 37, we obtain 0.0270 (the first three significant digits are 2,
7, 0). Continuing the division yields a repeating decimal: 1/37
= 0.027027027027 ... The error, x, is the difference between the three-signifi-
cant-digit value and the full repeating decimal:

x =0.027027027027 ... — 0.0270 = 0.0000270270270. ...

2. In the binary system, 15 is denoted 1111, and 63 is denoted 111111.
Multiplying these yields 1110110001. In decimal form this equals:

(1-1)+(0-2)+(0-4)+(0-8) + (L - 16)
£ (1-32) 4+ (0-64) + (1-128) + (1 - 256) + (1 - 512)
=1+ 16432+ 128 +256 + 512 = 945

Checking with a calculator, 15 x 63 = 945.

3. Inthe binary system, 1922 is denoted 11110000010, and 31 is denoted 11111.
The quotient is 111110. In decimal form this equals:

O-D+1-2)+T-H+1-8)+(1-16)+(1-32)
=2+44+8+16+32=062

Checking with a calculator, 1922/31 = 62.

4. Fractional exponents involve both powers and roots. The solutions are found
as follows:

(2) Find the 4th root of 16, which is 2; then cube 2 to obtain 16*/* = 8.

(b) This expression is equivalent to 243%°. First find the 5th root of 243, which
is 3; then take the 4th power to obtain 243%8 = 81.

(©) This expression is equivalent to 25>, First find the square root of 25, which
is 5; then cube this to obtain 25! = 125.

(d) Find the cube root of 64, which is 4; then square 4 to obtain 64*> = 16.

(¢) Find the cube root of 343, which is 7; then take the 4th power of 7 to obtain
the result 343*° = 2401.

5. The equivalents are as follows:

(@) Decimal 62 = Binary 111110

(b) Decimal 81 = Binary 1010001

(¢) Decimal 111 = Binary 1101111

(d) Decimal 49 = Binary 110001

(¢) Decimal 98 = Binary 1100010

(f) Decimal 222 = Binary 11011110

(g) Decimal 650 = Binary 1010001010
(h) Decimal 999 = Binary 1111100111
(1) Decimal 2000 = Binary 11111010000
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6. The equivalents are as follows:

(@) Binary 101 = Decimal 5

(b) Binary 1111 = Decimal 15

(c) Binary 10101 = Decimal 21

(d) Binary 111100 = Decimal 60

(¢) Binary 110111000110 = Decimal 3526

7. The product 129 - 31 = 3999, and the product 129 - 41 = 5289. This is an
error of 5298 — 3999 = 1290, which is 32 percent of the correct value (3999).
The binary equivalent of 129 is 10000001, and the binary equivalent of 31 is
11111. The product of these numbers is binary 111110011111, which is equivalent
to decimal 3999. If the second-to-last digit in the second binary number is
reversed so the number becomes 11101, the binary product becomes binary
111010011101, which is equivalent to decimal 3741. This is an error of
3999 — 3741 = 258, which is 6.5 percent of the correct value (3999).

8. The value of each expression is one larger than the larger of @ or 5. The for-
mula is the same as the one used for the Pythagorean theorem. Therefore, each
of these number groups represents relationships among sides of right triangles.
They are special cases because all three sides are in ratios that can be expressed
as integers.

9. The value of each expression is two larger than the larger of @ or . The reason
for this is the same as that for the previous problem. They are special cases of
right triangles whose sides are in integral ratios.

10. The first four expressions are:

a) 1002 = 10,000
(@)

(b) 1002 =10

o) 10072 = 0.0001
©

@ 100 Y2 =0.1

The second four expressions can be derived as whole-number powers of (b) and
(d):

@© 100*?% = (100"%)® = 10° = 1,000

() 100°? = (100'%)° = 10° = 100,000

(g) 100 %% = (1007%)® = (0.1)* = 0.001
(h) 10072 = (100~Y/%)° = (0.1)° = 0.00001

11. The answers can be found by taking successive square roots (1/2 powers) of
100. Note that 1002 = 10.Then, using a calculator that displays eight digits:

@) 100Y* = 10'? = 3.1622776

(b) 100/% = (3.1622776)"/* = 1.7782793
© 10016 = (1.7782793)!/? = 1.3335213
(d 100"3? = (1.3335213)'2 = 1.1547819
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12. The value will approach 1. The reason for thisis that the exponent approaches
zero, and any nonzero number to the zeroth power equals 1.

13. Note that 2° = 32, and therefore, 32!/° = 32%2 = 2. This answers part (b).
From this, we can determine the answers to (d), (), and (h):

@ 32" =322 =22 =4
) 326 =322 =23 =38
(hy) 32°% = (329 =2 =16

The value of 32%! is the same as (32°%)!/2, which is 2. Using a calculator that
displays seven or eight digits (depending on its mood), this is found to be
1.4142135.This answers part (a). From this, we can determine the answers to (c),

©). (g). and (i):

© 32 = (321 = (1.4142135)° = 2.828427
© 32°° = (32%1)’ = (1.4142135)° = 5.656854
(g) 32" = (32" =(1.4142135)" = 11.313708
() 32" = (32%1Y = (1.4142135) = 22.627416

14. The expressions can be simplified to the following:

@ 6 (b) 28 © 7
d 2 © 2 () 81
(g) 0.0123  (h) 9 (i) 0.1111
(G 3 (k) 0.3333
Chapter 16

1. The progression types and parameters are:

(@) arithmetic,a=1,d =4

(b) arithmetic;a = —-9,d =6

(c) geometric;a = 16,r = 3/4

(d) geometric;a = —81,r=-2/3
() harmonic; a = 1512,d =1/5
(f) geometric,a=1,r=1/2

(g) geometric,a=1,r=2

2. The sums are;
(@) 400 (b) 1,248 ¢y 10,235

d —1,705 () 196.875 () 65.625
(2) 67.1875 (h) 1,995

3. The sums are:

(@ 2 (b) non-finite  (¢) 1,000
(dy 6.25 (e) 1,000 (f) 100
(g) 100 (h) 512
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4. Use the formula for the permutations of k articles in an available 7 articles:
WP =nt/(n— k)

Then the results are as follows. Notice that it’s not always necessary to compute
the factorials of the numerators; the terms of the factorials in the denominators
often cancel out some of the terms of the factorials in the numerators.

(@) 50!/(50 —3)! =50!/47! = 50-49 -48
= 117,600 permutations
(b) 10!/(10 —5)!=10!/5'=10-9-8-7-6
= 30,240 permutations
() 12!/(12 —6)! =12!'/6! =12-11-10-9-8 -7
= 665,280 permutations
(d 10'/(10 —4)! =10!/6!=10-9-8-7
= 5,040 permutations
e NT7—-6)=7"=7-6-5-4.3.2
= 5,040 permutations

5. Use the formula for the combinations of k& articles in an available n articles:
2Cr =nl/(K\(n — k)

Notice that the n’s and &’s in each part of this problem are the same as the 7’s and
k’s in each part of the previous problem. This is convenient, because the results
can be obtained by dividing the answers of the previous problem by k! in each
case:

(@) 117,600/3! = 117,600/6 = 19,600 combinations
(b) 30,240/5! = 252 combinations

(c) 665,280/6! = 924 combinations

(d) 5,040/4! = 210 combinations

(e) 5,040/6! = 7 combinations

6. Suppose that zero were allowed as the first digit in the numbers. Then there
would be 107 = 10,000,000 possible telephone numbers in this area code. There
are 10° = 1,000,000 telephone numbers whose first digit is zero (this in effect cre-
ates six-digit numbers). Because the first digit cannot be zero, the total number
of available telephone numbers is 10,000,000 — 1,000,000, or 9,000,000.

7. In this case, there will be 10,000,000 — 3,000,000, or 7,000,000 available
numbers.

8. Assuming all 12 horses have equal ability:

(@) The probability of your naming the correct winner is 1/12.

(b) There are ,C, = 12!/[(2!(12 — 2)!] = 66 different ways in which the
horses can come in first and second, in no particular order. Your chance
of making a correct guess is therefore 1/66.
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(¢) There are |, P, = 12!/(12 — 2)! = 132 different ways in which the horses
can come in first and second, taking order into account. Your chance of
making a correct guess is therefore 1/132.

9. This probability is 1 /(12/3) = 1/4. Another way of thinking of this is to fig-
ure the chance that a particular horse will finish in the top quartile (1/4).

10. First, determine the number of sunlike stars in our galaxy This is
0.06-2-10" =0.12- 10" =1.2-10" stars. Three percent of these stars
have at least one earthlike planet; this number is 0.03-1.2-10" =
0.036 - 10® = 3.6 - 10® stars. One in five, or 20 percent, of these planets
can be expected to have life as we know it; this number is at least
02-3.6-102=0.72-10=7.2-107, or 72,000,000, planets. (We say “at
least” because some stars might have more than one earthlike planet.)

11. This problem can be solved easily via a bit of trickery. Suppose there are 100
people in the bar. (You can choose any number, but it’s best if it’s large and divisi-
ble by 2, 5, and 10). Then there are probably 50 men and 50 women in the bar.
One in 5 men has probably had a ticket in the past year; that is 1/5- 50 = 10
men. One in 10 women has probably had a ticket in the past year; that’s
1/10 - 50 = 5 women. Therefore, 15 of the 100 people have probably had tickets
in the past year. If you choose a person at random, the probability is
15/100 = 15 percent that you will select a person who has had a speeding ticket
in the past year.

12. If you choose one man, chances are 1/5 that he has had a ticket in the past
year. If you choose a woman, chances are 1/10 that she has had a ticket in the
past year. Thus, the probability that they have both had tickets in the past year is
(1/5)(1/10) = 1/50, or 2 percent.

13. The probability is 1/2, or 50 percent that the coin will come up heads, and 50
percent that it will come up tails. (Coin tosses are not affected by history.)

Chapter 17

1. The derivatives are as follows:

(@ dy/dx=10x

(b) dy/dx =2x+3

) dy/dx=2x+73

(d) dy/dx =2x —sinx

© dv/dx=12x>—8x—4

(f) dy/dx =cosx —2sinx

(g) dv/dx =20x> + 4x

(hy dy/dx = —2x> —16x7°
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2. First, convert 5 miles per hour (miles/hour) into feet per second (ft/sec).
Remember that 30 miles/hour = 44 ft/sec; therefore 5 miles hour
= 44/6 = 7.333 ft/sec. The acceleration « is therefore 7.333 ft/sec®. Knowing
that the initial velocity v = 0 ft/sec, we can surmise that v, in terms of the time ¢
in seconds, is a formula whose derivative is dv/dt = a = 7.333. Therefore,
v = 7.3331. Assign the initial displacement s = 0 ft (the starting position). Then
we can surmise that s, in terms of ¢ is a formula whose derivative is
ds/dt = v ="7.333t. Therefore, s=3.667". When t=10, s=3.667- 10
= 366.7 ft. In 10 seconds the car will move 366.7 feet from its starting position.

3. Simply plug the value # = 10 into the above formula derived for v in terms of
t. This givesv = 7.333 - 10 = 73.33 ft/sec.

4. In the second 10 seconds (from ¢t =10 to ¢ = 20), the car will travel
73.33 ft/sec - 10 sec = 733.3 ft. We already know that in the first 10 seconds, the
car traveled 366.7 ft. Therefore, the total distance traveled in 20 seconds is
733.3ft + 366.7 ft = 1,100 ft.

5. Given that the acceleration ¢ = dv/dt = 32, surmise that v = 32¢,if t = O at
the instant the ball is dropped. This tells us that ds/dr = 32¢, where s is the dis-
placement downward from the point at which the ball is dropped. Therefore,
s = 167°. The building is 20 - 10 = 200 ft high. Substituting 200 for s gives
200 = 167°. Therefore, = 3.536 seconds (to four significant figures).

6. We know v =32t When the ball hits the ground, v =32-3.536 =
113.2 ft/sec.

7. Let the acceleration, in ft/sec?, be represented by « Then using the slope-
intercept form for a straight line, @ = ¢t — 4. Because a = dv/dt, we can surmise
that v = #*/2 — 41 + ¢, where ¢ is a constant. Given that the starting velocity is
44 ft/sec, we know that ¢ = 44. Therefore, v = */2 — 41 + 44.

8. Because v = ds/dr,we can surmise that s = 72 /6 — 277 + 441 + ¢.Given that

s=0 when r=0, we know that ¢=0, so the formula is simply
s=1/6—2¢ +44r.

9. Simply plug the time values into the equation derived in problem 7. The
speeds are, rounded to four significant digits:

(a) 40.50 ft/sec (b) 38.00 ft/sec
(c) 36.50 ft/sec (d) 54.00 ft/sec

10. Simply plug the time values into the equation derived in problem 8. The dis-
placements are, rounded to four significant digits:

@) 42.17ft  (b) 81.33 ft
© 190.8ft (d) 406.7 ft



Answers to questions and problems 521

11. Note that one complete cycle, equivalent to 360 degrees, takes place in 5 sec-
onds. Then the angle ¢, in degrees, is equal to 72¢, where 7 is in seconds. The voltage
V peaks positively and negatively at 8 times the maximum value of the sine func-
tion. Therefore, we can surmise that ' = 8sin 72¢ (with angles expressed in
degrees).

12. To find these values, we must find the derivative of the function obtained in
the previous problem. Knowing that the derivative of the sine is the cosine, we
can determine that dV/dt = 8cos72t (with angles expressed in degrees).
Plugging in values for 7 and using a calculator yields these results:

(@) +8.000volt/sec  (b) —6.742 volt/sec
(©) —8.000 volt/sec  (d) +8.000 volt/sec
() +2.472volt/sec () —8&.000 volt/sec

13. Using a calculator with a pi () key, you can determine that there are
0.017453 radians/degree (to five significant digits). Thus the angle measures, to
four significant digits, are:

(@) 0.1745 radians (b) 0.5236 radians
(c) 1.309 radians (d) 2.531 radians
(¢) 3.840 radians (f) 5.236radians

14. Using a calculator with a pi (;r) key, you can determine that there are 57.296
degrees/radian (to five significant digits). Thus the angle measures, to four signif-
icant digits, are:

(@) 11.46 degrees (b) 28.65 degrees
(c) 57.30 degrees (d) 97.40 degrees
(¢) 126.1 degrees () 200.5 degrees

15. To find the answer to (a), divide 360 degrees by 365.25 days, to obtain 0.98563
degrees/day (to five significant digits). To figure out (b), first multiply the answer
(@) by 30.000 to obtain 29.569 degrees/month for April. Then multiply this
by the radians/degree figure determined in problem 13, which yields
29.569 - 0.017453 = 0.51607 radians/ month for April

Chapter 18

1. First, derive a formula for the wave. The period is 3.000 seconds, correspond-
ing to one complete cycle or 27 radians. The value of 27 is approximately 6.283.
The peak amplitude, s, of the wave is plus or minus 6.000 m. The wave has a
sinusoidal shape and begins at (0, 0), increasing positively, so it corresponds to
a multiple of a sine function. The formula for s in terms of time ¢ is:

§ = 6.000s1n(6.283/3.000)r = 6.000 sin 2.094¢
Differentiating this yields:
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ds/dt = (6.000 - 2.094) cos 2.0941 = 12.56 cos 2.094¢

The velocity is greatest positively at £ = 0.000, £ = 3.000, r = 6.000, etc. This can
be ascertained by simply observing the graph. Take the easiest example where
t = 0.000. Then:

€0$2.094¢ = cos 0.000 = 1.000

and the velocity is therefore 12.56 m/sec. Rounding to three significant figures,
the maximum velocity is 12.6 m/sec (upward).

2. This can be inferred from the graph and a knowledge of the fact that the sine
function is symmetrical. The greatest negative (downward) velocity is at
t = 1.500, t = 4.500, t = 7.500, etc. It is the same magnitude as the maximum
upward velocity, but has a negative value: —12.6 m/sec.

3. The acceleration, a, is greatest positively (upward) at the minimum displace-
ment points on the graph, that is, at r = 2.250, r = 5.250, r = 8.250, etc. Using
the formula on page 309, we can obtain

a=d>s/d* = —(6.000 - 2.094%) sin 2.0947 = —26.31 sin 2.094¢
Plugging in ¢ = 2.250 yields:
a = —26.31sin(2.094 - 2.250) = —26.31 - —1.000 = 26.31 m/sec’

Remember that angles are specified in radians here, not in degrees. Rounding off
to three significant figures yields ¢ = 26.3m/sec’ as the maximum upward
acceleration.

4. The greatest negative acceleration occurs at the positive displacement peaks,
that is, at £ = 0.750, t = 3.750, t = 6.750, etc. Because the function is symmet-
rical, we can surmise from the previous problem that at these points,
a = —26.3m/sec’.

5. The period is 1.000 second, corresponding to 27 or approximately 6.283
radians. The formula for s in terms of time 7 is therefore:
§ = 6.000sin(6.283/1.000)¢ = 6.000 sin 6.283¢
Differentiating this yields
ds/dt = (6.000 - 6.283) cos 6.283¢ = 37.70 cos 6.283¢

The velocity is greatest positively at 1 = 0.000, ¢ = 1.000, t = 2.000, etc. Take the
easiest example where t = 0.000. Then:

c0s 6.283¢ = c0s0.000 = 1.000

and the velocity, rounded to three significant figures, is therefore 37.7 m/sec
upward.
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6. The greatest negative (downward) velocity is at 7= 0.500, ¢ = 1.500,
t = 2.500, etc. It is the same magnitude as the maximum upward velocity, but
has a negative value: —37.7 m/sec.

7. The acceleration, g, is greatest positively (upward) at the minimum displace-
ment points on the graph, that is, at r = 0.750, t = 1.750, t = 2.750, etc. Using
the formula on page 309, we can obtain

a=d*s/d* = —(6.000 - 6.283%)sin 6.2837 = —236.9 sin 6.283¢
Plugging in ¢ = 0.750 yields:
a = —236.9sin(6.283 - 0.750) = —236.9 - —1.000 = 236.9 m/sec’

Remember that angles are specified in radians here, not in degrees. Rounding off
to three significant figures yields ¢ = 237 m/sec’ as the maximum upward accel-
eration.

8. The greatest negative acceleration occurs at the positive displacement peaks,
that is, at = 0.250, t = 1.250, r = 3.250, etc. Because the function is symmet-
rical, we can surmise from the previous problem that at these points,
a = —237m/sec’.

9. The answers are derived as follows:

@) sin’(7/2) = (1/2)(1 — cos ) = (1/2)(1 — (—1)) = 1.000
(b) cos*(/3) = (1/2)(1 + cos(27/3)) = (1/2)(1 — 0.5) = 0.250
© sin’(/4) = (1/4)(3sin(r/4) — sin(37/4))
= (1/4)[(3-0.7071) — 0.7071]
= (1/4)(1.414) = 0.3535
(d) cos’(3r/4) = (1/4)[3 cos(3/4) + cos(97/4)
= (1/4)((3 - —0.7071) + 0.7071)
=(1/4)(—1.414) = —0.3535
© sin’(7/3) = (1/16)[10sin(s/3) — 5sin 7w + sin(57/3)]
= (1/16)(10 - 0.8660 — 5- 0 — 0.8660) = (1/16)(7.794)
= 0.4871
() cos®(2r/5) = (1/32)[10 + 15 cos(4w/5) + 6 cos(8/5) + cos(127/5)]
= (1/32)(10 4 (15 - —0.809017) + (6 - 0.309017)
+ 0.309017)
= (1/32)(10 — 12.135255 + 1.854102 + 0.309017)
= 0.0008708

10. The answers are derived as follows. Angles greater than 360 degrees are
reduced by subtracting an integral multiple of 360, such that the resulting angle
is between 0 and 360. Coefficients in the formulas are exact integral values.

(@) sin*70 = (3 — 4 cos 140 + cos 280)/8
= (3 +3.0642 +0.1736)/8 = 0.7797
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(b) sin® 105 = (3 — 4¢0s210 + cos420)/8 = (3 — 4¢0s 210 + cos 60)/8
= (3 + 3.4641 4 0.5000)/8 = 0.8705
(© sin® 140 = (3 — 405280 + cos 560)/8 = (3 — 4 cos 280 + cos 200)/8
= (3 — 0.69459 — 0.93969)/8 = 0.1707
(d) sin* 175 = (3 — 4¢0s 350 + cos 700)/8 = (3 — 4 cos 350 + cos 340)/8
= (3 —3.93923101 4 0.93969262)/8 = 0.00005770
© sin’ 105 = (3/4)sin 105 — (1/4)sin 315
= (3/4)(0.96592) — (1/4)(—0.70711)
=0.72444 + 0.17678 = 0.9012
(f) sin’70 = (10sin 70 — 5sin 210 + sin 350)/16
=(9.39626 + 2.50000 — 0.17365)/16 = 0.7327
(g) sin’ 105 = (10sin 105 — 5sin 315 + sin 525)/16
= (10sin 105 — 5sin 315 4+ sin 165)/16
= (9.65926 + 3.53553 + 0.25882)/16 = 0.8409
(h) sin® 140 = (10sin 140 — 5sin 420 + sin 700)/16
= (10sin 140 — 5sin 60 + sin 340)/16
= (6.42788 — 4.33013 — 0.34202)/16 = 0.1097

11. The answers are derived as follows. Angles greater than 360 degrees are
reduced by subtracting an integral multiple of 360, such that the resulting angle
is between 0 and 360. Coefficients in the formulas are exact integral values.

(@) sin® 110 = (3 — 408220 + cos440)/8 = (3 — 4¢0s 220 + cos 80)/8
= (3+3.06417 + 0.17365)/8 = 0.7797

(b) sin* 165 = (3 — 4cos 330 + cos 660)/8 = (3 — 4 cos 330 + cos 300)/8
= (3 — 3.46410 + 0.50000)/8 = 0.004488

(©) sin*220 = (3 — 4cos 440 + cos 880)/8 = (3 — 4 cos 80 + cos 160)/8
= (3 — 0.69459 — 0.93969)/8 = 0.1707

(d) sin*275 = (3 — 4c0s 550 + cos 1100)/8 = (3 — 4cos 190 + cos 20)/8
= (34 3.93923 + 0.93969)/8 = 0.9849

@ sin® 165 = (3/4)sin 165 — (1/4)sin 495 = (3/4) sin 165 — (1/4) sin 135
= (3/4)(0.25882) — (1/4)(0.70711)
=0.19412 — 0.17678 = 0.01734

(f) sin’ 110 = (10sin 110 — 5sin 330 + sin 550)/16
= (10sin 110 — 5sin 330 + sin 190)/16
=(9.39693 + 2.50000 — 0.17365)/16 = 0.7327

(g) sin’ 165 = (10sin 165 — 5sin 495 + sin 825)/16
= (10sin 165 — 5sin 135 + sin 105)/16
= (2.58819 — 3.53553 + 0.96593)/16 = 0.01162

(h) sin® 220 = (10sin 220 — 5sin 660 + sin 1100)/16
= (10sin 220 — 5sin 300 + sin 20)/16
= (—6.42788 + 4.33013 4 0.34202)/16 = —0.1097

12. First, calculate the circumference of the circle, ¢, in terms of the radius, r.
Knowing that » = 10ft, ¢ = 2nr = 62.8319ft. The ball traverses this distance
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every 2.000 seconds; therefore the tangential speed v of the ball, in ft/sec, is
62.8319/2.000 = 31.42ft/sec.

13. The northward component of the ball’s speed, v,,, is equal to the tangential
speed (31.42ft/sec) multiplied by the cosine of the angle west of north. This
angle is 45 degrees, whose cosine is 0.7071. Therefore, v, at this instant is:

v, = 31.42-0.7071 = 22.22ft/sec

Chapter 19

1. Use the formula on page 327 to derive the answers. This formula can be
written in “shorthand” notation as

(w) =u'v+v'u
where the prime represents the derivative.

@) () =2x> + B3x7)2x +3) = 2x° + 6x° + 937 = 8x% + 9x?
(b) (uv)' = (2x — 6)(3sinx) + (3 cos x)(x? — 6x + 4)
= 6xsinx — 18sinx + 3x“cosx — 18xcosx + 12cosx
= (6x — 18)sinx + (3x* — 18x 4+ 12)cos x
© (uv) = cos® x — sin’ x
(@) (o) = (5x)=20" +2) + (=637)(x" — 4)
= —10x" + 10x* — 6x7 +24x% = —16x" + 10x* + 2457

2. Use the formula on page 330 to derive the answers. In “shorthand” this
formula is

(u/v) = W'v—v'u)v*

where the prime represents the derivative.

@ (/1) =[(=3)x" +2) = 2x)(=3x = O1/(x" +4x" +4)
= (3x% + 12x — 6)/(x* + 437 + 4)
(b) (u/v)’ = [(2x + 2)(sin x) — (cos x)(x* + 2x)]/ sin* x
= (2xsinx + 2sinx — x> cos x — 2xcos x)/ sin” x
© (u/v)" = [(cos x)(3 + cos x) — (— sin x)(sin x)]/(cos x + 6 .cos x + 9)
= (3cos x + cos” x + sin” x)/(cos® x + 6.cos x + 9)
= (1 4+ 3 cos x)/(cos> x + 6.cos x + 9)
A (/v) =[(12x")(=2x%) — (4 (3x" — 4))/4x*
= (=24x° + 12x° — 16x)/4x*

3. Calculus is not necessary to solve this problem (although you can use it if you
want). It is only necessary to add 90 degrees, or /2 (approximately 1.571)
radians, to the angles given, and then find the tangent of the resulting angle. Thus
the answers are as follows. Angles in (a) through (e) are in degrees; angles in (f)
through (h) are in radians:
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(@) slope = tan(10 + 90) = tan 100 = —5.671

(b) slope = tan(55 + 90) = tan 145 = —0.7002

(c) slope = tan(105 + 90) = tan 195 = 0.2679

(d) slope = tan(190 + 90) = tan 280 = —5.671

(e) slope = tan(300 4 90) = tan 390 = tan 30 = 0.5774
(f) slope =tan(l 4+ 1.571) = tan 2.571 = —0.6418

(g) slope =tan(2 + 1.571) = tan 3.571 = 0.4579

(h) slope = tan(4 + 1.571) = tan 5.571 = —0.8633

4. The derivative is the slope of a function at a given point. If we let the deriv-
ative, in volts, equal the slope of the graph in V/msec, then the graph of the
output will appear as shown in the following drawing. The vertical lines represent
instantaneous voltage transitions. Mathematically they are undefined in slope.

+5V

1 msec 4,‘ l<—

|
| I I | | |

S5V

Answer to Problem 4, Chapter 19

5. Inapractical circuit, the output of the second differentiator will be zero volts,
continuous (that is, no output). Mathematically, the vertical lines in the graph of
above cannot be differentiated, so the graph will appear as shown in the following
drawing. The open circles represent points “missing” from the line V" = 0.

6. Start at the point t = 0, v = 0 when integrating. First integrate the function
1(¢) = 5t from ¢t = 0 to ¢ = 1. The indefinite integral is 2.5¢* + ¢. The constants
of integration can be ignored because we will take definite integrals. The curve
will have a parabolic (quadratic) shape and will attain a value of +2.5V at
t = 1 msec. The second straight-line part of the function, which slopes
downward from ¢ = 1 to t = 3, has the equation

f(t)=—5t+10
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Answer to Problem 5, Chapter 19

The indefinite integral of this is
2.5 + 10t + ¢

Evaluated from 1 to 2,thisis 2.5, which adds on to the existing 2.5 volts to result in
+ 5V at t = 2. The curve will be parabolic like the first part, but curved down-
ward rather than upward. Evaluated from 2 to 3, this function is —2.5, so the para-
bola continues to curve downward, reaching +2.5V at ¢ = 3. The next straight-
line part of the function slopes up just like the first part, so the parabola will
start upward again. You should be able to surmise from this that the waveform
will be periodic with quadratic shape, with maximum peaks at +5 V and mini-
mum peaks at 0 V, as shown below.

+S5V —

O A

Answer to Problem 6, Chapter 19
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7. To get the second integral, you must integrate the function shown in the graph
above. Start at the point ¢t = 0, v = 0. First integrate the function

() =2.5¢

from 7 = 0 to = 1. The indefinite integral is 5¢° /6. The constants of integration
can be ignored because we will take definite integrals. The curve has a cubic-
function shape, begins at zero, and ends up at +5/6 V at r = 1 msec. In decimal
form this is approximately +0.8333 V. Next, integrate

1) = —2.5¢* + 101

from r = 1 to t = 3.The indefinite integral is
—56/6 + 57

Evaluatedfrom ¢ = 1 tor = 3,the definiteintegralis 22.5 — 4.1667 = +18.333 V.
This adds to the initial value of +0.8333 V to give +19.1667V at t = 3msec. The
integral (area under the curve) from 7 = 3 to r = 4 can be determined, upon
visual inspection, to be the same as the first part from 1 =0 to r = 1, that is,
+0.8333V. Thus, at t=4 msec, the function will attain a value of
19.1667 + 0.8333 = +20 V. This completes the evaluation of the first complete
wave cycle from 7 = 0 to 1 = 4. During the next cycle, the wave will increase by
20 V more, to +40V. As time progresses, in theory, the voltage will continue
increasing without limit. Thus the waveform, graphed starting at r = 0, will look
like the following drawing. In a practical circuit, the voltage could not increase
without limit, but would level off at some maximum determined by the voltage
of the power source.

Voltage

+100

804

60

40

204

12
Time, msec

Answer to Problem 7, Chapter 19
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8. The integral functions, denoted f(x), are as follows. The constant of integra-
tion, in each case, is represented by c.

@ f(x)=x"+¢ M) f(x)=x"+¢
© f(x)=x"+¢ @ f(x)=x75+¢
(© f(x)=2sinx+c¢ () f(x) =4cosx+c¢
9. The above functions are solved for x = 1 and also for x = —1. Then, the
difference
S =f(=1D

is found. In every case, the constants of integration cancel out, so they need not be
included in the calculations.

@ f()=Tlandf(-1)=1;

definite integralis 1 — 1 =0
() f()=Tandf(-1)=1;

definite integralis 1 — 1 =0
© f()=Tlandf(-1) = —1;

definite integralis 1 — (—1) =2
@ f() =1/5and f(—1) = —1/5;

definite integralis 1/5 — (—1/5) = 2/5
(©) f(1)=1.683andf(—1) = —1.683;

definite integral is 1.683 — (—1.683) = 3.366
) f(1)=2.161and f(—1) =2.161;

definite integral is 2.161 — 2.161 =0

10. Before it is possible to find the areas under the curve, the function itself must
be known. We are told it is quadratic. By checking the points shown on the
graph, it can be determined that

y=((x+1D¥2)=2=(1/2)x" +x—3/2
This function is integrated to obtain
[((1/2)x* + x = 3/2)dx = (1/6)x° + (1/2)x* — (3/2)x + ¢

where ¢ is the constant of integration, which cancels out when definite integrals
are calculated. Call this function f(x). Then:

@ f(0)=0andf(-2) =11/3;

definite integral is0 — 11/3 = —11/3
(b) f(1) = —5/6 and /(0) = 0;

definite integral is —5/6 — 0 = —5/6
© f(2) =1/3and f(—1) = 11/6;

definite integralis 1/3 — 11/6 = —3/2
(d) f(4)=76/6andf(—1) = 11/6;

definite integral is 76/6 — 11/6 = 65/6
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11. The function in the graph, again, is
y=(1/2)x* +x—3/2

which is the integral of its derivative (3/2 being an arbitrary constant which can-
cels out in definite-integral calculations). To find the areas, evaluate the function

() =1/ + x
between the limit values.

@ f(0)=0and f(-2) = 0;
definite integralis0 — 0 = 0

(b) f(1)=3/2and f(0) = 0;
definite integralis 3/2 — 0 = 3/2

© f(2)=4andf(-1) = —1/2;
definite integral is4 — (—1/2) = 9/2

d) f(4)=12and f(—1) = —1/2;
definite integral is 12 — (—1/2) = 25/2

Chapter 20
1. The maximum is at the point where the derivative is zero. The derivative is
fl(x)=y = —6x+2
Solving the equation —6x + 2 = Qyields x = 1/3.Then at this point,
y=-3-(1/3%+2-1/3+2=1/3

The maximum therefore occurs at (x, y) = (1/3, 7/3). We know it is a maximum
rather than a minimum because the coeflicient of the x* part of the equation is
negative, making the parabola open downward.

2. When the slope of the function is maximum, the derivative will be maximum.
The derivative of the function is
f(x)=y" =2cosx

The cosine function attains maximum values of 1, so 2 cos x attains maxima of 2.
These maxima occur when x, in radians, is equal to any integral multiple of 2.
The values of x and f(x) can be tabulated as follows:

Y=—dr  f(x)=2sin(—4n)+2=2
x=-2x f(x)=2sin(-2m)+2=2

x=0 f(x)=2sin(0)+2=2
x=2m f(x)=2sin2r)+2=2

x =4 f(x)=2sin(4n)+2=2

Thus, the slope of f is maximum at points (x, y) = (2zn, 2), where n is any
integer.
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3. The edge of the region of light will be a circle if, and only if, the flashlight is
pointed straight down, that is, so the axis of the beam is perpendicular to the
plane of the lake surface.

4. The edge of the region of light will be an ellipse if, and only if, the beam axis
subtends an angle of more than 20 degrees with respect to the plane of the lake
surface.

5. The edge of the region of light will be a parabola if, and only if, the beam axis
subtends an angle of 20 degrees with respect to the plane of the lake surface.

6. The edge of the region of light will be a half-hyperbola if, and only if, one of
the following conditions is met:

e The beam axis intersects the lake surface and subtends an angle of less
than 20 degrees with respect to the surface.

e Thebeam axis is aimed at the horizon.

e The beam axis is aimed into the sky at an angle of less than 20 degrees
above the horizon.

7. The characteristics of the functions are as follows.

(@ If x = 0,then f(x) = —5, so the y intercept is at (0, —5). If f(x) = 0, then
2x% = 5,50 x = 1.357 and the x intercept is at (1.357, 0). Taking the first
derivative, //(x) = 6x°.The slope of the curve is zero when 6x> = 0.This
equation has only one solution: x =0, corresponding to the point
(0, —5). It indicates a point of inflection because f is a cubic function.
There exist no absolute maxima or minima.

(b) This function is stated in factored form. Multiplied out, it is

) =x—4x? +3x-12

If x = 0,then f(x) = —12, so the y intercept is at (0, —12). If f(x) = 0, then
x = 4 is the only real solution, so the x intercept is at (4, 0). Taking the first
derivative,

£'(x) =3x* —8x+3

Setting /'(x) = 0, which will show points at which the slope of the curve is
zero, there are two real solutions, x = 2.215 and x = 0.4503. “Plugging in”
these values and calculating f(x), the points are found to be:

(2.215, —14.11)
(0.4503, —11.37)

The second derivative can reveal whether these points represent local
minima (second derivative positive), local maxima (second derivative
negative), or points of inflection (second derivative zero).

£7(x) = 6x — 8
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When x = 2.215, f”(x) = 5.29. This represents a local minimum. When
x = 0.4503, /”(x) = —5.298.This represents a local maximum.

The second derivative is equal to zero when x = 4/3 = 1.333. At this x
value, f(x) = —12.741.Thus, the only point of inflection in the curve is:

(1.333, —12.741)

The slope of the curve is not zero at this inflection point, but the point defines
the transition from the range where the curve is concave downward to the
range where the curve is concave upward.

(c) This function has no local maxima or minima; its shape is similar to that
of the tangent function, except stretched vertically by a factor of 2.
Inflection points occur on the x axis at integral multiples of 7 radians;
that is, at points (7711, 0), where 7 is any integer.

(d) The curve is an inverted cosine wave, stretched vertically by a factor of 3.
Minima occur where x is an integral multiple of 27, and y = —3.
Maxima occur where x is an odd integral multiple of 7, and y = 3.
Inflection points occur where x is an odd integral multiple of 7/2, and
y=0.

8. The graphs of the functions in problem 7 are shown in the following illustra-
tions.

\lnﬂection

(0.-5)

- -12

Answer to Problem 8(a), Chapter 20
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y
18 —+
12 1
-T x-intercept
6 -+ (4,0)
Tttt x
-18 -12 -6 £ 6 12 18
Local max. -6
(0.4503,-11.37)
\
-12
y-intercept ~—— Local min.
(0,-12) s (2.215,-14.11)

Answer to Problem 8(b), Chapter 20

Inflection Inflection
points points
X
Answer to Problem &(c), Chapter 20
y
6 ——
Maxima T
Inflection Inflection
X

=\

6 - Minima

Answer to Problem §(d), Chapter 20
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Chapter 21
1. See drawing.

/2

N\ J

X/

3n/2

Answer to Problem 1, Chapter 21

2. See drawing.

n/2

3n/2

Answer to Problem 2, Chapter 21



3. See drawing.

4. See drawing.
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Answer to Problem 3, Chapter 21

Asymptotes at
J y=45andy =225

Answer to Problem 4, Chapter 21

5. Use the formula on page 370. In this formula,

a=dy/dx=4—-0)/2-0)=4/2=2
b = y intercept on yz plane = 0
c=dy/dz =(4—0)/(0—5)=—-4/5

d = yintercept on xy plane = 4

535



536 Answers to questions and problems

Therefore the equation is y = 2x = —4z/5 + 4.

6. Use the formula on page 370. In this formula,

a=dy/dx=(1-0)/(5-0)=1/5
b = yintercept on yz plane = 0
c=dy/dz=(1-0)/(0-5)=-1/5
d = y intercept on xy plane = 1

Therefore the equationis y = x/5 = —z/5 + 1.

7. Use the formula on page 370. It is necessary to know the intercept points on
all three axes. We are given the z-intercept point (z = 5). The x-intercept and y-
intercept points can be inferred from the two points (2, 4, 0) and (5, 1, 0). The
line connecting these points lies in the plane, and the intercepts can be deter-
mined tobe x = 6 and y = 6.Thus:

a=dy/dx =(6—-0)/(0-6)=—1
b=dy/dz=(6—-0)/(0—-5)=—-6/5
c=6

and the equation is therefore y = —x — 6z/5 + 6

Chapter 22

1. The product is multiplied out as follows:

(0.6 + 70.8)(0.8 + j0.6)
= 0.48 +j0.36 + j0.64 + (2)(0.48)
=048 +;j—0.48
=]
2. The squares are:

(0.6 + j0.8)(0.6 + j0.8)

= 0.36 +j0.48 +j0.48 + (;2)(0.64)
= 0.36 +0.96 — 0.64

= —0.28 +0.96

(0.8 + j0.6)(0.8 + j0.6)

= 0.64 + j0.48 + j0.48 + (j*)(0.36)
= 0.64 +j0.96 — 0.36

= 0.28 +j0.96

The final product is:

(—0.28 -+ j0.96)(0.28 + j0.96)
= —0.0784 — j0.2688 + j0.2688 + (j2)(0.9216)
= —0.0784 — 0.9216

=1
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This quantity is pure-real and has a magnitude (absolute value) equal to 1.

3. These equations can be solved using the quadratic formula from Chapter 10.
The answers are derived as follows:

(@) Here, the coefficients are

a=1
b=-2
c=72

Plugging these values into the quadratic formula yields

x=[2+@-8)"42
y=[2-@-8)"02

whichsolvestox =1+jorx=1—

(b) Inthis case, the coefficients are

a=1
bh=-=-2
c=10

Plugging these values into the quadratic formula yields

x=[2+ @ — 4032
x=[2—(4—40)%,2

which solvestox =1 4+ 3jorx =1—3j.

(¢) Here,the coeflicients are

a=13
bh=—-4
c=1

Plugging these values into the quadratic formula yields

x =[4+4 (16 — 52)"]/26
x =[4— (16 —52)"%]/26

which solves to x = (2 + 3j)/13 or x = (2 — 3j)/13.

(d) Inthis equation, one of the coefficients is imaginary:

a=1
b=—j2
c=—10

Plugging these values into the quadratic formula yields

x = [j2 + (4 4 40)'7%]/2
x =[j2 — (4 440)'/%]/2

which solvesto x = j + 112 orx = j — 112,
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() Here, the coeflicients are

a=1
b=—j2
c=-8

Plugging these values into the quadratic formula yields

x =2+ (4+32)22
x=[/2—(4+32)2

which solvestox =j+3orx =j—3.

4. Refer to the following drawing. The six vectors each have radius 2, and are
spaced equally around a circle; therefore they are separated by 360/6 = 60
degrees. Let the roots be represented by ; through r¢. Then:

rp =2cos0+;2sin0 = 2.00

ry = 2¢c0s60 4 j2sin 60 = 1.00 +;1.73

ry = 2c0s 120 + ;2 sin 120 = —1.00 +j1.73
ry = 2c0s 180 + ;2 sin 180 = —2.00

rs = 2c0s240 + j2sin 240 = —1.00 —j1.73
re = 2c0s 300 + ;2 sin 300 = 1.00 —;j1.73

Vectors are spaced
at 60-degree intervals

Circle
radius = 2

Each graphical
division is 1/2 unit

Answer to Problem 4, Chapter 22

5. Refer to the following drawing. The ten vectors each have radius 2, and are
spaced equally around a circle; therefore they are separated by 360/10 = 36
degrees. Let the roots be represented by r; through ;4. Then:
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rp=2cos0+j2sin0 = 2.00

ry =2c0836 4 2sin36 = 1.62 4 ;1.18

ry =2co0s72 4 j2sin72 = 0.618 +1.90

ry =2cos 108 +;2sin 108 = —0.618 +j1.90
rs =2cos144 4 j2sin 144 = —1.62 4+ ;1.18
re = 2cos 180 + j2sin 180 = —2.00

r; =2c0s216 4 j2sin216 = —1.62 —;j1.18
rg =2c08252 +;2sin252 = —0.618 —j1.90
rg = 2c0s288 4+ ;j2sin 288 = 0.618 —j1.90
rip =2c0s324 +;2sin324 = 1.62 —j1.18

Vectors are spaced
at 36-degree intervals

Circle
radius =2

Each graphical
division is 1/2 unit

Answer to Problem 5, Chapter 22

6. Refer to the following drawing. The nine vectors each have radius 2, and are
spaced equally around a circle; therefore they are separated by 360/9 = 40
degrees. Let the roots be represented by r; through rg. Then:

riy =2co0s0+;2sin0 = 2.00

ry = 2c0s40 +2sin40 = 1.53 4 j1.29

r3 = 2co0s80 +j2sin 80 = 0.347 +j1.97

ry =2c0s120 +;2sin 120 = —1.00 4 j1.73
rs = 2cos 160 + j2sin 160 = —1.88 + j0.684
re = 205200 + j2sin 200 = —1.88 — j0.684
r; = 2c0s240 + j2sin 240 = —1.00 — j1.73
rg = 2c0s280 + j2sin 280 = 0.347 — j1.97
rg = 2¢c0s320 +;2sin 320 = 1.53 —j1.29
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Vectors are spaced
at 40-degree intervals

Circle
radius = 2

Each graphical
division is 1/2 unit

Answer to Problem 6, Chapter 22

7. To add two complex numbers, simply add their components individually. In
this case the result is

(=345 +(=2-j3)
=[-3+ (D] +[J5 + (3]
=[-3+ (D] +JI5+(=3)]
=-5+2

8. Refer to the following drawing. Note that this summation obeys the
“parallelogram rule” for vectors. The end points of the sum and addend vectors,
along with the origin, constitute the four vertices of a parallelogram.

9. Multiplying the two complex numbers proceeds as follows:

(<3452 = /3)
= (=3 =2)+ (=3 j3) + (j5- =)+ (j5 - ~3)
—6+79—710+8

— 14—

10. Refer to the following drawing.
11. First, find the reciprocal of the second complex number using the formula on

page 383.Then multiply the result by the first complex number. The reciprocation
proceeds as follows:

1/(=2—73) =(-2+,3)/(4 +9)
— (=24 3)/13 = —2/13 + j(3/13)
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Each division
represents
one unit

Answer to Problem &, Chapter 22

The multiplication is a little “messy” and the signs are tricky, but the process is
straightforward:

(=3 +5)[—2/13 + j(3/13)]
= 6/13 +j(—9/13) + j(—10/13) — 15/13
= —9/13 —j(19/13)

= —0.692 — j1.46

—+ Each division
represents
three units

T Product =
4 14-j

Answer to Problem 10, Chapter 22
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12. Refer to the following drawing.

3455 i
n Each division
-+ represents
0.25 unit
Lo I I N N B
i B N R R R Y (R R N R R
Quotient =-0.692 - j1.46
L il
-2-53

J

Answer to Problem 12, Chapter 22

13. First, find the reciprocal of the second complex number using the formula on
page 383. Then multiply the result by the first complex number. The reciprocation
proceeds as follows:

1/(=3+j5) = (=3 —j5/(9+25)

=(—3—j5)/34 = —3/34 — j(5/34)
The multiplication process is as follows:

(=2 —/3)[-3/34 —j(5/34)]

= 6/34 +j(10/34) +j(9/34) — 15/34

= —9/34 + j(19/34)
= —0.265 +j0.559

14. Refer to the following drawing.

15. When multiplying complex numbers in polar coordinates, the angles add
while the magnitudes multiply. Thus the product vector has magnitude 8, and
angle 390 degrees, which reduces to 30 degrees.

16. Refer to the following drawing.

17. Use the formulas on page 383.The radius r and the angle 6 are:

r=28
6 = 30 degrees
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3455 i
Quotient = -0.265 +j0.559
B e e e e R
- Each division
1 represents
0.1 unit
-2-j3 .
Answer to Problem 14, Chapter 22
Each radial division 1
represents two
units
— Product =

4/60° 8/30°

Answer to Problem 16, Chapter 22
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Thus the real coefficient, «, is calculated as follows:
a=rcosf =8-0.866 =6.93

and the imaginary coefficient, b, is calculated by:
b=rsinf = 8-0.500 = 4.00

Therefore, the complex number is 6.93 + j4.00.

Chapter 23

1. We are told this is an exponential decrement. Therefore, we know that the
curve has the form y = ae ", where « and b are constants. The values of a and b
can be found by trial and error by “plugging in” the points shown. The result is
the equation y = ¢ >*.

2. The answers are derived as follows:

(@) Note that 10 minutes is equal to 1/6 hour. Therefore
y=e ¥®=¢13 =0.716 watt hours
(b) Note that 30 minutes is equal to 1/2 hour. Therefore
y=e * =¢ ! =0.368 watt hours
(c¢) Note that 90 minutes is equal to 1.5 hours. Therefore
y=e @9 = ¢ 3 =(.0498 watt hours
= 49.8 milliwatt hours
(d) The remaining energy after 3 hoursis
y=e @Y = ¢ % =0.00248 watt hours
= 2.48 milliwatt hours

3. Use the first formula on page 399, “plugging in” 1 for x. Then

e=e =14+14+1/204+1/31+1/4
=14+141/24+1/6+1/24
= 24/24 +24/24 + 12/24 + 4/24 + 1 /24
= 65/24 = 2.708

4. Use the second formula on page 399, “plugging in” 1 for x. Then

lje=e'=1—-1+41/21—1/3!+ 1/4
=1—141/2-1/6+1/24
= 24/24 — 24/24 + 12/24 — 4/24 + 124
=9/24 = 0.375

5. Use the third formula on page 399, “plugging in” 1 for x. Then

e =1+j—1/20—j/3l+ 1/41
= (1 —1/2+1/24) + j(1 — 1/6)
= (24/24 — 12/24 + 1/24) + j(5/6)
= 13/24 = +j(5/6)
= 0.5416 + j0.8333
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6. Use the fourth formula on page 399, “plugging in” 1 for x. Then

1/ =e? =1—j—1/214j/3! + 1/4!
= (1= 1/2 4 1/24) + j(—1 + 1/6)
= (24/24 — 12/24 + 1/24) + j(—5/6)
= 13/24 = +j(—5/6)
= 0.5416 — j0.8333

7. The half life is 1,000,000 years, so the radiation level decreases according to
the function y = 27" when x is specified in millions of years.

8. The percentage of radiation, p, remaining after x million years is equal to
100(2" ). Therefore the answers are derived as follows:

@) p= 1002 >°) = 1002 %) = 100/2°*
= 100/(2°)'? = 100/32"/>
= 17.68 percent
(b) p=10027°) = 100/2°> = 100/32
= 3.125 percent
© p=1002"") =100/2" =100/128
= 0.7812 percent
@ p=1002'"" =100/2'"" = 100/1,024
= 0.09766 percent
© p=1002 %) =100/2%
= 100/1,048,576
= 0.00009537 percent

9. To obtain solutions to these problems, first convert the percentages to
proportions. Then “plug in” these proportions. The solutions are therefore
derived as follows:

(@) 10 percentisequal to 0.1.Therefore

0.1 =27 =12
s02" =1/0.1 =10

The subject of logarithms, which are needed to solve an equation like this, has not
yet been covered in this course. However, a calculator with an “xth-root-of
function key can be used to solve this problem by trial-and-error. Only two signif-
icant digits are called for. In this case, the xth root of 10, or 101/ X), is equal to 2.
Thus x can be found to be approximately 3,300,000 years.

(b) 5 percentis equal to 0.05. Therefore,

0.05=2"%=1/2"

s02" =1/0.05=20
and 201/ =2

By trial and error with a calculator, x is found to be approximately 4,300,000
years. Another way of solving this is to note that 5 percent is exactly halfof 10 per-
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cent, the level in part (a). So the value of x must increase by the half life, or
1,000,000 years, from 3,300,000 to 4,300,000 years.
(c) 2 percentis equal to 0.02. Therefore,

0.02=2"=1/2"
s02" =1/0.02 =50
and 501/ =2

By trial and error with a calculator, x is found to be approximately 5,600,000
years.

(d) Because 1 percentis halfof 2 percent, x in this case is 1,000,000 more than
in the previous problem, or approximately 6,600,000 years.

(e) 0.1 percentis equal to 0.001. Therefore,

0.001 =2 =12
$02° = 1/0.001 = 1,000
and 1,0000/% =2

By trial and error with a calculator, x is found to be approximately 10,000,000
years. This is essentially the same scenario as that depicted in problem 8(d).
(Teaser question: Why don’t the numbers agree exactly?)

10. The answers are derived as follows:

(@) cosh1=1.00+ 0.500 4 0.04165 + 0.0013889
=1.54
(b) coshm/2 = cosh 1.5708
= 1.00 + 1.2337 + 0.25365 + 0.02086
=2.5l1
(c) cosh2 =1.00 4 2.00 + 0.6667 4+ 0.08888
=3.76
(d) coshz = cosh 3.14159
= 1.00 +4.9348 + 4.0587 4 1.3353
=113

11. The answers are derived as follows, using a calculator with an ¢ function key:

(@) cosh0.5 = (" + ¢ "7)/2
= (1.64872 4 0.606531),/2
= 1.1276

(b) cosh1.0 =(e+e¢')/2
= (2.71828 + 0.36788)/2
= 1.5431

(c) cosh2.0 = (e2 + efz)/2
= (7.38906 + 0.13534)/2
=3.7622
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(dy cosh4.0 = (e4 + 674)/2
= (54.5982 + 0.0183156)/2
= 27.308

12. The answers are derived as follows:

(@ sinh 1 = 1.00 + 0.16667 + 0.008333 + 0.000198
=1.17
(b) sinh /2 = sinh 1.5708
= 1.5708 + 0.64597 + 0.07970 4- 0.004682
= 2.30
(©) sinh2 = 2.00 4 1.3333 + 0.26667 + 0.02540
= 3.63
(d) sinhz = sinh 3.14159
= 3.14159 4+ 5.16770 4 2.55015 + 0.59926
=115

547

13. The answers are derived as follows, using a calculator with an ¢” function key:

(@) sinh0.5 = (¢ — e %%),2
= (1.64872 — 0.606531)/2
= 0.52109

(b) sinh 1.0 =(e —e 1)/2
= (2.71828 — 0.36788)/2
=1.1752

© sinh2.0 = (&* —e )2
= (7.38906 — 0.13534)/2
= 3.6269

(d) sinh4.0 = (¢* —e )2
= (54.5982 — 0.0183156)/2
= 27.290

Chapter 24

1. Refer to the following drawing. The labeled points are plotted exactly; the

curves are drawn approximately.

2. Refer to the following drawing. The labeled points are plotted exactly; the

curves are drawn approximately.

3. Refer to the following drawing. The labeled points are plotted exactly; the

curves are drawn approximately.

4. Refer to the following drawing. The labeled points are plotted exactly; the

curves are drawn approximately.



548 Answers to questions and problems

(5,1000)

(10,500)

(10,200)

(1,100)
N

100+
0 5 10

Answer to Problem 1, Chapter 24

(5,1000)

1000

(10,500)

(10,200)

Answer to Problem 2, Chapter 24

(50,10) (100,10)
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y (50,10) (100,10)
10T
6_
(100,4)
3_
(10,2) 4
(10,1) (25.1)
1\ : A\ - x
10 30 60 100

Answer to Problem 4, Chapter 24

5. Letthe expression log,, be represented aslog (no subscript). Use a calculator,
and allow an extra decimal place during calculation.

(@) This product can be found using logs and antilogs as follows:

log 5.44 = 0.7356

log3.67 = 0.5647

sum of logs = 1.300

antilog of sum of logs = 20.0

This is the product of the original two numbers, as you can verify by multiplying
them out directly.
(b) This product can be found using logs and antilogs as follows:

log 10.5 = 1.021

log 0.567 = —0.2464

sum of logs = 0.7746
antilog of sum of logs = 5.95

This is the product of the original two numbers, as you can verify by multiplying
them out directly.
(¢) This product can be found using logs and antilogs as follows:

log36.7 = 1.565

log2.56 = 0.4082

sum of logs = 1.9732
antilog of sum of logs = 94.0

This is the product of the original two numbers, as you can verify by multiplying
them out directly.
(d) This product can be found using logs and antilogs as follows:
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log0.987 = —0.005683
log0.822 = —0.08513

sum of logs = —0.090813
antilog of sum of logs = 0.811

This is the product of the original two numbers, as you can verify by multiplying
them out directly.

6. Letthe expression log;, be represented as log (no subscript). Use a calculator,
and allow an extra decimal place during calculation.

(@) This expression can be evaluated using logs and antilogs as follows:

log5.44 = 0.7356
multiply by exponent = 2.700
antilog of this product = 501

This can be verified, if desired, using a calculator that has a y* function key.
(b) This expression can be evaluated using logs and antilogs as follows:

log10.5 = 1.021
multiply by exponent = 0.5789
antilog of this product = 3.79

This can be verified, if desired, using a calculator that has a y* function key.
(c) This expression can be evaluated using logs and antilogs as follows:

log36.7 = 1.565
multiply by exponent = 4.0064
antilog of this product = 10,100

This can be verified, if desired, using a calculator that has a y* function key.
(d) This expression can be evaluated using logs and antilogs as follows:

log 0.987 = —0.005683
multiply by exponent = —0.0046714
antilog of this product = 0.989

This can be verified, if desired, using a calculator that has a y* function key.
7. The results will still be valid if natural logs are used rather than base-10 logs.
8. The results will be the same if base-7 logs are used. In fact, it does not

matter what the logarithm base is, as long as the same base is used throughout
the calculation.
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Chapter 25

1. First,the angle must be converted to radians. To get radians, multiply degrees
by 27/360, or 0.017453. Thus the angle value to be “plugged into” the series is

45-0.017453 = 0.785385

When this number is placed in the series for tan x at the beginning of the chapter,
the values of the first four terms are:

0.785385
0.161482
0.039843
0.009948

These are summed to obtain 0.997. As you probably know, the actual tangent of
45 degrees is exactly 1.This is the value toward which the series converges.

2. This problem is a little less tedious to solve, because the angle value is easy to
“plug into” the series. The first four terms are:

1.000000
0.333333
0.133333
0.053968

These sum to 1.52. Using a calculator, the value of tan 1 is found, to three signifi-
cant figures, to be 1.56.

3. Note from problem 1 that an angle of 45 degrees is 0.785385 radians. Then
the first four terms of the series for sec 0.785385 are:

1.000000
0.308415
0.079266
0.019884

These sum to 1.41. Using a calculator, and remembering that the secant is the
reciprocal of the cosine, the value is found to be 1.41 to three significant figures.

4. This is less tedious because the angle value is easy to “plug into” the series.
The first four terms are:

1.000000
0.500000
0.208333
0.084722

These sum to 1.79. Using a calculator, the value of sec 1 is found, to three
significant figures, to be 1.85.
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5. The first four terms are;

0.500000
0.02083

0.002344
0.000465

These sum to 0.5236.This angle value is in radians.

6. To obtain degrees from radians, multiply by 180/, or 57.296. The angle in
problem 5 is therefore equal to 0.5236 - 57.296 = 30.0 degrees. Using a calcula-
tor, you can determine that the actual degree value of arcsin 0.500 is exactly 30
degrees. This is the value toward which the series converges.

7. The first four terms are:

1.570795

—0.500000
—0.020833
—0.002344

These sum to 1.05.This angle value is in radians.

8. The angle from problem 7 is equal to 1.05 - 57.296 = 60.2 degrees. Using a
calculator, you can determine that the actual degree value of arccos 0.500 is
exactly 60 degrees. This is the value toward which the series converges.

9. There is no minimum value. The larger a number becomes negatively (that is,
the smaller it gets in arithmetic terms), the more negative the sum of the number
and its reciprocal becomes. While the reciprocal approaches zero, the number,
and therefore the sum, keeps getting smaller without limit.

10. The functionis y = f(x) = x°.

11. The derivative is y' = f'(x) = 3x7.

12. The second derivativeis y” = f”(x) = 6x.
13. The third derivative is y”" = f""'(x) = 6.

14. From problem 11, dy/dx = 3x*. Thus the derivative at (1, 1) is 3, the deriva-
tive at (3, 27) is 27, the derivative at (5, 125) is 75, and the derivative at (8, 512) is
192. The derivatives increase, while the apparent slope of the graph decreases,
because the y-axis scale is logarithmic rather than linear. This “compresses” the
vertical scale and reduces the apparent slope of the graph.

15. From problem 12, d*y/dx? = 6x.Thus the second derivative at (1, 1) is 6, the
second derivative at (3, 27) is 18, the second derivative at (5, 125) is 30, and the
second derivative at (8, 512) is 48.
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16. From problem 13, d°y/dx> = 6.Thus the third derivative is a constant, and is
equal to 6 at all four labeled points on the graph.

Chapter 26

1. The general series for a square wave with amplitude 4 and period 2,
expressed through the first five terms, is

f(x) = (44 /m)[sin x + (sin 3x)/3 + (sin 5x)/5
+(sin 7x)/7 + (sin9x)/9 + .. ]

In this general series, the values x are in radians, not in absolute time units. The
period of the square wave in the drawing on page 464 is 30 microseconds. This
represents 2w, or 6.283, radians. Therefore, 4.775 microseconds represent 1
radian. All of the x times in microseconds must therefore be multiplied by 1/
4.775, or 0.2094, in order to obtain angles in radians for “plugging into” the gen-
eral expression for the series. The amplitude, A, is 4 millivolts. The series repre-
senting this wave, where x is in microseconds and f(x) is in millivolts, is:

f(x) = 5.093{sin(0.2094x) + [sin(0.6282x)/3]
+[sin(1.047x)/5] 4 [sin(1.466x)/7] + [sin(1.885x)/9] + .. .}
= 5.0935in(0.2094x) + 1.698 sin(0.6282x)
+1.019sin(1.047x) + 0.7276 sin(1.466x) + 0.5659 sin(1.885x) 4 ...

2. The period of the wave in the drawing on page 464 is 0.00003 seconds. This
represents 27, or 6.283, radians. Therefore, 0.000004775 seconds represent
I radian. All of the x times in seconds must be multiplied by
1/0.000004775 = 209,400 to obtain angles in radians. The amplitude, A4, is
0.004 volts. Thus, the series representing this wave, where x is in seconds and
f(x)isinvolts, is:

£(x) = 0.005093{sin(209,400x) -+ [sin(628,200x)/3]
+[sin(1,047,000x)/5] + [sin(1,466,000x)/7]
+[sin(1,885,000x)/9] + .. .}
= 0.005093 sin(209,400x) + 0.0001698 sin(628,200x)
+0.0001019 sin(1,047,000x) + 0.00007276 sin(1,466,000x)
+0.0005659 sin(1,885,000x) + ... .

3. The required number of scales are:

(a) Three (107! t0 10%, 10°to 10!, and 10 to 10%)

(b) Two (10" to 10? and 10% to 10%)

© Five (10" to 107, 10*to 103, 10° to 10*, 10*to 10°, and 10° to 10%)
(d) One (10" to 10%)

4. Such a system can have four number lines, arranged as shown in the following
drawing. The four number lines intersect at the zero points and represent the pos-
itive-x, positive-y, negative-x, and negative-y axes. In each case, the value 1 or
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—1 is halfway from the zero point to the end of the line; the value 2 or —2 is half-
way from | or —1 to the end; the value 3 or —3 is halfway from 2 or —2 to the
end, and so on. These lines are “geometrically compressed” so the values increase
toward infinity without ever going off the ends of the lines.
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Answer to Problem 4, Chapter 26

5. This system works on the same principle as the solution to problem 4. See the
following drawing. The vertical axis is simply multiplied by j (the engineer’s
expression for the square root of —1).The horizontal axis represents real numbers
«; the vertical axis represents imaginary numbers jb.

6. To determine the average voltage, note that the full cycle can be broken into
two halves. The first half is the sine function multiplied by 100.0, over the range
0 to w. The second half'is a zero function over the range 7 to 27.To find the average
value of the first half of the function, determine the integral [100sin x dx from
0 to 7, and then divide the result by 7. This is:

—100.0(cos T — cos 0)/m
=—100.0(-1-1)/n
= 200.0/7 = 4+63.66 volts

to four significant digits. The second half of the cycle, being a zero function, will
cut the average value in half over the full span 0 to 27 Therefore, the average
output is +31.83 volts.
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Answer to Problem 5, Chapter 26

7. The average amplitude is the same as that of the first half of the cycle in prob-
lem 6, because both halves of the cycle are identical in the output of a full-wave
rectifier. Thus, the average output is +63.66 volts.

8. In this case, the average output for the first half of the cycle is +100.0 volts,
and the average voltage for the second half of the cycle is 0 volts. Therefore, the
average output of this circuit is +100.0/2 = +50.00 volts.

9. Here, the average output is +100.0 volts. This is because both halves of the
cycle produce a constant +100.0 volt output. When a square AC wave is full-
wave rectified, the result is pure DC with no ripple (in theory).

Chapter 27

1. A Boolean expression for the circuit in the drawing on page 477 is
—[(WXXY + Z)]. Inputs W and X pass through an AND gate, inputs Y and Z
pass through an OR gate, and the result passes through a NAND gate (logic
AND followed by negation).

2. See following table.
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W X Y Z WX Y+Z (WXNY+Z)  -[(WX)(Y+Z)]
o 0 0 0 0 0 0 1
0o 0 0 1 0 1 0 1
0o 0 1 0 0 1 0 1
0o 0 1 .1 0 1 0 1
0 1 0 0 0 0 0 1
0 1 0 1 0 1 0 1
0 1 1 0 0 1 0 1
0 1 1 i 0 1 0 1
1 0 0 0 0 0 0 1
1 0 0 1 0 1 0 1
1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 1
1 1 0 0 1 0 0 1
1 1 0 1 1 1 1 0
1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 0

3. Lossy compression sacrifices some detail, and is used only with graphics files.
Lossless compression does not sacrifice any detail or precision; it can be used
with all types of files, including programs and text.

4. The answers are as follows:

(2) With two inputs, there can be 2% = 4 binary signal combinations.
(b) With five inputs, there can be 2° = 32 combinations.

(6) With eight inputs, there can be 2° = 256 combinations.

(d) With 12 inputs, there can be 22 = 4,096 combinations.

5. See the following drawing.

6. The decimal equivalents are:

@) 36 (b) 39
© 56 d 62
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X X
Output Output
Y o— Y

(a) and (c) (b) and (d)

e

Output
| S—

Answers to Problem 5, Chapter 27

7. The octal equivalents are:

(a) 44 (b) 47
(©) 70 (d) 76
8. The hexadecimal equivalents are:
(@) 24 (by 27
(© 38 (d) 3E

9. The colors represented by these numbers are:

(@) Red, at maximum brightness and maximum saturation
(b) Green, at maximum brightness and maximum saturation
(¢) Blue, at maximum brightness and maximum saturation
(d) Black

(¢) White

557

10. The colors represented by these numbers can be qualitatively (approxi-

mately) described as follows:

(@) Maroon or dark red
(b) Dark green

() Navy or very dark blue
(d) Light gray

(¢) Dark gray
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A

abacus, 6-11
acceleration, 189-192

constant acceleration,
198-199

constant power, 200-201

rate of change and
progressions, 289-290

accuracy, counting systems,

249-250

addition, 11-23

carrying, 14-16

checking answers, 18-19

dry measures, 22

fractions, 74

large-number additions,
13-14

liquid measures, 22

multiplication vs. addition,
34-35

successive (columnar
numbers) addition, 16-17

three or more numbers
added together, 12-13

two-number addition,
11-12

weight units, 19-21

algebra, 123-153

arithmetic numbers, 136

Boolean, 467-469

brackets or parentheses in
equations, 127-129,
140-141

Index

checking answers, 131-132

coefficients, 147

constants, 142

cubed numbers, 142

dimensions, 142

equations, 125-126,
142-143

expressing a problem
algebraically, 129,
130-131

expressions in algebra,
142-143

factors, long division
method, 151

graphs, 124-125

inequations: greater-than
and less-than, 143

long division, 150-151

long division, finding
factors, 151

multiplication example,
140-141

negative values, 135-136

number problems, 136-137

parentheses, removing to
solve problems, 130-131

powers to show place in
algebra, 141

quadratic equations (see
quadratics)

reciprocals, 149-150

simultaneous equations,
146-149

solving problems, 130-132
squared numbers, 142
substituting values to solve
problems, 148-149
symbols and ‘“‘shorthand”
for equations, 126-127,
140-141
tricks, 132-134
trigonometry, combined
with algebra,
differentiation, 322-323
truth statements, 143
variables, 142
analog variables, 465
analog waveform, 465
digital approximation of,
465
AND, 468, 469, 470, 471,
476
associativity of, 469
commutativity of, 469
AND function, 476
AND gate, 468, 470, 471
AND identity, 469
AND operation, 476
angles
adding angles, ratios,
229
circular measurement using
progressions, 298-300
complementary, 243-244
complex, 377
degree measurements, 220

559
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angles (cont.)
differential measurement,
300
infinitesimal changes, 301
multiple angles,
trigonometry, 239-240
obtuse angles, 234-235
right angles, 86-87
supplementary angles,
243-244
triangle, 213-214
arccosine, series for, 423424
arcsine, series for, 423-424
arctangent, series for, 396
area, 84-99
boxes with minimum surface
area, 352-353
circle, using integration,
339-340
cones, 355
cones, using integration,
340
cylinders, minimum surface
area, 353-354
cylinders, using integration,
340
different shapes with same
area, 87-88
floors, finding area for tile or
carpet, 96
integration calculation,
338-339
length-times-length
calculation, 84-85
maximum area with
constant perimeter, 352
parallelograms, §9-91
practical problems and
applications, 95-97
right angles, 86-87
sphere, surface area, 341
square measures, 85-86, 88
triangles, 89, 93
triangles, acute, 91
triangles, obtuse, 92
walls, finding area for
wallpaper, 97
arithmetic progressions,
268-269, 271-272
ASCII (American Standard
Code for Information
Interchange), 471
aspect ratio, 209
associativity of AND, 469
associativity of OR, 469
asymptotes, 362

asynchronous flip-flop, 472
avoirdupois weight, 19

B
base 2, 467
base 10, 466

binary circuits, 471
binary number system, 467
binary numbers, 256-257
calculator method, 262
decimal conversion,
257-258, 260
division, 260-261
multiplication, 258-260
binary signal, 465
binary symbols, 471
binomials
converging series, 285-286
expansion, 281-282
expansion, logarithmic, 417
growth and decay functions,
394-395
infinite geometric
progressions, 283-284
powers, progressions,
280-281
roots found using binomials,
284-285
series, 282-283
bit, 471
Boolean algebra, 467-469
Boolean operations, 469
borrowing in subtraction,
2627
boxes, area calculations,
352-353
brackets in algebraic
equations, 127-129,
140-141
brightness, 474
brilliance, 474
byte, 471472

C
calculators, 451
calculus, 143, 326-365
area calculations, boxes with
minimum surface area,
352-353
area calculations, maximum
area with constant
perimeter, 352
asymptotes, 362
circles, area, 339-340
circles, directrix, focus,
eccentricity, 357-358

circles, equations, 333, 355

cone, area, 340, 355

cone, volume, 343, 355

conic sections, second-order
curves, 364

cylinders, area, 340

cylinders, minimum surface
area, 353-354

definite integrals, 337-338

directrix, 356-359

eccentricity, 356-359

ellipses, directrix, focus,
eccentricity, 357-358

cllipses, equations, 355

cllipses, focus property,
360

ellipses, reflection
properties, 360, 361

focus, 356-359

function derivative, 332-333

functions, 326-334

functions, cosecant, 332

functions, cotangent, 332

functions, division, 329-332

functions, multiplication,
327-329

functions, quotient formula,
330-332

functions, secant, 332

functions, tangent,
successive derivatives,
334

hyperbolas, eccentricity
greater than unity,
361-362

inflection points, 349-350

integration, 335-344

logarithmic function,
398-399

maxima, 347-349

minima, 347-349

parabolas, equations, 355

parabolas, focus property,
359

parabolas, reflection
properties, 360, 361

pyramid, volume, 341-342

relationships and patterns,
336

second derivatives, 350-352

second-order curves, 356,
363

sphere, surface area, 341

sphere, volume, 344

volume calculations using
integration, 341-342



carrying in addition, 14-16
carrying in multiplication,
39-40
characteristics, logarithms, 415
chords, 242-243
circles
angle measurement using
progressions, 298-300
angles, 242-243
area calculation using
integration, 339-340
calculus equations, 355
chords, 242-243
coordinate systems,
equation of a circle,
367-368
directrix, focus, eccentricity,
357-358
equation of a circle,
functions, 333
grades, 298
quadrants, 234-235
radians, 299-300
clock, 473
coefficients, 147
color palette, 474
combinations and
progressions, 279-280
common denominators,
fractions, 75-76
commutativity of AND, 469
commutativity of OR, 469
complementary angles,
243-244
complex quantities, 377-391
angles, 377
checking results, 384
cube roots, 380-381
division, 383-384
graphic solutions, 447
imaginary quantities,
377-378, 425-426
magnitude checking, 386
multiplication, 382
planes, complex, 386-387
problem solving, 379-380
quadratic roots, 388
rationalization, 384-385
reciprocals, 382-383
roots, 389
summarizing results, 384
vectors, 377
composite gates, 470471
compression, 473-474
cones
area calculations, 340, 355

volume calculations, 343, 355
conic sections, second-order
curves, 364
constant acceleration, 198-199
constant of integration,
336-337
constants, algebraic, 142
contradiction, 469
coordinate systems, 366-374
circles, equation of, 367-368
lines, equation in
rectangular coordinates,
370
lines, equation in spherical
polar coordinates, 371
multiple integration, 372
origin, 366
plane systems, 366
planes, equation in
rectangular coordinates,
370
planes, equation in spherical
polar coordinates, 371
polar systems, 366
second-order curves, three-
dimensional, 372
straight lines, equation of,
367-368
three-dimensional systems,
369
cosecant, 332
cosh, 405
cosine, 218, 223-224, 231-234
series for cosine, 304-305
cotangent, 332
counting (see also number
systems), 3-11
abacus method, 6-11
accuracy depending on
method, 249-250
binary numbers, 256-257
decimal number system, 4-5,
253
duodecimal numbers, 5,
254-255
magnitude order, 251-252
millions and billions, 10-11
numbers larger than ten, 5-6
tens to hundreds to
thousands, 7-8
Zero usage, 6, 9
cube roots, 180-182
complex quantities, 380-381
cubed numbers, 142
curves
drawing, 437-438

Index 561

fitting curves to parameters,
436-437

quadratic, series for, 459

second-order, 356, 363

second-order, conic section,
365

second-order, three-
dimensional, 372

sine waves, 237-238

slope on logarithmic scales,
434-436

cylinders

area calculation using
integration, 340

minimum surface area,

353-354

D

data compression, 473474
decay functions, series,
394-395
decimal number system, 466
decimal numbers, 4-5, 253
binary conversion, 257-258,
260
duodecimal conversion,
255-256
fractional equivalents,
62-63, 65-67
repeating numbers, 63—67
definite integrals, 337-338
degree measurement of angles,
220
DeMorgan’s Theorem, 469
dependent variables, 297
derivatives, second derivatives,
350-352
differentiation, 294-298,
308-325
algebra combined with
trigonometry, 322-323
angles, 300
fourth power term in
transfer characteristics,
317
harmonic motion, 310-311
integration vs., 335
linear or nonlinear
relationships, 311
multiples and powers,
319-321
nonlinear relationships,
312-314
power sinusoids, multiple
components, 316-317
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differentiation (cont.)
power-term combination,
318-319
problem solving, 321-322
series for cosine, 304-305
series for sine, 302-303
sine waves, 308-309
sinusoidal motion, 309-310
successive, 294-295, 297-298
successive, in sine waves,
301-302
symmetrical nonlinearity,
314-316
digital mathematics, 465-476
dimensions, 100-101
algebraic, 142
time as fourth dimension,
101
directrix, 356-359
disjunction, 476
distributivity, 469
dividends, 111-112
division, 50-68
algebra explained in terms of
long division, 150-151
approximate long division
and fractions, 78-79
binary numbers, 260261
calculator method, 51
checking answers with
multiplication, 56
complex quantities, 383-384
factors, 56
fractions, 60—66
functions, 329-332
logarithms, 415
remainders, 57-60
remainders, repeating
numbers, 63-67
double negation, 469
dry measure
addition of units, 22
metric system, 94-95
multiplication, 45
subtraction, 32
duodecimal numbers, 5,
254-255
decimal conversion, 255-256

E
€, & (see epsilon)
eccentricity, 356-359
edge triggering, 473
electronic logic gates (see logic
gates)
ellipses

calculating equations, 355
directrix, focus, eccentricity,
357-358
focus property, 360
reflection properties, 360,
361
energy
constant acceleration,
198-199
gravity as energy source,
195-196
kinetic, 199-200, 203
potential, 201-202, 203
power and energy, 194-195
resonance cycles, 203-204
storage, stressed springs,
201-202
transfer, released springs,
202-203
transfer, resonance cycles,
203-204
velocity and kinetic energy,
199-200
work and energy, 193-194
epsilon
functions of, 399
raised to a power,
significance, 401
value of, series calculations,
395-396
equations in algebra, 125-126,
142-143
equilateral triangles, 220
exabyte, 472
exclusive OR, 470
exclusive OR gate, 470, 471
expansion, binomial, 281-282
exponential functions,
complex, 401-403

F
factorial notation, 278-279
factors
algebraic equations, long
division method, 151
division, 56-57
fractions and cancellation,
69-70
multiplication, 44
progressions, factorial
notation, 278-279
quadratic equations, 157—
160
squared numbers, 175
flip-flops, 472473
asynchronous, 472

gated, 473

J-K, 472, 473
master/slave (M/S), 473
R-S, 472

R-S-T, 473

states, 472
synchronous, 473

T, 473

focus, 356-359
foot-poundal, 193
force, 187-189, 192-193

gravity as force, 196-197

formula method, quadratic

solutions, 165-168

Fourier series, 453
fractions, 60-66, 69-83

addition, 74

approximate long division,
78-79

approximate long
multiplication, 81

calculator method, 61, 76-77

cancellation method using
factors, 69-70

common denominators,
75-76

counting systems using
fractions, 250-251

decimal equivalents, 62-63,
65-67

different fractions with same
value, 69

factors, 70-72

factors, calculator method,
73-74

improper fractions, 76

partial fractions and
integration, 428—429

percentages, 109-113

prime numbers, 71, 72-73

rate-of-growth, time, 109

repeating numbers, 6367

significant numbers, 77-78

significant numbers,
calculator method,
79-81

simultaneous equations,
146-149

square numbers, 72-73

subtraction, 74-75

functions, 326-334

circle, equation of, 333
cosecant, 332
cotangent, 332

decay, series, 394-395
derivatives, 332-333



division, 329-332
exponential, 399
growth, series, 394-395
hyperbolic, 404405
maxima and minima,
347-349
multiplication, 327-329
quotient formula, 330-332
secant, 332
tangent, successive
derivatives, 334
fuzzy logic, 468

G
gated flip-flop, 473
geometric progressions,
269-270, 272-274
infinite, 283-284
gigabit, 471
gigabyte, 471-472
grades, 298
graphs, 113-117, 444-450
algebra, 124-125
complex quantities, solving,
447
infinitesimal change,
291-294
inflection points, 349-350
linear representation,
modified, 448-450
maximum and minimum
points, 348-349
progressions, 291
quadratic equation curve,
155
scale changes, 446
gravity
energy source using,
195-196
force using, 196-197
work measurement using,
197-198
growth functions, series,
394-395
growth rates
fractional increase, 109
time as component, 108-109

H

harmonic motion, 310-311
harmonic progressions, 270
hexadecimal number system,
467
hue, 474
hyperbolas
asymptotes, 362

eccentricity greater than
unity, 361-362
hyperbolic functions, 404
405
second-order curves, 363
hyperbolic logarithms, 414
hypotenuse, 215

I
image compression, 474
lossless, 474
lossy, 474
imaginary numbers, 180-182
imaginary quantities, 377-378,
425-426
independent variables, 297
indices, number system
placeholders, 262264,
265
inequations in algebra, 143
infinite geometric progressions,
283-284
infinitesimal change, 291-294
inflection points, 349-350
integration, 335-344
area calculations, 338-339
circle, area, 339-340
cone, area, 340
cone, volume, 343
constants, 336-337
cylinder, area, 340
definite integrals, 337-338
differentiation vs., 335
multiple integration, 372
partial fractions, 428-429
product formula, 429432
pyramid, volume, 341-342
sphere, surface area, 341
sphere, volume, 344
variables, changing
variables, 432-434
volume calculations, 341—
342
intersecting lines, 213
inverter, 468
isosceles triangles, 220, 222,
240-241

J
J-K flip-flop, 473

K

kilobit, 471

kilobyte, 471

kinetic energy, 203
velocity and, 199-200
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L

lengths
area calculations, 84-85
metric system, 94-95
multiplication, 45
linear relationships, 311
lines
equation in rectangular
coordinates, 370
equation in spherical polar
coordinates, 371
equation of, 367-368
intersecting, 213
perpendicular, 215
liquid measure
addition of units, 22
metric system, 94-95
multiplication, 45
subtraction, 32
logarithms, 396-397, 409421
binomial expansion, 417
calculating, 412-414
calculus, logarithmic
function, 398-399
characteristics, 415
division, 415
formulas using logarithms,
418-419
gap in series of derivatives,
397-398
hyperbolic, 414
indices, 416
laws using, 419
multiplication, 415
Napierian, 414415
natural, 414
roots vs. powers, 416
series, 409-411
shift functions, 415
slope on logarithmic scales,
434-436
logic, 467-468
logic gates, 468, 470, 471, 476
basic, 468
characteristics, 470
composite, 470
symbols, 471
lossless image compression,
474
lossy image compression, 474

M

magnitude
complex quantities, 386
orders of, 251-252
mass, 187, 197
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master, 473
master/slave (M/S) flip-flop,
473
maxima, 347-349
megabit, 471
megabyte, 471
metric system and conversions,
94-95
microprocessor, 471
minima, 347-349
minus index, 264
modulo 2, 467
modulo 10, 466
multiple-valued OR, 476
multiplicand, 37-39
multiplication, 34-49
addition vs., 34-35
algebraic, 140-141
approximate long
multiplication and
fractions, 81
binary numbers, 258-260
calculator method, 40-41
carrying, 39-40
checking answers, 41-42, 56
complex quantities, 382
dry measures, 45
factors, 44
functions, 327-329
length units, 45-46
lengths, area calculations,
84-85
liquid measures, 45
logarithms, 415
multiplicand vs. multiplier,
37-39
order of numbers, 40-42
patterns of multiplied
numbers, 35-37
subtraction used in
multiplication, 42-43
tables of multiplication,
35-37
weight units, 4445
zeros, dropping extra, 37, 41
multiplier, 37-39

N
NAND, 470
NAND gate, 470, 471
Napierian logarithms, 414
natural logarithms, 414
negations, 476
negative-edge triggering, 473
nomograms, 442-444
multi-formula, 442-443

ratios, 443444
reciprocal, 444

nonlinear relationships, 311,

312-314

NOR, 470, 476

NOR gate, 469, 470
NOR operation, 476
NOT operation, 476
number games and tricks,

132-134

number systems, 3-11

bases defined, 4

binary, 256-257

decimal, 4-5, 253

decimal-binary conversion,
257-258

decimal-duodecimal
conversion, 255-256

duodecimal, 5, 254-255

imaginary numbers,
180182

indices, 262, 265

magnitude order, 251-252

placeholder importance,
indices, 262-264

roots, 264

septimal, 250-251

surds, 265

vinculum use, 265

zero, 6, 9

numbering, 466

0]

obtuse angles, 234-235
octal number system, 467
octet, 471

orders of magnitude,

251-252

OR, 468, 469, 470, 471, 475,

476
associativity of, 469
commutativity of, 469
multiple-valued, 476

OR function, 475

OR gate, 468, 470, 471
OR identity, 469

OR operation, 476

P

palette, color, 474
parabolas

calculus equations, 355

focus property, 359

reflection properties, 360,
361

second-order curves, 363

parallelograms, area
calculation, 89-91
parentheses in algebraic
equations, 127-129,
140-141
percentages, 109-113
money and dividends,
111-112
profit and loss, 112-113
permutations, 277-278
perpendicular lines, 215
petabyte, 472
plane coordinate systems, 366
planes
complex, 379, 386-387
complex, frequency planes,
404
complex, p planes, 403-404
coordinate systems,
equation in rectangular
coordinates, 370
coordinate systems,
equation in spherical
polar coordinates, 371
polar coordinate systems, 366
positive-edge triggering, 473
potential energy, 201-202,
203
poundals, force measurement,
187
power
acceleration at constant
power, 200-201
energy and power, 194-195
power/multiple conversions,
426-428
powers, 264
combinations of terms,
318-319
multiples and powers,
differentiation, 319-321
sinusoidal, fourth-power
term in transfer
characteristics, 317
sinusoidal, multiple
components, 316-317
prime numbers, 71, 72-73
product formula, integration,
429432
progressions, 263-307
arithmetic, 268-269,
271272
binomials, converging series,
285-286
binomials, expansion,
281-282



binomials, finding roots,
284-285
binomials, infinite geometric
progressions, 283284
binomials, powers of a
binomial, 280-281
binomials, series, 282-283
change, infinitesimal,
291-294
change, rate of change,
289-290
circular measurement of
angles, 298-300
combinations, 279-280
convergence, rate of, 276
converging series, 274-276
converging series, binomials,
285-286
dependent variables, 297
differentiation, 295-297
differentiation, angles, 300
differentiation, successive,
294-295, 297-298
differentiation, successive,
sine waves, 301-302
factorial notation, 278-279
geometric, 269-270, 272-274
graphing change, 291-294
harmonic, 270
independent variables, 297
permutations, 277-278
series for cosine, 304-305
series for sine, 302-303
sum of arithmetic series,
271-272
sum of converging series,
275-276
sum of geometric series,
272-274
variables, 297
proportion (see ratios)
pyramids, volume calculation
using integration, 341-342
Pythagorean theorem,
216-217, 238

Q

quadrants, 234-235
quadratics, 154-171
checking answers, 162-163,
169
comparing methods used to
solve, 164-165
complete solution, 160-162
complex quantities and
quadratic roots, 388

curves, series for quadratic
curve, 459

factors used to solve
equations, 157-160

formula method for solving,
165-168

graphs and curves, 155

interpreting results
geometrically, 163

sample problem: picture
frames, 170-171

simultaneous equations, 183

solving quadratic equations,
156

quotient formulas, functions,

330-332

R
radians, 299-300
radix 2, 467
radix 10, 466
radix point, 4606, 467
rationalization, complex
quantities, 384-385
ratios, 209-228
angles identified by, 215-216
aspect ratios, 209
cosines, 218, 223-224
manipulation of, 209-211
nomograms, 443-444
problem solving using,
211-212
shape and size distinctions,
213
sines, 218, 223-224
summed angles, 229
tangents, 218, 223-224
trigonometric ratios for
angles, 221
reciprocals, 264
algebra, 149-150
complex quantities, 382-383
nomograms, 444
rectangles, area calculation,
86-87
resonance cycles, energy,
203-204
travel and velocity, 204205
RGB, 474, 475
RGB (red/green/blue) color
model, 474
rhomboids, area calculation,
89-91
rhombus, area calculation,
89-91

Index 565

right angles, 86-87
right triangles, 214-215,
216-217, 222
roots, 264
binomials to find roots, 284—
285
complex quantities, 389
R-S flip-flop, 472, 473
R-S-T flip-flop, 473

S
saturation, 474
secant, 332
second derivatives, 350-352
second-order curves, 356, 363
conic section, 364
three-dimensional, 372
septimal numbers, 250-251
sequential logic gate, 472
series, 392-408
arccosine, 423-424
arcsine, 423-424
arctangent, 396
complex exponential
functions, 401-403
complex frequency planes,
404
complex p planes, 403-404
convergence, 424-425
decay functions, 394-395
epsilon, functions of, 399
epsilon, significance, 401
exponential vs.
trigonometric
convergence, 400
exponential vs.
trigonometric
relationships, 399-400
exponential, significance,
400
Fourier, 453
gap in series of derivatives,
397-398
growth functions, 394-395
hyperbolic functions,
404-405
logarithmic, 409-411
logarithms (see logarithms)
patterns, 392-393
quadratic curves, 459
secant, 423
trigonometric series, 422
shift function, logarithms, 415
simultaneous equations in
algebra, 146-149



566 Index

simultaneous equations in
quadratics, 183
sine, 218- 223-224, 230-231,
233-234
series for sine using
progressions, 302-303
sine waves, 237-238
differentiation, 308-309
fourth power term in
transfer characteristics,
317
harmonic motion, 310-311
linear or nonlinear
relationships, 311
nonlinear relationships,
312-314
power sinusoids, multiple
components, 316-317
power-term combination,
318-319
sinusoidal motion, 309-310
successive differentiation,
301-302
symmetrical nonlinearity,
314-316
waveform synthesis,
451452
sinh, 405
sinusoidal motion, 309-310
slave, 473
slide rule, 441
slope, logarithmic scales,
434436
speed measurements,
102-107
acceleration, 189-192
acceleration at constant
power, 200-201
average speed calculations,
103-105, 107
constant acceleration,
198-199
making up time, 107
rate of change and
progressions, 289-290
reference quantity, 105-106
velocity, 192, 199-200
spheres
surface area calculation
using integration, 341
volume calculation using
integration, 341
springs
energy storage in, 201-202
energy transfer in released,
201-202

resonance cycles, energy
transfer, 203-204
travel and velocity in
resonance cycles, 204-205
square roots, 176-180
continued square roots,
178-179
cube roots, 180-182
imaginary numbers, 182
placeholder importance, 179
positive and negative signs,
180
square waves, 454
offset, 456
switching functions, 456459
triangular waves vs.,
454-455
squared numbers, 72-73, 142
difference equals sum times
difference, 173-174
factors, 175
roots (see square roots)
sum-and-difference principle
in geometry, 175
squares, area calculation,
86-87
static triggering, 473
subtraction, 24-33
borrowing, 26-27
change-making, 28-30
checking answers using
addition, 25-26
dry measures, 32
fractions, 74-75
large numbers, 27-28
liquid measures, 32
weight units, 30
successive differentiation,
294-295, 297-298,
301-302
sum and difference formulas,
175, 236-237
supplementary angles, 243-244
surds, 265
switching functions, square
waves as, 456-459
symmetrical nonlinearity,
314-316

T
T flip-flop, 473
tangents, 218, 223-224,
232-234
successive derivatives, 334
tanh, 405
terabyte, 472

time (see also speed

measurements), 100-119
rate-of-growth calculations,
108-109
speed, distance times time,
102-107

triangular waves, 453454

series, trigonometric series,
422
square waves vs., 454-455

triggering, 473

edge, 473
negative-edge, 473
positive-edge, 473
static, 473

trigonometric series, 422
trigonometry

algebra combined with,
322-323

angles, in a circle, 242-243

angles, multiple angles,
239-240

angles, triangle
measurement, 213-214

area calculations, 89, 93

area calculations, acute
triangles, 91

area calculations, obtuse
triangles, 92

complementary angles,
243-244

cosine, 218, 231-232,
233-234

curves, sine waves, 237-238

degree measurement of
angles, 220

difference-angles ratios,
235-236

equilateral triangles, 220

hypotenuse, 215

isosceles triangles, 220,
240-241

obtuse angles, 234-235

problem solving, 223,
225-226

Pythagorean theorem,
216-217, 238

ratios for angles, 221

ratios to identify angles,
215216

right isosceles triangles, 222

right triangles, 214-217

sine, 218, 230-231, 233-234

sine—cosine—tangent tables,
223-224

sum angles, ratios, 229



sum and difference
formulas, 236-237
supplementary angles,
243-244
tangent, 218, 232-234
trinary logic, 468
truth statements in algebra,
143
truth tables, 475-476

A%
variables, 142, 297
vectors, 277
velocity, 192
acceleration at constant
power, 200-201

kinetic energy and, 199-200

rate of change and
progressions, 289-290
resonance cycles, 204-205
vinculum, 265

volume

cone, using integration, 343,
355

pyramid, using integration,
341-342

sphere, using integration,
344

W

waveforms

Fourier series, 453

quadratic curves series,
459

square, 454

square, offset, 456

square, switching functions,
456-459

synthesis, 451-452

transfer characteristics,
461-463

triangular, 453-454

Index 567

weight units

addition of units, 19-21
balance (scales) use, 31
metric system, 94-95
multiplication, 4445
subtraction, 30

work, 187-188, 192-193

energy and, 193-194
gravitational measure of,
197-198

X

XOR, 470
XOR gate, 470, 471

Z

zero, 6, 9

multiplication, 37, 41
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