
 
 

 About a hundred years ago David Hilbert, a German mathematician 

presented twenty-three math puzzles to the International Congress of 

Mathematicians.  Today, only three remain unsolved.  Added to those were 

four more unsolvable problems. The seven famous unsolved math puzzles 

that have resisted all attempts to solve are listed here:  The Birch and 

Swinnerton-Dyer Conjecture, The Navier-Stokes Equation, The Poincare 

Conjecture, The Riemann Hypothesis (the oldest and most famous), The P 

Verses NP Problem, The Hodge Conjecture, Yang-Mills Existence and Mass 

Gap.  Many experts believe that solving these problems would lead to 

extraordinary advances in physics, medicine and many other unknown areas 

in the world of math. 

      The Poincare conjecture 

If you stretch a rubber band around the surface of an apple, then we can 

shrink it down to a point by moving it slowly, without tearing it and without 

allowing it to leave the surface.  But if you were to stretch a rubber band 

around the surface of a doughnut, then there is no way of shrinking it to a 

point without breaking either the rubber band or the doughnut.  Therefore 

the surface of an apple is “simply connected,” and the one of the doughnut is 

not.  About a hundred years ago, Poincare knew that a two dimensional 



sphere is essentially characterized by this property of simple connectivity.  

He asked the corresponding question for the three dimensional sphere- the 

set of points in four-dimensional space at unit distance from the origin.  As it 

turns out, this is an extraordinarily difficult question to be answered.  

 Henri Poincare practically invented topology while trying to 

understand the set of solutions to a general algebraic equation f(x,y,z)=0, 

where x,y,z are complex numbers.  After trying the analytic approach, he 

began assigning algebraic invariants to geometric objects as an approach to 

classifying the objects.  Translated into English, Poincare said consider a 

compact 3-dimensional manifold V without boundary. Is it possible that the 

fundamental group of V-could be trivial, even though V is not 

homeomorphic to the 3-dimensional sphere?  Since 1904, the hypothesis that 

every simply connected closed 3-manifold is homeomorphic to the 3-sphere 

has been known as the Poincare conjecture.  Four years earlier he had stated 

that every compact polyhedral manifold with the homology of an n-

dimensional sphere is actually homeomorphic to the n-dimensional sphere.  

However in 1904 he had constructed a counterexample to this statement by 

developing the concept of fundamental group.  In doing so he basically 

invented the fundamental group of space.  The coset space M cubed=SO(3)/I   



where I   is the group of rotations which carry a regular icosahedron onto 

itself.  This space has a non-trivial fundamental group    (M ) of order 120.   

Henry Whitehead made another false theorem in 1934 when he 

published a proof of the Poincare Conjecture, claiming that every 

contractible open 3-dimensional manifold is homeomorphic to Euclidean 

space.   By creating a counterexample to his own theorem he increased our 

understanding of the topology of manifolds.  A contractible manifold which 

is not simply connected at infinity, the complement S   T  is the required 

Whitehead counterexample.   

 Whitehead’s proof: Take your simply connected 3-manifold M, and 

remove a point, to get a non-compact manifold X. If you did this to what you 

think M is, namely the 3-sphere, you would get R^3. In general, the only 

thing you can immediately say is the X is contractible; it can be continuously 

deformed within itself to a point.  He was wrong. About a year later he 

published a counterexample in the form of an example of a contractible 3-

manifold which isn’t homeomorphic to R^3.   

The discovery that higher dimensional manifolds are easier to work 

with than 3-dimensional manifolds, in the 1950’s and 1960’s, was major 

progress.  Stephen Smale announced a proof of the Poincare conjecture in 

high dimensions in 1960.  John Stallings, using a dissimilar method, 



promptly followed. Soon Andrew Wallace followed, using similar 

techniques as those of Stallings. Stalling’s result has a weak hypotheses and 

easier proof therefore having a weaker conclusion as well, assuming that the 

dimension is seven or more.  Later, Zeeman extended his argument to 

dimensions of five and six.  The Stallings-Zeeman Theorem-  (The method 

of proof consists of pushing all of the difficulties off towards a single point, 

so that there can be no control near that point.)  If M  is a finite simplicial 

complex of dimension n>5 which has the homotopy type of the sphere S  

and is locally piecewise linearly homeomorphic to the Euclidean space R , 

then M  is homeomorphic to S  under a homoeomorphism which is 

piecewise linear except at a single point.  In other words, the complement M 

\(point) is piecewise linearly homeomorphic to R .   

However, the Smale proof and Wallace proof, closely related and 

given shortly after Smale’s, depended on differentiable methods that builded 

a manifold up inductively starting with an n-dimensional ball, by 

successively adding handles.  Smale Theorem- If M  is a differentiable 

homotopy sphere of dimension n>5, then M  is homeomorphic to S  .  In fact 

M  is diffeomorphic to a manifold obtained by gluing together the 

boundaries of two closed n-balls under a suitable diffeomorphism.  Wallace 

proved this for n>6.  Michael Freedman did the much more difficult work, 



the 4-dimensional case.  He used wildly non-differentiable methods to prove 

it and also to give a complete classification of closed simply connected 

topological 4-manifolds.    Freedman Theorem- Two closed simply 

connected 4-manifolds are homeomorphic if and only if they have the same 

bilinear form B and the same KirbySiebenmann invariant K.  Any B can be 

realized by such a manifold.  If  B(   ) is odd for some    H , then either value 

of K can be realized also.  However, if B(   ) is always even, then K is 

determined by B, being congruent to one eighth of the signature of B.  

Bottom line:  the differentiable methods used by Smale and Wallace and the 

non-differentiable methods used by Stallings and Zeeman don’t work.  But 

Freedman did show that R  admits unaccountably many in equivalent 

differentiable structures using Donaldson’s work. 

A conjecture by Thurston holds that every three manifold can be cut 

up along 2-spheres so as to decompose into essentially unique pieces, that 

each have a simple geometrical structure.  There are eight 3-dimensional 

geometries in Thurston’s program.  Well understood are six of them.  Even 

thought there has been great advances in the field of geometry of constant 

negative curvature, the eighth geometry corresponding to constant positive 

curvature, remains largely untouched.  Thurston Elliptization Conjecture- 

Every closed 3-manifold with finite fundamental groups have a metric of 



constant positive curvature, and hence is homeomorphic to a quotient S / , 

where    SO(4) is a finite group of rotations which acts freely on S .  

The idea of creating a counterexample is easy enough: build a 3-

manifold whose fundamental group you can compute is trivial (the 

homology groups then actually come for free) and then try to show that you 

were lucky enough to build something that isn’t a 3-sphere.   The last part is 

the part that nobody could ever figure out so their time was mostly spent 

trying to find invariants that had a chance of distinguishing a homotopy 3-

sphere from the 3-sphere.  It’s obvious why these puzzles are worth a 

million dollars.  It’s amazing that so many people have done this problem 

wrong after trying for so many years.  It really puts our limited studies of 

mathematics in perspective. 


