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Preface

It has long been the established policy of CRC Press to publish, in handbook form,
the most up-to-date, authoritative, logically arranged, and readily usable reference
material available. Prior to the preparation of this 31% Edition of the CRC Standard
Mathematical Tables and Formulae, the content of such a book was reconsidered.
The previous edition was carefully analyzed, and input was obtained from practi-
tioners in the many branches of mathematics, engineering, and the physical sciences.
The consensus was that numerous small additions were required in several sections,
and several new areas needed to be added.

Some of the new materials included in this edition are: game theory and voting
power, heuristic search techniques, quadratic elds, reliability, risk analysis and de-
cision rules, a table of solutions to Pell’s equation, a table of irreducible polynomials
in Z,[z], a longer table of prime numbers, an interpretation of powers of 10, a col-
lection of “proofs without words”, and representations of groups of small order. In
total, there are more than 30 completely new sections, more than 50 new and mod-
ied entries in the sections, more than 90 distinguished examples, and more than a
dozen new tables and gures. This brings the total number of sections, sub-sections,
and sub-sub-sections to more than 1,000. Within those sections are now more than
3,000 separate items (a de nition , a fact, a table, or a property). The index has also
been extensively re-worked and expanded to make nding results faster and easier;
there are now more than 6,500 index references (with 75 cross-references of terms)
and more than 750 notation references.

The same successful format which has characterized earlier editions of the Hand-
book is retained, while its presentation has been updated and made more consistent
from page to page. Material is presented in a multi-sectional format, with each sec-
tion containing a valuable collection of fundamental reference material—tabular and
expository.

In line with the established policy of CRC Press, the Handbook will be kept as
current and timely as is possible. Revisions and anticipated uses of newer materials
and tables will be introduced as the need arises. Suggestions for the inclusion of new
material in subsequent editions and comments regarding the present edition are wel-
comed. The home page for this book, which will include errata, will be maintained

at http://www.mathtable.com/.
The major material in this new edition is as follows:

Chapter 1: Analysis begins with numbers and then combines them into series and
products. Series lead naturally into Fourier series. Numbers also lead to func-
tions which results in coverage of real analysis, complex analysis, and gener-
alized functions.

Chapter 2: Algebra covers the different types of algebra studied: elementary al-
gebra, vector algebra, linear algebra, and abstract algebra. Also included are
details on polynomials and a separate section on number theory. This chapter
includes many new tables.

Chapter 3: Discrete Mathematics covers traditional discrete topics such as combi-
natorics, graph theory, coding theory and information theory, operations re-
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search, and game theory. Also included in this chapter are logic, set theory,
and chaos.

Chapter 4: Geometry covers all aspects of geometry: points, lines, planes, sur-
faces, polyhedra, coordinate systems, and differential geometry.

Chapter 5: Continuous Mathematics covers calculus material: differentiation, in-
tegration, differential and integral equations, and tensor analysis. A large table
of integrals is included. This chapter also includes differential forms and or-
thogonal coordinate systems.

Chapter 6: Special Functions contains a sequence of functions starting with the
trigonometric, exponential, and hyperbolic functions, and leading to many of
the common functions encountered in applications: orthogonal polynomials,
gamma and beta functions, hypergeometric functions, Bessel and elliptic func-
tions, and several others. This chapter also contains sections on Fourier and
Laplace transforms, and includes tables of these transforms.

Chapter 7: Probability and Statistics begins with basic probability information (de n -
ing several common distributions) and leads to common statistical needs (point
estimates, con d ence intervals, hypothesis testing, and ANOVA). Tables of the
normal distribution, and other distributions, are included. Also included in this
chapter are queuing theory, Markov chains, and random number generation.

Chapter 8: Scientific Computing explores numerical solutions of linear and non-
linear algebraic systems, numerical algorithms for linear algebra, and how to
numerically solve ordinary and partial differential equations.

Chapter 9: Financial Analysis contains the formulae needed to determine the re-
turn on an investment and how to determine an annuity (i.e., the cost of a
mortgage). Numerical tables covering common values are included.

Chapter 10: Miscellaneous contains details on physical units (de nition s and con-
versions), formulae for date computations, lists of mathematical and electronic
resources, and biographies of famous mathematicians.

It has been exciting updating this edition and making it as useful as possible.
But it would not have been possible without the loving support of my family, Janet
Taylor and Kent Taylor Zwillinger.

Daniel Zwillinger

zwillinger@alum.mit.edu
15 October 2002
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1.1 CONSTANTS

1.1.1 TYPES OF NUMBERS

1.1.1.1 Natural numbers

The set of natural numbers, {0,1, 2, ...}, is customarily denoted by N. Many authors
do not consider 0 to be a natural number.

1.1.1.2 Integers

The set of integers, {0,+1,+2,...}, is customarily denoted by Z. The positive
integersare {1,2,3,...}.

1.1.1.3 Rational numbers

The set of rational numbers, {g | p,q € Z,q # 0}, is customarily denoted by Q.
Two fractions % and £ are equal if and only if ps = gr.

Addition of fractions is de ned by £ + £ = ps;r—sqr. Multiplication of fractions

isdened by &% = 2%

1.1.1.4 Real numbers

The set of real numbers is customarily denoted by R. Real numbers are de ned to
be converging sequences of rational numbers or as decimals that might or might not
repeat.

Real numbers are often divided into two subsets. One subset, the algebraic
numbers, are real numbers which solve a polynomial equation in one variable with
integer coef cien ts. For example; % is an algebraic number because it solves the
polynomial equation 222 — 1 = 0; and all rational numbers are algebraic. Real num-
bers that are not algebraic numbers are called transcendental numbers. Examples of
transcendental numbers include 7 and e.

1.1.1.5 Complex numbers
The set of complex numbers is customarily denoted by C. They are numbers of the

form a + bi, where i2 = —1, and a and b are real numbers. See page 53.
Operation computation result
addition (a+bi)+(c+di) (a+c)+i(b+d)
multiplication (a + bi)(c+ di) (ac — bd) + (ad + be)i
. 1 a b .
reciprocal PR P R 0
complex conjugate z = a + bi zZ=a—bi

Properties include: z + w =z 4+ w and zw = z w.
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1.1.2 ROMAN NUMERALS

The major symbols in Roman numeralsare [ = 1, V=5, X = 10, L = 50, C = 100,
D = 500, and M = 1,000. The rules for constructing Roman numerals are:

1. A symbol following one of equal or greater value adds its value. (For example,
II=2,XI=11,and DV = 505.)

2. A symbol following one of lesser value has the lesser value subtracted from
the larger value. An I is only allowed to precede a V or an X, an X is only
allowed to precede an L or a C, and a C is only allowed to precede a D or
an M. (For example IV = 4,IX = 9, and XL = 40.)

3. When a symbol stands between two of greater value, its value is subtracted
from the second and the result is added to the rst (for example, XIV= 10 +
(5—1) = 14, CIX= 100+ (10 — 1) = 109, DXL= 500 + (50 — 10) = 540).

4. When two ways exist for representing a number, the one in which the symbol
of larger value occurs earlier in the string is preferred. (For example, 14 is
represented as XIV, not as VIX.)

Decimal number 1 2 3 4 5 6 7 8 9
Romannumeral I II III IV V VI VI VII IX

10 14 50 200 400 500 600 999 1000
X XIV L €C CD D DC CMXCIX M

1950 1960 1970 1980 1990
MCML MCMLX MCMLXX MCMLXXX MCMXC

1995 1999 2000 2001 2004 2010
MCMXCV MCMXCIX MM MMI MMIV MMX

1.1.3 ARROW NOTATION

Arrow notation is a way to represent large numbers in which evaluation proceeds
from the right:

mtn=m-m---m
—_——
n

mitn=mimf tm (1.1.1)

mAttn=mtmtt-1tm

n

For example, m + n =m™, m 1 2=m™, andm 1 3 = m(™").
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1.1.4 REPRESENTATION OF NUMBERS

Numerals as usually written have radix or base 10, so that the numeral @ ,a,—1 ... aiag
represents the number a,, 10" 4+ a,,_110%~! + - .- 4+ 3102 + @, 10 + ag. However,
other bases can be used, particularly bases 2, 8, and 16. When a number is written in
base 2, the number is said to be in binary notation. The names of other bases are:

2 binary 9 nonary

3 ternary 10  decimal

4 quaternary 11  undenary

5 quinary 12 duodecimal
6 senary 16  hexadecimal
7 septenary 20  vigesimal

8 octal 60  sexagesimal

When writing a number in base b, the digits used range from 0 to b — 1. If
b > 10, then the digit A stands for 10, B for 11, etc. When a base other than 10 is
used, it is indicated by a subscript:

10111, =1x 2 +0x 22 +1x 22 +1x24+1=23,
A316 = 10 x 16 + 3 = 163, (1.12)
543; =5 x 7> +4 x 7+ 3 = 276.

To convert a number from base 10 to base b, divide the number by b, and the
remainder will be the last digit. Then divide the quotient by b, using the remainder
as the previous digit. Continue dividing the quotient by b until a quotient of 0 is
arrived at.

EXAMPLE  To convert 573 to base 12, divide 573 by 12, yielding a quotient of 47 and a
remainder of 9; hence, “9” is the last digit. Divide 47 by 12, yielding a quotient of 3 and
a remainder of 11 (which we represent with a “B”). Divide 3 by 12 yielding a quotient
of 0 and a remainder of 3. Therefore, 57319 = 3B912.

In general, to convert from base b to base r, it is simplest to convert to base 10
as an intermediate step. However, it is simple to convert from base b to base b™. For
example, to convert 1101111015 to base 16, group the digits in fours (because 16
is 21), yielding 1 1011 11015, and then convert each group of 4 to base 16 directly,
yielding 1BDys.
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1.1.5 BINARY PREFIXES
A byte is 8 bits. A kibibyte is 2!° = 1024 bytes. Other pre x es for power of 2 are:

Factor Prex Symbol
210 kibi  Ki

220 mebi  Mi

230 gibi  Gi

240 tebi Ti

250 pebi  Pi

260 exbi  Ei

1.1.6 DECIMAL MULTIPLES AND PREFIXES

The pre x names and symbols below are taken from Conference Générale des Poids
et Mesures, 1991. The common names are for the U.S.

Factor Pre x | Symbol Common name
10(10™*) googolplex
10100 googol

10% yotta Y heptillion
102t zetta | Z hexillion
108 exa E quintillion
10%° peta | P quadrillion
10'2 tera T trillion

10° giga |G billion

108 mega | M million

103 kilo |k thousand
102 hecto | H hundred

10! deka | da ten

1071 deci |d tenth

1072 centi |c hundreth
1073 milli | m thousandth
106 micro | u (Greek mu) | millionth
10-° nano |n billionth
10712 pico | p trillionth
1015 femto | f quadrillionth
1018 atto | a quintillionth
102 zepto | z hexillionth
1024 yocto |y heptillionth
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1.1.7 DECIMAL EQUIVALENTS OF COMMON FRACTIONS

1/16

1/8

3/16

1/4

5/16

3/8

7/16

172

1/32

2/32

3/32

4/32

5/32

6/32

7/32

8/32

9/32

10/32

11/32

12/32

13/32

14/32

15/32

16/32

1/64

2/64

3/64

4/64

5/64

6/64

7/64

8/64

9/64
10/64
11/64
12/64
13/64
14/64
15/64
16/64
17/64
18/64
19/64
20/64
21/64
22/64
23/64
24/64
25/64
26/64
27/64
28/64
29/64
30/64
31/64
32/64

0.015625
0.03125
0.046875
0.0625
0.078125
0.09375
0.109375
0.125
0.140625
0.15625
0.171875
0.1875
0.203125
0.21875
0.234375
0.25
0.265625
0.28125
0.296875
0.3125
0.328125
0.34375
0.359375
0.375
0.390625
0.40625
0.421875
0.4375
0.453125
0.46875
0.484375
0.5

9/16

5/8

11/16

3/4

13/16

7/8

15/16

1/1

17/32

18/32

19/32

20/32

21/32

22/32

23/32

24/32

25/32

26/32

27/32

28/32

29/32

30/32

31/32

32/32

33/64
34/64
35/64
36/64
37/64
38/64
39/64
40/64
41/64
42/64
43/64
44/64
45/64
46/64
47/64
48/64
49/64
50/64
51/64
52/64
53/64
54/64
55/64
56/64
57/64
58/64
59/64
60/64
61/64
62/64
63/64
64/64

0.515625
0.53125
0.546875
0.5625
0.578125
0.59375
0.609375
0.625
0.640625
0.65625
0.671875
0.6875
0.703125
0.71875
0.734375
0.75
0.765625
0.78125
0.796875
0.8125
0.828125
0.84375
0.859375
0.875
0.890625
0.90625
0.921875
0.9375
0.953125
0.96875
0.984375
1
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1.1.8 HEXADECIMAL ADDITION AND SUBTRACTION TABLE

A=10,B=11,C=12,D=13,E=14,F = 15.
Example: 6 +2 = 8; hence 8 —6 =2and 8§ — 2 = 6.
Example: 4 + E = 12; hence 12 -4 =Eand 12 — E = 4.

1

2

3

4

5

6

7

8

9

A B C D E

F

02

03

04

05

06

07

08

09

0A

0B

0C

0D

OE

OF

10

03

04

05

06

07

08

09

0A

0B

0C

0D

OE

OF

10

11

04

05

06

07

08

09

0A

0B

0C

0D

OE

OF

10

11

12

05

06

07

08

09

0A

0B

0C

0D

OE

OF

10

11

12

13

06

07

08

09

0A

0B

0C

0D

OE

OF

10

11

12

13

14

07

08

09

0A

0B

0C

0D

OE

OF

10

11

12

13

14

15

08

09

0A

0B

0C

0D

OE

OF

10

11

12

13

14

15

16

09

0A

0B

0C

0D

OE

OF

10

11

12

13

14

15

16

17

0A

0B

0C

0D

OE

OF

10

11

12

13

14

15

16

17

18

0B

0C

0D

OE

OF

10

11

12

13

14

15

16

17

18

19

0C

0D

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

0D

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

IC

1D

ol o] o w| ] o] | x| o] v | w| o] —

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1.1.9 HEXADECIMAL MULTIPLICATION TABLE

Example: 2 x 4 = 8.

Example: 2 x F = 1E.

1

2

3

4

5

6

7

8

9

A

B

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

OE

OF

02

04

06

08

0A

0C

OE

10

12

14

16

18

1A

1C

1E

03

06

09

0C

OF

12

15

18

1B

1E

21

24

27

2A

2D

04

08

0C

10

14

18

1C

20

24

28

2C

30

34

38

3C

05

0A

OF

14

19

1E

23

28

2D

32

37

3C

41

6

4B

06

0C

12

18

1E

24

2A

30

36

3C

42

48

4E

54

S5A

07

OE

15

IC

23

2A

31

38

3F

46

4D

54

5B

62

69

08

10

18

20

28

30

38

40

48

50

58

60

68

70

78

09

12

1B

24

2D

36

3F

48

51

S5A

63

6C

75

7E

87

0A

14

1E

28

32

3C

46

50

5A

64

6E

78

82

8C

96

0B

16

21

2C

37

42

4D

58

63

6E

79

84

8F

9A

A5

0C

18

24

30

3C

48

54

60

6C

78

84

90

9C

A8

B4

0D

1A

27

34

41

4E

5B

68

75

82

8F

9C

A9

B6

C3

| ml o] A w3 o] | 2| o v] & w| o] =

OE

1C

2A

38

6

54

62

70

7E

8C

9A

A8

B6

C4

D2

OF

1E

2D

3C

4B

S5A

69

78

87

96

A5

B4

C3

D2

El
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1.1.10 HEXADECIMAL-DECIMAL FRACTION CONVERSION
TABLE

The values below are correct to all digits shown.

Hex Decimal | Hex Decimal | Hex Decimal Hex Decimal

.00 0 40 0.250000 | .80  0.500000 [ .CO  0.750000
.01 0.003906 | 41  0.253906 [ .81  0.503906 [ .C1  0.753906
.02 0.007812 | 42 0.257812 .82  0.507812 ( .C2  0.757812
.03 0.011718 | 43  0.261718 | .83  0.511718 | .C3  0.761718
.04 0.015625 [ .44 0.265625 | .84 0.515625 | .C4 0.765625
.05 0.019531 [ 45 0.269531 [ .85 0.519531  .C5 0.769531
.06 0.023437 | 46  0.273437 | .86  0.523437 | .C6  0.773437
.07 0.027343 | .47 0277343 | .87 0.527343 | .C7 0.777343
.08 0.031250 | 48 0.281250 [ .88  0.531250 [ .C8 0.781250
.09 0.035156 | .49 0.285156 [ .89  0.535156 [ .C9  0.785156
.0A 0.039062 [ 4A 0.289062 | .8A 0.539062 | .CA 0.789062
.0B  0.042968 | 4B 0.292968 | .8B  0.542968 | .CB  0.792968
.0C 0.046875 [ .4C 0.296875 | .8C  0.546875 | .CC 0.796875
.0D 0.050781 | 4D 0.300781 [ .8D 0.550781 [ .CD 0.800781
.OE 0.054687 | 4E 0.304687 | .8E  0.554687 | .CE 0.804687
.OF 0.058593 [ 4F 0.308593 | .8F 0.558593 | .CF  0.808593

.10 0.062500 | .50  0.312500 [ .90  0.562500 [ .DO  0.812500
11 0.066406 | .51 0316406 [ .91  0.566406 [ .D1  0.816406
12 0.070312 | 52 0320312 [ .92 0.570312 ( .D2  0.820312
13 0.074218 | 53 0324218 | .93  0.574218 | .D3  0.824218
.14 0.078125 | .54 0328125 .94 0.578125 | .D4  0.828125
.15 0.082031 | .55 0.332031 [ .95  0.582031 ( .DS  0.832031
.16 0.085937 [ .56  0.335937 [ .96  0.585937 | .D6  0.835937
.17 0.089843 | .57 0339843 [ .97  0.589843 | .D7  0.839843
.18 0.093750 | .58  0.343750 [ .98  0.593750 [ .D8  0.843750
19 0.097656 | .59 0.347656 [ .99  0.597656 [ .D9  0.847656
1A 0.101562 | 5A  0.351562 [ 9A 0.601562 | .DA 0.851562
1B 0.105468 | 5B 0.355468 | 9B  0.605468 | .DB 0.855468
1C  0.109375 | 5C  0.359375 | .9C  0.609375 | .DC 0.859375
1D 0.113281 | 5D  0.363281 [ 9D 0.613281 | .DD 0.863281
AE  0.117187 | 5SE 0367187 | O9E 0.617187 | .DE 0.867187
AF  0.121093 | 5F 0371093 | O9F  0.621093 | .DF 0.871093

20 0.125000 | .60  0.375000 [ .AO  0.625000 [ .EO  0.875000
21 0.128906 | .61  0.378906 | .A1 0.628906 | .E1  0.878906
22 0132812 | .62 0.382812 | .A2 0.632812 | .E2  0.882812
23 0.136718 | .63  0.386718 | .A3  0.636718 | .E3  0.886718
24 0.140625 | .64 0390625 | .A4 0.640625 | .E4  0.890625
25 0.144531 | .65 0394531 [ .A5 0.644531 | .ES  0.894531
26 0.148437 | .66  0.398437 | .A6  0.648437 | .E6  0.898437
27 0152343 | .67 0.402343 | .A7 0.652343 | .E7  0.902343
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Hex Decimal | Hex Decimal | Hex Decimal Hex Decimal
28  0.156250 | .68  0.406250 | . A8 0.656250 | .E8  0.906250
29 0.160156 | .69 0.410156 | . A9 0.660156 | .E9 0.910156
2A  0.164062 | .6A 0.414062 | .AA 0.664062 | .EA 0.914062
2B 0.167968 | .6B  0.417968 | .AB 0.667968 | .EB 0.917968
2C  0.171875 | .6C  0.421875 | .AC 0.671875 | .EC 0.921875
2D 0.175781 | .6D 0.425781 | . AD 0.675781 | .ED 0.925781
2E  0.179687 | .6E  0.429687 | .AE 0.679687 | .EE  0.929687
2F  0.183593 | .6F 0.433593 | .AF 0.683593 | .EF  0.933593
30 0.187500 | .70  0.437500 | .BO  0.687500 | .FO  0.937500
31 0.191406 | .71  0.441406 | .B1  0.691406 | .F1  0.941406
32 0.195312 | .72 0.445312 | .B2 0.695312 | .F2  0.945312
33 0.199218 | .73 0.449218 | .B3  0.699218 | .F3  0.949218
34 0.203125 | .74 0453125 | .B4 0.703125 | .F4 0.953125
35 0.207031 | .75 0.457031 | .B5S 0.707031 | .F5 0.957031
36 0.210937 | .76 0.460937 | .B6 0.710937 | .F6  0.960937
37 0.214843 | .77 0464843 | .B7 0.714843 | .F7  0.964843
38  0.218750 | .78  0.468750 | .B8 0.718750 | .F8  0.968750
39 0.222656 | .79 0472656 | .B9  0.722656 | .F9  0.972656
3A  0.226562 | 7TA  0.476562 | .BA 0.726562 | .FA 0.976562
3B 0.230468 | .7B  0.480468 | .BB 0.730468 | .FB  0.980468
3C  0.234375 | .71C  0.484375 | .BC 0.734375 | .FC 0.984375
3D 0.238281 | .7D  0.488281 | .BD 0.738281 | .FD 0.988281
3E  0.242187 | .7E  0.492187 | .BE 0.742187 | .FE  0.992187
3F  0.246093 | .7F  0.496093 | .BF 0.746093 | .FF  0.996093
1.2 SPECIAL NUMBERS
1.2.1 POWERS OF 2

n 2" 2—"

1 2 0.5

2 4 0.25

3 8 0.125

4 116 0.0625

5 |32 0.03125

6 |64 0015625

7 128 0.0078125

8 256 0.00390625

9 |[512 0.001953125

10 | 1024 | 0.0009765625
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24 | 16777216

25 | 33554432

26 | 67108864

27 | 134217728

28 | 268435456

29 | 536870912

30 | 1073741824
31 | 2147483648
32 | 4294967296
33 | 8589934592
34| 17179869184
35 | 34359738368
36 | 68719476736
37 | 137438953472
38 | 274877906944
39 | 549755813888

n 2n 2—n
11 | 2048 0.00048828125

12 | 4096 0.000244140625

13 | 8192 0.0001220703125

14 | 16384 0.00006103515625

15 | 32768 0.000030517578125

16 | 65536 0.0000152587890625

17 | 131072 0.00000762939453125

18 | 262144 0.000003814697265625

19 | 524288 0.0000019073486328125

20 | 1048576 0.00000095367431640625
21| 2097152 0.000000476837158203125
22 | 4194304 0.0000002384185791015625
23 | 8388608 0.00000011920928955078125

0.000000059604644775390625
0.0000000298023223876953125
0.00000001490116119384765625
0.000000007450580596923828125
0.0000000037252902984619140625
0.00000000186264514923095703125
0.000000000931322574615478515625
0.0000000004656612873077392578125
0.00000000023283064365386962890625
0.000000000116415321826934814453125
0.0000000000582076609134674072265625
0.00000000002910383045673370361328125
0.000000000014551915228366851806640625
0.0000000000072759576141834259033203125
0.00000000000363797880709171295166015625
0.000000000001818989403545856475830078125

40 | 1099511627776 | 0.0000000000009094947017729282379150390625
n 2m n 2"
41 2199023255552 42 4398046511104
43 8796093022208 44 17592186044416
45 35184372088832 46 70368744177664
47 140737488355328 48 281474976710656
49 562949953421312 50 1125899906842624
51 2251799813685248 52 4503599627370496
53 9007199254740992 54 18014398509481984
55 36028797018963968 56  72057594037927936
57 144115188075855872 58 288230376151711744
59 576460752303423488 60 1152921504606846976
61 2305843009213693952 |62 4611686018427387904
63 9223372036854775808 | 64 18446744073709551616
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n 2" n 2"
65 36893488147419103232 66 73786976294838206464
67 147573952589676412928 68 295147905179352825856
69 590295810358705651712 70 1180591620717411303424
71 2361183241434822606848 72 4722366482869645213696
73 9444732965739290427392 74  18889465931478580854784
75 37778931862957161709568 76 75557863725914323419136
77 151115727451828646838272 78 302231454903657293676544
79  604462909807314587353088 80 1208925819614629174706176
81 2417851639229258349412352 82 4835703278458516698824704
83 9671406556917033397649408 84 19342813113834066795298816
85 38685626227668133590597632 86 77371252455336267181195264
87 154742504910672534362390528 |88 309485009821345068724781056
89 618970019642690137449562112 |90 1237940039285380274899124224
1.2.2 POWERS OF 16 IN DECIMAL SCALE

n 16™ 16~"

0 11

1 16 | 0.0625

2 256 | 0.00390625

3 4096 | 0.000244140625

4 65536 | 0.0000152587890625

5 1048576 | 0.00000095367431640625

6 16777216 | 0.000000059604644775390625

7 268435456 | 0.0000000037252902984619140625

8 4294967296 | 0.00000000023283064365386962890625

9 68719476736 | 0.000000000014551915228366851806640625

10 1099511627776 | 0.0000000000009094947017729282379150390625
11 17592186044416 | 5.684341886080801486968994140625 x 10~ !4

12 281474976710656 | 3.552713678800500929355621337890 - - - x 10~ 1°
13 4503599627370496 | 2.220446049250313080847263336181 --- x 10716
14 72057594037927936 | 1.387778780781445675529539585113 - - - x 1077
15 1152921504606846976 | 8.673617379884035472059622406959 - - - x 10~ 1°
16 18446744073709551616 | 5.421010862427522170037264004349 - - - x 10~ 2°
17 295147905179352825856 | 3.388131789017201356273290002718 - - - x 1072
18 4722366482869645213696 | 2.117582368135750847670806251699 - - - x 1022
19 75557863725914323419136 | 1.323488980084844279794253907311 - - - x 10723
20 | 1208925819614629174706176 | 8.271806125530276748714086920699 - - - x 1072°
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1.2.3 POWERS OF 10 IN HEXADECIMAL SCALE

n 10" 10~"
0 lig | lig
1 A1g | 0.199999999999999999909. . . 14
2 6416 | 0.028F5C28F5C28F5C28FS5. . .15
3 3E8 16 | 0.004189374BC6ATEFODB2.. .15
4 271016 | 0.00068DB8BAC710CB295E.. .15
5 186A0+¢ | 0.0000A7C5AC471B478423.. .14
6 F4240.6 | 0.000010C6F7AOBSED8D36...4
7 98968016 | 0.000001AD7F29ABCAFA48S5.. .16
8 SF5E100¢ | 0.0000002AF31DC4611873...15
9 3B9ACA006 | 0.000000044B82FA09B5AS. . .16
10 2540BE400 16 | 0.000000006DF37F675EF6.. .16
11 174876E800 14 | 0.000000000AFEBFFOBCB2.. .14
12 E8D4A51000¢ | 0.000000000119799812DE... 4
13 9184E72A000 14 | 0.00000000001C25C26849...¢
14 5AF3107A4000:¢ [ 0.000000000002D09370DA4.. .6
15 | 38D7EA4C68000 16 | 0.000000000000480EBE7B.. .16
16 | 2386F26FC10000 16 | 0.0000000000000734ACAS.. .6

1.2.4 SPECIAL CONSTANTS
1.2.4.1 The constant =«

The transcendental number 7 is de ned as the ratio of the circumference of a circle
to the diameter. It is also the ratio of the area of a circle to the square of the radius
(r) and appears in several formulae in geometry and trigonometry (see Section 6.1)

3

. . 4
circumference of a circle = 277, volume of a sphere = gm“ ,

area of a circle = 7r?, surface area of a sphere = 4772,

One method of computing 7 is to use the in nite series for the function tan ~! 2 and
one of the identities

mr=4tan"'1=6 tan"!

Sl

1
=2 tan"! 3 +2 tan~!

Wl =

1 1
+8tan'Z —2tan"! —
. 5 239 (1.2.1)

1 1
=24 tan ! - tan ! — +4 tan ' —
an 8+8 an 57+ an 939

1 1 1
=48 tan~' — 2tan~! — — 20 tan™' —
8 tan 18+3 an 5 0 tan 39
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There are many other identities involving 7. See Section 1.4.3. For example:

_i 2 11
B 8z+1 C8i+4 8i+5 8i+6

= lim |2F |2 —.|24+|2+ 2+¢2+\/2+---+ 2+2

k—o0

~ J
~~

k square roots

k square roots
N

Ie

\/2+\/2+-~-+\/2+\/§

11
T 2
i S S S S
32 4 (2n+1) 27 125 343
(1.2.2)
To 200 decimal places:

m 3. 1415926535 89793 23846 26433 83279 50288 41971 69399 37510
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
82148 08651 32823 06647 09384 46095 50582 23172 53594 08128
48111 74502 84102 70193 85211 05559 64462 29489 54930 38196

To 50 decimal places:

w/20 = 0.15707 96326 79489 66192 31321 69163 97514 42098 58469 96876
w/15 =~ 0.20943 95102 39319 54923 08428 92218 63352 56131 44626 62501
m/12 ~ 0.26179 93877 99149 43653 85536 15273 29190 70164 30783 28126
m/11 ~ 0.28559 93321 44526 65804 20584 89389 04571 67451 97218 12501
m/10 & 0.31415 92653 58979 32384 62643 38327 95028 84197 16939 93751
w/9 = 0.34906 58503 98865 91538 47381 53697 72254 26885 74377 70835
w/8 &~ 0.39269 90816 98724 15480 78304 22909 93786 05246 46174 92189
w7 = 0.44879 89505 12827 60549 46633 40468 50041 20281 67057 05359
w/6 ~ 0.52359 8775598298 87307 71072 30546 58381 40328 61566 56252
w/5~ 0.62831 85307 17958 64769 25286 76655 90057 68394 33879 87502
w/4 =~ 0.78539 81633 97448 30961 56608 45819 87572 10492 92349 84378
w/3 = 1.04719 75511 96597 74615 42144 61093 16762 80657 23133 12504
w/2 = 1.57079 63267 94896 61923 13216 91639 75144 20985 84699 68755
2r/3 &~ 2.09439 51023 93195 49230 84289 22186 33525 61314 46266 25007
3r/2 ~ 4.71238 89803 84689 85769 39650 74919 25432 62957 54099 06266
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Sm/2 ~ 7.85398 16339 74483 09615 66084 58198 75721 04929 23498 43776
Vo 1.77245 38509 05516 02729 81674 83341 14518 27975 49456 12239

In 1999 7 was computed to 206, 158,430,208 = 3 - 235 decimal digits. The
frequency distribution of the digits for 7 — 3, up to 200,000,000,000 decimal places,
is:

digit 0: 20000030841 digit 5: 19999917053
digit 1: 19999914711 digit 6: 19999881515
digit 2: 20000136978 digit 7: 19999967594
digit 3: 20000069393 digit 8: 20000291044
digit4: 19999921691 digit 9: 19999869180

1.2.4.2 The constant e

The transcendental number e is the base of natural logarithms. It is given by

e= lim <1+E> :ZH' (1.2.3)

n=0
To 200 decimal places:

e~ 2. 71828 18284 59045 23536 02874 71352 66249 77572 47093 69995
95749 66967 62772 40766 30353 54759 45713 82178 52516 64274
27466 39193 20030 59921 81741 35966 29043 57290 03342 95260
59563 07381 32328 62794 34907 63233 82988 07531 95251 01901

To 50 decimal places:

e/8~ 0.33978 52285 57380 65442 00359 33919 08281 22196 55886 71249
e/7~ 0.3883259754 94149 31933 71839 24478 95178 53938 92441 95714
e/6~ 0.45304 69714 09840 87256 00479 11892 11041 62928 74515 61666
e/5~ 0.54365 63656 91809 04707 20574 94270 53249 95514 49418 73999
e/d~ 0.67957 04571 14761 30884 00718 67838 16562 44393 11773 42499
e/3~ 0.90609 39428 19681 74512 00958 23784 22083 25857 49031 23332
e/2~ 1.35914 09142 29522 61768 01437 35676 33124 88786 23546 84998
2e/3~ 1.81218 78856 39363 49024 01916 47568 44166 51714 98062 46664
e™ ~  23.14069 26327 79269 00572 90863 67948 54738 02661 06242 60021
m¢ R 22.45915 77183 61045 47342 71522 04543 73502 75893 15133 99669

oo n

The function e is de ned by e” = 5 ;r_' (see page 521). The numbers e and 7 are
n!
n=0

related by the formula .
e =-1 (1.2.4)

1.2.4.3 The constant vy

Euler’s constant 7y is de ned by

n
7= fim, (Z

k=1

i

—log n) . (1.2.5)
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It is not known whether ~y is rational or irrational. To 200 decimal places:

v~0. 5772156649 01532 86060 65120 90082 40243 10421 59335 93992
35988 05767 23488 48677 26777 66467 09369 47063 29174 67495
14631 44724 98070 82480 96050 40144 86542 83622 41739 97644
92353 62535 00333 74293 73377 37673 94279 25952 58247 09492

1.2.4.4 The constant ¢

The golden ratio, ¢, is de ned as the positive root of the equation % = 1—;2@; that

is ¢ = # There is the continued fraction representation ¢ = [
2.4.4) and the representation in square roots

¢:¢1+\/1+\/1+m

To 200 decimal places:

¢~ 1. 61803 39887 49894 84820 45868 34365 63811 77203 09179 80576
28621 35448 62270 52604 62818 90244 97072 07204 18939 11374
84754 08807 53868 91752 12663 38622 23536 93179 31800 60766
72635 44333 89086 59593 95829 05638 32266 13199 28290 26788

1.2.4.5 Other constants

To 50 decimal places
V2~ 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37695
1.73205 08075 68877 29352 74463 41505 87236 69428 05253 81038
2.23606 79774 99789 69640 91736 68731 27623 54406 18359 61153
2.44948 97427 83178 09819 72840 74705 89139 19659 47480 65667
2.64575 13110 64590 59050 16157 53639 26042 57102 59183 08245
2.82842 71247 46190 09760 33774 48419 39615 71393 43750 75390
0.69314 71805 59945 30941 72321 21458 17656 80755 00134 36026
In3~ 1.09861 22886 68109 69139 52452 36922 52570 46474 90557 82275
In5~ 1.60943 79124 34100 37460 07593 33226 18763 95256 01354 26852
log2 ~ 0.30102 99956 63981 19521 37388 94724 49302 67681 89881 46211
log3 ~ 0.47712 12547 19662 43729 50279 03255 11530 92001 28864 19070
logh ~ 0.69897 00043 36018 80478 62611 05275 50697 32318 10118 53789

LI5S
XXX

X

1] (see Section

1.2.5 CONSTANTS IN DIFFERENT BASES

Base 2

T~ 11.00100100001111110110101010001000100001011010001...
€~ 10.10110111111000010101000101100010100010101110110...
Y~ 0.10010011110001000110011111100011011111011011000...
/2~ 1.01101010000010011110011001100111111100111011110...
In2~ 0.10110001011100100001011111110111110100011100111...

© 2003 by CRC Press LLC

NONN NN



Base 8

T 3.11037552421026430215142306305056006701632112201...53
er 2.55760521305053551246527734254200471723636166134...3
Y~ 0.44742147706766606172232157437601002513132552071...5
V2~ 1.32404746317716746220426276611546725125751743533...3
In2~ 0.54271027757507173632571170731630007713665364036...3
Base 12
T 3.184809493B918664573A6211BB151551A05729290A78... 15
ex 2.8752360698219BA71971009B388AA876676025642727... 1
Y~ 0.6B15188A6760B381B754334520434A22560A590A6A5... 15
V2~ 1.4B79170A07B85737704B085486853504563650B559B8.. . 15
In2~ 0.839912483369AB213742A34679253788658A1402A540...1>
Base 16
T 3.243F6A8885A308D313198A2E03707344A4093822299F... 5
e~ 2.BTE151628AED2A6ABF7158809CF4F3C762E7160F3... 14
~ 0.93C467E37DBOC7A4D1BE3F810152CB56A1CECC3A.. . 14
2~ 1.6A09E667F3BCC908B2FB1366EA957D3E3ADEC175... 14
In2~ 0.B17217F7D1CF79ABCOE3B39803F2F6AF40F3432672... 14

1.2.6 FACTORIALS

For non-negative integers n, the factorial of n, denoted n!, is the product of all pos-
itive integers less than orequal ton; n! = n-(n —1) - (n —2)---2-1. If n is
a negative integer (n = —1,—2,...) then n! = +o0. Note that, since the empty
product is 1, it follows that 0! = 1. The generalization of the factorial function to
non-integer arguments is the gamma function (see page 540). When n is an integer,
L(n) =(n-1)L

The double factorial of n, denoted n!!, is the product of every other integer:
n!! =n-(n—2)-(n—4)---, where the last element in the product is either 2
or 1, depending on whether n is even or odd. The shifted factorial (also called the
rising factorial and Pochhammer’s symbol) is denoted by (a) , (sometimes a™) and
isde ned as

(a+n—1)! :I‘(a+n)

(a)n:g-(a+1)-(a-{—f)---(a-{—n—l)/: =1 T(a) . (1.2.6)
n terms
Approximations to n! for large n include Stirling’s formula
n\"ts
n! ~ V27e (—) : (1.2.7)
e
and Burnsides’s formula
n+1
n+i 2
n! ~ \/271'( 2) : (1.2.8)
e
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n n! logq n! n!! logo n!!

01 0.00000 | 1 0.00000
1|1 0.00000 | 1 0.00000
2|2 0.30103 | 2 0.30103
316 0.77815 | 3 0.47712
4124 1.38021 | 8 0.90309
5 | 120 2.07918 | 15 1.17609
6 | 720 2.85733 | 48 1.68124
7| 5040 3.70243 | 105 2.02119
8 | 40320 4.60552 | 384 2.58433
9 | 3.6288 x 10° 9.55976 | 945 2.97543
10 | 3.6288 x 10° 6.55976 | 3840 3.58433
11 | 3.9917 x 107 7.60116 | 10395 4.01682
12 | 4.7900 x 10® 8.68034 | 46080 4.66351
13 | 6.2270 x 10° 9.79428 | 1.3514 x 10° 5.13077
14 | 8.7178 x 100 10.94041 | 6.4512 x 10° 5.80964
15 | 1.3077 x 10'? 12.11650 | 2.0270 x 10° 6.30686
16 | 2.0923 x 10'3 13.32062 | 1.0322 x 107 7.01376
17 | 3.5569 x 1014 14.55107 | 3.4459 x 107 7.53731
18 | 6.4024 x 10'° 15.80634 | 1.8579 x 108 8.26903
19 | 1.2165 x 107 17.08509 | 6.5473 x 108 8.81606
20 | 2.4329 x 10'8 18.38612 | 3.7159 x 10° 9.57006

21 | 5.1091 x 10*? 19.70834 | 1.3749 x 1010 10.13828
22 | 1.1240 x 10 21.05077 | 8.1750 x 10° 10.91249
23 | 2.5852 x 1022 22.41249 | 3.1623 x 10! 11.50001
24 | 6.2045 x 1023 23.79271 | 1.9620 x 10'2 12.29270
25 | 1.5511 x 10%° 25.19065 | 7.9059 x 10'2 12.89795
30 | 2.6525 x 1032 32.42366 | 4.2850 x 106 16.63195
40 | 8.1592 x 10%7 47.91165 | 2.5511 x 10%* 24.40672
50 | 3.0414 x 1054 64.48307 | 5.2047 x 1032 32.71640
60 | 8.3210 x 108! 81.92017 | 2.8481 x 104! 41.45456
70 | 1.1979 x 10'9°  100.07841 | 3.5504 x 10° 50.55028
80 | 7.1569 x 108 118.85473 | 8.9711 x 10°° 59.95284
90 | 1.4857 x 10'38  138.17194 | 4.2088 x 10%° 69.62416
100 | 9.3326 x 10'°7  157.97000 | 3.4243 x 107 79.53457
110 | 1.5882 x 10178 178.20092 | 4.5744 x 1087 89.66033
120 | 6.6895 x 10'9%  198.82539 | 9.5934 x 10%? 99.98197
130 | 6.4669 x 10%'?  219.81069 | 3.0428 x 10"  110.48328
140 | 1.3462 x 10241 241.12911 | 1.4142 x 10*2*  121.15050
150 | 5.7134 x 10262 262.75689 | 9.3726 x 10**!  131.97186
500 | 1.2201 x 10'13%  1134.0864 | 5.8490 x 10°%7  567.76709
1000 | 4.0239 x 102567  2567.6046 | 3.9940 x 10'28* 1284.6014
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1.2.7 BERNOULLI POLYNOMIALS AND NUMBERS

The Bernoulli polynomials B, () are de ned by the generating function

et —

tewt 0 tn
o= X:BH(g;)F (1.2.9)
n=0 :

These polynomials can also be de ned recursively by means of Bo(z) = 1, B!,(z) =
nBp—_1(z), and fol B, (z)dxz = 0forn > 1. The identity By11(z+1)— Bg11(z) =
(k 4+ 1)z* means that sums of powers can be computed in terms of Bernoulli poly-
nomials

K _ Bera(n +1) = Biya (0)

1.2.10
kE+1 ( )

2k p.4n

By (x)
1
2z —1)/2
(622 — 62 +1)/6
(22% — 322 + z)/2
(302 — 602® + 302% — 1)/30
(625 — 152 + 102> — 1) /6

U W~ OS

The Bernoulli numbers are the Bernoulli polynomials evaluated at 0: B,, =
o0
t" t
By (0). A generating function for the Bernoulli numbers is nz_:o Bnm = g1
In the following table each Bernoulli number is written as a fraction of integers:
B, = N,,/D,,. Note that Ba,+; = 0 form > 1.

n N, D, B,
0 1 1 1.000000000 x 10°
1 -1 2 —5.000000000 x 10~*
2 1 6 1.666666667 x 10!
4 -1 30 —3.333333333 x 102
6 1 42 2.380952381 x 102
8 -1 30 —3.333333333 x 1072
10 5 66 7.575757576 x 1072
12 —-691 2730 —2.531135531 x 10~*
14 7 6 1.166666667 x 10°
16 —3617 510 —7.092156863 x 10°
18 43867 798 5.497117794 x 10!
20 —174611 330 —5.291242424 x 102
22 854513 138 6.192123188 x 103
24 —236364091 2730 —8.658025311 x 10*
26 8553103 6 1.425517167 x 10°
28 —23749461029 870  —2.729823107 x 107

30 8615841276005 14322 6.015808739 x 108
32 | =7709321041217 510 —1.511631577 x 1010
34 2577687858367 6 4.296146431 x 10!
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1.2.8 EULER POLYNOMIALS AND NUMBERS

The Euler polynomials E,, () are de ned by the generating function

2ezt tn
i En(x)—. (1.2.11)
n=0
1
(27 — 1)/2
22—z

(423 — 622 +1)/4
ot —22% + o
(22° — 5z + 522 — 1)/2

CUR W N~ O3

Alternating sums of powers can be computed in terms of Euler polynomials

zn;(—l)niik —nk_ (n - 1)k +.F ok 4 1k — Ek(n + 1) +2(_1)nEk(0) .

(1.2.12)
The Euler numbers are the Euler polynomials evaluated at 1/2, and scaled:
E, = 2"Ep (). A generating function for the Euler numbers is

=t 2et
ZEnH =53 (1.2.13)
n=0
n En
2 —1
4 5
6 —61
8 1385
10 —50521
12 2702765
14 —199360981
16 19391512145
18 —2404879675441
20 370371188237525
22 —69348874393137901
24 15514534163557086905
26 —4087072509293123892361
28 1252259641403629865468285
30 —441543893249023104553682821
32 177519391579539289436664789665
34 —80723299235887898062168247453281
36 41222060339517702122347079671259045
38 | —23489580527043108252017828576198947741
40 | 14851150718114980017877156781405826684425
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1.2.9 FIBONACCI NUMBERS

The Fibonacci numbers {F, } are de ned by the recurrence:

Fi=1, F=1  Fyo=F,+F,. (1.2.14)

<1+2\/3> _ (1 _2\/3> ] . (12.15)

F,
Note that lim ;H = ¢, the golden ratio. Also, F,, ~ ¢™/ V5asn — oo.

An exact formula is available:

1
Fn:%

n—oo n

n F, | n F, n F, n F,

1 1] 14 377 | 27 196418 | 40 102334155
2 1115 610 | 28 317811 | 41 165580141
3 2116 987 | 29 514229 | 42 267914296
4 3 (17 1597 | 30 832040 | 43 433494437
5 5118 2584 | 31 1346269 | 44 701408733
6 8 (19 4181 | 32 2178309 | 45 1134903170
7 13 | 20 6765 | 33 3524578 | 46 1836311903
8 21121 10946 | 34 5702887 | 47 2971215073
9 34|22 17711 | 35 9227465 | 48 4807526976
10 55123 28657 | 36 14930352 | 49 7778742049
11 89 | 24 46368 | 37 24157817 | 50 12586269025
12 144 |1 25 75025 | 38 39088169 | 51 20365011074
13 233|126 121393 | 39 63245986 | 52 32951280099

1.2.10 POWERS OF INTEGERS

n n3 n n’ né n’ nd nlo
1 1 1 1 1 1 1 1
2 8 16 32 64 128 256 1024
3 27 81 243 729 2187 6561 59049
4 64 256 1024 4096 16384 65536 1048576
51 125 625 3125 15625 78125 390625 9765625
6| 216 1296 7776 46656 279936 1679616 60466176
71 343 2401 16807 117649 823543 5764801 282475249
8 512 4096 32768 262144 2097152 16777216 1073741824
91 729 6561 59049 531441 4782969 43046721 3486784401
10 | 1000 10000 100000 1000000 10000000 100000000 10000000000
11 | 1331 14641 161051 1771561 19487171 214358881 25937424601
12 | 1728 20736 248832 2985984 35831808 429981696 61917364224
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1.2.11 SUMS OF POWERS OF INTEGERS
1. De ne

se(n) =18+ 2F 4o 4k =" mk, (1.2.16)

Properties include:

@ sk(n) = (k+ 1)~ [Bys (n + 1) — Byys (0)]
(where the By, are Bernoulli polynomials, see Section 1.2.7).

(b) If s(n) = Efntll amn* ™2 then
k+1 k+1
seaa() = (g ot (B ot
k1

k+1 am
-+ S —dm
(k + )mX::lk—FB—m "

+ot (T) ak41n® +

1
Sl(n):1+2+3+"'+TL:§TL(TL+1)

1
32(n):12+22+32+---+n2ZEn(n+1)(2n+1)

1
s3(n) =10 +2° + 3 4+ 40’ = ZnP(n+1)* = [si(n)]

Zn
(c) _ 44 4 44 . a_ Yoo —
s4(n) =1"+2"4+3"+---+n —5(3n +3n —1)s3(n)

1
55(n):15+25+35+---+n5:Enz(n+1)2(2n2+2n—1)
se(n) =15 4+26 430 4 ... 4 nf

:%(n+1)(2n+1)(3n4+6n3—3n+1).

4. Y (km-1)° = % [mPn(n +1)2 — 2m2(n +1)(2n + 1) + 6m(n + 1) — 4]

5. i(—l)kJrl(km -1)= (_i)n [2 - (2n+ 1)m] + mT_Q

6. Xn:(—l)k“(km—l)2 = (_I;HH [n(n+1)m* — (2n + L)m + 1]+1_Tm
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n ZZ:l k EZ:l k2 ZZ:l k-3 EZ:l kA ZZ:l k5
1 1 1 1 1 1
2 3 5 9 17 33
3 6 14 36 98 276
4 10 30 100 354 1300
5 15 55 225 979 4425
6 21 91 441 2275 12201
7 28 140 784 4676 29008
8 36 204 1296 8772 61776
9 45 285 2025 15333 120825

10 55 385 3025 25333 220825

11 66 506 4356 39974 381876

12 78 650 6084 60710 630708

13 91 819 8281 89271 1002001

14 105 1015 11025 127687 1539825

15 120 1240 14400 178312 2299200

16 136 1496 18496 243848 3347776

17 153 1785 23409 327369 4767633

18 171 2109 29241 432345 6657201

19 190 2470 36100 562666 9133300

20 210 2870 44100 722666 12333300

21 231 3311 53361 917147 16417401

22 253 3795 64009 1151403 21571033

23 276 4324 76176 1431244 28007376

24 300 4900 90000 1763020 35970000

25 325 5525 105625 2153645 45735625

1.2.12 NEGATIVE INTEGER POWERS

Riemann’s zeta functionis (n) = >, ,%n (itisde ned forRe k > 1 and extended
to C). Related functions are

0 1)k+1 > k ©
W=l =Y =X g
Properties include:
Loa(n) = (1-217")((n) 3. y(n) = (1 =27")¢(n)
2k
2. C(2k) = (22(23)1 | Bal 4. B2k +1) = 7(”2/ (22):)71 | B
5. The series 3(1) =1— 1 + £+ —--- = m/4 is known as Gregory’s series.

6. Catalan’s constant is G = 3(2) ~ 0.915966.
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7. Riemann hypothesis: The non-trivial zeros of the Riemann zeta function (i.e.,

the {z;} that satisfy ((z;) = 0) lie on the critical line given by Re z; = 1.

(The trivial zeros are z = —2, —4,—6,....)
3 1 3 _1)k+1 3 _1)k 3
" ~ L ( k)" D (25% +)1)n 2 2k + 1)"
=1 k=1 k=0 k=0
1 00 0.6931471805 0.7853981633 00
2 1.6449340669 0.8224670334 0.9159655941 1.2337005501
3 1.2020569032 0.9015426773 0.9689461463 1.0517997903
4 1.0823232337 0.9470328294 0.9889445517 1.0146780316
) 1.0369277551 0.9721197705 0.9961578281 1.0045237628
6 1.0173430620 0.9855510912 0.9986852222 1.0014470766
7 1.0083492774 0.9925938199 0.9995545079 1.0004715487
8 1.0040773562 0.9962330018 0.9998499902 1.0001551790
9 1.0020083928 0.9980942975 0.9999496842 1.0000513452
10 | 1.0009945752 0.9990395075 0.9999831640 1.0000170414
11 | 1.0004941886 0.9995171435 0.9999943749 1.0000056661
12 | 1.0002460866 0.9997576851 0.9999981224 1.0000018858
13 | 1.0001227133 0.9998785428 0.9999993736 1.0000006281
14 | 1.0000612482 0.9999391703 0.9999997911 1.0000002092
15 | 1.0000305882 0.9999695512 0.9999999303 1.0000000697
16 | 1.0000152823 0.9999847642 0.9999999768 1.0000000232
17 | 1.0000076372 0.9999923783 0.9999999923 1.0000000077
18 | 1.0000038173 0.9999961879 0.9999999974 1.0000000026
19 | 1.0000019082 0.9999980935 0.9999999991 1.0000000009
20 | 1.0000009540 0.9999990466 0.9999999997 1.0000000003
A1) =m/4 ((2)=7/6
B(3) = 3/32 ¢(4) =7*/90
B(5) = 57° /1536 ¢(6) = n%/945
B(7) = 6177 /184320 ¢(8) = %/9450
B(9) = 2777° /8257536  ((10) = 7'°/93555

1.2.13 DEBRUIIJN SEQUENCES

A sequence of length g™ over an alphabet of size ¢ is a deBruijn sequence if every
possible n-tuple occurs in the sequence (allowing wraparound to the start of the
sequence). There are de Bruijn sequences for any ¢ and n. The table below gives
some small examples.

q | n | Length Sequence
211 2 01

212 4 0110

213 8 01110100

2|4 16 0101001101111000
312 9 001220211

412 16 0011310221203323
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1.2.14 INTEGER SEQUENCES

These sequences are arranged in numerical order (disregarding any leading zeros or
ones). Note that C'(n, k) = (}); see page 206.

1. 1, — 10 -1,1,-1,0,0,1,-1,0,-1,1,1,0,-1,0, —-1,0, 1, 1, =1, 0,0, 1 ,0,
0, — 1,-1,0,1,1,1,0,-1,1,1,0,-1,-1,-1,0,0, 1, -1,0,0,0, 1, 0, -1, 0,
1,0 Mdbius function pu(n),n > 1

2.1,1,01,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,1,0,0,0,0,2,1,0,0,1,0,0, 1, 0, 1,
0,1,1,0,0,1,1,0,0,0,1,0,0,0,1,2,0,1,1,0,0,0,0,1,0,0,1,0,0,1,2,0,0, 1
0 Number of ways of writing » as a sum of 2 square mzo

3.01,1,1,1,2,1,1,1,2,1,2,1,2,2,1,1,2,1,2,2,2,1,2,1,2,1,2,1,3, 1, 1, 2, 2,
2,2,1,2,2,2,1,3,1,2,2,2,1,2,1,2,2,2,1,2,2,2,2,2,1,3,1,2,2,1,2,3, 1, 2,
2 umber of distinct primes dividing n,n > 1

4, 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,5,1,2,1,2,1,1,1,3,2,1,3,2,1,1, 1,7, 1, 1,
1,4,1,1,1,3,1,1,1,2,2,1,1,5,2,2,1,2,1,3,1,3, 1,1, 1,2, 1, 1,2, 11, 1, 1, 1,
2 Number of abelian groups of ordern, n > 1

5.1, 1,1,2,1,2,1,5,2,2,1,5,1,2, 1,14, 1,5, 1,5,2,2, 1, 15,2,2, 5,4, 1,4, 1, 51,
1,2,1,14,1,2,2,14,1,6,1,4,2,2,1,52,2,5,1,5,1,15,2,13,2,2,1, 13,1, 2, 4,
267 Number of groups of ordern, n > 1

6.0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 1, 2,
2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2, 3,
2 Number of 1's in binary expansion ofn, n > 0

7. 1,2,1,2,3,6,9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594,
52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008
Number of binary irreducible polynomials of degreen, or n-bead necklacesy > 0

8. 1,1,1,2,1,3,1,4,2,3,1,8,1,3,3,8,1,8,1,8,3,3,1,20,2,3,4,8, 1, 13, 1, 16, 3,

1
3,3,26,1,3,3,20,1,13, 1, 8,8,3, 1,48, 2,8,3, 8, 1, 20, 3, 20, 3, 3, 113
Number of perfect partitions of n, or ordered factorizations ofn + 1,n > 0
,2,2,1,2,1,1,2,2,1,1,2,1,2,2,1,2,1,1,2,1,2,2,1,1,2,2,1,2,1,1,2,2, 1,
2,1,2,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,1,1,2,2,1,1,2,1,2,2,1,2, 1, 1, 2,
Thue—Morse non-repeating sequence
1 1,2,1,8,1,2,1,4,1,2,1,9,1,2,1,4,1,2,1,8,1,2,1,4,1,2, 1, 10, 1, 2,
1,2,1,8,1,2,1,4,1,2,1,9,1,2,1,4,1,2,1,8,1,2, 1,4, 1,2, 1,12, 1, 2, 1,
Hurwitz—Radon numbers
,2,4,4,5,2,6,2,6,4,4,2,8,3,4,4,6,2,8,2,6,4,4,
,2,10,3,6,4,6,2,8,4,8,4,4,2,12,2,4,6,7,4,8, 2,
d(n), the number of divisors ofn, n > 1
,1,2,2,3,3,4,4,4,4,5,5,6,6,6,6,7,7,8,8,8,8,9,9,9,9,9,9, 10, 10, 11, 11,
11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16,
16 mw(n), the number of primes< n, forn > 1
13. 1, 1,2,2,3,4,5,6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122,
142, 165, 192, 222, 256, 296, 340, 390, 448, 512, 585, 668, 760, 864, 982, 1113, 1260,
1426 Number of partitions of n into distinct parts, n > 1
14. 1,1,2,2,4,2,6,4,6,4, 10,4, 12,6, 8,8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 13, 12, 28,
8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42
Euler totient function ¢(n): count numbers< n and prime to n, for n > 1

bl s

s

10. ,4

]

Bl

3,2 3,4,2,6
,4,4,8,2,8,2,6,6,4

)

1
1
1
1
1
4
11. 1,2,2,3,2,4,2,4,
4,9,2 8,2,8
6
0

12.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

1,1,1,0,1, 1,2, 2,4, 5, 10, 14, 26, 42, 78, 132, 249, 445, 842, 1561, 2988, 5671,
10981, 21209, 41472, 81181, 160176, 316749, 629933, 1256070, 2515169, 5049816
Number of series-reduced trees witm unlabeled nodesp > 0

1,2,3,4,5,7,8,9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53,
59, 61, 64, 67,71, 73,79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128,
131 Powers of prime numbers

1,2,3,4,6,8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108, 120, 144,
168, 180, 210, 216, 240, 288, 300, 336, 360, 420, 480, 504, 540, 600, 630, 660
Highly abundant numbers: where sum-of-divisors function increases

1,2,3,4,6,8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87,
97,99, 102, 106, 114, 126, 131, 138, 145, 148, 155, 175, 177, 180, 182, 189, 197, 206,
209 Ulam numbers: next is uniquely the sum of 2 earlier terms

2,3,5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 60, 61, 67, 71, 73, 79,
83, 89,97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 168,
173 Orders of simple groups

2,3,5,7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,
181 Prime numbers

1,2,3,5,7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792,
1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310,
14883 Number of partitions of n,n > 1

2,3,5,7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217,
4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
216091, 756839, 859433 Mersenne primes:n such that2™ — 1 is prime
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,
6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040,
1346269 Fibonacci numbers: F(n) = F(n — 1) + F(n — 2)
1,2, 3,6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620,
92378, 184756, 352716, 705432, 1352078, 2704156, 5200300, 10400600, 20058300
Central binomial coefficients: C(n, [n/2]),n > 1
1,1, 2, 3, 6, 11, 20, 40, 77, 148, 285, 570, 1120, 2200, 4323, 8498, 16996, 33707,
66844, 132568, 262936, 521549, 1043098, 2077698, 4138400, 8243093
Stern’s sequencea(n + 1) is sum of preceding[ivgnz“‘l] terms,n > 1

1,1,2,3,6, 11, 22, 42, 84, 165, 330, 654, 1308, 2605, 5210, 10398, 20796, 41550,

83100, 166116, 332232, 664299, 1328598, 2656866, 5313732, 10626810
Narayana—Zidek—Capell numbers:a(2n) = 2a(2n — 1), a(2n + 1) = 2a(2n) —

a(n)

1,1,1,2,3,6,11,23, 46,98, 207, 451,983, 2179, 4850, 10905, 24631, 56011, 127912,

293547, 676157, 1563372, 3626149, 8436379, 19680277, 46026618, 107890609

Wedderburn—Etherington numbers: interpretations of X™,n > 1

1,1,1,2,3,6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867,

317955, 823065, 2144505, 5623756, 14828074, 39299897, 104636890,

279793450 Number of trees with n unlabeled nodesyn > 1

2,3, 6,20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788
Dedekind numbers: number of monotone Boolean functions of variables,n > 0
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30. 1,1,2,3,7, 16, 54, 243, 2038, 33120, 1182004, 87723296, 12886193064,
3633057074584, 1944000150734320, 1967881448329407496
Number of Euler graphs or 2-graphs withn nodes,n > 1

31. 0,0,1,1,2,3,7,18, 41, 123, 367, 1288, 4878
Number of alternating prime knots with n crossingsn > 1

32. 0,0,1,1,2,3,7,21,49, 165, 552, 2176, 9988
Number of prime knots with n crossings,n > 1

33. 1,1,2,3,8, 14,42, 81, 262, 538, 1828, 3926, 13820, 30694, 110954, 252939, 933458,
2172830, 8152860, 19304190, 73424650, 176343390, 678390116, 1649008456
Meandric numbers: ways a river can cross a roadn times,n > 1

34. 0,1,2,4,5,8,9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50,
52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 104,
106 Numbers that are sums of 2 squares

35. 1,2,4,5,8, 10, 14, 15, 16, 21, 22, 25, 26, 28, 33, 34, 35, 36, 38, 40, 42, 46, 48, 49, 50,
53, 57, 60, 62, 64, 65, 70, 77, 80, 81, 83, 85, 86, 90, 91, 92, 100, 104, 107
MacMahon's prime numbers of measurement, or segmented numbers

36. 1,2, 4,6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, 202, 238, 284, 330, 390,
450, 524, 598, 692, 786, 900, 1014, 1154, 1294, 1460, 1626, 1828, 2030, 2268, 2506
Binary partitions (partitions of 2n into powers of 2),n > 0

37. 1, 2, 4,8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536,
131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216,
33554432, 67108864, 134217728, 268435456, 536870912 Powers of 2

38. 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381,
634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984,
2067174645 Number of rooted trees withn unlabeled nodesy > 1

39. 1,1,2,4,9,21, 51, 127,323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467,
2356779, 6536382, 18199284, 50852019, 142547559, 400763223, 1129760415
Motzkin numbers: ways to join n points on a circle by chords

40. 1,1, 2, 4,9, 22, 59, 167, 490, 1486, 4639, 14805, 48107, 158808, 531469, 1799659,
6157068, 21258104, 73996100, 259451116, 951695102, 3251073303
Number of different scores inn-team round-robin tournament, n > 1

41. 1,1,2,4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864,
165091172592, 50502031367952, 29054155657235488, 31426485969804308768
Number of graphs with n unlabeled nodesp > 0

42. 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025,
470832, 1136689, 2744210, 6625109, 15994428, 38613965, 93222358, 225058681,
543339720 Pell numbers: a(n) = 2a(n — 1) + a(n — 2)

43. 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576,
13079255, 50107909, 192622052, 742624232, 2870671950, 11123060678,
43191857688, 168047007728, 654999700403 Polyominoes withn cells,n > 1

44. 1, 1, 2, 4, 12, 56, 456, 6880, 191536, 9733056, 903753248, 154108311168,
48542114686912, 28401423719122304, 31021002160355166848
Number of outcomes ofn-team round-robin tournament, n > 1

45. 1, 1, 2, 5, 14, 38, 120, 353, 1148, 3527, 11622, 36627, 121622, 389560, 1301140,
4215748, 13976335, 46235800, 155741571, 512559185, 1732007938,
5732533570 Number of ways to fold a strip of n blank stamps,n > 1
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46. 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440,
9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420,
24466267020 Catalan numbers: C(2n,n)/(n +1),n > 0

47. 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437,
190899322, 1382958545, 10480142147, 82864869804, 682076806159,
5832742205057 Bell or exponential numbers: expansion of(" ~)

48. 1,1,1,2,5,16, 61,272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981,
1903757312, 19391512145, 209865342976, 2404879675441,
29088885112832 Euler numbers: expansion ofsec x + tan

49. 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380,
420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260,
1332 Pronic numbers: n(n + 1), n > 0

50. 1,2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, 2704156, 10400600,
40116600, 155117520, 601080390, 2333606220, 9075135300,
35345263800 Central binomial coefficients: C(2n,n),n > 0

51. 1,1, 1,2,6,21, 112, 853, 11117, 261080, 11716571, 1006700565,
164059830476, 50335907869219, 29003487462848061, 31397381142761241960
Number of connected graphs withn unlabeled nodesn > 0

52. 1,2,6,22, 101, 573, 3836, 29228, 250749, 2409581, 25598186, 296643390,
3727542188, 50626553988, 738680521142
Kendall-Mann numbers: maximal inversions in permutation of n letters,n > 1

53. 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600,
6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000,
6402373705728000 Factorial numbers: n!,n > 0

54. 1,2,7,42,429, 7436, 218348, 10850216, 911835460, 129534272700,
31095744852375, 12611311859677500, 8639383518297652500
Robbins numbers: [T} % (3k + 1)!/(n + k)!, n > 1

55. 1, 2, 8, 42, 262, 1828, 13820, 110954, 933458, 8152860, 73424650, 678390116,
6405031050, 61606881612, 602188541928, 5969806669034, 59923200729046
Closed meandric numbers: ways a loop can cross a rodh times,n > 1

56. 1,2, 8,48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200,
81749606400, 1961990553600, 51011754393600, 1428329123020800,
42849873690624000 Double factorial numbers: (2n)!! = 2"n!,n > 0

57. 0,1,2,9,44,265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932,
32071101049, 481066515734, 7697064251745, 130850092279664
Derangements: permutations of: elements with no fixed pointsy > 1
58. 1,2, 16,272, 7936, 353792, 22368256, 1903757312, 209865342976,
29088885112832, 4951498053124096, 1015423886506852352,
246921480190207983616 Tangent numbers: expansion otan x
59. 1,3,4,7,6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60,
31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48,
124 a(n), sum of the divisors ofn, n > 1
60. 1,3,4,7,9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 49, 52, 57, 61, 63,
64, 67,73,75,76,79, 81, 84,91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 121, 124,
127 Numbers of the form z2 + zy + y>
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61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

1,3,4,7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349,
15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851,
1860498 Lucas numbers: L(n) = L(n — 1) + L(n — 2)

1, 1, 1, 3, 4, 12, 27, 82, 228, 733, 2282, 7528, 24834, 83898, 285357, 983244,
3412420, 11944614, 42080170, 149197152, 531883768, 1905930975, 6861221666,
24806004996 Number of ways to cut ann-sided polygon into triangles,n > 1

1, 3,6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231,
253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741,
780 Triangular numbers: n(n+1)/2,n > 1

1,3,6,11, 17,25, 34, 44, 55, 72, 85, 106, 127, 151
Shortest Golomb ruler with n marks, n > 2

1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, 2485, 4167, 6879, 11297, 18334,
29601, 47330, 75278, 118794, 186475, 290783, 451194, 696033, 1068745, 1632658
Number of planar partitions of n,n > 1

1,3,7,9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99,
105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195, 201,
205 Lucky numbers (defined by sieve similar to prime numbers)

1, 3,7, 19, 47, 130, 343, 951, 2615, 7318, 20491, 57903, 163898, 466199, 1328993,
3799624, 10884049, 31241170, 89814958, 258604642
Number of mappings from n unlabeled points to themselves, > 1

1, 3,9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377,
491521, 1048577, 2228225, 4718593, 9961473, 20971521, 44040193,
92274689 Cullen numbers:n-2" +1,n >0

1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323,
4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401,
10460353203 Powers of 3

1,3,9,33, 139, 718, 4535
Number of topologies or transitive-directed graphs withn unlabeled nodesp > 1

1,1,3,11,45,197,903, 4279, 20793, 103049, 518859, 2646723, 13648869, 71039373,
372693519, 1968801519, 10463578353, 55909013009, 300159426963
Schroeder’s second problem: ways to interpretX1 X» ... X,,,n > 1

1,3, 11, 50, 274, 1764, 13068, 109584, 1026576, 10628640, 120543840, 1486442880,
19802759040, 283465647360, 4339163001600, 70734282393600,
1223405590579200 Stirling cycle numbers: [3], n > 2.

1,3, 13,75, 541, 4683, 47293, 545835, 7087261, 102247563, 1622632573,
28091567595, 526858348381, 10641342970443, 230283190977853,
5315654681981355 Preferential arrangements ofn things,n > 1

1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075, 13749310575,
316234143225, 7905853580625, 213458046676875, 6190283353629375
Double factorial numbers: 2n +1)!! =1-3-5---(2n+1),n > 1

1,3, 16, 125, 1296, 16807, 262144, 4782969, 100000000, 2357947691,
61917364224, 1792160394037, 56693912375296, 1946195068359375,
72057594037927936 Number of trees with n labeled nodesn™~2, n > 2

1, 3, 16, 218, 9608, 1540944, 882033440, 1793359192848, 13027956824399552,
341260431952972580352, 32522909385055886111197440
Directed graphs with n unlabeled nodesn > 1
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7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

1, 1, 3, 17, 155, 2073, 38227, 929569, 28820619, 1109652905, 51943281731,
2905151042481, 191329672483963, 14655626154768697, 1291885088448017715
Genocchi numbers: expansion ofan(xz/2)

0,1,4,5,16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85, 256, 257, 260, 261, 272, 273,
276,277, 320, 321, 324, 325, 336, 337, 340, 341, 1024, 1025, 1028, 1029, 1040, 1041
Moser—de Bruijn sequence: sums of distinct powers of 4

4,17,8,9, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 19,
20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 26, 26,
26 Chromatic number of surface of genusn, n > 0

1,4,9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400,
441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296
The squares

1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514,
571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684,
1786 Centered triangular numbers: (3n? 4+ 3n 4+ 2)/2,n > 0

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330,
1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960, 5456, 5984
Tetrahedral numbers: C(n+3,3),n >0

1, 1, 4, 26, 236, 2752, 39208, 660032, 12818912, 282137824, 6939897856,
188666182784, 5617349020544, 181790703209728, 6353726042486272
Schroeder’s fourth problem: families of subsets of am set,n > 1

1,4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423,
8977053873043, 1816846038736192, 519355571065774021
Number of transitive-directed graphs with n labeled nodesp > 1

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532,
590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717,
1820 Pentagonal numbers:n(3n —1)/2,n > 1

1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685,
761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113,
2245 Centered square numbersm? + (n — 1)%,n > 1

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109,
2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416
Square pyramidal numbers: n(n + 1)(2n +1)/6,n > 1

1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, 48828125,
244140625, 1220703125, 6103515625, 30517578125, 152587890625, 762939453125,
3814697265625 Powers of 5

1, 5,52, 1522, 145984, 48464496, 56141454464, 229148550030864,
3333310786076963968, 174695272746749919580928
Number of possible relations onn unlabeled points,n > 1

1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, 2404879675441,
370371188237525, 69348874393137901, 15514534163557086905,
4087072509293123892361 Euler numbers: expansion ofsec =

1, 5,109, 32297, 2147321017, 9223372023970362989,
170141183460469231667123699502996689125
Number of ways to cover ann set,n > 1
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92.

93.

94.

9s.

96.

97.

98.

99.

100.

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703,
780, 861, 946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 1891, 2016, 2145,
2278 Hexagonal numbers:n(2n —1),n > 1

1, 6, 25, 90, 301, 966, 3025, 9330, 28501, 86526, 261625, 788970, 2375101, 7141686,
21457825, 64439010, 193448101, 580606446, 1742343625, 5228079450,
15686335501 Stirling subset numbers: {5}, n > 3

6, 28, 496, 8128, 33550336, 8589869056, 137438691328,
2305843008139952128, 2658455991569831744654692615953842176
Perfect numbers: equal to the sum of their proper divisors

1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, 560, 645, 736, 833, 936, 1045,
1160, 1281, 1408, 1541, 1680, 1825, 1976, 2133, 2296, 2465, 2640, 2821, 3008, 3201
Octagonal numbers:n(3n —2),n > 1

1, 8,27, 64, 125,216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913,
5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389
The cubes

1, —24, 252, —1472, 4830, —6048, —16744, 84480, —113643, —115920, 534612,
—370944, —577738, 401856, 1217160, 987136, —6905934, 2727432,
10661420 Ramanujan 7 function

341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369,
4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, 10261, 10585, 11305, 12801, 13741,
13747 Sarrus numbers: pseudo-primes to base 2

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633,
62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601,
278545 Carmichael numbers

1, 744, 196884, 21493760, 864299970, 20245856256, 333202640600,
4252023300096, 44656994071935, 401490886656000, 3176440229784420,
22567393309593600 Coefficients of the modular function j

For more information about these sequences and tens of thousands of others, includ-
ing formulae and references, see “The On-Line Encyclopedia of Integer Sequences”,
published electronically at www.research.att.com/ njas/sequences/.

1.3 SERIES AND PRODUCTS

1.3.1 DEFINITIONS

If {a,} is a sequence of numbers or functions, then

1.
2.

Sy = Zgil ap = a1 + as + ... + ay is the N™ partial sum.

For an in nite series: S = limy_s00 Sy = Z;o:l a, (when the limit exists).
Then S is called the sum of the series.
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The series is said to converge if the limit exists and divergeif it does not.

If ap, = (—1)"|ay|, then S is called an alternating series.

If " |a,| converges, then the series converges absolutely.

N kW

If S converges, but not absolutely, then it converges conditionally.

EXAMPLES

If a,, = byx™, where b,, is independent of z, then S is called a power series.

1. The harmonic series S = 1+ 4 + & + ... diverges. The corresponding alternating
series (called the alternating harmonic series) S = 1 -3+ 1 —- .4 (=1)" "' L 4.

converges (conditionally) to log 2.

2. The harmonic numbers are H, = 7 _,
Asymptotically, Hp, ~ Inn + v + 5-.

5 % The rst few values are {1, 3, R
N N+1
1- .
n=0

33y

1.3.2 GENERAL PROPERTIES

1. Adding or removing a nite number of terms does not affect the convergence

or divergence of an in nite series.

2. The terms of an absolutely convergent series may be rearranged in any manner

without affecting its value.

3. A conditionally convergent series can be made to converge to any value by

suitably rearranging its terms.

4. If the component series are convergent, then

Z(aan + Bb,) = aZan + Ban.
5. (i an> (i bn> = i ¢, where ¢,, = agb,, + a1b,,—1 + --- + a,bo.
n=0 n=0

n=0

6. Summation by parts: let Y a,, and ) b,, converge. Then

Zanbn = Z Sn(bn — bpt1)

where S,, is the n'" partial sum of " a,,.

7. A power series may be integrated and differentiated term-by-term within its

interval of convergence.

8. Schwarzinequality:

Z lan||bn] < (Z |an|2)1/2 (Z |bn|2)1/2
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9. Holder’sinequality: when1l/p+1/¢g=1andp,q > 1

Z|anbn| < (Z|an|p)1/p (Z|bn|q)1/q

10. Minkowski’sineguality: whenp > 1

(S et o) < (S lan) " + (S al)

11. Arithmetic mean—geometric mean inequality: If a; > 0 then

ay+az2+...+ap
n

1/n

> (a1a2 - - ap)

12. Kantorovich inequality: Suppose that 0 < 21 < z2 < ... < Ty, If A; >0
and Y1 | A\; = 1 then

i _
where A = L (21 + 2,,) and G = /21 2,,.

EXAMPLES

1. Let T be the alternating harmonic series S rearranged so that each positive term is
followed by the next two negative terms. By combining each positive term of T with
the succeeding negative term, we nd that Tan = %Sg ~. Hence, T' = % log 2.

2. Theseriesl—{—%—%—1—%—1—%—%—}-%—}-%—%—1—...diverges,whereas

1—+—l—l + l+l—l + + L + L —L +
3 2 5 7 4 dn—-3  4n-—1 2n

converges to log(2v/2).

1.3.3 CONVERGENCE TESTS
1. Comparisontest: If |a,| < b, and }_ b,, converges, then ) a,, converges.

2. Limit test:  If lim,, 00 @, # 0, or the limit does not exist, then Y a,, is
divergent.

3. Ratiotest: Let p = lim,,_, |“Z“ |. If p < 1, the series converges absolutely.
If p > 1, the series diverges.

4. Cauchyroottest: Leto = lim,,_, |an|1/”. If o < 1, the series converges.
If o > 1, it diverges.

5. Integral test: Let |a,| = f(n) with f(z) being monotone decreasing, and
lim, o0 f(z) = 0. Then [,° f(z) dz and )" a,, both converge or both diverge
forany A > 0.
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A
6. Gaussstest: If [ =12 4 —Z where ¢ > 1 and the sequence {4, }
a n n

n
is bounded, then the series is absolutely convergent if and only if p > 1.

7. Alternating series test: If |a,| tends monotonically to 0, then > (—1)"|a,|
converges.

EXAMPLES
1. For § = 3% n°z", p = limn 00 (1 + 2)°@ = z. Hence, using the ratio test, S
converges for 0 < x < 1 and any value of c.

2. For S = Zn L n20 Lo = limnﬁoo( 2"0 )1/” = 5. Therefore the series diverges.

3. For § =% n~* consider f(z) = z~". Then

o < d ! fort > 1
/ f(z)dz = / —f =<t-1
1 1 diverges fort <1
Hence, S converges for ¢ > 1.

4. The sum )7 converges for s > 1 by the integral test.

n=2 n(logn)5

5. Leta, = (C)" = M where c is not 0 or a negative integer. Then
|ant1/an| = 1 —(c+ 1)/n + (¢ +1)/n*(1 4+ 1/n). By Gauss’s test, the series
converges absolutely if and only if ¢ > 0.

1.3.4 TYPES OF SERIES
1.3.4.1 Bessel series

1. Fourier—Bessdl series: Zan (Jv.n2) (Ju,k is a zero of J,(z))
n=0
o0
2. Neumann series: > anJyqn(2)
n=0

3. Kapteynseries: > anJyin[(v +1)2]

n=0

4. schiomilchseriess  » ~ apJ, (n2)

n=1

EXAMPLES
L3y A deen(d) = rk
2. 30 Jn(nz) =35 for0 <z <1
3. Z?:l(_l)nﬂj (nz) = % forO0<z<m
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1.3.4.2 Dirichlet series

These are series of the form En 1 nw . They converge for x > x, where x is the
abscissa of convergence. Assuming the limits exist:

1 . N
1. If " a,, diverges, then 2y = lim ogla1 + ta |
n—00 logn

1 ...
2. If ¥ a, converges, then ¢ = lim 08 |ant1 + Ani2 + | .
n—00 logn

EXAMPLES
1. Riemann zeta function: ((z) =

0o 1
n=1 n®>’

2.3, ﬂé:) ((1:1:)’ 2o =1 (u(n) denotes the Mobius function; see Section 2.4.9)

xo—l

3.9 4 — 2(3) zo=1 (d(n) is the number of divisors of n; see page 128)

n=1 nZ

1.3.4.3 Fourier series
If f(z) satis es certain properties, then (see page 48)

=04 Z (an cos + by, sin n;x) (1.3.1)

1. If f(x) has the Laplace transform F'(k) = fooo e~* f(x) dz, then
1 [ cos(t) —e"
F(k - it S S
Z ) cos(kt) 2 /0 cosh(z) — cos(t) f(z)de,
_ 1/ f(z)
F(k (kt) = = ————dz.
Z ) sin( 2 /0 cosh(z) — cos(t) v

2. Since the cosine transform of (cosh(x)—cos(t)) ~* with respect to z is 7 csc(t)
csch(my) sinh(w — t)y, we nd that

(1.32)

— ksin(kt) m sinh(m —t)y
k2 +y2 2 sinh(7y)

k=1
3. 300 Sil;(zirﬂm) = (71;_1 (2312-24-kl+1B2k+1 (z),for0< z < %
4. Yoo, sl - CIP GOl By () for0 < o <
5. Yo, CIs ) — 2 Bi(o)

asin(z)

6. ZZO:I a” Sin(nx) = m for |(l| <1

7.3 pa" cos(nz) = 71712;35&2()“2% for|a] < 1
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1.3.4.4 Hypergeometric series

The hypergeometric function is
a1 as a 2 (a1)n(a2)n - - (ap)n @
F, P = — 1.33
» q( b by 5”) 2:: (B1)n(B2)n - - (bg)n 7! (133
where (a), = I'(a + n)/T'(a) is the shifted factorial. Any in nite series ) A, with

Apt1/A, arational function of n is a hypergeometric series. These include series
of products and quotients of binomial coef cients.

EXAMPLES

2. 3F» ( _cn’ l+a +(Z’_ c—mn b ‘1) = % (Saalschutz)
a, 1+4a/2, b, -n _ (a—=2b)n(=D)n .
3. 4 ( /2, 1+a—b, 1+2—n 1) = T +a—b)n(—2b), Bailey)
. m Ga) o) _ (3/9)n(5/4)n
* T;(_l) (e O 2" = G/,

1.3.4.5 Power series

1. The values of z, for which the power series >  a,z" converges, form an
interval (interval of convergence) which may or may not include one or both
endpoints.

2. A power series may be integrated and differentiated term-by-term within its
interval of convergence.

3. Note that [1 + Y~ a,z"]™' = 1= > | b,z"™, where by = a; and b,, =
an + Zz;ll by,_rar forn > 2.

4. Inversion of power series: If s = Y ° | a,z”, thenz =)~ | A,s", where
A =1/a1, Ay = —az/a3, A3 = (2a3 —a1a3)/a1, Ay = (5a1a2a3 —a%a4 —
5a3)/al, As = (6atazas + 3atal + 14a3 — ajas — 21aia3asz)/al.

1.3.4.6 Taylor series
1. Taylor series in 1 variable:

N (n)

a+a: Z

n=0

a: + Ry
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or

@), 1@

f(@) = fla) + fl(a)(z - a) + —5 = (z — a) 3

(x—a)®+...

or, specializing to a = 0, results in the MacLaurin series

F@) = FO) + F/(O)z+ L "2(!0) 24l ";jo) P

2. Lagrange’s form of the remainder:

mNJrl

RN:mf(N“)(a+0m), for some 0 < 6§ < 1.

3. Taylor series in 2 variables:

f(a+a:,b+y) = f(a'ab) —l—a:fx(a,b) +yfy(a7b)+

21, [2° fou(a,b) + 22y foy(a,b) + y? fyy(a,0)] + ...

4. Taylor series for vectors:

N n
fla+x) = Z w + Rn(a) = f(a) +x- Vf(a) +

n:
n=0

EXAMPLES

1. Binomial series:

l/+1 xnyu—n
F (v—mn+1) n!

(x+y)”

When v is a positive integer, this series terminates at n = v.
ﬁ =3 %xk for |z| < 1/4

3. ::itl = ZZO:O B, (t)ﬂ;_n'

4 Fr = T By

5. 220:1 (n+1{c)(n+3) = ,613 foz Udufou dt Zgo t"
%3 [z + 32 + (1 — 2”)log(1 — )] for |z < 1

6. > i, % k_" = Li,(z) (polylogarithm)

1.3.4.7 Telescoping series
Iflim,, o0 F(n) = 0,then > > [F(n) — F(n + 1)] = F(1). For example,

ad ad 1 1 1
—. 1.34
I e Dl e

n=1 n=1
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The GWZ algorithm expresses a proposed identity in the form of a telescoping
series . [F(n + 1,k) — F(n,k)] = 0, then searches for a G(n, k) that satis es
F(n+1,k) — F(n,k) = G(n,k + 1) — G(n, k) and G(n,+o0) = 0. The search
assumes that G(n, k) = R(n, k)F(n,k — 1) where R(n, k) is a rational expression
in n and k. When R is found, the proposed identity is veri ed. For example, the
Pfaff—Saalschutz identity has the following proof:

oo

Z (a+E)b+k)l(c—a—b+n—1—k)! _ (c—a+n)(c—b+n)!
et (k+ Dl(n— k) (c+k)! (n+Dlc+n)! 7’
R(n. k) = — (b+k)(a+k)

(c=b+n+1l)(c—a+n+1)

1.3.4.8 Other types of series
1. Arithmetic series:
o 1
> (a+nd) = Na+ SNV +1)d.

n=1

2. Arithmetic power series:

al a—(a+bN)zN+t1  ba(1 —zN)

Z(a—l—nb)w": + d=a7 (z #1).

1—2z

n=0

3. Geometric series:

1
l+z+22+2°+-- = , (Jz| < 1).
11—z
4. Arithmetic—geometric series:
a+ (a+Db)z+ (a+2b)2° + (a+3b)2® + - = i br
1oz (12
(=] <1)

5. Combinatorial sums:
@ Yoo (k) = (°F)
®) Tt (D) = (0™ ()

© Ximo (") = (")

@ S (DR = G)
(f) Zzoz—oo (m:-k) (nik) = (l—lr_;g—ci-n)
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© Zi% o (=D (i) (0F) = (1D (577
) The oD (2) = D)

) Shey (G () = (S555) Gorm > )

6. Generating functions:

(a) Bessel functions: Y, Ji(z)zk = exp(%xzzz_l)
(b) Chebyshev polynomials: $°°° | T}, (z)2" = 2&422)

n=1 2rz—22—1
oo H,(z)

(¢) Hermite polynomials: )~ | == 2" = exp(2xz — 2°)

(d) Laguerre polynomials: »_° L (z)zn = (1 — z) 1 exp[75
(e) Legendre polynomials: Y, P,(z)z"™ = ﬁ, for |z] <1

7. Multiple series:

(=pltmin _
@ 2 V+1/6)2+(m+1/6)2+(nt1/6)> V3
where —oo < I, m,n < oo and they are not all zero

(b) Z 2+n2)z =44(z)((z) for —oo < m,n < oo not both zero

" D(n+l1/2 m4n _ serf(y/z—2
© Xm0 n!) 711(7,5_‘_”_‘_/1/)2),2 o= frer ) \(/\5/:2 ) forz > 0

@ 55 oms G = ]

) X kfkg...kg = (2n+1)' for 1 < ki <.+ <ky <o0

8. Thetaseries:

oo ’L‘ oo
2 . . . 2 .
E : el Tit+2niz \/; E : 6(“ nm)?/mit

n=—oo n=—00

9. Lagrange series: If f(z) is analytic at z = 2o, f(z0) = wo, and f'(z9) # 0,
then the equation w = f(z) has the unique solution z = F(w). If both
functions are expanded

f(2)=fo+ fi(z —20) + falz — 20)% + ...

) (1.3.5)
F(UJ) :F0+F1(w—wg)+F2(w—w0) + ...
with Fy = F(wg) = z, then
1| dit z—z )?
F, == . 1.3.6
T ldz]l ) (130
2=z
For example: F; = %,FQ = fg,F = 2f2ff1f‘°’
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1.3.5 SUMMATION FORMULAE

1. Euler—MacLaurin summation formula: Asn — oo,

(J)(

. Y f9(n)
kz:%f( ~—f /f dw+C+Z +B+1( T

where Bj is the j™ Bernoulli number and

m ) (7)
C = mlgnoo [Z(—l)JBj+1(§T(f;! + %f(())

m+1

/ Bpia(a — [2))f" ) (z) d l
2. Poisson summation formula: If f is continuous,

0) + f:lf(n) = /Ooo f(x) dm+2§:1 {/000 f(z) cos(2n7m:)da:} .

3. Plana’'sformula:

7 ()

> 50 =31+ [ ) de+ Sy L

where f is analytic, a is a constant dependent on f, and B is the 5™ Bernoulli

number.
EXAMPLES
n
1 1 B, ' ,
1. ; % ~logn+~v+ — o oz where 7 is Euler’s constant.

oo
21423 e = /T
xr

n=1

1.3.6 IMPROVING CONVERGENCE: SHANKS
TRANSFORMATION

Let s,, be the n'™ partial sum. The sequences {S(s,)}, {S(S(sn))},.-. often con-
verge successively more rapidly to the same limit as {s, }, where

1+2)° e"fz"z/’”] (Jacobi)

n=1

2
Sp4+1Sn—1 — S
S = n 1.3.7
(Sn) Snt1 + Sp_1 — 28, ( )
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EXAMPLE  Fors, = 37 _,(=1)¥2*, we nd S(s,) = 1_}_; for all n.

1.3.7 SUMMABILITY METHODS

Unique values can be assigned to divergent series in a variety of ways which preserve
the values of convergent series.

oo oo
1. Abel summation: 5 a, = lim 5 a,r".
r—1—
n=0 n=0

o0
2. Cesaro (C, 1)-summation: Z an, = 1\;im W
—00

n=0
where s, = Y1 _ Q.
EXAMPLES
@l—-14+1-14+---= % (in the sense of Abel summation)
®1-140+1-1404+41—---= % (in the sense of Cesaro summation)

1.3.8 OPERATIONS WITH POWER SERIES
Lety = a1z + asx? + azz® + ..., and let 2 = 2(y) = b1z + box® + bgx® +....

z(y) bo | b1 bs bs
1/1-y) |1 |a |di+a a? + 2aya5 + a
Vity 1 %al —%a% + %az 11—6@ — ialaz + %0/3
A+y) V2|1 | —ga1 | §ai —3a2 | =508 + faraz — 5as
e’ Lo 503 + as %@ +ajaz + ag
log(l1+y) |0 |a ay — %a% as — ajag + %@
siny 0 |ay as _%@ + as
cosy 110 —%a% —a103
tany 0 [ aq as %@ +as

1.3.9 MISCELLANEOUS SUMS AND SERIES
Lo 2o GO = 5 (=)™ [E(n + 1) + (1) Ej]

2 Yk mEe T 1T e

n kmF 1 mnt!
3. Ek:l (k+m)! — (m=D! — (m+n)!
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2n A -1
4 LD =

5. Sk (D@m= ()’

6. Yr_o mrsech® & = Lesch? & —csch® o

7. P (=D)kcosn Tk = n Shogsec Ik =0, (k #n/2)
8. Yt o GramT = i leot(ma) — cot(mh)]

9 EOO 1 _ 1 +_=x sinh(a7wv2)+sin(arV?2)
’ k=0 ki+a* T 20t 2a3v/2 cosh(amv/2)—cos(amV/2)

o] k 1 1
10 >0l o7 = 51— 55

12 Yl mEneTy —
13, Y wE D =
M X mEes =

- 1
15. The series g Fog k(log log )2 converges to 38.43... so slowly that it re-

. 10% . .
quires 10%1410™ terms to give two-decimal accuracy

- 1
16. The series 23 m diverges, but the partial sums exceed 10 only

after a googalplex of terms have appeared

17. 302, ml = 1[1 —In2 + 7 sech(rv/3/2)]

1.3.10 INFINITE SERIES
1.3.10.1 Algebraic functions

(x+y)" ="+ (?) "y + (Z) A Tl S

Ixz)"=1+ "o+ (M) (" . (% < 1).
1 2 3
. n n+1\ 5 n+2\ , 9
(I1tz)y "=1%F 1 x4+ 5 JTFL 4 )7 +..., (@<
1 1 1
Vitzr=1+4=z— 2>+ =2 —ix4+..., (@ < 1).

2 8 16 128
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1 3 5 35
142) 2 =1-Ze+ 22— =2+ —a* + ... 2<1).
(1+2z) 2x+8a: 6% +128a: +..., (z° < 1)
(1ﬁ:x)*1:1:Fx+:r2:Fa:3+:r4:Fx5+..., (@? < 1).
(1+2)™2 =1F 22+ 32% F42® + 52* F62° + ..., (% < 1).

1.3.10.2 Exponential functions

1 1 1 1
€ = +ﬁ+g+"‘+m+"'.
T 562 n
el =14+ =+ (all real values of x)
1 2! n!
1 ad ke e
:1—m+n2::1n!(a:—n)(n+l—m) (a:notaposmvelnteger)
. (x —a)? (z —a)"
=e |:1+(CE—G,)+T+"'+T+...
1 2 1 "
a® =1+zlog,a+ (wlog, a)” +- +7($ 8. 2)

2! h n!
(all real values of x)

1.3.10.3 Logarithmic functions

-1 1 ~—1\?2 1 —1\"
loga = = +—<m > +---+—<m > +o (@ >1/2),
T 2 T n T
1 2 1 3
=@-D-5@-1)?+30@-1" .., 2>2>0),
7=l 1z 3+1 -1 5+ (&> 0)
T e+1 T3\ \z+1 5\z+1 '
(r—a) (r—a)? (v-a)’
=loga+ v + sz T 0 <z < 2a).
2 3 gl
log(l+z) ==z 2+3 4+ , 1<z <1

1
log(n +1) =log(n —1) +2 [H +

log(a + x) =loga + 2

1
5

3
T +1 T n
2a+zx 3 \2a+=x
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1.3.10.4 Trigonometric functions

sinmzm—i—j+§—?—x7—:+.... (all real values of x).
COSCE:I_Z_T+Z_T_%T+"" (all real values of x).
tanz =z + %3 + % +. ..5!+(—1)"_122(’;22;" ~ DB ono1
(22 < 72 /4, B, is the n™ Bernoulli number).
3 5 7 _1\n+192n
cotx:i—g—%—%—%—...—f-(l)@# n=1g ..
(z? < 72, B,, is the n™ Bernoulli number).
seca::1—|—%2+%x4+%m6+;0—7674m8+...+(_(12)%x2"+...
(#? < 7% /4, E,, is the n'" Euler number).
escx=+4 L4 L6 + 31a° +... +(_1)n+12(22n71 = UBn ann + ...
z "6 360 15120 2n)!
(|z| < 7, By, is the n'™ Bernoulli number).
logsinmzloga:—w—Q—w—4—w—6—... (@? < 7).

Xz
1 oz r 2« 22/4).
08 COST 2 12 45 2520 @ <7 /4

z2 Tzt 6225

logt =1 — + — 2 2/4).
ogtanx ogw+3+90+2835+ (z° <7 /4)
sinz _ | 2 3zt 8z° 325 5627
T T
2 4zt 3128
cosx __ _
e —e<1—2!+ i ol +>
2 3 4 5
tanz x 3z 9z 37x 2 2
e —1+1’+§+?+T+T (x <7T/4).
—a)? _ )3
sinx:sina+(m—a)cosa—%sina—( 3'a) cosa+....
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1.3.10.5 Inverse trigonometric functions

sintr=0z+—z>+ 1-3 z° + 1-3-5 z7 +
o 2-3 2-4-5 2-4-6-7

(@ <1,-F <sin 'z <]

cos :L’—E— a:+—a:3+ a:5+ 1-3-5 a:7+
) 2.3 2-4.5 2-4-6-7

(@?<1,0<cos~lz < ).

2 x5 2
tan 'z =2 — — 4+ - 4. .. 2 <),
an”T x==x 3 + 3 - + (<1
T 1 1 1 1
=t — -+ — — ... > 1),
2 7 38 5 T @>1)
S T (@< —1)
T2 g 333 525 TxT v ’
cot_lx—z—w+m—3—m—5+w—7— (m2<1)
T2 3 5 7 ’
1.3.10.6 Hyperbolic functions
‘ O R R ¢ 2 (2n+1)
Slnh$:$+§+a+ﬁ+"'+m+
inh 2 . b sin x 2sin2m+3sin3x (2| < ™)
sinh ax = — sinh 7a — x| < ™).
™ a?+12 a2+22 a2+ 32
2 4 g6 22n
cosh:r:1+§+—+a+ +(2n)!+””
L a . L 1 coS T N cos 2z cos 3¢ n (2| < ™)
coshar = —sinhrma|— — — .. x| < ™).
™ 2¢2 a?+12  a2422 a2+ 32
1 2 22n(22n _ 1)B
tanhx =z — 53734‘1—5275 — et Wan_l + ... (|«T| < 7T/2)’
=1—-2 2 424 _2e 0 4 | (Re z > 0),

1 3 290 2°"RB
cothx:§+§—i5+gi5+ -+ (Qn;n =l 0 < |z| < ),
=142 4274 42707 4 | (Re z > 0),
:l+2w[ ! + 1 + ! +] Re xz > 0).
x 2 +a22  (2m)2 +22  (3m)? + 22
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E2n

_ Lo, 61 ¢ 2n
sechm—l—ﬁm +Ew — o +-+ (2n)!az +...
(|Jz| < 7/2, E,, is the n'™ Euler number),
=2 (e_’” —e Ty TRy ) (Re z > 0),
=dr L — 3 + > +
N 72+ 422 (3m)2 4422 (5m)2 +4x2 7|7
1 x 723 2(221 —1)B,
he=-— 242 A8 TP e :
T = "% 360 T T oy o F O <z} <m
=2 (e_’” +e 3T pePT LT ) (Re z > 0),
1 2z n 2z 2z
oz w422 (2m)2422  (3m)2 4+ 22

-2
sinh nu = sinh u [(2 coshu)?~! — (n—2) (2 coshu)™™3

1!
+ —(n —3)(n—4) (2 coshu)"_5

2!
(n —4)(n—-5)(n - 6) n—
- 3 (2 coshu) 7+...].
coshnu = % (2 cosh u)”—%(? coshu)™ 2 + n(n2'— 3) (2 coshu)™™*
_n(n—4)(n—5)

3l (2 coshu)™~6 +}

1.3.10.7 Inverse hyperbolic functions

sinh 'z =x2— 2—%3:@ + 21;135335 — 2%435573374-... (=] < 1),
zlog(Qx)+%-%+ﬁ-ﬁ+; i26%+ (|| > 1).

cosh 'z =+ log(Qm)—%-%—g-ﬁ-h (x > 1).
cschflm:%—%-?’%—% 5—;—;22 %-% (lz| > 1),
—1og%+% w—;—% %4+; 22%6— 0<z<1).

2 4 2. 6
sechflmzlog%—%-%—g %—122%— O<z<l).
tanhflm:m+w—;+w—;+x—77+ +§;n:11+ (lz| < 1).
coth o= s+ 4 L Ly L (|z| > 1).
x 3z 5xb  TaT (2n 4+ 1)a2ntl

gdw:w—%x3+iw5+---+%m2"“+... (| < 1.
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1.3.11 INFINITE PRODUCTS

For the sequence of complex numbers {a}, an in nite product is [],~, (1 + a).
A necessary condition for convergence is that lim,_, ., @, = 0. A necessary and
suf cient condition for convergence is that ) -, log(1 + ay,) converges. Examples:

[e%e] lZ
(a)Z!:HM

z
k=1 1+k

(oo}
(b) sinz =z H cos%
k=1

(c) sin(a + z) = (sina) ﬁ <1 + =2 >

k=0,+1,%2,... o+ kr
= 2z

(d) cos(a + z) = (cosa) H <1 + %0 1 k7r>

k=+1,43,45,...

2 0 22
(e) s1n7rz—7rzk1_[1<1——> (f) cosmz 1:[( Qk—l) >
. i 22 i 422
k=1 k=0
1.3.11.1 Weierstrass theorem
w? w™

Dene E(w,m) = (1—w)exp <w+ -5 + 4 W) Fork =1,2,... let {b;}
be a sequence of complex numbers such that |bx| — oc. Then the in nite product

o0

P(z) = E [ —,k | is an entire function with zeros at by and at these points
bi

k=1
only. The multiplicity of the root at b,, is equal to the number of indices j such that

bj = by.

1.3.12 INFINITE PRODUCTS AND INFINITE SERIES
1. The Rogers—Ramanujan identities (fora = 0 or a = 1) are

k% +ak

- q
AP Y e o ey

s 1

(1.3.8)

© 2003 by CRC Press LLC



2. Jacobi’s triple product identity is

o0 o0

S @t =T[a-a)a+a ) +ad™). (139

k=—00 j=1

3. The quintuple product identity is

oo

_1)k (3k%—k)/2, .3k 1+ 2"
k:z—:oo( N o) (1.3.10)
=[O -+ 27" )M+~ )1+ 2727 ) (1 + 2.
j=1

1.4 FOURIER SERIES

If f(z) is a bounded periodic function of period 2L (that is, f(z + 2L) = f(x)) and
satis es the Dirichlet conditions,

1. In any period, f(z) is continuous, except possibly for a nite number of jump
discontinuities.
2. Inany period f(z) has only a nite number of maxima and minima.

Then f(z) may be represented by the Fourier series,
nmwT
. by ) : 1.4.1
+ Z (a cos + sin — i7 ( )

where {a,} and {b,, } are determined as follows:

1 a+2L
an:E/a f(m)cosn—zmdx forn=0,1,2,...,
1 2L

=7 [ f@)cos—=dr, (142)

0
/ f(z cos—dm

a+2L
bn:Z/a f(a:)smn%dm forn=1,2,3,...,

— | f(z)sin % dz, (143)

0
/ flz sin@dx
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where a is any real number (the second and third lines of each formula represent
a = 0 and a = — L respectively).
The series in Equation (1.4.1) will converge (in the Cesaro sense) to every point

f@) + f@@7)
2

and right hand limits) at every point where f(z) has a jump discontinuity.

where f(z) is continuous, and to (i.e., the average of the left hand

1.4.1 SPECIAL CASES

1. If, in addition to the Dirichlet conditions in Section 1.4, f(z) is an even func-
tion (i.e., f(z) = f(—x)), then the Fourier series becomes

nmtx

Qo >
flz) = 7+ZG”COST' (1.4.4)
n=1
That is, every b,, = 0. In this case, the {a,,} may be determined from
2 L
a”:f/o f(;r)cosn—za:da: n=01,2,.... (1.4.5)

If, in addition to the above requirements, f(x) = — f(L — x), then a,, will be
zero for all even values of n. In this case the expansion becomes

fe) =) asm1cos M (1.4.6)

m=1

2. If, in addition to the Dirichlet conditions in Section 1.4, f(z) is an odd function

(i.e., f(z) = —f(—x)), then the Fourier series becomes
> nrT
= S0, sin 7 147
CEOWES, (147)

That is, every a,, = 0. In this case, the {b,,} may be determined from
2 L
b":f/o f(a:)sinn—zxda: n=1,2,3,.... (1.4.8)
If, in addition to the above requirements, f(z) = f(L — z), then b,, will be
zero for all even values of n. In this case the expansion becomes
- 2m — 1
f@) =" bapisin w (1.4.9)

m=1
The series in Equation (1.4.6) and Equation (1.4.9) are known as odd harmonic

series, since only the odd harmonics appear. Similar rules may be stated for even
harmonic series, but when a series appears in even harmonic form, it means that 2L

© 2003 by CRC Press LLC



has not been taken to be the smallest period of f(z). Since any integral multiple of
a period is also a period, series obtained in this way will also work, but, in general,
computation is simpli ed if 2L is taken as the least period.

Writing the trigonometric functions in terms of complex exponentials, we obtain
the complex form of the Fourier series known as the complex Fourier seriesor as the
exponential Fourier series. It is represented by

fl@)y= > cpen® (1.4.10)
nw .
where w,, = T forn =0,+1,+2,... and the {¢, } are determined from
1 [t ,
tn =57 [L flx)e “® d. (1.4.11)

The set of coef cien ts {c,, } is often referred to as the Fourier spectrum.

1.4.2 ALTERNATE FORMS

The Fourier series in Equation (1.4.1) may be represented in the alternate forms:

1. When ¢,, = tan=!(—a,,/b,), a, = ¢, sin ¢y, b, = —c,, oS Py,

and ¢, = /a2 + b2, then

flz) = a—;+;cnsin (%wﬁn). (1.4.12)

2. When ¢,, = tan=!(a, /b,), an = ¢, 8in ¢y, by, = ¢, COS P,

and ¢, = \/a? + b2, then

flz) = %0+n2::1cncos ("—f’j+¢n). (14.13)

1.4.3 USEFUL SERIES

4. 7z 1 . 37z 1 . brx
(a)l—;[s,lnf%-gsm—[j +gsm—L +} (0<z< L)
2L . 72z 1 . 27x 1 . 3nx

smL
L 4L T 1 3rx 1 omx

() x=—— —5 |cos— + —scos — + + ...
2 72 L

32 7 ?COST (0<1’<L)
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(d)xz—g W_z_% Smﬂ_x W_zs 27T_x_|_ W_z_i Sm?ﬂr_m
g3 1 1 L 2 L 3 33 L
w2 | dno w2 4 . Smx
—ZSIHT (? ?)SIHT (0<1’<L)
(e):z:2—L—2—4—L2 cosﬁ—icos%—m+lcos%—m—icosh—w+
EE S L 22 L 3 L 4 L
(-L<z< L)
1 1 1
M F=1-g+z-=+
w2 1 1 1 1 1 1
—=lt+=+=4+=+"""=2|l-=+=—-—=+...
® & toatatet ( mteE - pt >
w2 1 1 1 1 1 1 1
h)y — =1 — =3l =4+ =+=+=+...
() -2 tom Tttt (22+42+62+82+ )

1.4.4 EXPANSIONS OF BASIC PERIODIC FUNCTIONS

f(x)

f(x)

4 1
(b) f(z) ESIIl? !
n=1,3,5 :‘ L 2Lx
f(x)
2 (-1)" nmw nwe 1 ° Je—
© f@) === (cos X ~1) sin 15 .
n=1 L 2L x
-l —>» c |&—

2 o nr sin(nmc/2L) . nrw

(d) f(= =71 ; nmwe/2L ST

) f(= éil ln—smmra smw (a—i)
moan L — 2L
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) flx) =

(@) f(z)=

() f(z)=

(@) f(z) =

O fl=) =

&) f(z)=

@ flx) =

(m) f(z) =

1 11 . nrz
5wy T T/I .
n=1 0f L X
f(x)
1 4 1 co nwT X
2 72 n? L
n=1,3,5,... 0 L AL X
1+a 2 21 n nwT .
5 +7r2(1—a)n2=:1ﬁ[(_1) cosnmwa — 1] cos —— (a=s5%)
f(x)
] [ >
0 + y >
‘ L oL x
1 4 nwe ¢
3~ 201 —2a) Z ) cosnma cosT (Cl— ﬁ)
n=1,3,5,...
f(x)
1 e
s N Aoz oL X
2 o= (1)t sin nwa nwe
z 1 g a=5r
T T; n nm(l —a) L ( °r)
f(x)
o f—
|
OL L R
! —»] 2 |le—
2 (-1)" 1+(-1) nrx
2 1 . . —_
ﬂ_nzz:l ~ [ +mr(1—2a) smnﬂ'a] sin —— (a=57)
f(x)
— 2
1
. 2L-c2
o2 oL x
! o] 02 |e—
f(x)
2 o= (=" e 1
- Z sin —— . L 2L
n=1 X
1
f(x)
8 (—1)(”_1)/2 nrx
— ~—t — sin —— ! 3L/2
2 n? L 0 : ' >
n=1,3,5,... 1L L/2 L oL X
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o0

9 1 . nm . nnr
(n) f(x)ngﬁ sin —= sin ——

[o%e}

32 1 . nm . nnx
(o) f(z)= 32 —3 sin—= sin — .
n=1 0
-1
1 1 . 2 1
(P) f(éll‘) = ; + 5 sin wt — ; n=§6 m cos nwt

sin wt T =21mw

} »
>
W 2w t

1.5 COMPLEX ANALYSIS

1.5.1 DEFINITIONS

A complex number z has the form z = x + ¢y where = and y are real numbers, and
i = v/—1; the number 7 is sometimes called the imaginary unit. We write 2 = Re z
and y = Im 2. The number z is called the real part of z and y is called the imaginary
part of z. This form is also called the Cartesian form of the complex number.
Complex numbers can also be written in polar form, z = re'? where r, called

the modulus, is given by 7 = |z| = /22 4+ y2, and 6 is called the argument: § =
argz = tan~"' 4 (when 2 > 0). The geometric relationship between Cartesian and
polar forms is shown below

A

\J
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The complex conjugate of z, denoted Z, is de ned as 7 = x — iy = re —*?. Note
that |z| = |z|, argZ = —argz, and |z| = V/2Z. In addition, Z = z, z1 + 22 =
Z1 + zo, and Z122 = Z122.

1.5.2 OPERATIONS ON COMPLEX NUMBERS

1. Addition and subtraction:

zZ1 + Z9 = (.’L’l + Zyl) + (1‘2 + Zyg) = (1‘1 + 1‘2) + Z(yl + yg)

2. Multiplication:

2122 = (1 +iy1) (w2 +iy2) = (122 — y1y2) + i(T1y2 + T2y1) = rireei(f1102)

|z122] = |21||22], arg(z122) = argz; + arg zo = 601 + 6s.
3. Division:

zn_mZ (@@ yiye) +i(@ay1 —21y2) |11 ie-6n)

Z2 2272 .’L’% _'_y% T
2| _ |zl 21
Po o - =60, —0-.
z| |zl e <Z2> argzL Tatg s = m o
4. Powers:
2" = r"e™ = " (cosnf + i sinnb) DeMoivre's Theorem.
5. Roots:
Sl/n _ g1/ gi(0+2km) /n _ 1/n (cos 0+ 2k~ +isin 0+ 2k7r> ’
n

fork =0,1,...,n — 1. The principal root has —7 < § < 7w and k = 0.

1.5.3 FUNCTIONS OF A COMPLEX VARIABLE

A complex function
w = f(2) = u(z,y) +iv(z,y) = [w]e,

where z = x + 1y, associates one or more values of the complex dependent variable
w with each value of the complex independent variable z for those values of z in a
given domain.

A function f(z) is said to be analytic (or holomorphic) at a point zq if f(z) is
de ned in each point z of a disc with positive radius R around zg, h is any complex
number with || < R, and the limit of [ f(z0+h)— f(20)]/h exists and is independent
of the mode in which h tends to zero. This limiting value is the derivative of f(z)
at zo denoted by f'(z). A function is called analytic in a connected domain if it is
analytic at every point in that domain.

A function is called entireif it is analytic in C.

Liouville'stheorem: A bounded entire function is constant.
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EXAMPLES

1. f(z) = 2™ is analytic everywhere when n is a non-negative integer. If n is a negative
integer, then f(z) is analytic except at the origin.

2. f(z) = Z is nowhere analytic.

3. f(z) = e* is analytic everywhere.

1.5.4 CAUCHY-RIEMANN EQUATIONS

A necessary and suf cient condition for f(z) = u(z,y) + iv(z,y) to be analytic is
that it satis es the Cauchy—Riemann equations,

ou Ov ou ov

1.5.5 CAUCHY INTEGRAL THEOREM

If f(z) is analytic at all points within and on a simple closed curve C, then

/ f(z)dz=0. (1.5.2)
c

1.5.6 CAUCHY INTEGRAL FORMULA

If f(2) is analytic inside and on a simple closed contour C' and if z is interior to C,

then .
f(z0) = 5— 1@ g, (1.5.3)
i Jo 2z — 2o
Moreover, since the derivatives f'(zo), f"'(20), . - . of all orders exist, then
!
(n) = L L d 154
F0) = o /C (z =zt (154

1.5.7 TAYLOR SERIES EXPANSIONS

If f(z) is analytic inside of and on a circle C' of radius 7 centered at the point 2,
then a unique and uniformly convergent series expansion exists in powers of (z —z o)
of the form

flz) = Zan(z—zo)”, |z — z0] <r, 2o # o0, (1.5.5)
n=0
where ) ) £2)
Ly = TE)
an =1 (0) = 55 /C (2= 2yt 0 (156)
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If M (r) is an upper bound of | f(z)| on C, then

1 M(r . .
lan| = a|f(") (z0)] < # (Cauchy’s inequality). 1.5.7

If the series is truncated with the term a,,(z — 2¢)™, the remainder R,,(z) is given by

Ro(z) = =20 /C /() ds (15.8)

2mi (s —2)(s — zp)ntL 7

and

|z—zg|> rM(r) (159)

T r—|z— 2|

|Ra(2)] < (

1.5.8 LAURENT SERIES EXPANSIONS

If f(z) is analytic inside the annulus between the concentric circles C'y and Cs cen-
tered at zp with radii 71 and ro (r; < r2), respectively, then a unique series expansion
exists in terms of positive and negative powers of z — z¢ of the following form:

F(2) =) balz—20) "+ D _ an(z — 2)"
n=1 n=0

— (1.5.10)
=+ b2 + b +ag +ai(z — z0) +as(z — 20)* +
(z—20)%> z—2 0 0 0
with (here C is a contour between C'; and C5)
1
an:ﬂ %d& n=0,1,2,...,
;e 0 (1.5.11)
by = —/ f(s)(s —20)"'ds, n=1,23,....
2w C
Equation (1.5.10) is often written in the form
[ee]
f(Z) = Z Cn(z - ZO)n forry < |Z - Z()| <o (1.5.12)
with
1
Cn = —/ Ldz forn =0,£+1,£2,.... (1.5.13)
270 Jo (2 — zo) !

1.5.9 ZEROS AND SINGULARITIES

The points z for which f(z) = 0 are called zerosof f(z). A function f(z) which is
analytic at zy has a zero of order m there, where m is a positive integer, if and only
if the rst m coef cients ag,as, ..., a,_1 in the Taylor expansion at z, vanish.

A singular point or singularity of the function f(z) is any point at which f(z)
is not analytic. An isolated singularity of f(z) at zop may be classi ed in one of three
ways:
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1. A removable singularity if and only if all coef cien ts b,, in the Laurent series
expansion of f(z) at zo vanish. This implies that f(z) can be analytically
extended to zg.

2. A pole of order m if and only if (z — z¢)™ f(z), but not (z — z9)™ 1 f(2), is
analytic at zq (i.e., if and only if b,,, # 0 and 0 = b,;,41 = b2 = ... inthe
Laurent series expansion of f(z) at zp). Equivalently, f(z) has a pole of order
m if 1/ f(z) is analytic at zo and has a zero of order m there.

3. Anisolated essential singularity if and only if the Laurent series expansion of
f(2) at zp has an in nite number of terms involving negative powers of z — z g.

Theorems:

Riemann removable singularity theorem Suppose that a func-
tion f is analytic and bounded in some deleted neighborhood 0 < |z —
20| < € of a point zg. If f is not analytic at zg, then it has a removable
singularity there.

Casorati-Weierstrass theorem Suppose that z is an essential
singularity of a function f, and let w be an arbitrary complex number.
Then, for any € > 0, the inequality |f(z) — w| < € is satisi ed at some
point z in each deleted neighborhood 0 < |z — 2| < 4 of 2.

1.5.10 RESIDUES

Given a point zo where f(z) is either analytic or has an isolated singularity, the
residue of f(z) is the coef ¢ ient of (z — z) ! in the Laurent series expansion of

f(z) at zg, or
Res(z) = / f(z (1.5.14)
= omi

If f(z) is either analytic or has a removable singularity at z, then by = 0 there. If
zp is a pole of order m, then

1 dmfl

b= (m —=1)! dzm-1 (

z—20)"f(2)]

(1.5.15)

Z=Z0

For every simple closed contour C' enclosing at most a nite number of singularities

Z1, 22, - -, 2n Of a function analytic in a neighborhood of C,
/ f(z)dz = 2mi ) Res(z), (1.5.16)
¢ k=1

where Res(zy,) is the residue of f(z) at 2.
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1.5.11 THE ARGUMENT PRINCIPLE

Let f(z) be analytic on a simple closed curve C' with no zeros on C' and analytic
everywhere inside C' except possibly at a nite number of poles. Let A ¢ arg f(z)
denote the change in the argument of f(z) (that is, nal value — initial value) as z
transverses the curve once in the positive sense. Then

_Aoargf 2m/ I

where NN is number of zeros of f(z) inside C, and P is the number of poles inside C'.
The zeros and poles are counted according to their multiplicities.

=N-P, (1.5.17)

1.5.12 TRANSFORMATIONS AND MAPPINGS

A function w = f(z) = u(z) + iv(z) maps points of the z-plane into corresponding
points of the w-plane. At every point z such that f(z) is analytic and f'(z) # 0,
the mapping is conformal, i.e., the angle between two curves in the z-plane through
such a point is equal in magnitude and sense to the angle between the corresponding
curves in the w-plane. A table giving real and imaginary parts, zeros, and singu-
larities for frequently used functions of a complex variable and a table illustrating a
number of special transformations of interest are at the end of this section.

A function is said to be Simple in a domain D if it is analytic in D and assumes
no value more than once in D. Riemann’s mapping theorem states:

If D is a simply-connected domain in the complex z plane, which is nei-
ther the z plane nor the extended z plane, then there is a simple function
f(z) such that w = f(z) maps D onto the disc |w| < 1.

1.5.12.1 Bilinear transformations
- b
The bilinear transformation is de ne d by w = az : 7
cz
plex numbers and ad # be. It is also known as the linear fractional transformation.
The bilinear transformation is de ned for all z # —d/c. The bilinear transformation

is conformal and maps circles and lines onto circles and lines.

. L —dw +b L -
The inverse transformation is given by z = ————, which is also a bilinear
cw—a

where a, b, ¢, and d are com-

transformation. Note that w # a/c.
The cross ratio of four distinct complex numbers z (for k = 1,2, 3,4) is given
by
(2’1 - 2’2)(2’3 - 2’4)
(2’1 - 2’4)(2’3 - 2’2) '
If any of the z;,’s is complex in nity , the cross ratio is rede ned so that the quotient
of the two terms on the right containing z, is equal to 1. Under the bilinear transfor-
mation, the cross ratio of four points is invariant: (w1, ws,ws,ws) = (21, 22, 23, 24).
The Mobius transformation is special case of the bilinear transformation; it is
dened by w(z) = =% less than 1. It
maps the unit disk onto itself.

(21722,23,24) =
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f(z) =w(z,y u(z,y) = Re w(z,y) v(z,y) = Imw(z,y) Zeros (and order m) Singularities (and order m)

z T y z=0,m=1 Pole (m =1)atz = co

2* z? —y? 2xy z2=0,m=2 Pole (m = 2) at z = co

1 —Qx > —2—y2 z=oo,m=1 Pole(m=1)atz=0

1 A s

o m ﬁ ) z=o00,m=2 Pole (m =2)atz =0

1 r—a —(y—> .
Py P AP s R A z=o0o,m=1 Pole(m=1)atz=a+ib
a, breal
——\ 1/2 —\ 1/2
Vz + (w> + (M) z=0,m=1 Branch point (m = 1) atz = 0
2 2 Branch point (m = 1) at z = co

e® e” cosy e”siny None Essential singularity at z = co

sin z sin z cosh y cos z sinh y z=knr,m=1 Essential singularity at z = co
(k=0,+1,42,...)

cosz cos x cosh y —sinzsinhy z=(k+1/2)m,m=1 Essential singularity at z = oo
(k=0,41,42,...)

sinh z sinh z cos y cosh z siny z=kmni,m=1 Essential singularity at z = oo
(k=0,+1,42,...)

cosh z cosh z cosy sinh z sin y z=(k+1/2)mi,m=1 Essential singularity at 2 = co
(k=0,+1,42,...)

tan z __ sm2r % z=km,m=1 Essential singularity at z = co

cos 2z + cosh 2y cos 2z + cosh 2y (k=0,+1,42,...) Poles (m = 1) at z = (k + 1/2)r
(k=0,£1,+2,...)
tanh z _ sinh2z __ sindy z=kmni,m=1 Essential singularity at z = oo
cosh 2z + cos 2y cosh 2z + cos 2y (k=0,%1,£2,...) Poles (m = 1) at z = (k + 1/2)i
(k=0,41,%2,...)
log 2z Llog(z® +y%) tan 1 < + 2k z=1m=1 Branch points at z = 0, z = oo

y
(k=0,41,+2,...)

1.5.12.2 Table of transformations
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1.5.12.3 Table of conformal mappings

In the following functions z = = + iy and w = u + iv = pe’?.

BlY v
1. = A @ o w=2n
o
2. w = 22.
w = 22, A’, B' on the
3. bol 2k
arabola p = ——.
P P 1+ cos¢
4. w=1/z.
5. w=1/z.
D __Eln F
6 w = e~.
X 1 u
c B A F E DIC B A
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y v
E D .
- c
7 c w = e*
X 1u
A B D' E|A B'
y v
E D .
. c
b
8 F c w = e*
x 4
A B D' E'A B'
y \
E A
9 w = sin 2.
-2 w2 x 1 u
D C B E D|IC B A
y \Y
D A
.
10. w = sin z.
w2 X 1 u
C B c B A
y v
o © 5 c w=sinz; BCD:y =k, B'C'D'
11 is on the ellipse
: 2 2
-2 w2 x 1u(U)+(U):1
E F A D E Fl A B cosh k sinh k
y \"
A B
Bt
z—1
12. C x C A u w = .
D 1 z+1
=
E
>
y Vv
o
1—z
13. 1 X E Cu w = - .
A B C| D E A'Wl 1+ z
=
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5
z—a 14+ zm0 + /(1 —22)(1 — 23)

w= sa= ;
az —1 1 + T
l—z129+ /(1 —23)(1 — 23)

Ry =

r1 — I2
(a>1and Ry > 1when —1 < x5 <z <1).

15.
z—a 1+ 2o + /(23 — 1) (2% —
= ;a:
az—1 T1 + X2
T1we — 1 — (m%—l)(m%—l)
Ry =
r1 — I2
(z2 <a<ziand0 < Rg < 1whenl < x5 < x1).
y v
c
16. w=z+1/z
D B x E D |c B AU
E

y
C
17. w=z+1/z
1 x . 2 u
D B S '

w=z+1/z; B'C'D' is on the
ellipse

. < ku )2 < kv )2
L (] =1
F A B k2_+_]_ k2_1

O

18 f/
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D clu B
z—1
19. =1
: ) . w = log o
AB [ D E D E |A B
y F E|ni D
B
=lo Z—_l ABC is on the
20. _ s, 8T
. circle z2 + y? — 2y cot k = 1.
D E F
—F 1
- w = log s ; relationship
21. | rziu between centers and radii: centers
of circles at z,, = coth ¢,,, radii are
o cschep,n =1,2.
y v
D i c k
R , w:k:log1 k+log2(1—k)+
22. I § “ ¢, irm—klog(z+1)—(1-Fk)log(z—1);
EFG |[AB CD E = r, =2k — 1.
y \
E D| . o
23. c w = tan?(2/2).
X 1u
A B D E|A B
y %
F i E A
oF
24, Hf x Blc D u w = coth(z/2).
Al GIFT E
B_
C D
y v
F i E B Ti/2 A
oF
25. Hf x C D v w = logcoth(z/2).
AF F E
B_
c D I o
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y v
1+1d E
o cC .
26. w=mi+z—logz.
] P u
A B|CD E A B
y v
o
c B .
Tu
27.
I X u
A BC|D E D E

y , v D'
E i w—ilo 1—+—ikt+lo 1+t
TR ST ik T
28. 1/2
.2.. .1 X Tk u t— Z_].
D E FIA B C B C - z 4+ k2 '
F A
y v
29 . ih w = h [(22 = 1)'/2 4+ cosh™" 2].
1 I1 X A B u m
A B cC D c D
y = \Y E
X i 1 (2z2—-k-1
K w = cosh _—
30. i B k=1
[ A B 1 1 [(BE+1)z—2k
e X Y —cosh -
E F|ABC D c D k (k—1)z
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1.6 INTERVAL ANALYSIS

—

. Aninterval x is a subset of the real line: z = [z,Z] = {z € R |z < z < T}.
2. Athininterval is a real number: z is thinifz = T

3. mid(z) = ZLL

E 5. || = mag(x) = max |2
4. rad(z) = 5+ 6. () = mig(z) = mein |2

1.6.1 INTERVAL ARITHMETIC RULES

Operation Rule
T4y [z+y,T+7]
-y [z -7,7—y]
Ty [min(zy, 27, Ty, TY), max(zy, 27, Ty, TY) |
z s (z z z z z T T :
y [mm (gaga@j)amax(@gagag))} if0¢gy
EXAMPLES
L. [17 2] + [_27 1] = [_173] 3. [17 2] * [_2a 1] = [_4a 2]
2. [1,2] - [1,2] = [-1,1] 4. [1,2)/[1,2] = [3,2]

1.6.2 INTERVAL ARITHMETIC PROPERTIES

Property + and — * and /

commutative r+y=y+=zx xYy =y

associative z+y+z)=(z+y)+z2 z(yz) = (zy)z

identity elements O+z=z+0=12 lxy=yxl=y

sub-distributivity | z(y + z) C xzy £ zz  (equality holds if z is thin)

sub-cancellation |z —y C (z +2) — (y + 2) LcL

_ ¥
O€ex—=x ley
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1.7 REAL ANALYSIS

1.7.1 RELATIONS

For two sets A and B, the product A x B is the set of all ordered pairs (a, b) where
ais in A and b is in B. Any subset of the product A x B is called a relation. A
relation R on a product A x A is called an equivalencerelation if the following three
properties hold:

1. Reflexive: (a,a) is in R for every a in A.
2. Symmetric: If (a, b) is in R, then (b, @) is in R.
3. Transitive: If (a, b) and (b, ¢) are in R, then (a, ¢) is in R.

When R is an equivalence relation then the equivalence class of an element a in A
is the set of all b in A such that (a, b) is in R.

1. If |A| = n, there are 2" relations on A.

2. If |A| = n, the number of equivalence relations on A is given by the Bell
number B,,.

EXAMPLE  The set of rational numbers has an equivalence relation “=" de ned by the

requirement that an ordered pair (7, 7) belongs in the relation if and only if ad = be.

. . 2 -1 -2
The equivalence class of% is the set{%, I %,...,_—;, TR

1.7.2 FUNCTIONS (MAPPINGS)

A relation f on aset X x Y is a function (or mapping) from X into Y if (z,y) and
(z, z) in the relation implies that y = z, and each x € X hasay € Y such that
(z,y) is in the relation. The last condition means that there is a unique pair in f
whose rst element is z. We write f(z) = y to mean that (z,y) is in the relation f,
and emphasize the idea of mapping by the notation f: X — Y. The domain of f is
the set X. The range of a function f is a set containing all the y for which there is a
pair (z,y) in the relation. The image of a set A in the domain of a function f is the
set of y in Y such that y = f(z) for some z in A. The notation for the image of A
under f is f[A]. The inverse image of a set B in the range of a function f is the set
of all z in X such that f(x) = y for some y in B. The notation is f ~'[B].

A function f is one-to-one (or univalent, or injective) if f(x1) = f(z2) implies
x1 = x2. A function f: X — Y is onto (or surjective) if for every y in Y there is
some z in X such that f(z) = y. A function is bijective if it is both one-to-one and
onto.
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EXAMPLES
1. f(x) = €, as a mapping from R to R, is one-to-one because €”* = e®2 implies
1 = x2 (by taking the natural logarithm). It is not onto because —1 is not the value of
e” for any z in R.

2. g(z) = z®—x, as a mapping from R to IR, is onto because every real number is attained

as a value of g(z), for some z. It is not one-to-one because g(—1) = g(0) = g(1).

3. h(x) = z®, as a mapping from R to R, is bijective.

For an injective function f mapping X into Y, there is an inverse function f —!
mapping the range of f into X which is dened by: f~!(y) = z if and only if
flx) =y
EXAMPLE  The function f(z) = ¢® mapping R into R (the set of positive reals) is

bijective. Its inverse is £ ~*(z) = In(z) which maps R into R.
For functions f: X — Y and g: Y — Z, with the range of f contained in the
domain of g, the composition (go f): X — Z is a function de ne d by (g o f)(z) =
g(f(z)) for all z in the domain of f.

1. Note that g o f may not be the same as f o g. For example, for f(z) =z + 1,
and g(z) = 2z, we have (go f)(z) = g(f(z)) = 2f(z) =2(z+1) =2z +2.
However (f 0 g)(x) = f(g(x)) = g(z) + 1 = 20 + 1.

2. For every function f and its inverse f !, we have (f o f=1)(x) = z, for all
x in the domain of f 1, and (f ! o f)(x) = z for all z in the domain of f.
(Note that the inverse function, f ~!, does not mean %).

1.7.3 SETS OF REAL NUMBERS

A sequence is the range of a function having the natural numbers as its domain. It
can be denoted by {z,, | n is a natural number} or simply {z, }. For a chosen natural
number NV, a finite sequence is the range of a function having natural numbers less
than NV as its domain. Sets A and B are in a one-to-one correspondence if there is
a bijective function from A into B. Two sets A and B have the same cardinality if
there is a one-to-one correspondence between them. A set which is equivalent to the
set of natural numbers is denumerable (or countably infinite). A set which is empty
or is equivalent to a nite sequence is finite (or finite countable).

EXAMPLES  The set of letters in the English alphabet is nite. The set of rational num-
bers is denumerable. The set of real numbers is uncountable.

1.7.3.1 Axioms of order

1. There is a subset P (positive numbers) of R for which z + y and zy are in P
for every  and y in P.

2. Exactly one of the following conditions can be satis ed by a number x in R
(trichotomy): x € P, —xz € P,orz = 0.

© 2003 by CRC Press LLC



1.7.3.2 Definitions

A number b is an upper (or lower) bound of a subset .S in R if z < b (or z > b) for
every x in S. A number c is a least upper bound (lub, supremum, or sup) of a subset
S in R if ¢ is an upper bound of S and b > c¢ for every upper bound b of S. A number
¢ is a greatest lower bound (glb, infimum, or inf) if ¢ is a lower bound of S and ¢ > b
for every lower bound b of S.

1.7.3.3 Completeness (or least upper bound) axiom

If a non-empty set of real numbers has an upper bound, then it has a least upper
bound.

1.7.3.4 Characterization of the real numbers

The set of real numbers is the smallest complete ordered eld that contains the ratio-
nals. Alternatively, the properties of a eld, the order properties, and the least upper
bound axiom characterize the set of real numbers. The least upper bound axiom
distinguishes the set of real numbers from other ordered elds.

Archimedean property of R: For every real number z, there is an integer N such
that x < N. For every pair of real numbers z and y with < y, there is a rational
number 7 such that x < r < y. This is sometimes stated: The set of rational numbers
is dense in R.

1.7.3.5 Definition of infinity

The extension of R by oo is accomplished by including the symbols +oc¢ and —oo
with the following de nition s (for all x € R)

I. forallzinR: —oo <z < 00 6. ifz>0thenz - (—00)=—00
2. forallzinR: z+ 00 =00 7. 00+00=00
3. forallminR:a}—oo%—oo 8. —00 — 00 = —00
4., forallzinR: —=——=0 9. 00-00=00
: o0 — 10 —00 - (—00) = 0
5. ifz>0thenz 00 =00 . 00 o0

1.7.3.6 Inequalities among real numbers

The expression a > b means that a — b is a positive real number.

1. Ifa<bandb < cthena < c.
2. Ifa < bthena =+ ¢ < b= cfor any real number c.

if ¢ > 0 then ac < be
3. Ifa<band < .
if ¢ < 0 then ac > be

4. fa<bande< dthena+c<b+d.
5. If0<a<band0 < ¢ < dthen ac < bd.

ab>0 >
6. If a < band then
b<0

@ <

Q=
SRS N
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1.7.4 TOPOLOGICAL SPACE

A topology on a set X is a collection 7" of subsets of X (called open sets) having the
following properties:

1. The empty set and X are in 7.
2. The union of elements in an arbitrary subcollection of 7" is in T'.
3. The intersection of elements in a nite subcollection of 7" is in T'.

The complement of an open set is a closed set. A set is compact if every open
cover has a nite subcover. The set X together with a topology 7" is a topological
space.

1.7.4.1 Notes

1. A subset E of X is closed if and only if F contains all its limit points.
2. The union of nitely many closed sets is closed.

3. The intersection of an arbitrary collection of closed sets is closed.

4. The image of a compact set under a continuous function is compact.

1.7.5 METRIC SPACE

A metric (or distance function) on a set E is a function p: E X E — R that satis es
the following conditions:

1. Positive definiteness: p(z,y) > 0 forall z, y in E, and p(z,y) = 0 if and only
ifex =y.

2. Symmetry: p(z,y) = p(y,x) forall z, y in E.

3. Triangleinequality: p(z,y) < p(x, z) + p(z,y) forall z, y, z in E.

EXAMPLE  The set of real numbers with distance de ned by d(z,y) = |z —y| is a metric
space.

A § neighborhood of a point z in a metric space F is the set of all y in E such that
d(z,y) < 0. For example, a ¢ neighborhood of z in R is the interval centered at z
with radius 6§, (z — d,z + 4). In a metric space the topology is generated by the §
neighborhoods.

1. A subset G of R is open if, for every x in G, there is a § neighborhood of x
which is a subset of GG. For example, intervals (a,b), (a,00), (—00,b) are open
in R.

2. A number z is a limit point (or a point of closure, or an accumulation point)
of a set F' if, for every § > 0, there is a point y in F', with y # z, such that
|z —y| < 4.

3. A subset F' of R is closed if it contains all of its limit points. For example,
intervals [a, b], (—o0, b], and [a, cc) are closed in R.
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4. A subset F'is densein R if every element of R is a limit point of F'.

5. A metric space is separable if it contains a denumerable dense set. For ex-
ample, R is separable because the subset of rationals is a denumerable dense
set.

6. Theorems:

Bolzano—Weierstrass theorem Any bounded in nite set of
real numbers has a limit point in R.

Heine—Borel theorem A subset of R is compact if and only if it
is closed and bounded.

1.7.6  CONVERGENCE IN R WITH METRIC |z — y|

1.7.6.1 Limit of a sequence

A number L is a limit point of a sequence {x,} if, for every e > 0, there is a natural

number N such that |z,, — L| < e for all n > N. If it exists, a limit of a sequence

is unique. A sequence is said to converge if it has a limit. A number L is a cluster

point of a sequence {z, } if, for every € > 0 and every index N, thereisann > N

such that |z, — L| < e.

EXAMPLE  The limit of a sequence is a cluster point, as in {<}, which converges to 0.
However, cluster points are not necessarily limits, as in {(—1)"}, which has cluster
points +1 and —1 but no limit.

Let {z,,} be a sequence. A number L is the limit superior (limsup) if, for every

€ > 0, there is a natural number N such that z,, > L — e for in nitely manyn > N,

and x,, > L + € for only nitely many terms. An equivalent de nitio n of the limit

superior is given by
lim sup x,, = inf sup zg. (1.7.1)
N k>N
The limit inferior (liminf) is de ned in a similar way by

liminf z,, = inf zy,. 1.7.2

iminf z, sg{p klgN Tr (1.7.2)
For example, the sequence {x,} with z, = 1+ (—=1)" + 2% has lim sup z,, = 2,
and liminf z,, = 0.

Theorem Every bounded sequence {x,} in R has a lim sup and
a liminf. In addition, if limsup ,, = liminf z,, then the sequence
converges to their common value.

A sequence {z,} is a Cauchy sequence if, for any ¢ > 0, there exists a positive
integer N such that |z, — z,,| < e foreveryn > N andm > N.

Theorem A sequence {z,} in R converges if and only if it is a
Cauchy sequence.

A metric space in which every Cauchy sequence converges to a point in the space is
called complete. For example, R with the metric d(z, y) = |z — y| is complete.
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1.7.6.2 Limit of a function

A number L is a limit of a function f as x approaches a number a if, for every € > 0,
there is a 6 > 0 such that |f(z) — L| < e for all x with 0 < | — a| < 4. This
is represented by the notation lim,_,, f(z) = L. The symbol co is the limit of a
function f as x approaches a number « if, for every positive number M, there is
a d > 0 such that f(z) > M for all z with 0 < |z — a] < §. The notation is
lim, _,, f(z) = co. A number L is a limit of a function f as z approaches oc if, for
every € > 0, there is a positive number M such that | f(z) — L| < e forall z > M;
this is written lim, _, o, f(z) = L. The number L is said to be the limit at infinity.

EXAMPLES lim3z—1=5  lim - =oo.  lm - =0,

z—0 r—00 T

1.7.6.3 Limit of a sequence of functions

A sequence of functions { f,,(x)} is said to converge pointwise to the function f(z)
on a set F if for every € > 0 and z € E there is a positive integer N such that
|f(z) — fn(z)] < eforevery n > N. A sequence of functions {f,(z)} is said to
converge uniformly to the function f on a set E if, for every e > 0, there exists a
positive integer NV such that |f(z) — fn(x)| < eforall zin E andn > N.

Note that these formulations of convergence are not equivalent. For example,
the functions f,,(z) = x™ on the interval [0, 1] converge pointwise to the function
f(z) =0for0 < z < 1, f(1) = 1. They do not converge uniformly because, for
e = 1/2, there is no N such that | f,(z) — f(z)| < 1/2 for all z in [0, 1] and every
n > N.

A function f is Lipschitz if there exists ¥ > 0 in R such that |f(z) — f(y)| <
k|x — y| for all z and y in its domain. The function is a contractionif 0 < k£ < 1.

Fixed point or contraction mapping theorem Let E be a
complete metric space. If the function f: E — FE is a contraction, then
there is a unique point z in E such that f(x) = z. The point z is called
a fixed point of f.

EXAMPLE  Newton’s method for nding a zero of f(z) = (z + 1)? — 2 on the interval
[0,1] produces z,4+1 = g(z,) with the contraction g(z) = £ — 1 + z-l‘,-l' This has
the unique x ed point /2 — 1 in [0, 1].

1.7.7 CONTINUITY IN R WITH METRIC |z — y|

A function f: R — R is continuous at a point « if f is de ned at a and
lim f(z) = f(a). (1.7.3)
r—a

The function f is continuous on a set F if it is continuous at every point of E. A
function f is uniformly continuouson a set F if, for every € > 0, there existsad > 0
such that | f(z) — f(y)| < € for every z and y in E with |z — y| < J. A sequence
{fn(x)} of continuous functions on the interval [a, b] is equicontinuous if, for every
e > 0, there exists a § > 0 such that | f,,(z) — fn(y)| < € for every n and for all
and y in [a, b] with |z — y| < 4.
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1. A function can be continuous without being uniformly continuous. For exam-
ple, the function g(z) = % is continuous but not uniformly continuous on the
open interval (0, 1).

2. A collection of continuous functions can be bounded on a closed interval with-

out having a uniformly convergent sub-sequence. For example, the continuous
. 2 . .
functions f,(xz) = m are each bounded by 1 in the closed inter-
val [0, 1] and for every x there is the limit: lim,_, fn(z) = 0. However,
fn () = 1 for every n, so that no sub-sequence can converge uniformly to 0

everywhere on [0, 1]. This sequence is not equicontinuous.

Theorems:

Theorem Let { f,.(z)} be a sequence of functions mapping R into
R which converges uniformly to a function f. If each f,(z) is continu-
ous at a point a, then f(z) is also continuous at a.

Theorem If a function f is continuous on a closed bounded set F,
then it is uniformly continuous on E.

Ascoli-Arzela theorem Let K be acompactsetin R. If { f,,(z)}
is uniformly bounded and equicontinuous on K, then { f,,(z)} contains
a uniformly convergent sub-sequence on K.

Weierstrass polynomial approximation theorem Let K be
a compact set in R. If f is a continuous function on K then there exists
a sequence of polynomials that converges uniformly to f on K.

1.7.8 BANACH SPACE

A normon a vector space E with scalar eld R is a function || - || from E into R that
satis es the following conditions:

1. Positive definiteness: ||z|| > 0 for all z in E, and ||z|| = 0 if and only if
z=0.

2. Scalar homogeneity: For every « in E and a in R, ||az|| = |a| ||z]].

3. Triangleinequality: ||z + y|| < ||z|| + ||y|| for all z, y in E.

Every norm || - || gives rise to a metric p by de ning: p(z,y) = ||z — y||.
EXAMPLES

1. R with absolute value as the norm has the metric p(z,y) = |z — y|.

2. R x R (denoted R?) with the Euclidean norm ||(z,y)|| = /22 + y? has the metric
p((z1,91), (2,92)) = /(w1 — 22)* + (y1 — y2)*.

A Banach spaceis a complete normed space.
A widely studied example of a Banach space is the (vector) space of measurable

functions f on [a, b] for which f; |f(z)|P de < oo with 1 < p < oo. This is denoted

© 2003 by CRC Press LLC



by Ly[a, b] or simply L,. The space of essentially bounded measurable functions on
[a, b] is denoted by Lo [a, b].

1/p
The L,, norm for 0 < p < oo is de ned by | f||, = (fa” |f(:n)|”d:n) . The
L, norm is de ned by

Ifllo =ess sup |f(2)], (1.7.4)
a<z<b
where
ess sup |f(z)|=inf{M|m{t: f(t) > M} =0}. (1.7.5)

a<z<b

Let { fn(x)} be a sequence of functions in L, (with 1 < p < c0) and f be some
function in L,. We say that {f,} converges in the mean of order p (or simply in
Lp-norm) to f if lim, o0 || fu = fl, = 0.

Riesz—Fischer theorem The L, spaces are complete.

1.7.8.1 Inequalities
1. Minkowski inequality If fand g arein L, with 1 < p < oo, then
1 +gll, < If1l, + llgll,- Thatis,

b 1/p b 1/p b 1/p
(/ |f+g|”> S(/ |f|p> +(/ Igl”> for1 <p < oc,

(1.7.6)
esssup |f + g| < esssup |f|+ esssup |g|.

2. Holder inequality If p and g are non-negative extended real numbers such
that1/p+1/¢=1and f € Ly and g € Ly, then || fgl[, < [|f[|,[lg]l,- That

1S
b b 1/1) b 1/‘1
[ 19l < (/ |f|”> (/ |g|4> forl <p<oo,  (L7.7)

b b
/ £l < (esssup |f]) / 1. (1.7.8)

3. Schwartz (or Cauchy—Schwartz) inequality If f and g are in Lo, then
Ifglly < |Ifll5 llgll,- This is the special case of Holder’s inequality with p =
q=2.

4. Arithmetic mean—geometric mean ineguality If A, and G,, are the arith-
metic and geometric means of the set of positive numbers {a1,as,...,a,}
then A,, > G,,. That is

ay +a2+ ...+ an
n

1/n

> (a1az - - - ay)
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5. Carleman’s inequality If A,, and G,, are the arithmetic and geometric

means of the set of positive numbers {a1, as, ..., a,} then
n
Z G, < neA,.
r=1

1.7.9 HILBERT SPACE

An inner product on a vector space E with scalar eld C (complex numbers) is a
function from E x E into C that satis es the following conditions:

1. (z,z) >0, and (z,z) = 0 if and only if z = 0.
2. (z+y,2) = (x,2) + (y,2)

3. {cz, >—c(x y)

4. (z,y) = (y,7)

Every inner product (x, y) gives rise to a norm ||z|| by de ning ||z|| = (z, z) 1z,
A Hilbert space is a complete inner product space A widely studied Hilbert
space is La[a, b] with the inner product (f, g) f f)
Two functions f and g in Lo[a,b] are orthogonal 1f fa fg = 0. Asetof Lo

functions {¢, } is orthogonal if fab Om¢n = 0 form # n . The set is orthonormal

functions {sin nz} are mutually orthogonal on (—, ). The functions { %} form

an orthonormal set on (—, 7).

Let {¢p} be an orthonormal set in Ly and f be in Ly. The numbers ¢, =
f; fén dx are the generalized Fourier coefficients of f with respect to {¢, }, and the
series Y7 | cp¢n () is called the generalized Fourier series of f with respect to
{on}

For a function f in Lo, the mean square error of approximating f by the sum
22;1 any is 7= f; |f(z) — Zgzl anén(x)|> dz. An orthonormal set {¢,} is
complete if the only measurable function f that is orthogonal to every ¢, is zero.
That is, f = 0 a.e. (In the context of elementary measure theory, two measurable
functions f and g are equivalent if they are equal except on a set of measure zero.
They are said to be equal almost everywhere. This is denoted by f = g a.e.)

Bessel’s inequality: For a function f in L, having generalized Fourier coef -
cients {cp }, >0, |cfl| < fab |f(z)|? d.

Theorems:

Riesz—Fischer theorem Let {¢,, } be an orthonormal set in Lo
and let {c, } be constants such that 3~ , |2 | converges. Then a unique
function f in Lo exists such that the ¢,, are the Fourier coef cien ts of f
with respect to {¢,,} and Y | ¢,,¢,, converges in the mean (or order

2)to f.
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Theorem The generalized Fourier series of f in Lo converges in
the mean (of order 2) to f.

Theorem Parseval’s identity holds: / |f(z)]? dz = Z |cn|

n=1

Theorem The mean square error of approximating f by the se-
. 0 L . .
ries )~ | an¢y, is minimum when all coef cien ts a,, are the Fourier

coef ¢ ients of f with respect to {¢,,}.

EXAMPLE  Suppose that the series %2 + 3°°° (|an|® + |bn|?) converges. Then the

trigonometric series 42 + Y | (an cosnz + bn sin nz) is the Fourier series of some
function in L.

1.7.10 ASYMPTOTIC RELATIONSHIPS

Asymptotic relationships are indicated by the symbols O, 2, ©, o, and ~.

1.

The symbol O (pronounced “big-oh™): f(z) € O(g(x)) as x — x¢ if a pos-
itive constant C' exists such that | f(x)| < C'|g(x)| for all z suf ciently close
to 2. Note that O(g(x)) is a class of functions. Sometimes the statement
f(z) € O(g(x)) is written (imprecisely) as f = O(g).

The symbol Q : f(z) € Q(g(z)) as x — zg if a positive constant C' exists
such that |g(z)| < C|f(z)]| for all z suf ciently close to zo.

The symbol O : f(z) € O(g(x)) as x — x if positive constants ¢; and 2
exist such that ¢1g(z) < f(x) < cog(x) for all x suf ciently close to xq. This
is equivalent to: f(z) = O(g(x)) and g(z) = O(f(z)). The symbol = is

= )
often used for © (i.e., f(z) = g(z)).

The symbol o (pronounced “little-oh”): f(z) € o(g(x)) as x — z¢ if, given
any ¢ > 0, we have | f(x)| < p|g(z)| for all z suf ciently close to z¢.

The symbol ~ (pronounced “asymptotic to”): f(z) ~ (g(z)) as x — z¢ if
f(x) =g(x)[1+ o(1)] as z — zo.

Two functions, f(z) and g(z), are asymptotically equivalent as  — xq if
f(z)/g(x) ~ 1asz — xo.

A sequence of functions, {gx(x)}, forms an asymptotic series at zg if
gr+1(x) = o(gr()) as ¢ — mo.

Given a function f(z) and an asymptotic series {gx(z)} at zo, the formal
series Y o— akgy(z), where the {ay} are given constants, is an asymptotic
expansionof f(z) if f(2)—Y";_ argr(z) = o(gn(z)) asz — z¢ forevery n;
this is expressed as f(z) ~ Y, argr (). Partial sums of this formal series
are called asymptotic approximations to f(z). This formal series need not
converge.
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Think of O being an upper bound on a function, {2 being a lower bound, and ©
being both an upper and lower bound. For example: sinz € O(z) asz — 0,logn €
o(n) asn — oo, and n® € Q(n® + n?) asn — .

The statements: n2 = o(n®), n® = o(2"), 2" = o(n!), and n! = o(n™) as
n — oo can be illustrated as follows. If a computer can perform 10° operations
per second, and a procedure takes f(n) operations, then the following table indicates
approximately how long it will take a computer to perform the procedure, for various
f(n) functions and values of n.

complexity | n = 10 n = 20 n =50 n = 100 n = 300
f(n) =n?|1077 sec 1077 sec 107° sec 1075 sec 107* sec
f(n) =nd|107* sec 1072 sec 0.3 sec 10 sec 41 minutes
f(n)=2"|10"°sec 102 sec 2 weeks 10! centuries 107 centuries
f(n) =n!| 1072 sec 77 years  10"° centuries 10" centuries 10°%° centuries
f(n) =n" 10 sec 107 centuries 10° centuries 10'®' centuries 107** centuries

1.8 GENERALIZED FUNCTIONS

1.8.1 DELTA FUNCTION
0 z#0

o T =

Dirac’s delta function is a distribution de ned by d(z) = { , and is nor-

malized so that f_oooo 0(z) dz = 1. Properties include (assuming that f(x) is contin-
uous):

L 2 f(@)d(z —a)dz = f(a).

2. f f d d(z) — (_l)mdmf(o)

dx™ dz™

3. zd(x), as a distribution, equals zero.

4. §(az) = ~6(z) whena # 0.

ol
5. 6(z* — a®) = 5=[0(z + a) + 6(z — a)).

6. 6(z) = 5= + + >o2 cos 2XZ (Fourier series).

7. 6(x—¢& =23, sin ”— sin 222 for 0 < & < L (Fourier sine series).

8. 8(z) = 5= [*_ €™ dk (Fourier transform).
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9. 8(p=p") =p [y kJm(kp)Jm(kp') dk.

Sequences of functions {¢,} that approximate the delta function as n — oo are
known as delta sequences.

EXAMPLES
2 ¢ (1.) — Le—nzxz ' " N n/2 |1’| < 1/n
3. ¢n (1’) — % sinj;w

The delta function 6(X — X') = 6(z1 — 2] )d(z2 — 24)d (23 — 24) in terms of the
coordinates (&1, &2, &3), related to (z1, ©2, ©3), via the Jacobian J(z;, §;), is written

no__ 1 Y i et
6(X_X ) - |J($l,§])|6(£l 61)6(62 62)6(53 53) (181)
For example, in spherical polar coordinates
S(x—x') = :2 §(r —r")6(¢ — ¢')6(cosf — cos ). (1.8.2)

The solutions to differential equations involving delta functions are called Green’s
functions (see pages 463 and 471).

1.8.2 OTHER GENERALIZED FUNCTIONS

The Heaviside function, or step function, is de ned as

:/I 6(t)dt:{0 r<0 (1.83)

1 =>0.

Sometimes H (0) is stated to be 1/2. This function has the representations

L. H() _+ En Oddnsul%

2. H(z) = 5= [ £ dk

The related signum function gives the sign of its argument

-1 ifz <0
sgn(x):?H(w)—l:{ 1 ifz>0 (1.8.4)
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10.1 UNITS

10.1.1 SI SYSTEM OF MEASUREMENT

Sl, the abbreviation of the French words “Systeme Internationale d’Unites”, is the
accepted abbreviation for the International Metric System.

1. There are seven base units

Quantity measured Unit Symbol

Length meter m

Mass kilogram kg

Time second S

Amount of substance mole mol

Electric current ampere A

Luminous intensity candela cd

Thermodynamic temperaturekelvin K

2. There are 22 derived units with special names and symbols
Quantity Sl Name Symbol | Combination of
other Sl units
(or base units)

Absorbed dose gray Gy Jikg

Activity (radiation source) becquerel Bq 1/s

Capacitance farad F CIV

Catalytic activity katal kat s! mol

Celsius temperature degree Celsius °C K

Conductance siemen S AN

Dose egivalent sievert Sv J/kg

Electric charge coulomb C As

Electric potential volt \% W/A

Electric resistance ohm Q V/A

Energy joule J N m

Force newton N kg m/

Frequency hertz Hz 1/s

llluminance lux Ix Im/m?

Inductance henry H Whb/A

Luminous flux lumen Im cd sr

Magnetic flux density tesla T Wh/m?

Magnetic flux weber Wb Vs

Plane angle radian rad m -m-!
(unitless)

Power watt w Jis

Pressure or stress pascal Pa N/m?

Solid angle steradian sr m2 . m—2
(unitless)

© 2003 by CRC Press LLC



3. The following units are accepted for use with Sl units.

Name Symbol | Value in S| units
(angle) degree ° 1° = (7 /180) rad
(angle) minute ! 1" = (1/60)° = (w/10800) rad
(angle) second " 1" = (1/60)" = (7/648000) rad
(time) day d 1d=24h=86400s
(time) hour h 1 h =60 min =3600 s
(time) minute min 1min=60s
astronomical unit au 1au~ 1.49598 x 10 m
bel B 1B =(1/2)In 10 Np
(Note that 1 dB =0.1 B)
electronvolt eV leVa 1.6021764 x 10712 C
liter L 1L=1dn?=10"3m?
metric ton t 1t=10%kg
neper Np 1 Np =1 (unitless)
unified atomic mass unit u 1u~ 1.66054 x 10~27 kg

4. The following units are currently accepted for use with Sl units (subject to
further review).

Name Symbol | Value in S| units

angstrom | A 1A=0.1nm=10""m

are a la=1damM = 10> m?

barn b 1b =100 fn? = 10728 m?

bar bar 1 bar = 0.1 MPa = 100 kPa = 1000 hRal0° Pa
curie Ci 1Ci=3.7x 10'° Bq

hectare ha lha=1hnt =10* m?

knot 1 nautical mile per hour = (1852/3600) m/s
nautical mile 1 nautical mile = 1852 m

rad rad lrad=1cGy=10"2 Gy

rem rem lrem=1cSv=10"2Sv

roentgen R 1R=258 x 10~* Clkg

10.1.2 UNITED STATES CUSTOMARY SYSTEM OF WEIGHTS
AND MEASURES

Linear measure
1 mile = 5280 feetor 320 rods
lrod = 16.5feetor5.5yards
lyard = 3feet
l1foot = 12inches
Linear measure: nautical
1fathom = 6 feet
1° of latitude ~ 69 miles
1° of longitude at 40 latitude =~ 46 nautical miless 53 miles
1 nautical mile ~ 6076.1 feets 1.1508 statute miles
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Square measure
1square mile = 640 acres
lacre = 43,560 square feet
\Volume measure
1 cubicyard = 27 cubic feet
1 cubic foot = 1728 cubicinches
Dry measure
1bushel = 4 pecks
1peck = 8quarts
lquart = 2pints
Liquid measure
1 cubic foot = 7.4805 gallons
lgallon = 4quarts
lquart = 2pints
lpint = 4qills
Liquid measure: Apothecaries’
1pint = 16 fluid ounces
1fluid ounce = 8drams
1fluiddram = 60 minims
Weight: Avoirdupois
lton = 2000 pounds
1pound = 16 ounces or 7000 grains
lounce = 16dramsor437.5 grains
Weight: Troy
1pound = 12 ounces
lounce = 20 pennyweights
1 pennyweight = 24 grains
Weight: Apothecaries’
lpound = 12 ounces
lounce = 8drams
ldram = 3scruples
1scruple = 20grains

10.1.3 PHYSICAL CONSTANTS

c (speed of light) = 299,792,458 m/s (exact value)

e (charge of electrony 1.6021764 x 10~1° C

G (gravitational constanty (6.673 & 0.003) x 108 cm?/g &

h (Plank constant over) ~ 1.0545716 x 10734 J s

k (Boltzmann constanty 1.38065 x 10722 J/K

1 knot = 1 nautical mile/houss 1.6878 ft/s ~ 1.1508 statute miles/hr
Acceleration, sea level, latitude 25z 9.806194 m/s® ~ 32.1726 ft/s?
Avogadro’s constant 6.022142 mol—!

Density of mercury, at 0C ~ 13.5951 g/mL
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Density of water (maximum), at 3.98 ~ 0.99997496 g/mL
Density of water, at 9C = 0.9998426 g/mL

Density of dry air, at 0C, 760 mm of Hgx 1.2927 g/L
Earth: equatorial radius 6378.388 km =~ 3963.34 statute miles
Earth: polar radiusz 6356.912 km ~ 3949.99 statute miles
Earth: mean density 5.522 g/lcn?® = 344.7 Ib/ft?

Heat of fusion of water, at ~ 333.6 J/g

Heat of vaporization of water, at 106G ~ 2256.8 J/g

Mass of hydrogen atoms 1.67353 x 10724 g

Velocity of sound, dry air, at 0C &~ 331.36 m/s~ 1087.1 ft/s
Wavelength of orange-red line of krypton 866057.802 A

10.1.4 DIMENSIONAL ANALYSIS/BUCKINGHAM PI

The units of the parameters in a system constrain all the derivable quantities, regard-
less of the equations describing the system. In particular, all derived quantities are
functions of dimensionless combinations of parameters. The number of dimension-
less parameters and their forms are given byBhekingham pi theorem

In a system, the quantity = f(Wy, Ws, ..., W,,) is to be determined in terms
of the n measurable variables and parametgis;} where f is an unknown func-
tion. Let the quantitiedu, W;} involve m fundamental dimensions labeled by
Ly, Ls,..., L, (such as length, mass, time, or charge). The dimensions of any
of the {u, W;} are given by a product of powers of the fundamental dimensions. For
example, the dimensions &F; are L' L5z L% ... Lhim where the{b,;} are real
and called thalimensional exponentsA quantity is called dimensionless if all of
its dimensional exponents are zero. bet= [bi; bz ... bim]T be the dimen-
sion vector of¥; and letB = [b; b, ... b,] be them x n dimension matrix

of the system. Lea = [a; a» ... an]' be the dimension vector af and let
T .
y=1[y1 y2 ... yn| representa solution @y = —a. Then,

1. The number of dimensionless quantitietis 1 = n + 1 — rank(B).

2. The measurable quantitycan be expressed in terms of dimensionless param-
eters as

w=W; VW,V WV g(my, oy, ) (10.1.1)

whereg is an unknown function of its parameters and the} are dimen-

sionless quantities. Specifically, bet) = [z1; 22; ... ;rm»]T be one of
k = n —r(B) linearly independent solutions of the syst&xr = 0 and define
m = WEHEWE2 . W Eni,
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10.1.5 UNITS OF PHYSICAL QUANTITIES

In the following, read “kilograms” for the magd, “meters” for the lengtiL, “sec-
onds” for the timel’, and “degrees” for the temperatuteFor example, acceleration
is measured in units df /72, or meters per second squared.

Quantity Dimensions|| Quantity Dimensions
Acceleration L)T? Mass M
Angular acceleration 1/7? Mass density M/L?
Angular frequency 1/T Momentum ML|T
Angular momentum ML?/T Period T
Angular velocity 1/T Power ML?|T?
Area L? Pressure M/LT?
Displacement L Moment of inertia| M L2
Energy or work ML?|T? Time T

Energy, kinetic ML?*|T? Torque ML?/T?
Energy, potential ML?/T? Velocity L/T
Energy, total ML?)T? Volume L3

Force ML|T? Wavelength L
Frequency 1/T Work ML?]T?
Gravitational field strength M L/T? Entropy ML?]T?¢
Gravitational potential ML?/T? Internal energy | ML?/T?
Length L Heat ML?/T?

10.1.6 CONVERSION: METRIC TO ENGLISH

Multiply By To obtain
centimeters 0.3937008 | inches
cubic meters 1.307951 | cubic yards
cubic meters 35.31467 | cubic feet
grams 0.03527396| ounces
kilograms 2.204623 | pounds
kilometers 0.6213712 | miles
liters 0.2641721 | gallons (US)
meters 1.093613 | yards
meters 3.280840 | feet
milliliters 0.03381402 fluid ounces
milliliters 0.06102374] cubic inches
square centimeters0.1550003 | square incheg
square meters 1.195990 | square yards
square meters 10.76391 | square feet
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10.1.7 CONVERSION: ENGLISH TO METRIC

Multiply By To obtain
cubic feet 0.02831685| cubic meters
cubic inches | 16.38706 | milliliters
cubic yards | 0.7645549 | cubic meters
feet 0.3048000 | meters
fluid ounces | 29.57353 | milliliters
gallons (US) | 3.785412 | liters
inches 2.540000 | centimeters
miles 1.609344 | kilometers
mils 25.4 micrometers
ounces 28.34952 | grams
pounds 0.4535924 | kilograms
square feet | 0.09290304| square meters
square inches 6.451600 | square centimeters
square yards| 0.8361274 | square meters
yards 0.9144000 | meters

10.1.8 MISCELLANEOUS CONVERSIONS

Multiply By To obtain
feet of water at 4C 2.950 x 1072 atmospheres
inches of mercury at4C | 3.342 x 102 atmospheres
pounds per square inch| 6.804 x 102 atmospheres
foot-pounds 1.285 x 103 BTU
joules 9.480 x 104 BTU
cords 128 cubic feet
radian 57.29578 degree (angle)
foot-pounds 1.356 x 107 ergs
atmospheres 33.90 feet of water at 4C
miles 5280 feet
horsepower 3.3 x 10* foot-pounds per minute
horsepower-hours 1.98 x 108 foot-pounds
kilowatt-hours 2.655 x 10° foot-pounds
foot-pounds per second| 1.818 x 103 horsepower
atmospheres 2.036 inches of mercury at@C
BTU 1.055060 x 102 | joules
foot-pounds 1.35582 joules
BTU per minute 1.758 x 102 kilowatts
foot-pounds per minute | 2.26 x 10~° kilowatts
horsepower 0.7457 kilowatts
miles per hour 0.8689762 knots

© 2003 by CRC Press LLC




Multiply By To obtain
feet 1.893939 x 10~* | miles
miles 0.8689762 nautical miles
degrees 1.745329 x 10~2 | radians
acres 43560 square feet
BTU per minute| 17.5796 watts

10.1.9 TEMPERATURE CONVERSION

If tr is the temperature in degrees Fahrenheitiands the temperature in degrees
Celsius, then

5 9
to = §(tF —32) and tp = 3tc + 32. (10.1.2)

—40°C | 0°C | 10°C | 20°C | 37°C | 100°C
—40°F | 32°F | 50°F | 68°F | 98.6°F | 212°F

If Tk is the temperature in kelvin aritg is the temperature in degrees Rankine,
then

5
Tr =tr + 459.69 and Tg =tc+273.15= §TR. (10.1.3)

10.2 INTERPRETATIONS OF POWERS OF 10

1015 the radius of the hydrogen nucleus (a proton) in meters
10~ the likelihood of being dealt 13 top honors in bridge
1010 the radius of a hydrogen atom in meters

10-° the number of seconds it takes light to travel one foot
10-6 the likelihood of being dealt a royal flush in poker

10° the density of water is 1 gram per milliliter

10! the number of fingers that people have

102 the number of stable elements in the periodic table

105 the number of hairs on a human scalp

108 the number of possible chess board positions after 4 moves
107 the number of seconds in a year

108 the speed of light in meters per second

10° the number of heartbeats in a lifetime for most mammals
1010 the number of people on the earth

10%° the surface area of the earth in square meters

106 the age of the universe in seconds

10'8 the volume of water in the earth’s oceans in cubic meters
1019 the number of possible positions of Rubik’s cube

102! the volume of the earth in cubic meters
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10% the number of grains of sand in the Sahara desert

1028 the mass of the earth in grams

1033 the mass of the solar system in grams
1030 the number of atoms in the earth

1078 the volume of the universe in cubic meters

(Note: these numbers have been rounded to the nearest power of ten.)

10.3 CALENDAR COMPUTATIONS

10.3.1 LEAP YEARS

If a year is divisible by 4, then it will be a leap year, unless the year is divisible by
100 (when it will not be a leap year), unless the year is divisible by 400 (when it will
be a leap year). Hence the list of leap years includes 1896, 1904, 1908, 1992, 1996,
2000, 2004, 2008 and the list of non-leap years includes 1900, 1998, 1999, 2001.

10.3.2 DAY OF WEEK FOR ANY GIVEN DAY

The following formula gives the day of the week for the Gregorian calendar (i.e., for
any date after 1582):

W= (k +[2.6m—02] —2C+Y + gJ + ED (mod 7)  (10.3.1)

where

e 1V is the day of the weeld(= Sunday, .., 6 = Saturday).
k is the day of the month (1 to 31).

m is the month { = March,..., 10 = December]l1 = January12 = Febru-
ary). (January and February are treated as months of the preceding year.)

C'is century minus one (1997 h&s= 19, 2005 has’ = 20).
Y is the year (1997 hak = 97 exceptY” = 96 for January and February).
|-| denotes the integer floor function.

e The “mod” function returns a non-negative value.

In any given year the following days fall on the same day of the week: 4/4, 6/6, 8/8,
10/10, 12/12, 9/5, 5/9, 7/11, 11/7, and the last day of February.
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EXAMPLE Consider the date 16 March 1997 (for whikh= 16, m = 1, C = 19, and
Y = 97). From Equation (10.3.1), we computé = 16 + |2.4] —38 + 97+ | 2| +
|2] (mod7)=2+42-3+6+3+4 (mod 7)=0 (mod 7). So this date was a
Sunday.
Because 7 does not divide 400, January 1 occurs more frequently on some days
of the week than on others! In a cycle of 400 years, January 1 and March 1 occur on

the following days with the following frequencies:

Sun| Mon | Tue | Wed | Thu | Fri | Sat
Januaryl| 58 | 56 | 58 | 57 | 57 | 58 | 56
March1l | 58 | 56 | 58 | 56 | 58 |57 | 57

10.3.3 NUMBER OF EACH DAY OF THE YEAR

Day | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
32 60 91| 121 | 152 | 182 | 213 | 244 | 274 | 305 | 335
33 |61 92| 122 | 153 | 183 | 214 | 245 | 275 | 306 | 336
34 62 93| 123 | 154 | 184 | 215 | 246 | 276 | 307 | 337
35 63 941 124 | 155 | 185 | 216 | 247 | 277 | 308 | 338

36 | 64 95( 125 | 156 | 186 | 217 | 248 | 278 | 309 | 339
37 |65 96 | 126 | 157 | 187 | 218 | 249 | 279 | 310 | 340
38 | 66 97 (127 | 158 | 188 | 219 | 250 | 280 | 311 | 341
39 |67 98 ( 128 | 159 | 189 | 220 | 251 | 281 | 312 | 342
40 | 68 99| 129 | 160 | 190 | 221 | 252 | 282 | 313 | 343

10| 10|41 |69 100 | 130 | 161 | 191 | 222 | 253 | 283 | 314 | 344
11| 11|42 |70 101 | 131 | 162 | 192 | 223 | 254 | 284 | 315 | 345
12| 12143 (71 102 | 132 | 163 | 193 | 224 | 255 | 285 | 316 | 346
13| 13|44 |72 103 | 133 | 164 | 194 | 225 | 256 | 286 | 317 | 347
14| 14|45 |73 104 | 134 | 165 | 195 | 226 | 257 | 287 | 318 | 348

15| 15|46 |74 | 105|135 | 166 | 196 | 227 | 258 | 288 | 319 | 349
16| 16|47 |75 [ 106 | 136 | 167 | 197 | 228 | 259 | 289 | 320 | 350
17| 1748 |76 | 107 | 137 | 168 | 198 | 229 | 260 | 290 | 321 | 351
18| 18|49 |77 | 108 | 138 | 169 | 199 | 230 | 261 | 291 | 322 | 352
19| 19|50 |78 |[109 | 139 | 170 | 200 | 231 | 262 | 292 | 323 | 353

20| 20|51 |79 110 | 140 | 171 | 201 | 232 | 263 | 293 | 324 | 354
21| 21|52 |80 111 | 141 | 172 | 202 | 233 | 264 | 294 | 325 355
22| 22|53 |81 112 | 142 | 173 | 203 | 234 | 265 | 295 | 326 | 356
23| 23|54 |82 113 | 143 | 174 | 204 | 235 | 266 | 296 | 327 | 357
24| 24|55 |83 114 | 144 | 175 | 205 | 236 | 267 | 297 | 328 | 358

25| 25|56 |84 (115|145 | 176 | 206 | 237 | 268 | 298 | 329 | 359
26| 26|57 |85 |[116| 146 | 177 | 207 | 238 | 269 | 299 | 330 | 360
27| 27|58 |86 | 117 | 147 | 178 | 208 | 239 | 270 | 300 | 331 | 361
28| 28|59 |87 (118 148 | 179 | 209 | 240 | 271 | 301 | 332 | 362
29| 29| * 88 | 119 | 149 | 180 | 210 | 241 | 272 | 302 | 333 | 363

30| 30 89 | 120 | 150 | 181 | 211 | 242 | 273 | 303 | 334 | 364
31| 31 90 151 212 | 243 304 365

O©oo~NOOOUT ~hWNBE
©O©oo~NOOOUT hWN R

*In leap years, after February 28, add 1 to the tabulated number.

© 2003 by CRC Press LLC



10.4 AMS CLASSIFICATION SCHEME

00
01
03

04
05
06

08
11
12
13
14
15

16
17
18

19
20
22
26
28
30
31
32

33
34
35
37

39

40
41
42
43
44

General

History and biography
Mathematical logic and
foundations

This section has been deleted
Combinatorics

Order, lattices, ordered algebraic
structures

General algebraic systems
Number theory

Field theory and polynomials
Commutative rings and algebras
Algebraic geometry

Linear and multilinear algebra;
matrix theory

Associative rings and algebras
Non-associative rings and algebras
Category theory; homological
algebra

K-theory

Group theory and generalizations
Topological groups, Lie groups
Real functions

Measure and integration
Functions of a complex variable
Potential theory

Several complex variables and
analytic spaces

Special functions

Ordinary differential equations
Partial differential equations
Dynamical systems and ergodic
theory

Difference and functional
equations

Sequences, series, summability
Approximations and expansions
Fourier analysis

Abstract harmonic analysis
Integral transforms, operational
calculus

Seewww . ams . org/msc/ for details.
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45
46
a7
49

51
52
53
54
55
57
58

60

62
65
68
70

73
74
76
78
80

81
82

83
85
86
90

91
92
93
94

97

Integral equations

Functional analysis

Operator theory

Calculus of variations and optimal
control; optimization

Geometry

Convex and discrete geometry
Differential geometry

General topology

Algebraic topology

Manifolds and cell complexes
Global analysis, analysis on
manifolds

Probability theory and stochastic
processes

Statistics

Numerical analysis

Computer science

Mechanics of particles and
systems

This section has been deleted
Mechanics of deformable solids
Fluid mechanics

Optics, electromagnetic theory
Classical thermodynamics, heat
transfer

Quantum theory

Statistical mechanics, structure of
matter

Relativity and gravitational theory
Astronomy and astrophysics
Geophysics

Operations research, mathematical
programming

Game theory, economics, social
and behavioral sciences

Biology and other natural sciences
Systems theory; control
Information and communication,
circuits

Mathematics education



10.5 FIELDS MEDALS

The Fields medal is the most prestigious award that can be bestowed upon a mathe-
matician. It is awarded to someone no more than 40 years of age.

1936
1936
1950
1950
1954
1954
1958
1958
1962
1962
1966
1966
1966
1966
1970
1970
1970
1970
1974
1974
1978
1978
1978
1978
1982
1982
1982
1986
1986
1986
1990
1990
1990
1990
1994
1994
1994
1994
1998
1998
1998

1)

)

®)

(4)

®)

(6)

()

(8)

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
37
(38)
(39)
(40)
(41)

(42) 1998

Abhlfors, Lars
Douglas, Jesse
Schwartz, Laurent
Selberg, Atle
Kodaira, Kunihiko
Serre, Jean-Pierre
Roth, Klaus

Thom, Rene
Hormander, Lars
Milnor, John
Atiyah, Michael
Cohen, Paul
Grothendieck, Alexander
Smale, Stephen
Baker, Alan
Hironaka, Heisuke
Novikov, Serge
Thompson, John
Bombieri, Enrico
Mumford, David
Deligne, Pierre
Fefferman, Charles
Margulis, Gregori
Quillen, Daniel
Connes, Alain
Thurston, William
Yau, Shing-Tung
Donaldson, Simon
Faltings, Gerd
Freedman, Michael
Drinfeld, Vladimir
Jones, Vaughan
Mori, Shigefumi
Witten, Edward
Bourgain, Jean
Lions, Pierre-Louis
Yoccoz, Jean-Chrisophe
Zelmanov, Efim
Borcherds, Richard E.
Gowers, William T.
Kontsevich, Maxim

McMullen, Curtis T.
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29
39
35
33
39
27
32
35
31
31
37
32
38
36
31
39
32
37
33
37
33
29
32
38
35
35
33
27
32
35
36
38
39
38
40
38
36
39
38
34
34

40

Harvard University
MIT
Universite de Nancy
Princeton/Inst. for Advanced Study
Princeton University
College de France
University of London
University of Strasbourg
University of Stockholm
Princeton University
Oxford University
Stanford University
University of Paris
University of California at Berkeley
Cambridge University
Harvard University
Moscow University
University of Chicago
University of Pisa
Harvard University
IHES
Princeton University
InstPrblminfTrans
MIT
IHES
Princeton University
IAS
Oxford University
Princeton University
University of California at San Diego
Phys. Inst. Kharkov
University of California at Berkeley
University of Kyoto
Princeton/Inst. for Advanced Study
Princeton/Inst. for Advanced Study
Universite de Paris-Dauphine
Universite de Paris-Sud
University of Wisconsin
Cambridge University
Cambridge University
Institut des Hautes Etudes Scientifiques
and Rutgers University
Harvard University



10.6 GREEK ALPHABET

For each Greek letter, we illustrate the form of the capital letter and the form of the
lower case letter. In some cases, there is a popular variation of the lower case letter.

Greek Greek | English Greek Greek | English
letter name | equivalent letter name | equivalent

A « Alpha a N v Nu n

B g Beta b = ¢ Xi X

r =~ Gamma g O o Omicron o}

A 6 Delta d I n w|Pi p

E € ¢ | Epsilon e P p o |Rho r

Z C Zeta Z ¥ o ¢ | Sigma S

H 7 Eta e T Tau t

© 6 ¢ | Theta th T v Upsilon u

I lota i ® ¢ ¢ | Phi ph

K & Kappa k X x Chi ch

A A Lambda I v Psi ps

M u Mu m Q2 w Omega o]

10.7 COMPUTER LANGUAGES

The following is a sampling of computer languages used by scientists and engineers:

1. Numerical languages 3. Optimization languages
e Matlab and Octave * GAMS (AMPL)
e MINOS
* CandC++ MINTO
e Fortran *
e Lisp 4. Symbolic languages
- e Derive
2. Statistical languages e Maple
e SPSS o Mathematica
e Minitab * Reduce

10.7.1 SOFTWARE CONTACT INFORMATION

1. Derive http://www.derive.com

2. Fortran http://www.fortran.com

3. Maple http://www.maplesoft.com
4. MathCad http://www.mathsoft.com
5. Matlab http://www.mathworks.com
6. Mathematicahttp://www.wolfram.com
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10.8 PROFESSIONAL MATHEMATICAL
ORGANIZATIONS

1. American Mathematical Society (AMS)
201 Charles Street, Providence, RI 02904
Telephone: 800/321-4AMS
Electronic addresstww. ams . org

2. American Mathematical Association of Two-Year Colleges
Southwest Tennessee Community College
5983 Macon Cove, Memphis, TN 38134
Telephone: 901/333-4643
Electronic addresstww . amatyc.org

3. American Statistical Association
1429 Duke Street, Alexandria, VA 22314
Telephone: 703/684-1221
Electronic addresstww . amstat . org

4. Association for Symbolic Logic
Box 742, Vassar College, 124 Raymond Avenue
Poughkeepsie, New York 12604
Telephone: 845/437-7080
Electronic addresstww.aslonline.org

5. Association for Women in Mathematics
4114 Computer & Space Sciences Building, University of Maryland,
College Park, MD 20742
Telephone: 301/405-7892
Electronic addressiww . awm-math.org

6. Canadian Applied Mathematics Society
Department of Mathematics and Statistics, Simon Fraser University,
Burnaby, British Columbia, Canada V5A 1S6
Telephone: 604/291-3337, 604/291-3332
Electronic addresstww. caims.ca

7. Canadian Applied and Industrial Mathematics Society
577 King Edward, Suite 109, P. O. Box 450, Station A,
Ottawa, Ontario, Canada K1N 6N5
Telephone: 613/562-5702
Electronic addressiww.cms .math.ca

8. Casualty Actuarial Society
1100 North Glebe Road, Suite 600, Arlington, VA 22201
Telephone: 703/276-3100
Electronic addresstww. casact.org
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9. Conference Board of the Mathematical Sciences
1529 Eighteenth Street, N.W., Washington, DC 20036
Telephone: 202/293-1170
Electronic addressiww . cbmsweb.org

10. The Consortium for Mathematics and Its Applications (COMAP)
57 Bedford Street, Suite 210, Lexington, MA 02420
Telephone: 800/77-COMAP
Electronic addresstww . comap . com

11. Council on Undergraduate Research
Council on Undergraduate Research. 734 15th St. N.W., Suite 550, Washing-
ton, DC 20005
Telephone: 202/783-4810
Electronic addresstww. cur . org

12. The Fibonacci Association
Chase Building, Dalhousie University
Halifax, Nova Scotia, Canada B3H 3J5
Telephone: 902/494-2572
Electronic addresstww.mscs.dal.ca/Fibonacci/

13. Institute for Operations Research and the Management Sciences
(INFORMS)
940-A Elkridge Landing Road, Linthicum, MD 21090
Telephone: 800/4IN-FORMS
Electronic addresstww. informs.org

14. Institute of Mathematical Statistics
P.O. Box 22718
Beachwood, OH 44122
Telephone: 216/295-2340
Electronic addresstww. imstat.org

15. International Mathematics Union (IMU)
Estrada Dona Castorina, 110, Jardimdsvto,
Rio de Janeiro — RJ 22460 Brazil
Telephone: 55-21-294 9032, 55-21-5111749
Electronic addresstww.mathunion.org

16. Joint Policy Board for Mathematics
1 Oxford Street #325, Cambridge, MA 02138
Electronic addresstww. jpbm. org

17. Kappa Mu Epsilon (xpue)
Electronic addresstww.cst.cmich.edu/org/kme nat

18. The Mathematical Association of America (MAA)
1529 Eighteenth Street, N.W., Washington, DC 20036
Telephone: 202/387-5200
Electronic addressiww.maa.org
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http://www.cbmsweb.org
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19. Mathematical Programming Society
3600 University City Science Center, Philadelphia, PA 19104
Telephone: 215/382-9800, x323
Electronic addressiww. caam.rice.edu/ mathprog/

20. Mu Alpha Theta (uaf)
University of Oklahoma, 610 Elm Avenue, Room 423
Norman, OK 73019
Telephone: 405/325-4489
Electronic addresstww.mualphatheta.org

21. National Association of Mathematicians
Department of Mathematics, Morehouse College
Atlanta, GA 30314
Electronic addressiww.caam.rice.edu/ "nated/orgs/nam/index.html

22. The National Council of Teachers of Mathematics
1906 Association Drive, Reston, VA 22091
Telephone: 703/620-9840
Electronic addresstww.nctm. org

23. ORSA (seed NFORMYS)

24. Pi Mu Epsilon (7 ue)
Electronic addressiww . pme-math.org

25. Rocky Mountain Mathematics Consortium
Arizona State University, Box 871904, Tempe, AZ 85287
Telephone: 602/965-3788
Electronic addressiath.la.asu.edu/ rmmc

26. Society of Industrial and Applied Mathematics (SIAM)
3600 University City Science Center, Philadelphia, PA 19104
Telephone: 215/382-9800
Electronic addressiww.siam.org

27. The Society for Mathematical Biology
Electronic addressiww. smb.org

28. Society of Actuaries
475 North Martingale Road, Suite 800, Schaumburg, IL 60173
Telephone: 847/706-3500
Electronic addresstww. soa.org

29. Statistical Society of Canada
1485 Lagrrire St., Ottawa, Ontario K1Z 7S8
Telephone: 613/725-2253
Electronic addressiww.ssc.ca

© 2003 by CRC Press LLC


http://www.mathprog.org/
http://www.mualphatheta.org
http://www.caam.rice.edu/~nated/orgs/nam/index.html
http://www.nctm.org
http://www.pme-math.org
http://math.la.asu.edu/~rmmc
http://www.siam.org
http://www.smb.org
http://www.soa.org
http://www.ssc.org

10.9 ELECTRONIC MATHEMATICAL RESOURCES

1. General web sites related to mathematics

(8) http://dir.yahoo.com/Science/mathematics/
A very large list of useful sites relating to mathematics. It is perhaps the best
place to start researching an arbitrary mathematical question not covered else-
where in this list.

(b) http://web.math.fsu.edu/Science/math.html
The mathematics WWW virtual library has a very comprehensive collection of
links to other mathematics-related sites.

(c) http://mathworld.wolfram.com
A comprehensive on-line encyclopedia of mathematics with more than 10,000
entries, 4,000 figures, and 100 animated graphics.

(d) http://www.sosmath.com
A collection of sites of mathemical interest on the web.

(e) http://carbon.cudenver.edu/ hgreenbe/glossary/intro.html
A mathematical programming glossary

(f) http://thesaurus.maths.org
A mathematical thesaurus

(g) http://wuw.cs.unb.ca/ alopez-o/math-faq/math-faq.html
The FAQ (frequently asked questions) listing from the news gredp.math.

2. Web sites that respond to user input

(a) http://www-neos.mcs.anl.gov/
The NEOS server for optimizatiowill run many different optimization packages
on an input user problem.

(b) http://wuw.theory.csc.UVic.CA/"cos/
The Combinatorial Object Servarreates combinatorial objects such as neck-
laces, permutations, combinations, etc.

(c) http://www.research.att.com/“njas/sequences/
The On-Line Encyclopedia of Integer Sequenadbws the “next term” in a
sequence to be determined. (See page 25.)

(d) http://www.cecm.sfu.ca/projects/ISC/

If a real number is input to thénverse Symbolic Calculatat will determine
where this number might have come from.

3. Societies

(a) http://www.ams.org
The American Mathematical Society with the Combined Membership List of the
AMS and the Math Reviews subject classifications.

(b) http://wuw.maa.org/
The Mathematics Association of America.
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(c) http://www.siam.org/

The Society for Industrial and Applied Mathematics.
(d) http://www.ima.umn.edu

Institute for Mathematics and its Applications at the University of Minnesota.
(e) http://www.comap.com

The Consortium for Mathematics and its Applications, with links appropriate for

elementary, high school, and college undergraduates. They also sponsor contests
in mathematics for college students and high school students.

4, Software

(a) http://gams.cam.nist.gov
The Guide to Available Mathematical Software.
(b) http://www.mathtools.net
Mathematical tools (programs) in many different computing languages.
(c) http://wuw.gnu.org/software/gsl/
The GNU scientific library is a freely available numerical library in C and C++.
(d) http://www.netlib.org
The master listing for Netlib, containing many standard programs, including lin-
pack, eispack, hompack, SPARC packages, and ODEpack.
(e) http://www.nag.co.uk
The home page of the Numerical Algorithms Group.

5. Journals, pre-prints, and essays

(8) http://d1lmf .nist.gov
The “Digital Library of Mathematical Functions” from the National Institute of
Standards and Technology.
(b) http://arxiv.org/archive/math
A mathematics preprint server based at the Los Alamos National Laboratory.
(c) http://www.mathcad.com/library/Constants/index.htm
A large collection of essays devoted to constants arising in mathematics.
(d) http://ejde.math.swt.edu/
The Electronic Journal of Differential Equations
(e) http://nyjm.albany.edu:8000/nyjm.html
The New York Journal of Mathematicthe first electronic journal devoted to
general mathematics.
(f) http://wuw.wavelet.org
The Wavelet Digestontains questions and answers abwatelets, and an-
nouncements of papers, books, journals, software, and conferences.
(9) http://www.math.ohio-state.edu/JAT
The Journal of Approximation Theary
(h) http://www.combinatorics.org/ejc-wce.html
The Electronic Journal of Combinatoriand World Combinatorics Exchange
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(i) http://rattler.cameron.edu/swjpam/swjpam.html
The Southwest Journal of Pure and Applied Mathematics

6. Miscelleneous mathematical web sites

(8) http://www.math.hmc.edu/codee/main.html
The Consortium of Ordinary Differential Equation Experiments.

(b) http://wuw.utm.edu/research/primes/largest.html
Information about primes, including largest known primes of various types.

(c) http://www.dartmouth.edu/"chance/index.html
Material about teaching a “quantitative literacy course”.

(d) http://alephO.clarku.edu/~djoyce/julia/explorer.html
Useful for exploring the Mandelbrot and Julia sets.

(e) ftp://megrez.math.u-bordeaux.fr/pub/numberfields/

The Computational Number Theory group in Bordeaux has made available (by
anonymous ftp at the above URL) extensive tables of number fields (almost
550000 number fields). For the number fields belonging to tables of reasonable
length, this site contains the signature, the Galois group of the Galois closure of
the field, the discriminant of the number field, the class number, the structure
of the class group as a product of cyclic groups, an ideal in the class for each
class generating these cyclic groups, the regulator, the number of roots of unity
in the field, a generator of the torsion part of the unit group, and a system of
fundamental units.

(f) http://wuw.eccpage.com
The Error Correcting Codes (ECC) home page provides free software imple-
menting several important error-correcting codes.

(g) http://wuw.georgehart.com/virtual-polyhedra/vp.html
An online “Encyclopedia of Polyehdra”.

(h) http://wuw.earlham.edu/ peters/knotlink.htm
A collection of internet links related to knots.

(i) http://www.mathsoft.com/asolve/

A large collection of unsolved mathematical problems, and pointers to other col-
lections.

() http://www.clarku.edu/~djoyce/wallpaper
Pictures and descriptions of the 17 crystallographic groups; see page 307.

(k) http://hcoonce.math.mankato.msus.edu/

The mathematics genealogy project; given the name of a PhD mathematician,
this site will tell you who their thesis advisor was.

EXAMPLE The editor-in-chief of this book has the ancestral sequence of advisors:
D. I. Zwillinger — B. S. White— G. C. Papanicolaou— J. B. Keller
— R. Courant— D. Hilbert— C. L. F. Lindemann— C. F. Klein
— R. O. S. Lipschitz and J. Plucker— G. P. L. Dirichlet— S. D. Poisson
— J. L. Lagrange— L. Euler— J. Bernoulli
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http://rattler.cameron.edu/swjpam/swjpam.html
http://www.math.hmc.edu/codee/main.html
http://www.utm.edu/research/primes/largest.html
http://www.dartmouth.edu/~chance/index.html
http://aleph0.clarku.edu/~djoyce/julia/explorer.html
ftp://megrez.math.u-bordeaux.fr/pub/numberfields/
http://www.eccpage.com/
http://www.georgehart.com/virtual-polyhedra/vp.html
http://www.earlham.edu/~peters/knotlink.htm
http://www.mathsoft.com/mathresources/problems/
http://www.clarku.edu/~djoyce/wallpaper/
http://www.genealogy.math.ndsu.nodak.edu/index.html

10.10 BIOGRAPHIES OF MATHEMATICIANS

In alphabetical order:

CoNo LN PR

Agnesi, Marigpage 814) 21. Gerson, Levi ber{page 812)
Ah’'mose(page 810) 22. Hamilton, William Rowar{page 814)
al-Haytham, Abu Alipage 811) 23. Hilbert, David(page 816)
al-Khwarizmi, Muhammagpage 811) 24. Hypatia(page 811)
al-Tusi, Nasir al-Dir{page 811) 25. Jiushao, Qirpage 812)
Archimedegpage 810) 26. Kovalevskaya, Sofigage 815)
Banneker, Benjami(page 814) 27. Lagrange, Josefhage 814)
Bernoulli, Johanitpage 813) 28. Leibniz, Gottfried Wilhelm(page 813)
Bhaskardpage 811) 29. Leonardo of Pis@page 811)

. Brahmaguptgage 811) 30. Napier, Johipage 812)

. Cardano, Gerolampage 812) 31. Newton, Isaa¢page 813)

. Cauchy, Augustin-Louigpage 814) 32. Noether, Emmypage 816)

. Cayley, Arthui(page 815) 33. Pascal, Blaisgpage 813)

. Dedekind, Richar¢page 815) 34. Poincag, Henri(page 816)

. Descartes, Rer{page 812) 35. Ptolemy(page 811)

. Dickson, Leonard Eugerigage 816) 36. Riemann, Georg Bernhafighge 815)

. Euclid(page 810) 37. Stevin, Simorfpage 812)

. Euler, Leonhargage 813) 38. Turing, Alan (page 816)

. Fermat, Pierre dépage 813) 39. Viete, Franois (page 812)

. Gauss, Carl Friedriolpage 814) 40. Weierstrass, Katbage 815)

In chronological order:

Ah’mose (c. 1650 B.C.E.was the scribe responsible for copying tRiind Papyrusthe

most detailed original document still extant on ancient Egyptian mathematics. The
papyrus contains some 87 problems with solutions dealing with what we consider first-
degree equations, arithmetic progressions, areas and volumes of rectangular and circu-
lar regions, proportions, and several other topics. It also contains a table of the results
of the division of 2 by every odd number from 3 to 101.

Euclid (c. 300 B.C.E.}s responsible for the most famous mathematics text of all time, the

Elements Not only does this work deal with the standard results of plane geometry,
but it also contains three chapters on number theory, one long chapter on irrational
quantities, and three chapters on solid geometry, culminating with the construction of
the five regular solids. The axiom-definition-theorem-proof style of Euclid’s work has
become the standard for formal mathematical writing up to the present day.

Archimedes (287—-212 B.C.E.hot only wrote several works on mathematical topics more

advanced than Euclid, but also was the first mathematician to derive quantitative results
from the creation of mathematical models of physical problems on earth. In several of
his books, he described the reasoning process by which he arrived at his results in
addition to giving formal proofs. For example, he showed how to calculate the areas of
a segment of a parabola and the region bounded by one turn of a spiral, and the volume
of a paraboloid of revolution.
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Ptolemy(c. 100-178 C.E.is most famous for th&lmagesta work in thirteen books, which
contains a complete mathematical description of the Greek model of the universe with
parameters for the various motions of the sun, moon, and planets. The first book pro-
vides the strictly mathematical material detailing the plane and spherical trigonometry,
all based solely on the chord function, necessary for astronomical computations.

Hypatia (c. 370—415)the first woman mathematician on record, lived in Alexandria. She
was given a very thorough education in mathematics and philosophy by her father
Theon and was responsible for detailed commentaries on several important Greek
works, including Ptolemy'sAlmagest Apollonius’s Conics and Diophantus’@rith-
metica

Brahmagupta (c. 598-670) from Rajasthan in India, is most famous for lBsahmas-
phutasiddhanta (Correct Astronomical System of Brah@aapstronomical work which
contains many chapters on mathematics. Among the mathematical problems he con-
sidered and gave solution algorithms for were systems of linear congruences, quadratic
equations, and special cases of the Pell equallef + 1 = y?. He also gave the
earliest detailed treatment of rules for operating with positive and negative numbers.

Muhammad al-Khwarizmi (c. 780-850)originally from Khwarizm in what is now Uzbek-
istan, was one of the first scholars called to the House of Wisdom in Baghdad by the
caliph al-Ma’'mun. He is best known for his algebra text, in which he gave a careful
treatment of solution methods for quadratic equations. This Arabic text, after being
translated into Latin in the twelfth century, provided Europeans with an introduction
to algebra, a subject not considered by the ancient Greeks. Al-Khwarizmi’s book on
arithmetic provided Europe with one of its earliest looks at the Hindu-Arabic number
system.

Abu Ali ibn al-Haytham (965—-1039)who spent much of his life in Egypt, is most famous
for his work on optics, a work read and commented on for many centuries in Europe.
In pure mathematics, he developed an inductive procedure for calculating formulae for
the sums of integral powers of the firstintegers, and used the formula for fourth
powers to calculate the volume of the solid formed by revolving a parabola about a line
perpendicular to its axis.

Bhaskara (1114-1185)the most famous of medieval Indian mathematicians, gave a com-
plete algorithmic solution to the Pell equation. In addition, he dealt with techniques of
solving systems of linear equations with more unknowns than equations and was famil-
iar with the basic combinatorial formulae, giving many examples, though no proofs, of
their use.

Leonardo of Pisa(1170-1240) often known today as Fibonacci, is most famous for his
Liber Abbaci (Book of Calculation)which contains the earliest publication of the
Fibonacci numbers in the problem of how many pairs of rabbits can be bred in one
year from one pair. Many of the sources of the book are in the Islamic world, where
Leonardo spent much of his early life. The work contains the rules for computing with
the new Hindu—Arabic numerals, many practical problems in such topics as calculation
of profits and currency conversions, and topics now standard in algebra texts such as
motion problems, mixture problems, and quadratic equations.

Nasir al-Din al-Tusi (1201-1274)was the head of a large group of astronomers at the ob-
servatory in Maragha, in what is now Iran. He computed a new set of very accurate
astronomical tables and developed some new ideas on planetary motion which may
have influenced Copernicus in working out his heliocentric system. In pure mathe-
matics, al-Tusi's attempted proof of the parallel postulate was modified by his son and
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later published in Rome, where it influenced European work on non-Euclidean geom-
etry. Al-Tusi also wrote the first systematic work on plane and spherical trigopnometry,
independent of astronomy, and gave the earliest proof of the theorem of sines.

Qin Jiushao (1202-1261)born in Sichuan, published a general procedure for solving sys-
tems of linear congruences—the Chinese remainder theorem—8hhishu jiuzhang
(Mathematical Treatise in Nine Sectiong)1247, a procedure which makes essential
use of the Euclidean algorithm. He also gave a complete description of a method for
solving numerically polynomial equations of any degree. Qin’s method was developed
in China over a period of a thousand years or more and is very similar to what is now
called Horner’s method of solution, published by William Horner in 1819.

Levi ben Gerson (1288-1344)was a French rabbi and also an astronomer, philosopher,
biblical commentator, and mathematician. His most famous mathematical work is the
Maasei Hoshev (The Art of the Calculatowhich contains detailed proofs of the stan-
dard combinatorial formulae, some of which use the principle of mathematical induc-
tion.

Gerolamo Cardano (1501-1576) a physician and gambler as well as a mathematician,
wrote one of the earliest works containing systematic probability calculations, not all
of which were correct. He is most famous, however, forAis Magna (The Great
Art, 1545),an algebra text which contained the first publication of the rules for solving
cubic equations algebraically. Some of the rules had been discovered earlier in the
sixteenth century by Scipione del Ferro and Niecoértaglia.

Francois Viete (1540-1603)a lawyer and advisor to two kings of France, was one of the
earliest cryptanalysts and successfully decoded intercepted messages for his patrons.
Although a mathematician only by avocation, he made important contributions to the
development of algebra. In particular, he introduced letters to stand for numerical con-
stants, thus enabling him to break away from the style of verbal algorithms of his
predecessors and treat general examples by formulae rather than by giving rules for
specific problems.

Simon Stevin(1548-1620%pent much of his life in the service of Maurice of Nassau, the
Stadhouder of Holland, as a military engineer, advisor in finance and navigation, and
quartermaster general of the Dutch army. In his bbekThiende (The Art of Tenths)
Stevin introduced decimal fractions to Europe, although they had previously been used
in the Islamic world. Stevin’s notation is different from our own, but he had a clear
understanding of the advantage of decimals and advocated their use in all forms of
measurement.

John Napier (1550-1617)was a Scottish laird who worked for years on the idea of pro-
ducing a table which would enable one to multiply any desired numbers together by
performing additions. These tables of logarithms first appeared in his 1614Micek
fici Logarithmorum Canonis Descriptio (Description of the Wonderful Canon of Loga-
rithms). Napier’s logarithms are different from, but related to, natural logarithms. His
ideas were soon adapted by Henry Briggs, who eventually created the first table of
common logarithms by 1628.

René Descarteq1596—1650published theSeometnjin 1637 as a supplement to his philo-
sophical work, theéDiscourse on the Method for Rightly Directing One’s Reason and
Searching for Truth in the Sciencds it, he developed the principles of analytic geom-
etry, showing how to derive algebraic equations which represented geometric curves.
TheGeometryalso contained methods for solving polynomial equations, including the
modern factor theorem and Descartes’ rule of signs.
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Pierre de Fermat (1601-1665Wwas a French lawyer who spent his spare time doing mathe-
matics. Not only was he a coinventor of analytic geometry, although his methods were
somewhat different from those of Descartes, but he also was instrumental in the early
development of probability theory and made many contributions to the theory of num-
bers. He is most remembered for the statement of his so-called “last theorem”, that the
equationz™ + y™ = z" has no non-trivial integral solution if > 2, a theorem whose
proof was finally completed by Andrew Wiles in 1994.

Blaise Pascal(1623—-1662)showed his mathematical precocity with lEssay on Conics
of 1640 in which he stated his theorem that the opposite sides of a hexagon inscribed
in a conic section always intersect in three collinear points. Pascal is better known,
however, for his detailed study of what is now called Pascal’s triangle of binomial
coefficients, the basic facts of which had been known in the Islamic and Chinese worlds
for centuries. He also introduced the differential triangle inThésatise on the Sines of
a Quadrant of a Circlean idea adopted by Leibniz in his calculus.

Isaac Newton(1642—1727)the central figure in the Scientific Revolution, is most famous
for his Philosophiae Naturalis Principia Mathematica (Mathematical Principles of
Natural Philosophy, 1687)n which he derived his system of the world based on his
laws of motion and his law of universal gravitation. Over 20 years earlier, however,
Newton had consolidated and generalized all the material on tangents and areas worked
out by his predecessors into the magnificent problem solving tool of the calculus. He
also developed the power series as a method of investigating various transcendental
functions, stated the general binomial theorem, and, although never establishing his
methods with the rigor of Greek geometry, did demonstrate an understanding of the
concept of limit quite sufficient for him to apply the calculus to solve many important
mathematical and physical problems.

Gottfried Wilhelm Leibniz (1646-1716) born in Leipzig, developed his version of the
calculus some ten years after Isaac Newton, but published it much earlier. Leibniz
based his calculus on the inverse relationship of sums and differences, generalized to
infinitesimal quantities called differentials. By clever manipulation of differentials,
based in part on the geometrical model of the differential triangle, Leibniz was able to
derive all of the basic rules of the differential and integral calculus and apply them to
solve physical problems expressible in terms of differential equations. Leilhaisl
J notation for differentials and integrals turned out to be much more flexible and useful
than Newton'’s dot notation and remains the notation of calculus to the present day.

Johann Bernoulli (1667—1748)one of a number of prominent mathematicians of his Swiss
family, was one of the earliest proponents of Leibniz’s differential and integral calculus.
Bernoulli helped to stimulate the development of the new techniques by proposing chal-
lenge problems to mathematicians, the most important probably being that of describ-
ing the brachistochrone, the curve representing the path of descent of a body between
two given points in the shortest possible time. Many of the problems he posed required
the solution of differential equations, and Bernoulli developed many techniques useful
toward this end, including the calculus of the logarithmic and exponential functions.

Leonhard Euler (1707-1783)a student of Johann Bernoulli in Basel who became one of
the earliest members of the St. Petersburg Academy of Sciences founded by Peter the
Great of Russia, was the most prolific mathematician of all time. His series of analysis
texts,Introduction to Analysis of the Infinitdlethods of the Differential Calculyand
Methods of the Integral Calculugstablished many of the notations and methods still in
use today. Among his numerous contributions to every area of mathematics and physics
are his development of the calculus of the trigonometric functions, the establishment
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of the theory of surfaces in differential geometry, and the creation of the calculus of
variations.

Maria Agnesi (1718-1799)the eldest child of a professor of mathematics at the University
of Bologna, in 1748 published the clearest text on calculus up to that point. Based
on the work of Leibniz and his followers, the work explained concepts lucidly and
provided numerous examples, including some that have become standard in calculus
texts to this day. Curiously, her name is often attached to a small item in her book not
even original with her, a curve whose equation was i%;?. This curve was
calledla versiera derived from the Latin meaning “to turn”; unfortunately the word
also was the abbreviation of the Italian word meaning “wife of the devil” and so was
translated into English as “witch”. The curve has ever since been known as the “witch
of Agnesi”.

Benjamin Banneker (1731-1806) the first American black to achieve distinction in sci-
ence, taught himself sufficient mathematics and astronomy to publish a series of well-
regarded almanacs in the 1790s. He also assisted Andrew Ellicott in the survey of the
boundaries of the District of Columbia. He was fond of solving mathematical puzzles
and problems and recorded many of these in his notebooks.

Joseph Lagrange(1736—1813)was born in Turin, becoming at age 19 a professor of math-
ematics at the Royal Artillery School there. He is most famous forAmalytical
Mechanics(1788), a work which extended the mechanics of Newton and Euler, and
demonstrated how problems in mechanics can generally be reduced to solutions of or-
dinary or partial differential equations. In 1797 he publishedTiisory of Analytic
Functions which attempted to reduce the ideas of calculus to those of algebraic anal-
ysis by assuming that every function could be represented as a power series. Although
his central idea was incorrect, many of the proofs of basic theorems of calculus in this
work were subsequently adapted by Cauchy into the forms still in use today.

Carl Friedrich Gauss (1777-1855)published his important work on number theory, the
Disquisitiones Arithmeticgevhen he was only 24, a work containing not only an exten-
sive discussion of the theory of congruences, culminating in the quadratic reciprocity
theorem, but also a detailed treatment of cyclotomic equations in which he showed how
to construct regulan-gons by Euclidean techniques whenexés prime andn — 1 is
a power of 2. Gauss also made fundamental contributions to the differential geometry
of surfaces in hi$seneral Investigations of Curved Surfated4827, as well as to com-
plex analysis, astronomy, geodesy, and statistics during his long tenure as a professor at
the University of ®ttingen. Many ideas later published by others, including the basics
of non-Euclidean geometry, were found in his notebooks after his death.

Augustin-Louis Cauchy (1789-1857) the most prolific mathematician of the nineteenth
century, wrote several textbooks in analysis for use atitwe Polytechnique, text-
books which became the model for calculus texts for the next hundred years. In his
texts, Cauchy based the calculus on the notion of limit, using, for the first time, a def-
inition which could be applied arithmetically to give proofs of some of the important
results. Among numerous other subjects to which he contributed important ideas were
complex analysis, in which he gave the first proof of the Cauchy integral theorem, the
theory of matrices, in which he demonstrated that every symmetric matrix can be diag-
onalized by use of an orthogonal substitution, and the theory of permutations, in which
he was the earliest to consider these from a functional point of view.

William Rowan Hamilton (1805-1865pecame the Astronomer Royal of Ireland in 1827
because of his original work in optics accomplished during his undergraduate years
at Trinity College, Dublin. In 1837, he showed how to introduce complex numbers
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into algebra axiomatically by considerimg+ ib as a pair(a, b) of real numbers with
appropriate computational rules. After many years of seeking an appropriate definition
for multiplication rules for triples of numbers which could be applied to vector analysis

in three-space, he discovered that it was in fact necessary to consider quadruplets of
numbers. It was out of the natural definition of multiplication of these quaternions that
the modern notions of dot product and cross product of vectors evolved.

Karl Weierstrass (1815-1897})aught for many years at German gymnasia before producing
a series of brilliant mathematical papers in the 1850s which resulted in his appointment
to a professorship at the University of Berlin. It was in his lectures there that he insisted
on defining every concept of analysis arithmetically, including such ideas as uniform
convergence and uniform continuity, thus completing the transformation away from the
use of terms such as “infinitely small”. Since he himself never published many of these
ideas, his primary influence was through the work of his numerous students.

Arthur Cayley (1821-1895)although graduating from Trinity College, Cambridge, as Se-
nior Wrangler, became a lawyer because there was no suitable mathematics position
available in England. He produced nearly 300 mathematical papers during his 14 years
as a lawyer, however, and finally secured a professorship at Cambridge in 1863. Among
his numerous mathematical achievements are the earliest abstract definition of a group
in 1854, out of which he was able to calculate all possible groups of order up to eight
and the basic rules for operating with matrices, including a statement (without rigor-
ous proof) of the Cayley—Hamilton theorem that every matrix satisfies its characteristic
equation.

Georg Bernhard Riemann (1826-1866) in his 1854 inaugural lecture at the University
of Géttingen entitled “On the Hypotheses which Lie at the Foundation of Geometry”,
discussed the general notion of ardimensional manifold, developed the idea of a
metric relation on such a manifold, and gave criteria which would determine whether
a three-dimensional manifold is Euclidean, or “flat”. This lecture had enormous influ-
ence on the development of geometry, including non-Euclidean geometry, as well as
on the development of a new concept of our physical space ultimately necessary for the
theory of general relativity. Among his other achievements, Riemann’s work on com-
plex functions and their associated Riemann surfaces became one of the foundations of
combinatorial topology.

Richard Dedekind (1831-1916)%olved the problem of the lack of unique factorization in
rings of algebraic integers by introducing ideals and their arithmetic and demonstrat-
ing that every ideal is either prime or can be expressed uniquely as a product of prime
ideals. During his teaching at Zurich in the late 1850s, he realized that, although differ-
ential calculus deals with continuous magnitudes, there was no satisfactory definition
available of what it means for the set of real numbers to be continuous. He therefore
worked out a definition of irrational numbers through his idea of what is now called
a Dedekind cut in the set of rational numbers. Somewhat later Dedekind also consid-
ered the basic ideas of set theory and gave a set theoretic characterization of the natural
numbers.

Sofia Kovalevskaya(1850-1891)was the first European woman since the Renaissance to
earn a Ph.D. in mathematics (1874), a degree based on her many new results in the the-
ory of partial differential equations. Because women were generally not permitted to
study mathematics officially in European universities, Kovalevskaya had been forced
to study privately with Weierstrass. Her mathematical talents eventually earned her a
professorship at the University of Stockholm, an editorship of the joukot Math-
ematica and the Prix Bordin of the French Academy of Sciences for her work on the
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revolution of a solid body about a fixed point. Unfortunately, her career was cut short
by her untimely death from pneumonia at the age of 41.

Henri Poincaré (1854-1912)one of the last of the universal mathematicians, contributed
to virtually every area of mathematics, including physics and theoretical astronomy.
Among his many contributions was the introduction of the idea of homology into topol-
ogy, the creation of a model of Lobachevskian geometry which helped to convince
mathematicians that this non-Euclidean geometry was as valid as Euclid’s, and a de-
tailed study of the non-linear partial differential equations governing planetary motion
aimed at answering questions about the stability of the solar system. Toward the end of
his life, Poincae wrote several popular books emphasizing the importance of science
and mathematics.

David Hilbert (1862-1943)is probably most famous for his lecture at the International
Congress of Mathematicians in Paris in 1900 in which he presented a list of 23 problems
which he felt would be of central importance for 20th century mathematics. Most of
the problems have now been solved, while significant progress has been achieved in the
remainder. Hilbert himself made notable contributions to the study of algebraic forms,
algebraic number theory, the foundations of geometry, integral equations, theoretical
physics, and the foundations of mathematics.

Leonard Eugene Dickson(1874—1954)wvas the first recipient of a doctorate in mathematics
at the University of Chicago, where he ultimately spent most of his mathematical ca-
reer. Dickson helped to develop the abstract approach to algebra by developing sets of
axioms for such constructs as groups, fields, and algebras. Among his important books
was his monumental three volurkiistory of the Theory of Numberahich traced the
evolution of every important concept in that field.

Emmy Noether (1882-1935)received her doctorate from the University of Erlangen in
1908, a few years later moving too@ingen to assist Hilbert in the study of general
relativity. During her 18 years there, she was extremely influential in stimulating a new
style of thinking in algebra by always emphasizing its structural rather than computa-
tional aspects. She is most famous for her work on what are now called Noetherian
rings, but her inspiration of others is still evident in today’s textbooks in abstract alge-
bra.

Alan Turing (1912-1954)eveloped the concept of a “Turing machine” in 1936 to answer
the questions of what a computation is and whether a given computation can in fact be
carried out. This notion today lies at the basis of the modern all-purpose computer, a
machine which can be programmed to do any desired computation. During World War
I, Turing led the successful effort in England to crack the German “Enigma” code, an
effort central to the defeat of Nazi Germany.
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Financial Analysis

9.1 FINANCIAL FORMULAE
9.1.1  Definition of financial terms
9.1.2  Formulae connecting financial terms
9.1.3 Examples

9.2 FINANCIAL TABLES
921  Compound interest: find final value
9.22  Compound interest: find interest rate
9.23  Compound interest: find annuity

9.1 FINANCIAL FORMULAE

9.1.1 DEFINITION OF FINANCIAL TERMS

:SN.Q “UUU:B

amount that P isworth, after n time periods, with ¢ percent interest per period
total amount borrowed

principa to beinvested (equivalently, present value)

future value multiplier after one time period

percent interest per time period (expressed as a decimal)

amount to be paid each time period

number of time periods

Note that the unitsof A, B, P, and m must al be the same, for example, dollars.
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9.1.2 FORMULAE CONNECTING FINANCIAL TERMS

1. Interest: Let the principal amount P be invested at an interest rate of i% per
time period (expressed as adecimal), for n time periods. Let A be the amount
that thisis worth after n time periods. Then

(@) Smpleinterest:

A

(1+ni) an (1 + ni)

. 1 /A
(9.1.2)

(b) Compound interest (see the tables beginning on page 783 for A and the
tables beginning on page 785 for i):

1/n
A=P(1+i)" and P= 4 and z‘:(% -~ 1.

(L+4)»
(9.1.2)
When interest is compounded ¢ times per time period for n. time periods,
it is equivalent to an interest rate of (i/q)% per time period for nq time

periods.
. ng
A=pP (1 + 3) :
q

. —ng
(3
P=A <1 + 5) ; (9.1.3)

Ol

Continuous compounding occurs when the interest is compounded in-
finitely often in each time period (i.e., ¢ — o). Inthiscase; A = Pe".

1=4q

2. Present value: If A isto be received after n time periods of i% interest per
time period, then the present value P of such an investment is given by (from
Equation (9.1.2)) P = A(1 +14)~™.

3. Annuities: Suppose that the amount B (in dollars) is borrowed, at arate of i%
per time period, to be repaid at arate of m (in dollars) per time period, for a
total of n time periods. Then (see the tables beginning on page 787):

(1+14)"

m 1
B=—|1————}. 9.15
i < (1+i)"> ( )
Using a = (1 + 1), these eguations can be written more compactly as
" 1
m = Bi—2 ad B=1" (1 - —> . (9.1.6)
a” —1 ) a”
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9.1.3 EXAMPLES

1. Question: If $100 is invested at 5% per year, compounded annually for 10
years, what is the resulting amount?

e Analysis: Using Equation (9.1.2), we identify
(@) Principal invested, P = 100 (the units are dollars)
(b) Time period, 1 year
(c) Interest rate per time period, i = 5% = 0.05
(d) Number of time periods, n = 10

e Answer: A = P(1+1i)" or A =100(1+ 0.05)'° = $162.89.
(Or, see tables starting on page 783.)

2. Question: If $100 is invested at 5% per year and the interest is compounded
quarterly (4 times ayear) for 10 years, what is the final amount?

e Analysis: Using Equation (9.1.3) we identify
(@) Principal invested, P = 100 (the units are dollars)
(b) Time period, 1 year
(c) Interest rate per time period, i = 5% = 0.05
(d) Number of time periods, n = 10
(e) Number of compounding time periods, ¢ = 4

o Answer: A= P (14 £)" or 4 =100(1+2£2)10 = 100(1.0125)""
= $164.36.
e Alternate analysis. Using Equation (9.1.2), we identify
(@) Principal invested, P = 100 (the units are dollars)
(b) Time period, quarter of ayear
(©) Interest rate per time period, i = 2% = %05 = 0.0125
(d) Number of time periods, n = 10 - 4 = 40

e Alternateanswer: A = P(1+ i)™ or A = 100(1.0125)*° = $164.36.
(Or, see tables starting on page 783.)

3. Question: If $100 is invested now, and we wish to have $200 at the end of 10
years, what yearly compound interest rate must we receive?

e Analysis: Using Equation (9.1.2), we identify
(@) Principal invested, P = 100 (the units are dollars)
(b) Final amount, A = 200
(c) Timeperiod, 1year
(d) Number of time periods, n = 10
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e Answer: i = (%)1/" —lori= (%)1/10 —1 =0.0718. (Or, seetables
starting on page 785.) Hence, we must receive an annual interest rate of

7.2%.

4. Question: Aninvestment returns $10,000 in 10 yearstime. If the interest rate
will be 10% per year, what is the present value? (That is, how much money
would have to be invested now to obtain this amount in ten years?)

e Analysis. Using Equation (9.1.2), we identify
(@) Final amount, A = 10, 000 (the units are dollars)
(b) Time period, 10 years
(c) Interest rate per time period, i = 10% = 0.1
(d) Number of time periods, n = 10

e Answer: P = A(1 +4)~™ = 10000(1.1) 10 = 3855.43; the present
value of this investment is 3,855.43. (Or, the table on page 784 gives
the value 2.5937; the present value of this investment is then $2:000 —
3,855.43).

5. Question: A mortgage of $100,000 is obtained with which to buy a house.
The mortgage will be repaid at an interest rate of 9% per year, compounded
monthly, for 30 years. What is the monthly payment?

e Analysis: Using Equation (9.1.6), we identify
(8 Amount borrowed, B = 100, 000 (the units are dollars)
(b) Time period, 1 month
(c) Interest rate per time period, i = 0.09/12 = 0.0075
(d) Number of time periods, n = 30 - 12 = 360

e Answer:a=1+i=1.0075andm = Bi—&— = (100,000)(.0075)

(1.0075)%¢° ;
X T 00T8)%0T = 804.62. (Or, see tables starting on page 787.) The

monthly payment is $804.62.

6. Question: Suppose that interest rates on 15-year mortgages are currently 6%,
compounded monthly. By spending $800 per month, what is the largest mort-
gage obtainable?

e Analysis. Using Equation (9.1.6), we identify
(@) Time period, 1 month
(b) Payment amount, m = 800 (the units are dollars)
(c) Interest rate per time period, i = 0.06/12 = 0.005
(d) Number of time periods, n = 15 - 12 = 180

e Answer:a =1+i=1.005andB = 2 (1 — -1 ) = 200 (1 — 1)
= 94802.81. (Or, see tables starting on page 787.) The largest mortgage
amount obtainable is $94,802.81.
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9.2 FINANCIAL TABLES

9.2.1 COMPOUND INTEREST: FIND FINAL VALUE

These tables use Equation (9.1.2) to determine the final value in dollars (A) when
onedollar (P = 1) isinvested at an interest rate of ¢ per time period, the length of
investment time being n time periods. For example, if $1 isinvested at a return of
3% per time period, for 60 time periods, then the final value would be $5.89 (see the
following table). Analogously, if $10 had been invested, then the final value would
be $59.92.

Interest rate (i)
1.00% 150% 2.00% 250% 3.00%  3.50%
1.0201 1.0302 1.0404 1.0506 1.0609 1.0712
1.0406 1.0614 1.0824 1.1038 1.1255 1.1475
10615 1.0934 11262 11597 1.1941 1.2293
1.0829 1.1265 1.1717 1.2184 12668 1.3168
10| 1.1046 1.1605 1.2190 1.2801 1.3439 1.4106
12| 1.1268 1.1956 1.2682 1.3449 14258 1.5111
20| 1.2202 1.3469 1.4860 1.6386 1.8061 1.9898
24 | 1.2697 14295 1.6084 1.8087 2.0328 2.2833
36 | 1.4308 1.7091 2.0399 24325 2.8983 3.4503
48 | 1.6122 2.0435 25871 3.2715 4.1322 5.2136
60 | 1.8167 2.4432 3.2810 4.3998 5.8916 7.8781
72 | 20471 29212 4.1611 59172 8.4000 11.9043

0o ANS

Interest rate ()
4.00% 450% 5.00% 550% 6.00%  6.50%
10816 1.0920 11025 1.1130 11236 1.1342
11699 11925 1.2155 1.2388 1.2625 1.2865
12653 13023 13401 13788 1.4185 1.4591
13686 14221 14775 15347 15938 1.6550
10| 14802 15530 1.6289 1.7081 17909 1.8771
12| 16010 16959 17959 19012 20122 21291
20| 21911 24117 26533 29178 3.2071 3.5236
24| 25633 28760 3.2251 3.6146 4.0489 45331
36| 41039 48774 57918 6.8721 8.1472 9.6513
48 | 65705 82715 104013 13.0653 16.3939 20.5485
60 | 10.5196 14.0274 18.6792 24.8398 32.9877 43.7498
72 | 16.8423 237888 33.5451 47.2256 66.3777 93.1476

0o ANS
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Interest rate (7)

n 7.00% 7.50% 8.00% 8.50% 9.00% 9.50%
2 1.1449 1.1556 1.1664 1.1772 1.1881 1.1990
4 1.3108 1.3355 1.3605 1.3859 1.4116 1.4377
6 1.5007 1.5433 1.5869 1.6315 16771 1.7238
8 1.7182 1.7835 1.8509 1.9206 1.9926 2.0669
10 1.9671 2.0610 2.1589 2.2610 2.3674 24782
12 2.2522 2.3818 2.5182 2.6617 2.8127 29715
20 3.8697 4.2478 4.6610 5.1120 5.6044 6.1416
24 5.0724 5.6729 6.3412 7.0846 7.9111 8.8296
36| 114239 135115 159682 188569 222512 26.2366
48 | 257289 321815 40.2106 50.1912 625852 77.9611
60 | 57.9464 76.6492 101.2571 1335932 176.0313 231.6579
72 | 130.5065 182.5616 254.9825 3555831 495.1170 688.3615
Interest rate (7)
n | 10.00% 10.50% 11.00% 11.50% 12.00% 12.50%
2 1.2100 1.2210 1.2321 1.2432 1.2544 1.2656
4 1.4641 1.4909 15181 1.5456 15735 1.6018
6 1.7716 1.8204 1.8704 1.9215 1.9738 2.0273
8 2.1436 2.2228 2.3045 2.3889 2.4760 2.5658
10 2.5937 2.7141 2.8394 2.9699 3.1059 3.2473
12 3.1384 3.3140 3.4985 3.6923 3.8960 4.1099
20 6.7275 7.3662 8.0623 8.8206 9.6463 10.5451
24 9.8497 10.9823 12.2392 13.6332 15.1786 16.8912
36 | 30.9127 36.3950 42.8181 50.3379 59.1356 69.4210
48 | 97.0172 120.6117 149.7970 185.8633 230.3908 285.3127
60 | 3044816 399.7023 524.0572 686.2653 897.5969 1172.6039
72 | 9555938 1324.5978 1833.3884 2533.9057 3497.0161 4819.2740
Interest rate (7)
n 13.00% 13.50% 14.00% 14.50% 15.00% 15.50%
2 1.2769 1.2882 1.2996 1.3110 1.3225 1.3340
4 1.6305 1.6595 1.6890 1.7188 1.7490 1.7796
6 2.0819 2.1378 2.1950 2.2534 2.3131 2.3741
8 2.6584 2.7540 2.8526 2.9542 3.0590 3.1671
10 3.3946 3.5478 3.7072 3.8731 40456 4.2249
12 4.3345 45704 4.8179 5.0777 5.3502 5.6362
20 11.5231 12.5869 13.7435 15.0006 16.3665 17.8501
24 18.7881 20.8882 232122 25.7829 28.6252 31.7664
36 81.4374 954665 111.8342 1309174 1531518  179.0406
48 | 3529923 436.3162 538.8066 664.7577 819.4007 1009.1024
60 | 1530.0535 1994.1218 2595.9187 3375.4307 4383.9987 5687.4691
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9.2.2 COMPOUND INTEREST: FIND INTEREST RATE

These tables use Equation (9.1.2) to determine the compound interest rate 7 that must
be obtained from an investment of one dollar (P = 1) to yield afina value of A (in
dollars) when the initial amount isinvested for n time periods. For example, if $1is
invested for 60 time periods, and the final amount obtained is $4.00, then the actual
interest rate has been 2.34% per time period (see the following table). Anaogously,
if $100 had been invested, and the final amount was $400, then the interest rate would
also be 2.34% per time period.

Annuity (A)

2.0 25 3.0 35 4.0 45
100.00 150.00 200.00 250.00 300.00 350.00
4142 5811 7320 87.08 100.00 112.13
2599 3572 4423 5183 5874 6510
1892 2574 3161 36.78 4142 4565
1487 2011 2457 2847 3195 3510
10 7.18 960 1161 1335 1487 16.23
12 5.95 7.93 959 1100 1225 1335
20 3.53 4.69 5.65 6.46 7.18 7.81
24 293 3.89 4.68 5.36 5.95 6.47
36 1.94 2.58 3.10 354 3.93 4.27
48 1.46 1.93 231 2.64 293 3.18
60 1.16 1.54 1.85 211 2.34 254
72 0.97 1.28 154 1.75 194 21

O WN RS

Annuity (A)

5.0 55 6.0 6.5 7.0 75
400.00 450.00 500.00 550.00 600.00 650.00
12361 13452 14495 154.95 16457 173.86

71.00 7652 8171 86.63 9129 9574

4953 5314 5651 59.67 6266 65.49

3797 4063 4310 4541 4758 49.63
10| 1746 1859 1962 2058 2148 22.32
12| 1435 1527 1610 16.88 1761 18.28
20 8.38 8.90 9.37 981 1022 10.60
24 6.94 7.36 7.75 8.11 8.45 8.76
36 457 4.85 5.10 5.34 5.55 5.76
48 341 3.62 3.80 3.98 4.14 4.29
60 2.72 2.88 3.03 3.17 3.30 342
72 2.26 2.40 2.52 2.63 274 2.84

abd wN PSS
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Annuity (A)
n 8.0 85 9.0 9.5 10.0 105
1| 700.00 750.00 800.00 850.00 900.00 950.00
2| 18284 19155 200.00 20822 216.23 224.04
3(100.00 10408 108.01 111.79 11544 118.98
4| 6818 70.75 7320 7556 7783 80.01
5| 5157 5342 5519 56.87 5849 60.04
10| 2311 2386 2457 2525 2589 2651
12| 1892 1952 20.09 2064 2115 21.65
20| 1096 1129 1161 1191 1220 1248
24 9.05 9.33 9.59 9.83 10.07 10.29
36 5.95 6.12 6.29 6.45 6.61 6.75
48 4.43 4.56 4.68 4.80 491 5.02
60 3.53 3.63 3.73 3.82 391 4.00
72 293 3.02 3.10 3.18 3.25 3.32
Annuity (A)
n 11.0 12.0 13.0 14.0 15.0 16.0
1| 1000.00 1100.00 1200.00 1300.00 1400.00 1500.00
2| 23166 24641 26056 27417 287.30 300.00
3| 12240 12894 13513 141.01 14662 15198
4 82.12 86.12 89.88 93.43 96.80 100.00
5 61.54 64.38 67.03 69.52 71.88 74.11
10 27.10 28.21 29.24 30.20 31.10 31.95
12 22.12 23.01 23.83 24.60 25.32 25.99
20 12.74 13.23 13.68 14.11 14.50 14.87
24 10.51 10.91 11.28 11.62 11.95 12.25
36 6.89 7.15 7.38 7.61 7.81 8.01
48 512 531 5.49 5.65 5.80 5.95
60 4.08 4.23 4.37 4.50 4.62 4.73
72 3.39 351 3.63 3.73 3.83 393
Annuity (A)
n 17.0 18.0 19.0 20.0 250 30.0
1| 1600.00 1700.00 1800.00 1900.00 2400.00 2900.00
2| 31231 32426 33589 34721 400.00 447.72
3| 15713 162.07 166.84 17144 19240 210.72
4| 10305 10598 108.78 11147 12361 134.03
5 76.23 78.26 80.20 82.06 90.36 97.44
10 32.75 3351 34.24 34.93 37.97 40.51
12 26.63 27.23 27.81 28.36 30.77 32.77
20 15.22 15.55 15.86 16.16 17.46 18.54
24 12.53 12.80 13.05 13.29 14.35 15.22
36 8.19 8.36 8.52 8.68 9.35 9.91
48 6.08 6.21 6.33 6.44 6.94 7.34
60 4.83 4.93 5.03 512 551 5.83
72 4.01 4.10 4.17 4.25 457 4.84
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9.2.3 COMPOUND INTEREST: FIND ANNUITY

These tables use Equation (9.1.4) to determine the annuity (or mortgage) payment
that must be paid each time period, for n time periods, at an interest rate of i% per
time period, to pay off aloan of one dollar (B = 1). For example, if $1 is borrowed
at 3% interest per time period, and the amount is to be paid back in equal amounts
over 10 time periods, then the amount paid back per time periodis $0.12 (seethefol-
lowing table). Analogously, if $100 had been borrowed, then the mortgage amount
would be $11.72.

Interest rate (¢)
2.00% 225% 250% 2.75% 3.00% 3.25%
1.0200 1.0225 1.0250 1.0275 1.0300 1.0325
0.5151 0.5169 0.5188 05207 0.5226 0.5245
0.3468 0.3484 0.3501 0.3518 0.3535 0.3552
0.2626 0.2642 0.2658 0.2674 0.2690 0.2706
0.2122 0.2137 0.2152 0.2168 0.2183 0.2199
0.1785 0.1800 0.1815 0.1831 0.1846 0.1861
0.1545 0.1560 0.1575 0.1590 0.1605 0.1620
0.1365 0.1380 0.1395 0.1410 0.1425 0.1440
0.1225 0.1240 0.1255 0.1269 0.1284 0.1299
0.1113 0.1128 0.1143 0.1157 0.1172 0.1187
0.0946 0.0960 0.0975 0.0990 0.1005 0.1020
0.0612 0.0626 0.0641 0.0657 0.0672 0.0688
0.0529 0.0544 0.0559 0.0575 0.0590 0.0607
0.0392 0.0408 0.0425 0.0441 0.0458 0.0475
0.0263 0.0282 0.0301 0.0320 0.0340 0.0361

O©O~NOOUN~WNRS

NWNDNE P
NO PS~ODNO

Interest rate (¢)
3.50% 3.75% 4.00% 4.25% 4.50% 4.75%
1.0350 1.0375 1.0400 1.0425 1.0450 1.0475
0.5264 0.5283 0.5302 05321 0.5340 0.5359
0.3569 0.3586 0.3604 0.3621 0.3638 0.3655
0.2722 0.2739 0.2755 0.2771 0.2787 0.2804
0.2215 0.2230 0.2246 0.2262 0.2278 0.2294
0.1877 0.1892 0.1908 0.1923 0.1939 0.1955
0.1635 0.1651 0.1666 0.1681 0.1697 0.1713
0.1455 0.1470 0.1485 0.1501 0.1516 0.1532
0.1315 0.1330 0.1345 0.1360 0.1376 0.1391
0.1202 0.1218 0.1233 0.1248 0.1264 0.1279
0.1035 0.1050 0.1066 0.1081 0.1097 0.1112
0.0704 0.0720 0.0736 0.0752 0.0769 0.0785
0.0623 0.0639 0.0656 0.0673 0.0690 0.0707
0.0493 0.0511 0.0529 0.0547 0.0566 0.0585
0.0382 0.0403 0.0425 0.0447 0.0470 0.0492

O©O~NOOUON~WNRS
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Interest rate (7)

5.00%

5.25%

5.50%

5.75%

6.00%

6.25%

1.0500
0.5378
0.3672
0.2820
0.2310
0.1970
0.1728
0.1547
0.1407
0.1295
0.1128
0.0802
0.0725
0.0604
0.0515

O©O~NOOUON~WNRS

NWNDNDN PR R
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1.0525
0.5397
0.3689
0.2837
0.2326
0.1986
0.1744
0.1563
0.1423
0.1311
0.1144
0.0819
0.0742
0.0624
0.0539

1.0550
0.5416
0.3706
0.2853
0.2342
0.2002
0.1760
0.1579
0.1438
0.1327
0.1160
0.0837
0.0760
0.0644
0.0562

1.0575
0.5435
0.3724
0.2869
0.2358
0.2018
0.1776
0.1595
0.1454
0.1343
0.1177
0.0854
0.0779
0.0664
0.0585

1.0600
0.5454
0.3741
0.2886
0.2374
0.2034
0.1791
0.1610
0.1470
0.1359
0.1193
0.0872
0.0797
0.0684
0.0609

1.0625
0.5474
0.3758
0.2903
0.2390
0.2050
0.1807
0.1626
0.1486
0.1375
0.1209
0.0890
0.0815
0.0704
0.0633

Interest rate (7)

6.50%

6.75%

7.00%

7.25%

7.50%

7.75%

1.0650
0.5493
0.3776
0.2919
0.2406
0.2066
0.1823
0.1642
0.1502
0.1391
0.1226
0.0908
0.0834
0.0725
0.0657

O©O~NOOUON~WNRS
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1.0675
0.5512
0.3793
0.2936
0.2423
0.2082
0.1839
0.1658
0.1519
0.1407
0.1242
0.0926
0.0853
0.0746
0.0681

1.0700
0.5531
0.3810
0.2952
0.2439
0.2098
0.1855
0.1675
0.1535
0.1424
0.1259
0.0944
0.0872
0.0767
0.0705

1.0725
0.5550
0.3828
0.2969
0.2455
0.2114
0.1872
0.1691
0.1551
0.1440
0.1276
0.0962
0.0891
0.0789
0.0730

1.0750
0.5569
0.3845
0.2986
0.2472
0.2130
0.1888
0.1707
0.1568
0.1457
0.1293
0.0981
0.0911
0.0810
0.0754

1.0775
0.5588
0.3863
0.3002
0.2488
0.2147
0.1904
0.1724
0.1584
0.1474
0.1310
0.1000
0.0930
0.0832
0.0779
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Interest rate (7)

8.00%

8.25%

8.50%

8.75%

9.00%

9.25%

1.0800
0.5608
0.3880
0.3019
0.2505
0.2163
0.1921
0.1740
0.1601
0.1490
0.1327
0.1018
0.0950
0.0853
0.0803

O©O~NOOUON~WNRS

NWNDNDN PR R
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1.0825
0.5627
0.3898
0.3036
0.2521
0.2180
0.1937
0.1757
0.1618
0.1507
0.1344
0.1037
0.0970
0.0875
0.0828

1.0850
0.5646
0.3915
0.3053
0.2538
0.2196
0.1954
0.1773
0.1634
0.1524
0.1361
0.1057
0.0990
0.0898
0.0852

1.0875
0.5665
0.3933
0.3070
0.2554
0.2213
0.1970
0.1790
0.1651
0.1541
0.1379
0.1076
0.1010
0.0920
0.0877

1.0900
0.5685
0.3951
0.3087
0.2571
0.2229
0.1987
0.1807
0.1668
0.1558
0.1396
0.1095
0.1030
0.0942
0.0902

1.0925
0.5704
0.3968
0.3104
0.2588
0.2246
0.2004
0.1824
0.1685
0.1575
0.1414
0.1115
0.1051
0.0965
0.0027

Interest rate (7)

9.50%

10.00%

10.50%

11.00%

11.50% 12.00%

1.0950
0.5723
0.3986
0.3121
0.2604
0.2263
0.2020
0.1840
0.1702
0.1593
0.1432
0.1135
0.1071
0.0988
0.0951

O©O~NOOUON~WNRS

NWNDNDN PR R
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1.1000
0.5762
0.4021
0.3155
0.2638
0.2296
0.2054
0.1874
0.1736
0.1628
0.1468
0.1175
0.1113
0.1033
0.1001

1.1050
0.5801
0.4057
0.3189
0.2672
0.2330
0.2088
0.1909
0.1771
0.1663
0.1504
0.1215
0.1155
0.1080
0.1051

1.1100
0.5839
0.4092
0.3223
0.2706
0.2364
0.2122
0.1943
0.1806
0.1698
0.1540
0.1256
0.1198
0.1126
0.1101

1.1150 1.1200
0.5878 0.5917
0.4128 0.4163
0.3258 0.3292
0.2740 0.2774
0.2398 0.2432
0.2157 0.2191
0.1978 0.2013
0.1841 0.1877
0.1734 0.1770
0.1577 0.1614
0.1297 0.1339
0.1241  0.1285
0.1173 0.1221

0.1150 0.1200
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Interest rate ()

12.50%

13.00%

13.50% 14.00%

14.50%

15.00%

1.1250
0.5956
0.4199
0.3327
0.2808
0.2467
0.2226
0.2048
0.1913
0.1806
0.1652
0.1381
0.1329
0.1268
0.1250

O©O~NOOUON~WNRS

NWNDNDN PR R
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1.1300
0.5995
0.4235
0.3362
0.2843
0.2501
0.2261
0.2084
0.1949
0.1843
0.1690
0.1424
0.1373
0.1316
0.1300

1.1350 1.1400
0.6034 0.6073
0.4271 0.4307
0.3397 0.3432
0.2878 0.2913
0.2536 0.2572
0.2296 0.2332
0.2120 0.2156
0.1985 0.2022
0.1880 0.1917
0.1728 0.1767
0.1467 0.1510
0.1418 0.1463
0.1364 0.1413
0.1350 0.1400

1.1450
0.6112
0.4344
0.3467
0.2948
0.2607
0.2368
0.2192
0.2059
0.1955
0.1806
0.1554
0.1509
0.1461
0.1450

1.1500
0.6151
0.4380
0.3503
0.2983
0.2642
0.2404
0.2228
0.2096
0.1993
0.1845
0.1598
0.1554
0.1510
0.1500

Interest rate (7)

15.50%

16.00%

16.50% 17.00%

17.50%

18.00%

1.1550
0.6190
0.4416
0.3538
0.3019
0.2678
0.2440
0.2265
0.2133
0.2031
0.1884
0.1642
0.1600
0.1559
0.1550

O©O~NOOUON~WNRS
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1.1600
0.6230
0.4453
0.3574
0.3054
0.2714
0.2476
0.2302
0.2171
0.2069
0.1924
0.1687
0.1647
0.1608
0.1600

1.1650 1.1700
0.6269 0.6308
0.4489 0.4526
0.3609 0.3645
0.3090 0.3126
0.2750 0.2786
0.2513 0.2550
0.2339 0.2377
0.2209 0.2247
0.2108 0.2147
0.1964 0.2005
01732 0.1777
0.1693 0.1740
0.1657 0.1706
0.1650 0.1700

1.1750
0.6348
0.4562
0.3681
0.3162
0.2823
0.2586
0.2415
0.2285
0.2186
0.2045
0.1822
0.1787
0.1755
0.1750

1.1800
0.6387
0.4599
0.3717
0.3198
0.2859
0.2624
0.2452
0.2324
0.2225
0.2086
0.1868
0.1835
0.1805
0.1800
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8.1 BASIC NUMERICAL ANALYSIS

8.1.1 APPROXIMATIONS AND ERRORS

Numerical methods involve nding approximate solutions to mathematical prob-
lems. Errors of approximation can result from two sources: error inherent in the
method or formula used and round-off error. Round-off error results when a calcu-
lator or computer is used to perform real-number calculations with a nite number
of signi cant digits. All but the rst speci ed number of digits are either chopped or
rounded to that number of digits.

If p* is an approximation to p, the absolute error is de ned to be |p — p*| and
the relative error is |p — p*|/|p|, provided that p # 0.

Iterative techniques often generate sequences that (ideally) converge to an exact
solution. It is sometimes desirable to describe the rate of convergence.

DEFINITION 8.1.1

Suppose lim f3,, = 0 andlim «a,, = av. If a positive constant K exists with |a,, — a| <
K |B,| for large n, then {a,,} is said to converge to a with a rate of convergence
O(Br). This is read “big oh of By, and written a;, = a + O(By,).

DEFINITION 8.1.2

Suppose {p,} is a sequence that converges to p, with p,, # p, for all n. If positive

|Pnt1 — D

constants A and « exist with lim B = M\ then {p,} converges to p of

. n—oo |p, —p
order «, with asymptotic error constant \.

In general, a higher order of convergence yields a more rapid rate of conver-
gence. A sequence has linear convergence if a = 1 and quadratic convergence if
a=2.

8.1.1.1 Aitken's A2 method

DEFINITION 8.1.3

Given {pn}>2 . the forward difference Apy, is de ned by Ap,, = pni1 — Pn, for
n > 0. Higher powers A*p,, are de n ed recursively by A*p,, = AN(AF1p,,), for
k > 2. In particular, N\*p,, = AN(Dnv1 — Pn) = Ptz — 2Pns1 + Po-

If a sequence {p, } converges linearly to p and (p,, — p)(pn—1 — p) > 0, for
suf ciently large n, then the new sequence {p,} generated by called Aitken’s A?
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method,

~ (Apn)2
Pn=Pn = p5 8.1.1)
forall n > 0, satis s lim,, ., 222 — 0.
n — P

8.1.1.2 Richardson’s extrapolation

Improved accuracy can be achieved by combining extrapolation with a low-order
formula. Suppose the unknown value M is approximated by a formula N (h) for
which

M = N(h) + Kih+ Koh® + K3h® + ... (8.1.2)

for some unspeci ed constants K1, Ko, K3, . ... Toapply extrapolation, set N (h) =
N (h), and generate new approximations N ;(h) by

h N;_1 (&) = N;_ (b
N;(h) = N;_4 <§> + == (23.31_1] 1h) (8.1.3)

Then M = N;(h) + O(h?). A table of the following form is generated, one row at
a time:

Ni(h)

Ni (b)) Na(h)

Ni (Pa) N2 (hk) Ni(h)

Ni(Ps) N2 (Pla) Nz(h) Na(h).

Extrapolation can be applied whenever the truncation error for a formula has the
form Z;n:_ll K;h® 4+ O(h*) for constants K; and oy < @ < -+ < Q. In
particular, if a; = 27, the following computation can be used:

R\  Nj_1 (%)= Nj_i(h
N;(h) = N;_, <§> + - li’jzl_lf 1(h), (8.1.4)

and the entries in the ™ column of the table have order O(h?7).

8.1.2 SOLUTION TO ALGEBRAIC EQUATIONS

Iterative methods generate sequences {p,, } that converge to a solution p of an equa-
tion.

DEFINITION 8.1.4

A solution p of f(x) = 0is a zero of multiplicity m if f(zx) can be written as f(z) =
(x —p)"q(x), for © # p, where lim,_,p, q(x) # 0. A zero is called simple if m = 1.
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8.1.2.1 Fixed point iteration
A xed point p for a function g satis es g(p) = p. Given po, generate {p,, } by

Pnt1 = g(pn) forn > 0. (8.1.5)

If {p,,} converges, then it will converge to a x ed point of g and the value p,, can
be used as an approximation for p. The following theorem gives conditions that
guarantee convergence.

THEOREM 8.1.1 (Fixed point theorem)

Let g € Cla,b] and suppose that g(z) € [a,b] for all x in [a,b]. Suppose also that
g exists on (a,b) with |¢g'(z)| < k < 1, for all x € (a,b). If po is any number
in [a,b], then the sequence de ne d by Equation (8.1.5) converges to the (unique)
xed point p in [a,b]. Both of the error estimates |p,, — p| < % |po — p1| and
|pn — p| < k"max{po — a,b — po} hold, for alln > 1.

The iteration sometimes converges even if the conditions are not all satis ed.

THEOREM 8.1.2

Suppose g is a function that satis es the conditions of Theorem 8.1.1 and g' is also
continuous on (a,b). If g'(p) # O, then for any number pg in [a,b], the sequence
generated by Equation (8.1.5) converges only linearly to the unique xed point p in
[a, b].

THEOREM 8.1.3

Let p be a solution of the equation © = g(z). Suppose that g'(p) = 0 and g" are
continuous and bounded by a constant on an open interval I containing p. Then
there exists a & > 0 such that, for po € [p — 6,p + 0], the sequence de n ed by
Equation (8.1.5) converges at least quadratically to p.

8.1.2.2 Steffensen’s method

For a linearly convergent x ed-point iteration, convergence can be accelerated by

applying Aitken’s A2 method. This is called Steffensen’s method. De ne p(()o) = po,

(0

compute p; ) = g(p(()o)) and pgo) = g(pgo)). Set p(()l) = po which is computed using

Equation (8.1.1) applied to p(()o) , pgo), and péo). Use x ed-point iteration to compute

pgl) and pgl) and then Equation (8.1.1) to nd p(()z). Continuing, generate {p(()n)}.

THEOREM 8.1.4

Suppose that x = g(x) has the solution p with g'(p) # 1. If there exists a 6 > 0 such
that g € C3[p — 6,p + 8], then Steffensen’s method gives quadratic convergence for

the sequence {p(()n) } for any po € [p —6,p+ 0).
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FIGURE 8.1
Illustration of Newton’s method."

v A

Slope f* (p1) v =f(x)

(1. fpD)

i/smpe I (o)

(Po- f(po))

8.1.2.3 Newton—-Raphson method (Newton’s method)

To solve f(x) = 0, given an initial approximation p, generate {p, } using

Pl = Pn — f(pn)
T i (pa)”

forn > 0. (8.1.6)

Figure 8.1 describes the method geometrically. Each value p,,1 represents the
x-intercept of the tangent line to the graph of f(z) at the point [p ., f(pn)]-

THEOREM 8.1.5

Let f € C?[a,b]. If p € [a,b] is such that f(p) = 0 and f'(p) # 0, then there exists
a 0 > 0 such that Newton’s method generates a sequence {p,,} converging to p for
any initial approximation po € [p — §,p + 9.

Note:

1. Generally the conditions of the theorem cannot be checked. Therefore one
usually generates the sequence {p,,} and observes whether or not it converges.

2. An obvious limitation is that the iteration terminates if f'(p,) = 0.

3. For simple zeros of f, Theorem 8.1.5 implies that Newton’s method converges
quadratically. Otherwise, the convergence is much slower.

I'from R.L. Burden and J.D. Faires, Numerical Analysis, 7th ed., Brooks/Cole, Paci ¢ Grove, CA,
2001. With permission.
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8.1.2.4 Modi ed Newton’'s method

Newton’s method converges only linearly if p has multiplicity larger than one. How-

ever, the function u(z) = ]f,((“;)) has a simple zero at p. Hence, the Newton iteration
formula applied to u(z) yields quadratic convergence to a root of f(z) = 0. The
iteration simpli es to

N _ f(pn) f' (pn)
Prt = P = T 0,0 = ) " (pn)

forn > 0. (8.1.7)

8.1.2.5 Secant method

To solve f(x) = 0, the secant method uses the z-intercept of the secant line passing
through (py,, f(pr)) and (pn—1, f(Pn—1)). The derivative of f is not needed. Given
po and p;, generate the sequence with

(pn - pnfl)

Foom) = o) ormzt (8.1.8)

Pn+1 = Pn — f(pn)

8.1.2.6 Root-bracketing methods

Suppose f(z) is continuous on [a,b] and f(a)f(b) < 0. The Intermediate Value
Theorem guarantees a number p € (a,b) exists with f(p) = 0. A root-bracketing
method constructs a sequence of nested intervals [a,, b,], each containing a solution
of f(z) = 0. At each step, compute p,, € [ay, b,] and proceed as follows:

If f(p,) = 0, stop the iteration and p = p,,.
Else,

if f(an)f(pn) <0, thenset i1 = an, bpy1 = Pn.
Else, set apt+1 = Pns bpp1 = by

8.1.2.7 Bisection method
This is a special case of the root-bracketing method. The values p,, are computed by

pn:an+b";“” :a";b", forn > 1. (8.1.9)

Clearly, |p, —p| < (b—a)/2™ for n > 1. The rate of convergence is O(2 ™).
Although convergence is slow, the exact number of iterations for a speci ed accuracy
€ can be determined. To guarantee that [py — p| < €, use

b— (b —a) —1
N>10g2< 6“): n( 15)2 ne (8.1.10)

8.1.2.8 False position (regula falsi)

by, — an,
DPn = by — f(bn)m;

This root-bracketing method also converges if the initial criteria are satis ed.

forn > 1. (8.1.11)
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8.1.2.9 Horner's method with de ation

If Newton’s method is used to solve for roots of the polynomial P(z) = 0, then
the polynomials P and P’ are repeatedly evaluated. Horner’s method ef ciently
evaluates a polynomial of degree n using only n multiplications and n additions.

8.1.2.10 Horner’s algorithm

To evaluate P(x) = apz™ + an_12" 1 + ... + ap and its derivative at z:
INPUT: degree n, coef cien ts {ag, a1, .. .,an}; o,
OUTPUT: y = P(z); z = P'(x0).
Algorithm:

1. Sety = ay,; z = ay,.
2. Foryj=n—-1,n—-2,...,1,
sety = xoy +aj; 2 = oz +¥.
3. Sety = zoy + ao.
4. OUTPUT (y, z). STOP.

When satis ed with the approximation Z; for a root z; of P, use synthetic
division to compute Q1 () so that P(z) ~ (z —Z1)Q1(x). Estimate a root of Q1 ()
and write P(z) ~ (z — T1)(x — T2)Q2(x), and so on. Eventually, @ ,,—»(x) will be
a quadratic, and the quadratic formula can be applied. This procedure, nding one
root at a time, is called de a tion.

Note: Care must be taken since Z is an approximation for x1. Some inaccuracy
occurs when computing the coef cients of () 1 (), etc. Although the estimate Z'5 of a
root of 1 () can be very accurate, it may not be as accurate when estimating a root
of P(z).

8.1.3 INTERPOLATION

Interpolation involves tting a function to a set of data points (zo,¥o), (%1,¥1),
..o, (Tn,yn). The z; are unique and the y; may be regarded as the values of some
function f(z), thatis, y; = f(x;) fori = 0,1,...,n. The following are polynomial
interpolation methods.

8.1.3.1 Lagrange interpolation

The Lagrange interpolating polynomial, denoted P,,(x), is the unique polynomial of
degree at most n for which P, (xy) = f(xy) fork =0,1,...,n. Itis given by

n

P(z) =Y f(wk)Lni(z) (8.1.12)

k=0
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where {zg, ..., z,} are called node points, and

( —wo)(x —a1) -+ (& —@p—1) (@ — Tpy1) -~ (T — Tn)

Ly =
(@) (xr —2o)(@k —21) -~ (Th — Th—1) (T — Tpg1) -+~ (T — Tn)
= II @) k=01 n (8.1.13)
=0, ik (zr = 2:)

THEOREM 8.1.6 (Error formula)

If 20,1, - . ., Ty are distinct numbers in [a,b] and f € C™[a,b], then, for each x
in [a, b, a number &(x) in (a, b) exists with
(g ()
—p - — 1) (o — z), 1.14
fa) = P@) + I o~ )=o) — ), G119

where P is the interpolating polynomial given in Equation (8.1.12).

Although the Lagrange polynomial is unique, it can be expressed and evaluated
in several ways. Equation (8.1.12) is tedious to evaluate, and including more nodes
affects the entire expression. Neville’s method evaluates the Lagrange polynomial at
a single point without explicitly ndin g the polynomial and the method adapts easily
when new nodes are included.

8.1.3.2 Neville’'s method

Let Py, ms,...,m; denote the Lagrange polynomial using distinct nodes {z 1, T,
<evs &y, + If P(2) denotes the Lagrange polynomial using nodes {z ¢, 21, ...,k }
and x; and x; are two distinct numbers in this set, then

(x—x;)Por,..j—1,j+1,.kx) — (@ —2)Poy, . i-1it1,. k()

Ple) = (zi — )

(8.1.15)

8.1.3.3 Neville’s algorithm

Generate a table of entries ();; for 7 > 0 and 0 < ¢ < j where the terms are
Qij = Pi—ji—j+1,...,i—1,;- Calculations use Equation (8.1.15) for a speci ¢ value
of z as shown:

zo Qoo =1

1 Qo=P Qi1=PF,

Tz Qoo=P @Q1=P Q22=F,>

r3 Q3o=DP @Q31=P3 @Q32=P 23 Q33=F123

Note that P, = Py (z) = f(z1) and {Q; ;} represents successive estimates of f(z)
using Lagrange polynomials. Nodes may be added until |Q;; — Qi—1,i—1] < € as
desired.

© 2003 by CRC Press LLC



8.1.3.4 Divided differences

Some interpolation formulae involve divided differences. Given an ordered sequence
of values, {z;}, and the corresponding function values f(z;), the zero™ divided dif-
ferenceis flx;] = f(x;). The r st divided difference is de ned by

f@ivr) — f(@i) _ flwipa] = flai]

f[l‘i,l‘lqu] = = . (8116)
Ti+1 — T Ti+1 — &

The k™ divided difference is de ned by

flea, Tigr, - Tigk—1, Tiyr]

— f[l.iJrl,l.iJrZ, e ml+k] - f[l'“ .'Ifi+1, e 7"1"754’]@*1] . (8.1.17)

LTitk — T4

Divided differences are usually computed by forming a triangular table.

First Second Third
x  f(x) | divided differences | divided differences | divided differences

zo  flzo]

f[l'O;-Tl]
r1 flo] flwo, 1, 22)

flz, x2) flzo, z1, 2, 23]
T2 flze] flr1, 22, 23]

f[l‘z,.%‘g]

r3  fzs]

8.1.3.5 Newton’s interpolatory divided-difference formula
(also known as the Newton polynomial)

P, (z) = flxo] + Zf[a:o,xl,...,a:k](x — o) (T — Tp—1)- (8.1.18)
k=1

Labeling the nodes as {y,, £p—1, . - ., Zo }, a formula similar to Equation (8.1.18)
results in Newton’s backward divided-difference formula,

Pyp(z) = flan] + flan, tn-1](z — 20)
+f[$naxn—1:xn—2](x_xn)(x_wn—l) (8.1.19)
+.ooiF flXn, Tu—1,.. ., xol(z — ) - (T — 21).
If the nodes are equally spaced (that is, z; — ;—1 = h), de ne the parameter
s by the equation x = o + sh. The following formulae evaluate P,,(x) at a single
point:
1. Newton’s interpolatory divided-difference formula,

n

P,(x) = Py(xo + sh) = Z (Z) k!hkf[xg, T1, ..., Tk (8.1.20)
k=0
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2. Newton’s forward-difference formula (Newton—Gregory),

Po(w) = Polwo + sh) = Y <Z> A f(xo). (8.1.21)

k=0
3. Newton-Gregory backward formula ( ts nodes x _, to ),

Pate) = fan) + (1) & 5o+ (T3 1) 82 fama)

o+ (HZ_ 1) A" f(z_p). (8.1.22)

4. Newton’s backward-difference formula,

n

Pat) =314 (7) 7 ftea, (5.123)

k=0

where /¥ f(z,,) is the k™ backward difference, de ne d for a sequence {p,},
by \VPn = pn — Pn—1 for n > 1. Higher powers are de ned recursively by
VFpn = v (7*'py) for k > 2. For notation, set V°p, = pn.

5. Stirling’s formula (for equally spaced nodes & _p,, ..., T—1, Lo, L15---» T )s

Pa(#) = Pams (&) = floo] + 5 (11, 0] + Floo, m) +

Sthf[.Tfl,l'O,l'l] + M
+o 82 =1)(82—4) (= (m = DDR"f[2 iy, T
s(s2 —1)---(s2 — m2)p2m+!

+ 5 (fle—m=1,-- s Zm]+flTom, - s Tmi1])-

(flz—2,2 1,20, 71] + flX_1, 20,71, 22])

Use the entire formula if n = 2m + 1 is odd, and omit the last term if n = 2m
is even. The following table identi es the desired divided differences used in
Stirling’s formula:

First divided | Second divided Third divided
x f(z) | differences differences differences
Ty | flz_s]
f[1.727 .Z’,l]
z_1 | flz] flo—z, w1, 2]
f[$—1,350] f[$—2,$—1,350,351]
zo | flzo] fle—r, 0, 21]
f[l'o,.’L’l] f[mfl,l'o,l'l,l’z]
1 flz1] flzo, z1, 2]
f[xlv '752]
z2 | flao]
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8.1.3.6 Inverse interpolation

Any method of interpolation which does not require the nodes to be equally spaced
may be applied by interchanging the nodes (x values) and the function values (y
values).

8.1.3.7 Hermite interpolation

Given distinct numbers {xg, x1, ..., Z, }, the Hermite interpolating polynomial for
a function f is the unique polynomial H () of degree at most 2n + 1 that satis es
H(z;) = f(z;) and H'(z;) = f'(z;) foreachi =0,1,...,n.

A technique and formula similar to Equation (8.1.18) can be used. For distinct
nodes {zg,Z1,...,Z,}, dene {zo,21,...,22n41} by 20; = 29,41 = x; fori =
0,1,...,n. Construct a divided difference table for the ordered pairs (z;, f(z;))
using f'(x;) in place of f[z2;, z2i4+1], which would be unde ned. Denote the Hermite
polynomial by Ha,, 11 ().

8.1.3.8 Hermite interpolating polynomial

2n+1
Honp1(2) = flzol + D flzo,21, -5zl (@ — 20) - (¢ = 251)
k=1
= flzo0] + flz0, 21](x — o) + f[20, 21, 22](x — z0)? (8.1.24)
+ flz0, 21, 22, 23) (& — w0)* (2 — 1)
+ ot fl205 - 2on)(@ — 20)? - (2 — mpo1) (2 — ).

THEOREM 8.1.7 (Error formula)
If f € C*""2[a,b], then

FE2 (E())

Girgr @@’ o)’ 8129

f(x) = Hapy1 () +

for some £(z) € (a,b) and where x; € [a,b] for eachi =0,1,...,n.

8.1.4 FITTING EQUATIONS TO DATA
8.1.4.1 Piecewise polynomial approximation

An interpolating polynomial has large degree and tends to oscillate greatly for large
data sets. Piecewise polynomial approximation divides the interval into a collec-
tion of subintervals and constructs an approximating polynomial on each subinter-
val. Piecewise linear interpolation consists of simply joining the data points with
line segments. This collection is continuous but not differentiable at the node points.
Hermite polynomials would require derivative values. Cubic spline interpolation is
popular since no derivative information is needed.
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DEFINITION 8.1.5

Given a function f de ned on [a,b] and a set of numbers a = o < ¥ < ... <
Tn = b, a cubic spline interpolant, S, for f is a function that satis es

1. S is a piecewise cubic polynomial, denoted Sj, on [x;, ;1] for each j =
0,1,...,n—1.

(mJ) f(zj) foreachj =0,1,...,n
Sit1(zjy1) = Sj(wjq1) foreachj =0,1,...,n — 2.
Si1(@jv1) = Si(wj41) foreachj = 0,1,...,n — 2.

S (@js1) = S (wj41) foreach j = 0,1,...,n — 2.

IS N

One of the following sets of boundary conditions is satis ed:

(a) S"(xo) = S"(xn) =0 (free or natural boundary),
(b) S'(xo) = f'(xg) and S'(xyn) = f'(xn) (clamped boundary).

If a function f is de ne d at all node points, then f has a unique natural spline
interpolant. If, in addition, f is differentiable at @ and b, then f has a unique clamped
spline interpolant. To construct a cubic spline, set

Sj(x) = aj + bj(x — x;) + ¢j(@ — 25)* + dj (x — x;)°

foreach j = 0,1,...,n — 1. The constants {a;,b;, c;, d;} are found by solving a
tridiagonal system of linear equations, which is included in the following algorithms.

8.1.4.2 Algorithm for natural cubic splines
INPUT: n, {zo,1,...,Zn},

ap = f(xo),a1 = f(x1), ..., an = f(zy).
OUTPUT: {a;, b;,cj,d;} forj =0,1,...,n — 1.

Algorithm:
1. Fori =0,1,...,n—1,seth; = x;41 —
3 3
.Fori=1,2,...,n—1,seta; = —(a;r1—a;)— (a;j—ai—1)
hi hi—1

2
3. Setly =1,up=0,20=0.
4. Fori =1,2,...,n—1,

set €; = 2(ip1 — Ti—1) — hi—1pbio1s

set u; = h;i/L;;

setz; = (ai — hi_lzi_l)/&.
5. Setl, =1,z,=0,c, =0.
6. Forj=n—1n-2,...,0,

set¢j = Zj = HjCj+1s

setbj = (a1 —aj)/h; — hj(cj1 + 2¢;)/3;

setdj = (cjr1 — ¢;)/(3hy).
7. OUTPUT (a;,b;,c;,d; forj = 0,1,...,n —1). STOP.

© 2003 by CRC Press LLC



8.1.4.3 Algorithm for clamped cubic splines
INPUT: n, {z0,Z1,...,Zn},
ao = f(zo), a1 = f(21), ..., an = f(zn),
Fo = ['(z0), Fn = f'(wn).
OUTPUT: {CLj,bj,Cj,dj} forj = 0, 1, e, — 1.
Algorithm
1. Fori =0,1,...,n—1,set h; = x;41 — ;.
2. Set Qp = 3(&1 —ao)/hg —3F0, Ap = 3Fn —S(Gn —anfl)/hnfl.

3. Fori=1,2,...,n—1,seta; = —(aj+1 —a;) ——(a; —a;—1).
h; hi—1

4. Set Ly = 2hg, po = 0.5, 20 = ag/lp.
5. Fori=1,2,...,n—1,
set £; = 2(xi41 — ®i—1) — him1ftio1;
set u; = h;i/L;;
set z; = (a; — hi—12i-1) /.
6. Setly, = hp—1(2 — pp—1), 2n = (@n — hp—12n-1)/ln, cn = 2n.
7. Forj=n—-1,n-2,...,0,
set¢j = zj = HjCi+1s
setbj = (a1 —aj)/hj — hj(cjpa + 2¢5)/3;
set d; = (cj+1 —¢;j)/(3h; ).
8. OUTPUT (a;, b, ¢;,d; for j = 0,1,...,n — 1). STOP.

8.1.4.4 Discrete approximation

Another approach to t a function to a set of data points {(z;,y;) | i =1,2,...,m}
is approximation. If a polynomial of degree n is used, the polynomial P,,(z) =
> h—o arz® is found that minimizes the least-squares error E = 3" | [y;— P (z;)]?.

To nd {ag,ai,-..,an}, solve the linear system, called the normal equations,
created by setting partial derivatives of E taken with respect to each a, equal to zero.
The coef cien t of ag in the rst equation is actually the number of data points, m.

8.1.4.5 Normal equations

m m m m m

0 1 2 0

GOE xi—l-alg wi+a25 a:i—l-...—l-ang :U?ZE Yit;,
i=1 i=1 i=1 i=1 i=1

m m m m n
1 2 3 ! i
G Y T tm Y w ke wittany @ =D ywl o0
i=1 i=1 i=1 i=1 =1

m m m m : m

n n+1 n+2 2n __ n

aog xi+a1§ z; +a22 z; +...+an2 T; —E Yix; -
i=1 i=1 =1 i=1 =1
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Note: P, (z) can be replaced by a function f of speci ed form. Unfortunately, to
minimize E, the resulting system is generally not linear. Although these systems can
be solved, one technique is to “linearize” the data. For example, if y = f(x) = be **,
then Iny = Inb + axz. The method applied to the data points (z;,lny;) produces
a linear system. Note that this technique does not nd the approximation for the
original problem but, instead, minimizes the least-squares for the “linearized” data.

8.1.4.6 Best-t line

Given the points Py = (x1,y1), Po» = (x2,¥2), ..., P, = (¥n,Yn), the line of
best-t is givenby y —y = m(x — T) where

]
Il

)

12”:37'_ (1 +x2+...+ )
n&~=""" n
=1

(8.1.27)

<
I

)

lzn: _ (yi+y2+-.-+yn)
nlzlyz n

(@Y A Ty ¥ A Tpyn) —NTY TG - TY
B =2 .

(@2 +2i+...+22)—nT 72 — 72

8.2 NUMERICAL LINEAR ALGEBRA

8.2.1 SOLVING LINEAR SYSTEMS

The solution of systems of linear equations using Gaussian elimination with back-
ward substitution is described in Section 8.2.2. The algorithm is highly sensitive
to round-off error. Pivoting strategies can reduce round-off error when solving an
n X n system. For a linear system AX = b, assume that the equivalent matrix equa-

tion A% x = b(*) has been constructed. Call the entry, agz), the pivot element.

8.2.2 GAUSSIAN ELIMINATION

To solve the system AX = b, Gaussian elimination creates the augmented matrix

ail e A1n bl
A =[A:b] = : : S (8.2.1)
anl N/ ) bn

This matrix is turned into an upper-triangular matrix by a sequence of (1) row per-
mutations, and (2) subtracting a multiple of one row from another. The result is a
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matrix of the form (the primes denote that the quantities have been modi ed)

ay, @y -..oay, b

0 aby ... ah, b
_ (8.2.2)

o ... 0 al, b

This matrix represents a linear system that is equivalent to the original system. If
the solution exists and is unique, then back substitution can be used to successively
determine {z,,, Zp_1, ... }.

8.2.3 GAUSSIAN ELIMINATION ALGORITHM

INPUT: number of unknowns and equations 7, matrix A, and vector b.
OUTPUT: solution X = (z1,...,x,)T to the linear system AX = b,

or message that the system does not have a unique solution.
Algorithm:

1. Construct the augmented matrix A’ = [A : b] = (a! i)
2. Forv=1,2,...,n — 1do (a)—(c): (Elimination process)

(a) Let p be the least integer with ¢ < p < n and a;n. #0
If no integer can be found, then
OUTPUT(“no unique solution exists”). STOP.

(b) If p # 4 interchange rows p and 7 in A’. Call the new matrix A’.
(¢) Forj =4+ 1,...,n doi-ii:
i. Setm;; = aj;/ay;.
ii. Subtract from row j the quantity (m;; times row ¢).
Replace row j with this result.

3. If a},,, = 0 then OUTPUT (“‘no unique solution exists”). STOP.
4. Set Ty, = ay, 11/, (Start backward substitution).
5. Fori=n—1,....2,1seta; = |a} .4 — D0, apa;| [aj;.

6. OUTPUT (x4, .. .,xy), (Procedure completed successfully). STOP.

8.2.4 PIVOTING
8.2.4.1 Maximal column pivoting

Maximal column pivoting (often called partial pivoting) nds, at each step, the ele-
ment in the same column as the pivot element that lies on or below the main diagonal
having the largest magnitude and moves it to the pivot position. Determine the least

p > k such that

agllj) ‘ and interchange the k™ equation with the

G,(k) = max 1
pk | — k<i<n

pM equation before performing the elimination step.
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8.2.4.2 Scaled-column pivoting

Scaled-column pivoting sometimes produces better results, especially when the el-
ements of A differ greatly in magnitude. The desired pivot element is chosen to
have the largest magnitude relative to the other values in its row. For each row
dene a scale factor s; by s; = maxi<;<n |ai;|. The desired pivot element at

the k™ step is determined by choosing the smallest integer p with ‘agz)‘ /sp =

a;lz)‘ /;-

MaXkg<;j<n

8.2.4.3 Maximal (or complete) pivoting

The desired pivot element at the k™ step is the entry of largest magnitude among
{a;j} withi = k,k+1,...,nand j = k,k + 1,...,n. Both row and column
interchanges are necessary and additional comparisons are required, resulting in ad-
ditional execution time.

8.2.5 EIGENVALUE COMPUTATION
8.2.5.1 Power method

Assume that the n X n matrix A has n eigenvalues {\1, Aa, ..., A, } with linearly
independent eigenvectors {V(l), v v }. Assume further that A has a unique
dominant eigenvalue A1, thatis [A;| > |Az| > |As| > --- > |\, |. Note that for any
xeR" x= 3" a;vi).

The algorithm is called the power method because powers of the input matrix
are taken: limy,_, o, A¥X = limy,_, oo M¥a;v(Y). However, this sequence converges to
zero if |A1| < 1 and diverges if |\{| > 1, provided a; # 0. Appropriate scaling of
AFx is necessary to obtain a meaningful limit. Begin by choosing a unit vector x (*)

having a component mg;) such that mg,%) =1= ||X(°) ||oo

The algorithm inductively constructs sequences of vectors {x (™ }2°_, and
{y(m)1ee_ "and a sequence of scalars {1 (™ }°°_, by

m m— m m m y
Ypm
where, at each step, p,, represents the least integer for which ‘ygf) ‘ =[ly™| ..

The sequence of scalars satis es lim, oo ,u(m) = Ay, provided «y # 0, and
the sequence of vectors {x(")}°_ converges to an eigenvector associated with \;
that has [, norm one.

8.2.5.2 Power method algorithm

INPUT: dimension n, matrix A, vector X, tolerance TOL, and
maximum number of iterations N.

OUTPUT: approximate eigenvalue p,
approximate eigenvector X (with [|x|| ., = 1),
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or a message that the maximum number of
iterations was exceeded.
Algorithm:
1. Set k=1.
2. Find the smallest integer p with 1 < p <mn and |z,| = ||X|| ..
3. Setx = X/xp.
4. While (k < N) do (a)—(g):
(a) Sety = Ax.
(b) Set i = y,.
(c) Find the smallest integer p with 1 < p <n and |y,| = ||y .-
(d) If y, = 0 then OUTPUT (“Eigenvector”, X, “corresponds to
eigenvalue 0. Select a new vector X and restart.”); STOP.
(e) Set ERR = [[X —y/ypll..: X =Y/yp.
(f) If ERR < TOL then OUTPUT (s, X)
(procedure successful) STOP.
(g) Setk =k +1.

5. OUTPUT (“Maximum number of iterations exceeded”). STOP.

Notes:

1. The method does not really require that A; be unique. If the multiplicity is
greater than one, the eigenvector obtained depends on the choice of x (9).

2. The sequence constructed converges linearly, so that Aitken’s A2 method
(Equation (8.1.1)) can be applied to accelerate convergence.

8.2.5.3 Inverse power method

The inverse power method modi es the power method to yield faster convergence
by nding the eigenvalue of A that is closest to a speci ed number ¢q. Assume that
A satis es the conditions as before. If ¢ # \;, fori = 1,2,...,n, the eigenvalues
of (A—qI)~ ! are )\ll_q, )\;_q e, )\nl_q, with the same eigenvectors v(1) ... v("),
Apply the power method to (A — ¢I) ~'. At each step, y(™) = (4 — ¢I)~'x(m—1),
Generally, y(™) is found by solving (4 — ¢I)y(™ = x(™~1) using Gaussian elimi-
nation with pivoting. Choose the value ¢ from an initial approximation to the eigen-
vector x(©) by ¢ = X(O)TAX(O)/ x© %)

The only changes in the algorithm for the power method (see page 742) are to
set an initial value ¢ as described (do this prior to step 1), determine VY in step (4a)
by solving the linear system (A — gI)y = X (if the system does not have a unique
solution, output a message that ¢ is an eigenvalue and stop), delete step (4d), and
replace step (4f) with

1
if ERR < TOLthensetyu = —+¢;  OUTPUT(i,x);  STOP.
I

© 2003 by CRC Press LLC



8.2.5.4 Wielandt de ation

Once the dominant eigenvalue has been found, remaining eigenvalues can be found
by using de a tion techniques. A new matrix B is formed having the same eigenval-
ues as A, except that the dominant eigenvalue of A is replaced by 0. One method is

. . . 1) .
Wielandt de atio n which de nes X = ﬁ[aﬂ iy ... am]T, where v( ) 1S a coor-
10;

i

dinate of v(1) that is non-zero, and the values {a;1, @;2, ..., a;, } are the entries in the
i™ row of A. Then the matrix B = A — X\v(UxT has eigenvalues 0, X2, As, ..., Ay,
with associated eigenvectors {v(1), w(®), w(®_ w(™} where

v = (A = AW 4+ A (xXTw@ )y (8.2.4)

fori = 2,3,...,n. The i™ row of B consists entirely of zero entries and B may
be replaced with an (n — 1) x (n — 1) matrix B’ obtained by deleting the i row
and " column of B. The power method can be applied to B to nd its dominant
eigenvalue and so on.

8.2.6 HOUSEHOLDER'S METHOD

DEFINITION 8.2.1

Two n X n matrices A and B are said to be similar if a non-singular matrix S exists
with A = S~1BS. (Note that if A is similar to B, then they have the same set of
eigenvalues.)

Householder’s method constructs a symmetric tridiagonal matrix B that is sim-
ilar to a given symmetric matrix A. After applying this method, the QR algorithm
can be used ef ciently to approximate the eigenvalues of the resulting symmetric
tridiagonal matrix.

8.2.6.1 Algorithm for Householder’s method

To construct a symmetric tridiagonal matrix A(*~1) similar to the symmetric matrix
A = AWM construct matrices A2, A®) .. A1) where A*) = (ag)) for k =
1,2,...,n—1.

INPUT: dimension 7, matrix A.
OUTPUT: A=Y (At each step, A can be overwritten.)
Algorithm:

1. Fork=1,2,...,n — 2 do (a)—(k).
k
(a) Setq = E?:kﬂ(a;‘k))z-
(b) If agfng =0 thenseta = —q%

— g5,
elseseta = —qza;y 4

(k)
Opi1,k |

() SetRSQ = a® — aal), .
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(d) Setwy = 0. (Note: v; = --- = vx_1 = 0, but are not needed.)
set Vg1 = a,(fng —Q;

(k)

forj:k+2,...,nset'l]j:a/jk»

(e Forj=k,k+1,...,nsetu; = (Y, 4 a; v

(f) Set PROD = 377", | viu;.

(g) Forj =k,k+1,...,nsetz; = u; — (PROD/2RSQ)v;.

(h) For/ =k+1,k+2,...,n—1doi-ii.

Qyj je
ii. Set aEIzH) = aj(zlz) — 2upzy.
(i) Set a,({if” = aS{iZ — 2Un2n.-
(j) For j :k+2,...,nseta§c§+1) =

(k) Set ai’fﬁi = Opyy g Uk412k5 agc,k+1
(Note: The other elements of A**1) are the same as A*) )

(k1) _ (k1)

(k)

. OUTPUT (A(»~1)). STOP.

. ) k41
i. For j :€+1,...,nseta§.l+)

(k)

(k)

) /RSQ.

= Gy, — V025 — V2

ik

(k+1) _ 0

k+1) _ (k+1)
= Oy

(A(”’l) is symmetric, tridiagonal, and similar to A.)

8.2.7 QR ALGORITHM

The QR algorithm is generally used (instead of de ation) to determine all of the
eigenvalues of a symmetric matrix. The matrix must be symmetric and tridiagonal.
If necessary, rst apply Householder’s method. Suppose the matrix A has the form

o
ba
0

0
0
0

b 0
az b3
b3 a3
0 0
0 0
0 0

0
0
0

Gp—2
bnfl
0

0
0
0

bnfl
Qp—1

bn

0
0
0

0
bn

G |

(8.2.5)

If by = 0 or b, = 0, then A has the eigenvalue a; or a,,, respectively. If b; = 0 for
some j, 2 < j < n, the problem is reduced to considering the smaller matrices

o
ba
0

ba
a3
b3

o

0 0
bs 0
as 0
and
aj—2 bj_1
bj—1  aj-1]
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a; bj+1
bjv1 aj+1
0 bjte
0 0
0 0

0

bj+2
aj+2

o

G |

(8.2.6)



If no b; equals zero, the algorithm constructs AWM AR ABG) | as follows:

1. A® = A is factored as A = QWRM with Q") orthogonal and R(")

upper-triangular.

2. A® isdened as A® = ROQM),

In general, AGt) = ROQH = (QWTAD)Q® = QW ADQH . Each

AUFY s symmetric and tridiagonal with the same eigenvalues as A (9

has the same eigenvalues as A.

8.2.7.1 Algorithm for QR

To obtain eigenvalues of the symmetric, tridiagonal n x n matrix

o B 0 - 0 0 0]
b“) al? b 0 0 0

0o b ol 0 0 0

A= A1 = .

0 0 0 al, M0

0O 0 O b el
0 0 0 0o b al!

INPUT: n; {agl), .. (1), b; ), e, bg)}, tolerance TOL, and

maximum number of iterations M .
OUTPUT: eigenvalues of A, or recommended splitting of A,

and, hence,

(8.2.7)

or a message that the maximum number of iterations was exceeded.

Algorithm:
1. Set k = 1; SHIFT = 0. (Accumulated shift)
2. While k < M, do steps 3—12.
3. Test for success:
(a) If ‘b ]”)‘ < TOL, then set A = an]”) + SHIFT;
OUTPUT (\);setn=n — 1.
®) If ‘b ’”)‘ < TOL then set A = a!*) + SHIFT;

OUTPUT (\);
setn=n—1; agk) = aék),
forj:2,...,nseta§-) g’j_)l,bgk)—bgﬁ_)l

(c) If n = 0 then STOP.

() Ifn = 1then set A = a'¥) + SHIFT;
OUTPUT(\); STOP.

(e) Forj=3,...,.n—1
if ‘bg.’“)‘ < TOL then

OUTPUT (“split into”, {at" ... al® 68 bty
“and” {a{”, ..., a), 0%, ..., 0"}, SHIFT); STOP.
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4. Compute shift:
Seth = —(a) +a);e=alPal?, — 2 d = (07 — 402
5. Ifb > 0, thenset u; = —2¢/(b+d); po = —(b+d)/2;
else set g = (d — b)/2; s = 2¢/(d — b).
6. If n = 2, then set A\; = p; + SHIFT; A2 = us + SHIFT;
OUTPUT (A1, \2); STOP.
i)

(-t

8. Accumulate shift: Set SHIFT = SHIFT + s.

9. Perform shift: Forj =1,...,nsetd; = ag.k) —s.

7. Choose s so that ‘s — a%k) =

)

10. Compute R(*)
(a) Setzy =di;y1 = bo.
() Forj=2,...,n
WQA_(§1+WW%%Q_@1ujn
set sj = b /Z] 13 Qj—1 = ¢jYj—1 + s;dy;

setx; = —s;y;—1 + cjd;.
If j #nthensetr;_ = s]bgﬁl, yj = cjbgli)l
(At this point, Ag-k) =P Ag-k_)l has been computed (P; is a rotation
matrix) and R*¥) = A%k).)
11. Compute AF+1),
(k+1

(a) Set zp, = xp; ay + Soq1 + C221; békH) = $929.
(b) Forj =2,3....,n—1,

k+1 .
set ag ) = Sj+1q5 + CjCj+1255
k4
set b§+1 ) = = S$j+1%j+1-
k+1
(c) Set a( ) _ CnZn.

12. Setk =k + 1.

13. OUTPUT (“Maximum number of iterations exceeded”);
(Procedure unsuccessful.) STOP.
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8.2.8 NON-LINEAR SYSTEMS AND NUMERICAL OPTIMIZATION
8.2.8.1 Newton’'s method

Many iterative methods exist for solving systems of non-linear equations. Newton’s
method is a natural extension from solving a single equation in one variable. Con-
vergence is generally quadratic but usually requires an initial approximation that
is near the true solution. Assume F(X) = O where X is an n-dimensional vector,
F:R"” — R", and O s the zero vector. That is,

F(X) = F(z1,22,...,2,) = [fl(;rl,;rg,...,a:n),...,fn(ml,;rg,...,a:n)]T.

(8.2.8)
A x ed-point iteration is performed on G(X) = X — (J(X)) “'F(x) where J(x)
is the Jacobian matrix,

ofi(x)  o0filx) .. 0fi(x)
ox ox Oxy,
0f2)  0fs0  0falx)
Jx)= | o O e (8.2.9)
0fal)  fa(0 .. 0falx)
ox1 Oxo O0xr
The iteration is given by
—1
x(k) — G(X(k—l)) — x(k=1) _ [J(X(k—l))} F(X(k—l)). (8.2.10)

The algorithm avoids calculating (J(x)) ™" at each step. Instead, it nds a vector
y so that J(x(*~1))y = —F(x(*~1)), and then sets x*) = x(*=1) 1y,

For the special case of a two-dimensional system (the equations f(z,y) = 0 and
g(z,y) = 0 are to be satis ed), Newton’s iteration becomes:

ey = 2y — SS9
n+l — +&n ,
fmgy _fyg“” T=Tn,Y=Yn (82 11)
Yoo =y — S =F9e )
" " fzgy _fygm T=Tn,Y=Yn

8.2.8.2 Method of steepest-descent

The method of steepest-descent determines the local minimum for a function of the
form g : R™ — R. It can also be used to solve a system { f;} of non-linear equations.
The system has a solution X = (x1, 23, ..., z,)T when the function

n
g(x1, 22, ..., Tpn) = Z[fi(xl,m, | (8.2.12)
i=1
has the minimal value zero.

This method converges only linearly to the solution but it usually converges
even for poor initial approximations. It can be used to locate initial approximations
that are close enough so that Newton’s method will converge. Intuitively, a local
minimum for a function g : R™ — R can be found as follows:
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1. Evaluate g at an initial approximation x(0) = (x§°), L aIhT
2. Determine a direction from x(©) that results in a decrease in the value of g.
3. Move an appropriate distance in this direction and call the new vector x (1),

4. Repeat steps 1 through 3 with x(*) replaced by x(1).

The direction of greatest decrease in the value of g at X is the direction given by
—Vg(x) where Vg(x) is the gradient of g.

DEFINITION 8.2.2
Ifg: R™ — R, the gradient of g at X = (x1, T2, ...,2,)", denoted V g(X), is

Vg(x) = (%(x),%(x),... ﬂ(x)> . (8.2.13)

" Oz,

Thus, set X() = x(©) — aVg(x(®)) for some constant & > 0. Ideally the value
of a minimizes the function h(a) = g(x© — aVg(x(?))). Instead of tedious di-
rect calculation, the method interpolates h with a quadratic polynomial using nodes
a1, oo, and ag that are hopefully close to the minimum value of h.

8.2.8.3 Algorithm for steepest-descent

To approximate a solution to the minimization problem mﬁ} g(x), given an initial
x€
approximation X.

INPUT: number n of variables, initial approximationX = (z 1, T2, ..., )7,
tolerance TOL, and maximum number of iterations N.
OUTPUT: approximate solution X = (21, %a,...,2,)T
or a message of failure.
Algorithm:
1. Setk =1.

2. While (k < N), do steps (a)—(k).
(a) Set: g = g(x1,...,2,); (Note: g1 = g(x(¥).)
z2=Vy(z1,...,x,); (Note: z= Vg(x*)),)
20 = ||Z],.
(b) If zg = 0 then OUTPUT (*“Zero gradient”);
OUTPUT (z1,...,%Tn, 91);
(Procedure completed, may have a minimum.) STOP.
(c) Setz=12/z9. (Make Z a unit vector.)
Seta; =0; a3 = 1; g3 = g(X — a3z).
(d) While (g3 > g1), do steps i—ii.
i. Setasz = az/2; g3 = g(X — az2).
ii. If a3 < TOL/2, then
OUTPUT (“No likely improvement”);
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OUTPUT (z1,...,%n,91);
(Procedure completed, may have a minimum.)
STOP.

(e) Setas = a3/2; g2 = g(X — az2).
() Set: hy = (92 — g1)/ 2 ha = (93 — 92) /(a3 — a2);
h3 = (hz — hl)/Oé3.
(g) Set: ag = (a2 — hy1/hs3)/2 (critical point occurs at «g.)
go = g(X — apZz).
(h) Find a from {cg, a3} so that g = g(X — az) = min{go, g3}
(i) Setx =X —az.
() If |g — g1] < TOL then OUTPUT (x4, ..., Zn, 9);
(Procedure completed successfully.) STOP.
(k) Seth =k + 1.

3. OUTPUT (“Maximum iterations exceeded”);
(Procedure unsuccessful.) STOP.

8.3 NUMERICAL INTEGRATION AND
DIFFERENTIATION

8.3.1 NUMERICAL INTEGRATION

Numerical quadrature involves estimating fab f(x) dx using a formula of the form

b n
/ fleyde =~ cif (x;). (8.3.1)
a i=0
8.3.1.1 Newton—Cotes formulae
A closed Newton—Cotes formula uses nodes x; = xg +th fors = 0,1, ..., n, where
h = (b— a)/n. Note that zyp = a and z,, = b.
An open Newton—Cotes formula uses nodes x; = xo + ih fori = 0,1,... n,

where h = (b—a)/(n+2). Here zp = a+ hand z,, = b— h. Setz_; = a and
Zn+1 = b. The nodes actually used lie in the open interval (a, b).
In all formulae, £ is a number for which a < £ < b and f; denotes f(z;).

8.3.1.2 Closed Newton—Cotes formulae
1. (n = 1) Trapezoidal rule
b 3

£y do = 21(ao) + flan)] -

a =10,
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2. (n = 2) Simpson’s rule

5
[ 10yt = Bira) + 4700 + ) - sV,
3. (n = 3) Simpson’s three-eighths rule
/ fa [F(wo) + 3£ (1) + 3 (2) + f(3)] - —f<4> (©).

4. (n = 4) Milne’s rule (also called Boole’s rule)

/f da:_ 7f0+32f1+12f2+32f3+7f4]——f<6)(g)

945
5. (n=75)
/f 19f+75f+50f+50f+75f+19f] 75h7f(6)(£)
288 0 ! 2 s 4 5712096 '
6. (n = 6) Weddle’s rule
/f 41f0+216f1+27f2+272f3+27f4+216f5+41f6]
9h?
_ N (s
1400f (&)

7. (n=17)

/ f(z dm—17280[751f0+3577f1+1323f2+2989f3+2989f4+1323f5

8183h?
518400

+ 3577 fs + T51f7] —

8.3.1.3 Open Newton-Cotes formulae
1. (n = 0) Midpoint rule

b h3
| #@)do = 2bf@0) + 1706

——— f®(e).

b 3
/ Fla)de = 2 (o) + Fa) + 25 (6).

2
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3. (n=2)

b 5
[ 1@ de = s Gw0) - fo0) + 24 2)] + S 1)
4. (n=3)
/ Flaydo = 2101 f(z0) + fla0) + Flaa) + 11F ()] + 2o ),

/ Fle)de = 3h[11f0 —14f1 +26f> — 14f5 + 11£,] + ﬂf‘“(&)-

6. (n = 5)

h
/ f(z)dz = %40[611]00 — 4531 + 562> + 562f; — 453f4 + 6115

5257h

(6)
610 7 ().

8.3.1.4 Composite rules

Some Newton—Cotes formulae extend to composite formulae. This consists of divid-

ing the interval into subintervals and using Newton—Cotes formulae on each subin-
terval. In the following, note that a < p < b.

1. Composite trapezoidal rule for n subintervals: If f € C2[a,b],h = (b—a)/n,
andz; =a+ jh,forj =0,1,...,n, then

/f +2nzlfw] ) 1] - R ).

2. Composite Simpson’s rule for n subintervals: If f € C'*[a, b],n is even, h =
(b—a)/n,andz; = a+ jh,forj =0,1,...,n, then

(n/2)— n/2
/f a) +2 Z fl@2;) +4Zf$2y 1) + f(b)

h—
_ 2T Gpar@y,,).
w0 (W)
3. Composite midpoint rule for n + 2 subintervals: If f € C?[a,b],n is even,

h=((b—-a)/(n+2),andz; = a+(j+1)h,forj=—-1,0,1,...,n+1, then

n/2

/f da:—2h2fa:2]

().
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8.3.1.5 Romberg integration

Romberg integration uses the composite trapezoidal rule beginning with h; = b —
aand hy = (b —a)/2FL, for k = 1,2,..., to give preliminary estimates for
fab f(z) dz and improves these estimates using Richardson’s extrapolation. Since
many function evaluations would be repeated, the rst column of the extrapolation
table (with entries denoted I?; ;) can be more ef ciently determined by the following
recursion formula:

Riy = Z2[5@) + F0)) = 5217 @) + F0))
1 2k =2 (8.3.2)
Ry = 3 Rp_11+ he—t ; fla+ (20 =1Dhy) |,

for k = 2,3,.... Now apply Equation (8.1.4) to complete the extrapolation table.

8.3.1.6 Gregory’s formula
Using f; to represent f(zq + jh),

zo+nh 1 1
[t = WGl fi 4 fami 350

0
h
- ﬂ(ﬁzfo + Aanfz)

_ 3
160

h
+ E(Afo - Afno1)

P LIYN PR TN

4 4
720 (A fo+ D' fra) + ... (833)

where A’s represent forward differences. The rst expression on the right in Equa-
tion (8.3.3) is the composite trapezoidal rule, and additional terms provide improved
approximations. Care must be taken not to carry this process too far because Gre-
gory’s formula is only asymptotically convergent in general and round-off error can
be signi cant when computing higher differences.
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FIGURE 8.2

Formulae for integration rules with various weight functions

Weight Interval Abcissas

w(z) (o, B) are zeros of T w; K,

1 (-1,1 P, (x) See table on page 755 o 1)Pn+_12(xi)P{L(mi) (232:?)&;'2;']3

e " (0, 00) L, (x) See table on page 756 % E;?;

e (—00,00) H,(x) See table on page 756 % 27;!(\2/:)!
ﬁ (=1,1) T (z) COSW % %
Vi—az2 | (-1,1) Un(z) cos (nZ:LTl) nil sin” (;—:1) 22”+(2n)'

= z | O T%t}g(zﬁ) cos” <(24in_+1g7r> ZnZiTI— g cos” <%> 24”+(2n)'

1;2 0.1 | (“’é%) o8 <zji::1> 2n4:1 sin” (2nﬁ1> m

= | 0y | P (zF)” 2h; «fn;%

Ve 0,1) P%Uéﬁ) (=)’ 2hi (a)’ (dn f;;[g([ﬁng)l !)];]:27;)!

In this table, P,, L, Hy,, T, Un, and J,, denote the n'® Legendre, Laguerre, Hermite, Chebyshev ( rst kind 7., second

kind U,,), and Jacobi polynomials, respectively. Also, xj' denotes the " positive root of Ps, () or Pap41(x) of the
previous column, and h; denotes the corresponding weight for ;" in the Gauss—Legendre formula (w(z) = 1).
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8.3.1.7 Gaussian quadrature

A quadrature formula, whose nodes (abscissae) x; and coef cients w; are chosen
to achieve a maximum order of accuracy, is called a Gaussian quadrature formula.
The integrand usually involves a weight function w. An integral in ¢ on an interval
(a,b) must be converted into an integral in x over the interval («, 3) specied for
the weight function involved. This can be accomplished by the transformation z =

(b(ab:if ) 4+ (fb__i))t. Gaussian quadrature formulae generally take the form

B
/ w(z)f(z)de = szf(l“z) +E, (834

where E,, = K, f®"(¢) forsome a < &€ < B and K, is aspeci ed constant. Many
popular weight functions and their associated intervals are summarized in the table
on page 754.

The following tables give abscissae and weights for selected formulae. If some
x; are specied (such as one or both end points), then the formulae of Radau and
Lobatto may be used.

8.3.1.8 Gauss-Legendre quadrature

Weight function is w(x) = 1.

/ 11 f(z) do ~ iwifm).

Nodes {+z;} | Weights {w;} n | Nodes {xz;} | Weights {w;}
0.5773502692 | 1 8 [ 0.1834346425 | 0.3626837834
0.5255324099 | 0.3137066459
0 0.8888888889 0.7966664774 | 0.2223810345
0.7745966692 | 0.5555555556 0.9602898565 | 0.1012285363
0.3399810436 | 0.6521451549 910 0.3302393550
0.8611363116 | 0.3478548451 0.3242534234 | 0.3123470770
0.6133714327 | 0.2606106964
0 0.5688888889 0.8360311073 | 0.1806481607
0.5384693101 | 0.4786286705 0.9681602395 | 0.0812743883
0.9061798459 | 0.2369268851
10 | 0.1488743390 | 0.2955242247
0.2386191861 | 0.4679139346 0.4333953941 | 0.2692667193
0.6612093865 | 0.3607615730 0.6794095683 | 0.2190863625
0.9324695142 | 0.1713244924 0.8650633667 | 0.1494513492
0.9739065285 | 0.0666713443

0

0.4058451514
0.7415311856
0.9491079123

0.4179591837
0.3818300505
0.2797053915
0.1294849662
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8.3.1.9 Gauss—Laguerre quadrature

Weight function is w(z) = e~ *.

/0 e "f(z)dz ~ szf(l“z)
i=1

Nodes {z;}

Weights {w; }

Nodes {z;}

Weights {w; }

0.5857864376
3.4142135623

0.4157745567
2.2942803602
6.2899450829

0.3225476896
1.7457611011
4.5366202969
9.3950709123

0.2635603197
1.4134030591
3.5964257710
7.0858100058
12.6408008442

0.8535533905
0.1464466094

0.7110930099
0.2785177335
0.0103892565

0.6031541043
0.3574186924
0.0388879085
0.0005392947

0.5217556105
0.3986668110
0.0759424496
0.0036117586
0.0000233699

0.2228466041
1.1889321016
2.9927363260
5.7751435691
9.8374674183
15.9828739806

0.1930436765
1.0266648953
2.5678767449
4.9003530845
8.1821534445
12.7341802917
19.3957278622

0.4589646739
0.4170008307
0.1133733820
0.0103991974
0.0002610172
0.0000008985

0.4093189517
0.4218312778
0.1471263486
0.0206335144
0.0010740101
0.0000158654
0.0000000317

8.3.1.10 Gauss—Hermite quadrature

Weight function is w(z) = e’ / eﬂ”zf(;r) dz ~ Z w; f(z;).
i=1

— 00

Nodes {£z;}

Weights {w; }

Nodes {£z;}

Weights {w; }

0.7071067811

0
1.2247448713

0.5246476232
1.6506801238

0
0.9585724646
2.0201828704

0.4360774119
1.3358490740
2.3506049736

0.8862269254

1.1816359006
0.2954089751

0.8049140900
0.0813128354

0.9453087204
0.3936193231
0.0199532420

0.7246295952
0.1570673203
0.0045300099
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0.8162878828
1.6735516287
2.6519613568

0.3811869902
1.1571937124
1.9816567566
2.9306374202

0

0.7235510187
1.4685532892
2.2665805845
3.1909932017

0.8102646175
0.4256072526
0.0545155828
0.0009717812

0.6611470125
0.2078023258
0.0170779830
0.0001996040

0.7202352156
0.4326515590
0.0884745273
0.0049436242
0.0000396069




8.3.1.11 Radau quadrature

/ F(e) de = w f(— +sz ) 2 "[—(27[?(_711;!]2)!] £ (g,

where each free node z; is the i™ root of % and w; = nZ[P;IZ for
n—1(4)]
i =2,...,n; see the following table. Note that z; = —1 and w; = 2/n>.

n Nodes Weights {w; } n Nodes Weights {w; }
3| —0.2898979485 | 1.0249716523 8 | —0.8874748789 | 0.1853581548
0.6898979485 | 0.7528061254 —0.6395186165 | 0.3041306206
—0.2947505657 | 0.3765175453
41 —0.5753189235 | 0.6576886399 0.0943072526 | 0.3915721674
0.1810662711 | 0.7763869376 0.4684203544 | 0.3470147956
0.8228240809 | 0.4409244223 0.7706418936 | 0.2496479013

0.9550412271 | 0.1145088147
5 | —0.7204802713 | 0.4462078021
—0.1671808647 | 0.6236530459 9 | —0.9107320894 | 0.1476540190

0.4463139727 | 0.5627120302 —0.7112674859 | 0.2471893782
0.8857916077 | 0.2874271215 —0.4263504857 | 0.3168437756
—0.0903733696 | 0.3482730027

6 | —0.8029298284 | 0.3196407532 0.2561356708 | 0.3376939669
—0.3909285467 | 0.4853871884 0.5713830412 | 0.2863866963
0.1240503795 | 0.5209267831 0.8173527842 | 0.2005532980
0.6039731642 | 0.4169013343 0.9644401697 | 0.0907145049

0.9203802858 | 0.2015883852
10 | —0.9274843742 | 0.1202966705

7 | —0.8538913426 | 0.2392274892 —0.7638420424 | 0.2042701318
—0.5384677240 | 0.3809498736 —0.5256460303 | 0.2681948378
—0.1173430375 | 0.4471098290 —0.2362344693 | 0.3058592877

0.3260306194 | 0.4247037790 0.0760591978 | 0.3135824572
0.7038428006 | 0.3182042314 0.3806648401 | 0.2906101648
0.9413671456 | 0.1489884711 0.6477666876 | 0.2391934317

0.8512252205 | 0.1643760127
0.9711751807 | 0.0736170054

8.3.1.12 Lobatto quadrature

/ (@) de = wif(~1) + w, f(1)

-1

n-t n(n —1)322=(n —2)* 5, 5
+ Z: w; f(z;) — ( (2n _) 1)[(2n[(_ 2)!]3) ] f( )(5)

where z; is the (i — 1) root of P! ,(x) and w; = m for i =
2,...,n—1.Note that z; = —1, 2, = 1, and w; = w, = 2/(n(n — 1)). The table

lists all z; and w; for n < 13.

© 2003 by CRC Press LLC



Nodes {£z;}

Weights {w; }

0
1

0.4472135954
1

0
0.6546536707
1

0.2852315164
0.7650553239
1

0
0.4688487934
0.8302238962
1

0.2092992179
0.5917001814
0.8717401485
1

0
0.3631174638
0.6771862795
0.8997579954
1

0.3275397611
0.2920426836
0.2248893420
0.1333059908
0.0222222222

0.3002175954
0.2868791247
0.2480481042
0.1871698817
0.1096122732
0.0181818181

0.2714052409
0.2512756031
0.2125084177
0.1579747055
0.0916845174
0.0151515151

0.2519308493
0.2440157903
0.2207677935
0.1836468652
0.1349819266
0.0778016867
0.0128205128

Weights {w; } n | Nodes {+z;}
1.3333333333 10 | 0.1652789576
0.3333333333 0.4779249498
0.7387738651
0.8333333333 0.9195339081
0.1666666666 1
0.7111111111 1110
0.5444444444 0.2957581355
0.1000000000 0.5652353269
0.7844834736
0.5548583770 0.9340014304
0.3784749562 1
0.0666666666
12 | 0.1365529328
0.4876190476 0.3995309409
0.4317453812 0.6328761530
0.2768260473 0.8192793216
0.0476190476 0.9448992722
1
0.4124587946
0.3411226924 1310
0.2107042271 0.2492869301
0.0357142857 0.4829098210
0.6861884690
0.3715192743 0.8463475646
0.3464285109 0.9533098466
0.2745387125 1
0.1654953615
0.0277777TTT

8.3.1.13 Chebyshev quadrature

/_1 f(z)de ~ % Zf(mi).

Nodes {£z;} n | Nodes {+z;} Nodes {£z;}
0.5773502691 510 0
0.3745414095 0.3239118105
0 0.8324974870 0.5296567752
0.7071067811 0.8838617007
6 | 0.2666354015

0.1875924740
0.7946544722

0.4225186537
0.8662468181
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8.3.1.14 Multiple integrals

Quadrature methods can be extended to multiple integrals. The general idea, using
a double integral as an example, involves writing the double integral in the form of
an iterated integral, applying the quadrature method to the “inner integral” and then
applying the method to the “outer integral”.

8.3.1.15 Simpson’s double integral over a rectangle

To integrate a function f(z,y) over the rectangular region R = {(z,y) | a < z <
b,c < y < d} using the composite Simpson’s Rule produces an approximating
formula given below. Intervals [a, b] and [¢, d] must be partitioned using even integers

n and m to identify evenly-spaced mesh points xg,x1,...,2, and Yo, Y1, .- -, Ym.
respectively.
b d hk n.om
| [ t@mdvas= [ [ s dyds = 5SS sttann) +
R @ ¢ i=0 j=0
(8.3.5)
where the error term FE is given by
(d—c)(b—a) 484f __ 484f PN
E=———"——-1|h k 8.3.6
180 Fpa () + oy EwdUND) (8.3.6)

for some (7, @) and (7, 1) in R with h and k determined by h = (b — a)/n and
= (d — ¢)/m, and the coef cients c; ; are the entries in the following table.

m 1 4 2 4 2 4 2 4 1
m—1 4 16 8 16 8 16 8 16 4
m — 2 2 8 4 8 4 8 4 8 2
m—3 4 16 8 16 8 16 8 16 4

2 2 8 4 8 4 8 4 8 2

1 4 16 8 16 8 16 8 16 4

0 1 4 2 4 2 4 2 4 1

J

) 01 2 3 4 5 ... n=2 n-1n

Similarly, Simpson’s Rule can be extended for regions that are not rectangular.
It is simpler to give the following algorithm than to state a general formula.

8.3.1.16 Simpson’s double integral algorithm

To approximate the integral I = / / flz,y) dy dz:

INPUT endpoints a, b; even positive integers m, n;
functions ¢(z), d(z), and f(z,y)
OUTPUT approximation J to I.
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Algorithm:
1. Seth = (b—a)/n; Jy =0; (End terms.)
Jo = 0; (Eventerms.) J3 = 0. (Odd terms.)
2. Fori =0,1,...,n do (a)—(d).

(a) Setx = a +1ih;
(Composite Simpson’s method for x.)
HX = (d(x) - c(x))/m;
K, = f(z,c(z)) + f(z,d(x)); (End terms.)
K> =0; (Even terms.)
K3 =0. (0Oddterms.)

(b) Forj =1,2,...,m — 1 doi-ii.

i Sety =c(z) +jHX; Q= f(z,y).

ii. If jiseventhenset Ky = Ko+ Q else set K3 = K3+ Q.
(c) Set L = (Kl + 2K, + 4K3)HX/3

d(z;)
(L ~ / f(z;,y)dy by composite Simpson’s method.)
c(x;)
(d) Ifi=0o0ri=mnthensetJJ; = J, + L;
else if 7 is even then set Jo = J5 + L;
else set J3 = Js3 + L.

3. Set J = h(Jy +2J + 4.J3)/3.
4. OUTPUT(J);
STOP.

8.3.1.17 Gaussian double integral

b pd(z)
To apply Gaussian quadrature to I = / / f(z,y)dydz rst requires trans-
a (z)

forming, for each z in [a, b], the interval [¢(z), d(z)] to [—1, 1] and then applying
Gaussian quadrature. This is performed in the following algorithm.

8.3.1.18 Gauss-Legendre double integral

b pd(z)
To approximate the integral I = / / flz,y) dy dx:
a Je(z)

INPUT endpoints a, b; positive integers m, n.
(The roots r; ; and coef cien ts ¢; ; are found in 8.3.1.8 for
i = max{m,n} andfor 1 < j <i.)
OUTPUT approximation J to I.
Algorithm:
1. Sethy = (b—a)/2; he = (b+a)/2; J=0.
2. Foriv=1,2,...,mdo (a)—(c).
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(@) Set JX =0;

T = hﬂ“m,i + ho;

dy =d(z); ¢ = c(x);

ki = (dl —Cl)/Q; ko = (d1 +Cl)/2.
(b) Forj =1,2,...,ndo

sety = kiryj + ko;

Q= f(z,y):

JX =JX + ¢ ;Q.
(c) SetJ =J +cp ik JX.

3. SetJ =hJ.
4. OUTPUT(J); STOP.

8.3.1.19 Double integrals of polynomials over polygons

If the vertices of the polygon A are {(z1,y1), (z2,¥2),- .-, (zp,yp)}, and we de ne
Wi = TilYi+1 — Tit1Yi Withzp1 = 21 and yp11 = y1) then

myn A =
//Aﬂf y (8.3.7)

m'n' u - ]+k' m+n_]_k m—j j n—k k
(m+n+2)!zwi,ZZ j N e

8.3.1.20 Monte—Carlo methods

Monte—Carlo methods, in general, involve the generation of random numbers (ac-
tually pseudorandom when computer-generated) to represent independent, uniform
random variables over [0, 1]. Section 7.6 describes random number generation. Such
a simulation can provide insight into the solutions of very complex problems.
Monte—Carlo methods are generally not competitive with other numerical meth-
ods of this section. However, if the function fails to have continuous derivatives
of moderate order, those methods may not be applicable. One advantage of Monte—
Carlo methods is that they extend to multidimensional integrals quite easily, although

here only a few techniques for one-dimensional integrals / = | : g(x) dx are given.

8.3.1.21 Hit or miss method

Suppose 0 < g(z) < c,a <z <band Q = {(z,y) | a <z <b0<y <c}. If
(X,Y) is a random vector which is uniformly distributed over {2, then the probability
pthat (X,Y) lies in S (see Figure 8.3) is p = I /(c(b — a)).

If N independent random vectors {(X;, Y;)}¥, are generated, the parameter p
can be estimated by p = Ny /N where Ny is the number of times V; < ¢g(X;), i =
1,2,..., N, called the number of hits. (Likewise N — N f is the number of misses.)
The value of [ is then estimated by the unbiased estimator #; = ¢(b — a) Ny /N.
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FIGURE 8.3
Lllustration of the Monte—Carlo method. The sample points are shown as circles. The solid

circle is counted as a “hit”, the empty circle is counted as a “miss”.

g(x)

8.3.1.22 Hit or miss algorithm

1. Generate {U;}?N, of 2N random numbers, uniformly distributed in [0, 1).

2. Arrange the sequence into N pairs (U1, U ), (U2, U3), ..., (Un,Ul), so that
each Uj is used exactly once.

3. Compute X; = a + U;(b—a) and g(X;) fori =1,2,..., N.

Count the number of cases N g for which g(X;) > cUj.

5. Compute #; = ¢(b — a)Ngr/N. (This is an estimate of I.)

&

The number of trials IV necessary for P(|f; — I| < €) > a is given by

N> (L=pple(b—a)
N >

(8.3.8)

With the usual notation of z,, for the value of the standard normal random vari-
able Z for which P(Z > z,) = « (see page 695), a con d ence interval for I with
con de nce level 1 — a is

61 + 25 p(l _f%b —a)e. (8.3.9)

8.3.1.23 Sample-mean Monte—Carlo method

Write the integral [ = f; g(z) dz as f; fgx(—?m)) fx(x) dz, where f is any probability
density function for which fx(z) > 0 when g(z) # 0. Then I = E [fi(g()g)]
where the random variable X is distributed according to fx(x). Values from this
distribution can be generated by the methods discussed in Section 7.6.2. For the case
where fx () is the uniform distribution on [0, 1], I = (b — a)E[g(X)]. An unbiased
estimator of I is its sample mean

1
b2 = (b—a)x > g(Xi). (8.3.10)
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It follows that the variance of 5 is less than or equal to the variance of 6. In
fact,

varf, =

I
N[c(b - (],) - []7

1 b (8.3.11)
varfy = N [(b— a)/ g*(x) dx — [2] .

Note that to estimate I with 8; or 85, g(z) is not needed explicitly. It is only
necessary to evaluate g(z) at any point z.

8.3.1.24 Sample-mean algorithm

1. Generate {U;}¥, of N random numbers, uniformly distributed in [0, 1).
2. Compute X; =a+ U;(b—a), fori =1,2,...,N.

3. Compute g(X;) fori =1,2,...,N.

4. Compute 6, according to Equation (8.3.10). (This is an estimate of I.)

8.3.1.25 Integration in the presence of noise
Suppose g(z) is measured with some error: §(z;) = g(z;) +€;, fori =1,2,.. .,
where €; are independent identically distributed random variables with E [e;] =
var(e;) = o2, and |¢;| < k < oo.

If (X,Y) is uniformly distributed on the rectangle a < z < b, 0 < y < ¢y,
where ¢; > g(z) + k, set 6, = ¢;(b — a)Ng /N as in the hit or miss method.
Similarly, set 6 = % (b— a) Zf;l g(X;) as in the sample-mean method. Then both

N’
0»

0~1 and 0~2 are unbiased and converge almost surely to /. Again, var 0~2 < var 0~1.

8.3.1.26 Weighted Monte—Carlo integration
Estimate the integral [ = fol g(x) dx according to the following algorithm:
1. Generate numbers {Uy,Us, ..., Uy} from the uniform distribution on [0, 1).
2. Arrange Uy, Us, ..., Uy in the increasing order U(l),U(Z), cel, U(N).
N

1
3. Compute 03 = 5 E (g(U(i)) + g(U(iJrl))(U(iJrl) - U(i)) , where U(o) =
i=0

0, U(n41) = 1. This is an estimate of I.

If g(z) has a continuous second derivative on [0, 1], then the estimator 6 3 satis-
es varfs = E [(63 — I)?] < k/N*, where k is some positive constant.
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8.3.2 NUMERICAL DIFFERENTIATION
8.3.2.1 Derivative estimates

Selected formulae to estimate the derivative of a function at a single point, with error
terms, are given. Nodes are equally spaced with z; — x;—1 = h; h may be positive
or negative and, in the error formulae, ¢ lies between the smallest and largest nodes.
To shorten some of the formulae, f; is used to denote f(xzo + jh) and some error
formulae are expressed as O(h*).

1. Two-point formula for f'(zo)

f'(wo) = %(f(l“o + h) — f(z0)) — gf”(f). (8.3.12)

This is called the forward-difference formula if h > 0 and the backward-
difference formula if h < 0.

2. Three-point formulae for f'(zo)

o) = 5[=87(z0) + 4f (o + 1) — flzo + 2] + = 7O(©

2h (8.3.13)
— 1 h h h? (3)
—ﬁ[f(woJr ) — flzo — )]_Ff ().
3. Four-point formula (or ve uniformly spaced points) for f'(xq)
F) = o[ = 8 48— B+ O, 331
0) = oplf—2 -1 e . 3.

4. Five-point formula for f'(zo)

4
) = T [-25fo + 481, ~ 36fs + 165 3] + =1V (€). 83.15)

5. Formulae for the second derivative

" 1 h? (4)
f(wo) = ﬁ[f—l —2fo+ fi] = 127 3

. B2 (8.3.16)
= 3zlfo—2fi+ Sl + = fP(&) = hfD (&),
6. Formulae for the third derivative
1
[P (o) = 751fs = 3> +3f1 = fol + O(h)
(8.3.17)

= %[ﬁ —2fi+2f1 — foo]+ O(hz).
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7. Formulae for the fourth derivative

F W (wo) = hl [fs —4fs +6f2 — 41 + fo] + O(h)
(8.3.18)
= ﬁ[ﬁ —4f1 +6fo —4f 1+ f2] + O(h?).

Richardson’s extrapolation can be applied to improve estimates. The error term
of the formula must satisfy Equation (8.1.2) and an extrapolation procedure must be
developed. As a special case, however, Equation (8.1.4) may be used when rst-
column entries are generated by Equation (8.3.13).

8.3.2.2 Computational molecules

A computational molecule is a graphical depiction of an approximate partial deriva-
tive formula. The following computational molecules are for h = Az = Ay:

ou| 1 2 B 2
(a)%i,j_Qh(um u10)+0h 2h{}+0h
ou 1 B oo 1 ,
(b) a_y g = (wo1 — uo,—1) + O (h ) = 57 { i,j +0 (h )
() az'u, _i( -9 + )+O(h2)
9 o2 i = 72z (1,0 = 20,0 T U-1,0
= {} +0(h?)
h o
0%u 1
(d) 61_6y2 4h2(U11_’U/1_1—U 11:|—u1_1)+0(h2)
1
T iz + 0 (h?)
1
(e) V2U|i,j = 2 (u1,o +up,1 +u—1.0+ o1 — dugy) + O (hZ)
1

=21 i,j +0(#)
O
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8.3.2.3 Numerical solution of differential equations

Numerical methods to solve differential equations depend on whether small changes
in the statement of the problem cause small changes in the solution.

DEFINITION 8.3.1

The initial-value problem,

dy _
dt
is said to be well posed if

flty), a<t<b, yla)=a (8.3.19)

1. A unique solution, y(t), to the problem exists.

2. For any € > 0, there exists a positive constant k(€) with the property that,
whenever |eg| < € and §(t) is continuous with |6(t)| < € on [a,b], a unique
solution, z(t), to the problem,

dz

o =f(t,z2) +6(t), a<t<b, z(a)=a+e,

exists and sais es |z(t) — y(t)| < k(e)e, foralla <t < b.

This is called the perturbed problem associated with the original problem. Al-
though other criteria exist, the following result gives conditions that are easy to check
to guarantee that a problem is well posed.

THEOREM 8.3.1 (Well posed condition)

Suppose that f and f, (its r st partial derivative with respect to y) are continuous for
tin [a,b]. Then the initial-value problem given by Equation (8.3.19) is well posed.

Using Taylor’s theorem, numerical methods for solving the well posed, rst-
order differential equation given by Equation (8.3.19) can be derived. Using equally-
spaced mesh points t; = a +ih (fori = 0,1,2,..., N) and w; to denote an approx-
imation to y; = y(¢;), then methods generally use difference equations of the form

wy = @, wit1 = w; + ho(ti, w;),

foreachi =0,1,2,..., N — 1. Here ¢ is a function depending on f. The difference
method has local truncation error given by

Tip1(h) = Vit i _ (L, vi),

h
foreach: =0,1,2,..., N — 1. The following formulae are called Taylor methods.
Each has local truncation error
h’n
(n)(¢. ) — (n+1) (¢ )

foreachi = 0,1,2,...,N — 1, where &; € (t;,t;41). Thus, ify € C™"1[a,b] the
local truncation error is O(h™).
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1. Euler’s method (n = 1):
Wiyl = W; + hf(ti, wi). (8.3.20)

2. Taylor method of order n:

wip1 = w; + KT (t;, wy), (8.3.21)

where T (£, w;) = f(ti,ws) + & /(8 wi) + ...+ B f=D (8, wy).

n!
The Runge—Kutta methods below are derived from the n ™ degree Taylor poly-
nomial in two variables.

3. Midpoint method:
wip1 =wi +h[f (t+ 2w+ 2 f(t,w))] . (8.3.22)

If all second-order partial derivatives of f are bounded, this method has local
truncation error O(h?), as do the following two methods.

4. Modi ed Euler method:
wir1 = wi + L {f(ti,w;) + fltiv1,w; + hf(ti,w;)]}.  (8.3.23)
5. Heun’s method:

2

2
3h,wi + ghf(ti,wi):| } :

h
Wit1 = W; + Z {f(ti,wi) +3f |:ti +
6. Runge—Kutta method of order four:

1
Wi41 = W; + g(kl + 2k2 + 2k3 + k4), (8324)

where

kl :hf (ti,wi),
h 1
ky = hf (ti +gwit §k1> )
1

h
ks = hf (ti + §,wi+ §k2> ;

k4 = hf (ti+1,wi + k3) .

The local truncation error is O(h*) if the solution y(¢) has ve continuous
derivatives.

8.3.2.4 Multistep methods and predictor-corrector methods

A multistep method is a technique whose difference equation to compute w ;41 in-
volves more prior values than just w;. An explicit method is one in which the com-
putation of w;11 does not depend on f(t;11,w;+1) Whereas an implicit method does
involve f(t;1+1,w;+1). For each formula, i =n —1,n,...,N — 1.
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8.3.2.5 Adams—Bashforth n-step (explicit) methods
1. (n=2):
wo = a, wy = g, Wi = w; + B3 (ti, wi) — ftio1, wi1)]-
Local truncation error is 7541 (h) = %y(3) (u;i)h?, for some ju; € (t; 1,tiv1).
2. (n=3):
Wo = @, Wy =y, Wy = g, Wiy = Wit 15[23f (L, w;) =16 f (ti_1, wi_1)+
5f(ti—2, wi—2)].
Local truncation error is 751 (h) = 2y (u;) 12, for some p1; € (ti—a, tit1).
3. (n=4):

Wy = @, W = Qi Wa = Qo, W3 = a3, Wi = w; + 2 [55F(t;, w;) —
59f (ti—1,wi—1) + 37f(ti—2, wi—2) — 9f(ti—3,wi_3)].

Local truncation error is 7511 (h) = 2Ly () (u;)h*, for some ; € (ti—3,ti41).
4. (n=05):
Wy = o, w1 = 01, W2 = Q2, W3 = O3, W4 = Q4, Wit1 = W; +

B [1901f (t5, wi) — 2774 (fi1, wi—1) + 2616 f (ti—o, wi—2)
—1274f(ti3,wi—3) + 251 f(ti—4, wi—4a)]-

Local truncation error is 7,41 (h) = %y((j) (pi)h3, for some u; € (t;i—4,tiy1)-

8.3.2.6 Adams-—Moulton n-step (implicit) methods
1. (n=2):
wo =, w1 =y, Wit = Wit s [5f (tip1, wigr) +8f (ti, wi)— f(tim1, wi1)].
Local truncation error is 7,41 (h) = —21—4y(4) (pi)h®, forsome p; € (t;_1,ti11).
2. (n=3):
Wy = &, W1 = 01, W2 = (2, Wi41 = W; + %[gf(tﬂ_l, wi+1) + lgf(ti, wi) —
5f(ti-1,wi—1) + f(ti—2, wi—2)].
Local truncation error is ;41 (h) = —%yw (pi)h*,
for some p; € (ti—a,tit1)-
3. (n=4):
Wy = @, Wi = a1, Wy = @2, W3 = A3, Wig1 = W; + =5 [251f (ti1, wip1) +
646f(ti, wi) — 264f(ti_1, wi_l) + 106f(ti_2, wi_Q) — lgf(ti_3, wi_3)].
Local truncation error is 7;11 (h) = — 7554 (1;) h®,
for some p; € (ti—3,tit1)-

In practice, implicit methods are not used by themselves. They are used to
improve approximations obtained by explicit methods. An explicit method predicts
an approximation and the implicit method corrects this prediction. The combination
is called a predictor-corrector method. For example, the Adams—Bashforth method
with n = 4 might be used with the Adams—Moulton method with n = 3 since both
have comparable errors. Initial values may be computed, say, by the Runge—Kutta
method of order four, Equation (8.3.24).
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8.3.2.7 Higher-order differential equations and systems

A system of m rst-ord er initial-value problems can be expressed in the form

du
d—tl:fl(t,ul,ug,...,um), ui(a) = ai,
du
d—;:fg(t,ul,ug,...,um), us(a) = o,
(8.3.25)
du
d—;n = fm(t,ur,us, ..., Up), um(a) = am,.

Generalizations of methods for solving rst-order equations can be used to solve
such systems. An example here uses the Runge-Kutta method of order four.

Partition [a, b] as before, and let w; ; denote the approximation to w;(¢;) for
j=0,1,...,Nand¢ = 1,2,...,m. For the initial conditions, set w19 = a1,
Wap = Q2, ..., Wm0 = Q. From the values {w1 j, w2 j, ..., Wy, ;} previously
computed, obtain {w1 j11, W2 j11, ..., Wm,j+1} from

kii = hfi(tj, w1 j, w25, .., Wmn;),

h 1 1 1
ki =hf; (tj + 5 WL + §k1,1,w2,j + §k1,2, cey Wiyt §k1,m> )

2
k47i = hfl (tj + h,ij + k3,1,w27]~ + /{/‘372, sy Wit k37m) s

h 1 1 1
ksi=hf; (tj + -, w; + 5162,1,102,]' + §k2,2, cey Wit §k2,m> )

1
Wi j+1 = Wi,j + E[kl’i + 2/(?271' + 2]6371‘ + k47i], (8.3.26)

where ¢ = 1,2, ..., m for each of the above.
A differential equation of high order can be converted into a system of rst-ord er
equations. Suppose that a single differential equation has the form

y™ = f(t,y, v,y .y ™Y), a<t<b (8.3.27)

with initial conditions y(a) = a1,y'(a) = as, ...,y "™ (a) = a,,. All derivatives
. . k

are with respect to ¢. That is, y(*) = %. Dene wq(t) = y(t), ua(t) = y'(t), ...,
U (t) = y(™=D(t). This yields rst-ord er equations

d d ity dum,

% = Ug, M _ uz, ... % = U, % = f(t,u1,us,. .., Unm),

(8.3.28)

with initial conditions u;(a) = ay, ..., Uy (a) = .
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8.3.2.8 Partial differential equations

To develop difference equations for partial differential equations, one needs to esti-
mate the partial derivatives of a function, say, u(z, y). For example,

Ou _ U(Qf-{—h,y) _U(.’I},y) h82u(£7y)
%(a:,y) = o ~ 5 a2 for € (z,xz + h), (8.3.29)
0%u 1 h* 9'u(€, y)

92 (z,y) = h2[ u(z + h,y) — 2u(z,y) + u(z — h,y)] — B ot (8.3.30)

foré € (x — h,z + h).
Notes:

1. Equation (8.3.29) is simply Equation (8.3.12) applied to estimate the partial
derivative. It is given here to emphasize its application for forming differ-
ence equations for partial differential equations. A similar formula applies for
Ou/dy, and others could follow from the formulae in Section 8.3.2.1.

2. An estimate of 9%u/dy? is similar. A formula for 9?u/dxdy could be given.
However, in practice, a change of variables is generally used to eliminate this
mixed second partial derivative from the problem.

If a partial differential equation involves partial derivatives with respect to only
one of the variables, the methods described for ordinary differential equations can
be used. If, however, the equation involves partial derivatives with respect to both
variables, the approximation of the partial derivatives requires increments in both
variables. The corresponding difference equations form a system of linear equations
that must be solved.

Three speci ¢ forms of partial differential equations with popular methods of
solution are given. The domains are assumed to be rectangular. Otherwise, additional
considerations must be made for the boundary conditions.

8.3.2.9 Poisson equation

The Poisson equation is an elliptic partial differential equation that has the form

0%u 0%u

for (z,y) € R = {(z,y) | a < z < b,e < y < d}, with u(z,y) = g(z,y) for
(z,y) € S, where S = OR. When the function f(z,y) = 0 the equation is called
Laplace’s equation.

To begin, partition [a, b] and [c, d] by choosing integers n and m, de ne step
sizesh = (b—a)/nand k = (d — ¢)/m, and set x; = a + ithfori = 0,1,....n
andy; = c+ jkforj =0,1,...,m. Thelines x = z;, y = y;, are called grid lines
and their intersections are called mesh points. Estimates w;,j for u(x;,y;) can be
generated using Equation (8.3.30) to estimate 3—z and giy’;. The method described
here is called the nite-d ifference method.
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Start with the values

wWo,j :g(mﬂayj)v W, 5 :g(xnvyj)v wi,0 :g(miayﬂ)a Wi,m :g(xzvym)a
(8.3.32)
and then solve the resulting system of linear algebraic equations

(OR

h 2
Wi, j—(Wit1,j+wi—1,5)— (E) (wijp1twij 1) = —h* f(xi,45),

(8.3.33)
fori = 1,2,...,.n—1and j = 1,2,...,m — 1. The local truncation error is
O(h? + k?).

If the interior mesh points are labeled Py, = (z;,y;) and w;, = w;; where

l=i+(m—-1—7)(n—1),fori=1,2,...,n—1,and j =1,2,...,m — 1, then
the two-dimensional array of values becomes a one-dimensional array. This results
in a banded linear system. The case n = m = 4 yields £ = (n — 1)(m — 1) = 9.
Using the relabeled grid points, f, = f(P;), the equations at the points P; are

Pp: dwy —wy —ws = woz+wia—h2f1,
P: dwy — w3z —wy; —ws = W24 — h2f2,

Ps: dwg —wy —wg = waz+wsa— h?fs,
Py: dwg —ws — w1 —wr = w2 — A fa,

P5: 4’[1}5 — W — Wy — W2 —Wg = 0—h2f5,

Ps: dwe —ws — w3z —wy = wap — h?fs,

Py dwr; —ws —ws = wo +wip — k27,
Fy: dwg —wy — w7 —ws = wag— hfs,

Py: dwg —ws —wg = wso+wa,1 — h?fy,

where the right-hand sides of the equations are obtained from the boundary condi-
tions.

The following algorithm can be used to solve the Poisson equation. Note that,
for simplicity, the algorithm incorporates an iterative procedure called Gauss—Seidel
for solving linear systems. Instead, Gaussian elimination is recommended (because
stability with respect or round-off errors is assured) when the order is small (say,
less than 100). For large systems, the SOR (Successive Over-Relaxation) method
is recommended. The Gauss—Seidel and SOR methods can be found in Burden and
Faires.

8.3.2.10 Poisson equation nite-diff erence algorithm
To approximate the solution to the Poisson equation

0%u 0%u

Viu(z,y) = 92 (&Y + 3—yz(“’vy) = f(z.y), (8.3.34)

fora <z <bandc <y <d,

subject to u(z,y) = g(z,y)ifz =aorz =bandc < y < dand u(z,y) = g(z,y)
ify=cory=danda <2z <b:
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INPUT endpoints a, b, ¢, d; integers m > 3, n > 3; tolerance TOL;
maximum number of iterations N.
OUTPUT approximations w; ; to u(z;,y;) fori=1,...,n—1
andj =1,...,m — 1 or a message that N was exceeded.
Algorithm:
1. Seth=(b—a)/n; k= (d—c)/m.
2. Fori=1,...,n—1setx; = a+ih.
3. Forj=1,...,m—1sety; =c+ jk.
4. Fori=1,...,n—1
forj=1,....,m—1setw;; =0.
. SetA=h2/k% p=2(1+X); £=1.
6. While £ < N do (a)-(i)
(a) Set
z= (= f(@1,Ym-1) + 9(a,ym—1) + Ag(z1,d)
+FAW1 m—2 + w2,m—1)/ﬂ;
NORM = |z — w1 m—1]; W1,m-1 = 2.
(b) Fori =2,...,n—2
set z = (— B2 f(@i,ym—1) + Ag(@i, d) + Wi—1,m—1
FWit1,m—1 + AWim—2) /1
if |w; m—1 — 2| > NORM then set NORM = |w; m—1 — 2|;
set Wi m—1 = 2.
(C) Set z = ( - hzf(mnflyymfl) + g(b>ym71) + )‘g(xnflyd)
+wn72,m71 + )\wnfl,m72)//~//;
if lwp—1,m—1 — 2| > NORM then set NORM = |w,,_1 m—1 — 2|;
set Wy —1,m—1 = 2.
(d) Forj =m —2,...,2doi-iii.
i. Setz = (—h?f(x1,y;) +9(a,y;) + A jo1 + dwyj o

+ws ;) /13
if |wy,; — 2| > NORM then set NORM = |w, ; — 2|;
setwy j = 2.

W

ii. Fori =2,...,n—2
set z = (— B f(zi,y5) +wi1,j + Aw; j41 + wig1,j
+Awij—1) /1
if lw; ; — 2| > NORM then set NORM = |w; ; — z|;
set w; ; = 2.

iii. Setz = (—h2f(:nn_1,yj)+g(b, Yi)FWn_2 j+AWp_1 jt1
+>\wn—1,j—1)/,u;
if |{wy,—1,; — 2| > NORM then set NORM = |w,,—1,; — 2[;
setwp—1,; = 2.

(e) Setz = (—h*f(z1,y1) + g(a,y1) + Ag(x1,¢) + Awy 2

+w2,1)/,u;
if jw1,1 — 2| > NORM then set NORM = |wy 1 — z|;
setwi,) = 2.
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(f) Fori =2,...,n—2
setz = (— h f(@i,yn) + Ag(zi,¢) + wimi 1 + Aw; 2

+wz+1,1)/u,
if jw;1 — z| > NORM then set NORM = |w; 1 — z|;
set w; 1 = z.
(2) Setz = (=h*f(zn—1,y1)+9(b,y1) +Ag(Tn-1,¢) +wn—21
FAwn—1,2) /15

if w11 — 2| > NORM then set NORM = |w,,_1 1 — 2|;
set wyp—1,1 = 2.
(h) If NORM < TOL then do i-ii.
i. Fori=1,...,n—1
forj=1,...,m—1 OUTPUT(x;,y;,w; ;).
ii. STOP. (Procedure successful.)

(i) Setl =¢+1.

7. OUTPUT(‘Maximum number of iterations exceeded.”);
(Procedure unsuccessful.)
STOP.

8.3.2.11 Heat or diffusion equation

The heat, or diffusion, equation is a parabolic partial differential equation of the form

Ou 282u
E(w,t) 92 (xz,t), O0<z<d{ t>0, (8.3.35)

where 4(0,1) =0 = u({,t) = 0, fort > 0, and u(z,0) = f(z),for0 <z < {. An
ef cient method for solving this type of equation is the Crank—Nicolson method.

To apply the method, select an integer m > 0, set h = £/m, and select a time-
step size k. Here x; = ¢h, i = 0,...,mand t; = jk, j = 0,.... The difference
equation is given by:

Wij+1 = Wij

=0
(8.3.36)

k

2
Q7 [Wit1j = 2Wij + Wint,j | Wittj1 = 2Wija1 + Wit it
2 h? h?

and has local truncation error O(k2 + h2). The difference equations can be rep-
resented in the matrix form Aw+1) = Bw(), for each 7 = 0,1,2,..., where
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A =a?k/h?,w) = (wy j,wsj,...,wm1,)T, and the matrices A and B are

[(L+X)  —A/2 0 0 0 0
A2 (14X) —)A/2 0 0 0
0 A2 (L+A) —)A/2 0 0
a=1 0 0 —A/2 (1+ ) 0 0
0 0 0 0 1+ —)/2
0 0 0 0 A2 (1+ )]
(8.3.37)
[(1=X) A2 0 0 0 0
A2 (1= A2 0 0 0
0 A2 (1=X) A2 0 0
p_| o 0 A2 (1=21) 0 0
0 0 0 0 (1=X) A2
0 0 0 0 A2 (1=

8.3.2.12 Crank—Nicolson algorithm
To approximate the solution to the parabolic partial differential equation
ou » 0%u

- — 2= = T
at(w,t) ! x(w,t) 0, O<ae<l, 0<t<T,

subject to boundary conditions u(0,t) = u(¢,t) = 0 for 0 < ¢t < T, and the initial
conditions u(z,0) = f(z) for0 <z < /.

INPUT endpoint /; maximum time 7'; constant «;
integers m > 3; N > 1.
OUTPUT approximations w; ; to u(z;,¢;) fori =1,...,m — 1, and
j=1,...,N.
Algorithm:
1. Seth ={/m; k =T/N; X\ = a*k/h?*; w,, = 0.
2. Fori=1,...,m — 1setw; = f(ih).
3. Set Zl =1+ )\, u;y = —)\/(261)
4. Fori =2,...,m — 2
setf; =1+ X+ )\Ui_l/Q; U; = —A/(?él)
Setly—1 =14+ X+ )\um_g/Q.
6. Forj =1,...,N do (a)-(e).
(@) Sett = jk; z1 = [(1 — Nwi + Jws] /1.
(b) Fori=2,...,m—1

e

set z; = [(1 — )\)wz + %(wiﬂ + w;—1 + Zi_1)] /Kl
(c) Set wim—1 = Zm—1.
(d) Fori =m —2,...,1setw; = 2; — UjWi41-
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(e) OUTPUT(¢); (Note: t = t;.)
Fori=1,...,m — 1setx =ih; OUTPUT(z,w;).
(Note: w; = wm'.)

7. STOP. (Procedure completed.)

8.3.2.13 Wave equation

The wave equation is an example of a hyperbolic partial differential equation and has
the form

o? o?
8—;(33,1%)—0428—:;(9:,15):0, O<z <l t>0 (8.3.38)

(where « is a constant) subject tow(0,¢) = u(¢,t) = 0fort > 0, and u(x,0) = f(x)

0
6—1:(56,0) =g(z) for0 <z < /.
Select an integer m > 0, time-step size k > 0, and using h = ¢/m, mesh

points (z;,t;) are dened by x; = ih and ¢t; = jk. Using w; ; to represent an
approximation of u(z;,t;) and A = ak/h, the difference equation becomes

and

wi i1 = 2(1 = Mwij + XN (wig1,j + wim1,J) — wij—1,

with wo j = wm,; = 0and w; 0 = f(z;), fori =1,...,m—1landj =1,2,....
Also needed is an estimate for w; 1, foreaché = 1,...,m — 1, which can be written
2 2

wia = (L= N () + 5 Flmin) + 5 flri) + k(o).

The local truncation error of the method is O(h? + k?) but the method is ex-
tremely accurate if the true solution is in nitely differentiable. For the method to be
stable, it is necessary that A < 1. The following algorithm, applied with A < 1, is
O(h® + k?) convergent if f and g are suf ciently differentiable.

8.3.2.14 Wave equation algorithm

To approximate the solution to the wave equation

9? o2
Tg(mat)—QQ(?—;;(wat) =0, 0<z<{ 0<t<T,

subject to w(0,t) = u({,t) = 0for0 < t < T, u(x,0) = f(x) for0 < z < ¢, and

%(m,O) =g(z)for0 <z < /L.

ot
INPUT endpoint ¢; maximum time 7'; constant «; integers m > 2;
N > 2.
OUTPUT approximations w; ; to u(z;,t;),4 =0,...,m,j =0,...,N.
Algorithm:

1. Seth=1¢/m; k=T/N; A= ka/h.
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2. Forj=1,...,Nsetwg; =0; wp; =0.
3. Setwgo = f(0); wmo = f(£).
4. Fori =1,...,m—1

setw; o = f(ih);

/\2
win = (1= N)f(ih) + [ (( + 1))
+1((i — 1)R)] + kg(ih).

5. Forj =1,..., N — 1 (Perform matrix multiplication.)

fore=1,...,m — 1 set

Wi j+1 = 2(1 - )\2)11)1'7]' + )\Q(wi+17]~ + wi_l,j) + wj, 1.
6. Forj=1,...,N

sett = jk;

fort=0,...,m

set z = th; OUTPUT(z,t,w; ;).
7. STOP. (Procedure completed.)

8.3.3 NUMERICAL SUMMATION

A sum of the form Z;‘L:O f(xo+ jh) (n may be in nite) can be approximated by the
Euler—MacLaurin sum formula,

zo+nh 1
Zf ro + jh) = / £ dy + 1 (o + nh) + f(ao)]

m
+3 o
kl

[ (@g + nh) — f* ) (20)] + Ep (8.3.39)

where E,, = %ﬂzm”) (&), with zp < € < g + nh. The B, here are
Bernoulli numbers (see Section 1.2.7).

The above formula is useful even when n is in nite, although the error can no
longer be expressed in this form. A useful error estimate (which also holds when n
is nite) is that the error is less than the magnitude of the rst neglected term in the
summation on the second line of Equation (8.3.39) if f (2+2)(z) and f®™+%) (z) do
not change sign and are of the same sign for 2o < & < 2 + nh. If just f2"+2) ()
does not change sign in the interval, then the error is less than twice the rst neglected
term.

Quadrature formulae result from Equation (8.3.39) using estimates for the

derivatives.
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8.4 PROGRAMMING TECHNIQUES

Ef cienc y and accuracy are the ultimate goal when solving any problem. Listed
here are several suggestions to consider when developing algorithms and computer
programs.

1.

Every algorithm must have an effective stopping rule. For example, popular
stopping rules for iteration methods described in Section 8.1.2 are based on
the estimate of the absolute error, relative error, or function value. One might
choose to stop when a combination of the following conditions are satis ed:

|pn - pn—1|

<e€ flpn)| <€
|pn| 2 | ( n)| 3

|pn _pn71| < €1,
where each €; represents a prescribed tolerance. However, since some iter-
ations are not guaranteed to converge, or converge very slowly, it is recom-
mended that an upper bound, say N, is speci ed for the number of iterations
to be performed (see algorithm on page 742). This will avoid in nite loops.

. Avoid the use of arrays whenever possible. Subscripted values often do not

require the use of an array. For example, in Newton’s method (see page 731)
the calculations may be performed using p = pg — J{,((Z 00)). Then check the
stopping rule, say, if |p — po| < €, and update the current value by setting
po = p before computing the next value of the sequence.

. Limit the use of arrays when forming tables. A two-dimensional array can

often be avoided. For example, a divided difference table can be formed and
printed as a lower triangular matrix. The entries of any row depend only on
the entries of the preceding row. Thus, one-dimensional arrays may be used
to save the preceding row and the current row being calculated. It is important
to note that usually the entire array need not be saved. For example, only
special values in the table are needed for the coef cients of an interpolating
polynomial.

. Avoid using formulae that may be highly susceptible to round off error. Exer-

cise caution when computing quotients of extremely small values as in Equa-
tion (8.3.12) with a very small value of h.

. Alter formulae for iterations to obtain a “small correction” to an approxima-

tion. For example, writing aT-Hz as a + b_T“ in the bisection method (see

page 732) is recommended. Many of the iteration formulae in this chapter
have this form.

. Pivoting strategies are recommended when solving linear systems to reduce

round-off error.

. Eliminate unnecessary steps that may increase execution time or round-off

€ITor.
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8. Some methods converge very rapidly, when they do converge, but rely on rea-
sonably close initial approximations. A weaker, but reliable, method (such as
the bisection method) to obtain such an approximation can be combined with a
more powerful method (such as Newton’s method). The weaker method might
converge slowly and, by itself, is not very ef cien t. The powerful method

might not converge at all. The combination, however, might remedy both dif-
culties.
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7.1 PROBABILITY THEORY

7.1.1 INTRODUCTION

A sample space S associated with an experiment is a set S of elements such that any
outcome of the experiment corresponds to a unique element of the set. An event E is
a subset of a sample space S. An element in a sample space is called a sample point
or a simple event.

7.1.1.1 De nition of probability

If an experiment can occur in n mutually exclusive and equally likely ways, and if
exactly m of these ways correspond to an event E, then the probability of E is given
by

P(E)=—. (7.1.1)

If E is a subset of S, and if to each element subset of .S, a non-negative number,
called the probability, is assigned, and if £ is the union of two or more different sim-
ple events, then the probability of E, denoted P(E), is the sum of the probabilities
of those simple events whose union is E.

7.1.1.2 Marginal and conditional probability

Suppose a sample space S is partitioned into rs disjoint subsets where the general
subset is denoted E; N F; (with ¢ = 1,2,...,r and j = 1,2,...,s). Then the
marginal probability of E; is de ned as

P(E;) =Y P(E;NFy), (7.1.2)

=1

and the marginal probability of F'; is de ne d as

P(F;) =Y P(E;NF)). (7.1.3)

i=1
The conditional probability of E;, given that F; has occurred, is de ned as

]D(.EZ N FJ)

P(B: | ) = =gy,

when P(F;) #0 (7.1.4)

and that of F};, given that E/; has occurred, is de ned as

]D(.EZ N FJ)

P(F} | Bi) = 5y

when P(E;) # 0. (7.1.5)
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7.1.1.3 Probability theorems

1.
2.
3.

If () is the null set, then P (@) = 0.
If S is the sample space, then P(S) = 1.

If E and I are two events, then

P(EUF)=P(E)+ P(F) - P(ENF). (7.1.6)

If E and F' are mutually exclusive events, then

P(EUF) = P(E) + P(F). (7.1.7)

If E and E' are complementary events, then

P(E) =1- P(E"). (7.1.8)

Two events are said to be independent if and only if
P(ENF)=P(E)P(F). (7.1.9)

The event E is said to be statistically independent of the event F' if
P(E|F)=P(E)and P(F | E) = P(F).

The events {E1, ..., E,} are called mutually independent for all combinations
if and only if every combination of these events taken any number of times is
independent.

. Bayes’ rule: If {E1, ..., E,} are n mutually exclusive events whose union is

the sample space S, and if E is any arbitrary event of S such that P(E) # 0,
then

P(Ey) P(E | Ey) _ P(Ey) P(E| E)

P(Ey | E) = = == . (7.1.10)
P(E) >.j—1 P(Ej) P(E | Ej)
For a uniform probability distribution,
f i A
P(A) = Number of outcomes in event 7.1.11)

Total number of outcomes

7.1.1.4 Terminology

1.

2.

A function whose domain is a sample space S and whose range is some set
of real numbers is called a random variable. This random variable is called
discrete if it assumes only a nite or denumerable number of values. It is
called continuous if it assumes a continuum of values.

Random variables are usually represented by capital letters.
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3. “iid” or “i.i.d.”” is often used for the phrase “independent and identically
distributed”.

4. Many probability distributions have special representations:

(a) x?2: chi-square random variable with n degrees of freedom

(b) E(\): exponential distribution with parameter A

(¢c) N(u,o): normal random variable with mean y and standard deviation o
(d) P()\): Poisson distribution with parameter A

(e) Ula,b): uniform random variable on the interval [a, b)

7.1.1.5 Characterizing random variables

The density function is de ned as follows:

1. When X is a continuous random variable, let f(x) dz denote the probability
that X lies in the region [z, z + dz]; f(z) is called the probability density
function. (We require f(z) > 0 and [ f(z) dz = 1.) For any event E,

P(E)=P(XisinE) = /Ef(a:) dx. (7.1.12)

2. When X is a discrete random variable, let py, for K = 0,1, ... be the proba-
bility that X = x; (with p;, > 0 and ), pr = 1). Mathematically, for any
event F,

P(E)=P(XisinE) = Y p. (7.1.13)
R

A discrete random variable can be written with the continuous density

f(z) = Zk Pré(z — 2p).

The cumulative distribution function, or simply the distribution function, is de-
ned by

Emkgw pr,  inthe discrete case,

P 7.1.14
fioo f(t)dt, inthe continuous case. ( )

Flz) =P(X <z) = {

Note that F'(—oo) = 0 and F'(oc0) = 1. The probability that X is between a and b is

Pla< X <b)=P(X <b)— P(X <a)=F(b) — F(a). (7.1.15)

Let g(X) be a function of X. The expected value (or expectation) of g(X),
denoted by E [¢g(X)], is de ned by

in the discret
Blg(X)] = {Ekpkg(mk), in the discrete case, (7.1.16)

Jr 9(t)f(t)dt, in the continuous case.
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1. E[aX +bY] =aE[X]+ DE[Y].
2. E[XY] =E[X]E[Y]if X and Y are statistically independent.

The moments of X are dened by uj = E [X "] The rst moment, u}, is
called the mean of X; it is usually denoted by u = p}| = E[X]. The centered
moments of X are de ned by pur = E [(X — p)*]. The second centered moment is
called the variance and is denoted by 02 = p» = E [(X — p)?]. Here, o is called
the standard deviation. The skewness is v1 = g/ o3, and the excess or kurtosis is

12 = (uafo*) - 3.
Using a% to denote the variance for the random variable Z, we have

7.1.1.6 Generating and characteristic functions

In the case of a discrete distribution, the generating function corresponding to X
(when it exists) is given by G(s) = Gx(s) = E [s*] = Y2 pes™. From this
function, the moments may be found from

o= (s3) @

1. If ¢ is a constant, then the generating function of ¢ + X is s °G(s).

(7.1.17)

s=1

2. If ¢ is a constant, then the generating function of ¢X is G(s¢).

3. If Z = X +Y where X and Y are independent discrete random variables,
then Gz(s) = Gx (s)Gy (s).

4. IfY = E?:l X, the {X;} are independent, and each X; has the common
generating function G x (s), then the generating function of Y is [G x (s)]™.

In the case of a continuous distribution, the characteristic function correspond-
ing to X is given by ¢(t) = E [¢!*X] = [* € f(x) dx, the Fourier transform
of f(z). From this function, the moments may be found: u! = i="¢(™(0). If
Z = X +Y where X and Y are independent continuous random variables, then
¢z (t) = dx (t)dy (¢).

The cumulant function is de ned as the logarithm of the characteristic function.
The n'* cumulant, k,,, is de ned as a coef cient in the Taylor series of the cumulant

function,

log ¢(t) = Zmn(i%. (7.1.18)
n=0 :
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Note that k1 = p, k2 = 02, k3 = 3, and kg = g — 3p3. For a normal probability
distribution, x,, = 0 for n > 3. The centered moments in terms of cumulants are

H2 = K2,
M3 = K3,
py = Kq + 3K3, (7.1.19)

s = ks + 10K3K2,
e = kg + 19K4ko + 105% + 1553.

7.1.2 MULTIVARIATE DISTRIBUTIONS

7.1.2.1 Discrete case

The k-dimensional random variable (X1, ..., X}) is a k-dimensional discrete ran-
dom variable if it assumes values only at a nite or denumerable number of points
(1,...,21). Dene

P(X1 = :Ul,XQ = T2, .- ,Xk = :Uk) = f(:l?l,xg, . ,ZUk) (7120)
for every value that the random variable can assume. The function f(z1,...,z) is

called the joint density of the k-dimensional random variable. If E is any subset of
the set of values that the random variable can assume, then

P(E) = P[(X,,...,X})isin E] = Zf Ti,...\T (7.1.21)

where the sum is over all the points (x1, ... ,a:k) in E. The cumulative distribution
function is de ne d as

F(zy,xo,...,2) = Z Z Z f(z1,22, ..., 21). (7.1.22)

z1<z1 22<72 2 <Tk

7.1.2.2 Continuous case

The k random variables (X1, ..., X) are said to be jointly distributed if a function
f exists so that f(zy,...,2;) > 0forall —co < x; < 0o (¢ = 1,...,k) and so that,
for any given event F,

P(E) = P[(X}, Xa,...,X},) isin E]
/ /f (z1,22,...,2k) dzy dzo - - - dz)! (7.1.23)
The function f(x1,...,xy) is called the joint density of the random variables X,
Xo, ..., Xg. The cumulative distribution function is de ned as

T T2 Th
F(zy,xa,...,2L) :/ / / flz1,29,...,2k)dzg -+ - dzadzy. (7.1.24)
— 00 — 00 —0o0

Given the cumulative distribution function, the probability density may be found
from

0 0 0
f(.Z’l,l'z,...,.Z’k) = 8—.’1}18—.’1}2 a—xkF(l'l,.’Bg,...,.Z’k). (7125)
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7.1.2.3 Moments

The ™ moment of X; is de ned as

Doy 2w Tif (@, ), in the discrete case,
E[X/]={ % % ' .
' f T f zl f(zy1,...,x)dry -~ dry  inthe continuous case.
— 00 — 00
(7.1.26)

Joint moments about the origin are de ned as E[X|* X;?--- X *] where ry + 72 +
- -+ 4+ rp is the order of the moment. Joint moments about the mean are de ned as
E[(X1 — p1)"™ (X2 — p2)" - - - (Xy — pu)"™], where iy, = E[Xj].

7.1.2.4 Marginal and conditional distributions

If the random variables X1, ..., X have the joint density function f(z1,...,z),
then the marginal distribution of the subset of the random variables, say, X 1, ..., X,
(with p < k), is given by

g(@1,22,...,2p) =
Doty Daaprs T Doy d (T1, T2, .., ak),  in the discrete case,
o0 e . . (7.1.27)
[ - [ f(z1,...,2x)dzps1 -+ dog, inthe continuous case.
-0 —00

The conditional distribution of a certain subset of the random variables is the
joint distribution of this subset under the condition that the remaining variables are
given certain values. The conditional distribution of X, X, ..., X, given X4,
Xpt2, ooy Xy, is

f(ml,xZ,"'amk)
g($p+1;33p+2,---;33k)

hMzi,...,@p | Tpg1,..-,Tk) = (7.1.28)

if g(zpt1,Tpt2,. .., 7k) # 0.
The variance o;; of X; and the covariance o;; of X; and X are given by

oy =07 =E[(Xi — w)?],
o5 = pijoioy = B[(X; — ) (X; — ),

where p;; is the correlation coef cie nt, and o; and o; are the standard deviations of
X;and X;.

(7.1.29)

7.1.3 RANDOM SUMS OF RANDOM VARIABLES

T = Efi1 X;, and if N is an integer-valued random variable with generating
function G i (), and if the { X;} are discrete independent and identically distributed
random variables with generating function G x (s), and the { X} are independent of
N, then the generating function for 7" is Gr(s) = Gn(Gx(s)). (If the {X;} are
continuous random variables, then ¢ 7(t) = Gn(éx(t)).) Hence,

L. pr = pnpx.
2. 0% = punok + pxok.
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7.1.4 TRANSFORMING VARIABLES

1. Suppose that the random variable X has the probability density function f x (z)
and the random variable Y is de ned by Y = g(X). If g is measurable and
one-to-one, then

Fr() = Fx (b)) ‘% (7.1.30)

where h(y) = g~ (y).

2. If the random variables X and Y are independent and if their densities f x and
fv, respectively, exist almost everywhere, then the probability density of their
sum, Z = X + Y, is given by the convolution

fz(2) = /_oo fx (@) fy(z — z) d. (7.1.31)

3. If the random variables X and Y are independent and if their densities f x and
fy . respectively, exist almost everywhere, then the probability density of their
product, Z = XY, is given by the formula,

fa(z) = /oo ifX(a:)fY( ) dz. (7.1.32)

2
oo |7] T

7.1.5 CENTRAL LIMIT THEOREM

If {X;} are independent and identically distributed random variables with mean p
and nite variance o2, then the random variable

(Xi+Xo+ -+ X,) —np
Vno

tends (as n — 00) to a normal random variable with mean zero and variance one.

Z = (7.1.33)

7.1.6 INEQUALITIES

1. Markov’s Inequality: If X is a random variable which takes only non-negative
values, then for any a > 0,
E[X]

a

P(X > a) (7.134)

2. Cauchy-Schwartz Inequality: Let X and Y be random variables for which
E [X 2] and E [Yz] exist, then

(E[XY])? <E[X?]E[Y?]. (7.1.35)
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3. One-Sided Chebyshev Inequality: Let X be a random variable with zero mean
(i.e., E[X] = 0) and variance ¢2. Then, for any positive a,

2

P(X >a) <

—_ 7.1.36
< 5 (7.136)

4. Chebyshev’s Inequality: Let c be any real number and let X be a random
variable for which E [(X — ¢)?] is nite. Then, for every e > 0 the following
holds:

P(IX —¢c|>¢) < G%E [(X —¢)?]. (7.1.37)

5. Bienaymé—Chebyshev’s Inequality: If E[|X|"] < oo for all # > 0 (r not
necessarily an integer) then, for every a > 0,

E[IX]"]

aT

P(|X]>a) <

(7.1.38)

6. Generalized Bienaymé—Chebyshev’s Inequality: Let g(x) be a non-decreasing
non-negative function de ned on (0, c0). Then, fora > 0,

Efg(1X])]

. 7.1.39
9(a) (7139

P(|X]>a) <

7. Chernoff bound: This bound is useful for sums of random variables. Let Y,, =
S, X; where the {X;} are iid. Let M (t) = E,[e!*] be the same moment
generating function for each of the {X;}, and de ne ¢(t) = log M (¢t). Then
(the prime in this formula denotes a derivative),

P(Yo>ng'(t)) < eld®-o®l ity >0,
P(Ya<ng(t) < elo@-s0l iy <o,
8. Kolmogorov’s Inequality: Let X4, Xs, ..., X, be n independent random vari-

ables such that E [X;] = 0 and Var(X;) = ag(i is nite. Then, for all ¢ > 0,

noo_2
i
P<inllil_}in|X1 +Xo 4+ X >a> S;a—2. (7.1.40)
9. Jensen’s Inequality: If E[X] exists, and if f(z) is a convex U (“convex cup”)
function, then
E[f(X)] = F(E[X]). (7.1.41)
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7.1.7 AVERAGES OVER VECTORS

Let f(n) denote the expectation of the function f as the unit vector n varies uniformly
in all directions in three dimensions. If &, b, ¢, and d are constant vectors, then

ja-nl” = |’ /3,
(@-n)(b-n)=(a-b)/3,
w: 3/3, (7.1.42)
laxn]® =2a’ /3,
(axn)-(bxn)=2a-b/3,

(a-n)(b-n)(c-n)(d-n)=[(a-b)(c-d)+ (a-c)(b-d)+ (a-d)(b-c)] /15.

Now let f(n) denote the average of the function f as the unit vector n varies
uniformly in all directions in two dimensions. If @ and b are constant vectors, then

ja-n” = Ja® /2,
(a-n)(b-n)=(a-b)/2, (7.1.43)
(a-n)n=a/2.

7.1.8 GEOMETRIC PROBABILITY

1. Points in a line segment:

If A and B are uniformly and independently chosen from the interval [0, 1),
and X is the distance between A and B (that is, X = |A — B|) then the
probability density of X is fx (z) = 2(1 — x).

2. Many points in a line segment:

Uniformly and independently choose n— 1 random values in the interval [0, 1).
This creates n intervals.

Py, (z) = Probability (exactly & intervals have length larger than z)

= <Z> {[1 ] <" I k) 11— (k+Dz]" '+ (7.1.44)
(M) e,

1
where s = {— — kJ . From this, the probability that the largest interval length
x

exceeds T is

1- Py(z) = (’I) (1-z)" ! — <Z> (1—22)" ' +....  (7.145)
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3. Points in the plane:

Assume that the number of points in any region A of the plane is a Poisson
variate with mean AA (X is the “density” of the points). Given a x ed point P
dene R;, R,, ..., to be the distance to the point nearest to P, second nearest
to P, etc. Then

fr.(r) = 7(Z(i”1);!rzsle*“r2. (7.1.46)

4. Points in three-dimensional space:

Assume that the number of points in any volume V is a Poisson variate with
mean AV () is the “density” of the points). Given a x ed point P dene R,

R,, ..., to be the distance to the point nearest to P, second nearest to P, etc.
Then (4 )
3 §/\7T ’ 3s—1 EPV T
= —2 L p¥TleT AT 7.1.47
fr.(r) e ¢ ( )

5. Points on a checkerboard:

Consider the unit squares on a checkerboard and select one point uniformly
and independently in each square. The following results concern the average
distance between points:

(a) For adjacent squares (a black and white square with a common side) the

mean distance between points is 1.088.

(b) For diagonal squares (two white squares with a point in common) the
mean between points is 1.473.

6. Points in a cube:
Choose two points uniformly and independently within a unit cube. The dis-
tance between these points has mean 0.66171 and standard deviation 0.06214.
7. Points in an n-dimensional cube:

Select two points uniformly and independently within a unit n-dimensional
cube. The expected distance between the points, A(n), is

A(l) =3 A(5) ~ 0.87852
A(2) ~ 0.54141 A(6) ~ 0.96895
A(3) ~ 0.66171 A(7) ~ 1.05159
A(4) =~ 0.77766 A(8) ~ 1.12817

8. Points on a circle:

Select three points uniformly and independently on a unit circle. These points
determine a triangle with area A. The mean and variance of this area are:

= 3 ~ 0.4775
2w

3 (72 -6

(7.1.48)
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9. Buffon’s needle problem:

A needle of length L is placed at random on a plane on which are ruled parallel
lines a distance D apart. If % < 1 then only one intersection is possible. The
probability P that the needle intersects a line is

2L
— if0<L<D
D Ho< L <D,
=1 D\? 2 D
Rt _ _ = __.71_ . < .
D 1 1 <L> +<1 —sin L> if0<D<LL
(7.1.49)

7.2 CLASSICAL PROBABILITY PROBLEMS

7.2.1 RAISIN COOKIE PROBLEM

A baker creates enough cookie dough for C' = 1000 raisin cookies. The number of
raisins to be added to the dough, R, is to be determined.

1. If you want to be 99% certain that the r st cookie will have at least one raisin,
then 1 — (1) =1 — (22)" > 0.99, or R > 4603,

2. If you want to be 99% certain that every cookie will have at least one raisin,
then P(C,R) > 0.99, where P(C,R) = C~BY (9)(-1)i(C —i)E.
Hence R > 11508.

7.2.2 GAMBLER'S RUIN PROBLEM

A gambler starts with z dollars. For each turn, with probability p he wins one dollar,
with probability ¢ he loses one dollar (with p + ¢ = 1). Gambling stops when he
has either last z dollars (“is ruined”, the gambler holds zero dollars), or won a — 2
dollars (“gambler’s success”, the gambler holds a dollars).

If q. denotes the probability of stopping with zero dollars (“is ruined”) then

(¢/p)* — (a/p)*

if
-1 T
¢ = (7.2.1)
yA .
1—5 ifp=q= %
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For example:

p q |z a q=

fair | 0.5 0519 10 .900

game | 0.5 0.5 |90 100 .900

0.5 05900 1000 |.900

0.5 0.5]9000 10000 |.900

biased | 0.4 0.6 | 90 100 .017

game | 0.4 0.6 | 90 99 .667

7.2.3 CARD GAMES

If the odds are a:b against, the probability of the event is p = #b; If the odds are

a:b for, the probability of the event is p =

1. Poker hands

a

a+b’

The number of distinct 5-card poker hands is (552) = 2,598,960.

Hand Probability Odds against
royal ush 1.54 x 107 = 4/(72) 649,739:1
straight ush ~ 1.39 x 107° = 36/ (% 72,192:1
fourof akind  2.40 x 107* = 624/ (% 4,164:1
full house 1.44 x 1073 = 3744/ (%) 693:1
ush 1.97 x 1073 508:1
straight 3.92 x 1073 254:1
three of akind 0.0211 46:1
two pair 0.0475 20:1
one pair 0.423 = % 1.37:1

2. Bridge hands

The number of distinct 13-card bridge hands is (?g) = 635,013,559,600.

In bridge, the honors are the ten, jack, queen, king, and ace of each of the four
suits. Obtaining the three top cards (ace, king, and queen) of three suits and
the ace, king, queen, and jack of the remaining suit is called /3 top honors.
Obtaining all cards of the same suit is called a /3-card suit. Obtaining 12
cards of the same suit with ace high and the 13th card not an ace is called a
12-card suit, ace high. Obtaining no honors is called a Yarborough.

Hand

Probability

Odds against

13 top honors
13-card suit

12-card suit, ace high

Yarborough
four aces
nine honors

6.30 x 10712 =4/(}
6.30 x 10712 =4/(;

2.72x107°
547 %1071
2.64 x 10°
9.51 x 10~°

2

3
3

)
)

158,753,389,899:1
158,753,389,899:1
367,484,698:1
1,827:1

378:1

104:1
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7.2.4 DISTRIBUTION OF DICE SUMS

A common die is a cube with six faces; the faces are numbered one through six. It is
usually unbiased, all faces are equally likely.
When rolling two dice, the probability distribution of the sum is

6—|s—17

5 for2 < s < 12. (7.2.2)

Prob (sum of s) =

When rolling three dice, the probability distribution of the sum is

) 1s—1)(s—2) for3 <s<8
Prob (sum of s) = —s2+21s—83 for9<s< 14 (7.2.3)

=216
7(19 —5)(20 —s5) for15 < s <18

For two dice, the most common roll is a 7 (probability %). For three dice, the
most common rolls are 10 and 11 (probability % each). For four dice, the most

common roll is a 14 (probability %).

7.2.5 BIRTHDAY PROBLEM
The probability that n people have different birthdays (neglecting February 29 ™) is

364 363 366 —n
n=\=—=] =" |—— ). 7.2.4
1 (365) <365> ( 365 > (7:24)
Let p, = 1 — g,. For 23 independent people the probability of at least two people
having the same birthday is more than half (p23 = 1 — ga3 > 1/2).

n 10 20 23 30 40 50
pn 0.117 0.411 0.507 0.706 0.891 0.970

That is, the number of people needed to have a 50% chance of two people having
the same birthday is 23. The number of people needed to have a 50% chance of three
people having the same birthday is 88. For four, ve, and six people having the same
birthday the number of people necessary is 187, 313, and 460.

The number of people needed so that there is a 50% chance that two people
have a birthday within one day of each other is 14. In general, in an n-day year the
probability that p people all have birthdays at least £ days apart (so k& = 1 is the
original birthday problem) is

(7.2.5)

- -1) - —1)!
probability:<n p(k —1) 1) -1

p—1 np~1
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7.3 PROBABILITY DISTRIBUTIONS

7.3.1 DISCRETE DISTRIBUTIONS

1. Discrete uniform distribution: If the random variable X has a probability den-
sity function given by

P(X:x):f(m):;, forx = x1,29,...,2T,, (7.3.1)

then the variable X is said to possess a discrete uniform probability distribu-
tion.

Properties: When x; =i fori =1, 2,..., n then

1
Mean = 4 = nt ,
2
. n?—1
Vari =0g? =
ariance = o T
= (7.3.2)
Standard deviation = o = 12
. . ef(1—e™)
Moment generating function = G(t) = e
—e

2. Binomial distribution: If the random variable X has a probability density func-
tion given by

P(X =2) = f(z) = (Z) 0*(1—6)"*,  forz=0,1,...,n, (733)

then the variable X is said to possess a binomial distribution. Note that f(z)
is the general term in the expansion of [§ + (1 — 8)]™.

Properties:
Mean = p = n#,
Variance = 02 = nf(1 — ),
(7.3.4)
Standard deviation = o = \/né(1 — 0),

Moment generating function = G(t) = [fe’ + (1 — 8)]".

As n — oo the binomial distribution approximates a normal distribution with
a mean of nf and variance of nf(1 — 8); see Figure 7.1.

3. Geometric distribution: If the random variable X has a probability density
function given by

P(X=2z)=f(x)=001-0)*"" forz=1,2,3,..., (7.3.5)
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FIGURE 7.1
Comparison of P(x) for a binomial distribution and the approximating normal distribution.

Left gure is for (n = 8,0 = 0.2), right gure isfor (n = 8,0 = 0.4); horizontal axis is z.

03 r
0.3 02 L
0.2
01 0.1 r
0 = 0
0 1 2 3 4 ) 0 1 2 3 4 5 6 7 8

then the variable X is said to possess a geometric distribution.

Properties:
1
M = = —
ean = fi = o,
1-46
Variance = o2 = 7
-9 (7.3.6)
Standard deviation = o = PR
M t ting functi G(t) e’
oment generating function = = —.
g & 1—et(1—9)

4. Hypergeometric distribution: If the random variable X has a probability den-
sity function given by

() =)
()

then the variable X is said to possess a hypergeometric distribution.

P(X =z)=f(z) = forx =1,2,3,...,min(n, k)  (7.3.7)

Properties:

k
Mean = 4 = Fn’

) E(N — k)n(N —n)
Variance = 02 = NN -1) ) (7.3.8)
k(N — k)n(N —n)

N2(N —-1) ’

Standard deviation = o = \/

© 2003 by CRC Press LLC



5. Negative binomial distribution: If the random variable X has a probability
density function given by

P(X =) = f(z) = (’””_1>9’“(1—0)w forz =0,1,2,...,

r—1
(7.3.9)
then the variable X is said to possess a negative binomial distribution (also
known as a Pascal or Polya distribution).

Properties:
r
Mean=p= - —r,
Variance = 02 =
(7.3.10)
1 1-46
Standard deviation = ([~ [~ —1) = u,
0 \40
Moment generating function = G(t) = 8"[1 — (1 — #)e]™".
6. Poisson distribution: If the random variable X has a probability density func-
tion given by
e A\?

P(X =2) = f(x) = — forz =0,1,2,..., (7.3.11)

with A > 0, then the variable X is said to possess a Poisson distribution.

Properties:
Mean = p = A,
Variance = 02 = ),
7.3.12
Standard deviation = o = V/), ( )
Moment generating function = G(t) = e ¢ =1,
7. Multinomial distribution: If a set of random variables X1, X», ..., X,, hasa
probability function given by
P(X1 = 1‘1,X2 = .’L’Q,...,Xn = .’L’n) = f(l‘l,l'z,...,.’rn)
n x;
_ T (7.3.13)
i=1
where the {x;} are positive integers, each §; > 0, and
n n
> 6;=1 and » x; =N, (7.3.14)
i=1 i=1
then the joint distribution of X, X5, ..., X,, is called the multinomial distri-
bution. Note that f(x1, 22, ...,2,) is a term in the expansion of (81 + 0 +

o+ 0N,
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Properties:
Mean of X; = u; = N#6;,
Variance of X; = 07 = N6;(1 —6;),
Covariance of X; and X; = J?j = —N0,0;,

Joint moment generating function = (A€t + - - - + et )V,

(7.3.15)

7.3.2 CONTINUOUS DISTRIBUTIONS

1. Uniform distribution: If the random variable X has a density function of the

form 1
flz) = , fora <z < g, (7.3.16)
b -«
then the variable X is said to possess a uniform distribution.
Properties:
Mean = 4 = a _; '8,
, (B —a)?
Vi =2 =
ariance = o 7
— )2 (7.3.17)
Standard deviation = o = %,
( ) eﬁt _ eat
Moment generating function = G(t) = ———
(8 —a)t
_ 2 sinh (B —a)t platB)t/2
(B —a)t 2

2. Normal distribution: If the random variable X has a density function of the

form
1 2
flz) = Nors exp (—%) , for —oco < x < 00, (7.3.18)
o

then the variable X is said to possess a normal distribution.

Properties:

Mean = p,
Variance = o2,
Standard deviation = o, (7.3.19)

2t2
Moment generating function = G(t) = exp <ut + %) .
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a) Sety = =% to obtain a standard normal distribution.
Y v

(b) The cumulative distribution function is

F(z)=®(z) = \/21_7ra /; exp <— (t 2_05)2> dt.

3. Multi-dimensional normal distribution:

The random vector X is said to be a multivariate normal (or a multi-dimensional
normal) if and only if the linear combination aTX is normal for all vectors a. If
the mean of X is y1, and if the second moment matrix R = E [(X — p)(X — p)7]
is non-singular, the density function of X is

1

)= (27)n/2\/det R

exp [—%(X - )R (x — u)} . (7.3.20)

Sometimes integrals of the form I, = / / (x"M X)k f(X) dx are
desired. De ning aj = tr(MR)*, we nd:

Iy=1,

I =ay,

I, = a3 + 2as, (7.3.21)
I; = a3 + 6a,az + Sas,

I, = cfl1 + 12a%a2 + 32aia3 + 12a§ + 48ay4.

4. Gamma distribution: If the random variable X has a density function of the
form
1

S —— fi 3.22
f(z) F(1+a)61+‘1w e , or0 < z < oo, (7.3.22)

with @ > —1 and 8 > 0, then the variable X is said to possess a gamma
distribution.

Properties:

Mean = p = B(1 + a),
Variance = 02 = £%(1 + a),
Standard deviation = o = (8 Vi+a
Moment generating function = G(t) = (1 — t) ™' =%, fort < 87"

)

(7.3.23)

5. Exponential distribution: If the random variable X has a density function of

the form
e—m/@
flz) = 7 for0 < z < oo, (7.3.24)
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where § > 0, then the variable X is said to possess an exponential distribution.

Properties:

Mean = p =0,
Variance = o2 = 2%,
. (7.3.25)
Standard deviation = o = 6,

Moment generating function = G (t) = (1 — 6t) ™"

6. Beta distribution: If the random variable X has a density function of the form

Fla+5+2)
T+ a)T(1+5)

fx) =Bl +a,1+B)z%(1 —2z)’ = (1 — )7,

(7.3.26)
for0 < = < 1, where @« > —1 and 8 > —1, then the variable X is said to
possess a beta distribution.

Properties:

1+«
mv (7.3.27)
. I (1+a)(1+75)
Variance = 0° = CtratP2Brath)
F2+a+p/Tl+a+r

. )
moment about the origin = v, = .
g " T24a+B8+r)I(1+a)

Mean = 4 =

h

,r,t

7. Chi-square distribution: If the random variable X has a density function of

the form

z(n=2)/2,—2/2
then the variable X is said to possess a chi-square (x2) distribution with n
degrees of freedom.

Properties:
Mean = p = n,
Variance = o2 = 2n, (7.3.29)
Standard deviation = o = v/2n.
(a) It Y1, Y5, ..., Y, are independent and identically distributed norITIllal ran-
dom variables with a mean of 0 and a variance of 1, then y? = Z Y7 is
i=1

distributed as chi-square with n degrees of freedom.

(b) If x%, x3, ..., X3, are independent random variables and have chi-square
distributions with i, na, ..., ng degrekes of freedom, then Ele X? has
a chi-squared distribution withn = ). | n; degrees of freedom.
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8. Snedecor’s F-distribution: If the random variable X has a density function of
the form

m\Mm/2 _(m—
r(2m) ()" im0

)
D)1 (3) (14 2)

flz) = for0 < z < o0, (7.3.30)

then the variable X is said to possess a F'-distribution with m and n degrees
of freedom.

Properties:

Mean:u:L, forn > 2,
n—2

2n%(m +n — 2)

m(n —2)%(n —4)’

(7.3.31)
Variance =

forn > 4.

mz/n
1+ 2=

(a) The transformation w = transforms the F'-density to the beta

density.

(b) If the random variable X has a y 2-distribution with m degrees of free-
dom, the random variable Y has a y 2-distribution with n degrees of free-

[m is distributed as an
Y/n

F-distribution with m and n degrees of freedom.

dom, and X and Y are independent, then F' =

9. Student’s t-distribution: If the random variable X has a density function of the
form

for —oo < x < o0. (7.3.32)

_ (=)
v (3) (e )"
then the variable X is said to possess a t-distribution with n degrees of free-
dom.

Properties:

Mean = p = 0,

7.3.33
Variance = 0% = n 5’ forn > 2. ( )
n—

(a) If the random variable X is normally distributed with mean O and vari-
ance 02, and if Y2 /0?2 has a x? distribution with n degrees of freedom,

and if X and Y are independent, then t = n is distributed as a

t-distribution with n degrees of freedom.
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FIGURE 7.2
Conceptual layout of a queue.
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7.4 QUEUING THEORY

A queue is represented as A/B/c/K/m/Z where (see Figure 7.2):

1. A and B represent the interarrival times and service times:

GI general independent interarrival time,

G general service time distribution,

H;, k-stage hyperexponential interarrival or service time distribution,
E},  Erlang-k interarrival or service time distribution,

M  exponential interarrival or service time distribution,

D deterministic (constant) interarrival or service time distribution.

c is the number of identical servers.
K is the system capacity.

m is the number in the source.

Z is the queue discipline:

Nk w

FCFS rst come, rst served (also known as FIFO: “rst in, rst out”),
LIFO lastin, rst out,

RSS random,

PRI priority service.

When not all variables are present, the trailing ones have the default values, K = oo,
m = o0, and Z is FIFO. Note that the m and Z are rarely used.

7.4.1 VARIABLES

1. Proportions

(a) ay,: proportion of customers that nd n customers already in the system
when they arrive.
(b) d,: proportion of customers leaving behind n customers in the system.
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(¢) pn: proportion of time the system contains n customers.

2. Intrinsic queue parameters

(a) A: average arrival rate of customers to the system (number per unit time).

(b) p: average service rate per server (number per unit time), u = 1/E[T].

(¢c) w: traf ¢ intensity, u = A/p.

(d) p: server utilization, the probability that any particular server is busy,
p=ufc=(\/p)/e.

3. Derived queue parameters

(a) L: average number of customers in the system.
(b) Lg: average number of customers in the queue.
(c) N: number in system.

(d) W: average time for customer in system.

(e) Wq: average time for customer in the queue.
(f) Ts: service time.

4. Probability functions

(a) fs(x): probability density function of customer’s service time.

(b) fu(x): probability density function of customer’s time in system.
(c) m(z): probability generating function of p,,: m, = Y.~ o Pn2".
(d) mg(z): probability generating function of the number in the queue.
(e) «a(s): Laplace Transform of f,(z): a(s) = fooo fuw(x)e 8 dx.
(f) ar(s): Laplace Transform of the service time.

7.4.2 THEOREMS
1. Little’s law: L = AW and Lg = A\Wy,.

2. If the arrivals have a Poisson distribution: p,, = a,,.

3. If customers arrive one at a time and are served one at a time: a,, = d,,.

4. Foran M /M /1 queue with p < 1,

(@) pn=(1—p)p"

() L=p/(1-p),

() Lo =p*/(1-p),

(d) W=1/(u—A),

(e) Wo =p/(p—N),

(M m(z) = (1—p)/(1 - zp),

(@ a(s) =A—p)/A—p—s).
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5. For an M /M /c queue with p < 1 (so that p,, = nu forn = 1,2,...,c and
tn = cuforn > c),

c c—1

~1

U u"
wm=|mr ]
pou”/n! forn=20,1,...,c,

b -
®) pn {pou"/c!c forn > ¢,
(© Lg = pou‘p/cl(l —p)?,

n—c

d) Wg = Lo/,
e W =Wq+1/u
(f) L= \WW.

6. Pollaczek—Khintchine formula: Foran M /G /1 queue with p < 1and E [TSZ] < 00

(@) L=Lqg +p,
(b) L =W,
© Lo = AE [Ts?']
¢ 2(1-p)
(d) Lg = \Wq,
(e) m(z) =mg(z)ar(A — Az),
(M mo(z) = (1 = p)(1 —2)/(a(X = Az) — 2).

7. For an M /G /oo queue

(a) pn = e “u"/nl,
(b) 7(z2) = exp (—(1 — 2)u).

Ul [ uF -

8. Erlang B formula: For an M /G /¢/c queue, p, = T Z o .

k=0

9. Distributional form of Little’s law: For any single server system for which: (i)
Arrivals are Poisson at rate A, (ii) all arriving customers enter the system and
remain in the system until served (i.e., there is no balking or reneging), (iii) the
customers leave the system one at a time in order of arrival, (iv) for any time ¢,
the arrival process after time ¢ and the time in the system for any customer

arriving before ¢ are independent, then (here L and W do not denote averages)

(@) m(2) = a(A(1 - 2)),
(b) B[L"] = 374, S(n, E [(AW)"]
where S(n, k) is Stirling number of the second kind. For example:
i. E[L] = AE[W] (Little’s law),
ii. E[L?] =E[(AW)?] + E[AW].
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7.5 MARKOQOV CHAINS

A discrete parameter stochastic process is a collection of random variables {X (¢),
t =0,1,2,...}. The values of X (¢) are called the states of the process. The col-
lection of states is called the state space. The values of ¢ usually represent points
in time. The number of states is either nite or countably in nite. A discrete pa-
rameter stochastic process is called a Markov chain if, for any set of n time points
t; <ty < --- < ty, the conditional distribution of X (¢,,) given values for X (¢;),
X (t2), ..., X(tp—1) depends only on X (¢,,—1). It is expressed by

P[X(tn) < zn | X(t1) =21, ..., X(tno1) = Tp_1]
= P[X(tn) S Tn | X(tn_l) = an_l]. (751)

A Markov chain is said to be stationary if the value of the conditional probability
P[X(tnt1) = Tnt1]|X (tn) = x,,] is independent of n. This discussion will be re-
stricted to stationary Markov chains.

7.5.1 TRANSITION FUNCTION AND MATRIX

7.5.1.1 Transition function

Let = and y be states and let {¢,,} be time pointsin T = {0, 1,2, ... }. The transition
Sfunction, P(z,y), is de ned by

P(;r,y) = Pn,n+1(m,y) =P [X(thrl) =Yy | X(tn) = 'T] ) tnytnyl € T.
(7.5.2)
P(z,y) is the probability that a Markov chain in state z at time ¢,, will be in state
y at time ¢,,41. Some properties of the transition function are that P(z,y) > 0 and
>, P(z,y) = 1. The values of P(z,y) are commonly called the one-step transition
probabilities.
The function 7y (z) = P(X(0) = z), with mo(z) > O and ) mo(x) = 1, is
called the initial distribution of the Markov chain. It is the probability distribution
when the chain is started. Thus,

P[X(O) :x(),X 1) :xl,...,X(n) :xn]
= 7o (20) Po,1 (w0, 21) Pr2(w1,2) -+ Prot n(@n—1,20). (7.5.3)

7.5.1.2 Transition matrix

A convenient way to summarize the transition function of a Markov chain is by using
the one-step transition matrix. It is de ned as

P(0,0) P(0,1) ... P(0,n)
P(1,0) P(1,1) ... P(1,n)

P= : : : : (7.5.4)
P(n,0) P(n,1) ... P(n,n)
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De ne the n—step transition matrix by P(™) as the matrix with entries
P™(z,y) = PX(tmin) = y | X(tm) = 2]. (7.5.5)

This can be written in terms of the one-step transition matrix as P = pn,
Suppose the state space is nite. The one-step transition matrix is said to be
regular if, for some positive power m, all of the elements of P™ are strictly positive.

THEOREM 7.5.1 (Chapman—Kolmogorov equation)

Let P(x,y) be the one-step transition function of a Markov chain and de n e
PO (z,y) = 1, ifx =y, and 0, otherwise. Then, for any pair of non-negative
integers, s and t, such that s +t = n,

P (z,y) =Y PY(x,2)PY(z,y). (7.5.6)

7.5.2 RECURRENCE

De ne the probability that a Markov chain starting in state z returns to state = for
the rst time after n steps by

i@, 2) = PIX(ty) = @, X(tn1) £ 2., X(0) £ 2 | X(to) = 2]. (1.5.7)

It follows that P™(z,z) = Y p_, f*¥(z,2)P" ¥ (z, ). A state z is said to be recur-
rent if Y7 | f"(z,2) = 1. This means that a state z is recurrent if, after starting
in z, the probability of returning to it after some nite length of time is one. A state
which is not recurrent is said to be transient.

THEOREM 7.5.2

A state x of a Markov chain is recurrent if and only if 3> | P™(z,z) = oc.

Two states, = and y, are said to communicate if, for some n > 0, P"(z,y) >
0. This theorem implies that, if z is a recurrent state and x communicates with y,
y is also a recurrent state. A Markov chain is said to be irreducible if every state
communicates with every other state and with itself.

Let z be a recurrent state and de ne 7', the (refurn time) as the number of stages
for a Markov chain to return to state z, having begun there. A recurrent state x is
said to be null recurrent if E [T, ] = oo. A recurrent state that is not null recurrent is
said to be positive recurrent.

7.5.3 STATIONARY DISTRIBUTIONS

Let {X(t),t =0,1,2,...} be a Markov chain having a one-step transition function
P(z,y). A function 7(x) where each m(z) is non-negative, > w(z)P(z,y) =
m(y),and 3 w(y) = 1, is called a stationary distribution. 1f a Markov chain has a
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stationary distribution and lim ,,_,, P"(z,y) = w(y) for every z, then, regardless of
the initial distribution, 7o (), the distribution of X (¢,,) approaches 7 () as n tends to
in nity . When this happens, 7(x) is often referred to as the steady state distribution.
The following categorizes those Markov chains with stationary distributions.

THEOREM 7.5.3

Let X p denote the set of positive recurrent states of a Markov chain.

1. If X p is empty, the chain has no stationary distribution.

2. If Xp is a non-empty irreducible set, the chain has a unique stationary
distribution.

3. If Xp is non-empty but not irreducible, the chain has an in n ite number of
distinct stationary distributions.

The period of a state x is denoted by d(x) and is de ned as the greatest common
divisor of all integers, n > 1, for which P™(z,z) > 0. If P"(z,z) = 0 for all
n > 1,thende ne d(z) = 0. If each state of a Markov chain has d(z) = 1, the chain
is said to be aperiodic. If each state has period d > 1, the chain is said to be periodic
with period d. The vast majority of Markov chains encountered in practice are ape-
riodic. An irreducible, positive recurrent, aperiodic Markov chain always possesses
a steady-state distribution. An important special case occurs when the state space is
nite. Suppose that X ={1,2,..., K}. Let mg = {mo (1), m0(2),...,m0(K)}.

THEOREM 7.5.4

Let P be a regular one-step transition matrix and 7y be an arbitrary vector of initial
probabilities. Then lim,,_,, 7o(x)P™ =y, where yP =y, and Ef; mo(yi) = L.

7.5.3.1 Example: A simple three-state Markov chain
A Markov chain having three states {0, 1,2} with a one-step transition matrix of
0

P = is diagrammed below.

O B =
INJSCRTN 0
NN e B M

1/4
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The one-step transition matrix gives a two—step transition matrix

PR = p? = (7.5.8)

= =

Sle Sl wi=
—

Bl Sfo olw

Sk o= ol

The one-step transition matrix is regular. This Markov chain is irreducible, and all
three states are recurrent. In addition, all three states are positive recurrent. Since all

states have period 1, the chain is aperiodic. The unique steady state distribution is
m(0) =3/11,7(1) = 6/11,and 7(2) = 2/11.

7.5.4 RANDOM WALKS

Let n(t1),n(t2),... be independent random variables having a common density
f(z), and let t1,t,... be integers. Let X be an integer-valued random variable
that is independent of n(t1), n(t2), ..., and X (t,) = Xo + Y., n(t;). The se-
quence {X (¢;),i = 0,1,...} is called a random walk. An important special case is
a simple random walk. Tt is de ned by

p, fy=a2-1,
Plz,y)=<qr, ify=nux, where p+ g+ r =1,and P(0,0) =p+r.
g, ify=z+1,
(7.5.9)
Here, an object begins at a certain point in a lattice and at each step either stays at
that point or moves to a neighboring lattice point.

This one-dimensional random walk can be extended to higher-dimensional lat-
tices. A common case is that an object can only transition to an adjacent lattice
point, and all such transitions are equally likely. In this case, with a one- or two-
dimensional lattice, if a random walk begins at a lattice point x, then it will return to
that lattice point with probability 1. In this case, with a three-dimensional lattice, the
probability that it will return to its starting point is only about 0.3405.

7.5.5 EHRENFEST CHAIN

A simple model of gas exchange between two isolated bodies is as follows. Suppose
that there are two boxes, Box I and Box II, where Box I contains K molecules
numbered 1,2, ..., K and Box II contains N — K molecules numbered K + 1, K +
2,..., N. A number is chosen at random from {1, 2, ..., N}, and the molecule with
that number is transferred from its box to the other one. Let X (¢,,) be the number
of molecules in Box I after n trials. Then the sequence {X (¢,,),n = 0,1,...}is a
Markov chain with one-stage transition function of

%, y=xz-1,
Pr,y)=q1—-%, y=z+1, (7.5.10)
0, otherwise.
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7.6  RANDOM NUMBER GENERATION

7.6.1 METHODS OF PSEUDORANDOM NUMBER GENERATION

In Monte Carlo applications, and other computational situations where randomness
is required, one must appeal to random numbers for assistance. While it has been
argued that numbers measured from a physical process known to be random should
be used, it has been in nitely more practical to use simple recursions that produce
numbers that behave as random in applications and with respect to statistical tests
of randomness. These are so-called pseudorandom numbers and are produced by
a pseudorandom number generator (PRNG). Depending on the application, either
integers in some range or oating point numbers in [0, 1) are the desired output from
a PRNG. Since most PRNGs use integer recursions, a conversion into integers in a
desired range or into a oating point number in [0, 1) is required. If z,, is an integer
produced by some PRNG in the range 0 < z,, < M — 1, then an integer in the range
0 <, <N-—1, with N < M, is given by y, = |La,|. If N < M, then
Yn = Tp (mod N) may be used. Alternately, if a oating point value in [0,1) is
desired, let y,, = =, /M.

7.6.1.1 Linear congruential generators

Perhaps the oldest generator still in use is the linear congruential generator (LCG).
The underlying integer recursion for LCGs is

Tp =aT,—1+b (mod M). (7.6.1)

Equation (7.6.1) de nes a periodic sequence of integers modulo M starting with x g,
the initial seed. The constants of the recursion are referred to as the modulus M,
multiplier a, and additive constant b. If M = 2™, a very ef cient implementation is
possible. Alternately, there are theoretical reasons why choosing M prime is optimal.
Hence, the only moduli that are used in practical implementations are M = 2™ or
the prime M = 2P — 1 (i.e., M is a Mersenne prime). With a Mersenne prime or any
modulus “close to” 2P, modular multiplication can be implemented at about twice
the computational cost of multiplication modulo 27.

Equation (7.6.1) yields a sequence {z,,} whose period, denoted Per(z,,), de-
pends on M, a, and b. The values of the maximal period for the three most common
cases used and the conditions required to obtain them are

a b M | Per(z,)
Primitive root of M | Anything | Prime | M —1
3or5 (mod 8) 0 2m 2m—2
1 (mod 4) 1 (mod 2) | 2™ 2m

A major shortcoming of LCGs modulo a power-of-two compared with prime
modulus LCGs derives from the following theorem for LCGs:
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THEOREM 7.6.1

De ne the following LCG sequence: t, = atn—1 + b (mod My). If M divides
M theny, = x, (mod Ms) satis es y, = ayn—1 + b (mod My).

Theorem 7.6.1 implies that the k least-signi cant bits of any power-of-two modulus
LCG with Per(z,,) = 2™ = M has Per(y,,) = 2%, 0 < k < m. Since a long period
is crucial in PRNGs, when these types of LCGs are employed in a manner that makes
use of only a few least-signi cant- bits, their quality may be compromised. When M
is prime, no such problem arises.

Since LCGs are in such common usage, here is a list of parameter values men-
tioned in the literature. The Park—Miller LCG is widely considered a minimally ac-
ceptable PRNG. Using any values other than those in the following table may result
in a “weaker” LCG.

a b M Source
75 0 231 —1 | Park—Miller
131 0 235 Neave
16333 | 25887 215 Oakenfull
3432 | 6789 9973 Oakenfull
171 0 30269 | Wichman—Hill

7.6.1.2 Shift-register generators

Another popular method of generating pseudorandom numbers is using binary shift-
register sequences to produce pseudorandom bits. A binary shift-register sequence
(SRS) is de ned by a binary recursion of the type,

Tp = Tp—j; DLp—jo, D" D Tp—j, J1 < Jo << jJp =4, (7.6.2)

where @ is the exclusive “or” operation. Note that x @y = x +y (mod 2). Thus the
new bit, x,, is produced by adding k previously computed bits together modulo 2.
The implementation of this recurrence requires keeping the last £ bits from the se-
quence in a shift register, hence the name. The longest possible period is equal to the
number of non-zero /-dimensional binary vectors, namely 2¢ — 1.

A suf cient condition for achieving Per(x,) = 2¢ — 1 is that the characteristic
polynomial, corresponding to Equation (7.6.2), be primitive modulo 2. Since prim-
itive trinomials of nearly all degrees of interest have been found, SRSs are usually
implemented using two-term recursions of the form,

Tp = Tp—k D Tn_s, 0<k<lt. (7.6.3)

In these two-term recursions, k is the lag and / is the register length. Proper choice
of the pair (¢, k) leads to SRSs with Per(z, ) = 2¢ — 1. Here is a list with suitable
(¢, k) pairs:

Primitive trinomial exponents
52 | 7,H | (1.3) | A47,3) | 475 | (17,6)
3L3) | 3L1,6) | 31,7) | (31,13) [ (127,1) |(521,32)
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7.6.1.3 Lagged-Fibonacci generators

Another way of producing pseudorandom numbers uses lagged-Fibonacci genera-
tors. The term “lagged-Fibonacci” refers to two-term recurrences of the form,

Ty = Tpn_g O Tn_g, 0<k<{, (7.6.4)

where ¢ refers to one of the three common methods of combination: (1) addition
modulo 2™, (2) multiplication modulo 2™, or (3) bitwise exclusive ‘OR’ing of m-
long bit vectors. Combination method (3) can be thought of as a special implemen-
tation of a two-term shift-register sequence.

Using combination method (1) leads to additive lagged-Fibonacci sequences
(ALFSs). If z,, is given by

Tp = Tp—k + Tp—e (mod 2™), 0<k</, (7.6.5)

then the maximal period is Per(z,) = (2¢ — 1)2m~L.

ALFSs are especially suitable for producing oating point deviates using the
real-valued recursion ¥, = Yn—k + Yn—¢ (mod 1). This circumvents the need to
convert from integers to oating point values and allows oating point hardware to
be used. One caution with ALFSs is that Theorem 7.6.1 holds, and so the low-order
bits have periods that are shorter than the maximal period. However, this is not nearly
the problem as in the LCG case. With ALFSs, the j least-signi cant bits will have
period (2¢ — 1)2771, so, if £ is large, there really is no problem. Note that one can
use the table of primitive trinomial exponents to nd (¢, k) pairs that give maximal
period ALFSs.

7.6.1.4 Non-linear generators

A recent development among PRNGs are non-linear integer recurrences. For exam-
ple, if in Equation (7.6.4) “¢” referred to multiplication modulo 2™, then this recur-
rence would be a multiplicative lagged-Fibonacci generator (MLFG), a non-linear
generator. The mathematical structure of non-linear generators is qualitatively dif-
ferent than that of linear generators. Thus, their defects and de cienc ies are thought
to be complementary to their linear counterparts.

The maximal period of a MLFG is Per(z,,) = (2¢—1)2™~3, a factor of 4 shorter
than the corresponding ALFS. However, there are bene ts to using multiplication as
the combining function due to the bit mixing achieved. Because of this, the perceived
quality of the MLFG is considered superior to an ALFS with the same lag, /.

We conclude by de ning two non-linear generators, the inversive congruential
generators (ICGs), which were designed as non-linear analogs of the LCG.

1. The implicit ICG is de ned by the following recurrence that is almost that of
an LCG
Tpn =aTp—1+b (mod M). (7.6.6)

The difference is that we must also take the multiplicative inverse of x,_1,
which is de ned by Z,, 1 #,_1 = 1 (mod M), and 0 = 0. This recurrence
is indeed non-linear, and avoids some of the problems inherent in linear recur-
rences, such as the fact that linear tuples must lie on hyperplanes.
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2. The explicit ICG is
Tn=an+b (mod M). (7.6.7)

One drawback of ICGs is the cost of inversion, which is O(log, M) times the cost
of multiplication modulo M.

7.6.2 GENERATING NON-UNIFORM RANDOM VARIABLES

Suppose we want deviates from a distribution with probability density function f(x)
and distribution function F(z) = [*_ f(u) du. In the following “y is U[0,1)”
means y is uniformly distributed on [0, 1).

Two general techniques for converting uniform random variables into those from
other distributions are as follows:

1. The inverse transform method:

If y is U[0, 1), then the random variable F'~!(y) will have its density equal to
f(x). (Note that F~! (y) exists since 0 < F(z) < 1.)

2. The acceptance-rejection method:

Suppose the density can be written as f(z) = Ch(x)g(x) where h(x) is the
density of a computable random variable, the function g satises 0 < g(z) < 1,
and C~* = [%_h(u)g(u)du is a normalization constant. If z is U[0,1), y
has density h(z), and if z < g(y), then = has density f(z). Thus one generates
{z, y} pairs, rejecting both if > ¢(y) and returning = if z < g(y).

Examples of the inverse transform method:

1. Exponential distribution: The exponential distribution with rate \ has f(z) =
Ae A (forx > 0) and F(z) = 1 — e **. Thus u = F(x) can be solved to
giver = F71(u) = —A"!In(1 — u). If uis U[0, 1), then so is 1 — u. Hence

x = —A"! Inu is exponentially distributed with rate .

2. Normal distribution: Suppose the z;’s are normally distributed with density
function f(z) = \/%e_zz/ 2. The polar transformation then gives random
variables r = /2% + 27 (exponentially distributed with A = 2) and § =
tan~'(z2/21) (uniformly distributed on [—Z, Z]). Inverting these relation-

ships results in 27 = v/—21nx; cos 2mx, and 2z, = /—2In x; sin 27x,; each
is normally distributed when z; and x2 are U[0,1). (This is the Box—Muller

technique.)

Examples of the rejection method:

1. Exponential distribution with A = 1:

(a) Generate random numbers {U;} Y, uniformly in [0, 1], stopping at N =
min{n | U >Us >U,1 < Un}

(b) If N is even, accept that run, and go to step (c). If N is odd reject the
run, and return to step (a).
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(c) Set X equal to the number of failed runs plus U; (the rst random num-
ber in the successful run).

2. Normal distribution:

(a) Select two random variables (Vy, Vz) from U0, 1). Form R = V2 + V3.
(b) If R > 1, then reject the (V7, V2) pair, and select another pair.

|
(o) fR<1,thenz =V, —2% has a N (0, 1) distribution.

3. Normal distribution:

(a) Select two exponentially distributed random variables withrate 1: (V, V3).
(b) If Vo > (Vi —1)?/2, then reject the (V7, V») pair, and select another pair.
(c) Otherwise, V7 has a N (0, 1) distribution.

4. Cauchy distribution: To generate values of X from f(z) = on —oo <

T < 00,

1
T(1+22)

(a) Generate random numbers Uy, Us (uniform on [0, 1)), and set
Yi :Ul—%,Yz :Ug—%.
(b) IfY? + Y} < 1, then return X = Y7 /Y. Otherwise return to step (a).

To generate values of X from a Cauchy distribution with parameters 3 and 6,
flz) = S R

T [8% + (x — 0)?]
then use S X + 6.

for —oco < x < oo, construct X as above, and

7.6.2.1 Discrete random variables

The density function of a discrete random variable that attains nitely many values
can be represented as a vector p = (po, p1, - - -, Pn—1, Prn) by de ning the probabili-
ties P(z = j) = p; (for j = 0,...,n). The distribution function can be de ne d by
the vector ¢ = (co,¢1,...,¢n—1,1), where ¢; = EZ:O pi. Given this representation
of F(x), we can apply the inverse transform by computing x to be U[0, 1), and then
nding the index j so that ¢; < x < ¢;41. In this case event j will have occurred.
Examples:

1. (Binomial distribution) The binomial distribution with n trials of mean p has
pj = (?)p](l _p)n_]’ fOI‘j = 07 sy

(a) As an example, consider the result of ipping a fair coin. In 2 ips, the
probability of obtaining (0, 1,2) heads is p = (i, %, i) Hence ¢ =
(1,2,1). If z (chosen from U0, 1)) turns out to be say, 0.4, then “1
head” is returned (since § < 0.4 < 2).

(b) Note that, when n is large, it is costly to compute the density and distri-
bution vectors. When n is large and relatively few binomially distributed
pseudorandom numbers are desired, an alternative is to use the normal

approximation to the binomial.
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(c) Alternately, one can form the sum ) ., |u; + p], where each u; is
Ulo,1).

2. (Geometric distribution) To simulate a value from P(X = i) = p(1 — p)i~!

fori > 1,use X =1+ [M-‘
log(1 —p)

3. (Poisson distribution) The Poisson distribution with mean A has p ; = Me=2/j!
for j > 0. The Poisson distribution counts the number of events in a unit time
interval if the times are exponentially distributed with rate A. Thus if the times
t; are exponentially distributed with rate A, then j will be Poisson distributed
with mean A when ) 7_ ¢; <1< Zg& t;. Since t; = —A"!lnwu;, where
u is U [0,1), the previous equation may be written as [[1_,u; > e~ >
Hf:é u;. This allows us to compute Poisson random variables by iteratively
computing P; = szo u; until P; < e *. The rst such j that makes this
inequality true will have the desired distribution.

Random variables can be simulated using the following table (each U and U ; is
uniform on the interval [0, 1)):

Distribution Density Formula for deviate
n

Binomial pj = <7;>pJ(1 —p)n Z \U; + p)

i=1

o

Cauchy f(.'E) = m O'tan(ﬂ'U)
Exponential flz) =Xe " A 'nU
Pareto f(z) = ab® )zt b/Ut e
Rayleigh flz) = J;/Ue_””z/2‘72 ov—InU

7.6.2.2 Testing pseudorandom numbers

The prudent way to check a complicated computation that makes use of pseudoran-
dom numbers is to run it several times with different types of pseudorandom number
generators and see if the results appear consistent across the generators. The fact that
this is not always possible or practical has led researchers to develop statistical tests
of randomness that should be passed by general purpose pseudorandom number gen-
erators. Some common tests are the spectral test, the equidistribution test, the serial
test, the runs test, the coupon collector test, and the birthday spacing test.
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7.7 CONTROL CHARTS AND RELIABILITY

7.7.1 CONTROL CHARTS

Control charts are graphical tools used to assess and maintain the stability of a pro-
cess. They are used to separate random variation from speci ¢ causes. Data mea-
surements are plotted versus time along with upper and lower control limits and a
center line. If the process is in control and the underlying distribution is normal, then
the control limits represent three standard deviations from the center line (mean).

If all of the data points are contained within the control limits, the process is con-
sidered stable and the mean and standard deviations can be reliably calculated. The
variations between data points occur from random causes. Data outside the control
limits or forming abnormal patterns point to unstable, out-of-control processes.

In the tables, £ denotes the number of samples taken, ¢ is an index for the sam-
ples (¢ = 1...k), n is the sample size (number of elements in each sample), and
R is the range of the values in a sample (maximum element value minus minimum
element value). The mean is p and the standard deviation is o. Control chart upper
and lower control limits are denoted UCL and LCL.

Types of control charts, their statistics, and uses
Chart Statistics | Statistical quantity

Applications
T — R | Gaussian | Average value and range

Charts continuous measurable quantities. Measurements taken on
small sample sets.

Z — R | Gaussian | Median value and range

Similar to T — R chart but fewer calculations needed for plotting.
x — Rs | Gaussian | Individual measured values

Similar to T — R chart but single measurements are made. Used
when measurements are expensive or dispersion of measured
values is small. Rs = |z; — z;_1].

pn Binomial | Number of defective units
Charts number of defective units in sets of x ed size.
P Binomial | Percent defective
Charts number of defective units in sets of varying size.
c Poisson | Number of defects
Charts number of a ws in a product of x ed size.
u Poisson | Defect density (defects per quantity unit)

Charts the defect density on a product of varying size.
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Types of control charts and limits (“P” stands for parameter)

Chart | %) | p | Centerline UCL LCL
known?
7-R | No T |7=%2" |T+ AR T — AR
T—R No R R = % D4R DgR
T—R | Yes T |T=p n+ 3—‘; m 32
Z—R | Yes R | R=dso Dyo Dio
i—R | No i |T=%" | i@+msd, # — maAs
i—R | No R |R=%"% | DR DsR
z — Rs | No x |T=%" | T+266Rs T — 2.66Rs
r — Rs | No Rs | Rs = Efs 3.27Rs —
pn No pn | pn= 22" | pn+ /pn(l—p) | on — /pn(l —p)
p No P p= EP: pn + 3 5(17:5) pn —3 5(17:5)
c No c c= Zic 4+ 3v¢C c— 3¢
n No U U= %; w4+ Sﬁ u— Sﬁ
Sample size n A, da D Dy Ds Dy ms m3As
2 1.880 | 1.128 | O 3.686 | — 3.267 | 1.000 | 1.880
3 1.023 1 1.693 | O 4358 | - 2575 | 1.160 | 1.187
4 0.729 | 2.059 | O 4.698 | — 2.282 | 1.092 | 0.796
5 0.577 | 2326 | O 4918 | - 2.115 | 1.198 | 0.691
6 0483 | 2534 | 0 5078 | - 2.004 | 1.135 ] 0.549
7 0.419 | 2.704 | 0.205 | 5.203 | 0.076 | 1.924 | 1.214 | 0.509
8 0.373 | 2.847 | 0.387 | 5.307 | 0.136 | 1.864 | 1.160 | 0.432
9 0.337 | 2970 | 0.546 | 5.394 | 0.184 | 1.816 | 1.223 | 0.412
10 0.308 | 3.078 | 0.687 | 5.469 | 0.223 | 1.777 | 1.176 | 0.363
11 0.285 | 3.173 | 0.812 | 5.534 | 0.256 | 1.744
12 0.266 | 3.258 | 0.924 | 5.592 | 0.284 | 1.716
13 0.249 | 3.336 | 1.026 | 5.646 | 0.308 | 1.692
14 0.235 | 3.407 | 1.121 | 5.693 | 0.329 | 1.671
15 0.223 | 3.472 | 1.207 | 5.737 | 0.348 | 1.652
16 0.212 | 3.532 | 1.285 | 5.779 | 0.364 | 1.636
17 0.203 | 3.588 | 1.359 | 5.817 | 0.379 | 1.621
18 0.194 | 3.640 | 1.426 | 5.854 | 0.392 | 1.608
19 0.187 | 3.689 | 1.490 | 5.888 [ 0.404 | 1.596
20 0.180 | 3.735 | 1.548 | 5.922 | 0.414 | 1.586
21 0.173 | 3.778 | 1.605 | 5.951 | 0.425 | 1.575
22 0.167 | 3.819 | 1.659 | 5.979 | 0.434 | 1.566
23 0.162 | 3.858 | 1.710 | 6.006 | 0.443 | 1.557
24 0.157 | 3.895 | 1.759 | 6.031 | 0.452 | 1.548
25 0.153 | 3.931 | 1.806 | 6.056 | 0.459 | 1.541
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Abnormal Distributions of Points in Control Charts

Abnormality Description

Sequence Seven or more consecutive points on one side of the
center line. Denotes the average value has shifted.

Bias Fewer than seven consecutive points on one side of the

center line, but most of the points are on that side.

10 of 11 consecutive points

12 or more of 14 consecutive points

e 14 or more of 17 consecutive points

16 or more of 20 consecutive points

Trend Seven or more consecutive rising or falling points.
Approaching the limit | Two out of three or three or more out of seven
consecutive points are more than two-thirds the
distance from the center line to a control limit.
Periodicity The data points vary in a regular periodic pattern.

7.7.2 ACCEPTANCE SAMPLING

Expression Meaning

AQL acceptable quality level

AOQ average outgoing quality

AOQL average outgoing quality limit (maximum value of
AOQ for varying incoming quality)

LTPD lot tolerance percent defective

producer’s risk | Type I error (percentage of “good” lots rejected)

consumer’s risk | Type II error (percentage of “bad” lots accepted)

Military standard 105 D is a widely used sampling plan. There are three general
levels of inspection corresponding to different consumer’s risks. (Inspection level 11
is usually chosen; level I uses smaller sample sizes and level III uses larger sample
sizes.) There are also three types of inspections: normal, tightened, and reduced.
Tables are available for single, double, and multiple sampling.

To use MIL-STD-105 D for single sampling, determine the sample size code
letter from Figure 7.3. Using this sample size code letter nd the sample size and the
acceptance and rejection numbers from the table on page 654.

EXAMPLE  Suppose that MIL-STD-105 D is to be used with incoming lots of 1,000
items, inspection level II is to be used in conjunction with normal inspection, and an
AQL of 2.5 percent is desired. How should the inspections be carried out?

1. From Figure 7.3 the sample size code letter is J.

2. From page 654, for column J, the lot size is 80. Using the row labeled 2.5 the accep-
tance number is 5 and the rejection number is 6.

3. Thus, if a single sample of size 80 (selected randomly from each lot of 1,000 items)
contains 5 or fewer defectives then the lot is to be accepted. If it contains 6 or more
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FIGURE 7.3
Sample size code letters for MIL-STD-105 D.

Lot or batch size general inspection levels
I I m
2 to 8| A A B
9 to 151 A B C
16 to 25| B C D
26 to 50| C D E
51 to 90| C E F
91 to 150 D F G
151 to 280 | E G H
281 to 500 | F H J
501 to 1,200 | G J K
1,201 to 3200 | H K L
3,201 to 10,000 J L M
10,001 to 35,000 | K M N
35,001 to 150,000 | L N P
150,001 to 500,000 | M P Q
500,001 and over N Q R

defectives, then the lot is to be rejected.

7.7.3 RELIABILITY

1. The reliability of a product is the probability that the product will function
within speci ed limits for at least a speci ed period of time.

2. A series system is one in which the entire system will fail if any of its compo-
nents fail.

3. A parallel system is one in which the entire system will fail only if all of its
components fail.

4. Let R; denote the reliability of the i component.

Let R denote the reliability of a series system.

6. Let R, denote the reliability of a parallel system.

e

The product law of reliabilities states

R, =[] Ri. (7.7.1)

R,=1-]](1-Ry). (7.7.2)
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FIGURE 7.4
Master table for single sampling inspection (normal inspection) MIL-STD-105 D.
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AQL Acceptable quality level (normal inspection).
Ac|Re  Accept if Ac or fewer are found, reject if Re or more are found.
— Use rst sampling procedure to left.
— Use rst sampling procedure to right. If sample size equals, or exceeds, lot or

batch size, do 100 percent inspection.
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7.7.4 FAILURE TIME DISTRIBUTIONS

1. Let the probability of an item failing between times ¢ and ¢ + At be f(¢)At +
o(At) as At — 0.

2. The probability that an item will fail in the interval from O to ¢ is
t
Ft) = / F(z) da. (7.7.3)
0

3. The reliability function is the probability that an item survives to time ¢
R(t) =1-F(t). (7.74)

4. The instantaneous hazard rate, Z(t), is approximately the probability of fail-
ure in the interval from ¢ to ¢ + At, given that the item survived to time ¢

_ b _ _f0
Z(t) = Rt T 1-F@) (7.1.5)
Note the relationships:
R(t) = e~ Jo #(@) dz Ft) = Z(t)e Jo 7(@) de (1.7.6)

EXAMPLE If f(t) = aﬁtﬂfle‘“ﬁ with @ > 0 and 8 > 0, the probability distribution
function for a Weibull random variable, then the failure rate is Z(t) = afBt®~! and

B . e . .
R(t) = e~ """ . Note that failure rate decreases with time if 3 < 1 and increases with
time if § > 1.

7.7.4.1 Use of the exponential distribution

If the hazard rate is a constant Z(t) = a (with @ > 0) then f(t) = ae ! (fort > 0)
which is the probability density function for an exponential random variable. If a
failed item is replaced with another having the same constant hazard rate «, then the
sequence of occurrence of failures is a Poisson process. The constant 1/« is called
the mean time between failures (MTBF). The reliability function is R(t) = e =%,

If a series system has n components, each with constant hazard rate {«;}, then

R4(t) = exp (— > ai> . (7.7.7)
i=1

The MTBEF for the series system is jig
1

L. 5 L
+o e

Ps = (7.7.8)
=
If a parallel system has n components, each with identical constant hazard rate «,

then the MTBF for the parallel system is j,,

1 1 1
‘up:_<1+__|_..._+__>‘ (7.7.9)
a 2 n
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7.8 RISK ANALYSIS AND DECISION RULES

Suppose knowledge of a speci ¢ state of a system is desired, and those states can be
delineated as {61, 62, ... }. (In a weather application the states might be rain and no
rain.) Decision rules are actions that may be taken based on the state of a system.
For example, in making a decision about a trip, there are the decision rules: stay
home, go with an umbrella, and go without an umbrella.

A loss function is a function that depends on a speci ¢ state and a decision rule.
For example, consider the following loss function £(6, a):

Loss function data

Possible actions System state

0, (rain) 65 (no rain)
Stay home ay 4 4
Go without an umbrella a» 5 0
Go with an umbrella as 2 5

It is possible to determine the “best” decision, under different models, even without
obtaining any data.

1. Minimax principle

With this principle one should expect and prepare for the worst. That is, for
each action it is possible to determine the minimum possible loss that may be
incurred. This loss is assigned to each action; the action with the smallest (or
minimum) maximum loss is the action chosen.

For the given loss function data the maximum loss is 4 for action a; and 5 for
either of the actions a» or az. Under a minimax principle, the chosen action
would be a; and the minimax loss would be 4.

2. Minimax principle for mixed actions

It is possible to minimize the maximum loss when the action taken is a sta-
tistical distribution, p, of actions. Assume that action a; is taken with proba-
bility p; (with p; + p2 + ps = 1). Then the expected loss L(6;) is given by
L(6;) = E,[l(6i,a)] = p1£(0;,a1) + p2£(0;,az) + p3l(6;, as). The given loss
function data results in the following expected losses:

EEZS] - m + 2 m +p3 [ﬁ] : (7.8.1)

It can be shown that the minimax point of this mixed action case has to sat-
isfy L(f;) = L(62). Solving equation (7.8.1) with this constraint leads to
5p2 = 3ps. Using this and p; + p» + ps = 1 in equation (7.8.1) results in
L(6,) = L(62) = 4 — Tps/5. This indicates that p; should be as large as
possible. Hence, the maximum value is obtained by the mixed distribution
p= (%7 %7 é)'
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Hence, if action ay is chosen 3/8’s of the time, and action a3 is chosen 5/8’s
of the time, then the minimax loss is equal to L = 25/8. This is a smaller loss
than using a pure strategy of only choosing a single action.

3. Bayesactions

If the probability distribution of the states {61, 02, . .. } is given by the density
function g(6;), then the loss has a known distribution with an expectation of
B(a) = E;[l(6;,a)] = >_, 9(8;)¢(6;,a). This quantity is known as the Bayes
loss for action a. A Bayes action is an action that minimizes the Bayes loss.
For example, assuming that the prior distribution is given by g(f;) = 0.4 and
g(62) = 0.6, then B(a;) = 4, B(az) = 2, and B(as) = 3.8. This leads to the
choice of action as.

A course of action can also be based on data about the states of interest. For
example, a weather report Z will give data for the predictions of rain and no rain.
Continuing the example, assume that the correctness of these predictions is given as
follows:

01 (rain) 6> (no rain)
Predict rain 21 0.8 0.1
Predict norain zo 0.2 0.9

That is, when it will rain, then the prediction is correct 80% of the time.

A decision function is an assignment of data to actions. Since there are nitely
many possible actions and nitely many possible values of Z, the number of decision
functions is nite. For this example there are 3> = 9 possible decision functions,
{dy,ds,...,dy}; they are de ned to be:

Decision functions
di dy d3 dy ds dg dy dg dy
Predict z{, take action | a1 a2 a3 a1 ax a1 a3z as as
Predict 25, take action | a1 a> a3 ax a; a3 a1 az as

The risk function R(0,d;) is the expected value of the loss when a speci ¢ de-
cision function is being used: R(6,d;) = Ez[((0,d;(Z))]. Tt is straightforward to
compute the risk function for all values of {d;} and {a;}. This results in the follow-
ing values:

Risk function evaluation
Decision Function | #; (rain) 6> (no rain)
dq 4 4
d> 5 0
ds 2 5
dy 42 04
ds 4.8 3.6
dg 3.6 4.9
dr7 2.4 4.1
dg 4.4 4.5
dy 2.6 0.5
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This array can now be treated as though it gave the loss function in a no—data
problem. The minimax principle for mixed action results in the “best” solution being
rule ds for -=’s of the time and rule dy for 12°s of the time. This leads to a minimax

loss of ‘1“7) Before the data Z is received, the minimax loss was E Hence, the data
“« 2 25 _ 40 _ 105
Z is “worth 17 = T3¢ in using the minimax approach.

The regret funcnon (also called the opportunity loss function) (8, a) is the loss,
£(0,a), minus the minimum loss for the given 0: 7(0,a) = £(0,a) — miny £(0, b).
For each state, the least loss is determined if that state were known to be true. This is
the contribution to loss that even a good decision cannot avoid. The quantity 7 (6, a)
represents the loss that could have been avoided had the state been known—hence
the term regret.

For the given loss function data, the minimum loss for § = 6 is 2, and the
minimum loss for § = @5 is 0. Hence, the regret function is

@1 (rain) 65 (no rain)
ay 2 4
a2 3 0
as 0 5

Most of the computations performed for a loss function could also be performed
with the risk function. If the minimax principle is used to determine the “best” action,
then, in this example, the “best” action is as.

7.9 STATISTICS

7.9.1 DESCRIPTIVE STATISTICS
1. Sample distribution and density functions

(a) Sample distribution function:

n

l}:um—m (7.9.1)
=1

3

where u(z) is the unit step function (or Heaviside function) de ne d by
u(z) =0forz <0andu(z) =1forz > 0.

(b) Sample density function or histogram:

fla) = F(zo + (i + 1)w) — F(zo + iw)

(7.9.2)
w

forz € [zo + iw, o + (i + 1)w). The interval [z + iw, To + (i + 1)w)
is called the 7™ bin, w is the bin width, and f; = F(zo + (i + 1)w) —
F(xzo + iw) is the bin frequency.
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2. Order statistics and quantiles:

(a) Order statistics are obtained by arranging the sample values {z 1, ..., x,}
in increasing order, denoted by

1)y ST2) < S Ty (7.9.3)
i. @(1) and x(,,) are the minimum and maximum data values, respec-
tively.
ii. Fori=1,...,n, z is called the ™ order statistic.

(b) Quantiles: If 0 < p < 1, then the quantile of order p, £, is de ned as
the p(n + 1) order statistic. It may be necessary to interpolate between
successive values.

i. Ifp=j/4forj=1,2,or3,then fi is called the j™ guartile.
ii. fp=j/10forj =1,2,...,9, then f% is called the j™ decile.
iii. If p = j/100 for j = 1,2,...,99, then 5%0-0 is called the j"
percentile.

3. Measures of central tendency

(a) Arithmetic mean:

I Ty @+ +an
=— P = . 7.9.4
7= ;:r - (7.94)
(b) a-trimmed mean:
1 n—k—1
Fo=———— [ (1=1) (2 L o
T T (1 2a) (( r) (Tt + Tnow)) + i;k;2 z( ))
(7.9.5)
where k = |an| is the greatest integer less than or equal to an, and

r=an—k.Ifa=0thenz, =7.

(c) Weighted mean: If to each x; is associated a weight w; > 0 so that
n n
> wi=1, then Ty = Y wja;. (7.9.6)
i=1 i=1

(d) Geometric mean:

GM. = (H .’L’l> = (z129 - Tp)

-

3=

(7.9.7)
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(e) Harmonic mean:

n n
HM.= s =11 T (7.9.8)

i=1 z; z1 T2 Tn

(f) Relationship between arithmetic, geometric, and harmonic means:
HM. <GM. <7 (7.9.9)

with equality holding only when all sample values are equal.

(g) The mode is the data value that occurs with the greatest frequency. Note
that the mode may not be unique.

(h) Median:
i. If nisoddandn = 2k + 1, then M = T (kg1)-
ii. If nisevenandn = 2k, then M = (z () + T(r11))/2.

(1) Midrange:

+ Z(n
mid = w (7.9.10)
4. Measures of dispersion
(a) Mean deviation or absolute deviation:
1 < 1<
M.D.:EZm—ﬂ, or A.D.:EZ|xi—M|.
i=1 i=1
(7.9.11)
(b) Sample standard deviation:
= | Enj(» )’ = (7.9.12)
S= 07T r;—T) = 9.

i=1

(c) The sample variance is the square of the sample standard deviation.

(d) Root mean square: RM.S. =

(e) Sample range: T,y — x(1).

(f) Interquartile range: £ 3 — ¢ 1.

(g) The quartile deviation or semi-interquartile range is one half the interquar-
tile range.

5. Higher-order statistics

1 n
S 1 ts: ., — — k
(a) Sample moments my - ZE_l x;
(b) Sample central moments, or sample moments about the mean:
1o k
p = — i— ) . 7.9.13
e = ;:1 (z; —T) ( )
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7.9.2 STATISTICAL ESTIMATORS
7.9.2.1 De nitions

1. A function of a set of random variables is a statistic. It is a function of ob-
servable random variables that does not contain any unknown parameters. A
statistic is itself an observable random variable.

2. Let 6 be a parameter appearing in the density function for the random variable
X. Suppose that we know a formula for computing an approximate value 6

of 6 from a given sample {x1,...,z,} (call such a function g). Then 9 =
g(x1,x2,...,x,) can be considered as a single observation of the random
variable © = g(X1, X», ..., X,). The random variable © is an estimator for

the parameter 6.

3. A hypothesis is an assumption about the distribution of a random variable X.
This may usually be cast into the form § € ©,. We use Hy to denote the null
hypothesis and H to denote an alternative hypothesis.

4. In signi can ce testing, a test statistic T = T(X1,...,X,) is used to reject
Hy, or to not reject Hy. Generally, if T' € C, where C'is a critical region, then
Hy is rejected.

5. A type I error, denoted a, is to reject Hy when it should not be rejected. A
type II error, denoted f3, is to not reject Hy when it should be rejected.

6. The power of atestisny =1— .

Unknown truth
H, H,
. True decision. Type II error.
Do notreject Ho | b ability is 1 — | Probability is 3
. Type I error. True decision.
Reject Ho Probability is a Probability isn = 1 — 3

7.9.2.2 Consistent estimators

Let © = 9(X1,Xs,...,X,) be an estimator for the parameter 6, and suppose
that g is de ned for arbitrarily large values of n. If the estimator has the property,
E[(© — 6)?] — 0, as n — oo, then the estimator is called a consistent estimator.

1. A consistent estimator is not unique.
2. A consistent estimator may be meaningless.
3. A consistent estimator is not necessarily unbiased.
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7.9.2.3 Efcient estimators
An unbiased estimator © = 9(X1, X, ..., X,) for a parameter 6 is said to be ef -

cient if it has nite variance (E [((:) - 6)2] < 00) and if there does not exist another

estimator ©* = g% (X1, Xo,...,X,,) for 8, whose variance is smaller than that of
©. The ef cien cy of an unbiased estimator is the ratio,

Cramer—Rao lower bound

Actual variance

The relative ef cien cy of two unbiased estimators is the ratio of their variances.

7.9.2.4 Maximum likelihood estimators (MLE)

Suppose X is a random variable whose density function is f(x;6), where § = (64,

.., 0,.). If the independent sample values x4, ..., x, are obtained, then de ne the
likelihood function as L = [];", f(z;;6). The MLE estimate for 6 is the solution of
the simultaneous equations, g_oLi =0,fori=1,...,r.

1. A MLE need not be consistent.

2. A MLE may not be unbiased.

3. A MLE need not be unique.

4. If a single suf cient statistic 7" exists for the parameter #, the MLE of # must

be a function of T'.
5. Let © be a MLE of . If 7(-) is a function with a single-valued inverse, then a

~

MLE of 7(8) is 7(©).

Dene z=73, ,X;/nand S? = Y"1  (X; —T)?/n (note that S # s). Then:

Distribution Estimated MLE estimate
parameter of parameter

Exponential E(\) | 1/A 1/z
Exponential E()\) | A2 = o2 7>
Normal N(u,0) | p T
Normal N (p,0) | o2 S?
Poisson P()\) A T
Uniform U(0,60) |6 Xmax

7.9.2.5 Method of moments (MOM)

Let {X;} be independent and identically distributed random variables with density
f(z;8). Let u).(8) = E[X"] be the 7™ moment (if it exists). Let m) = 2 > | af
be the r sample moment. Form the k equations, u!. = m!., and solve to obtain an
estimate of 6.

1. MOM estimators are not necessarily uniquely de ned .
2. MOM estimators may not be functions of suf cient or complete statistics.
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7.9.2.6 Suf cient statistics

A statistic G = ¢(X1,...,X,) is called a suf cien t statistic if, and only if, the
conditional distribution of H, given G, does not depend on 8 for any statistic H =
h(Xy,..., Xy).

Let {X;} be independent and identically distributed random variables, with den-
sity f(z; ). The statistics {G'1, ..., G, } are said to be jointly suf cien t statistics if,
and only if, the conditional distribution of X1, X, ..., X,, given G1 = g1, G1 = g2,
..., G, = g, does not depend on 6.

1. A single suf cient statistic may not exist.

7.9.2.7 UMVU estimators

A uniformly minimum variance unbiased estimator, called a UMVU estimator, is
unbiased and has the minimum variance among all unbiased estimators.
Dene, asusua, T =), X;/nands* = > " (X; —T)?/(n — 1). Then:

Distribution Estimated | UMVU estimate | Variance of
parameter of parameter estimator
-1 A2
Exponential F(\) A n
s n—2
Exponential E(\) | z !
xponentia — T —
p A2
e
Normal N (p, o) 7 T —
n
2 4
Normal N (p, o) o? 5 g
n—1
)\2
Poisson P(\) A T —
n
1 6>
Uniform U (0, §) 0 nt Xmax ——F
n(n +2)

7.9.2.8 Unbiased estimators
An estimator g(X1, Xo, ..., X,,) for a parameter 6 is said to be unbiased if

E[g(X1,Xs,...,X,)] =0. (7.9.14)

1. An unbiased estimator may not exist.

2. An unbiased estimator is not unique.

3. An unbiased estimator may be meaningless.

4. An unbiased estimator is not necessarily consistent.
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7.9.3 CRAMER-RAO BOUND

The Cramer—Rao bound gives a lower bound on the variance of an unknown un-
biased statistical parameter, when n samples are taken. When the single unknown
parameter is 6,

1 1

o () > .
@)= nE [ £z log f(x; 9)] nE [(a% logf(:n;ﬁ))ﬂ

(7.9.15)

EXAMPLES

1. For a normal random variable with unknown mean 9 and known variance ¢°, the den-
2
sity is f(z;0) = 2M exp( (“”2;92) ) Hence, 2 2 log f(x;0) = (z — 6)/0>. The

computation
2 2
E [(x —49) ] _ /°° (z —49) L —@-0?/20 5 _ iz
a PSS o V2o [y

results in o%(0) > "—nz

2. For a normal random Variable with known mean p and unknown variance f = o2, the
density is f(x;0) = \/—0 exp( (2 292 ) Hence, 2 57 log f(x;6) = ((z — w? —
260)/(26)?. The computation E [M} = 557 = 5oz resultsin o’ 2(0) > 20*/n.

(20)2 20

3. Fora P01ss0n random variable with unknown mean 6, the density is f(z; 8) = 67e % /z!.
Hence, 2 log f(z;6) = z/0 — 1. The computation

E{(g—l) ] zi)(%—lyezx! :%resultsma (0) > 6/n.

7.9.4 ORDER STATISTICS

When {X;} are n independent and identically distributed random variables with
the common distribution function F'x (x), let Z,, be the m™ largest of the values
(m =1,2,...,n). Hence Z; is the maximum of the n values and Z , is the minimum
of the n values. Then

= Xn: < ) N[ = Fx ()" " (1.9.16)

i=

Hence

Frax(2) = [Fx (2)]", foax(2) = n [Fx ()] fx(2), (7.9.17)
Fuoin(2) =1—[1 = Fx(2)]",  fuin(2) =n[1 = Fx(2)]""" fx(2). (1.9.18)

The expected value of the i order statistic is given by

Elrol = #('n—z)' /Z 2f@)F @)L - F@)]" de. (7.9.19)
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7.9.4.1 Uniform distribution:
If X is uniformly distributed on the interval [0, 1) then

n! oy .
Elz;)] = m/ﬂ z' (1 —z)" " dx. (7.9.20)

The expected value of the largest of n samples is nLH; the expected value of the least

1

of n samples is .

7.9.4.2 Normal distribution:
The following table gives values of E [:v(i)] for a standard normal distribution. Miss-
ing values (indicated by a dash) may be obtained from E [z(;)] = —E [#(n_i11)]-

n =2 3 4 5 6 7 8 10
0.5642 | 0.8463 | 1.0294 | 1.1630 | 1.2672 | 1.3522 | 1.4236 | 1.5388
— [ 0.0000 | 0.2970 | 0.4950 | 0.6418 | 0.7574 | 0.8522 [ 1.0014
— — | 0.0000 | 0.2016 | 0.3527 | 0.4728 | 0.6561
— | 0.0000 | 0.1522 | 0.3756
— — | 0.1226

[ N RV S T

EXAMPLE  If a person of average intelligence takes ve intelligence tests (each test hav-
ing a normal distribution with a mean of 100 and a standard deviation of 20), then the
expected value of the largest score is 100 + (1.1630)(20) =~ 123.

7.9.5 CLASSIC STATISTICS PROBLEMS
7.9.5.1 Sample size problem

Suppose that a Bernoulli random variable is to be estimated from a sample. What
sample size n is required so that, with 99% certainty, the error is no more thane = 5
percentage points (i.e., Prob(|p — p| < 0.05) > 0.99)?

If an a priori estimate of p is available, then the minimum sample size is n, =
zi/Qp(l —p)/€>. If no a priori estimate is available, then n,, = 22/2/462 > n,. For
the numbers above, n > n,, = 664.

7.9.5.2 Large scale testing with infrequent success

Suppose that a disease occurs in one person out of every 1000. Suppose that a test for
this disease has a type I and a type II error of 1% (that is, « = 8 = 0.01). Imagine
that 100,000 people are tested. Of the 100 people who have the disease, 99 will be
diagnosed as having it. Of the 99,900 people who do not have the disease, 999 will
be diagnosed as having it. Hence, only % ~ 9% of the people who test positive
for the disease actually have it.
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7.10 CONFIDENCE INTERVALS

A probability distribution may have one or more unknown parameters. A con dence
interval is an assertion that an unknown parameter lies in a computed range, with a
speci ed probability. Before constructing a con den ce interval, rst select a con -
dence coef cien t, denoted 1 — a.. Typically, 1 — a = 0.95,0.99, or the like. The
de nition s of z,, t,, and Xi are in Section 7.14.1 on page 695.

7.10.1 CONFIDENCE INTERVAL: SAMPLE FROM ONE
POPULATION

The following con d ence intervals assume a random sample of size n, given by
{z1,22,...,2n}

1. Find mean p of the normal distribution with known variance o 2.

(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution function.
(b) Compute the mean z of the sample.

(c) Compute k = z,/20/+/n.
(d) The 100(1—«) percent con dence interval for 11 is given by [T — k, T + k].

2. Find mean p of the normal distribution with unknown variance o 2.

(a) Determine the critical value ¢, /> such that F' (ta /2) =1 — «/2, where
F(-) is the t-distribution with n — 1 degrees of freedom.
(b) Compute the mean z and standard deviation s of the sample.

(c) Compute k = t,/25/+/n.
(d) The 100(1—«) percent con dence interval for 11 is given by [T — k, T + k].

3. Find the probability of success p for Bernoulli trials with large sample size.

(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution function.

(b) Compute the proportion p of “successes” out of n trials.
S1—7

(c) Compute k = z,/> u

(d) The 100(1—«) percent con dence interval for pis given by [p — k, p + k].

4. Find variance 2 of the normal distribution.

(a) Determine the critical values x? /5 and Xi . /5 such that F/ (Xi /2) =

1—a/2and F (X%—a/2) = «/2, where F (z) is the chi-square distri-
bution function with n — 1 degrees of freedom.
(b) Compute the standard deviation s.
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—1)g2
(c) Compute k1 = 71278 and ky = (”27)5
o2 leoz/Z
(d) The 100(1 — «) percent con den ce interval for o2 is given by [k, k2].

(e) The 100(1 — ) percent con d ence interval for the standard deviation o

is given by [\/E, \/E] .

5. Find quantile &, of order p for large sample sizes.

(a) Determine the critical value z, /> such that ® (z,/2) = 1 — a/2, where
® (2) is the standard normal distribution function.
(b) Compute the order statistics z (1), Z(2),- - -, T(n)-

(c) Compute k1 = {np — 2aq/2V/ np(1 — p)J and

ky = [np + 2o 2/ 1p(1 —p)1~

(d) The 100(1—a) percent con dence interval for £, is given by [k, ), (k)] -

6. Find median M based on the Wilcoxon one-sample statistic for a large sample.

(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution function.

(b) Compute the order statistics w1y, w(2), - . -, W(n) of the N = n(n—1)/2
averages (z; + ;) /2,for1 <i < j < n.

N Za/QNJ ’VN ZQ/QN“
¢) Compute k1 = | — — and ks = | — + .
(©) p 1 {2 o 2 5 o

(d) The 100(1—a) percent con dence interval for M is givenby [w(y,), W(ks)]-

7.10.2 CONFIDENCE INTERVAL: SAMPLES FROM TWO
POPULATIONS

The following con den ce intervals assume random samples from two large popula-

tions: one sample of size n, given by {z1,zs,...,Z,}, and one sample of size m,
given by {y1,y2,..-,Um}-

1. Find the difference in population means f, and p, from independent samples
with known variances o2 and o .

(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution function.
(b) Compute the means T and 7.

2 g2
(c) Compute k = 2,/ Ie 4 v,
n o m

(d) The 100(1 — «) percent cond ence interval for p, — p, is given by
(7 -7~ k. (7~ 7) + K]
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2. Find the difference in population means (i, and y,, from independent samples
with unknown variances o and o,..

(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution function.

(b) Compute the means T and ¥, and the standard deviations s, and s,.
2 2
(c) Compute k = z,/> oy v
n m
(d) The 100(1 — «) percent cond ence interval for p, — p, is given by
(@—7) — k(T —7) + K]

3. Find the difference in population means p, and 1, from independent samples

with unknown but equal variances o2 = o7.

(a) Determine the critical value ¢,/ such that F (t,/5) = 1 — a/2, where
F(-) is the ¢-distribution with n 4+ m — 2 degrees of freedom.

(b) Compute the means T and ¥, the standard deviations s, and s,, and the
pooled standard deviation estimate,

_ 2 _ 2
5= \/(" Dsz + (m DS”. (7.10.1)

n+m-—2
1 1
(c) Compute k = t,/281/ — + —.
no o m

(d) The 100(1 — ) percent con d ence interval for p, — p, is given by
(@9~ kT~ )+ Kl

4. Find the difference in population means f, and pu, for paired samples with

unknown but equal variances 02 = 0.

(a) Determine the critical value ¢,/ such that F (t,/5) = 1 — a/2, where
F(-) is the t-distribution with n — 1 degrees of freedom.

(b) Compute the mean ji4 and standard deviation s 4 of the paired differences
T1 —Y1,T2 —Y2,---,Tn — Yn.

(c) Compute k = t,/5 54/+/.

(d) The 100(1 — «) percent con d ence interval for g = pgy — 1y is given
by [fta — k, fta + k].

5. Find the difference in Bernoulli trial success rates, p, — p,, for large, indepen-
dent samples.

(a) Determine the critical value z, /> such that ® (z,/2) = 1 — a/2, where
® (2) is the standard normal distribution function.
(b) Compute the proportions p, and p, of “successes” for the samples.

17 1 7
(¢) Compute k = z,/» \/pm (L= pz) 4+ Py ( py).
n m
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(d) The 100(1 — «) percent con den ce interval for p, — p, is given by
(D2 — By) — K, (D2 — Py) + K].

6. Find the difference in medians M, — M, based on the Mann—Whitney—Wilcoxon
procedure.

(a) Determine the critical value z, /> such that ® (z,,2) = 1 — a/2, where
® (2) is the standard normal distribution function.

(b) Compute the order statistics w1y, w(z), . .., w(n) of the N = nm differ-
ences z; —yj,forl <i<mand1l < j<m.

(c) Compute

nm nm(n+m+1)
k, = K3 + \‘0.5 — Za/2 TJ
and
| nm nm (n+m + 1)
k/'2 = ’77—054‘2&/2 T-‘ .

(d) The 100(1 — «) percent con de nce interval for M, — M, is given by
[0y k)]

7. Find the ratio of variances o2/ 03, for independent samples.

(a) Determine the critical values F', /> and Fy_, /> such that F (Fa /2) =
1 —a/2and F (Fi_o)2) = o/2, where F(-) is the F-distribution with
m — 1 and n — 1 degrees of freedom.

(b) Compute the standard deviations s, and s, of the samples.

(c) Compute k1 = F|_, /3 and ka = F, /5.

(d) The 100(1 — ) percent conden ce interval for o2 /o7 is given by

2 2
{S—g Fa, S—ng] :
Sy Sy

7.11 TESTS OF HYPOTHESES

A statistical hypothesis is a statement about the distribution of a random variable.
A statistical test of a hypothesis is a procedure in which a sample is used to deter-
mine whether we should “reject” or “not reject” the hypothesis. Before employing a
hypothesis test, rst select a signi ¢ ance level a. Typically, « = 0.05,0.01, or the
like.
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7.11.1 HYPOTHESIS TESTS: PARAMETER FROM ONE
POPULATION

The following hypothesis tests assume a random sample of size n, given by {z 1, z3, . ..

1. Test of the hypothesis y1 = o against the alternative p # po of the mean of a
normal distribution with known variance o 2:

(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution function.
(b) Compute the mean Z of the sample.

(c) Compute the test statistic z = w.
o
(d) If |z] > 242, then reject the hypothesis. If |2| < 2,5, then do not reject

the hypothesis.

2. Test of the hypothesis u = o against the alternative u > pg (or u < po) of
the mean of a normal distribution with known variance ¢ 2:

(a) Determine the critical value z,, such that ® (z,) = 1 — «, where @ (2) is
the standard normal distribution function.
(b) Compute the mean z of the sample.

(c) Compute the test statistic z = w. (For the alternative u < po,
o

multiply z by —1.)
(d) If z > z,, then reject the hypothesis. If z < z,, then do not reject the
hypothesis.

3. Test of the hypothesis 1 = g against the alternative p # o of the mean of a

normal distribution with unknown variance o 2:

(a) Determine the critical value ¢,/ such that F (t,/5) = 1 — a/2, where
F(-) is the t-distribution with n — 1 degrees of freedom.
(b) Compute the mean z and standard deviation s of the sample.

(_—Mo)\/_

(d) If [t| > t,/2, then reject the hypothesw If |t| <t /2, then do not reject
the hypothesis.

(c) Compute the test statistic ¢t =

4. Test of the hypothesis 1 = ug against the alternative o > g (or u < pg) of
the mean of a normal distribution with unknown variance o 2:

(a) Determine the critical value ¢, such that F' (t,) = 1 — «, where F(-) is
the t-distribution with n — 1 degrees of freedom.
(b) Compute the mean ¥ and standard deviation s of the sample.

(T — po) Vo

(c) Compute the test statistic t = . (For the alternative p < po,

multiply £ by —1.)
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(d) If t > t,, then reject the hypothesis. If ¢ < t,, then do not reject the
hypothesis.

5. Test of the hypothesis p = pg against the alternative p # pg of the probability
of success for a binomial distribution, large sample:

(a) Determine the critical value z, /> such that ® (z,,2) = 1 — a/2, where
® (2) is the standard normal distribution function.
(b) Compute the proportion p of “successes” for the sample.
P —Po

(c) Compute the test statistic z = .
Po(1—po)

n
(d) If |z| > z4/2, then reject the hypothesis. If |2| < z, /5, then do not reject
the hypothesis.

6. Test of the hypothesis p = pg against the alternative p > po (or p < pg) of the
probability of success for a binomial distribution, large sample:

(a) Determine the critical value z,, such that ® (z,) = 1 — «, where @ (2) is
the standard normal distribution function.
(b) Compute the proportion p of “successes” for the sample.
P—DPo

Po(1—po)
n

(c) Compute the test statistic z = . (For the alternative p < pog,
multiply z by —1.)

(d) If z > z4, then reject the hypothesis. If z < z,, then do not reject the
hypothesis.

7. Wilcoxon signed rank test of the hypothesis M = M against the alternative
M # My of the median of a population, large sample:

(a) Determine the critical value z, /> such that ® (z,/2) = 1 — a/2, where
® (z) is the standard normal distribution.

(b) Compute the quantities |z; — My|, and keep track of the sign of z; — M.
If |z; — My| = 0, then remove it from the list and reduce n by one.

(c) Order the |z; — Mp| from smallest to largest, assigning rank 1 to the
smallest and rank n to the largest; |z; — Mp| has rank r; if it is the ri
entry in the ordered list. In case of ties (i.e., |z; — M| = |x; — M| for
2 or more values) assign each the average of their ranks.

(d) Compute the sum of the signed ranks R = Z sign (z; — Mo) 7;.
i=1
(e) Compute the test statistic z = ————.

n(n+1)(2n+1)
6

() If |2] > 2,2, then reject the hypothesis. If |z| < 2, /2, then do not reject
the hypothesis.
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8. Wilcoxon signed rank test of the hypothesis M = M against the alternative
M > My (or M < M) of the median of a population, large sample:

(a) Determine the critical value z,, such that ® (z,) = 1 — «, where @ (2) is
the standard normal distribution.

(b) Compute the quantities |z; — Mp|, and keep track of the sign of z; — M.
If |z; — My| = 0, then remove it from the list and reduce n by one.

(c) Order the |z; — Mp| from smallest to largest, assigning rank 1 to the
smallest and rank 7 to the largest; |z; — Mp| has rank r; if it is the 7
entry in the ordered list. If |z; — M| = |x; — My, then assign each the
average of their ranks.

(d) Compute the sum of the signed ranks R = Z sign (z; — Mo) 7;.
R i=1
(e) Compute the test statistic 2 = ——————————. (For the alternative
n(n+1)(2n+1)
6
M < My, multiply the test statistic by —1.)

(f) If z > z,, then reject the hypothesis. If z < z,, then do not reject the
hypothesis.

9. Test of the hypothesis 02 = o3 against the alternative 0> # o3 of the variance
of a normal distribution:

(a) Determine the critical values x2 /5 and Xi . /5 such that F/ (Xi /2) =

l1—a/2and F (Xia/z) = «/2, where F(-) is the chi-square distribu-
tion function with n — 1 degrees of freedom.

(b) Compute the standard deviation s of the sample.

(n—1)s?
o8

(@ Ifx* < x7_, /5 0r x> > X2 s, then reject the hypothesis.

(c) Compute the test statistic 2 =

(e) If Xia/z <x?< Xi/z’ then do not reject the hypothesis.

10. Test of the hypothesis 0> = o2 against the alternative 0> > o3 (or 02 < 03)
of the variance of a normal distribution:

(a) Determine the critical value x2 (x3_, for the alternative 0> < 03) such
that F (x2) = 1 — a (F (x}_,) = @), where F(-) is the chi-square
distribution function with n — 1 degrees of freedom.

(b) Compute the standard deviation s of the sample.

(n —1)s?

o8
(d) If x* > x2 (x® < x}_,), then reject the hypothesis.
(e) If x? < x2 (x3_, < x?), then do not reject the hypothesis.

(c) Compute the test statistic x> =
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7.11.2 HYPOTHESIS TESTS: PARAMETERS FROM TWO
POPULATIONS

The following hypothesis tests assume a random sample of size n, given by {z 1, z3, . ..

%y }, and a random sample of size m, given by {y1,y2,-..,Ym}-

1. Test of the hypothesis u, = 1, against the alternative y, # p,, of the means
of independent normal distributions with known variances o 2 and UZ :

(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution function.
(b) Compute the means, = and /, of the samples.
r—=Y
o2 o2
Vi
(d) If |z] > 242, then reject the hypothesis. If |2| < 2,5, then do not reject
the hypothesis.

(c) Compute the test statistic z =

2. Test of the hypothesis p1, = p, against the alternative p1, > 1y (Or piz < fiy)
of the means of independent normal distributions with known variances o 2
and o}, :

(a) Determine the critical value z,, such that ® (z,) = 1 — «, where @ (2) is
the standard normal distribution function.

(b) Compute the means T and ¥ of the samples.

T-U

(c) Compute the test statistic z = . (For the alternative 1, < fiy,

+

sk
3

multiply z by —1.)
(d) If z > z4, then reject the hypothesis. If z < z,, then do not reject the
hypothesis.

3. Test of the hypothesis 1, = j1, against the alternative p,, # p, of the means
of independent normal distributions with unknown variances o > and oz, large
sample:

(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution.
(b) Compute the means, Z and 7, and standard deviations, s% and sz, of the

samples. 3
(c) Compute the test statistic z = —Y
s2 ﬁ
(d) If |z] > 242, then reject the hypothesis. If |2| < 2,5, then do not reject

the hypothesis.

4. Test of the hypothesis 1, = 1, against the alternative p1, > fi, (OF fiz < fiy)
of the means of independent normal distributions with unknown variances, o 2
and o7, large sample:
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(a) Determine the critical value z,, such that ® (z,) = 1 — «, where @ (2) is
the standard normal distribution function.
(b) Compute the means, z and 7, and standard deviations, s% and si, of the

samples.
- T—7 .
(c) Compute the test statistic z = y =. (For the alternative i, < fty,
s2 s
wtm

multiply z by —1.)
(d) If z > z,, then reject the hypothesis. If z < z,, then do not reject the
hypothesis.

5. Test of the hypothesis u, = 1, against the alternative p, # p,, of the means

of independent normal distributions with unknown variances o2 = o :

(a) Determine the critical value ¢, /> such that F' (ta /2) =1 — «/2, where
F'(+) is the t-distribution with n + m — 2 degrees of freedom.
(b) Compute the means, T and 7, and standard deviations, s% and s;j, of the

samples. L
(c) Compute the test statistic ¢t = Ty .
(n=1)s2+(m-1)s2 [q 1
n+m—2 n + m
(d) If [t| > t4/2, then reject the hypothesis. If [t| < %, /5, then do not reject

the hypothesis.

6. Test of the hypothesis i, = p, against the alternative p; > py (or p, <
{1y of the means of independent normal distributions with unknown variances
2 2
o .

s =0y

(a) Determine the critical value ¢, such that F' (t,) = 1 — «, where F(-) is
the ¢-distribution with n + m — 2 degrees of freedom.
(b) Compute the means, z and 7, and standard deviations, s% and si, of the

samples.
.. ]
(c) Compute the test statistic ¢ = y . (For the
(n=1)s3+(m-1)s7 /1 1
n+m—2 n + m

alternative p, < py, multiply £ by —1.)
(d) If t > t,, then reject the hypothesis. If ¢ < t,, then do not reject the
hypothesis.

7. Test of the hypothesis y, = 1, against the alternative y, # p, of the means
of paired normal samples:

(a) Determine the critical value ¢ o so that F (t,/5) = 1—«/2, where F'(:)
is the ¢-distribution with n — 1 degrees of freedom.

(b) Compute the mean, ji4, and standard deviation, s4, of the differences
T1 —Y1,T2 —Y2,---,Tn — Yn.

fra/n

Sd

(c) Compute the test statistic t =
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(d) If [t| > t,/2, then reject the hypothesis. If [t| < %, /5, then do not reject
the hypothesis.

8. Test of the hypothesis ;1, = p, against the alternative pi, > iy, (O py < fiy)
of the means of paired normal samples:

(a) Determine the critical value ¢, so that F' (t,) = 1 — a, where F(+) is the
t-distribution with n — 1 degrees of freedom.
(b) Compute the mean, jig4, and standard deviation, s4, of the differences

T1 —Y1,T2 — Y25y T — Yn-
fran/n

Sd

(c) Compute the test statistic ¢ = . (For the alternative p,; < Uy,

multiply £ by —1.)
(d) If t > t4, then reject the hypothesis. If ¢ < t,, then do not reject the
hypothesis.

9. Test of the hypothesis p, = p, against the alternative p, # p, of the proba-
bility of success for a binomial distribution, large sample:

(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution function.
(b) Compute the proportions, p, and p,,, of “successes” for the samples.

(c) Compute the test statistic z = Pz — Py .
Pa(1—ps) Py (1—py)
n + m
(d) If |z] > 242, then reject the hypothesis. If |2| < z, /5, then do not reject

the hypothesis.

10. Test of the hypothesis p, = p, against the alternative p, > p, (or p, < py) of
the probability of success for a binomial distribution, large sample:

(a) Determine the critical value z,, such that ® (z,) = 1 — «, where @ (2) is
the standard normal distribution function.
(b) Compute the proportions, p, and p,,, of “successes” for the samples.
ﬁz - ﬁy
\/ﬁz(l—pz) + Dy (1—py)

n m

(c) Compute the test statistic z = . (Multiply it by

—1 for the alternative p, < py.)
(d) If z > z,, then reject the hypothesis. If z < z,, then do not reject the
hypothesis.

11. Mann-Whitney—Wilcoxon test of the hypothesis M, = M, against the alter-
native M, # M, of the medians of independent samples, large sample:

(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution.

(b) Pool the N = m + n observations, but keep track of which sample the
observation was drawn from.
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(c) Order the pooled observations from smallest to largest, assigning rank 1
to the smallest and rank IV to the largest; an observation has rank r; if
it is the 7" entry in the ordered list. If two observations are equal, then
assign each the average of their ranks.

(d) Compute the sum of the ranks from the rst sample 7',.
_ m(N+1)
2

(e) Compute the test statistic z = ————=——.
mn(N+1)
12
(f) If |2] > 2,2, then reject the hypothesis. If |z| < 2z, /2, then do not reject
the hypothesis.

12. Mann-Whitney—Wilcoxon test of the hypothesis M, = M, against the alter-
native M, > M, (or M, < M,) of the medians of independent samples, large
sample:

(a) Determine the critical value z,, such that ® (z,) = 1 — «, where @ (2) is
the standard normal distribution.

(b) Pool the N = m + n observations, but keep track of which sample the
observation was drawn from.

(c) Order the pooled observations from smallest to largest, assigning rank 1
to the smallest and rank N to the largest; an observation has rank r; if
it is the ! entry in the ordered list. If two observations are equal, then
assign each the average of their ranks.

(d) Compute the sum of the ranks from the rst sample 7',.
_ m(N+1)

(e) Compute the test statistic z = 2 ____2 _ (For the alternative M, <
mn(N+1)
12
M, multiply the test statistic by —1.)

(f) If |z| > zq, then reject the hypothesis. If |z| < z,, then do not reject the
hypothesis.

13. Wilcoxon signed rank test of the hypothesis M, = M, against the alternative
M, # M, of the medians of paired samples, large sample:

(a) Determine the critical value z, /> such that ® (z,/2) = 1 — a/2, where
® (z) is the standard normal distribution.

(b) Compute the paired differences d; = z; — y;, fori = 1,2,...,n.

(c) Compute the quantities |d;| and keep track of the sign of d;. If d; = 0,
then remove it from the list and reduce n by one.

(d) Order the |d;| from smallest to largest, assigning rank 1 to the smallest
and rank n to the largest; |d;| has rank r; if it is the r" entry in the ordered
list. In case of ties (i.e., |d;| = |d;| for 2 or more values) assign each the
average of their ranks.

(e) Compute the sum of the signed ranks R = Z sign (d;) r;.
i=1
.. R
(f) Compute the test statistic 2 = ——————————.
n(n+1)(2n+1)
6
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() If |z] > 242, then reject the hypothesis. If |2| < z, /5, then do not reject
the hypothesis.

14. Wilcoxon signed rank test of the hypothesis M, = M, against the alternative
M, > M, (or M, < M,) of the medians of paired samples, large sample:

(a) Determine the critical value z,, such that ® (z,) = 1 — «, where @ (2) is
the standard normal distribution.

(b) Compute the paired differences d; = z; — y;, fori = 1,2,...,n.

(c) Compute the quantities |d;| and keep track of the sign of d;. If d; = 0,
then remove it from the list and reduce n by one.

(d) Order the |d;| from smallest to largest, assigning rank 1 to the smallest
and rank n to the largest; |d;| has rank r; if it is the rM entry in the ordered
list. In case of ties (i.e., |d;| = |d;| for 2 or more values) assign each the
average of their ranks.

(e) Compute the sum of the signed ranks R = Z sign (d;) r;.
i=1
R
(f) Compute the test statistic z = ———————. (For the alternative
n(n+1)(2n+1)
6

M, < M,, multiply the test statistic by —1.)
(g) If z > z,, then reject the hypothesis. If z < z,, then do not reject the
hypothesis.

15. Test of the hypothesis 02 = o against the alternative o> # o, (or g2 > 07)
of the variances of independent normal samples:

(a) Determine the critical value F, /, (F, for the alternative 0} > o) such
that F (F,5) = 1 — a/2 (F(F,) = 1 — a), where F(-) is the F-
distribution function with n — 1 and m — 1 degrees of freedom.

(b) Compute the standard deviations s, and s, of the samples.

(c) Compute the test statistic F' = i (For the two-sided test, put the larger

2

2z
value in the numerator.)

(d) If F > Fy/s (F > F,), then reject the hypothesis. If F' < F, ;5 (F' <

F,), then do not reject the hypothesis.

7.11.3 HYPOTHESIS TESTS: DISTRIBUTION OF A
POPULATION

The following hypothesis tests assume a random sample of size n, given by
{z1,29,...,2,}.

1. Run test for randomness of a sample of binary values, large sample:
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(a) Determine the critical value z,/5 such that ® (za /2) =1 — a/2, where
® (2) is the standard normal distribution function.

(b) Since the data are binary, denote the possible values of z; by 0 and 1.
Count the total number of zeros, and call this 71 ; count the total number
of ones, and call this no. Group the data into maximal sub-sequences of
consecutive zeros and ones, and call each such sub-sequence a run. Let
R be the number 3f runs in the sample.

nin _ _
ni -:-732 +1,and 012% - (m:hi)rggljl 2)’
R—pr

(c) Compute pp =

(d) Compute the test statistic z =

OR
(e) If |z| > 242, then reject the hypothesis. If |z| < 2, /2, then do not reject
the hypothesis.

2. Run test for randomness against an alternative that a trend is present in a sam-
ple of binary values, large sample:

(a) Determine the critical value z,, such that ® (z,) = 1 — «, where @ (2) is
the standard normal distribution function.

(b) Since the data are binary, denote the possible values of z; by 0 and 1.
Count the total number of zeros, and call this 7 1; count the total number
of ones, and call this no. Group the data into maximal sub-sequences of
consecutive zeros and ones, and call each such sub-sequence a run. Let
R be the number 3f runs in the sample.

nin _ _
ni -:-732 +1,and 012% - (m:hi)rggljl 2)’

R—
(d) Compute the test statistic z = 1R .

(c) Compute up =

OR
(e) If z < —=z,, then reject the hypothesis (this suggests the presence of a
trend in the data). If z > —z,, then do not reject the hypothesis.

3. Run test for randomness against an alternative that the data are periodic for a
sample of binary values, large sample:

(a) Determine the critical value z,, such that ® (z,) = 1 — «, where @ (2) is
the standard normal distribution function.

(b) Since the data are binary, denote the possible values of z; by 0 and 1.
Count the total number of zeros, and call this 7 1; count the total number
of ones, and call this no. Group the data into maximal sub-sequences of
consecutive zeros and ones, and call each such sub-sequence a run. Let
R be the number 3f runs in the sample.

nin _ _
ni -:-732 +1,and 012% - (m:hi)rggljl 2)’
R—pug

(c) Compute up =

(d) Compute the test statistic z =

OR
(e) If z > z,, then reject the hypothesis (this suggests the data are periodic).
If z < z,, then do not reject the hypothesis.
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4. Chi-square test that the data are drawn from a speci ¢ k-parameter multino-
mial distribution, large sample:

(a) Determine the critical value x2 such that F' (x%) = 1 — «, where F(z)
is the chi-square distribution with £ — 1 degrees of freedom.

(b) The k-parameter multinomial has k& possible outcomes A1, Ao, ..., A
with probabilities py,p2,...,px. Fori = 1,2,... k, compute n;, the
number of z;’s corresponding to A;.

(¢c) Fori = 1,2,...,k, compute the sample multinomial parameters p; =

k 2

(d) Compute the test statistic x* = Z w

=1 npi

(e) If x? > x?2, then reject the hypothesis. If x? < x2, then do not reject

the hypothesis.

5. Chi-square test for independence of attributes A and B having possible out-
comes A1, As,...,Arand By, B>, ...,Bpy:

(a) Determine the critical value x2 such that F (x%) = 1 — a, where F(-)
is the chi-square distribution with (k — 1)(m — 1) degrees of freedom.

(b) Fori =1,2,...,kand j = 1,2,...,m, dene o;; to be the number of
observations having attributes A; and B, and de ne o;. = E;n:l 0;5 and

k

0.5 = Zi:l Ojj.

(c) The variables de ned above are often collected into a table, called a con-
tingency table:

Attribute | By By --- B, | Totals
Ay 011 012 ' Oim 01.
Ay 021 022 - O2m 02.
Ay Okl Ok2 "'* Ogm | O
Totals 01 092 '+ Om n
(d) Fort =1,2,...,kand j = 1,2, ..., m, compute the sample mean num-
ber of observations in the ¢jM cell of the contingency table
0;.0.5
€ij = .
(¥ n
k. m (0' e ')2
(e) Compute the test statistic, x> = I

(f) If x* > x2, thenreject the hypothesis (that is, conclude that the attributes
are not independent). If x? < x?2, then do not reject the hypothesis.

6. Kolmogorov—Smirnov test that Fip () is the distribution of the population from
which the sample was drawn:

(a) Determine the critical value D, such that Q(D,) = 1 — «, where Q(D)
is the distribution function for the Kolmogorov—Smirnov test statistic D.
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(b) Compute the sample distribution function F (z).
(c) Compute the test statistic, given the maximum deviation of the sample

and target distribution functions D = max ‘ﬁ'(a:) — Fy(z) ‘

(d) If D > D,, then reject the hypothesis (that is, conclude that the data are
not drawn from Fy(z)). If D < D,,, then do not reject the hypothesis.

7.11.4 HYPOTHESIS TESTS: DISTRIBUTIONS OF TWO

POPULATIONS
The following hypothesis tests assume a random sample of size n, given by
{x1,x2,..., 2y}, and a random sample of size m, given by {y1,¥2,.-.,ym}.

1. Chi-square test that two k-parameter multinomial distributions are equal, large
sample:

(a) Determine the critical value x2 such that F' (x%) = 1 — a, where F(-)
is the chi-square distribution with & — 1 degrees of freedom.

(b) The k-parameter multinomials have k possible outcomes A, Ao, ...,
Ap. Fori =1,2,...,k, compute n;, the number of x;’s corresponding
to A;, and compute 1m;, the number of y;’s corresponding to A;.

(c) Fori = 1,2,...,k, compute the sample multinomial parameters p; =
n; +m;

n+m o
(d) Compute the test statistic,
2 k 2

(n; —nipy) +Z —mpi) (7.11.1)

np:
i=1 Di i=1 Di

M=

(e) If x> > x2, then reject the hypothesis. If x2 < x2, then do not reject
the hypothesis.

2. Mann—-Whitney—Wilcoxon test for equality of independent continuous distri-
butions, large sample:

(a) Determine the critical value z, /> such that ® (z,/2) = 1 — a/2, where
® (2) is the normal distribution function.

(b) Fori =1,2,...,nandj =1,2,...,m,dene S;; = lif z; < y; and
Sij = Olfiﬂl > yJ

(¢c) Compute U = Z Z Sij.

i=1 j=1
_ mn
u 2

(d) Compute the test statistic 2 = ————=——
mn(m+n+1)

(e) If [z| > 242, then reject the hypothes1s If | 2| < z4/2, then do not reject
the hypothesis.
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3. Spearman rank correlation coef cient for independence of paired samples,
large sample:

(a) Determine the critical value R, /> such that F' (Ra /2) = 1—a/2, where
F (R) is the distribution function for the Spearman rank correlation co-

ef cient.
(b) The samples are ordered, with the smallest z; assigned the rank r; and
the largest assigned the rank r,,; fort = 1,2,...,n, x; is assigned rank

r; if it occupies the i™ position in the ordered list. Similarly the y;’s are
assigned ranks s;. In case of a tie within a sample, the ranks are averaged.
(c) Compute the test statistic

2 2
n 5 ry — 5 r; n 5 57— E S;
i=1 i=1 i=1 i=1

(d) If |[R| > R,/2, then reject the hypothesis. If |R| < R, /,, then do not
reject the hypothesis.

7.11.5 SEQUENTIAL PROBABILITY RATIO TESTS

Given two simple hypotheses and m observations, compute:

1. Py, = Prob (observations | Hy).
2. Py, = Prob (observations | Hy).
3. Um = le/POm-

Then make one of the following decisions:

1—
1. If v,, > —— then reject Hy.
«

2. Ifoy, < li then reject Hy.
!

11—
3. If li < Uy < —B then make another observation.
e e

Hence, the number of samples taken is not x ed a priori, but determined as sampling
occurs.

EXAMPLES

1. Let 6 denote the fraction of defective items. Two simple hypotheses are Hy: 8 = 6y =
0.05 and Hy: 6 = 6; = 0.15. Choose @« = 5% and 8 = 10% (i.e., reject lot with
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0 = 6 about 5% of the time; accept lot with § = 6; about 10% of the time). If, after
mm observations, there are d defective items, then

m d d 01 d 1—91 m—d
Pipm = (d>9i (1—6)) and v, = <9—0) <1_90) (7.11.2)

or vy, = 3%(0.895)™~¢, using the above numbers. The critical values are % =

0.105 and % = 18. The decision to perform another observation depends on whether
or not

0.105 < 3%(0.895)™ % < 18. (7.11.3)

Taking logarithms, a (m — d, d) control chart can be drawn with the following lines:
d = 0.101(m — d) — 2.049 and d = 0.101(m — d) + 2.63. On the gure below, a
sample path leading to rejection of Hy has been indicated:

A

d Reject Hy
(defectives)

Reject Hy

n — d (non-defectives)

2. Let X be normally distributed with unknown mean g and known standard deviation o.
Consider the two simple hypotheses, Hp : p = po and Hy : g = p1. If YV is the sum
of the rst m observations of X, then a (Y, m) control chart is constructed with the

two lines: )
Y:lm;_mm%- U_ loglfa,
pa = o X (7.11.4)
Y:H0+mm+ g lo _ﬂ.
2 K1 — o o

7.12 LINEAR REGRESSION

1. The general linear statistical model assumes that the observed data values
{y1,Y2,-..,Ym | are of the form

Yi = Po + b1z + Baziz + - - - + BuTin + €,

fori =1,2,...,m.
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2. Fori = 1,2,...,mand j = 1,2,...,n, the independent variables x;; are
known (nonrandom).

3. {Bo, b1, B2, -, Bn} are unknown parameters.

4. For each i, €¢; is a zero-mean normal random variable with unknown vari-

ance o2.

7.12.1 LINEAR MODEL y; = Bo + P1zi + €

1. Point estimate of 31:

-~

B =

(5)-(5-)

-~

Bo = 27—31?-

3. Point estimate of the correlation coef ¢ ient:

(5)- (5) v (5)- (B)

2. Point estimate of 3g:

ﬁ
Il
)
Il

m

~ ~ 2
> (yi — o — 51%’)
4. Point estimate of error variance o2: g2 = =L —
5. The standard error of the estimate is de ned as s, = V o2.
6. Least-squares regression line: Y= Bo+ frx.

7. Con de nce interval for 3:

(a) Determine the critical value ¢,/ such that F (t,/5) = 1 — a/2, where
F () is the cumulative distribution function for the ¢-distribution with
m — 2 degrees of freedom.

(b) Compute the point estimate Eo.

1 _
(c) Compute k = ty/28e | — + —7 ;r
m

> (@i-®)°
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(d) The 100(1 — «) percent con den ce interval for S is given by

[30—k730+k].

8. Con de nce interval for §1:

(a) Determine the critical value ¢, /> such that F' (ta /2) =1 — «/2, where
F (-) is the cumulative distribution function for the ¢-distribution with
m — 2 degrees of freedom.

(b) Compute the point estimate Bl.

€

(c) Compute k = t,/2

(d) The 100(1 — «) percent con den ce interval for 51 is given by
(81— 1 B+ .
9. Con de nce interval for o

(a) Determine the critical values x2 /o and Xi_,, /o such that F/ (Xi /2) =

l1—a/2and F (X%—a/2) = «/2, where F () is the cumulative distribu-
tion function for the chi-square distribution function with m — 2 degrees

of freedom. e
(b) Compute the point estimate o2.
— 2)g2 — 9)g2
(¢c) Compute k1 = u and ks = (n27)a.
/2 X1—a/2

(d) The 100(1 — «) percent con den ce interval for o2 is given by [k, k2].

10. Con de nce interval (predictive interval) for y, given x ¢:

(a) Determine the critical value ¢, /> such that F' (ta /2) =1 — «/2, where
F (-) is the cumulative distribution function for the ¢-distribution with
m — 2 degrees of freedom.

(b) Compute the point estimates [?0, [?1, and s,.

—\2

(c) Compute k = t,/28, % + m(xoix) andy = B\o + 31330-
> (@i —-7)?
i=1

(d) The 100(1 — «) percent con den ce interval for 51 is given by

[y — K,y + K.

11. Test of the hypothesis 3; = 0 against the alternative 3; # O:

(a) Determine the critical value ¢, /> such that F' (ta /2) =1 — «/2, where
F () is the cumulative distribution function for the ¢-distribution with
m — 2 degrees of freedom.
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(b) Compute the point estimates [?1 and s..

(c) Compute the test statistic ¢t = &

Se

(d) If [t| > t/2, then reject the hypothesis. If |t| < t, /5, then do not reject
the hypothesis.

7.12.2 GENERAL MODEL y = By + B121 + Boa + -+ + Bun + €

1. The m equations (z = 1,2,...,m)
Yi = Bo + Przin + Bozio + -+ BuTin + € (7.12.1)

can be written in matrix notation as y = X + € where

Y1 Bo €1
Y2 B1 €2
y=1.1. B=1.1, e=1|.1, (7.12.2)
Ym Br €m
and
1 12 Tin
1 o 22 crc T2pn
X=1. . . . . . (7.12.3)
1 Tm1 Tm?2 v Tmn

2. Throughout the remainder of the section, we assume X has full column rank.

3. The least-squares estimate E satis es the normal equations XTXB = XTy.

Thatis, 5 = (X"™X) " XTy.

4. Point estimate of ¢2:

— ~T
= (yly- B (XTy).
o m_n_l(yy B (X7y)
5. The standard error of the estimate is de ned as s, = ;5.

6. Least-squares regression line: 7 = X' 3.

7. In the following, let ¢;; denote the (i, j) entry in the matrix (X"X) -

8. Con de nce interval for j3;:

(a) Determine the critical value ¢, /> such that F' (ta /2) =1 — «/2, where
F () is the cumulative distribution function for the ¢-distribution with
m — n — 1 degrees of freedom.
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(b) Compute the point estimate EZ by solving the normal equations, and
compute Se.

(c) Compute k; = ty/25¢4/Cii-

(d) The 100(1 — «) percent con den ce interval for §; is given by

[5i — ki, Bi + ks .

9. Con de nce interval for o 2:

(a) Determine the critical values X7 /, and x7_, , such that F (Xi /2) =

1—a/2and F (X%—a/2) = «/2, where F' (-) is the cumulative distri-
bution function for the chi-square distribution function withm —n — 1
degrees of freedom.

(b) Compute the point estimate o2,

—n—1o2 —n—1o2
(©) Compute ky = =D g, = (M= Do?
Xa/Q Xl—a/2

(d) The 100(1 — «) percent con den ce interval for o 2 is given by [k1, k2].

10. Con de nce interval (predictive interval) for y, given X o:

(a) Determine the critical value £, /> such that F' (ta /2) =1 — «/2, where
F (-) is the cumulative distribution function for the ¢-distribution with
n —m — 1 degrees of freedom.

(b) Compute the point estimate EZ by solving the normal equations, and
compute Se.

(c) Compute k = t,/5 se \/1 +x3 (XTX)_1 Xo and § = XgB.
(d) The 100(1—«) percent con dence interval for 3, is givenby [y — k, Y + k.

11. Test of the hypothesis 3; = 0 against the alternative 3; # 0:

(a) Determine the critical value ¢,/ such that F (t,/5) = 1 — a/2, where
F (-) is the cumulative distribution function for the ¢-distribution with
m — n — 1 degrees of freedom.

(b) Compute the point estimates ,@Z aEd Se by solving the normal equations.

. Bi
(c) Compute the test statistic ¢t = .
P Sev/Cii
(d) If [t| > t4/2, then reject the hypothesis. If [t| < t, /5, then do not reject

the hypothesis.

7.13 ANALYSIS OF VARIANCE (ANOVA)

Analysis of variance (ANOVA) is a statistical methodology for determining informa-
tion about means. The analysis uses variances both between and within samples.
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7.13.1 ONE-FACTOR ANOVA

1. Suppose we have k samples from k populations, with the 5™ population con-
sisting of n; observations,

Y11, Y215 -+ -5 Ynq1
Y12, Y225 -+ -5 Yny2

Yiks Y2ks + > Ynpk-

2. One-factor model:

(a) The one-factor ANOVA assumes that the i" observation from the j"
sample is of the form y;; = p + 75 + €.

(b) Forj =1,2,...,k, the parameter 1; = p + 7; is the unknown mean of
the j™ population, and Ele 7; = 0.

(¢c) Fori = 1,2,...,kand j = 1,2,...,nj, the random variables e;; are
independent and normally distributed with mean zero and variance o 2.

(d) The total number of observationsis n = n1 + ns + - - + ng.

3. Point estimates of means:

k nj
1
(a) Total sample mean y = o 231 z; Yij-
j=1i=

1
(b) Sample mean of j™ sample §; = — Z Yij-
i

4. Sums of squares:

k
(a) Sum of squares between samples SSy, = Z n; (y; — 7)°.
¢
(b) Sum of squares within samples SS, = Z Z (yij — /y\j)Z.
j=1i=1
k nj
(c) Total sum of squares Total SS = Z Z (vij — 7)°.
j=11i=1

(d) Partition of total sum of squares Total SS = SS;, + SSy,.

5. Degrees of freedom:

(a) Between samples, k£ — 1.
(b) Within samples, n — k.
(c) Total, n — 1.
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6. Mean squares:

(a) Obtained by dividing sums of squares by their respective degrees of

freedom. SS
(b) Between samples, MSy, = A bl'
SSw
(c) Within samples (also called the residual mean square), MS, = T
n—
7. Test of the hypothesis u1 = ps = --- = puy against the alternative p; 7# p; for
some ¢ and j; equivalently, test the null hypothesis 71 = = -+ =7, =0

against the hypothesis 7; # 0 for some j:

(a) Determine the critical value F,, such that F'(F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution with k — 1
and n — k degrees of freedom.

(b) Compute the point estimates y and y; for j = 1,2,... k.

(c) Compute the sums of squares SSy and SSy,.

(d) Compute the mean squares MSy, and MSy,.

S
(e) Compute the test statistic F' = M—Sb'
(f) If F' > F,, then reject the hypothe:is. If F < F,, then do not reject the
hypothesis.

(g) The above computations are often organized into an ANOVA table:
Source SS D.O.E.  MS | FRatio
Between samples SSy k—1 MSy, | F= ﬁgb
Within samples SSw n—k MSy
Total Total SS n —1

8. Con de nce interval for p1; — 5, for i # j:

(a) Determine the critical value ¢, /> such that F' (ta /2) =1 — «/2, where
F () is the cumulative distribution function for the ¢-distribution with
n — k degrees of freedom.

(b) Compute the point estimates y; and 3.

(c) Compute the residual mean square MS,,.

n; n;

1 1
(d) Compute k = ta/2\/MSW (— + —>
(e) The 100(1 — «) percent con de nce interval for p; — p; is given by
(i — i) =k, (W — y;) + k.
9. Con de nce interval for contrast in the means, de ned by C' = ¢y + copiz +

-+ Cppg, Where cg + o + - + ¢ = 0:

(a) Determine the critical value F, such that F'(F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution with &k — 1
and n — k degrees of freedom.
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(b) Compute the point estimates y; for j = 1,2,..., k.
(c) Compute the residual mean square MS,.

k

k—1 5

(d) Compute k = | F,MS,, — E ;
j=1

(e) The 100(1 — «) percent con den ce interval for the contrast C' is given
k k
by [ Y il —k, > ¢l +k|.
j=1 j=1

7.13.2 UNREPLICATED TWO-FACTOR ANOVA

1. Suppose we have a sample of observations y;; indexed by two factors ¢ =
1,2,....mandj=1,2,... n.

2. Unreplicated two-factor model:

(a) The unreplicated two-factor ANOVA assumes that the ij " observation is
of the form y;; = pu + B; + 75 + eyj.

(b) p is the overall mean, §; is the ™ differential effect of factor one, Tjis
the j differential effect of factor two, and

m n
Y530
i=1 j=1

(¢) Fort =1,2,...,mand j = 1,2,...,n, the random variables e;; are
independent and normally distributed with mean zero and variance o 2
(d) Total number of observations is mn.

3. Point estimates of means:
1 m n
(a) Total sample meany = — Z Z Yij-
mn i=1 j=1
1 n
(b) 4™ factor-one sample mean ¥j;. = - 2:1 Yij-
i=

1 m
-th P
(c) j™ factor-two sample mean §/.; = o E 1 Yij-
i=

4. Sums of squares:

m

(a) Factor-one sum of squares SS; = n Z @i — ).
(b) Factor-two sum of squares SS» = m Z (¥.; — 7)°.
j=1
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m n

(¢) Residual sum of squares SS; = E E (yij — Ui — U5 + 37)2
i=1 j=1
n m

(d) Total sum of squares Total SS = Z Z (yij — 7)°.
j=1i=1
(e) Partition of total sum of squares Total SS = SS; + SS, + SS..

5. Degrees of freedom:

(a) Factor one, m — 1.

(b) Factor two, n — 1.

(c) Residual, (m — 1)(n —1).
(d) Total, mn — 1.

6. Mean squares:

(a) Obtained by dividing sums of squares by their respective degrees of

freedom. sS

(b) Factor-one mean square MS; = L T
m —
SS»

(c) Factor-two mean square MS, = T

SS;

(d) Residual mean square MS]- = m
7. Test of the null hypothesis 31 = B2 = --- = B, = 0 (no factor-one effects)

against the alternative hypothesis 3; # 0 for some i:

(a) Determine the critical value F, such that F'(F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution with m — 1
and (m — 1)(n — 1) degrees of freedom.

(b) Compute the point estimates 3 and ;. fori = 1,2,...,m.

(c) Compute the sums of squares SS; and SS;.

(d) Compute the mean squares MS; and MS;.

S
(e) Compute the test statistic F' = M—Sl
(f) If F' > F,, then reject the hypothesris. If F < F,, then do not reject the
hypothesis.
8. Test of the null hypothesis 71 = » = --- = 7, = 0 (no factor-two effects)

against the alternative hypothesis 7; # 0 for some j:

(a) Determine the critical value F,, such that F' (F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution with n — 1
and (m — 1)(n — 1) degrees of freedom.

(b) Compute the point estimates y and y/.; forj =1,2,...,n.

(c) Compute the sums of squares SS» and SS;.
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(d) Compute the mean squares MS 5 and MS;.

MS
(e) Compute the test statistic F' = M—S2
(f) If F > F|,, then reject the hypothesris. If F < F, then do not reject the
hypothesis.
(g) The above computations are often organized into an ANOVA table:
Source SS D.OF MS | FRatio
Factor one SS; m—1 MS; | F = 1\1\//1[_551
Factor two SS» n—1 MS, | F = 1\]\/,[[552
Residual SS, (m—1)(n—1) | MS;
Total Total SS mn —1

9. Con de nce interval for contrast in the factor-one means, de ned by C' =
11+ cofo + - + ¢ Bm, Where cg + ¢ + -+ - + ¢, = 0:

(a) Determine the critical value F, such that F'(F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution with m — 1
and (m — 1)(n — 1) degrees of freedom.

(b) Compute the point estimates y;. fori = 1,2,...,m.

(c) Compute the residual mean square MS;.

m—1 «—
(d) Compute k = , | F,MS; (T Z; cf)

(e) The 100(1 — «) percent con den ce interval for the contrast C' is given

by
lz CZZI/\Z — k‘, Z CZZ/J\Z +k
i=1 i=1

10. Con de nce interval for contrast in the factor-two means, de ned by C' =
c1m + e + -+ cpTp, Wherecy +c2 + -+ ¢, =0:

(a) Determine the critical value F, such that F'(F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution with n — 1
and (m — 1)(n — 1) degrees of freedom.

(b) Compute the point estimates y.; for j = 1,2,...,n.

(c) Compute the residual mean square MS;.

1<
(d) Compute k = | FaMS; [ =Y ¢2
m
i=1

(e) The 100(1 — «) percent con den ce interval for the contrast C' is given
by

n n
ch@\'j - k‘, Z Cj@\.j +k
i=1 i=1
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7.13.3 REPLICATED TWO-FACTOR ANOVA

1. Suppose we have a sample of observations y;;; indexed by two factors ¢ =
1,2,...,mand j = 1,2,...,n. Moreover, there are p observations per factor
pair (i, ), indexed by k = 1,2,...,p.

2. Replicated two-factor model:

(a) The replicated two-factor ANOVA assumes that the 55k ™ observation is
of the form Yijk = W+ Bi + T; + Vij + €ijk-

(b) u is the overall mean, 3; is the i differential effect of factor one, Tjis
the j differential effect of factor two, and

m n
Zﬂl = ZT]' =0.
i=1 j=1

(c) Fori =1,2,...,mand j = 1,2,...,n,v;; is the i interaction effect
of factors one and two.

(d) Fori =1,2,...,m,j =1,2,...,n,and k = 1,2,..., p, the random
variables e;;;, are independent and normally distributed with mean zero
and variance 2.

(e) Total number of observations is mnp.

3. Point estimates of means:

m n p
1

(a) Total sample mean § = m—np Z Z Z Yijk-

i=1 j=1 k=1
1 =
ith U = — >
(b) ™ factor-one sample mean ;.. = np Z Z Yijk-
j=1k=1
1 -
(c) j™ factor-two sample mean ;. = — ijk-
j p 0= o ;;yj

T O N
(d) i7" interaction mean Yij. = — Z Yijk-
k=1

4. Sums of squares:

(a) Factor-one sum of squares SS; = np Z (Ui.- — §)2

i=1
n

(b) Factor-two sum of squares SSo = mpz (Y. — ).

j=1
m n

(c) Interaction sum of squares SS12 = p Z Z (Usj- — ﬂ)Q
i=1 j=1
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m n D
(d) Residual sum of squares SS, = Z Z Z (Yijk — Y. — Y- + 37)2
i=1 j=1 k=1
m n D

(e) Total sum of squares Total SS = Z Z Z (yije — )"

i=1 j=1 k=1
(f) Partition of total sum of squares Total SS = SS; + SS5 + SSy5 + SS;.

5. Degrees of freedom:

(a) Factor one, m — 1.

(b) Factor two, n — 1.

(c) Interaction, (m — 1)(n — 1).
(d) Residual, mn(p —1).

(e) Total, mnp — 1.

6. Mean squares:

(a) Obtained by dividing sums of squares by their respective degrees of

freedom. Ss
(b) Factor-one mean square MS; = ! 1
m —
SS»
(c) Factor-two mean square MS, = T
SS
(d) Interaction mean square MS;2 = m
(e) Residual mean square MS; = -
mn(p - 1)
7. Test of the null hypothesis f1 = B2 = --- = B, = 0 (no factor-one effects)

against the alternative hypothesis 3; # 0 for some i:

(a) Determine the critical value F,, such that F'(F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution with m — 1
and mn(p — 1) degrees of freedom.

(b) Compute the point estimates ¥ and ;.. fori = 1,2,...,m.

(c) Compute the sums of squares SS; and SS;.

(d) Compute the mean squares MS; and MS;.

MS
(e) Compute the test statistic F' = M—Sl
(f) If F' > F,, then reject the hypothesris. If F < F,, then do not reject the
hypothesis.
8. Test of the null hypothesis 7y = 7» = --- = 7, = 0 (no factor-two effects)

against the alternative hypothesis 7; 7# 0 for some j:

(a) Determine the critical value F, such that F'(F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution withn — 1
and mn(p — 1) degrees of freedom.
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(b) Compute the point estimates y and y.;. forj = 1,2,...,n.
(c) Compute the sums of squares SS» and SS;.
(d) Compute the mean squares MS» and MS;.

MS
(e) Compute the test statistic F' = M—82
(f) If F' > F,, then reject the hypothesris. If F < F,, then do not reject the

hypothesis.

9. Test of the null hypothesis v;; = Ofor: =1,2,...,mandj = 1,2,...,n (no
factor-one effects) against the alternative hypothesis y;; # 0 for some ¢ and j:

(a) Determine the critical value F,, such that F' (F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution with (m —
1)(n — 1) and mn(p — 1) degrees of freedom.

(b) Compute the point estimates ¥, ¥;.., §.;., and y;;. fori = 1,2,...,m and
i=1,2,...,n.

(c) Compute the sums of squares SS12 and SS;.

(d) Compute the mean squares MS 5 and MS;.
MSi»

(e) Compute the test statistic F' = S
(f) If F' > F,, then reject the hypothes;s. If F < F,, then do not reject the

hypothesis.

(g) The above computations are often organized into an ANOVA table:
Source SS D.OF. MS F Ratio
Factor one SSy m—1 MS; | F =MS;/MS;
Factor two SSo n—1 MS, | F =MSy/MS;
Interaction SSis (m—1)(n—1) | MS12 | F = MS;15/MS;
Residual SS; mn(p —1) MS,

Total Total SS mnp — 1

10. Con de nce interval for contrast in the factor-one means, de ned by C' =
c1B1 + 2Pz + -+ cmfBm, Wherecp + 2+ -+ ¢y = 0:

(a) Determine the critical value F, such that F'(F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution with m — 1
and mn(p — 1) degrees of freedom.

(b) Compute the point estimates ;.. fori = 1,2,...,m.

(c) Compute the residual mean square MS;.

-1
(d) Compute k = , | FyMS, (m— 3 c3> .
[ -
(e) The 100(1 — «) percent con den ce interval for the contrast C' is given

by

m m
lz cilli-. — k, Z cii. + k
=1 i=1
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11. Con de nce interval for contrast in the factor-two means, de ned by C' =
c1m + e + -+ cpTp, Wherecy +c2 4+ -+ ¢, =0:

(a) Determine the critical value F, such that F'(F,,) = 1 — a, where F (+)
is the cumulative distribution function for the F'-distribution with n — 1
and mn(p — 1) degrees of freedom.

(b) Compute the point estimates y.;. forj = 1,2,...,n.

(c) Compute the residual mean square MS;.

— 1~ .
(d) Compute k = | FaMS; [ =" ¢2
mp =

(e) The 100(1 — «) percent con den ce interval for the contrast C' is given
by

n n
Z Cj@\.j. - k‘, Z Cj@\.j. +k
i=1 i=1

FIGURE 7.5
The shaded region is de ned by X > z, and has area o (here X is N(0,1)).

Za

7.14 PROBABILITY TABLES

7.14.1 CRITICAL VALUES

1. The critical value z, satises ®(z,) = 1 — a (where, as usual, ®(z) is the
distribution function for the standard normal). See Figure 7.5.

®(z) = \/% /_oo e /2 dt = % <1 +erf (%)) (7.14.1)

2. The critical value ¢, satises F(t,) = 1 — « where F(-) is the distribution
function for the ¢-distribution (for a speci ed number of degrees of freedom).
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FIGURE 7.6
Hllustration of o and 20 regions of a normal distribution.

-—— 68% - 95%

16%

p—o p pFo

3. The critical value x2 satises F(x2) = 1 — «a where F(-) is the distribution
function for the y2-distribution (for a speci ed number of degrees of freedom).
4. The critical value F,, satises F(F,) = 1 — a where F'(-) is the distribution
function for the F'-distribution (for a speci ed number of degrees of freedom).

7.14.2 TABLE OF THE NORMAL DISTRIBUTION

For a standard normal random variable (see Figure 7.6):

Limits Proportion of Remaining

the total area area

U — Ao w+ Ao (%) (%)

w—o0o w+o 68.27 31.73

w—1.650 | p+ 1.650 90 10

uw—1960 | p+ 1.960 95 5

uw— 20 nw+ 20 95.45 4.55

w—2.580 | p+ 2580 99.0 0.99

w— 30 w4+ 30 99.73 0.27

©w—3.090 | p+3.09 99.8 0.2

w—3.290 | u+3.290 99.9 0.1

x 1.282 1.645 1.960 2.326 2.576 3.090

o(x) 090 095 0975 0.99 0995 0.999
2[1—-®(x)] | 020 0.10 0.05 0.02 001 0.002

x 309 372 426 475 520 561 600 636
1-®(z) |10 107% 105 10% 107 10® 10°° 10°1°

For large values of z:

r;;2<%—§0]<1—¢@)<

—z2/2 1
e\/ﬂ <5>] (7.14.2)
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F(x)

1—F(x)

f(z)

F(x)

1—F(x)

f(z)

0.01
0.03
0.05
0.07
0.09
0.11
0.13
0.15
0.17
0.19

0.21
0.23
0.25
0.27
0.29
0.31
0.33
0.35
0.37
0.39

0.41
0.43
0.45
0.47
0.49
0.51
0.53
0.55
0.57
0.59

0.61
0.63
0.65
0.67
0.69
0.71
0.73
0.75
0.77
0.79

0.50399
0.51197
0.51994
0.52790
0.53586
0.54380
0.55172
0.55962
0.56749
0.57534

0.58317
0.59095
0.59871
0.60642
0.61409
0.62172
0.62930
0.63683
0.64431
0.65173

0.65910
0.66640
0.67365
0.68082
0.68793
0.69497
0.70194
0.70884
0.71566
0.72240

0.72907
0.73565
0.74215
0.74857
0.75490
0.76115
0.76731
0.77337
0.77935
0.78524

0.49601
0.48803
0.48006
0.47210
0.46414
0.45621
0.44828
0.44038
0.43250
0.42466

0.41683
0.40905
0.40129
0.39358
0.38591
0.37828
0.37070
0.36317
0.35569
0.34827

0.34090
0.33360
0.32636
0.31918
0.31207
0.30503
0.29806
0.29116
0.28434
0.27759

0.27093
0.26435
0.25785
0.25143
0.24510
0.23885
0.23270
0.22663
0.22065
0.21476

0.39892
0.39876
0.39844
0.39797
0.39733
0.39654
0.39559
0.39448
0.39322
0.39181

0.39024
0.38853
0.38667
0.38466
0.38251
0.38023
0.37780
0.37524
0.37255
0.36973

0.36678
0.36371
0.36053
0.35723
0.35381
0.35029
0.34667
0.34294
0.33912
0.33521

0.33121
0.32713
0.32297
0.31874
0.31443
0.31006
0.30563
0.30114
0.29659
0.29200

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40

0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60

0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80

0.50798
0.51595
0.52392
0.53188
0.53983
0.54776
0.55567
0.56356
0.57142
0.57926

0.58706
0.59484
0.60257
0.61026
0.61791
0.62552
0.63307
0.64058
0.64803
0.65542

0.66276
0.67003
0.67724
0.68439
0.69146
0.69847
0.70540
0.71226
0.71904
0.72575

0.73237
0.73891
0.74537
0.75175
0.75804
0.76424
0.77035
0.77637
0.78231
0.78814

0.49202
0.48405
0.47608
0.46812
0.46017
0.45224
0.44433
0.43644
0.42858
0.42074

0.41294
0.40516
0.39743
0.38974
0.38209
0.37448
0.36693
0.35942
0.35197
0.34458

0.33724
0.32997
0.32276
0.31561
0.30854
0.30153
0.29460
0.28774
0.28096
0.27425

0.26763
0.26109
0.25463
0.24825
0.24196
0.23576
0.22965
0.22363
0.21769
0.21185

0.39886
0.39862
0.39822
0.39767
0.39695
0.39608
0.39505
0.39387
0.39253
0.39104

0.38940
0.38762
0.38568
0.38361
0.38139
0.37903
0.37654
0.37391
0.37115
0.36827

0.36526
0.36213
0.35889
0.35553
0.35207
0.34849
0.34482
0.34105
0.33718
0.33322

0.32918
0.32506
0.32086
0.31659
0.31225
0.30785
0.30339
0.29887
0.29430
0.28969
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x F(x) 1—F(x) | f(x) x F(x) 1—F(x) | f(x)

0.81 [ 0.79103 | 0.20897 | 0.28737 |[0.82 |0.79389 [ 0.20611 |0.28504
0.83 [ 0.79673 | 0.20327 | 0.28269 |[ 0.84 |0.79955 | 0.20045 |0.28034
0.85 [ 0.80234 | 0.19766 | 0.27798 |[0.86 |0.80510 | 0.19490 |0.27562
0.87 [ 0.80785 | 0.19215 | 0.27324 |[ 0.88 |0.81057 | 0.18943 |0.27086
0.89 [ 0.81327 | 0.18673 | 0.26848 |[ 0.90 |0.81594 | 0.18406 |0.26609
0.91 [ 0.81859 | 0.18141 |0.26369 |[0.92 |0.82121 | 0.17879 [0.26129
0.93 [ 0.82381 | 0.17619 | 0.25888 |[ 0.94 |0.82639 | 0.17361 |0.25647
0.95 [ 0.82894 | 0.17106 | 0.25406 |[ 0.96 |0.83147 | 0.16853 |0.25164
0.97 [ 0.83398 | 0.16602 | 0.24923 |[ 0.98 |0.83646 | 0.16354 |0.24681
0.99 [ 0.83891 | 0.16109 | 0.24439 |[ 1.00 | 0.84135 | 0.15865 [0.24197
1.01 | 0.84375 | 0.15625 |0.23955 || 1.02 |0.84614 | 0.15386 |[0.23713
1.03 | 0.84849 | 0.15151 |0.23471 |[ 1.04 |0.85083 | 0.14917 ]0.23230
1.05 [ 0.85314 | 0.14686 | 0.22988 |[ 1.06 |0.85543 | 0.14457 [0.22747
1.07 | 0.85769 | 0.14231 |0.22506 || 1.08 |0.85993 | 0.14007 |0.22265
1.09 | 0.86214 | 0.13786 | 0.22025 || 1.10 | 0.86433 | 0.13567 [0.21785
1.11 [ 0.86650 | 0.13350 | 0.21546 |[ 1.12 |0.86864 | 0.13136 [0.21307
1.13 [ 0.87076 | 0.12924 | 0.21069 || 1.14 |0.87286 | 0.12714 |0.20831
1.15 | 0.87493 | 0.12507 | 0.20594 |[ 1.16 |0.87698 | 0.12302 |0.20357
1.17 { 0.87900 | 0.12100 | 0.20121 || 1.18 |{0.88100 | 0.11900 |0.19886
1.19 [ 0.88298 | 0.11702 | 0.19652 |[ 1.20 |{0.88493 | 0.11507 [0.19419
1.21 | 0.88686 | 0.11314 |0.19186 || 1.22 [0.88877 | 0.11123 |0.18954
1.23 { 0.89065 | 0.10935 |0.18724 |[ 1.24 |0.89251 | 0.10749 |0.18494
1.25 [ 0.89435 | 0.10565 | 0.18265 || 1.26 |0.89616 | 0.10383 |0.18037
1.27 [ 0.89796 | 0.10204 | 0.17810 || 1.28 |{0.89973 | 0.10027 [0.17585
1.29 [ 0.90148 | 0.09853 | 0.17360 | 1.30 |{0.90320 | 0.09680 |0.17137
1.31 [ 0.90490 | 0.09510 |0.16915 |[ 1.32 | 0.90658 | 0.09342 |0.16694
1.33 [ 0.90824 | 0.09176 |0.16474 |[ 1.34 |{0.90988 | 0.09012 |0.16256
1.35 [ 0.91149 | 0.08851 |0.16038 |[ 1.36 {0.91309 | 0.08692 |0.15823
1.37 [ 0.91466 | 0.08534 |0.15608 | 1.38 |{0.91621 | 0.08379 [0.15395
1.39 [ 0.91774 | 0.08226 |0.15183 || 1.40 |{0.91924 | 0.08076 |0.14973
1.41 [ 0.92073 | 0.07927 |0.14764 |[ 1.42 |0.92220 | 0.07780 |0.14556
1.43 [ 0.92364 | 0.07636 | 0.14350 || 1.44 |0.92507 | 0.07493 |0.14146
1.45 | 0.92647 | 0.07353 | 0.13943 |[ 1.46 |0.92785 | 0.07215 |0.13742
1.47 | 0.92922 | 0.07078 | 0.13542 || 1.48 |{0.93056 | 0.06944 [0.13343
1.49 [ 0.93189 | 0.06811 |0.13147 |[ 1.50 |{0.93319 | 0.06681 |0.12952
1.51 [ 0.93448 | 0.06552 | 0.12758 |[ 1.52 |{0.93575 | 0.06426 |0.12566
1.53 [ 0.93699 | 0.06301 |0.12376 || 1.54 |{0.93822 | 0.06178 [0.12188
1.55 [ 0.93943 | 0.06057 | 0.12001 |[ 1.56 |0.94062 | 0.05938 |0.11816
1.57 [ 0.94179 | 0.05821 |0.11632 |[ 1.58 |0.94295 | 0.05705 |0.11450
1.59 [ 0.94408 | 0.05592 |0.11270 |[ 1.60 |0.94520 | 0.05480 [0.11092
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x F(x) 1—F(x) | f(x) x F(x) 1—F(x) | f(x)

1.61 [ 0.94630 | 0.05370 | 0.10916 |[ 1.62 |0.94738 | 0.05262 |0.10741
1.63 [ 0.94845 | 0.05155 | 0.10568 | 1.64 |0.94950 | 0.05050 |0.10396
1.65 [ 0.95053 | 0.04947 |0.10226 |[ 1.66 |0.95154 | 0.04846 |0.10059
1.67 | 0.95254 | 0.04746 |0.09892 || 1.68 |0.95352 | 0.04648 [0.09728
1.69 [ 0.95449 | 0.04551 |0.09566 | 1.70 |0.95544 | 0.04457 {0.09405
1.71 [ 0.95637 | 0.04363 | 0.09246 |[ 1.72 |{0.95728 | 0.04272 |0.09089
1.73 [ 0.95818 | 0.04181 | 0.08933 |[ 1.74 |0.95907 | 0.04093 |0.08780
1.75 | 0.95994 | 0.04006 | 0.08628 || 1.76 |{0.96080 | 0.03920 [0.08478
1.77 | 0.96164 | 0.03836 | 0.08329 | 1.78 |0.96246 | 0.03754 [0.08183
1.79 | 0.96327 | 0.03673 | 0.08038 || 1.80 |{0.96407 | 0.03593 [0.07895
1.81 [ 0.96485 | 0.03515 | 0.07754 |[ 1.82 |0.96562 | 0.03438 |0.07614
1.83 [ 0.96637 | 0.03363 | 0.07477 || 1.84 |0.96712 | 0.03288 [0.07341
1.85 [ 0.96784 | 0.03216 | 0.07207 |[ 1.86 |0.96856 | 0.03144 |0.07074
1.87 [ 0.96926 | 0.03074 | 0.06943 |[ 1.88 |0.96995 | 0.03005 |0.06814
1.89 [ 0.97062 | 0.02938 | 0.06687 |[ 1.90 |0.97128 | 0.02872 |0.06562
1.91 [ 0.97193 | 0.02807 | 0.06438 |[ 1.92 |0.97257 | 0.02743 |0.06316
1.93 [ 0.97320 | 0.02680 | 0.06195 |[ 1.94 |0.97381 | 0.02619 |0.06076
1.95 [ 0.97441 | 0.02559 |0.05960 |[ 1.96 |0.97500 | 0.02500 |0.05844
1.97 | 0.97558 | 0.02442 | 0.05730 || 1.98 |0.97615 | 0.02385 |[0.05618
1.99 [ 0.97671 | 0.02329 | 0.05508 |[2.00 |{0.97725 | 0.02275 |0.05399
2.01 [ 0.97778 | 0.02222 | 0.05292 |[2.02 |{0.97831 | 0.02169 |0.05186
2.03 [ 0.97882 | 0.02118 | 0.05082 |[2.04 |0.97933 | 0.02067 |0.04980
2.05 [ 0.97982 | 0.02018 | 0.04879 |[2.06 |0.98030 | 0.01970 |0.04780
2.07 [ 0.98077 | 0.01923 | 0.04682 |[2.08 |0.98124 | 0.01876 |0.04586
2.09 [ 0.98169 | 0.01831 |0.04491 |[2.10 {0.98214 | 0.01786 |0.04398
2.11 [ 0.98257 | 0.01743 | 0.04307 |[2.12 {0.98300 | 0.01700 |0.04217
2.13 [ 0.98341 | 0.01659 |0.04128 |[2.14 |0.98382 | 0.01618 [0.04041
2.15( 0.98422 | 0.01578 |0.03955 |[2.16 |0.98461 | 0.01539 |0.03871
2.17 [ 0.98500 | 0.01500 | 0.03788 |[2.18 |{0.98537 | 0.01463 |0.03706
2.19 [ 0.98574 | 0.01426 |0.03626 |[2.20 {0.98610 | 0.01390 |0.03547
2.21 [ 0.98645 | 0.01355 |0.03470 |[2.22 |0.98679 | 0.01321 |0.03394
2.23 [ 0.98713 | 0.01287 | 0.03319 |[2.24 |{0.98745 | 0.01255 |0.03246
2.25 (0.98778 | 0.01222 | 0.03174 |[2.26 {0.98809 | 0.01191 [0.03103
2.27 [ 0.98840 | 0.01160 | 0.03034 |[2.28 {0.98870 | 0.01130 |0.02966
2.29 [ 0.98899 | 0.01101 | 0.02899 |[2.30 |{0.98928 | 0.01072 [0.02833
2.31 [ 0.98956 | 0.01044 | 0.02768 |[2.32 |0.98983 | 0.01017 [0.02705
2.33 [ 0.99010 | 0.00990 | 0.02643 |[2.34 |0.99036 | 0.00964 |0.02582
2.35 [ 0.99061 | 0.00939 |0.02522 |[2.36 |{0.99086 | 0.00914 |0.02463
2.37 [ 0.99111 | 0.00889 | 0.02406 |[2.38 |{0.99134 | 0.00866 |0.02349
2.39 [ 0.99158 | 0.00842 | 0.02294 |[2.40 |0.99180 [ 0.00820 |0.02240
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F(x)

1—F(x)

f(z)

F(x)

1—F(x)

f(z)

241
243
2.45
247
2.49
2.51
2.53
2.55
2.57
2.59

2.61
2.63
2.65
2.67
2.69
2.71
2.73
2.75
2.77
2.79

2.81
2.83
2.85
2.87
2.89
291
2.93
2.95
2.97
2.99

3.01
3.03
3.05
3.07
3.09
3.11
3.13
3.15
3.17
3.19

0.99202
0.99245
0.99286
0.99324
0.99361
0.99396
0.99430
0.99461
0.99491
0.99520

0.99547
0.99573
0.99598
0.99621
0.99643
0.99664
0.99683
0.99702
0.99720
0.99736

0.99752
0.99767
0.99781
0.99795
0.99807
0.99819
0.99830
0.99841
0.99851
0.99860

0.99869
0.99878
0.99886
0.99893
0.99900
0.99906
0.99913
0.99918
0.99924
0.99929

0.00798
0.00755
0.00714
0.00676
0.00639
0.00604
0.00570
0.00539
0.00509
0.00480

0.00453
0.00427
0.00402
0.00379
0.00357
0.00336
0.00317
0.00298
0.00280
0.00264

0.00248
0.00233
0.00219
0.00205
0.00193
0.00181
0.00169
0.00159
0.00149
0.00139

0.00131
0.00122
0.00114
0.00107
0.00100
0.00093
0.00087
0.00082
0.00076
0.00071

0.02186
0.02083
0.01984
0.01888
0.01797
0.01709
0.01625
0.01545
0.01468
0.01394

0.01323
0.01256
0.01191
0.01129
0.01071
0.01014
0.00961
0.00909
0.00860
0.00814

0.00770
0.00727
0.00687
0.00649
0.00613
0.00578
0.00545
0.00514
0.00485
0.00457

0.00430
0.00405
0.00381
0.00358
0.00337
0.00317
0.00298
0.00279
0.00262
0.00246

242
244
2.46
248
2.50
2.52
2.54
2.56
2.58
2.60

2.62
2.64
2.66
2.68
2.70
2.72
2.74
2.76
2.78
2.80

2.82
2.84
2.86
2.88
2.90
292
2.94
2.96
2.98
3.00

3.02
3.04
3.06
3.08
3.10
3.12
3.14
3.16
3.18
3.20

0.99224
0.99266
0.99305
0.99343
0.99379
0.99413
0.99446
0.99477
0.99506
0.99534

0.99560
0.99586
0.99609
0.99632
0.99653
0.99674
0.99693
0.99711
0.99728
0.99745

0.99760
0.99774
0.99788
0.99801
0.99813
0.99825
0.99836
0.99846
0.99856
0.99865

0.99874
0.99882
0.99889
0.99896
0.99903
0.99910
0.99916
0.99921
0.99926
0.99931

0.00776
0.00734
0.00695
0.00657
0.00621
0.00587
0.00554
0.00523
0.00494
0.00466

0.00440
0.00415
0.00391
0.00368
0.00347
0.00326
0.00307
0.00289
0.00272
0.00255

0.00240
0.00226
0.00212
0.00199
0.00187
0.00175
0.00164
0.00154
0.00144
0.00135

0.00126
0.00118
0.00111
0.00103
0.00097
0.00090
0.00085
0.00079
0.00074
0.00069

0.02134
0.02033
0.01936
0.01842
0.01753
0.01667
0.01585
0.01506
0.01431
0.01358

0.01289
0.01223
0.01160
0.01100
0.01042
0.00987
0.00935
0.00885
0.00837
0.00792

0.00748
0.00707
0.00668
0.00631
0.00595
0.00562
0.00530
0.00499
0.00470
0.00443

0.00417
0.00393
0.00369
0.00347
0.00327
0.00307
0.00288
0.00271
0.00254
0.00238

© 2003 by CRC Press LLC




F(x)

1—F(x)

f(z)

F(x)

1—F(x)

f(z)

3.21
3.23
3.25
3.27
3.29
3.31
3.33
3.35
3.37
3.39

3.41
3.43
3.45
3.47
3.49
3.51
353
3.55
3.57
3.59

3.61
3.63
3.65
3.67
3.69
3.71
3.73
3.75
3.77
3.79

3.81
3.83
3.85
3.87
3.89
3.91
3.93
3.95
3.97
3.99

0.99934
0.99938
0.99942
0.99946
0.99950
0.99953
0.99957
0.99960
0.99962
0.99965

0.99967
0.99970
0.99972
0.99974
0.99976
0.99978
0.99979
0.99981
0.99982
0.99984

0.99985
0.99986
0.99987
0.99988
0.99989
0.99990
0.99990
0.99991
0.99992
0.99992

0.99993
0.99994
0.99994
0.99995
0.99995
0.99995
0.99996
0.99996
0.99996
0.99997

0.00066
0.00062
0.00058
0.00054
0.00050
0.00047
0.00043
0.00040
0.00038
0.00035

0.00032
0.00030
0.00028
0.00026
0.00024
0.00022
0.00021
0.00019
0.00018
0.00016

0.00015
0.00014
0.00013
0.00012
0.00011
0.00010
0.00010
0.00009
0.00008
0.00007

0.00007
0.00006
0.00006
0.00005
0.00005
0.00005
0.00004
0.00004
0.00004
0.00003

0.00231
0.00216
0.00203
0.00190
0.00178
0.00167
0.00156
0.00146
0.00136
0.00128

0.00119
0.00111
0.00104
0.00097
0.00090
0.00084
0.00078
0.00073
0.00068
0.00063

0.00059
0.00055
0.00051
0.00047
0.00044
0.00041
0.00038
0.00035
0.00033
0.00030

0.00028
0.00026
0.00024
0.00022
0.00021
0.00019
0.00018
0.00016
0.00015
0.00014

3.22
3.24
3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40

3.42
3.44
3.46
3.48
3.50
3.52
3.54
3.56
3.58
3.60

3.62
3.64
3.66
3.68
3.70
3.72
3.74
3.76
3.78
3.80

3.82
3.84
3.86
3.88
3.90
3.92
3.94
3.96
3.98
4.00

0.99936
0.99940
0.99944
0.99948
0.99952
0.99955
0.99958
0.99961
0.99964
0.99966

0.99969
0.99971
0.99973
0.99975
0.99977
0.99979
0.99980
0.99982
0.99983
0.99984

0.99985
0.99986
0.99987
0.99988
0.99989
0.99990
0.99991
0.99991
0.99992
0.99993

0.99993
0.99994
0.99994
0.99995
0.99995
0.99996
0.99996
0.99996
0.99997
0.99997

0.00064
0.00060
0.00056
0.00052
0.00048
0.00045
0.00042
0.00039
0.00036
0.00034

0.00031
0.00029
0.00027
0.00025
0.00023
0.00021
0.00020
0.00018
0.00017
0.00016

0.00015
0.00014
0.00013
0.00012
0.00011
0.00010
0.00009
0.00009
0.00008
0.00007

0.00007
0.00006
0.00006
0.00005
0.00005
0.00004
0.00004
0.00004
0.00003
0.00003

0.00224
0.00210
0.00196
0.00184
0.00172
0.00161
0.00151
0.00141
0.00132
0.00123

0.00115
0.00108
0.00100
0.00094
0.00087
0.00081
0.00076
0.00071
0.00066
0.00061

0.00057
0.00053
0.00049
0.00046
0.00042
0.00039
0.00037
0.00034
0.00032
0.00029

0.00027
0.00025
0.00023
0.00021
0.00020
0.00018
0.00017
0.00016
0.00015
0.00013
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7.14.3 PERCENTAGE POINTS, STUDENT'S ¢-DISTRIBUTION

For a given value of n and « this table gives the value of ¢, ,, such that

F(tan) =

—00

tem T((n 4 1)/2) (
Vil (n/2)

.772

The ¢-distribution is symmetrical, so that F'(—t) = 1 — F(¢).

EXAMPLE  The table gives to—0.60,n—2 = 0.325.
Hence, when n = 2, F'(0.325) = 0.4.

—(n+1)/2
1+ ;) de =1-—a. (7.14.3)

Ft) =

n | 0.6000 | 0.7500 [ 0.9000 [ 0.9500 | 0.9750 | 0.9900 | 0.9950 | 0.9990 | 0.9995
1] 0325| 1.000| 3.078  6.314 | 12.706 | 31.821 | 63.657 | 318.309 | 636.619
21 0289 | 0816 | 1.886( 2920 | 4303 | 6965| 9.925| 22327| 31.599
31 0277 | 0.765| 1.638 | 2.353 | 3.182| 4.541| 5.841 10.215 | 12.924
41 0271 | 0.741 1.533 | 2132 | 2776 | 3.747 | 4.604 7.173 8.610
51 0267 | 0727 | 1476 2.015| 2571 | 3.365| 4.032 5.893 6.869
6| 0265| 0718 | 1440 1.943 | 2447 | 3.143| 3.707 5.208 5.959
71 0263 | 0.711 1.415 1.895 | 2365 2998 | 3.499 4.785 5.408
8] 0262 | 0706 [ 1.397 | 1.860 | 2.306| 2.896( 3.355 4.501 5.041
91 0261 | 0703 | 1.383 1.833 | 2262 | 2821 | 3.250 4.297 4.781
10 | 0260 | 0.700 | 1.372 | 1.812| 2228 2.764| 3.169 4.144 4.587
11| 0260 | 0.697 | 1363 | 1.796| 2201 | 2718 3.106 4.025 4.437
12| 0259 | 0.695| 1356 1.782| 2179 2.681 | 3.055 3.930 4.318
13 0259 | 0694 | 1350 1.771| 2.160| 2.650( 3.012 3.852 4.221
14| 0258 | 0.692| 1.345] 1.761 | 2.145( 2624 | 2977 3.787 4.140
15| 0258 | 0.691 1.341 1.753 | 2.131 | 2.602 | 2947 3.733 4.073
16 | 0258 | 0.690 | 1.337| 1.746| 2.120| 2.583( 2921 3.686 4.015
17 | 0257 | 0.689 | 1.333 1.740 | 2.110 [ 2.567 | 2.898 3.646 3.965
18 | 0257 | 0.688 | 1.330| 1.734| 2.101 | 2552 2.878 3.610 3.922
19| 0257 | 0.688 | 1.328 | 1.729 | 2.093 | 2539 2.861 3.579 3.883
20 [ 0257 | 0.687 | 1.325 1.725 | 2.086 [ 2528 | 2.845 3.552 3.850
25 0256 | 0.684 | 1316| 1.708 | 2.060 [ 2.485| 2.787 3.450 3.725
50 0255 | 0.679 | 1.299| 1.676 | 2009 2403 | 2.678 3.261 3.496
100 [ 0254 | 0.677 | 1290 | 1.660 | 1984 | 2364 2.626 3.174 3.390
oo | 0253 | 0.674 | 1282 ] 1.645| 1960 2326 2.576 3.091 3.291
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F =
n 0.005 0.010 0.025 0.050 0.100 | 0.250 | 0.500 | 0.750 | 0.900 | 0.950 [ 0.975 | 0.990 | 0.995
1 ] 0.0000393 | 0.0001571 | 0.0009821 [ 0.00393 | 0.0158 | 0.102 | 0.455 1.32 2.71 3.84 5.02 6.63 7.88
2 0.0100 0.0201 0.0506 0.103 0.211 | 0.575 1.39 2.77 4.61 5.99 7.38 9.21 10.6
3 0.0717 0.115 0.216 0.352 0.584 1.21 2.37 4.11 6.25 7.81 9.35 11.3 12.8
4 0.207 0.297 0.484 0.711 1.06 1.92 3.36 5.39 7.78 9.49 11.1 13.3 14.9
5 0.412 0.554 0.831 1.15 1.61 2.67 435 6.63 9.24 11.1 12.8 15.1 16.7
6 0.676 0.872 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6 144 16.8 18.5
7 0.989 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.0 14.1 16.0 18.5 20.3
8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.2 13.4 15.5 17.5 20.1 22.0
9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 114 14.7 16.9 19.0 21.7 23.6
10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3 20.5 232 252
11 2.60 3.05 3.82 4.57 5.58 7.58 10.3 13.7 17.3 19.7 21.9 24.7 26.8
12 3.07 3.57 4.40 523 6.30 8.44 11.3 14.8 18.5 21.0 233 26.2 28.3
13 3.57 4.11 5.01 5.89 7.04 9.30 12.3 16.0 19.8 224 24.7 27.7 29.8
14 4.07 4.66 5.63 6.57 7.79 10.2 13.3 17.1 21.1 23.7 26.1 29.1 31.3
15 4.60 5.23 6.26 7.26 8.55 11.0 14.3 18.2 22.3 25.0 275 30.6 32.8
16 5.14 5.81 6.91 7.96 9.31 11.9 15.3 194 23.5 26.3 28.8 32.0 34.3
17 5.70 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6 30.2 33.4 35.7
18 6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9 31.5 34.8 37.2
19 6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1 329 36.2 38.6
20 7.43 8.26 9.59 10.9 12.4 155 19.3 23.8 28.4 314 342 37.6 40.0
21 8.03 8.90 10.3 11.6 13.2 16.3 20.3 24.9 29.6 32.7 355 389 41.4
22 8.64 9.54 11.0 12.3 14.0 17.2 21.3 26.0 30.8 33.9 36.8 40.3 42.8
23 9.26 10.2 11.7 13.1 14.8 18.1 223 27.1 32.0 35.2 38.1 41.6 442
24 9.89 10.9 12.4 13.8 15.7 19.0 233 28.2 332 36.4 39.4 430 | 456
25 10.5 115 13.1 14.6 16.5 19.9 243 29.3 34.4 37.7 40.6 443 46.9
30 13.8 15.0 16.8 18.5 20.6 24.5 29.3 34.8 403 43.8 470 | 509 53.7
35 17.2 18.5 20.6 22.5 24.8 29.1 343 40.2 46.1 49.8 53.2 57.3 60.3
50 28.0 29.7 324 34.8 37.7 42.9 439 56.3 63.2 67.5 714 76.2 79.5
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m =

n 1 2 3 4 5 6 7 8 9 10 50 100 00
1| 39.86 | 49.50 | 53.59 | 55.83 | 57.24 | 58.20 | 58.91 | 59.44 | 59.86 | 60.19 [ 62.69 | 63.01 | 63.33
2| 853 9.00| 916 | 924 | 929 933 | 935| 937 938 939 947 948| 9.49
3| 554 | 546 539 | 534 | 531 528 | 527 525| 524 523| 515| 5.14| 513
4| 454 432 419 | 411 | 405 401 | 398| 395 394| 392 380 3.78| 3.76
5| 406 | 378 | 3.62 | 352 | 345 340 | 337| 334 332| 330( 3.15| 3.13| 3.10
6| 378 | 346 329 | 3.18| 3.11 305 3.01| 298| 296 | 294 277 275| 272
71 359 326 3.07| 296 | 288 283 | 278 | 275 2.72| 270 252 250| 247
8| 346 | 3.11 | 292 | 281 273 | 267 | 262 259| 256| 254 235| 232| 229
9| 336 | 3.01| 281 | 269 | 261 255| 251 | 247 244 | 242 222 219| 2.16
10| 329 | 292 | 273 | 261 | 252 246| 241 | 238 235 232| 212 2.09| 206
11| 323 | 286 | 266 | 254 | 245| 239 | 234 230| 227 | 225| 2.04( 201 1.97
12 | 3.18 | 281 | 261 | 248 | 239 | 233 | 228| 224 221| 219| 197 1941 1.90
13| 314 | 276 | 256 | 243 | 235| 228 223| 220| 216| 214| 192 1.88| 1.85
14| 310 273 | 252 239 | 231 | 224 | 219| 215 212| 2.10| 1.87 1.83 1.80
15| 3.07 | 270 249 | 236 | 227 221 | 216| 212| 2.09| 206| 1.83 1.79 | 1.76
16 | 3.05| 267 | 246 | 233 | 224 | 218 | 213]| 209| 206 | 2.03 1L.79 176 | 1.72
17| 3.03 | 264 | 244 | 231 | 222| 215| 210| 206| 203| 200| 176 1.73 1.69
18| 301 | 262 | 242 229] 220 213| 2.08| 204]| 200 | 1.98 1741 170 | 1.66
191 299 | 261 | 240 227 | 218 | 211 | 2.06| 202 198 196 | 1.71 1.67| 1.63
20 297 | 259 | 238 | 225| 216 209| 204| 200 19| 194 1.69| 1.65 1.61
25| 292 | 253 | 232 218 | 209 202| 197 193 1.89 | 1.87 1.61 1.56 | 1.52
50 281 | 241 | 220 | 206| 197 190 184 | 180| 176 1.73| 144| 139| 134
100 | 276 | 236 | 214 | 2.00| 191 1.83 1.78 1.73 1.69 | 1.66| 1.35 129 1.20
oo | 271 | 230] 208 | 194 | 1.85 177 172 1.67| 163| 1.60| 124| 1.17| 1.00
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m =

n 1 2 3 4 5 6 7 8 9 10 50 100 00
1| 161.4 | 1995 | 215.7 | 224.6 | 230.2 | 234.0 | 236.8 [ 238.9 | 240.5 | 241.9 | 251.8 | 253.0| 2543
2| 1851 | 19.00 | 19.16 | 19.25 ( 19.30 | 19.33 | 19.35 19.37 | 19.38 | 19.40 | 19.48 | 19.49 | 19.50
311013 | 955 928 | 912 9.01| 894 | 88| 885| 881 | 879| 858| 855| 8.53
4 771 694 659 | 639| 626 6.16| 6.09| 604 | 6.00| 596 570| 566| 5.63
5| 661 579 | 541 | 519 | 505 495| 488 | 482 477 | 474 444 441| 436
6| 599 | 514 476 | 453 | 439 428 | 421 415| 410| 406| 3.75| 3.71| 3.67
7| 559 | 474 435 | 412 397 387 | 3.79| 373 | 3.68| 3.64( 332 327| 3.23
8| 532 | 446 407 | 384 | 3.69| 358 | 350 344 | 339| 335] 3.02| 297| 293
91 512 | 426| 386 | 363 | 348 | 337| 329| 323 3.18| 3.14| 280| 276| 271
10| 496 | 410 371 | 348 | 333 | 322 | 3.14| 307 3.02| 298| 264| 259| 254
11| 484 | 398 | 359 336| 320| 3.09| 3.01| 295 290| 285| 251 | 246| 240
12| 475 | 389 | 349 326| 3.11| 3.00| 291| 285 280| 275| 240 235| 230
13| 467 | 381 | 341 | 3.18 | 3.03 | 292| 283 | 277| 271 | 267| 231| 226| 221
14| 460 | 374 334 | 3.11| 296 | 285 | 276| 270| 265| 260| 224 2.19| 213
15| 454 | 368 329 3.06| 290| 279 | 271 | 264 | 259 | 254 218 2.12| 2.07
16 | 449 | 363 | 324 | 301 | 285 | 274 | 266| 259 254 | 249| 212 207| 201
17| 445 | 359 320 | 296 | 281 | 270 | 261 | 255| 249 | 245] 2.08| 2.02| 1.96
18 | 441 | 355| 3.16| 293 | 277 | 266| 258| 251 | 246 | 241 2.04| 198| 1.92
19| 438 | 352 313 | 290 | 274 | 263 | 254| 248 | 242 | 238| 2.00| 1.94| 1.88
20| 435 349 | 3.10| 287 271 260 | 251| 245 239| 235| 197 1.91 1.84
25| 424 | 339 299 | 276| 260 249 | 240 | 234 | 228 | 224 184 | 1.78| 1.71
50 403 | 318 | 279 | 256 | 240 229 | 220| 213 | 207| 2.03| 1.60| 152| 145
100 | 394 | 3.09]| 270 | 246 | 231 | 219 2.10| 2.03 197 | 193 1.48 139 1.28
co| 384 | 300| 260 | 237| 221| 210| 2.01 194 | 1.88| 1.83 1.35 1.25] 1.00
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m =

n 1 2 3 4 5 6 7 8 9 10 50 100 00
1| 647.8 | 799.5 | 864.2 | 899.6 | 921.8 | 937.1 | 948.2 [ 956.7 | 963.3 | 968.6 | 1008 | 1013 | 1018
2| 38.51 | 39.00 | 39.17 | 39.25 | 39.30 | 39.33 | 39.36 [ 39.37 | 39.39 | 39.40 | 39.48 | 39.49 | 39.50
311744 | 16.04 | 154