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PREFACE 

The Legacy of Albert Einstein (1879-1955) 

The epoch making 1905 papers of Albert Einstein, mark a turning point in 
the history of physics and also the history of mankind. In this respect he 
shares a platform with Galileo and Newton who gave us the basic formu­
lation of mechanics in terms of forces and accelerations, and with Faraday 
and Maxwell, who introduced the notion of fields in space and time. 

In this hundredth anniversary year we look back and recall the main 
threads Einstein wove into the tapestry of physics. This collection of arti­
cles, The Legacy of Albert Einstein, presents developments whose initiation 
can be found in the works of Einstein. We have not restricted ourselves to 
the 1905 papers, but include all his major contributions to physics. Since 
Einstein was a major public figure of the 20th century we also include this 
aspect in the collection. 

One cannot fail to note that one of the most important legacies of Ein­
stein, is the fact that he did not make any conscious value differentiation 
between different areas of physics. He was equally at home with relativity, 
geometry, radiation theory, Brownian motion, statistics, molecular physics 
and so on. There was his quest for frameworks and general principles within 
which the laws of nature operate, and there was an equally important quest 
to see how these laws manifest themselves in the world around us. In a deep 
sense these activities are inevitably mixed up in the grand enterprise to un­
derstand our world. 

We present a glimpse of the scientific contribution of Einstein, which 
will hopefully provide an overall background to the articles in this book. 



X Preface 

1. Einstein's Annus Mirabilis: Five Papers that Changed 
the World 

The 1905 papers sowed the seeds of both revolutions of 20th century physics: 
Relativity and Quantum Theory. Before Einstein there were Newton's laws 
of mechanics and Maxwell's equations of electrodynamics. Thermodynam­
ics was a well established subject and there was Boltzmann's microscopic 
formula for entropy. 

• Brownian motion and the reality of atoms: 
Einstein's doctoral dissertation on molecular dimensions, followed by his 
famous statistical formula for the motion of suspended 'Brownian' parti­
cles, gave a beautiful method of calculating Avogadro's number and the 
size of molecules. Using this framework, the existence of the underly­
ing molecular structure of matter was experimentally concluded beyond 
doubt, notably by the work of Jean Perrin. Satya Majumdar summa­
rizes Einstein's original work and its applications to physics, probability 
theory and computer science. 

• The light quantum hypothesis: 
Einstein put forth the daring hypothesis, that light has particulate prop­
erties ('a kind of molecular structure in energy'). His heuristic principle 
stated that light is created and annihilated in discrete quanta in its inter­
action with matter. He suggested testing his proposal using the photo­
electric effect. This was a revolutionary idea, because it was in absolute 
contradiction with Maxwell's theory of the continuously varying electro­
magnetic field that describes pure radiation. His conviction in the verity 
of thermodynamics and in Boltzmann's formula led the way. There is a 
possibility that his work on the discrete nature of matter influenced his 
work on the discrete nature of the electromagnetic field. Virendra Singh 
reviews the history of the light quantum. 

• Special relativity: 
'The electrodynamics of moving bodies', is the paper on special relativity. 
In one fell swoop, Einstein replaced all mechanical explanations (and 
other attempts) of the constancy of the speed of light, irrespective of 
the motion of the source, by asserting a symmetry principle which all 
laws of nature must conform to! Thus was born special relativity and a 
new kinematic framework for physics. Maxwell's equations are true but 
Newton's mechanics had to be replaced. At the age of 16, while in Arrau, 
Einstein had asked, 'If I pursue a beam of light with velocity c, I should 
observe such a beam of light as a spatially oscillatory electromagnetic field 
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at rest'.1 This mystery was resolved by special relativity: one is never 
at rest with respect to light! Subsequently, he derived his celebrated 
E = mc2, which is probably the most popular scientific formula of our 
times. 

2. Einstein's Magnum Opus: General Relativity 

The special relativity paper has no references! There is an apparent ease 
with which conclusions emerge in this paper. The logic seems flawless 
and unbreakable. Special relativity deals with special reference frames in 
constant uniform motion with respect to each other and also does not in­
corporate the instantaneous law of gravitation. Einstein set out to rectify 
these seemingly unrelated shortcomings. 

In 1907, in his own words,2 'Now it came to me: The fact of the equality 
of inert and heavy mass, i.e. the fact of the independence of the gravita­
tional acceleration of the nature of the falling substance, may be expressed 
as follows: In a gravitational field (of small spatial extension) objects be­
have as they do in a space free of gravitation, if one introduces in it, instead 
of an 'inertial system', a reference system which is accelerated relative to 
an inertial system. Einstein calls this the happiest thought of his life. In 
it, he identified the gravitational force with accelerations: the fall that we 
attribute to the earth's gravity is no different from the forward fall we 
experience when we jam the brakes of a car! 

The next big step in 1912 was the realization that spacetime is curved 
and not fiat! The search for the correct, generally covariant, equations 
of general relativity in the framework of Riemannian geometry took many 
more years. The final version of the field equations of gravitation were 
presented to the Prussian Academy on 25 November, 1915. They are 

flij 2 **>9ij — J- ij • 

The discovery of these equations was an extraordinary struggle, fraught 
with errors and corrections. It is very encouraging and inspiring to see how 
the great Einstein struggled to discover these equations. He did not have the 
benefit of knowing the deep underlying symmetry principle hidden in the 
equations he was to discover! This realization was almost postfacto. The 
symmetry followed from the equations rather than the other way around, as 

1 Autobiographical notes, in Albert Einstein: Philosopher Scientist edited by P. A. 
Schilpp, Library of Living Philosophers, Vol. 7, 1949, p. 53. 
2Autobiographical notes, p. 67. 
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most textbooks on general relativity have us believe. If his 1905 papers have 
a similarity with the style of Mozart, the development of general relativity 
reminds one of Beethoven. In a lecture to the University of Glasgow in 1933, 
Einstein said3 'The years of searching in the dark for a truth that one feels 
but cannot express, the intense desire and the alternations of confidence 
and misgiving until one breaks through to clarity and understanding are 
known only to him who has experienced them'. 

As is well known, the predictions of the general theory of relativity, 
concerning the bending of light, the perihelion of mercury and the redshift, 
were eventually vindicated by experiment. Subsequently, Einstein went 
on to find that his equations support gravitational waves with two polar­
izations and discovered the quadrupole formula. In 1917 he proposed a 
cosmological solution by including the cosmological constant (dark energy 
in today's parlance). This work laid the foundations of cosmology in the 
framework of general relativity. Jayant Narlikar traces the development of 
cosmology. Subir Sarkar gives an observational perspective of modern cos­
mology, and points to the fundamental problems of dark matter and dark 
energy. B. Sathyaprakash reviews the current and future status of observ­
ing gravitational waves, which bear the imprints of the earliest universe and 
also other strongly gravitating objects. 

Soon after, the field equations of general relativity were presented to the 
world, Schwarzschild found his famous blackhole solution. Atish Dabholkar 
traces the development of blackhole physics and the crucial role it plays in 
the discovery of the quantum structure of gravity. 

The focusing properties of the gravitational field were discovered by 
Raychaudhuri in a fundamental contribution. The Raychaudhuri equation 
is a precursor to the singularity theorems of Penrose and Hawking. General 
relativity was also the main inspiration for Yang and Mills to discover non-
Abelian gauge theories in 1957.4 

3. Contributions to Condensed Matter, Optics and 
Quantum Mechanics 

It was characteristic of Einstein that he mused about all basic physics prob­
lems of his time. In 1906, he applied the quantum hypothesis, outside of 

3Subtle is the Lord: The Life and Science of Albert Einstein, Abraham Pais, Oxford 
Univ. Press, 1982, p. 257. 
4Chen Ning Yang, Selected Papers 1945-1980 with Commentary, W. H. Freeman and 
Co. 
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radiation theory, to calculate the specific heat of solids. This is the first 
paper on the quantum theory of the solid state. At the first Solvay confer­
ence in 1911, Einstein's concluding talk summarized, 'The Current Status 
of the Problem of Specific Heats'. T. V. Ramakrishnan, gives an account 
of the development of condensed matter physics and discusses the present 
status of some aspects of this vast area of physics. 

In 1916, after general relativity, he once again turned to radiation theory 
and statistical fluctuations. He discussed spontaneous and induced radia­
tive processes. The concept of the photon as a particle with a quantum 
of energy and momentum was established in the same year. There is a 
gap of eleven years before Einstein associated a momentum p = — with 
the light quantum! The concept of the photon remained controversial until 
irrefutable evidence was provided by Compton's experiments in 1923. The 
photon was systematically formulated in the quantum theory of the electro­
magnetic field by Dirac in 1930. Shortly after that, Heisenberg and Pauli 
began a systematic treatment of relativistic quantum field theory, and its 
successful application to quantum electrodynamics was done by Feynman, 
Schwinger and Tomonaga in the late 1940s. 

In 1924 Bose's attempt to derive Planck's radiation law, using photons 
as indistinguishable particles, led to Bose-Einstein statistics for indistin­
guishable particles and the discovery of the phenomenon of Bose-Einstein 
condensation. Narendra Kumar writes about this contribution, and de­
tails modern experimental achievement of the new Bose-Einstein phase of 
matter and its impact on basic and condensed matter physics. 

Even though Einstein was a pioneer of quantum theory and was the first 
to recognize that the new mechanics has a wave-particle duality, he was 
never convinced that the quantum mechanics formulated by Heisenberg, 
Schroedinger, Dirac and Born was a fundamental description of reality. The 
statistical interpretation of quantum mechanics greatly troubled him and 
he believed that a more fundamental theory underlying quantum mechanics 
had to be discovered. In 1935, with Podolsky and Rosen he came up with a 
thought experiment that reveals the conflict between locality and quantum 
entanglement. According to Einstein, 'No reasonable definition of reality 
can be permitted to do this'. However the present experimental verdict is 
not on Einstein's side. Virendra Singh discusses these developments. 
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4. Unified Field Theory 

In the later years of his life, beginning around 1920, Einstein was mainly 
preoccupied with a quest for a unified theory of gravitation and electromag-
netism. Even for the equations of general relativity, he had the following 
to say, '...it was essentially not anything more than a theory of the gravi­
tational field, which was somewhat artificially isolated from a total field of 
yet unknown structure'.5 He was appreciative of the work of Kaluza which 
achieved unification using a small fifth circular dimension, but (as usual) 
he pursued his own thoughts. 

Einstein did not succeed in his unification program, but in the decades 
that followed this idea of a unified theory of all forces remained an inspi­
ration and culminated in the unified theory of weak and electromagnetic 
interactions of Glashow, Weinberg and Salam in the 1970s. Unification of 
gravity with the weak, electromagnetic and strong forces is still one of the 
central themes in physics. David Gross, Michael Atiyah and Ashoke Sen 
trace these developments and describe the development of string theory as 
a framework for a unified theory. Abhay Ashtekar summarizes efforts to 
quantize gravity and also describes developments in loop quantum gravity. 

5. Einstein's Persona: 

During his lifetime, Einstein was a public figure. He reached this stature by 
the sheer revolutionary nature of his science and his historic achievement. 
At the age of 37 years, he was the greatest scientist in the world. He 
was an active champion of peace, individual freedom and social justice. 
Unlike any other scientist of his generation he took strong and principled 
political positions. Even though he had supported nuclear weapons as a 
defense against Naziism, after the second World War, he publicly opposed 
and campaigned for a world free of nuclear weapons. In a solemn speech 
in 1950, when the hydrogen bomb was being developed, he said, 'a weird 
aspect of this development lies in its apparently inexorable character. Each 
step appears as inevitable consequence of the one that went before. And 
at the end, looming ever clearer, lies annihilation'. Fifty-five years later 
the world is still unsafe! T. Jayaraman, in his article, delineates Einstein's 
activism and involvement with social and political issues of his times. 

5Autobiographical notes, p. 75. 
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Finally, in the words of Abraham Pais,6 'Einstein was the freest man I 
have known. He was a master of his own destiny. His deep sense of destiny 
led him farther than anyone before him. It was his faith in himself that 
made him persevere'. 
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CHAPTER 1 

E ins te in and t h e Search for Unif icat ion 

DAVID GROSS 

Department of Physics, University of California, 
Santa Barbara, CA 93106, USA 

Einstein spent the last thirty years of his life searching for a unified 
field theory. I discuss Einstein's attempts at unification. I examine 
his mistakes, ask why he went wrong, and wonder what might have 
happened if he had followed a slightly different route. I then discuss, 
very briefly, where we stand today in realizing Einstein's goals. 

My topic is a t the heart of Einstein's scientific life, the search for a unified 

theory of nature. This was Einstein's main pursuit for more than half of 

his scientific career. Most contemporaries viewed his a t tempts as a waste 

of time, a to ta l failure or, at best, premature . But today we look with 

some admiration at his foresight. Having understood by the middle 1970's, 

to a large extent, all the four forces of na ture in the remarkable successful 

s tandard model, at tention has returned to Einstein's dream of unifying all 

the forces with gravity. The goal of unification has been a t the forefront of 

fundamental physics for the last three decades. 

In this article I shall, fully aware of the ease of hindsight, discuss Ein­

stein's goals, his a t tempts to unify general relativity and electromagnetism, 

and to include mat ter . I shall discuss his mistakes, ask why he went wrong, 

and wonder what might have happened if he had followed a slightly different 

route. As I am not a professional historian I can get away with murder. I 

shall then discuss, very briefly, where we s tand today in realizing Einstein's 

goals. 

For many physicists, certainly me, Einstein is both a hero and a model. 

He stated the goals of fundamental physics, t ha t small part of physics tha t 

probes the frontiers of physics in a search for the underlying laws and 

principles of nature. Einstein was a superb epigramist, who could capture 

in a single sentence many deep thoughts. 

1 
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Here is his definition of the goal of the physicist: 

The supreme test of the physicist is to arrive at those universal laws 

of nature from which the cosmos can be built up by pure deduction. 

I love this sentence. In one sentence Einstein asserts the strong reductionist 

view of nature: There exist universal, mathematical laws which can be 

deduced and from which all the workings of the cosmos can (in principle) 

be deduced, s tart ing from the elementary laws and building up. 

Einstein, more than any other physicist, untroubled by either quantum 

uncertainty or classical complexity, believed in the possibility of a complete, 

perhaps final, theory of everything. He also believed tha t the fundamental 

laws and principles tha t would embody such a theory would be simple, 

powerful and beautiful. The 'old one', tha t Einstein often referred to, has 

exquisite taste. 

This exciting goal, which I first learned of when I was thirteen by reading 

popular science books, seemed to me so exciting tha t I vowed to become a 

theoretical physicist. Although I certainly had no idea what tha t meant, 

I did know tha t I wanted to spend my life tackling the most fundamental 

questions of physics. This goal led me to elementary particle physics in the 

1960's and to string theory in the 1980's. This goal motivated Einstein to 

spend the last thir ty years of his life in a futile search for a unified theory 

of physics. 

Physicists are an ambitious lot, but Einstein was the most ambitious 

of all. His demands of a fundamental theory were extremely strong. If 

a theory contained any arbi trary features or undetermined parameters 

then it was deficient, and the deficiency pointed the way to a deeper 

and more profound and more predictive theory. There should be no free 

parameters — no arbitrariness. 

Nature, he stated with confidence, is constituted so that it is possible to 

lay down such strong determined laws that within these laws only rationally, 

completely determined constants occur, not constants therefore that could 

be changed without completely destroying the theory. This is a lofty goal, 

under threat nowadays from those who propose the Anthropic principle, 

whereby many of the fundamental constants of nature , even some of the 

laws, are environmental in nature and might be different in different par ts 

of the universe. For me and for many others however, this remains the 

ult imate goal of physics, and a guiding principle. A theory tha t contains 

arbi trary parameters, or worst of all arbitrarily finely tuned parameters, is 

deficient. 
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After his enormous success at reconciling gravity with relativity, 
Einstein was troubled by the remaining arbitrariness of the theoretical 
scheme. First, the separate existence of gravitation and electromagnetism 
was unacceptable. According to his philosophy, electromagnetism must be 
unified with general relativity, so that one could not simply imagine that 
it did not exist. Furthermore, the existence of matter, the mass and the 
charge of the electron and the proton (the only elementary particles recog­
nized back in the 1920s), were arbitrary features. One of the main goals 
of a unified theory should be to explain the existence and calculate the 
properties of matter. 

Before passing to a discussion of Einstein's attempts at unification I wish 
to make a remark concerning his work on special relativity in 1905, whose 
centenary we celebrate this year. One of the most important aspects of this 
work was to revolutionize how we view symmetry. Principles of symmetry 
have dominated fundamental physics in the 20th century, starting with 
Einstein in 1905. 

Until the twentieth century principles of symmetry played little con­
scious role in theoretical physics. The Greeks and others were fascinated 
by the symmetries of physical objects and believed that these would be mir­
rored in the structure of nature. Kepler attempted to impose his notions of 
symmetry on the motion of the planets. The laws of mechanics embodied 
symmetry principles, notably the principle of equivalence of inertial frames, 
or Galilean invariance. 

The symmetries implied conservation laws. Although these conserva­
tion laws, especially those of momentum and energy, were regarded to be 
of fundamental importance, they were regarded as consequences of the dy­
namical laws of nature rather than as consequences of the symmetries that 
underlay these laws. Maxwell's equations, formulated in 1865, embodied 
both Lorentz invariance and gauge invariance. But these symmetries of 
electrodynamics were not fully appreciated for over forty years or more. 

This situation changed dramatically in the twentieth century beginning 
with Einstein. Einstein's great advance in 1905 was to put symmetry first, 
to regard the symmetry principle as the primary feature of nature that con­
strains the allowable dynamical laws. Thus the transformation properties of 
the electromagnetic field were not to be derived from Maxwell's equations, 
as Lorentz did, but rather were consequences of relativistic invariance, and 
indeed largely dictate the form of Maxwell's equations. This is a profound 
change of attitude. Lorentz, who had derived the relativistic transforma­
tion laws from Maxwell's equations, must have felt that Einstein cheated. 



4 D. Gross 

Einstein recognized the symmetry implicit in Maxwell's equations and ele­
vated it to symmetry of space-time itself. This was the first instance of the 
geometrization of symmetry, and the beginning of the realization that sym­
metry is a primary feature of nature that constrains the allowed dynamical 
laws. 

The traditional symmetries discovered in nature were global symmetries, 
transformations of a physical system in a way that is the same everywhere 
in space. Global symmetries are regularities of the laws of motion but are 
formulated in terms of physical events; the application of the symmetry 
transformation yields a different physical situation, but all observations 
are invariant under the transformation. Thus global rotations rotate the 
laboratory, including the observer and the physical apparatus, and all ob­
servations remain unchanged. 

Gauge or local symmetry is of a totally different nature. Gauge symme­
tries are formulated only in terms of the laws of nature; the application of 
the symmetry transformation merely changes our description of the same 
physical situation, does not lead to a different physical situation. Today 
we realize that local symmetry principles are very powerful — they dictate 
the form of the laws of nature. 

In 1912-17 this point of view scored a spectacular success with Einstein's 
construction of general relativity. The principle of equivalence, a principle 
of local symmetry — the invariance of the laws of nature under local changes 
of the space-time coordinates — dictated the dynamics of gravity, of space-
time itself. Fifty years later gauge theories, invariant under local symmetry 
transformations, not of space-time but of an internal space of particle labels, 
assumed a central position in the fundamental theories of nature. They 
provide the basis for the extremely successful standard model, a theory of 
the fundamental, non-gravitational forces of nature — the electromagnetic, 
weak and strong interactions. 

Surprisingly Einstein did not follow the symmetry route. He did not, in 
his attempts to unify physics, search for extensions of the symmetries that 
he had promulgated. If he had he might very well have discovered non-
Abelian gauge theory or perhaps even supersymmetry. Why not follow this 
route that has dominated theoretical speculation in the latter half of the 
20th century? I think the reason was that Einstein was unaware of the 
phenomenon of symmetry breaking. All of the new symmetries discovered 
in the latter half of the 20th century, that are at the heart of the standard 
model of particle physics and attempts at unification, are approximate, or 
are broken spontaneously, or hidden by confinement. It was only in the 
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1960s, and early 1970s, that these mechanisms of symmetry breaking were 
elucidated and the possibility of imagining new symmetries, not directly 
manifest in the world, but still dictating the dynamics, was possible. 

For Einstein the existence, the mass, the charge of the electron and the 
proton, the only elementary particles recognized back in the 1920s, were 
arbitrary features. One of the main goals of a unified theory should be 
to explain the existence and calculate the properties of matter. When he 
contemplated his equation he distinguished between the left-hand side of 
the equation, which was a beautiful consequence of the profound symmetry 
of general coordinate transformations, and captures the curvature of space-
time; and the right-hand side, which was the source of curvature-mass, but 
had to be arbitrarily put in, with no principle to determine the properties 
of mass. As in politics Einstein greatly preferred the left to the right. To 
quote Einstein: What appears certain to me, however, is that, in the foun­
dations of any consistent field theory the particle concept must not appear 
in addition to the field concept. The whole theory must be based solely on 
partial differential equations and their singularity-free solutions. 

So Einstein's goals were to: 

(i) Generalize general relativity to include electromagnetism. 
(ii) Eliminate the right-hand side of his equations and deduce the existence 

of matter by constructing singularity free solutions that would describe 
stable lumps of energy. 

(iii) And finally, since he abhorred the arbitrary nature of the quantum 
rules and their probabilistic interpretation, he hoped to deduce them 
from these non-singular solutions. 

He imagined that the demand of lack of singularities in the solutions 
that would describe matter would lead to over-determined equations, whose 
solutions would only exist for some, quantized values of physical parame­
ters, say the radii of electron orbits. Thus he could imagine reproducing the 
Bohr model of the atom. The core of this program was to include electro-
magnetism and derive the existence of matter in the form of, what we call 
today, solitons. As Einstein understood, nonlinear equations can possess 
regular solutions that describe lumps of energy that do not dissipate. Thus 
one could start with the nonlinear field equations of general relativity and 
find localized particles. This was his hope: 

'If one had the field equation of the total field, one would be com­
pelled to demand that the particles themselves would everywhere be 
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describable as singularity free solutions of the completed field equa­
tions. Only then would the general theory of relativity be a complete 
theory.' 

As far as I can tell, Einstein knew of no example of solitons or any toy 
model that exhibited his hopes. Nonetheless, flushed with the success of 
general relativity, with the faith that electromagnetism had to be unified, 
that matter needed a reason for its existence, he studied the equations 
and tried to modify them as well, with the hope of finding such solutions 
and with the dream that quantization of mass and charge, and even the 
quantum rules would emerge from overdetermination. 

Among all of the extensions of general relativity considered and pursued 
by Einstein, the idea that the other forces of nature could be reflections of 
gravity in higher dimensions was the most innovative and enduring. It 
was not Einstein's idea, but rather that of Kaluza in 1922, significantly 
developed by Oscar Klein in 1926. Kaluza and Klein showed that if one 
assumed general relativity in five dimensions, where one dimension was 
curled up, the resulting theory would look like a four-dimensional theory of 
electromagnetism and gravity. Electromagnetism emerged as a consequence 
of gravity in five dimensions. 

Einstein was immediately attracted to this idea and wrote to 
Kaluza — 'The idea of achieving (a unified field theory) by means of a 
five-dimensional cylinder world never dawned on me. At first glance I like 
your idea enormously.' He held this paper for two years before submitting 
it to be published, probably because he was confused, as was Kaluza, as to 
whether the fifth dimension was real or not. Einstein returned again and 
again to this idea for over thirty years. 

Einstein and Bergman in 1938 finally gave the best reasoning for taking 
the fifth dimension seriously, arguing that it is consistent with observation 
if it is sufficiently small. Klein had identified the momentum of particles 
moving around the fifth dimension as electric charge, which is quantized 
if one assumes the quantum mechanical rules of momentum quantization 
on circle. In modern versions of Kaluza-Klein, as they appear in string 
theory, this scenario is greatly amplified. In string theory there are six or 
seven extra-spatial dimensions. One can imagine that these are curled up 
to form a small manifold, and remarkably such six dimension compactifi-
cations (achieved by solving the generalization of Einstein's equations in 
ten dimensions) can produce a world remarkably like our own, in which the 
shape of the extra dimensions determines the complete matter content and 
all the forces of nature, as seen by a four-dimensional observer. 
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Why did not Einstein consider higher dimensional spaces? Much later 
he did play, for a while, with an eight-dimensional universe, a kind of com-
plexification of Minkowski space, an approach severely criticized by Pauli 
and rapidly dropped by Einstein. But why did he not search systematically 
for higher dimension theories? If he had done so he might have discovered 
non-Abelian gauge theories, much as Oscar Klein almost did in 1938. I 
do not know, but suspect that part of the reason was that Einstein by 
and large ignored the nuclear forces altogether. His goal was to incorpo­
rate electromagnetism together with gravity — for this one extra dimension 
sufficed. 

Einstein never thought much of this quantization of electric charge. 
Perhaps he thought, as Klein tried, to turn this around and derive the 
quantum rules from the quantization of charge. But in any case Einstein's 
main goal was to find particles as non-singular solutions of his equations 
and thus turned immediately to trying to find non-singular solutions of 
Kaluza-Klein theory. 

Over the years Einstein came back again and again to this problem and 
tried to find non-singular solutions of Kaluza-Klein theory. He published at 
least three papers in which he proved that such solutions do not exist, with 
ever increasing generality. The last of these was a paper published with 
Pauli, who spent some of the war years in Princeton. The remark made in 
this paper that: When one tries to find a unified theory of the gravitational 
and electromagnetic fields, he cannot help feeling that there is some truth 
in Kaluza's five-dimensional theory, expressed how much Einstein was at­
tracted to this approach. He must have been incredibly disappointed that 
he could not find matter as solitons in this theory. 

But Einstein was wrong. There do exist solitons, non-singular solutions 
of his equations in Kaluza-Klein theory, which behave as particles — mag­
netic monopoles, with quantized magnetic charge. These were discovered 
in the early 1980s, by Perry and me, and independently by Sorkin, when 
Kaluza-Klein theory was revived. In our paper we added a footnote point­
ing out that these solutions contradicted Einstein. The referees suggested 
that we remove the footnote since it was disrespectful. We, of course, re­
fused, how could we resist. 

I have wondered what would have happened if these solutions had been 
discovered back in the 1920s; they could have. It would have given an enor­
mous boost to Einstein's program, even though the solitons were magnetic 
and not electric, and very massive. But this did not happen and Einstein's 
attempts to find non-singular solutions failed, as did his attempts to con­
struct satisfactory unified theories. 
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After sometime in the late 1920s Einstein became more and more iso­
lated from the mainstream of fundamental physics. To a large extent this 
was due to his attitude towards quantum mechanics, the field to which 
he had made so many revolutionary contributions. Einstein, who under­
stood better than most the implications of the emerging interpretations of 
quantum mechanics, could never accept it as a final theory of physics. He 
had no doubt that it worked, that it was a successful interim theory of 
physics, but he was convinced that it would be eventually replaced by a 
deeper, deterministic theory. His main hope in this regard seems to have 
been the hope that by demanding singularity free solutions of the nonlinear 
equations of general relativity one would get an overdetermined system of 
equations that would lead to quantization conditions. 

Because of his opposition to quantum mechanics he allowed himself to 
ignore most of the important developments in fundamental physics for over 
twenty five years, as he himself admitted in 1954, 'I must seem like an 
ostrich who buries its head in the relativistic sand in order not to face the 
evil quanta.' If there is one thing that I fault Einstein for, it is his lack of 
interest in the development of quantum field theory. To be sure many of the 
inventors of quantum field theory were soon to abandon it when faced with 
ultraviolet divergences, but it is hard to understand how Einstein, could 
not have been impressed with the successes of the marriage of his children 
quantum mechanics and special relativity. The Dirac equation and quan­
tum electrodynamics had remarkable successes, especially the prediction of 
anti-particles. How could Einstein not have been impressed? 

The only way to understand this is that general relativity was so impor­
tant to him as to eclipse everything else. As Pauli remarked: 'If we would 
have presented Einstein with a synthesis of his general relativity and the 
quantum theory — then the discussion with him would have been consider­
ably easier.' But since general relativity and quantum mechanics seemed so 
incompatible, a situation that continued until quite recently, he felt free to 
ignore the exciting advances that were made in special relativistic quantum 
mechanics. 

I turn now to the situation today, or more precisely thirty years ago, 
after the completion of the standard model of elementary particle physics, 
where we now have direct evidence for the unification of all forces dreamed 
by Einstein. 

One of the most important implications of asymptotic freedom is the 
insight it gave into the unification of all the forces of nature. Almost im­
mediately after the discovery of asymptotic freedom and the proposal of 
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quantum chromodynamics, the first attempts were made to unify all the 
forces. This was natural, given that one was using very similar theories to 
describe all the known interactions. The apparently insurmountable barrier 
to unification, namely the large difference in the strength of the strong and 
the electroweak force, was seen to be a low energy phenomenon. Since the 
strong force decreases with increasing energy, all forces could have a com­
mon origin at very high energy. Indeed the couplings run in such a way as 
to merge about 1014 to 1016 Gev, close to the point where gravity becomes 
equally strong. This is our most direct clue as to where the next threshold 
of fundamental physics lies, and hints that at this immense energy all the 
forces of nature, including gravity, are unified. 

In more recent times this extrapolation has greatly improved, due to the 
beautiful measurements of many experimenters and the hard work done by 
many theorists. Now the forces all meet only if we hypothesize a new space-
time symmetry-supersymmetry — and if this new symmetry is broken at 
reasonably low energy; increasing hopes that a new super-world will be 
revealed at the Large Hadron Collider, soon to be completed at CERN. Su-
persymmetry is a beautiful, natural and unique extension of relativistic and 
general relativistic symmetries of nature. Einstein would, if he had stud­
ied it, have loved it. It can be thought of as the space-time symmetries of 
super-space, a space-time with extra dimensions. But the extra dimensions, 
here denoted collectively by 6, are measured with anti-commuting numbers. 
These are generalizations of ordinary real numbers, much as imaginary or 
complex numbers are; numbers that anti-commute, so that multiplication 
depends on the order, thus 6182 = — Q<$\- If it is hard to imagine a space 
of four or more dimensions, super-space is even weirder, but totally math­
ematically consistent. A theory formulated in super-space, and invariant 
under transformations or rotations of super-space, has many beautiful and 
appealing features. Supersymmetric extensions of the standard model can 
solve many important problems, such as why is there this enormous dispar­
ity, at low energy, between the strength of the gravitational force and the 
other forces of nature. The discovery of supersymmetry, which we all hope 
and some expect in a few years from now at the Large Hadron Collider, 
would be tantamount to the discovery of quantum dimensions of space-time. 

Perhaps the most important feature of the extrapolation of the stan­
dard models forces is that the energy at which they appear to unify is 
very close, if not identical, to the point at which gravity becomes equally 
strong. This indicates that the next stage of unification should include, as 
Einstein expected, unification of the non-gravitational forces and gravity. 
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It is an important clue to that unification since it is not easy to quantize 
general relativity. A straightforward quantization of Einstein's theory does 
not work; the quantum fluctuations of the metric, at the characteristic dis­
tance scale of gravity, where the force becomes strong are too violent and 
uncontrollable. It seems inescapable that Einstein's theory is only an ef­
fective theory, adequate at long distances, but to be replaced by a more 
fundamental theory at the Planck scale of 10~33 cm. 

Luckily such an extension of general relativity is available — string 
theory. String theory was not invented to describe gravity; instead it orig­
inated in an attempt to describe the strong interactions, wherein mesons 
can be thought of as open strings with quarks at their ends. The fact that 
the theory automatically described closed strings as well, and that closed 
strings invariably produced gravitons and gravity, and that the resulting 
quantum theory of gravity was finite and consistent is one of the most ap­
pealing aspects of this theory. String theory is a theory in development. We 
have learned much about this theory in the last decades, but much more 
remains. What has been achieved so far? 

First, string theory is a consistent logical extension of the conceptual 
framework of fundamental physics. Such an extension is not easy and it is 
rare. 

Second, string theory provides us for the first time with a consistent and 
finite quantum theory of gravity. This not only proves that quantum me­
chanics and general relativity are mutually compatible, it also provides us 
with the tools to explore many of the paradoxical issues that arise when the 
metric of space-time is quantized. Already string theory has clarified many 
of the mysteries of black holes. Thus the suspicion raised by Hawking as to 
whether black holes indicate the loss of information in fundamental physics 
has been dispelled, even to the point where Hawking himself has agreed 
that information is not lost in the process of formation and evaporation of 
black holes. 

Finally, string theory has a rich structure that could yield a theory 
that unifies all of the forces of nature and explain all the constituents of 
matter. It automatically contains gravity as well as the gauge theories of 
the standard model. Certain of its four-dimensional compactifications give 
rise to low energy dynamics that is remarkably close to the standard model. 

But string theory is still in the process of development, and although it 
has produced many surprises and lessons it still has not broken dramatically 
with the conceptual framework of relativistic quantum field theory. Many 
of us believe that ultimately string theory will give rise to a revolution in 
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physics, as important as the two revolutions that took place in the 20th 
century, relativity and quantum mechanics. These revolutions are associ­
ated with two of the three fundamental dimensionful parameters of nature, 
the velocity of light and Planck's constant. The revolution in string theory 
presumably has to do with Newton's constant, that defines a length, the 
Planck length of 10~33 cm. String theory, I believe, will ultimately modify 
in a fundamental way our concepts at distances of order this length. 

Where will the revolution take place? I believe that it will involve our 
understanding of the nature of space-time, a subject dear to Einstein's 
heart. To quote some leading string theorists: 

Space and time may be doomed. — E. Witten 
/ am almost certain that space and time are illusions. — N. Seiberg 
The notion of space-time is clearly something we're going to have to give 
up. — A. Strominger 
The real change that's around the corner is in the way we think about space 
and time. We haven't come to grips with what Einstein taught us. But 
that's coming. And that will make the world around us stranger than any 
of us can imagine. — D. Gross 

Why is space-time doomed? There are many reasons, among which: In 
string theory we can change the dimension of space-time by changing the 
strength of the string force. Thus, the so-called II-A string theory, which 
semi-classically describes closed strings moving in ten-dimensional flat space 
for very weak coupling is dual for strong coupling to a theory, called M-
theory, that at low energies is described by eleven-dimensional supergravity. 
By increasing the string coupling we can grow an extra dimension. How can 
the spatial continuum be fundamental if the number of spatial dimensions 
can be so changed? 

We can continuously tear the fabric of space. Thus a string theory 
solution that describes strings moving on a background wherein some of the 
spatial dimensions are compactified on a manifold Mi can be continuously 
deformed, by varying some of the parameters of the solution, to one that 
describes the strings moving on a background M2 of different topology. 
In between there is no such simple description of the solution as strings 
moving on a geometric background, but the deformation is continuous and 
the strings do not mind at all that the fabric of space has been torn so as to 
modify the topology. Again this suggests that the spatial continuum cannot 
be fundamental if its topology can be changed in this smooth fashion. 
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On the other hand in string theory we cannot probe arbitrarily small 
distances. In string theory we can ask what is the smallest distance that 
can operationally be explored, analyzing (as Heisenberg did in the case of 
quantum mechanics) how a microscope works. In string theory the light 
rays of a microscope are really strings. Consequently, as we increase the 
energy of the light, so as to overcome the quantum mechanical uncertainty 
in the measurement of distance, the strings expand and prevent us from 
resolving arbitrarily small distances. The minimum distance that we can 
explore is, not surprisingly, of order the Planck length. 

We also cannot squeeze spatial volumes to zero size. If one of the spatial 
dimensions is compactified to form a circle of radius R, it turns out that 
string theory in this background is identical to string theory in a background 
where the radius of this circle is 1/R (in Planckian units). Thus if we try 
to squeeze this dimension and reduce R to zero, we find that the more 
natural description is in terms of the dual theory, and the minimal size of 
the compact circle is finite and of order the Planck length. 

These phenomena suggest that there is no operational meaning to dis­
tances smaller than the Planck length, that the spatial continuum should be 
replaced by something else. I believe that space for sure, and presumably 
time as well, will be emergent. We already have many hints and examples 
where space is an emergent concept. These include the famous AdS/CFT 
duality, wherein string theory in ten dimensions, with a background geom­
etry of five-dimensional Anti-DeSitter space times a five sphere, is dual to 
supersymmetric gauge in flat four-dimensional space-time. Six spatial di­
mensions emerge from the gauge theory description, together with gravity. 
We have no understanding, however, what it would mean that time itself 
would be an emergent concept. 

I like to depict our confusion in poetic form. Democritus expressed 2500 
years ago the atomic hypothesis in the following verse: 

By convention there is color, 
by convention sweetness, 
by convention bitterness, 
But in reality there are atoms and space. 

I say: We are convinced that 

By convention there is space, 
By convention there is time, 
But in reality there is... 

The problem is that I do not know how to finish the verse. 
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So did Einstein go wrong in the latter part of his life? The answer is 
both yes and no. 

Yes, he refused to accept quantum mechanics. He ignored the develop­
ments in nuclear and particle physics. These mistakes ensured his failure, 
but they are quite understandable and forgivable. 

No, he knew that gravity must be unified with the other forces. And 
this we too know today is the central issue in fundamental physics. 

And for those of us faced with the fact that we cannot yet directly probe 
the Planck scale, he believed in the possibility of successful speculative 
theory. As Einstein stated: 'The successful attempt to derive delicate laws 
of nature, along a purely mental path, by following a belief in the formal 
unity of the structure of reality, encourages continuation in this speculative 
direction, the dangers of which everyone vividly must keep in sight who 
dares follow it.' 

To all physicists, but especially to those working in speculative areas, 
Einstein remains an inspiration for his foresight, and his unyielding deter­
mination and courage. 
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Einstein initiated and stressed the role of geometry in fundamental 
physics. Fifty years after his death the links between geometry and 
physics have been significantly extended with benefits to both sides. 

1. General Relativity 

Einstein is generally recognized as the greatest physicist of the 20th century 
and perhaps the greatest physicist since Newton, though Faraday and Clerk 
Maxwell are close competitors. Einstein is a case where popular acclaim 
and scientific standing are in agreement. But unlike Newton, Einstein was 
not a mathematician. He used mathematics in an essential way but he did 
not create it and he relied on his colleagues for technical help. It is all the 
more remarkable that his ideas have triggered great advances in geometry, 
even in parts of the subject apparently far removed from physics. 

I will attempt to describe and explain how this has come about. But 
first I should make some general remarks about the relation between physics 
and mathematics. The conventional view is that mathematicians have de­
veloped machinery for studying numbers (which might represent physical 
quantities) and the way in which those relate to each other in the form of 
equations. Physicists then use this language and embody their conclusions 
in 'laws' described by equations. Thus Newton's gravitational theory is 
described by the inverse square law of mutual attraction, while the funda­
mental laws of electromagnetism are encoded in Maxwell's equations. 

While this orthodox view is formally correct, it hides some essential 
features. In physics the starting points are the concepts: particles, forces, 
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space, time, motion, interaction. Objects are seen to move around and act 
on one another. The secondary part of the story is the taking of measure­
ments by the experimental scientist. Numbers are written down, tabulated, 
compared. 

The earliest part of mathematics to be studied in depth was geometry, in 
the hands of the Greeks. The basic concepts here are: points, lines, angles, 
triangles, circles and their mutual relation. Numbers, giving distances and 
areas come shortly thereafter, but equations did not enter the picture until 
the work of Descartes in the 17th century. 

The connection between physics and geometry starts at the conceptual 
stage in a fully three-dimensional picture of the world, and has nothing to 
do with any reference frame in which one may choose to take measurements. 
It is not easy to move from physics to geometry without choosing (x, y, z) 
coordinates and writing equations, but it is more fundamental. Descartes' 
introduction of coordinates may have been an essential step in the formal­
ization of mathematical physics but it was also an abdication: it gave up 
on trying to understand physics geometrically. 

Newton understood this, which is why he presented his Principia in 
geometric form, but this was too difficult for posterity which followed the 
ideas of Descartes and Leibniz. 

This brief philosophical review is essential if we want to understand 
how Einstein's ideas came to influence geometry. As we all know, Ein­
stein's monumental contribution was the replacement of the Newtonian 
theory of gravity by what is called General Relativity. This theory has two 
essential features, the first is to move from three-dimensional geometry to 
four-dimensional geometry by incorporating time as a fourth variable. This 
is the content of Special Relativity, but the second key step is to interpret 
gravitation as the curvature of this four-dimensional space-time geometry. 

Standard textbooks make great play with the technical details, intro­
ducing coordinates, writing equations and then showing that the resulting 
physics is independent of the choice of coordinates. To a geometer this is 
perverse. The fundamental link is from physics to geometry, from force to 
curvature and the algebraic machinery that encodes this is secondary. God 
created the universe without writing down equations! 

2. Electromagnetism 

As far as gravity is concerned, Einstein's General Relativity is a beautiful 
and complete theory. But as Einstein realized it has to be extended to 
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account for other physical forces, the most notable being electromagnetism. 
It is perhaps no accident that the first and most significant step in this 
direction was taken by a mathematician — Hermann Weyl. He showed that, 
by adding a fifth dimension, electromagnetism could also be interpreted as 
curvature. His idea was that the size of a particle could alter as it passed 
through an electromagnetic field. In analogy with railways it was called 
a gauge theory, and this name has stuck through subsequent evolutions of 
the theory. 

Unfortunately for Weyl, Einstein immediately objected on physical 
grounds that this would have meant different atoms of, say hydrogen, would 
have different sizes depending on their past history, in contradiction with 
observation. Given this devastating critique, it is remarkable but fortunate 
that Weyl's paper was still published, with Einstein's objection as an ap­
pendix. Clearly the beauty of the idea attracted the editor, despite the fatal 
flaw. In fact, beauty often wins such contests, because with the advent of 
quantum mechanics, with its complex wave functions, it was pointed out by 
Kaluza and Klein that Weyl's gauge theory could be salvaged if one inter­
preted the variable as a phase rather than a length. A pure phase shift by 
itself is not physically observable and so Weyl's theory avoids the Einstein 
objection. 

Quantum mechanics 

While quantum mechanics thus came to the rescue of Weyl's gauge theory 
and so continued the Einstein programme of geometrizing physics, it also 
seemed to demolish the whole idea. While quantum mechanics is a very 
subtle and beautiful mathematical theory, it strays very far from geometry 
and is conceptually difficult to comprehend. In fact, as is well known, 
Einstein never fully accepted quantum mechanics as the final word. He 
disliked its philosophical basis with its need for probability and uncertainty. 

While conceding its great practical success, Einstein remained opposed 
to quantum mechanics to his dying day. Increasingly he was regarded by 
the younger generation of physicists as being obstinate and out of touch. 
His continued search for a unified field theory only confirmed this widely 
held opinion. 

3. Nuclear Forces 

Einstein and Weyl, who both went to the Institute for Advanced Study in 
Princeton as refugees from Germany in the 1930s, died in 1955, the year 
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I myself went to Princeton as a fresh Ph.D. This was also the year when 
Yang-Mills theory was born, the theory which developed in due course into 
the standard framework for understanding the 'weak' and 'strong' forces 
which operate on the nuclear scale and are believed, together with gravita­
tion and electromagnetism, to provide all the fundamental forces of nature. 

Yang-Mills theory can be roughly understood as the natural extension 
of Maxwell's theory in which the angular phase is replaced by a phase 
specified by rotation in a higher dimensional 'internal space'. This inter­
nal space is not part of our usual space-time but is additional to it, just 
as the Maxwell phase was interpreted as a fifth dimension. There is one 
fundamental difference between angles (rotation in a plane) and rotations 
in three or more dimensions. Two such rotations, about different axes, 
do not in general 'commute', that is to say that the result of performing 
the two rotations one after the other depends on the order in which they 
are performed. This is easy to verify by considering rotations of the earth. 
Consider for example, a rotation A about the North Pole/South Pole axis of 
say 20° in a westward direction, and a rotation B around the axis through 
Chennai (and its antipode), which takes Bangkok to a position due North 
of Chennai (somewhere in Northern Kashmir). Performing first B and then 
A will take Bangkok, via Kashmir, to northern Iran. On the other hand, 
performing A first will take Bangkok approximately to Chennai, so that fol­
lowing this by B will leave it there. The results obviously differ — Chennai 
is not in Iran! 

This non-commutativity of rotations has major consequences for Yang-
Mills theory, making it a much more complicated and subtle theory than 
Maxwell theory. In particular it becomes nonlinear, which has profound 
mathematical and physical consequences. 

It is somewhat ironic that the ideas of Yang and Mills developed quite in­
dependently of Weyl and Einstein and that there was little interaction with 
them. No doubt the generation gap was too large. In addition, Yang-Mills 
theory was a quantum theory, still in its infancy, and the full geometrical 
implications were not yet apparent. 

With the belated recognition that all four of the fundamental forces of 
nature were geometrical, one might have said that Einstein's dream of a uni­
fied field theory was finally realized, even if it came after Einstein's death. 
In fact, as has just been indicated, this was only partially true because 
of the presence of quantum theory. On the one hand the quantum as­
pects made the theory extremely difficult and sophisticated, taking further 
decades to unravel. On the other hand, Einstein's philosophical objections 
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would remain. He would still be dissatisfied from beyond the grave. Never­
theless physicists now grudgingly acknowledge that Einstein's intuition was 
in part justified and that the revolution he introduced in General Relativity 
of geometrizing physics has proceeded much further. Perhaps the verdict 
would be that the final outcome of the long Einstein-Bohr arguments was 
a draw, with the big proviso that 'finality' has not yet been achieved. 

4. String Theory 

At this point in the development, although geometry provided a common 
framework for all the forces, there was still no way to complete the unifica­
tion by combining quantum theory and general relativity. Since quantum 
theory deals with the very small and general relativity with the very large, 
many physicists feel that, for all practical purposes, there is no need to at­
tempt such an ultimate unification. Others however disagree, arguing that 
physicists should never give up on this ultimate search, and for these the 
hunt for this final unification is the 'holy grail'. 

In the past thirty years a promising framework has appeared in which 
such a unification seems conceptually possible. This is 'string theory', 
based on the simple idea that point particles should be replaced by one-
dimensional objects — strings, either open (with free ends) or closed (in 
circular form). 

String theory, which is as yet unfinished and incomplete, involves yet 
more geometry beyond Yang-Mills. In the first place a string moving in 
time spans a surface which has its own geometry. For example, the surface 
may acquire holes, a topological feature with profound implications, already 
known in mathematics. In the second place consistency of the physical the­
ory requires that the string should be not just in ordinary three-dimensional 
space, but in one of nine dimensions (or ten if one includes time). Both of 
these open up vast new (geometrical) territories which strengthen the link 
between geometry and physics. This works both ways, first large amounts 
of mathematics developed over previous centuries suddenly become relevant 
and available for physicists to use. Second, and perhaps more surprising, 
the ideas of physics including quantum field theory feed back into math­
ematics and lead to surprising developments. In fact the mathematical 
activity generated by this interaction with physics is, in my opinion, the 
most exciting development in mathematics of the past decades, and we 
seem still to be in the early stage. 
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5. M-Theory 

After the initial rapid development of string theory, a drawback appeared 
when it was realized that there were five different competing models of 
string theory. There seemed no reason why nature should prefer one to 
another. 

But it was eventually discovered that all these five string theories were, 
in a subtle way, equivalent to each other. The best analogy is provided 
by the basic calculus of analytic functions, in which a function f(z) can 
be expanded as a power series in z. As a simple example, the binomial 
theorem tells us that 

(1 + zf = 1 + 3z + 3z2 + z3 . 

However if we introduce a variable u = 1 — z, then 

(2 - u)3 = 8 - 12w + 6u2 - u3 , 

represents the same function, so the two polynomials are really equivalent 
under a simple change of variable. String theories are like such power series 
expansions, but the equivalence between two of them is much subtler than 
a change of variable. 

The five different string theories are now seen as different viewpoints 
of one underlying theory, which is not yet known but has been christened 
'M-theory'. By analogy you might be given the power series expansion of 
say \/(l — z) about several different values of z and you might be able to 
check that they were equivalent without recognizing that the function was 
a simple square root. 

While a proper understanding of M-theory still eludes us, much is now 
known about it. In particular, the various geometric results that have 
emerged from string theory become related in interesting but mysterious 
'dualities' whose real meaning has yet to be discovered. 

No one can predict what the future holds in store for M-theory. Are 
we nearly there, is the final understanding just round the corner? Will it 
come from a few more technical tricks or will it require some fundamental 
breakthrough? The biggest question of all and the one that Einstein would 
still be asking is: can M-theory be properly understood within the present 
framework of quantum mechanics or do we need to look for new founda­
tions? I confess that I myself remain an Einsteinian and would be happy 
to see quantum mechanics replaced by something deeper. This remains, as 
in Einstein's day, a minority opinion but one shared, for example, by Roger 
Penrose. 
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6. Topology 

I have alluded at various stages to the impact that these physical theories 
have had on geometry, without providing much detail. Let me now try to 
rectify this. 

Classical physics, describing various forces, is closely linked (via Ein­
stein and Maxwell) with notions of curvature in geometry. The connection 
between physics and geometry is therefore local: we can study the forces 
in a small piece of space-time and compare it with the local geometry. By 
contrast quantum physics is not related to geometry in this way. Its rela­
tion is 'global' and can only be seen in the whole picture (even if we are 
dealing with microscopic objects). The global aspect of geometry that is 
involved is 'Topology', such as the study of holes in surfaces or of knots in 
three-dimensional space. 

The first indication that quantum mechanics was related to topology 
was in the argument of Dirac which explained why the electric charge of 
any particle was an integer multiple of the charge of the electron. The 
integers came in essentially as 'winding numbers', counting the number of 
circuits made by a closed path. This number is topological because it does 
not depend on the detailed local geometry of the circuit, how long or wiggly 
it is, but only its overall global behavior. 

Winding numbers are related to the circle and hence to the angular 
phase of electromagnetism. There are similar but more complicated topo­
logical properties associated with the higher dimensional phases of Yang-
Mills theory so that the relation between quantum theory and topology 
carries over to the other forces. In addition, as pointed out earlier, moving 
strings generate surfaces which may have holes and these are topological in 
nature. 

So the physics of string theory and M-theory is replete with topological 
information and many intricate and subtle aspects of the quantum theory 
are related to this underlying topology. 

So what kinds of specific geometrical/topological results have emerged 
from the interaction with physics? In fact these are quite diverse and cover 
many types of problems. Here is a short list. 

Knot invariants 

The study of knots (closed pieces of string) is a standard but difficult branch 
of topology. The key problem is to find 'invariants' which will distinguish 
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essentially different knots. An invariant is something (a set of numbers) 
which can be calculated from a picture of the knot, but is unaltered if we 
move the knot around to get a different picture. In the 1970's the world of 
topologists was astounded when the New Zealand mathematician, Vaughan 
Jones discovered a new type of invariant which helped to solve 100-year old 
problems. Shortly after, Edward Witten gave a physical explanation of the 
Jones invariants which cast new light on them and led to much further 
progress. 

Donaldson invariants 

Geometers have studied the topology of closed surfaces and their higher-
dimensional analogues (manifolds) for a long time. But a remarkable break­
through came in the early 1980s when Simon Donaldson found some totally 
new and unexpected invariants of four-dimensional manifolds. These were 
based on the Yang-Mills equations of physics but it was not until later that 
Edward Witten again showed how to interpret Donaldson's invariants in 
terms of quantum field theory. Later still, using duality ideas from string 
theory, Witten and Seiberg made a significant improvement of Donaldson 
theory which led to solutions of old problems. 

Counting curves 

Classical algebraic geometers, ever since the time of Descartes, studied 
curves in the plane given by polynomial equations. It is a natural question 
to ask how many curves there are of a given type, passing through a given 
number of points. For example, there is a unique straight line through 
any two points and a unique conic (ellipse, etc.) through five points. The 
question gets harder as the curves get more complicated and given by poly­
nomials of higher degree. Quite remarkably, ideas from string theory have 
led to a complete solution of this problem. 

These and other examples are now part of a broad area of 'quantum 
mathematics' — an evocative term which correctly conveys the origin of 
the ideas and results but is very loosely used and ill-defined. One of the 
big challenges for mathematicians at the present time is to see if one can 
understand these new mathematical theories without recourse to the phys­
ical background. Alternatively, it may become necessary to incorporate or 
absorb various physical ideas into rigorous mathematics. 
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The converse process of providing rigorous mathematical treatment 
of quantum field theory, string theory, M-theory appears a very distant 
prospect. It will certainly have to wait till physicists have sorted them­
selves out and allowed the dust to clear. 

7. Conclusion 

Einstein would, I think, have been both surprised and gratified by the extent 
to which his geometrization of physics has progressed. The mathematical 
by-products would have surprised him even further. But the fact that his 
ideas were so fruitful would only encourage him in his fundamental beliefs. 
In particular, he would still be encouraging us to dig beneath the mysteries 
of quantum mechanics. In another century we might find what Einstein 
was looking for. 
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Unification of the theory of gravitation, as given by Einstein's general 
theory of relativity, and the theory of electromagnetism, as formulated 
by Maxwell, had been Einstein's dream during the later part of his life. 
String theory, which is the subject of this article, is an attempt to realize 
this dream. However in many ways, string theory attempts to go beyond 
Einstein's dream. String theory attempts to bring all known forces of 
nature — not just gravity and electromagnetism — under one umbrella. 
It also tries to do so in a manner that is consistent with the principles 
of quantum mechanics — the theory that is necessary for describing the 
laws of nature at very small distance. Thus, string theory is an attempt 
to provide an all-encompassing description of nature that works at large 
distances where gravity becomes important as well as small distances 
where quantum mechanics is important. 

1. I n t r o d u c t i o n 
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Fig. 1. Our current understanding of the building blocks of matter. 

all encompassing description of nature that works at large distances where 
gravity becomes important as well as small distances where quantum me­
chanics is important. 

In this article, I shall try to give a very general introduction to string 
theory.1 However, in order to do so, I must begin by reviewing our current 
understanding of the basic constituents of matter. This is the subject to 
which we shall now turn. 

2. The World of Elementary Particles 

According to our current understanding, everything that we see around us 
is made of a few elementary building blocks. Figure 1 gives us a bird's eye 
view of our current knowledge of the structure of matter. At the crudest 
level the building blocks of matter are the individual molecules of various 
compounds. However, there are a very large number of compounds, each 
with its own characteristic molecule. A simpler picture emerged when it 
was realized that each molecule is made of some smaller building blocks 
known as atoms. There are about 100 different types of atoms and dif­
ferent molecules differ in their properties because they contain different 

iRefs. [1—4] provide some good introductory textbooks on string theory. 
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number of atoms of different types in different arrangements. During the 
early years of the twentieth century it was realized that atoms are also 
not the smallest constituents of matter — each atom is made of a cen­
tral nucleus and a set of electrons revolving around it. Different atoms 
have different number of electrons, but all the electrons found in all 
atoms have identical properties. In contrast the nuclei of different types 
of atoms have very different properties. This picture simplified once it was 
realized that each nucleus can be regarded as being made of even smaller 
constituents — the proton and the neutron. Different nuclei have different 
properties because they contain different numbers of protons and neutrons. 
Finally, even the protons and neutrons are now known to be made of even 
smaller constituents called quarks — the proton being made of two up (u) 
quarks and one down (d) quarks, and the neutron of one u and two d quarks. 
According to our current knowledge, the electrons and the quarks cannot 
be divided any further. We call them elementary particles. 

This gives us a very simple picture of the structure of matter, namely 
everything is made of three different types of 'elementary particles' — the 
electron, the u quark and the d quark. However, as we shall see, this is 
far from a complete picture. As is already evident from Fig. 1, the up and 
down quarks each come in three varieties. Here, we have denoted them by 
Mi, U2, U3 and d\, di-, fifa, but often they are referred to as red, blue and 
green type of quarks. We shall refer to this as the color quantum number 
although this has nothing to do with the color that we see in everyday life. 
The quarks inside the proton and neutron continuously change their color 
due to a process known as strong interaction that will be discussed soon. 
There are various other reasons why this picture is not complete. I shall 
review some of them here. 

In order to understand the structure of matter, we need to under­
stand not only the basic constituents of matter, but also the nature of 
the forces that operate between them. Without this knowledge we shall 
not have any understanding of what keeps the quarks bound inside a pro­
ton and neutron, or at a larger scale, of what keeps the atoms bound in­
side a molecule. According to our current knowledge there are four basic 
types of forces operating between elementary particles — (1) gravitational, 
(2) electromagnetic, (3) strong and (4) weak. Of these the gravitational 
and the electromagnetic forces are familiar to us from everyday experience. 
For example, the gravitational force is responsible for earth's gravity and 
the motion of the planets around the sun. The electromagnetic force is 
the cause of lightening in the sky, the force of a magnet, the working of 
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Fig. 2. Classical picture of the deflection of a pair of electrons via electromagnetic force. 

various electrical appliances, etc. It is also responsible for binding the elec­
trons and the nuclei inside the atom and the atoms inside a molecule. The 
strong force operates between quarks and is responsible for binding them 
inside a proton and a neutron and also for binding the proton and the 
neutron inside a nucleus. The weak force, being weak, is not responsible 
for binding any particles; however it is responsible for certain radioactive 
decays known as /3-decay. 

It turns out that in studying the physics of elementary particles, we 
can ignore the effect of gravitational force. To see this one can compare the 
electrostatic force between two protons with the gravitational force between 
two protons at rest. The result is 

Grav. Force GNm?vlr
2

 i n _ 3 6 

Elec. Force e2 / r2 

where GN is the Newton's constant (6.67 x 1 0 - 8 cm3/gm sec2) that controls 
the strength of the gravitational force between two bodies, mp is the proton 
mass (1.67 x 10~24 gm) and ep is the proton charge (4.8 x 10 - 1 0 e.s.u.). 
Clearly this ratio is extremely small. Similarly all other forces can also be 
shown to be much larger than the gravitational force. 

So far we have discussed the elementary particles and the forces operat­
ing between them as separate entities, but with the help of quantum theory 
one can give a unified description of elementary particles, and the forces 
among the elementary particles. Consider for example the electromagnetic 
force between two electrons when they pass each other. Due to this force, 
each particle gets deflected from its original trajectory. This has been de­
picted in Fig. 2. In quantum theory, one provides a different explanation 
of the same phenomenon. Here the deflection takes place because the two 
electrons exchange a new particle, called photon, while passing near each 
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Fig. 3. Quantum picture of the deflection of a pair of electrons via electromagnetic 
force. 

other (see Fig. 3). The photon is capable of carrying some amount of energy 
and momentum from the first electron to the second electron, thereby caus­
ing this deflection.2 We call the photon the mediator of electromagnetic 
force. Even though it mediates electromagnetic force, the photon itself is 
electrically neutral. 

Thus in the language of quantum theory we can describe a force by spec­
ifying the particle(s) which mediate the force. It turns out that the strong 
force is mediated by eight different particles known as gluons. These par­
ticles are all electrically neutral. The quarks inside a proton (and neutron) 
continuously exchange gluons, and in this process keep changing their color 
quantum number. On the other hand, the weak force is mediated by three 
particles, denoted by W+, W~ and Z. W+ and W~~ carry +1 and —1 
unit of electric charge respectively while Z is neutral. (The unit of electric 
charge is taken to be the charge carried by a single proton. Thus W+ has 
charge equal to that of a proton, while W~ has charge that is equal in 
magnitude but opposite in sign to that of a proton.) 

Clearly, we must add the gluons, W+, W~ and Z, as well as the photon, 
to our list of elementary particles. We shall refer to these as the mediator 
particles. Theoretical analysis shows that for every elementary particle 
there must also be another elementary particle, known as the antiparticle, 
that carries exactly the same amount of charge but with opposite sign. 
Thus for every quark and the electron we have the corresponding anti-quark 

2 The quantum picture shown in Fig. 3 suggests that the change in the direction of 
the electrons happens suddenly instead of continuously. In practice, each exchange of 
photon causes a tiny amount of sudden jump, and the classical picture emerges due to 
the quantum process repeated many times via many exchanges of photons. 
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and the anti-electron (known as the positron). Fortunately the gluons, the 
photon and the Z particles are their own anti-particles, whereas W~ is the 
anti-particle of W+ and vice-versa. Thus we do not need to expand our 
list by including anti-particles of the mediator particles. However, this still 
does not exhaust the list of all elementary particles. Besides the u and 
d quarks, electrons and mediators and their anti-particles, there are also 
other elementary particles which are produced by cosmic rays, radioactive 
decays, collision of high energy particles, etc. They must also be added to 
the list. 

Our current list contains about 100 types of elementary particles. Thus 
the situation would not seem any better than the days when atoms were 
thought to be the basic constituents of matter. The properties of matter 
known at that time could be explained in terms of the properties of about 
100 types of atoms. There is however a difference — unlike the case of 
atoms, there is a simple mathematical theory that explains the properties 
of all the elementary particles. In fact, this theory has been so successful 
that it has come to be known as the 'standard model' of elementary par­
ticles. This model, in principle, can be used to calculate the result of any 
experiment that we wish to perform involving the elementary particles. So 
far the standard model has been extremely successful in explaining almost 
all experimental results. 

3. The Standard Model: Its Successes and Limitations 

In this section I shall explain some of the basic properties of the standard 
model. The basic inputs in this theory are 

• quantum mechanics, 
• special theory of relativity, and 
• laws of electromagnetism and their generalization to strong and weak 

forces. 

There is a mathematical framework, known as gauge theory, that includes 
all these three features. I shall not describe the details of this framework 
here. It turns out that there are many different consistent gauge theories, 
one of which describes the theory of elementary particles. This particular 
theory is known as the standard model. 

Once the theory is written down, it predicts the outcome of every pos­
sible experiment involving elementary particles. (Of course, some experi-
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mental inputs go in to decide on what is the right theory.) For example, 
the standard model tells us precisely what kind of elementary particles we 
have in our world. According to this model, the elementary particles in our 
world fall into four categories: 

• Quarks u i ,u 2 ,«3 , di,d2,d3, ci ,c2 ,c3 , Si ,s 2 , s 3 , tut2,h, h,b2,b3 

In this list we recognize the familiar up and down quarks, each coming in 
three colors. It turns out that nature contains four more types of quarks 
— charm (c), strange (s), top (t) and bottom (6), each coming in three 
colors. These four types of quarks are not usually found inside matter 
but can be produced in highly energetic collision among normal matter. 
Of the six quarks, the up, charm and top quarks carry 2/3 unit of electric 
charge, whereas the down, strange and bottom quarks carry —1/3 unit 
of electric charge. For each quark we also have its anti-quark; we have 
not listed them separately here. 

• Leptons e~,ve, / / - , i /M , T~ ,vT 

In this list we recognize the electron (e~); the — sign on top is to re­
mind ourselves that the electron carries —1 unit of charge, i.e. charge 
equal in magnitude but opposite in sign to that carried by the proton. 
ve — known as the electron neutrino — is a weakly interacting charge-
less particle. These are so weakly interacting that a neutrino passing 
through the earth does so experiencing almost no force. The pair of 
particles (/j~,v^) have properties similar to that of the pair (e~,ve) al­
though the muon (/i~) is a lot heavier that the electron. Similarly the 
pair (T~,VT) have properties similar to that of (e~,ue), with the tau 
particle (r~) being even heavier than a muon. For each lepton we also 
have an anti-lepton which we have not listed here. For example, the anti-
particle of the electron is called the positron and denoted by the symbol 
e+. 

• Gauge Bosons gluons: gi,.-.g8, Photon: 7, W+, W~, Z 
These are the by now familiar mediator particles which have been dis­
cussed before. As already mentioned the list is complete without having 
to add the anti-particles separately. 

• Higgs Particle cf> 
This is the most mysterious particle in the standard model. Unlike every 
other particle in the list which has been experimentally observed, the 
Higgs particle has never been seen in any experiment despite several 
attempts. Nevertheless its existence is predicted by the standard model, 
and new experiments are being designed to look for this particle. 
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Fig. 4. An allowed process in the standard model. 

The standard model not only gives us a list of elementary particles 
but also the list of processes that can occur involving these particles. For 
example, in order to explain the electromagnetic force between electrons 
using the process described in Fig. 3, it is necessary to know that an electron 
can emit a photon. This follows from the mathematical framework that lies 
behind the standard model. The same mathematical framework also tells 
us that if in this diagram we replace the electron by an electron neutrino 
then this is not an allowed process in the standard model; hence a neutrino 
cannot exchange a photon with another particle. Figure 4 shows another 
example of a process that can occur in the standard model. This describes 
the decay of a top quark (t\) into an electron neutrino (ve), a positron 
(e+) and a bottom quark (6i). In fact the standard model not only tells 
us which processes can occur, but it also gives us precise mathematical 
formula for calculating the probability of occurence of any such process. 
These predictions are then compared with experimental data to test the 
model. 

Given the success of the standard model, one might like to conclude that 
we now have a complete understanding of the elementary constituents of 
matter. This however is not true. There are several reasons why standard 
model cannot be the complete theory of elementary particles. I shall review 
a few of these here. 

First and foremost, the standard model does not explain the origin of one 
of the important forces that we observe in nature, namely the gravitational 
force. In particular, the list of particles predicted by the standard model 
does not contain any particle that mediates gravitational force. The effect 
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of this omission, of course, is not seen in any of the experiments involving 
elementary particles since, as observed earlier in this article, the gravita­
tional force between two elementary particles is extremely small compared 
to the other forces. Nevertheless, a complete theory must account for every 
possible tiny effect that exists in nature. Thus, a theory that does not pro­
vide an explanation of the gravitational force cannot be a complete theory 
of nature. 

In order to appreciate the gravity of this problem, let us first take stock 
of what is known about gravity. Our current theoretical understanding of 
the gravitational force is based on the 'general theory of relativity' — a 
theory written down by Einstein almost a hundred years ago. This theory 
has been enormously successful in explaining all effects related to gravity. 
Unfortunately, this theory is based on the principles of classical mechanics 
and not of quantum mechanics. Since other forces in nature follow the 
rules of quantum mechanics, any theory that attempts to explain gravity 
as well as the other forces of nature must treat gravity according to the 
rules of quantum mechanics. Hence the general theory of relativity, despite 
being so successful, cannot be the final story about gravity. In fact, the 
reason that this theory has been so successful so far is that for gravity the 
difference between the predictions of a classical and the quantum theory is 
extremely tiny and cannot be observed in any of the current experiments. 
(We say that quantum effects involving gravity are extremely small.) 

Thus the problem at this stage seems to be to first find a quantum the­
ory of gravity and then combine this with the standard model to arrive at 
a complete theory of all elementary particles and forces operating between 
them. At the first sight the problem does not seem unsurmountable. After 
all, we normally obtain a quantum theory by first writing down a classical 
theory and then applying a definite set of rules to turn it into a quantum 
theory. Why cannot the same thing be done with the general theory of rel­
ativity? If one proceeds to do this one does get some encouraging results at 
first. In particular one finds that like other forces, gravity is also mediated 
by a new kind of elementary particle. This particle has been given the name 
graviton. Like the diagram in Fig. 3 one will have a diagram where two 
electrons exchange a graviton, representing the (tiny amount of) deflection 
of one of the electrons due to the gravitational force of the other electron. 

So far everything seems to be proceeding as desired. However, one 
soon runs into a problem with this approach. To understand the origin 
of this difficulty consider the process shown in Fig. 5 involving multiple 
graviton exchanges. As in the case of the standard model, there are precise 
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Fig. 5. An infinite contribution to the gravitational scattering of two electrons. 

mathematical rules for computing the probability amplitude of this process 
in the quantum general theory of relativity. When one applies those rules 
to calculate this probability amplitude, one finds that the result is infinity! 

This is clearly a nonsensical answer! In actual practice we know that 
this probability must be extremely tiny since no experiment has yet seen 
the effect of gravitational force between elementary particles. Thus there 
must be something wrong with this theory. 

In order to appreciate how string theory eventually resolves this prob­
lem, it will be useful to investigate in a little more detail the origin of this 
problem. You would notice that in a diagram like the one shown in Fig. 5 
there are 'interaction vertices' where three (or more) lines meet. For exam­
ple in Fig. 5 there are four such interaction vertices. These are the points 
where something happens. We can regard these points as the basic events 
which make up the complete process. Each such event takes place at a 
given point in space at a given time, and in order to calculate the total 
probability amplitude of the process we must integrate over the location 
of each event in space as well as in time. It turns out that the integrand, 
calculated using the rules of quantum theory, diverges (becomes infinite) 
when more than two or more such elementary events take place at the same 
point in space at the same time. This in turn causes the integral to diverge 
occasionally.3 

3 Similar divergences also occur in the standard model, but can be removed by a procedure 
known as renormalization. This procedure does not work for general theory of relativity 
since the divergences are more severe. 
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In any case the final outcome of this complicated analysis is that the 
standard procedure that has been successful in formulating a quantum the­
ory of strong, weak and electromagnetic forces do not work for gravity, and 
for this reason it is not easy to incorporate gravity into the standard model. 

Besides the problem of incorporating gravity, the standard model suf­
fers from other conceptual and technical problems. While it is true that 
the standard model, once formulated, can predict the results of most exper­
iments involving elementary particles, the formulation of the theory itself 
requires a lot of input from experiments. For example, there are many con­
sistent gauge theories, often labeled by several continuous parameters, and 
standard model corresponds to one of these theories with a specific choice of 
the values of these parameters. There is no explanation within the theory as 
to why this particular gauge theory with this particular choice of parameters 
should describe our universe. Furthermore the choice of parameters which 
describes the standard model are not generic, but requires very fine tuning. 
This is evident from the fact that the theory has some extremely small 
dimensionless numbers like the ratio of gravitational and electromagnetic 
force between two elementary particles. For a generic choice of parameters 
this ratio would be of order one. Finally recent experiments show that not 
all predictions of the standard model are completely correct. In particular, 
according to the standard model the neutrinos are zero mass particles, but 
recent experiments show that neutrinos actually have a tiny but finite mass. 
This requires a small modification of the gauge theory that describes the 
standard model. 

These are some of the reasons why we believe that the standard model 
is not the final story. In the rest of this article we shall try to see how string 
theory attempts to address some of these issues. 

4. String Theory 

The basic idea in string theory is quite simple. It says that the elemen­
tary constituents of matter are not point-like objects (particles) but one-
dimensional objects. These one-dimensional objects, also known as the 
fundamental (or elementary) strings, have very specific properties which 
determine the various modes in which the string can vibrate. However, 
to the present day experimentalists these strings appear as particles since 
their size is small compared to the distance scale that can be probed by the 
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Fig. 6. Vibrating closed and open strings. 

most powerful microscopes available today.4 In particular, different vibra­
tional states of a fundamental string appear to us as different elementary 
'particles' just as the different modes of vibration of a single musical string 
can produce different harmonics of a note. Thus in string theory instead 
of having different types of elementary particles we have one single type of 
elementary string as the basic constituent of matter. Figure 6 shows some 
of the vibrational states of strings. As is evident from this figure, strings 
can come in two varieties — closed strings which have no boundary and 
open strings which have two end points forming its two boundaries. 

Since quantum mechanics and special theory of relativity are two of the 
basic inputs in the standard model, and since string theory must include 
the standard model if it is to describe our universe, it is natural to re­
quire that string theory also respects the principles of quantum mechanics 
and special theory of relativity. However, one finds that for various tech­
nical reasons it is not easy to respect these principles. In fact, the only 
way we can respect these principles is by formulating string theory not in 
the usual three-dimensional space but in a hypothetical nine-dimensional 
space.5 Furthermore in this nine-dimensional space one can formulate al­
together five different types of string theory — known as the Type I, Type 
IIA, Type IIB, E 8 xE 8 heterotic and SO(32) heterotic string theories. These 
five string theories differ from each other in the type of vibrations which the 
string performs. As a result they have different vibrational states, which is 

4 The most powerful microscopes available today are in fact the particle accelerators. In 
these machines we accelerate particles to a velocity close to that of light so that they 
carry very high energy and then collide them with other particles. This process has 
the capability of (indirectly) probing the structure of matter to a very small scale. The 
minimum distance that can be resolved by the current accelerators is about 1 0 - 1 6 c m . 
5We often count time as an additional dimension and describe this as a ten-dimensional 
space-time. But in this article we shall only count the number of space dimensions. 
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Fig. 7. A process describing a pair of strings scattering from each other. 

reflected in the spectrum of elementary 'particles' that each of these theories 
produce. 

Having nine space dimensions instead of three seems to be a serious 
problem. We shall return to this issue shortly and show that this, in fact, 
is not a very serious problem. However, let us leave aside this problem 
for a moment and discuss some of the good things which string theory 
provides. First of all, one finds that one of the vibrational states of string 
theory have properties identical to that of a graviton — the mediator of 
gravitational force. Furthermore one finds that string theory calculations 
do not suffer from any infinities of the type we encounter while trying to 
directly quantize general theory of relativity. Thus string theory provides 
us with a finite quantum theory of gravity! 

It is instructive to try to understand why the probability amplitudes 
calculated in string theory are finite. For this we need to look at Fig. 7 
describing the process of scattering of two strings. Like in the case of point 
particle theories, there are definite mathematical rules for calculating the 
probability amplitude of this process. The point to note is that in this 
diagram there are no points where specific events (like splitting of a single 
string into a pair of strings) take place; the diagram is completely smooth 
everywhere. As a result the divergences in the point particle theories — 
which arise when two or more such events take place at the same point at 
the same time — are absent in string theory. This is the intuitive reason 
why string amplitudes are finite. 

At this point, we must mention that the graviton is only one of the many 
vibrational states of an elementary string. In fact, the laws of quantum 
mechanics tell us that a single elementary string has infinite number of 
vibrational states. Since each such vibrational state behaves as a particular 
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Fig. 8. A two-dimensional space with a compact coordinate. 

type of elementary particle, string theory seems to contain infinite types of 
elementary particles. This would be in contradiction with what we observe 
in nature were it not for the fact that most of these elementary particles 
in string theory turn out to be very heavy, and not observable in present 
experiments. Thus, there is no immediate conflict between what string 
theory predicts and what we observe in actual experiments. On the other 
hand, these additional heavy elementary particles are absolutely essential 
for getting finite answers in string theory. 

Let us now return to the issue about the dimension of space-time. Con­
sistency of string theory demands that we can formulate the theory only 
in nine space dimensions. How can string theory be relevant for describing 
nature, which seems to have only three space dimension? The answer to 
this question is provided by an old idea known as compactification. This 
idea was pioneered by Kaluza and Klein during the first half of the twen­
tieth century and Einstein himself had been attracted by this idea. We 
shall illustrate the basic idea by a simple example in which we begin with a 
world with two space dimensions instead of nine space dimensions. We take 
the two space coordinates to describe the surface of a cylinder of radius R 
instead of an infinite plane as shown in Fig. 8. All objects (including light) 
in this world can move only along the surface of the cylinder. Thus if we 
move along the vertical direction in the figure, then after traveling a certain 
distance (2irR where R is the radius of the cylinder) we shall traverse the 
whole circumference of the circle and come back to the original point where 
we started. We call this a compact direction. In contrast, an object can 
travel along the horizontal direction without ever returning to its original 
position and we call this the non-compact direction. 

Clearly if R is very large (larger than the range of the most powerful 
telescope) then the two-dimensional space will appear to be infinite in both 
directions and we would not know that one of the directions is compact. If 
R is within the visible range, then the two-dimensional creatures will start 
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Fig. 9. A two-dimensional space with a small compact coordinate. 

seeing infinite number of images of each object separated by an interval 
of 2-KR since light from any object can reach an observer in many (infi­
nite number of) ways — directly, traveling once around the circumference, 
traveling twice around the circumference, etc. This may seem strange from 
our point of view but will not at all seem strange from the point of view 
of the two-dimensional people living in this world since they would always 
see their world this way. But now consider the case when R is very small, 
as shown in Fig. 9. Clearly this world looks one-dimensional as R —> 0. 
In fact, as long as R is smaller than the resolution of the most powerful 
microscope, the two-dimensional people will never know that they have a 
hidden dimension in their world. To them the world will appear to be 
one-dimensional. 

This illustrates the way a universe with a certain number of space di­
mensions can 'appear to be' a universe with less number of dimensions. 
This idea can be generalized to make the nine-dimensional world of string 
theory look like the three-dimensional world in which we live. All we need 
to do is to take six of the nine space directions to be small, describing 
a compact space K. When the size of K is sufficiently small, the space 
will appear to be three-dimensional. The main difference with the two-
dimensional example that we discussed is that while there is only one one-
dimensional space (namely the circle) that can be used for making one 
direction compact, there are more possibilities in higher dimensions. An 
important class of six-dimensional spaces which are useful for compactifica-
tion of string theory are the so-called Calabi-Yau spaces. There are many 
different six-dimensional Calabi-Yau spaces, and the theory that describes 
the three-dimensional world after compactification depends on the choice 
of the compact space K, as well as which of the five string theories we start 
from in nine dimensions. 

Often the three-dimensional theory found this way comes very close to 
describing the world we see around us. In particular, when we examine 
the vibrational states of the string in such a space, not only do we find the 
graviton, but we often find 'gauge bosons' — the kind of particles which 
mediate strong, weak and electromagnetic forces. Some other vibrational 
states have properties similar to those of various quarks, leptons, Higgs 
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particle, etc. Thus string theory has the potential of describing a unified 
theory of elementary particles and all the forces operating between them. 

We would like to emphasize here that in string theory we use quantum 
mechanics and special theory of relativity as basic inputs; but the general 
theory of relativity and gauge theories come out of string theory. Thus 
string theory in a sense provides an explanation of why the forces operating 
in our universe are described by general theory of relativity and gauge 
theories. 

Of course, all is not well at this stage. First of all, we have the problem 
that even though we know of many string compactifications which come 
very close to describing the world that we see, there is no known compact-
ification that describes exactly the world that we see around us. Trying 
to look for a string compactification that describes exactly the theory that 
governs our universe is an active area of research in which many theorists 
are participating. Second, one might wonder what is the basic principle 
that one uses to decide which of the five string theories is the right theory 
for describing our universe. If we are looking for a theory that describes 
everything in our universe, wouldn't it be nicer to have a single mathe­
matically consistent theory rather than five consistent theories? Finally, 
even if there is some principle that tells us which of the five string theories 
we should use, there are still many different choices of the compact space 
that bring us down to three dimension; and one might wonder what prin­
ciple decides on the choice of the compact space. In fact, it is possible to 
have string compactification where the number of non-compact direction 
is different from three; all it requires to have d non-compact directions is 
to choose an appropriate compact space of dimension (9 — d). Thus the 
question arises as to why our world is three-dimensional? We shall try to 
address some of these issues in the next section. 

5. Duality, M-theory and the Early Universe 

So far we have discussed the role played by the vibrational states of a 
single fundamental string. However, these are not the only possible objects 
in string theory. String theory contains many other types of objects which 
can be made of more than one (some time infinite number of) fundamental 
strings. We shall call these objects composite objects. 

In conventional approach to the study of elementary constituents of 
matter, we make a clear distinction between elementary and composite 
objects. For example in the standard model the quarks are elementary 
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particles while the proton and the neutron are composite particles made 
of quarks. The standard model tells us various properties of quarks and 
other elementary particles in the theory; the properties of protons, neutrons 
and other composite objects can be derived from the properties of these 
constituent particles. Thus elementary particles enjoy a previlaged position 
in the description of the theory. 

The initial formulation of string theory was based on the same principle, 
with the role of elementary particles being taken over by the elementary 
strings. The vibrational states of the elementary string were the analogs of 
the elementary particles; all other objects made of more than one elemen­
tary string were composite objects whose properties could in principle be 
derived from the properties of the elementary string. However this picture, 
that gives a special role to the elementary particles, got modified dramati­
cally after the discovery of duality symmetries in string theory. This is the 
story to which we now turn. 

During the mid 90's it was realized that some time a pair of theories 
which 'look' different may actually describe the same physical theory. In 
other words, the same physical theory may have different descriptions as 
different compactifications of different string theories. This symmetry, re­
lating the two apparently different theories, is known as the duality sym­
metry. This name is actually a misnomer, since often one finds more than 
two descriptions of the same physical theory. One of the surprising features 
of duality symmetries is that a particle which looks elementary in one de­
scription may appear as composite in a dual description. Thus whether a 
given particle is elementary or composite is not an intrinsic property of the 
particle, but depends on which particular description we use for the string 
theory under study. 

Another aspect of duality is that typically the coupling constant of the 
theory — the parameter that determines the strength of various forces 
operating between the elementary particles — is related to the coupling 
constant of the dual theory in a complicated way. Due to this one finds 
that often a weakly coupled theory, i.e. a theory with small value of the 
coupling constant is related by duality to a theory with large value of the 
coupling constant. Since it is easier to do calculations in a theory for 
small value of the coupling constant, often duality relates the results of a 
complicated calculation in one theory to the results of a simple calculation 
in the dual theory.6 

6 Due to the difficulty in doing calculations in a strongly coupled theory, most of the 
dualities have not been proven, but have been tested in many different ways. 



42 A. Sen 

It is best to illustrate this with some examples. We begin with an 
example of duality involving theories with all nine dimensions non-compact. 
We had earlier introduced five different consistent string theories in nine 
dimensions. It turns out that the type I string theory and the SO(32) 
heterotic string theory are dual to each other in the sense described above. 
They 'look' different because the set of elementary particles, obtained from 
the states of the elementary string, are quite different in the two theories. 
However when one considers the full set of particles — elementary and 
composite — in the two theories, one finds that the two sets are identical. 
The coupling constant of the heterotic string theory turns out to be equal 
to the inverse of the coupling constant of the type I theory. Thus when the 
heterotic string is weakly coupled the type I string is strongly coupled and 
vice versa. 

Another example of duality involves string theories with five non-
compact space directions. We take any one of the two heterotic string 
theories and take four of the space directions to be compact, each describ­
ing a circle of certain radius. Such a four-dimensional space is known as a 
four torus, denoted by the symbol T4 . On the other side we take type IIA 
string theory and make four of the space directions compact, this time de­
scribing a more complicated four-dimensional space known as K3. It turns 
out that these two five-dimensional string theories are dual to each other. 

In special cases a particular compactification of string theory may be 
related to itself by a duality symmetry. In this case the duality symmetry 
will relate the elementary and composite particles in the same theory. Such 
theories are known called self-dual. For example type IIB string theory 
with all directions non-compact is a self-dual theory. Another example is 
any of the two heterotic string theories with six compact directions, each 
described by a circle. In both these theories duality typically relates an 
elementary particle to a composite particle. 

Using various known dualities between different compactification of dif­
ferent string theories one can now argue that all five string theories are 
different ways of describing a single theory. This theory has been given 
the name M-theory. Different compactifications of different string theories 
which are not related by duality are to be regarded as different phases of 
M-theory, much in the same way that water, ice and steam are to be 
regarded as different phases of a single theory — the theory of water 
molecules.7 A schematic (and much simplified) picture of the phases of 

7 One difference between these two cases is that while for water the three phases are 
stable for different values of temperature, pressure, etc., different compactifications of 
string theory are all stable phases at zero temperature. 
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Fig. 10. Phases of M-theory. 

M-theory has been shown in Fig 10. A point in this diagram represents 
a phase of M-theory, and the five holes represent the five weakly coupled 
string theories through which we may try to get a view of the different 
phases of the theory. In principle, any point can be viewed as an appro­
priate 'compactification' of any of the five string theories, but clearly if we 
consider a point near one of the windows — representing the corresponding 
string theory with small value of the coupling constant — we have a better 
view of the point from that window. Understanding what lies in the in­
terior of the phase diagram representing phases of M-theory which cannot 
be viewed as weakly coupled theories from the viewpoint of any of the five 
string theories, is one of the most challenging problems for the present day 
string theorists. 

Thus the problem of connecting M-theory to nature reduces to: 

1. Demonstrating that there is a phase of M-theory that describes exactly 
the nature that we observe. 

2. Explaining why nature exists in this particular phase and not in any 
other phase. 

Both issues are currently under active investigation by many researchers. I 
shall end this talk by describing some speculative ideas on the second issue. 

It has recently been found that M-theory has certain metastable phases. 
These metastable phases are analogous to the supercooled or superheated 

J 
2 
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phases of matter. Consider for example the case of a supercooled water — 
water below the normal freezing point. As long as there is no disturbance 
the water remains as water, but a small disturbance in any part of the 
system will make a small region around that part condense into the more 
stable ice phase. This small region of ice will then expand inside the water 
and eventually convert the whole water into ice. Similarly the metastable 
phases of M-theory have the property that occasionally some regions of the 
universe in this phase may make transition into a more stable phase, and 
this region then grows with time, converting the surrounding region into 
the more stable phase. 

There is however a crucial difference between the way a metastable phase 
of M-theory behaves and a metastable phase of a normal fluid behaves. 
The metastable phases of M-theory which are relevant for our discussion 
have an additional property that if any region of the universe is in that 
phase, it expands rapidly as a consequence of the laws of general theory of 
relativity. In technical terms we say that these phases have positive values 
of the cosmological constant — a constant that Einstein had introduced 
into the equations for general relativity and later abandoned due to lack of 
experimental evidence.8 Often the rate of expansion of the universe due to 
this cosmological constant term turns out to be much faster than the rate 
of expansion of the bubbles of more stable phases which might form inside 
these metastable phases. 

Let us now combine these two facts about the metastable phases of 
M-theory, and study how the universe will evolve if any region of the uni­
verse happens to be in such a metastable phase of M-theory. First of all, 
due to the cosmological constant term such a region of the universe will ex­
pand very rapidly. At the same time in different parts of the universe small 
regions of more stable phases will form9 which will then grow, converting 
the surrounding region of the universe into the more stable phase. In fact, 
inside different bubbles we may have different stable phases of M-theory. 
In a normal fluid this process will stop when the walls of the expanding 
bubble eventually collide; and eventually the entire fluid will be converted 
to the most stable of all the phases. However, in the current situation this 

8 Recent experiments have found that our universe has a small but non-zero value of the 
cosmological constant. Thus Einstein was right after all! The phases of M-theory which 
we are discussing here have much larger values of the cosmological constant. 
9 Even if there is no external disturbance, the laws of quantum mechanics predict that 
there will be some intrinsic disturbance in the universe which causes some randomly 
chosen regions to form small bubbles of more stable phases. 
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Fig. 11. State of the universe. 

never happens since the universe as a whole is expanding rapidly due to 

the cosmological constant. Thus the process continues ad infinitum; the 

original universe keeps on expanding, and more and more bubbles of stable 

phases form in different regions of the universe. Eventually every possible 

phase of M-theory is realized inside one or more bubbles. This situation 

has been depicted in Fig. 11. 

In this picture, no single phase of M-theory is preferred by nature. The 

world tha t we see around us exists in a particular phase simply because we 

happen to live in this part of the world. If we had lived in another par t of 

the world we would see a different phase. Of course, in most of the phases 

of M-theory life as we know would be impossible, and so nobody would be 

there to observe these phases. But tha t is another matter! 

6. S u m m a r y 

There are various aspects of string theory which I have left out of our dis­

cussion. These include string theory analysis of black hole entropy, duality 

between string theory and gauge theory, etc. My main focus in this article 

has been to explain how string theory brings us closer to Einstein's dream. 

However, we are still quite far from realizing our final goal of finding a com­

plete theory of elementary constituents of mat ter . It is up to the present 

and the future generation of string theorists to carry the theory forward 

towards this goal. It will be an uphill task but worth the effort. 
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This article is intended as an impressionistic but reasonably self-
contained account of black hole entropy, its physical significance, the 
tortuous historical route to its discovery, how it fits in the framework 
of string theory, and what we can learn from it about the fundamental 
degrees of freedom of quantum gravity. 

1. S y n o p s i s 

One of the intriguing properties of a black hole is tha t it carries entropy 

much like an ordinary hot body. A beautiful general formula for this en­

tropy due to Bekenstein and Hawking provides a deep connection between 

quantum mechanics, general relativity and thermodynamics. 

For an ordinary body, its entropy equals the logarithm of the number 

of ways the atomic constituents of the body configure themselves. But 

for a black hole, it is far from clear what microscopic constituents might 

account for its entropy. It has been one of the outstanding open problems 

in physics to arrive at such a microscopic, statistical understanding of black 

hole entropy. 

There has been considerable progress in recent years in addressing this 

question in the context of string theory. For a special class of black holes, in 

many cases, the number of microstates is e x a c t l y computable and is found 

to be in precise agreement with the number of states inferred from the 

entropy to all orders in a perturbative expansion. For this comparison to 

work, it is essential to systematically take into account quantum corrections 

to the spacetime geometry and the Bekenstein-Hawking formula itself. 
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Thus, the entropy of a black hole supplies us with precise quantitative in­
formation about the fundamental degrees of freedom and offers us glimpses 
of the inner workings of quantum gravity. These and related developments 
have led to important insights into the structure of quantum gravity which 
include in particular the notion of 'holography' and the emerging notion of 
'quantum spacetime.' 

Apart from its physical significance, the entropy of a black hole makes 
for a fascinating study in the history of science. It is one of the very 
rare examples where a scientific idea has gestated and evolved over several 
decades into an important conceptual and quantitative tool almost entirely 
on the strength of theoretical considerations. That we can proceed so far 
with any confidence at all with very little guidance from experiment is 
indicative of the robustness of the basic tenets of physics. It is therefore 
worthwhile to place black holes and their entropy in a broader context 
before coming to the more recent results pertaining to the quantum aspects 
of black holes within string theory. 

This article is intended as an impressionistic but reasonably self-
contained account of black hole entropy, its physical significance, the tor­
tuous historical route to its discovery, how it fits in the framework of string 
theory, and what we can learn from it about the fundamental degrees of 
freedom of quantum gravity. 

2. The Trinity of Constants 

Perhaps a good measure of the unusual scope and influence of Einstein's 
ideas is the extent to which his thinking has shaped our understanding of 
the three fundamental constants of nature — the speed of light c, Planck's 
constant h and Newton's gravitational constant G. It is also revealing to 
see the extent to which these constants in turn have circumscribed the 
development of physics in the last century. In a sense, a very large part 
of modern physics can be viewed as an elucidation of the meaning of these 
constants and of the relation between them. With his Special and General 
Theory of Relativity and with his work in Quantum Theory, Einstein, more 
than any other single individual, has profoundly transformed the way we 
think about these constants.1 

1 I t is equally remarkable that this does not exhaust the breadth of Einstein's oeuvre and 
leaves out his very important work in statistical physics including his work on Brownian 
motion and critical opalescence. 
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Of the three constants, Planck's constant H, which governs the laws of 
the quantum world, has surely had a more pervasive influence on twentieth 
century physics. Even though Einstein never completely reconciled himself 
with the full implications of the quantum revolution that unfolded, his own 
contributions to the subject were nothing but revolutionary. In his paper in 
the miracle year 1905 on the photo-electric effect, Einstein introduced the 
light-quantum. With it, he introduced the corpuscular, quantum nature of 
the electromagnetic waves into physics and opened the door to the particle-
wave duality of quantum mechanics. His other contributions to quantum 
theory were minor perhaps only by his monumental standards since they 
include the Bose-Einstein statistics and the idea of Bose-Einstein conden­
sation of matter which was verified experimentally only very recently; his 
work on the specific heat of solids with which began the quantum theory 
of solids; his work on spontaneous and induced emission of radiation that 
anticipated quantum electrodynamics and led to the technology of lasers; 
and his critique of quantum mechanics with the Einstein-Podolsky-Rosen 
correlations which brought the spooky quantum behavior into sharp relief. 

The second constant, the speed of light c is the cornerstone of the special 
theory of relativity. The fact that light is an electromagnetic wave traveling 
at the speed c was a celebrated piece of nineteenth century physics — a 
consequence of Maxwell's equations for the electromagnetic field. Lorentz 
and Poincare, among others, had recognized that Maxwell's equations do 
not change their form under 'Lorentz transformations' which relate space 
and time coordinates of observers in uniform motion with respect to each 
other. This invariance of Maxwell's equations under Lorentz transforma­
tions however implied that time must dilate and lengths must contract. 
This was a startling conclusion. For Lorentz and Poincare it signified a 
mysterious new dynamics. It sent them on a wrong track in a fruitless 
search for some complicated new forces that could explain the contraction 
of length. 

Einstein's great insight was to look for the origin of Lorentz transfor­
mations not in the dynamics, which has to do with the forces, but in the 
kinematics, which has to do with the definition of time and length. He 
recognized that the dilation of time and contraction of space followed from 
a precise operational definition of 'simultaneity' of events that was purely 
kinematic. Since it was kinematic, it meant that the invariance under 
Lorentz transformations and the notion of space and time that it implied 
must be a property of the laws of motion of all objects and not only of the 
electromagnetic field. It is with this crucial observation of Einstein that 
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the speed of light enters into particle mechanics. The relativistic kinemat­

ics puts the speed of light as the upper limit for all material propagation, 

particle or wave, electromagnetic or otherwise. The formula E = mc2, im­

mortalized in popular imagination, then follows from this new kinematics. 

The third and the oldest of the trinity of constants, the gravitational 

constant G, belongs to the general theory of relativity, the greatest of Ein­

stein's achievements. The general theory is actually not about G alone but 

rather about the two constants G and c together. Newton's law of gravita­

tion requires tha t the force of gravity acts instantaneously. This is clearly at 

odds with special relativity which requires tha t no physical signal can travel 

faster than the speed of light. For example, according to Newton's gravity, 

if sun were to disappear suddenly, its gravity would disappear too and we 

on earth would come to know about it instantaneously, even though light 

takes about eight minutes to reach us from the sun. This s tate of affairs 

was clearly unsatisfactory and purely for reasons of internal consistency of 

the physical theory, it was essential to find a broader framework tha t syn­

thesized Newton's gravity with special relativity. Such a framework would 

be required for describing phenomena where both G and c are important . 

In general relativity, Newton's constant acquires a completely new 

meaning. For Newton, G is the constant of proportionality tha t appears in 

his inverse square law of gravitation. For Einstein, G is the constant tha t 

determines the degree to which a given distribution of mat ter warps space 

and time. In this new conception, spacetime was no longer a spectator of 

events but itself a dynamical participant tha t changed in response to the 

amount of mat ter present. It was no longer flat and Euclidean but curved 

in much the same way as the surface of the earth is round and curved. This 

curvature of spacetime is, according to Einstein, the origin of gravity. In 

a flat plane, parallel lines never meet. But in a curved space, as on the 

surface of the earth, two observers heading straight in two parallel lines 

start ing on the equator will eventually meet at the nor th pole because of 

the curvature. In an analogous way, in general relativity, trajectories of two 

gravitating bodies appear to a t t rac t as if because of a force of gravity but 

it is only because they are moving in a curved spacetime. 

The rich harvest of the synthesis effected by general relativity has still 

not been fully reaped. Just to take two examples of the major efforts in 

observational astronomy in this century, one is the LIGO project tha t is 

seeking to detect the wave of gravitational influence tha t travels at the 

speed of light and the other is the W M A P project tha t has already given 

us the incredibly detailed picture of the early big-bang cosmology within 

the framework of general relativity. 
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One unmistakable pattern in the history of modern physics is the pro­
gressive synthesis of ideas by which previously disparate structures are har­
monized into a bigger framework. Thus, with special relativity, Einstein 
harmonized Maxwell's electrodynamics with Newton's mechanics introduc­
ing c into mechanics. With general relativity, he further harmonized this 
structure with Newton's law of gravitation, bringing together c and G. 

Clearly one cannot stop here. The next synthesis requires harmonizing 
the special theory of relativity with quantum mechanics to describe the 
realm of phenomena where both c and h are important. It is the arena of 
relativistic quantum field theories that was developed over five decades in 
which Einstein himself did not play much of a role. Quantum field theory 
has proved to be the right framework where the duality of wave and particle 
nature of matter finds its full expression. Starting with Quantum Electro­
dynamics all the way to the Standard Model of Particle Physics based on 
quantum gauge theories, quantum field theory has occupied center stage in 
the study of fundamental interactions. Quantum field theory now encom­
passes three of the four fundamental interactions including electromagnetic 
as well as the weak and strong nuclear interactions. We possess a theory 
of elementary particles, the fundamental blocks of matter and their inter­
actions, that has been tested to great accuracy to distances thousands of 
times smaller than the atomic nucleus. 

That brings us to the final synthesis that still beacons us — a coherent 
description of physics in the realm where all three fundamental constants 
are simultaneously important. In other words, a quantum theory of gravity. 
Gravity, has thus far stubbornly refused to be integrated into the framework 
of quantum field theory. There is every indication that to do so, another 
revolutionary change in the paradigm of physics is necessary. 

In this search for an overarching framework of quantum gravity that 
would harmonize quantum mechanics with general relativity, we have had 
little guidance from experiment. At this historical juncture, there is a 
peculiar situation in physics. We have two theories that are tremendously 
successful in their respective domain — Quantum field theory for describing 
the world at small scales in the realm of elementary particles, and General 
Relativity for describing the world at large scales all the way from our 
solar system to the universe. There is no experimental compulsion of an 
unexplained fact that forces us to bring these two theories together. At the 
same time, at a theoretical level it is absolutely necessary. As they stand, 
the two theories are in a violent conflict with each other in much the same 
way that special relativity was at odds with Newton's law of gravitation. 
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In the best of all possible worlds, theory and experiment work together. 
Without the sobering guidance from experiment the task of finding the 
correct theory of quantum gravity is much more difficult and far more risky. 
And yet history exhorts us to go on. Perhaps, Einstein's struggles towards 
the general theory of relativity can be our inspiration. Fortunately, we are 
also given an indirect but definitive piece of information that we can use to 
peer at the quantum structure of gravity. 

It is the entropy of a black hole. 

3. Black Holes 

A black hole is a solution of Einstein's gravitational field equations in the 
absence of matter that describes the spacetime around a gravitationally 
collapsed star. Its gravitational pull is so strong that even light cannot 
escape it. 

A black hole is now so much a part of our vocabulary that it can be 
difficult to appreciate the initial intellectual opposition to the idea of 'grav­
itational collapse' of a star and of a 'black hole' of nothingness in spacetime 
by several leading physicists, including Einstein himself. 

To quote the relativist Werner Israel, 
"There is a curious parallel between the histories of black holes and 

continental drift. Evidence for both was already non-ignorable by 1916, but 
both ideas were stopped in their tracks for half a century by a resistance 
bordering on the irrational.'" 

3.1. Schwarzschild and Einstein 

On January 16, 1916, barely two months after Einstein had published the 
final form of his field equations for gravitation [1], he presented a paper to 
the Prussian Academy on behalf of Karl Schwarzschild [2], who was then 
fighting a war on the Russian front. Schwarzschild had found a spheri­
cally symmetric, static and exact solution of the full nonlinear equations of 
Einstein without any matter present. 

The Schwarzschild solution was immediately accepted as the correct de­
scription within general relativity of the gravitational field outside a spher­
ical mass. It would be the correct approximate description of the field 
around a star such as our sun. But something much more bizzare was 
implied by the solution. For an object of mass M, the solution appeared 
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to become singular at a radius R = 2GM/c2. For our sun, for example, 
this radius, now known as the Schwarzschild radius, would be about three 
kilometers. Now, as long as the physical radius of the sun is bigger than 
three kilometers, the 'Schwarzschild's singularity' is of no concern because 
inside the sun the Schwarzschild solution is not applicable as there is mat­
ter present. But what if the entire mass of the sun was concentrated in a 
sphere of radius smaller than three kilometers? One would then have to 
face up to this singularity. 

Einstein's reaction to the 'Schwarzschild singularity' was to seek argu­
ments that would make such a singularity inadmissible. Clearly, he believed, 
a physical theory could not tolerate such singularities. This drove him to 
write as late as 1939, in a published paper, 

" The essential result of this investigation is a clear understanding as to 
why the 'Schwarzschild singularities' do not exist in physical reality." 

This conclusion was however based on an incorrect argument. Einstein 
was not alone in this rejection of the unpalatable idea of a total gravitational 
collapse of a physical system. In the same year, in an astronomy conference 
in Paris, Eddington, one of the leading astronomers of the time, rubbished 
the work of Chandrasekhar who had concluded from his study of white 
dwarfs, a work that was to earn him the Nobel prize later, that a large 
enough star could collapse. 

It is interesting that Einstein's paper on the inadmissibility of the 
Schwarzschild singularity appeared only two months before Oppenheimer 
and Snyder published their definitive work on stellar collapse with an ab­
stract that read, 

" When all thermonuclear sources of energy are exhausted, a sufficiently 
heavy star will collapse." 

Once a sufficiently big star ran out of its nuclear fuel, then there was 
nothing to stop the inexorable inward pull of gravity. The possibility of 
stellar collapse meant that a star could be compressed in a region smaller 
than its Schwarzschild radius and the 'Schwarzschild singularity' could no 
longer be wished away as Einstein had desired. Indeed it was essential to 
understand what it means to understand the final state of the star. 

3.2. Event horizon 

What Einstein referred to as the 'Schwarzschild singularity' is in the matter 
of fact not a physical singularity at all. It is rather a coordinate singularity 
because of a bad choice of coordinates. The coordinates that Schwarzschild 
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used to find his solution is more suited for an observer who wants to re­
main at a fixed distance r from the center. Far away, the constant r 
surface is time-like, that is, the observer who wants stay fixed at that 
radius is moving slowly compared to a freely falling observer. But near the 
Schwarzschild radius, r = R, because of the way the space time is curved in 
the Schwarzschild geometry, the surface r = R is a light-like surface. That 
is, an observer who wants to remain fixed at that radius has to move at 
the speed of light. To do so, the observer has to turn on her rockets with 
infinite acceleration, a physical impossibility. It is this unphysical choice of 
coordinates that led to the misleading conclusion of a 'singularity' which is 
not really an intrinsic property of the geometry of spacetime. 

Mathematically, a very close analogy for a such a coordinate singularity 
is the singularity in polar coordinates (p, 6) in a plane near the origin p = 0. 
The plane is perfectly flat at all points. Its origin is no different from any 
other point of the plane and the geometry of the plane at the origin is 
perfectly nonsingular. The proper coordinates at all points for a plane are 
the cartesian coordinates (x,y). These 'good' coordinates are related to 
the polar coordinates by x = pcosO and y = psin8. Now, at the origin, 
the polar coordinates are bad because the point x = 0, y = 0 does not have 
a unique coordinatization — as long as p = 0, all arbitrary values of 6 
would correspond to the same single point x = 0,y — 0. This coordinate 
singularity does not signify any intrinsic singularity of the geometry of the 
plane and in fact can be avoided by simply using the Cartesian coordinates 
near the origin. 

The 'Schwarzschild singularity' can be similarly avoided by a proper 
choice of 'good' coordinates. In general relativistic spacetime, the analog 
of a cartesian coordinate frame is the coordinate frame of an observer who 
is freely falling through spacetime with her rocket engines switched off. 

The surface r = R, even though not singular and perfectly ordinary in 
terms of its local geometry, is nevertheless rather peculiar in terms of the 
global causal structure. Since the surface is moving at the speed of light, 
once an observer crosses it, she cannot come out no matter how powerful 
her rockets. Because to do so, she would have to move faster than the 
speed of light. Thus, the r = R surface is the boundary of the 'inside of 
a black hole' from behind which even light cannot escape to the observer 
who is sitting far away from the black hole. This boundary is then in the 
causal sense a one way surface. From outside, we can send signals across 
the surface but can never receive signals coming out from it. Such a one­
way surface is called an 'Event Horizon'. The black hole is more precisely 
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then the region of spacetime bounded by the event horizon. It is literally a 
hole in spacetime which is black because no light can come out of it. The 
name 'black hole' for this final state of the collapsed star, a spacetime with 
an event horizon, was proposed by John Wheeler in 1967 and it stuck. 

Much of the interesting physics of a black hole, both classical and quan­
tum, and the fact that a black hole has entropy, has to do with the existence 
of an event horizon. 

3.3. Simple and yet complex 

A black hole is at once the most simple and the most complex object. 
It is the most simple in that it is completely specified by its mass, spin 

and charge. This remarkable fact is a consequence of the so-called 'No Hair 
Theorem'. For an astrophysical object like the earth, the gravitational 
field around it depends not only on its mass but also on how the mass is 
distributed and on the details of the oblateness of the earth and on the 
shapes of the valleys and mountains. Not so for a black hole. Once a star 
collapses to form a black hole, the gravitational field around it forgets all 
details about the star that disappears behind the even horizon except for 
its mass, spin and charge. In this respect, a black hole is very much like a 
structure-less elementary particle such as an electron. 

And yet it is the most complex in that it possesses a huge entropy. In 
fact the entropy of a solar mass black hole is enormously bigger than the 
thermal entropy of the star that might have collapsed to form it. As we will 
see in Sec. 4, entropy gives an account of the number of microscopic states of 
a system. Hence, the entropy of a black hole signifies an incredibly complex 
microstructure. In this respect, a black hole is very unlike an elementary 
particle. 

Understanding the simplicity of a black hole falls in the realm of classical 
gravity. By the early seventies, full fifty years after Schwarzschild, a reason­
ably complete understanding of gravitational collapse and of the properties 
of an event horizon was achieved within classical general relativity. The 
final formulation began with the singularity theorems of Penrose, area the­
orems of Hawking and culminated in the laws of black hole mechanics which 
we will come to in Sec. 5. 

Understanding the complex microstructure of a black hole implied by its 
entropy falls in the realm of quantum gravity. To understand the meaning 
of the entropy of a black hole and its implications, let us first recall what 
we understand by entropy in thermodynamics and statistical physics. 
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4. Entropy and Microstates 

Entropy is among the more subtle concepts in physics. It is not a property 
of a single microstate like energy or charge, but gives instead a count of the 
total number of microscopic states available to a macroscopic system that 
has fixed total energy and total charge. 

Entropic and statistical considerations have been used to great advan­
tage in physics to draw profound conclusions about the atomic microstruc-
ture from gross thermodynamic properties such as temperature and heat 
exchange. For example, already in the 19th century, some of the far-seeing 
physicists of the time were keenly aware of the crisis of classical physics 
based purely on statistical considerations. 

For example, by looking at the specific heat of gases such as oxygen, 
Maxwell and Jeans had correctly concluded that classical molecular theory 
of gases was in serious trouble. The classical degrees of freedom of the the­
ory implied much too large thermodynamic entropy. Similarly, Gibbs had 
inferred the strict quantum indistinguishability of oxygen molecules from 
considerations of thermodynamics and statistics. It is remarkable that these 
conclusions could be drawn at a time when full-fledged quantum mechanics 
was still several decades in the future. It is all the more remarkable that 
they were not based on subtle experiments as one might expect for a theory 
dealing with the atomic structure. Rather it was the logic of these enquiries 
which was subtle directed at explaining some gross thermodynamic feature 
of everyday gases such as their entropy and specific heat. 

These are useful historical analogies to keep in mind as we look at the 
road ahead for quantum gravity. We dwell on these analogies a bit in this 
section to gain precise understanding of the relation between entropy and 
state-counting so that we can better appreciate the physical significance of 
the entropy of a black hole. 

4.1. Irreversibility and entropy 

Heat flows from a hot body to a cold body but not the other way around. 
How can we quantify this irreversibility of everyday experience? 

The answer to this question came, among others, from a French en­
gineer, Sadi Carnot who wanted to know how to build the most efficient 
steam engine to extract maximum possible work from it. He concluded that 
the most efficient engine is a reversible one, a thermodynamic analog of a 
frictionless engine. The efforts to quantify the notion of reversibility led to 
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the notion of entropy. Define a quantity called entropy S as follows. If you 
add heat AQ to a body at temperature T, then the change in the entropy 
AS is given by 

AS=f. (1) 

The important property of entropy is that in a reversible process, the total 
change in entropy is zero. Entropy is then an intrinsic property of a given 
system and is a function of the energy and the volume of the system. This 
allowed Carnot to enunciate the 'Second Law of Thermodynamics' which 
states that in an irreversible process entropy always increases. 

The second law of thermodynamics explains the irreversibility of heat 
flow as follows. If heat |AQ| flows from a body at temperature T\ to a 
body at temperature T2, then the second body gains in entropy and the 
first body loses in entropy. The net change in entropy is then 

A S H A Q l Q r - ^ ) . (2) 

Since the second law requires AS > 0 for an irreversible process, it implies 
that heat can flow only if T\ > T2. 

At this stage, the second law is a phenomenological law. A microscopic 
understanding of the second law was completed by Boltzmann who gave a 
statistical interpretation of entropy. 

4.2. Entropy and disorder 

Boltzmann related the thermodynamic entropy S of a system to the total 
number Q of different ways the microscopic constituents of the system can 
arrange themselves. He gave the fundamental relation 

S = fclogfi, (3) 

where k is Boltzmann's constant. 
Boltzmann's relation explains the second law of thermodynamics and 

the associated irreversibility from a microscopic point of view as a statistical 
tendency towards disorder. If you shake a jigsaw puzzle it is more likely 
to break than assemble itself simply because there are hugely more states 
when it is broken than when it is not. In other words, the system has more 
entropy when it is broken than when it is not. If we shake a puzzle in 
a box and look at it, statistically it is much more likely to be found in a 
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broken state than in the assembled state. This explains why entropy always 
increases but only in a statistical sense. 

To understand better the relation between thermodynamics and micro­
scopic degrees of freedom, consider the entropy of oxygen in a room from 
this point of view. The thermodynamic entropy can be measured easily. 
To check Boltzmann's relation, we need to know f2, the total number of 
ways for distributing N molecules of oxygen in a room of volume V. Now, 
a quantum particle like oxygen has wavelike nature and has a characteristic 
wavelength A called its thermal de Broglie wavelength which can be thought 
of as its characteristic size. Since each molecule occupies volume A3, one 
can imagine that the room is divided into boxes, p-, in number. There are 
•̂ r ways a single molecule can be distributed in these boxes in the room. If 
we have N molecules, the total number would then be given by 

Here the crucial factor N\ is included because all oxygen molecules are 
identical. With A the thermal de Broglie wavelength the logarithm of this 
quantity gives the correct answer for the thermodynamic entropy of a dilute 
gas like oxygen. This simple calculation was one of the great successes of 
molecular theory of gases in the nineteenth century which explained a gross, 
thermodynamic property in terms of a microscopic counting. It was in a 
sense a first peek at the atomic structure of matter. 

4.3. Quantum counting and classical overcounting 

There are a number of features of the formula (4) that are worth noting 
because they reveal important aspects of the concept of entropy and its 
physical significance. With Boltzmann's relation connecting this counting 
with the entropy, it already contains important hints about the quantum 
structure of matter. 

First, without the factor N\, the Boltzmann relation would not be 
satisfied. This fact, first deduced by Gibbs from purely thermodynamic 
reasoning, attests to the strict indistinguishability of quantum oxygen 
molecules. Full theoretical understanding of this fact would require among 
other things, Bose-Einstein statistics and the spin-statistics theorem that 
came much later. 

Second, in a strictly classical theory, in the limit h —> 0, the thermal 
de Broglie wavelength would be zero. A classical point particle does not 
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really occupy any space at all. As a result, the classical counting would 
give an infinity of states, and k log f2 would be infinite even though physical 
entropy of a gas is finite. Finiteness of entropy is thus an indication of the 
quantum nature of the degrees of freedom. 

This classical over-counting of degrees of freedom is typical and we will 
encounter it in the context of black holes as well. It manifests itself even 
in other statistical quantities. For example, the classical specific heat of 
oxygen is too large compared to the experimental value. This again is 
a consequence of a more subtle over-counting. Thinking of this problem, 
Maxwell remarked in a lecture given in 1875, 

"Every additional degree of complexity which we attribute to the molecule 
can only increase the difficulty of reconciling the observed with the calculated 
value of the specific heat. I have now put before you what I consider the 
greatest difficulty yet encountered by the molecular theory." 

Maxwell's difficulty had to do with the failure of classical equipartition 
theorem which assigns equal energy to all degrees of freedom. It was a 
thermodynamic manifestation of the inadequacy of classical ideas. Ponder­
ing over the same difficulty, Jeans made a prescient remark in 1890 that 
somehow 'the degrees of freedom seem to be frozen.' 

In the full quantum theory which was to emerge several decades later, 
the resolution comes indeed from the fact at low temperature, average ther­
mal energy would be much smaller than the quantum of energy needed to 
excite a degree of freedom such as a vibration of a molecule. In this case, 
such a degree of freedom is effectively frozen out as foreseen by Jeans. As 
a result, the classical equipartition theorem that Maxwell was using is not 
applicable thereby avoiding the conflict of theory with observation. 

We are drawing this historical analogy to underscore the point that even 
when the full picture about the quantum theory of matter was very far from 
clear, it was possible to learn a great deal about the shape of the theory to 
come from this kind of thermodynamic and statistical considerations. 

The situation with regards to quantum gravity is not quite the same 
but is in some ways analogous. Statistical reasoning has proved to be a 
valuable guide also in understanding the physics of black holes. One hopes 
that whatever may be the final form that the theory of quantum gravity 
takes, the insights that we can glean from the entropy of a black hole will 
be a part of it. 
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5. Black Hole Entropy 

Before coming to the statistical aspects, let us first understand the thermo­
dynamic aspects of a black hole. 

5.1. Bekenstein 

Jabob Bekenstein, then a graduate student of Wheeler, asked a simple-
minded but incisive question [3]. What happens if you throw a bucket of 
hot water into a black hole? The entropy of the world outside the black 
hole would then decrease and the second law of thermodynamics would be 
violated. Should we give up this law that was won after half a century of 
hard struggle now in the presence of black holes? 

Since the inside of the event horizon is never accessible by causal process 
to outside observers, whatever falls in it is forever lost. This fortunately 
does not affect the usual conservation laws of quantities such as energy and 
charge. For example, the energy of the bucket would be lost to the outside 
world but the energy or equivalently the mass of the black hole will go up 
by the same amount. The mass of the black hole can be measured from 
outside from its gravitational pull so if we keep track of the energy content 
of a black hole in our accounting of energy, then energy would continue to 
be conserved. 

This suggested that even for entropy, if one could somehow associate an 
entropy with a black hole, then the second law of thermodynamics could be 
saved if we also keep track of the entropy of a black hole in our accounting 
of total entropy. But the 'No-Hair' theorem mentioned earlier showed that 
there were no other attributes of the black hole apart from its mass, charge 
and spin that could be measured from outside. 

There is one quantity however, Bekenstein noted, namely the area of the 
black hole which behaved like entropy in many ways. For the Schwarzschild 
black hole, this is simply the area of the event horizon which equals A-KR2 

where R is the Schwarzschild radius. For Bekenstein, the analogy was 
suggested by the remarkable laws of black hole mechanics, crystallized by 
Bardeen, Carter and Hawking, which had a striking resemblance with the 
three laws of thermodynamics for a body in thermal equilibrium. 

Here A is the area of the horizon, M is the mass of the black hole, and 
K is the surface gravity which can be thought of roughly as the acceleration 
at the horizon.2 

2 We have stated these laws for black holes without spin and charge but more general 
form is known. 
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Laws of Thermodynamics 

Temperature is constant 
throughout a body at equilibrium. 

T = constant. 

Energy is conserved. 
dE = TdS 

Entropy never decrease. 
AS>0 

Laws of Black Hole Mechanics 

Surface gravity is constant 
on the event horizon. 

K =constant. 

Energy is conserved. 
dM = £-dA 

Area never decreases. 
AA>0 

5.2. Hawking radiation 

This analogy of Bekenstein was not immediately accepted because there 
was a serious difficulty with it. If a black hole has entropy and energy then 
it must also have temperature as can be seen from the definition of entropy 
(1). Now, any hot body must radiate and so also must a black hole with 
temperature. This conclusion was preposterous from the point of view of 
classical general relativity since after all a black hole was so named because 
it was perfectly black and nothing could come out of it. 

Initially, Hawking among others, was willing to give up the second law 
in the face of this difficulty. Very soon though, he realized in his classic 
paper that a black hole could indeed have temperature once you include 
quantum effects [4]. In a quantum theory, virtual particles and antiparticles 
are constantly being created and annihilated from vacuum. Usually, they 
cannot be separated into real particles without violating conservation of 
energy because that would amount to creating a particle-antiparticle pair 
out of nothing. Near the event horizon, however, the antiparticle can fall 
into the black hole and the particle can escape to infinity as a real particle. 
Energy can be conserved in the process because the mass of black hole 
reduces accordingly. Hawking showed that the spectrum of these particles 
radiated from the black hole is exactly as if they are being radiated by a 
hot body at temperature T. 

This temperature T of the black hole, now known as the Hawking tem­
perature, is given by a simple formula 

where K is the surface gravity encountered earlier. With this remarkable 
discovery, the table above becomes more than just an analogy. Indeed 
the left column is now precisely the same as the right column with the 
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identification 

4hG 4/2 ' 

Here the length I is the Planck length 10~33 cm, a fundamental length 
constructed from the trinity of constants I2 = Gh/c3. This remarkably 
general formula is valid in all dimensions and for all kinds of black holes 
with mass, charge and spin. 

Note that in the classical limit h —> 0, the temperature vanishes, as it 
should since a black hole is really black classically. More importantly, in 
this limit entropy would become infinite. This is exactly as what we saw 
for oxygen gas in Sec. 4 and is the usual problem of classical overcounting. 
The finite quantum entropy of a black hole therefore signifies a certain 
discreteness of the degrees of freedom. This entropy is at present the only 
known physical quantity that involves all three fundamental constants of 
nature. It is therefore a precious clue about the microscopic structure of 
quantum gravity. 

The discovery of thermodynamic entropy of a black hole in this way 
resolves the puzzle of Bekenstein about the apparent violation of the second 
law of thermodynamics. But it raises an even more interesting puzzle. Since 
the entropy of the black hole behaves in every respect like any other entropy 
that one encounters in statistical mechanics, what are the microstates of 
the black hole that can account for this thermodynamic entropy? 

This remained an open problem for over two decades after Hawking's 
discovery. A complete understanding of the entropy of general black holes 
is still lacking, but there has been remarkable progress in addressing this 
question within the framework of string theory. 

6. String Theory and Black Holes 

Let us recall a few relevant facts about string theory3 which is presently 
the leading candidate for a quantum theory of gravity. 

String theory posits that the fundamental degrees of freedom are string­
like extended objects instead of point-like elementary particles as assumed 
in quantum field theory. Different elementary particles arise as different 
oscillation modes of this fundamental string. Finding the spectrum of a 

3 For more details about string theory see the articles by David Gross and Ashoke Sen 
in this volume. 
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fundamental string is then analogous to finding what frequencies of sound 
will be produced by a sitar string. In this analogy, each musical note pro­
duced by the string would correspond to an elementary particle. One of the 
early surprises in the investigations of quantum string theories was that the 
spectrum of string theory always contained the graviton — the elementary 
particle that corresponds to a gravitational wave rippling through space-
time which carries the force of gravity. This striking fact was a natural 
consequence of the theory and was not put in by hand. Thus string theory 
is automatically a quantum theory of gravity. In a sense, quantum gravity is 
not only possible within string theory but is in fact necessary. Furthermore, 
when the gravitational coupling G is small, the interactions of the gravitons 
within string theory are free of the unphysical infinities that plagued earlier 
attempts to formulate quantum gravity within the framework of quantum 
field theory. 

Earlier developments in string theory were limited to situations where 
gravitational interactions are weak. In the context of black holes however, 
the gravitational interactions are strong enough to warp spacetime into 
a black hole. Black holes therefore obtain a useful laboratory for testing 
the formalism of string theory beyond weak coupling. One of the striking 
successes of string theory is that for a special class of black holes, one can 
indeed explain the thermodynamic Bekenstein-Hawking entropy in terms 
of underlying microstates which can be counted exactly. What is more, 
in some examples, one can compute the corrections to the Bekenstein-
Hawking entropy systematically to all orders in a perturbative expansion 
in inverse area and these too agree precisely with the microscopic counting. 

The beautiful agreement that we find between the microscopic counting 
and the macroscopic, thermodynamic entropy not only resolves a long­
standing puzzle raised about the interpretation of black hole entropy but 
also gives a strong hint that string theory provides a consistent framework 
for quantum gravity even at strong coupling. 

6.1. Counting black holes 

Supersymmetry is a generalization of Lorentz transformations. Just as 
special relativity requires that the laws of physics be invariant under Lorentz 
transformations, string theory requires that the laws of physics be invariant 
under a bigger symmetry, supersymmetry. Combining supersymmetry with 
Einstein's theory of gravity leads to a generalization of general relativity 
called supergravity. 
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The chief tool in dealing with the entropy of black holes in string theory 
is the spectrum of 'supersymmetric states.' Supersymmetric states of a 
theory are a special class of states that carry both mass and charge and 
have the property that their spectrum does not change as one changes the 
coupling constant of the theory. As a result, the number of such states can 
be counted reliably when Newton's constant G is small and gravitational 
interactions are weak. The counting is much easier in this limit as we will 
see below. Now, if one increases the value of G, then gravity becomes 
important, and a state with mass M and charges Qi,Q2,--- undergoes 
gravitational collapse. Since, it is a supersymmetric state, the number of 
states at large G implied by the entropy of the corresponding black hole 
must equal the number of states counted at small G. 

The most well-studied example that gives a microscopic account of the 
thermodynamic entropy is in five spacetime dimensions with three kinds 
of charges Q\, Q2, Qz [5]. In this case, it is possible to count the num­
ber of supersymmetric states with these charges and in the limit of large 
charges, number of such states fl(Q\, Q2, Qz) grows exponentially in a way 
that matches precisely with thermodynamic entropy S(Q\, Q2, Qz) = jp 
of black holes with the same charges, 

S(Qi,Q2, Qz) = klogfi(Qi, Q2, Qz) = 2TT^Q1Q2Q3 . 

6.2. Black holes as strings 

To describe how this comparison is carried out, we consider instead a sim­
pler system in four spacetime dimensions that has only two charges p and 
q. One advantage of this system is that the microscopic counting can be 
done more easily and exactly even for small charges. As a result, a much 
more detailed comparison can be carried out including all order corrections 
to the Bekenstein-Hawking formula. 

String theory naturally lives in nine space dimensions. To obtain the 
physical space of three dimensions, it is necessary to 'compactify' or to curl 
up the extra six dimensions into small internal space. Thus, in string theory, 
one imagines that at each point in physical space there is attached a small 
ball of six dimensions. Now suppose that one of the directions of the internal 
space is a circle. Consider a string wrapping q times with momentum p 
along this circle. The string looks point-like in four dimensions. Usually 
along a string extending vertically, the oscillations can either move up or 
move down. In the type of string theory used in this context called the 
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'heterotic' string, if we have only up-moving oscillations with total energy 
N = pq , then this state is supersymmetric. 

Now, a string extending along one of the nine spatial directions has 
eight transverse directions. In addition, in heterotic string theory, there 
are sixteen internal dimensions along which the string can carry up-moving 
oscillations. These extra internal dimensions have to do with the fact that 
in heterotic string, states can carry sixteen kinds of charges. Therefore, 
altogether, we have twenty-four up-moving oscillations. Each oscillation 
has frequency labeled by an integer, n = 1,2,3,. . . ,00 which basically 
counts the number of wavelengths of the oscillations that can fit on the 
circle traveling around the circumference. We need to distribute the total 
energy TV among all these oscillators and find out how many ways there are 
of doing it to find the total number of states with charges p and q. This 
problem then maps to a well-known class of problems analyzed by Hardy 
and Ramanujan. The total number of our black hole states then equals the 
number of ways one can partition an integer N into a sum of integers, using 
integers of 24 different colors. This quantity is usually denoted as P2i{N). 
For example, the total number of ways of partitioning the integer 5 using 
integers of only one color would be denoted pi(5). It is easy to find this 
number, since 

5 = 1 + 1 + 1 + 1 + 1 = 2 + 1 + 1 + 1 = 2 + 2 + 1 = 3 + 1 + 1 = 3 + 2 = 4 + 1 = 5, 

and hence £>i(5) = 7. It is also easy to see that this number grows very 
rapidly, in fact exponentially, as we increase either the integer or the number 
of colors at our disposal. 

To count our black holes with large charges we then need to find p2i{N) 
for large values of N. The answer can be found exactly to all orders, 

1 0 / ^ A r - 2 7 , /— , AT 6 7 5 6 7 5 x 9 
logn(p,«) - 4 * ^ - y l o g ^ - l o g x / 2 - _ — - ^ ^ - . . . . 

(6) 

How does this microscopic counting compare with the macroscopic entropy? 

6.3. Beyond Bekenstein and Hawking 

In this particular example considered above, it turns out, on the macro­
scopic side, classical spacetime is singular and the entropy vanishes. This 
seems to be in flat contradiction with the result from the microscopic count­
ing. However, things get more interesting because string theory implies cal­
culable corrections to general relativity. Einstein's equations are nonlinear 
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partial differential equations that involve only two derivatives of the dynam­
ical fields. From a modern perspective, these equations are expected to be 
just the low energy approximation and the full equations are expected to 
contain terms with higher derivatives of the dynamical fields coming from 
various quantum corrections. In the presence of the higher derivative terms, 
both the solution and the Bekenstein-Hawking formula itself gets modified. 
There exists an elegant generalization of the Bekenstein-Hawking formula 
due to Wald [6, 7] that correctly incorporates the effects of the higher 
derivative terms. It gives the entropy as an infinite series 

S = a0A(Q) + ai log A(Q) + - ^ + ..., (7) 

where the coefficients at can be computed explicitly from the specific form 
of the generalization of Einstein's equations that follows from string theory. 

To apply Wald's formula one must first find the quantum corrections to 
Einstein's equations and then find the generalization of the Schwarzschild 
solution including these corrections. It would appear like an impossible 
task to solve these highly nonlinear, higher derivative partial differential 
equations. Fortunately, it turns out that using various available techniques 
and supersymmetry [8-11], it is possible to compute the higher derivative 
terms with precise numerical coefficients in string theory and find the cor­
rected solution. One then finds that the solution including these quantum 
corrections has finite area [12, 13] and is given by A = ^irl2^/pq in terms 
of the charges p, q above and Planck length I. Using the Bekenstein-Wald-
Entropy formula one then finds that the perturbative expansion in inverse 
area in (7) is the same as the expansion for large charges in 1/\/pq in (6). 
The coefficients a, can be computed exactly and are such that the entropy 
S in formula above match precisely with the infinite expansion of the mi­
croscopic counting (7) except for an additive constant that cannot yet be 
determined [12, 14]. 

7. Glimpses of Quantum Gravity 

String theory is at present the only known framework for understanding 
black hole entropy in terms of counting albeit only in some special cases. 
The fact that even the corrections to the entropy can be understood in 
terms of microscopic counting to all orders is encouraging. It remains a 
challenge to see how these results can be extended to the Schwarzschild 
black hole without using the crutches of supersymmetry. 
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There are other important insights that have emerged from the study 
of black holes, most notably, the notion of 'Holography.' Bekenstein noted 
that the total number of degrees of freedom in a region must be proportional 
to the area of the region (and not its volume as one might naively expect) 
measured in units of the Planck length. Otherwise, black hole formation in 
this region would violate the second law of thermodynamics. This obser­
vation implies a dramatic reduction in the number of degrees of freedom of 
quantum gravity. It will take us too far afield to discuss these developments 
relating to holography in any detail here. 

It is not clear yet what form the final formulation of quantum gravity 
will take but there is every indication that string theory will be a part 
it. In the absence of direct experimental evidence, one can subject the 
formalism of string theory to stringent tests of consistency. The striking 
agreement between thermodynamic, macroscopic properties of black holes 
and the microscopic structure of the theory assures us that we might be on 
the right track. 

What would Einstein have thought of this road to quantum gravity? In 
his own research, he was a master of statistical reasoning and used it with 
incomparable skill to establish the quantum reality of atoms and light. He 
was also the one who gave us the theory of gravity based on the geometry 
of spacetime. Perhaps he would have appreciated the current struggles 
to learn about quantum gravity from the interplay between geometry and 
thermodynamics. 
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The goal of this article is to present a brief history of quantum gravity 
for a general audience. While familiarity with basic ideas and notions of 
contemporary physics is assumed, technicalities are kept to a minimum 
and use of equations is avoided. Rather, the emphasis is on providing a 
coherent picture of the evolution of ideas and the current status of the 
subject. 

1. T h e B e g i n n i n g 

General relativity and quantum theory are among the greatest intellectual 

achievements of the 20th century. Each of them has profoundly altered the 

conceptual fabric tha t underlies our understanding of the physical world. 

Furthermore, each has been successful in describing the physical phenomena 

in its own domain to an astonishing degree of accuracy. And yet, they offer 

us strikingly different pictures of physical reality. Indeed, at first, one is sur­

prised tha t physics could keep progressing blissfully in the face of so deep a 

conflict. The reason is tha t phenomena for which both theories are essential 

occur at the Planck scale and the values of fundamental constants in our 

universe conspire to make the Planck length lp\ = ^Gh/c3 ~ 10 _ 3 3 cm 

truly minute and Planck energy Epi = ^hc/G ~ 101 9Gev absolutely enor­

mous compared to laboratory scales. Thanks to this coincidence, we can 

happily maintain a schizophrenic a t t i tude and use the precise, geometric 
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picture of reality offered by general relativity while dealing with cosmolog-
ical and astrophysical phenomena, and the quantum-mechanical world of 
chance and intrinsic uncertainties while dealing with atomic and subatomic 
particles. Clearly, this strategy is quite appropriate as a practical stand. 
But it is highly unsatisfactory from a conceptual viewpoint. Everything in 
our past experience in physics tells us that the two pictures we currently 
use must be approximations, special cases that arise as appropriate limits 
of a grander theory. That theory must therefore represent a synthesis of 
general relativity and quantum mechanics. This would be the quantum 
theory of gravity. The burden on this theory is huge: Not only should it 
correctly describe all the known gravitational processes, but it should also 
adequately handle the Planck regime. This is the theory that we invoke 
when faced with phenomena, such as the big bang and the final state of 
black holes, where the Planck scale is reached and worlds of general rela­
tivity and quantum mechanics unavoidably meet. 

It may come as a surprise that the necessity of a quantum theory of 
gravity was pointed out by Einstein already in 1916 — barely a year after 
the discovery of general relativity. In a paper in the Preussische Akademie 
Sitzungsberichte, he wrote: 

"Nevertheless, due to the inneratomic movement of electrons, 
atoms would have to radiate not only electromagnetic but also grav­
itational energy, if only in tiny amounts. As this is hardly true 
in Nature, it appears that quantum theory would have to modify 
not only Maxwellian electrodynamics but also the new theory of 
gravitation." 

Papers on the subject began to appear in the thirties most notably by 
Bronstein, Rosenfeld and Pauli. However, detailed work began only in the 
sixties. The general developments since then loosely represent four stages, 
each spanning roughly a decade. 

First, there was the beginning: exploration. The goal was to do unto 
gravity as one would do unto any other physical field [8].1 The electromag­
netic field had been successfully quantized using two approaches: canonical 
and covariant. In the canonical approach, electric and magnetic fields obey­
ing Heisenberg's uncertainty principle are at the forefront, and quantum 

Since this article is addressed to non-experts, except in the discussion of very recent 
developments, I will generally refer to books and review articles which summarize the 
state of the art at various stages of development of quantum gravity. References to 
original papers can be found in these reviews. 
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states naturally arise as (gauge-invariant) functions ^(A) of the vector po­
tential A on a constant time 3-surface of space-time. In the covariant 
approach on the other hand, one first isolates and then quantizes the two 
radiative modes of the Maxwell field in space-time, without carrying out 
a (3+l)-decomposition of space-time into space and time. The quantum 
states naturally arise as elements of the Fock space of photons. Attempts 
were made to extend these techniques to general relativity. In the elec­
tromagnetic case the two methods are completely equivalent. Only the 
emphasis changes in going from one to another. In the gravitational case, 
however, the difference is profound. This is not accidental. The reason is 
deeply rooted in one of the essential features of general relativity, namely 
the dual role of the space-time metric. 

To appreciate this point, let us begin with field theories in Minkowski 
space-time, say Maxwell's theory to be specific. Here, the basic dynamical 
field is represented by a tensor field F^u on Minkowski space. The space-
time geometry provides the kinematical arena on which the field propagates. 
The background, Minkowskian metric provides light cones and the notion 
of causality. We can foliate this space-time by a one-parameter family of 
constant-time three-planes, and analyze how the values of electric and mag­
netic fields on one of these surfaces determine those on any other surface. 
The isometries of the Minkowski metric let us construct physical quantities 
such as fluxes of energy, momentum, and angular momentum carried by 
electromagnetic waves. Geometry of Minkowski space, on the other hand, 
is fixed; it is completely insensitive to the properties of the electromagnetic 
field. 

In general relativity, by contrast, there is no background geometry. The 
space-time metric itself is the fundamental dynamical variable. On the 
one hand, it is analogous to the Minkowski metric in Maxwell's theory; 
it determines space-time geometry, provides light cones, defines causality, 
and dictates the propagation of all physical fields (including itself). On the 
other hand, it is the analog of the Newtonian gravitational potential and 
therefore the basic dynamical entity of the theory, similar in this respect 
to the vector potential A^ of the Maxwell theory. This dual role of the 
metric is in effect a precise statement of the equivalence principle that is at 
the heart of general relativity. It is this feature that is largely responsible 
for the powerful conceptual economy of general relativity, its elegance, its 
aesthetic beauty, its strangeness in proportion. 

However, this feature also brings with it a host of problems. We see 
already in the classical theory several manifestations of these difficulties. 
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It is because there is no background geometry, for example, that it is so 
difficult to analyze singularities of the theory and to define the energy and 
momentum carried by gravitational waves. Since there is no a priori space-
time, to introduce notions as basic as causality, time, and evolution, one 
must first solve the dynamical equations and construct a space-time. As 
an extreme example, consider black holes, whose definition requires the 
knowledge of the causal structure of the entire space-time. To find if the 
given initial conditions lead to the formation of a black hole, one must first 
obtain their maximal evolution and, using the causal structure determined 
by that solution, ask if its future infinity has a past boundary. If it does, 
space-time contains a black hole and the boundary is its event horizon. 
Thus, because there is no longer a clean separation between the kinematical 
arena and dynamics, in the classical theory substantial care and effort is 
needed even in the formulation of basic physical questions. 

In quantum theory the problems become significantly more serious. To 
see this, recall first that, because of the uncertainty principle, already in 
non-relativistic quantum mechanics particles do not have well-defined tra­
jectories; time-evolution only produces a probability amplitude, \&(a;, i), 
rather than a specific trajectory, x(t). Similarly, in quantum gravity, even 
after evolving an initial state, one would not be left with a specific space-
time. In the absence of a space-time geometry, how is one to introduce 
even habitual physical notions such as causality, time, scattering states, 
and black holes? 

2. Early Developments 

The canonical and the covariant approaches have adopted dramatically dif­
ferent attitudes to face these problems. In the canonical approach, one 
notices that, in spite of the conceptual difficulties mentioned above, the 
Hamiltonian formulation of general relativity is well-defined and attempts 
to use it as a stepping stone to quantization. The fundamental canon­
ical commutation relations are to lead us to the basic uncertainty prin­
ciple. The motion generated by the Hamiltonian is to be thought of as 
time evolution. The fact that certain operators on the fixed ('spatial') 
three-manifold commute is supposed to capture the appropriate notion of 
causality. The emphasis is on preserving the geometrical character of gen­
eral relativity, on retaining the compelling fusion of gravity and geometry 
that Einstein created. In the first stage of the program, completed in the 
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early sixties, the Hamiltonian formulation of the classical theory was worked 
out in detail by Dirac, Bergmann, Arnowitt, Deser and Misner and others 
[1, 4, 5, 12, 15]. The basic canonical variable was the 3-metric on a spatial 
slice. The ten Einstein's equations naturally decompose into two sets: four 
constraints on the metric and its conjugate momentum (analogous to the 
equation DivE = 0 of electrodynamics) and six evolution equations. Thus, 
in the Hamiltonian formulation, general relativity could be interpreted 
as the dynamical theory of 3-geometries. Wheeler therefore baptized it 
geometrodynamics [2, 3]. 

In the second stage, this framework was used as a point of departure for 
quantum theory. The basic equations of the quantum theory were written 
down and several important questions were addressed [3, 15]. Wheeler also 
launched an ambitious program in which the internal quantum numbers 
of elementary particles were to arise from non-trivial, microscopic topolog­
ical configurations and particle physics was to be recast as 'chemistry of 
geometry'. However, most of the work in quantum geometrodynamics con­
tinued to remain formal; indeed, even today the field theoretic difficulties 
associated with the presence of an infinite number of degrees of freedom 
remain unresolved. Furthermore, even at the formal level, it has been dif­
ficult to solve the quantum Einstein's equations. Therefore, after an initial 
burst of activity, the quantum geometrodynamics program became stag­
nant. Interesting results were obtained in the limited context of quantum 
cosmology where one freezes all but a finite number of degrees of freedom. 
However, even in this special case, the initial singularity could not be re­
solved without additional 'external' inputs into the theory. Sociologically, 
the program faced another limitation: concepts and techniques which had 
been so successful in quantum electrodynamics appeared to play no role 
here. In particular, in quantum geometrodynamics, it is hard to see how 
gravitons are to emerge, how scattering matrices are to be computed, how 
Feynman diagrams are to dictate dynamics and virtual processes are to give 
radiative corrections. To use a well-known phrase [6], the emphasis on ge­
ometry in the canonical program "drove a wedge between general relativity 
and the theory of elementary particles." 

In the covariant2 approach [5, 7, 9] the emphasis is just the opposite. 
Field-theoretic techniques are put at the forefront. The first step in this 

2In the context of quantum gravity, the term 'covariant' is somewhat misleading because 
the introduction of a background metric violates diffeomorphism covariance. It is used 
mainly to emphasize that this approach does not involve a 3+1 decomposition of space-
time. 
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program is to split the space-time metric g^ in two parts, g^v = rj^ + 
VG h^v, where r]^ is to be a background, kinematical metric, often chosen 
to be flat, G is Newton's constant, and h^, the deviation of the physical 
metric from the chosen background, the dynamical field. The two roles of 
the metric tensor are now split. The overall attitude is that this sacrifice of 
the fusion of gravity and geometry is a moderate price to pay for ushering-in 
the powerful machinery of perturbative quantum field theory. Indeed, with 
this splitting most of the conceptual problems discussed above seem to melt 
away. Thus, in the transition to the quantum theory it is only /iM„ that 
is quantized. Quanta of this field propagate on the classical background 
space-time with metric r/^. If the background is in fact chosen to be flat, 
one can use the Casimir operators of the Poincare group and show that the 
quanta have spin two and rest mass zero. These are the gravitons. The 
Einstein-Hilbert Lagrangian tells us how they interact with one another. 
Thus, in this program, quantum general relativity was first reduced to a 
quantum field theory in Minkowski space. One could apply to it all the 
machinery of perturbation theory that had been so successful in particle 
physics. One now had a definite program to compute amplitudes for vari­
ous scattering processes. Unruly gravity appeared to be tamed and forced 
to fit into the mold created to describe quantum electromagnetic interac­
tions. Thus, the covariant quantization program was more in tune with 
the mainstream developments in physics at the time. In the early sixties, 
Gupta and Feynman outlined an extension of perturbative methods from 
quantum electrodynamics to gravity. A few years later DeWitt carried this 
analysis to completion by systematically formulating the Feynman rules for 
calculating scattering amplitudes among gravitons and between gravitons 
and matter quanta. He showed that the theory is unitary order by order in 
the perturbative expansion. By the early seventies, the covariant approach 
had led to several concrete results [7]. 

Consequently, the second stage of the covariant program began with 
great enthusiasm and hope. The motto was: Go forth, perturb, and ex­
pand. The enthusiasm was first generated by the discovery that Yang-Mills 
theory coupled to fermions is renormalizable (if the masses of gauge parti­
cles are generated by a spontaneous symmetry-breaking mechanism).3 This 
led to a successful theory of electroweak interactions. Particle physics wit­
nessed a renaissance of quantum field theory. The enthusiasm spilled over 

3 In fact DeWitt 's quantum gravity work [7] played a seminal role in the initial stages of 
the extension of perturbative techniques from Abelian to non-Abelian gauge theories. 
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to gravity. Courageous calculations were performed to estimate radiative 
corrections. Unfortunately, however, this research soon ran into its first 
road block. The theory was shown to be non-renormalizable when two loop 
effects are taken into account for pure gravity and already at one loop for 
gravity coupled with matter [16]. To appreciate the significance of this re­
sult, let us return to the quantum theory of photons and electrons. This 
theory is perturbatively renormalizable. This means that, although indi­
vidual terms in the perturbation expansion of a physical amplitude may 
diverge due to radiative corrections involving closed loops of virtual par­
ticles, these infinities are of a specific type; they can be systematically 
absorbed in the values of free parameters of the theory, the fine structure 
constant and the electron mass. Thus, by renormalizing these parameters, 
individual terms in the perturbation series can be systematically rendered 
finite. In quantum general relativity, such a systematic procedure is not 
available; infinities that arise due to radiative corrections are genuinely 
troublesome. Put differently, quantum theory acquires an infinite number 
of undetermined parameters. Although one can still use it as an effective 
theory in the low energy regime, regarded as a fundamental theory, it has 
no predictive power at all! 

Buoyed, however, by the success of perturbative methods in electroweak 
interactions, the community was reluctant to give them up in the gravita­
tional case. In the case of weak interactions, it was known for some time 
that the observed low energy phenomena could be explained using Fermi's 
simple four-point interaction. The problem was that this Fermi model 
led to a non-renormalizable theory. The correct, renormalizable model of 
Glashow, Weinberg and Salam agrees with Fermi's at low energies but mar­
shals new processes at high energies which improve the ultraviolet behavior 
of the theory. It was therefore natural to hope that the situation would 
be similar in quantum gravity. General relativity, in this analogy, would 
be similar to Fermi's model. The fact that it is not renormalizable was 
taken to mean that it ignores important processes at high energies which 
are, however, unimportant at low energies, i.e. at large distances. Thus, the 
idea was that the correct theory of gravity would differ from general rela­
tivity but only at high energies, i.e. near the Planck regime. With this aim, 
higher derivative terms were added to the Einstein-Hilbert Lagrangian. If 
the relative coupling constants are chosen judiciously, the resulting theory 
does in fact have a better ultraviolet behavior. Stelle, Tomboulis and oth­
ers showed that the theory is not only renormalizable but asymptotically 
free; it resembles the free theory in the high energy limit. Thus, the initial 
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hope of 'curing' quantum general relativity was in fact realized. However, 
it turned out that the Hamiltonian of this theory is unbounded from be­
low, and consequently the theory is drastically unstable! In particular, 
it violates unitarity; probability fails to be conserved. The success of the 
electroweak theory suggested a second line of attack. In the approaches dis­
cussed above, gravity was considered in isolation. The successful unification 
of electromagnetic and weak interactions suggested the possibility that a 
consistent theory would result only when gravity is coupled with suitably 
chosen matter. The most striking implementation of this viewpoint oc­
curred in supergravity. Here, the hope was that the bosonic infinities of the 
gravitational field would be cancelled by those of suitably chosen fermionic 
sources, giving us a renormalizable quantum theory of gravity. Much effort 
went into the analysis of the possibility that the most sophisticated of these 
theories — N = 8 supergravity — can be employed as a genuine grand uni­
fied theory.4 It turned out that some cancellation of infinities does occur 
and that supergravity is indeed renormalizable to two loops even though it 
contains matter fields coupled to gravity. Furthermore, its Hamiltonian is 
manifestly positive and the theory is unitary. However, it is believed that 
at fifth and higher loops it is again non-renormalizable. 

3. Paradigm Shifts 

By and large, the canonical approach was pursued by relativists and the 
covariant approach by particle physicists. In the mid-eighties, both ap­
proaches received unexpected boosts. These launched the third phase in 
the development of quantum gravity. 

A group of particle physicists had been studying string theory to ana­
lyze strong interactions from a novel angle. The idea was to replace point 
particles by one-dimensional extended objects — strings — and associate 
particle-like states with various modes of excitations of the string. Initially 
there was an embarrassment: in addition to the spin-1 modes characteristic 

4For a number of years, there was a great deal of confidence, especially among particle 
physicists, that supergravity was on the threshold of providing the complete quantum 
gravity theory. For instance, in the centennial celebration of Einstein's birthday at the 
Institute of Advanced Study, Princeton [13] — the proceedings of which were videotaped 
and archived for future historians and physicists — there were two talks on quantum 
gravity, both devoted to supergravity. A year later, in his Lucasian Chair inaugural 
address Hawking [14] suggested that end of theoretical physics was in sight because 
N = 8 supergravity was likely to be the final theory. 
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of gauge theories, string theory included also a spin-2, massless excitation. 
But it was soon realized that this was a blessing in disguise: the theory au­
tomatically incorporated a graviton. In this sense, gravity was already built 
into the theory! However, it was known that the theory had a potential 
quantum anomaly which threatened to make it inconsistent. In the mid-
eighties, Green and Schwarz showed that there is an anomaly cancellation. 
Perturbative string theory could be consistent in certain space-time dimen­
sions — 26 for a purely bosonic string and 10 for a superstring [19, 28]. Since 
strings were assumed to live in the background of Minkowski space-time, 
one could apply perturbative techniques. However, in this reincarnation, 
the covariant approach underwent a dramatic revision. Since it is a theory 
of extended objects rather than point particles, the quantum theory has 
brand new elements; it is no longer a local quantum field theory. The field 
theoretic Feynman diagrams are replaced by world-sheet diagrams. This 
replacement dramatically improves the ultraviolet behavior and, although 
explicit calculations have been carried out only at 2 or 3 loop order, it is 
widely believed that the perturbation theory is finite to all orders; it does 
not even have to be renormalized. The theory is also unitary. It has a sin­
gle, new fundamental constant — the string tension — and, since various 
excited modes of the string represent different particles, there is a built-in 
principle for unification of all interactions!5 From the viewpoint of local 
quantum field theories that particle physicists have used in studying elec-
troweak and strong interactions, this mathematical structure seems almost 
magical. Therefore there is a hope in the string community that this the­
ory would encompass all of fundamental physics; it would be the 'theory of 
everything'. 

Unfortunately, it soon became clear that string perturbation theory also 
faces some serious limitations. Perturbative finiteness would imply that 
each term in the perturbation series is ultra-violet finite.6 However Gross 
and Periwal have shown that in the case of bosonic strings, when summed, 
the series diverges and does so uncontrollably. (Technically, it is not even 
'Borel-summable'.) They also gave arguments that the conclusion would 

5To date, none of the low energy reductions appears to correspond to the world we 
actually observe. Nonetheless, string theory has provided us with a glimpse of an entirely 
new vista: the concrete possibility that unification could be brought about by a tightly 
woven, non-local theory. 
6 But it does appear that there are infrared divergences. While this is an important 
limitation from the mathematical physics perspective, as in QED, these are regarded as 
'harmless' for calculation of physical effects. I thank Ashoke Sen for discussions on this 
issue. 
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not be changed if one uses superstrings instead. Independent support for 
these arguments has come from work on random surfaces due to Ambjorn 
and others. One might wonder why the divergence of the sum should be 
regarded as a serious failure of the theory. After all, in quantum electrody­
namics, the series is also believed to diverge. Recall however that quantum 
electrodynamics is an inherently incomplete theory. It ignores many pro­
cesses that come into play at high energies or short distances. In particular, 
it completely ignores the microstructure of space-time and simply assumes 
that space-time can be approximated by a smooth continuum even below 
the Planck scale. Therefore, it can plead incompleteness and shift the bur­
den of this infinity to a more complete theory. A 'theory of everything' on 
the other hand, has nowhere to hide. It cannot plead incompleteness and 
shift its burden. It must face the Planck regime squarely. So, if string the­
ory is to be consistent, it must have key non-perturbative structures. The 
current and the fourth stage of the particle physics motivated approaches 
to quantum gravity is largely devoted to unravelling such structures and 
using them to address some of the outstanding physical problems. 

On the relativity side, the third stage also began with an unexpected 
but innocuous-sounding observation: the geometrodynamics program laid 
out by Dirac, Bergmann, Wheeler and others simplifies significantly if we 
regard a connection — rather than the 3-metric — as the basic object [21]. 
While metrics determine distances and angles, connections enable one to 
'parallel transport' objects along curves. A familiar example from the text­
book quantum mechanics is the electromagnetic vector potential A that 
lets us transport the wave function ^/(x) of a charged particle, such as 
the electron, from one point to another along any given curve: under an 
infinitesimal displacement, while the change in the wave function of an 
uncharged particle is given just by Ax • V^(x), for a charged particle, it 
is given by Ax • (V — (iq/H) A)^(x) where q is the charge of the particle. 
The presence of a non-zero A manifests itself in a change of phase of \P, the 
most dramatic example of which occurs in the celebrated Bohm-Aharanov 
effect. In QCD the (matrix-valued) vector potentials couple similarly to 
the wave functions of quarks and dictate the change of their state as one 
moves from one point to another. In the gravitational context, the most 
familiar connection is the one introduced by Levi-Civita which enables one 
to parallel transport a vector on a curved manifold. We now know that, 
in their quest for an unified field theory, Einstein and Schrodinger, among 
others, had recast general relativity as a theory of Levi-Civita connections 
(rather than metrics) already in the fifties [31]. However, the theory became 
rather complicated. 
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This episode had been forgotten and connections were reintroduced in 
the mid-eighties. However, now these were 'spin-connections', required to 
parallel propagate spinors, such as the left-handed fermions used in the 
standard model of particle physics [21, 24]. Rather than making the theory 
complicated, these connections simplify Einstein's equations considerably. 
For example, the dynamics of general relativity can now be visualized sim­
ply as a geodesic motion on the space of spin-connections (with respect 
to a natural metric extracted from the constraint equations). Since gen­
eral relativity is now regarded as a dynamical theory of connections, this 
reincarnation of the canonical approach is called 'connection-dynamics'. 

Perhaps the most important advantage of the passage from metrics to 
connections is that the phase-space of general relativity is now the same as 
that of gauge theories [21, 24]. The 'wedge between general relativity and 
the theory of elementary particles' that Weinberg referred to is largely re­
moved without sacrificing the geometrical essence of general relativity. One 
could now import into general relativity techniques that have been highly 
successful in the quantization of gauge theories. At the kinematic level, 
then, there is a unified framework to describe all four fundamental interac­
tions. The dynamics, of course, depends on the interaction. In particular, 
while there is a background space-time geometry in electroweak and strong 
interactions, there is none in general relativity. Therefore, qualitatively new 
features arise. These were exploited in the late eighties and early nineties 
to solve simpler models — general relativity in 2+1 dimensions [21, 22]; 
linearized gravity clothed as a gauge theory [21]; and certain cosmological 
models. To explore the physical, 3+1 dimensional theory, a 'loop represen­
tation' was introduced by Rovelli and Smolin [26]. Here, quantum states 
are taken to be suitable functions of loops on the 3-manifold.7 This led 
to a number of interesting and intriguing results, particularly by Gambini, 
Pullin and their collaborators, relating knot theory and quantum grav­
ity [25]. Thus, there was rapid and unanticipated progress in a number 
of directions which rejuvenated the canonical quantization program. Since 
the canonical approach does not require the introduction of a background 
geometry or use of perturbation theory, and because one now has access to 
fresh, non-perturbative techniques from gauge theories, in relativity circles 
there is a hope that this approach may lead to well-defined, non-perturbative 
quantum general relativity (or its supersymmetric version, supergravity). 

'This is the origin of the name 'loop quantum gravity'. The loop representation played 
an important role in the initial stages. Although this is no longer the case in the current, 
fourth phase, the name is still used to distinguish this approach from others. 
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However, a number of these considerations remained rather formal until 
the mid-nineties. Passage to the loop representation required an integration 
over the infinite dimensional space of connections and the formal methods 
were insensitive to possible infinities lurking in the procedure. Indeed, such 
integrals are notoriously difficult to perform in interacting field theories. To 
pay due respect to the general covariance of Einstein's theory, one needed 
diffeomorphism invariant measures and there were folk-theorems to the ef­
fect that such measures did not exist! 

Fortunately, the folk-theorems turned out to be incorrect. To construct 
a well-defined theory capable of handling field theoretic issues, a quantum 
theory of Riemannian geometry was systematically constructed in the mid-
nineties [36]. This launched the fourth (and the current) stage in the canoni­
cal approach. Just as differential geometry provides the basic mathematical 
framework to formulate modern gravitational theories in the classical do­
main, quantum geometry provides the necessary concepts and techniques 
in the quantum domain. Specifically, it enables one to perform integration 
on the space of connections for constructing Hilbert spaces of states and 
to define geometric operators corresponding, e.g. to areas of surfaces and 
volumes of regions (even though the classical expressions of these quanti­
ties involve non-polynomial functions of the Riemannian metric). There 
are no infinities. One finds that, at the Planck scale, geometry has a def­
inite discrete structure. Its fundamental excitations are one-dimensional, 
rather like polymers, and the space-time continuum arises only as a coarse­
grained approximation. The fact that the structure of space-time at Planck 
scale is qualitatively different from Minkowski background used in pertur-
bative treatments reinforced the idea that quantum general relativity (or 
supergravity) may well be non-perturbatively finite. 

Finally, quantum geometry is a general framework that is not tied down 
to general relativity (or supergravity). However, since general relativity is 
the best classical theory of gravity we have, it is well worth investigating, 
at least as the first step, whether quantum general relativity exists non-
perturbatively. Much of research in loop quantum gravity has been focussed 
on this question. Quantum geometry effects have already been shown to re­
solve the big-bang singularity and solve some of the long-standing problems 
associated with black holes. 
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4. The Past Decade 

The first three stages of developments in quantum gravity taught us many 
valuable lessons. Perhaps the most important among them is the realization 
that perturbative, field theoretic methods which have been so successful in 
other branches of physics are not as useful in quantum gravity. The assump­
tion that space-time can be replaced by a smooth continuum at arbitrarily 
small scales leads to inconsistencies. We can neither ignore the microstruc-
ture of space-time nor presuppose its nature. We must let quantum gravity 
itself reveal this structure to us. Irrespective of whether one works with 
strings or supergravity or general relativity, one has to face the problem 
of quantization non-perturbatively. In the current, fourth stage both ap­
proaches have undergone a metamorphosis. The covariant approach has led 
to string theory and the canonical approach developed into loop quantum 
gravity. The mood seems to be markedly different. In both approaches, 
non-perturbative aspects are at the forefront and conceptual issues are again 
near center-stage. However, there are also key differences. Most work in 
string theory involves background fields and uses higher dimensions and 
supersymmetry as essential ingredients. The emphasis is on unification of 
gravity with other forces of Nature. Loop quantum gravity, on the other 
hand, is manifestly background independent. Supersymmetry and higher 
dimensions do not appear to be essential. However, it has not provided any 
principle for unifying interactions. In this sense, the two approaches are 
complementary rather than in competition. Each provides fresh ideas to 
address some of the key problems but neither is complete. 

In the rest of this section, I will illustrate the current developments by 
sketching a few of the more recent results. In the case of string theory, my 
discussion will be very brief because these topics are discussed in greater 
detail by several other articles in this volume. 

4.1. String theory 

Over the past decade, novel non-perturbative ideas have been introduced in 
string theory. Unlike in the perturbative epoch, it is no longer a theory only 
of one-dimensional extended objects. Higher dimensional objects, called 
'branes' have played an increasingly important role. Although for historical 
reasons it is still called 'string theory', from a fundamental, conceptual 
perspective, strings are no more basic than branes. Of particular interest 
are the D-branes introduced by Polchinski on which open strings satisfying 
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'Dirichlet type' boundary conditions can end (whence the adjective 'D' ). 
These lie at the heart of the statistical mechanical calculation of entropy of 
large extremal black holes in string theory. 

The second key development was even more radical: Maldecena made 
the bold proposal that string theory on a certain anti-De sitter background 
space-time is isomorphic with a gauge theory living on its boundary. In the 
first and the most studied version, the background space-time is assumed 
to be a product of a five-dimensional anti-De Sitter space-time with a five-
dimensional sphere (whose radius equals the cosmological radius of the anti-
De Sitter space-time) while the gauge theory lives on the four-dimensional 
boundary of the five dimensional anti-De Sitter space-time. Since then 
the setup has been generalized to various non-compact dimensions. The 
boundary conditions — and hence the resulting string theories — are not 
of direct physical interest because our universe has a positive, rather than 
a negative, cosmological constant and because the compact spheres do not 
represent microscopic 'curled-up' dimensions because they now have huge 
radii. Nonetheless, from a mathematical physics perspective, the proposed 
duality is fascinating because it relates a 'gravity theory' residing on a 
curved space-time with a qualitatively different 'gauge theory' living on a 
(conformally) flat space-time. It has had some powerful applications, e.g. in 
unravelling the structure of certain supersymmetric gauge theories through 
supergravity! 

Finally there are interesting proposals relating various types of string 
theories that go under the name ''dualities'. Although there are no con­
clusive proofs, these ideas suggest that the five perturbatively constructed 
string theories and supergravity may be special limits of a grander, un­
known theory, generally referred to as the M theory. The scenario has 
generated a great deal of enthusiasm. For, the conjectured theory is likely 
to be very rich. In particular, it should provide isomorphisms between the 
strong coupling regime of one string theory to the weak coupling regime 
of another. Unravelling of its non-perturbative structures will undoubtedly 
provide qualitatively new insights and perhaps even radically change our 
current perspectives. 

4.2. Loop quantum gravity 

Over the past decade, the main thrust of research in loop quantum gravity 
has been on using quantum geometry to address some of the long stand­
ing problems in the field. Certain key techniques introduced by Thiemann 
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have provided glimpses of the qualitative changes in quantum dynamics 
that occur because of the absence of a background geometry. Specifically, 
thanks to the fundamental discreteness of quantum Riemannian geometry, 
the ultraviolet divergences — also in the definition of matter Hamiltonians 
— are naturally tamed [36, 43]. However, in the full theory, two major 
issues still remain. First, there is a large number of ambiguities in the for­
mulation of quantum Einstein's equations and one needs additional inputs 
to remove them. Second, it is still not clear whether any of the current 
formulations admits a semi-classical sector that reproduces the low energy 
world around us [36].8 So far, advances of direct physical interest have 
occurred by adopting a strategy which has been effective also in string the­
ory: isolate and analyze issues on which significant progress can be made in 
spite of the gaps in the understanding of the full theory. In the rest of this 
sub-section, I will illustrate how this strategy is implemented. Rather than 
describing several results briefly, I will focus just on one. This will enable 
me to provide some details that are necessary for the reader to appreciate 
the subtle manner in which quantum geometry effects operate. 

The issue in question is the nature of the quantum big-bang. Most 
work in cosmology is carried out in the context of spatially homogeneous 
and isotropic models and perturbations thereof [41]. In the simplest model, 
the basic variables of the symmetry reduced classical system are the scale 
factor a and matter fields <fi. Symmetries imply that space-time curvature 
goes as ~ l / a n , where n > 0 depends on the matter field under consider­
ation. Einstein's equations then predict a big-bang, where the scale factor 
goes to zero and the curvature blows up. Space-time comes to an end and 
the classical physics stops. For over three decades a key question has been: 
Can these 'limitations' of general relativity be overcome in an appropriate 
quantum theory? In traditional quantum cosmologies, the answer is in the 
negative. Typically, to resolve the singularity one either has to use mat­
ter (or external clocks) with unphysical properties or introduce additional 
boundary conditions, e.g. by invoking new principles, that dictate how the 
universe began. 

8 Several different avenues are being pursued to address these issues [36]. These include 
the 'discrete approach' due to Gambini and Pullin [40] in which one discretizes the 
theory prior to quantization; spin-foam approaches due to Baez, Barrett, Crane, Perez, 
Rovelli and others [32, 37] in which one uses a background independent, the path integral 
analog of loop quantum gravity; and the 'master constraint program' of Dittrich and 
Thiemann [35] which uses some of the key ideas of Klauder's [33] affine quantum gravity 
program. 
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In a series of papers Bojowald, Ashtekar, Date, Hossain, Lewandowski, 
Maartens, Singh, Vandersloot and others have shown that the situation 
in loop quantum cosmology is quite different: the underlying quantum 
geometry makes a qualitative difference very near the big-bang [36, 38]. 
At first, this seems puzzling because after symmetry reduction, the system 
has only a finite number of degrees of freedom. Thus, quantum cosmology 
is analogous to quantum mechanics rather than quantum field theory. How 
then can one obtain qualitatively new predictions? The answer is quite 
surprising: if one follows the program laid out in the full theory, then even 
for the symmetry reduced model one is led to a new quantum mechanics! 
Specifically, the representation (of the observable algebra) that naturally 
arises in loop quantum cosmology is inequivalent to that used in the older, 
traditional quantum cosmology. And in the new representation, quantum 
evolution is well-defined right through the big-bang singularity. 

More precisely, the situation in dynamics can be summarized as fol­
lows. Because of the underlying symmetries, dynamics is dictated just by 
one of the ten Einstein equations, called the Hamiltonian constraint. Let us 
consider the simplest case of homogeneous, isotropic cosmologies coupled 
to a scalar field. In traditional quantum cosmology, this constraint is the 
celebrated Wheeler-DeWitt equation [2, 3] — a second-order differential 
equation on wave functions ^(a, <f>) that depend on the scale factor a and 
the scalar field (/>. Unfortunately, some of the coefficients of this equations 
diverge at a = 0, making it impossible to obtain an unambiguous evolu­
tion across the singularity. In loop quantum cosmology, the scale factor 
naturally gets replaced by /x the momentum conjugate to the connection. 
[i ranges over the entire real line and is related to the scale factor via 
\[x\ = const a2. Negative values of \i correspond to the assignment of one 
type of spatial orientation, positive to the opposite orientation, and \i = 0 
corresponds to the degenerate situation at the singularity. The Wheeler-
DeWit equation is now represented by a difference equation on the quantum 
state \I/(/i, 4>): 

C+(M)*(/x + 4/x0, <W+C 0 (M)*W) + C-(M)*( ,« -4^ 0 , ^ ) = 4 I H+Hfr 4>) 
(1) 

where C±(/i) , C°(fi) are fixed functions of \x\ JJL0, a constant, determined 
by the lowest eigenvalue of the area operator and H^ is the matter Hamil­
tonian. Again, using the analog of the Thiemann regularization from the 
full theory, one can show that the matter Hamiltonian is a well-defined 
operator. 



The Winding Road to Quantum Gravity 85 

Primarily, (1) is the quantum Einstein's equation that selects the phys­
ically permissible \I>(/i< )̂. However, if we choose to interpret /j, as a heuris­
tic time variable, (1) can be interpreted as an 'evolution equation' which 
evolves the state through discrete time steps. The highly non-trivial re­
sult is that the coefficients C^(fjb), C°(/x) are such that one can evolve right 
through the classical singularity, i.e. right through \x = 0. Since all solu­
tions have this property, the classical singularity is resolved. However, to 
complete the quantization program, one has to introduce the appropriate 
scalar product on the space of solutions to the constraint, define physically 
interesting operators on the resulting Hilbert space Wfmai and examine their 
expectation values and fluctuations, especially near the singularity. 

All these steps have been carried out in detail in the case when <f> is 
a massless scalar field9 [47]. Specifically, in each classical solution, 0 is a 
monotonic function of time. Therefore, one can regard it as an 'internal 
clock' with respect to which the scale factor evolves. With this interpre­
tation, the discrete equation (1) takes the form df^> = —0\T/, where G is 
a self-adjoint operator, independent of <fi ~ t. This is precisely the form 
of the Klein-Gordon equation in static space-times. (In technical terms, 
this provides a satisfactory 'deparametrization' of the theory.) Therefore, 
one can use techniques from quantum field theory in static space-times 
to construct an appropriate inner product and define a complete family of 
('Dirac') observables. Using the two, one can construct semi-classical states 
— analogs of coherent states of a harmonic oscillator — and write down 
explicit expressions for expectation values and fluctuations of physical ob­
servables in them. As one might expect, the evolution is well-defined across 
the singularity but quantum fluctuations are huge in its neighborhood. 

Now that there is a well-defined theory, one can use numerical methods 
to evolve quantum states and compare quantum dynamics with the clas­
sical one in detail. Since we do not want to make a priori assumptions 
about what the quantum state was at the big-bang, it is best to start the 
evolution not from the big bang but from late times ('now'). Consider then 
wave functions which are sharply peaked at a classical trajectory at late 
times and evolve them backward. The first question is: how long does the 
state remain semi-classical? A pleasant surprise is that it does so till very 
early times — essentially till the epoch when the matter density reaches the 

9 The extension of the analysis to include potential terms for the matter field <f o r 

anisotropics for the combined system involves only technical complications. The overall 
conceptual picture remains the same. 



86 A. Ashtekar 

Planck density. Now, this is precisely what one would physically expect. 
However, with a complicated difference equation such as (1), a priori there 
is no guarantee that semi-classicality would not be lost very quickly. In 
particular, this result provides support for the standard practice, e.g. in 
inflationary models, of assuming a classical continuum in the very early uni­
verse. Next, one can ask what happens to the quantum state very near and 
beyond the big-bang. As explained above, the state loses semi-classicality 
(i.e. fluctuations become large) near the big-bang. Does it then remain in 
a 'purely quantum regime' forever or does it again become semi-classical 
beyond a Planck regime on the 'other side' of the big bang? This is a ques­
tion that lies entirely outside the domain of the standard Wheeler-Dewitt 
equation because it loses predictivity at the big-bang. In loop quantum 
cosmology, on the other hand, the evolution is well-defined and completely 
deterministic also beyond the big-bang. A priori there is no way to know 
what the answer would be. Space-time may well have been a 'quantum 
foam' till the big-bang and classicality may then have emerged only after 
the big-bang. Or, there may have been a classical space-time also on the 
'other side'. Detailed numerical calculations show that the wave function 
becomes semi-classical again on the other side; gravity becomes repulsive in 
the Planck regime, giving rise to a 'bounce'. Thus, loop quantum cosmol­
ogy predicts that the universe did not originate at the big bang but has a 
long prior history. Through quantum dynamics, the universe tunnels from 
a contracting phase in the distant past ('before the bang') to an expand­
ing phase in the distant future ('now') in a specific manner. Classically, of 
course such a transition is impossible. 

To summarize, the infinities predicted by the classical theory at the 
big-bang are artifacts of assuming that the classical, continuum space-time 
approximation is valid right up to the big-bang. In the quantum theory, 
the state can be evolved through the big-bang without any difficulty. How­
ever, the classical, continuum completely fails near the big-bang; figura­
tively, the classical space-time 'dissolves'. This resolution of the singularity 
without any 'external' input (such as matter violating energy conditions) 
is dramatically different from what happens with the standard Wheeler-
DeWitt equation of quantum geometrodynamics [2-5, 8]. However, for 
large values of the scale factor, the two evolutions are close; as one would 
have hoped, quantum geometry effects intervene only in the 'deep Planck 
regime' resulting in a quantum bridge connecting two classically discon­
nected space-times. From this perspective, then, one is led to say that the 
most striking of the consequences of loop quantum gravity are not seen in 
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Fig. 1. Comparison between quantum and classical evolutions via plot of \f>(n,(p)\. 
Since /x —> — ft changes only the spatial orientation, it suffices to consider just y. > 0. 
Except in the Planck regime very near \i = 0, $! is sharply peaked at the classical 
trajectories. But the trajectory in the top half represents an expanding universe while 
that in the bottom half, a contracting universe. Thus, quantum geometry in the Planck 
regime bridges two vast but classically disjoint space-times. 

older approaches because they 'wash out' the fundamental discreteness of 
quantum geometry. 

5. Outlook 

The road to quantum gravity has been long, spanning some four decades. 
Along the way came many new insights, jubilations as well as frustrations. 
Because of the page limit, I could only provide a general flavor of these 
trials, tribulations and triumphs. In particular, I had to restrict myself 
to the 'main-stream' programs whose development can be continuously 
tracked over several decades. There also exist a number of other fascinating 
and highly original approaches — particularly causal dynamical triangula-
tions [27, 39], Euclidean quantum gravity [11, 42], twistor theory [10, 20] 
and the related theory of H-spaces [17], asymptotic quantization [18], non-
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commutative geometry [23] and causal sets [34] — that I could not discuss.10 

But I hope I have managed to convey that, in spite of all the twists 
and turns in the winding road, there have been definite advances. We have 
learned that, because relativistic gravity is so deeply intertwined with space-
time geometry, quantum gravity has unforeseen dimensions that would have 
surprised even the great leaders of the early period. We tried hard to extend 
perturbative methods of local quantum field theory which have been so 
successful in QED [8]. The efforts did lead to a successful perturbative 
framework for non-Abelian gauge theories [7, 16]. But we found conclusive 
evidence that these methods are insufficient for quantum gravity: they lead 
to uncontrollable ultraviolet divergences [16]. Thanks to string theory, we 
now have, for the first time, a concrete alternative — a computational 
framework to calculate scattering amplitudes which yields finite results to 
any order in perturbation theory [28]. Furthermore, the theory provides 
a brand new avenue to the unification of all interactions; the plethora of 
elementary particles is now reduced to various vibrational modes of the 
superstring. For decades we have been troubled by the fact that space-time 
of general relativity comes to an abrupt end at singularities and classical 
physics literally stops there. Loop quantum gravity has shown that this is 
an artifact of pushing the classical theory beyond the domain of its validity 
[36, 38]. Quantum geometry extends its life. What we thought of as a 
'tiny, Planck scale region' can actually be a bridge joining our space-time to 
another vast classical region [47]; quantum space-time may be vastly larger 
than what general relativity had us believe.11 Finally, both approaches have 
provided fascinating insights into the nature of quantum black holes [29, 36], 
a topic that would require a separate article in its own right. 

All currently active directions point to the necessity of radical revisions 
of the 20th century paradigm of theoretical physics. String theory abandons 
local quantum field theories altogether and focuses instead on the study of 
extended quantum objects. Loop quantum gravity asks us to forego our 
cherished space-time continuum and embrace a quantum geometry instead. 
Twistor theory and non-commutative geometry suggest that we abandon 
the familiar space-time already at the classical level and reformulate gen­
eral relativity well before the word 'quantum' is uttered or the symbol h 
introduced. No matter which of these approaches find an expression in the 

10Accounts of the present status of several of these approaches can be found in the 
articles by Dowker, Ford, Gambini and Pullin and Penrose in [46], 
1 1In Sec. 4.2 I discussed cosmological singularities. However, the situation is similar also 
for space-like black hole singularities [44, 45]. 
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final quantum gravity theory, it is clear that quantum gravity will have 
deep ramifications on all of fundamental physics. General relativity led to 
a radical revision of our notions of space and time, thereby reshaping the 
conceptual foundation of all of physics. Impact of the successful quantum 
gravity theory on fundamental physics will be even deeper. 

But today we cannot be certain which — or indeed, any — of these 
directions will constitute major components of the final theory. Thanks to 
the sustained work spanning many decades, most notable advances have 
occurred in the 'covariant' and 'canonical' approaches. However, even here 
one encounters serious incompleteness and some troubling features. How 
is the supersymmery broken in string theory and how does reduction to 
four large dimensions occur? While the theory is very tight in terms of its 
fundamental constants, there is a huge freedom in the choice of 'moduli-
parameters'. There appear to be over 10200 'vacua', each giving rise to its 
own low energy theory! How is this freedom to be reduced? No compelling 
principle seems to be in sight. More generally, our understanding of the 
presumed M-theory is very incomplete. Incompleteness pervades also loop 
quantum gravity. How are the ambiguities in the formulation of quantum 
Einstein's equations removed in the full theory? Does this theory admit 
a viable semi-classical sector? Through minisuperspaces we have learned 
that cosmological and black hole singularities are resolved through quan­
tum geometry effects and loop quantum gravity enables one to perform a 
deterministic evolution across these singularities. Do these features survive 
beyond the minisuperspace approximation? How do inhomogeneous per­
turbations evolve in the cosmological context? Is this evolution compatible 
with observational constraints on structure formation? While there is vig­
orous ongoing research to answer such questions in both approaches, one 
cannot say that a satisfactory resolution is imminent. Even more impor­
tant is the issue of observations. So far, not a single non-trivial and firm 
prediction of any quantum gravity theory has been verified directly. There­
fore, as we celebrate the 100th anniversary of Einstein's Annus Mirabilis 
it is important that we maintain a long range perspective and not repeat 
our past error of overconfidence (see footnote 4). In particular, we would 
do well to avoid the traps that the celebrated biologist Francois Jacob [30] 
warned all scientists about: 

The danger for scientists is not to measure the limits of their 
science, and thus their knowledge. This leads to mix what they 
believe and what they know. Above all, it creates the certitude of 
being right [prematurely]. 
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This is a brief review on Brownian functionals in one dimension and 
their various applications. After a brief description of Einstein's original 
derivation of the diffusion equation, this article provides a pedagogical 
introduction to the path integral methods leading to the derivation of 
the celebrated Feynman-Kac formula. The usefulness of this technique 
in calculating the statistical properties of Brownian functionals is illus­
trated with several examples in physics and probability theory, with 
particular emphasis on applications in computer science. The statistical 
properties of "first-passage Brownian functionals" and their applications 
are also discussed. 

1. I n t r o d u c t i o n 

The year 2005 marks the centenary of the publication of three remarkable 

papers by Einstein, one on Brownian motion [1], one on special relativity [2], 

and the other one on the photoelectric effect and light quanta [3]. Each of 

them made a revolution on its own. In particular, his paper on Brownian 

motion (along with the related work by Smoluchowsky [4] and Langevin [5]) 

had a more sustained and broader impact, not just in tradit ional 'na tura l ' 

sciences such as physics, astronomy, chemistry, biology and mathematics 

but even in 'man-made ' subjects such as economics and computer science. 

The range of applications of Einstein's Brownian motion and his theory 

of diffusion is truly remarkable. The ever emerging new applications in 

diverse fields have made the Brownian motion a t rue legacy and a great 

gift of Einstein to science. 

There have been numerous articles in the past detailing the history 

of Brownian motion prior to and after Einstein. Reviewing this gigantic 
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amount of work is beyond the scope of this article. This year two excellent 
reviews on the Brownian motion with its history and applications have been 
published, one by Prey and Kroy [6] and the other by Duplantier [7]. The 
former discusses the applications of Brownian motion in soft matter and 
biological physics and the latter, after a very nice historical review, discusses 
the applications of Brownian motion in a variety of two-dimensional growth 
problems and their connections to the conformal field theory. Apart from 
these two reviews, there have been numerous other recent reviews on the 
100 years of Brownian motion [8] — it is simply not possible to cite all of 
them within the limited scope of this article and I apologise for that. The 
purpose of the present article is to discuss some complementary aspects 
of Brownian motion that are not covered by the recent reviews mentioned 
above. 

After a brief introduction to Einstein's original derivation of the Stokes-
Einstein relation and the diffusion equation in Sec. 2, the principal focus 
of the remainder of the article will be on the statistical properties of func­
t ional of one-dimensional Brownian motion, with special emphasis on their 
applications in physics and computer science. If X{T) represents a Brown­
ian motion, a Brownian functional over a fixed time interval [0, t] is sim­
ply denned as T= JQ U(X(T))CIT, where U{x) is some prescribed arbitrary 
function. For each realization of the Brownian path, the quantity T has 
a different value and one is interested in the probability density function 
(pdf) of T. It was Kac who first realized [9] that the statistical properties 
of one-dimensional Brownian functionals can be studied by cleverly using 
the path integral method devised by Feynman in his unpublished Ph.D 
thesis at Princeton. This observation of Kac thus took Einstein's classical 
diffusion process into yet another completely different domain of physics 
namely the quantum mechanics and led to the discovery of the celebrated 
Feynman-Kac formula. Since then Brownian functionals have found nu­
merous applications in diverse fields ranging from probability theory [9, 10] 
and finance [11] to disordered systems and mesocopic physics [12]. In this 
article I will discuss some of them, along with some recent applications of 
Brownian functionals in computer science. 

After a brief and pedagogical derivation of the path integral methods 
leading to the Feynman-Kac formula in Sec. 3, I will discuss several ap­
plications from physics, computer science and graph theory in Sec. 4. In 
Sec. 5, the statistical properties of "first-passage Brownian functionals" will 
be discusssed. A first-passage functional is defined as T = JQ

f U{x{r))d,T 
where tf is the first-passage time of the Brownian process X(T), i.e. the first 
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time the process crosses zero. Such first-passage functionals have many ap­
plications, e.g. in the distribution of lifetimes of comets, in queueing theory 
and also in transport properties in disordered systems. Some of these ap­
plications will be discussed in Sec. 5. 

The diverse and ever emerging new applications of Brownian functionals 
briefly presented here will hopefully convince the reader that 'Brownian 
functionalogy' merits the status of a subfield of statistical physics (and 
stochastic calculus) itself and is certainly a part of the legacy that Einstein 
left behind. 

2. Einstein's Theory of Brownian Motion and Langevin's 
Stochastic Equation 

Einstein's 1905 paper on Brownian motion [1] achieved two important mile­
stones: (i) to relate macroscopic kinetic parameters such as the diffusion 
constant and friction coefficient to the correlation functions characterizing 
fluctuations of microscopic variables — known as a fluctuation-dissipation 
relation and (ii) to provide a derivation of the celebrated diffusion equation 
starting from the microscopic irregular motion of a particle — thus laying 
the foundation of the important field of "stochastic processes". 

2.1. A fluctuation-dissipation relation 

Very briefly, Einstein's argument leading to the derivation of fluctuation-
dissipation relation goes as follows. Imagine a dilute gas of noninteracting 
Brownian particles in a solvent under a constant volume force K (such as 
gravity) on each particle. For simplicity, we consider a one-dimensional 
system here, though the arguments can be generalized straightforwardly to 
higher dimensions. There are two steps to the argument. The first step is to 
assume that the dilute gas of Brownian particles suspended in a solvent be­
haves as an ideal gas and hence exerts an osmotic pressure on the container 
giving rise to a pressure field. The pressure p(x) at point x is related to 
the density p(x) via the equation of state for an ideal gas: p(x) = 1CBTP(X), 

where ks is the Boltzmann's constant and T is the temperature. The force 
per unit volume due to the pressure field —dxp{x) must be balanced at 
equilibrium by the net external force density Kp(x), leading to the force 
balance condition: Kp(x) = —dxp{x) = —kBTdxp{x). The solution is 
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simply 

/ ) ( i ) = p ( 0 ) e x p | ~ a ; ) . (1) 

The next step of the argument consists of identifying two currents in 
the system. The first is the diffusion current jdiff = —Ddxp(x) where D is 
defined as the diffusion coefficient. The second is the drift current due to the 
external force, jdrift which can be computed as follows. Under a constant 
external force, each particle achieves at long times a terminal drift velocity, 
v = K/Y where Y is the friction coefficient. For spherical particles of radius 
a, T is given by the Stoke's formula, Y = 6irr]a where rj is the viscosity. 
Thus, jdrift = vp{x) = Kp(x)/Y. Now, at equilibrium, the net current in 
a closed system must be zero, j = jdiff + jdrift = 0 leading to the equation 
-Ddxp{x) + Kp{x)/Y = 0. The solution is 

p(x)=p(0)exp(-^x)j . (2) 

Comparing Eqs. (1) and (2) Einstein obtained the important relation 

D=*£, (3) 

which is known today as the Stokes-Einstein relation that connects macro­
scopic kinetic coefficients such as D and Y to the thermal fluctuations char­
acterized by the temperature T. 

2.2. Diffusion as a microscopic process 

In addition to the fluctuation-dissipation relation in Eq. (3), Einstein's 
1905 paper on Brownian motion also provided an elegant derivation of 
the diffusion equation that expressed the diffusion constant D in terms of 
microscopic fluctuations. Since the particles are independent, the density 
p(x,t) can also be interpreted as the probability p(x,t) = P(x,t) that a 
single Brownian particle is at position x at time t and the aim is to derive 
an evolution equation for P(x,t) by following the trajectory of a single 
particle. Here one assumes that the particle is free, i.e. not subjected to 
any external drift. Einstein considered the particle at position x at time 
t and asssumed that in a microscopic time step At, the particle jumps by 
a random amount Arc which is thus a stochastic variable. He then wrote 
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down an evolution equation for P(x, t) 

/

oo 
P(x-Ax,t)4>At(Ax)d(Ax) (4) 

-oo 

where (/>At(Ax) is the normalized probability density of the 'jump' Ax in 
time step Ai. This evolution equation is known today as the Chapman-
Kolmogorov equation and it inherently assumes that the stochastic process 
x(t) is Markovian. This means that the jump variables Ax's are indepen­
dent from step to step, so that the position x(t) of the particle at a given 
time step depends only on its previous time step and not on the full previ­
ous history of evolution. Next Einstein assumed that P(x — Ax, t) in the 
integrand in Eq. (4) can be Taylor expanded assuming 'small' Ax. This 
gives 

3P u d^P 
P(x,t + At) = P(x,t)-Li1— + ^ ^ + ... (5) 

where \ik = X!^0(Ax)'c(}f)At(Ax)d(Ax) is the A;-th moment of the jump vari­
able Ax. Furthermore, the absence of external drift sets \X\ = 0. Dividing 
both sides of Eq. (5) by Ai, taking the limit Ai —> 0 and keeping only the 
leading nonzero term (assuming the higher order terms vanish as Ai —> 0) 
one gets the diffusion equation 

dP nd2p (M 

where the diffusion constant 

I> = lim - ^ _ = Km - j - I"" (Ax)2<pAt(Ax)d{Ax) = lim i ^ f E l l 

(7) 
where ((Ax)2) is the average of the square of the microscopic displacement 
in a microscopic time step Ai. Thus Einstein was able to express the 
constant D that appears as a coefficient in the macrosopic diffusion current 
j'diff = —DdxP in terms of the microscopic fluctuation Ax in the position 
of a Brownian particle. This derivation also brings out the fundamental 
principle of the diffusion process, i.e. the length scale must scale as the 
square root of the time scale. 

The position of the Brownian particle can evolve via many possible 
'stochastic' trajectories. The diffusion equation (6) describing the evolution 
of the probability density sums up the effects of all underlying stochastic 
trajectories. However, it is often useful to have a mathematical description 
of each single trajectory. This brings us to the description of the diffusion 
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process a la Langevin [5]. It is clear from Einstein's derivation that the 
local slope of an evolving trajectory at time i can be written as 

%-UM (8) 

where £A*(£) is a random 'noise' which is independent from one microscopic 
step to another, and it has zero mean. Its variance at a given time £, in 
the continuum limit At —> 0, can also be computed from Eq. (7). One 
gets (fAt(£)) = ((Aa:)2)/(At)2 = 2£>/At as At -> 0. Thus the noise term 
typically scales as 1/y/At as At —> 0. The correlation function of the noise 
between two different times can then be written as, 

(UtMUttf)) = 0 if t + t' 

= ?E if t = t'. (9) 
At v ; 

In the continuum limit At —> 0, the noise £A*(£) then tends to a limiting 
noise £(£) which has zero mean and a correlator, (£(£)£(£')) = %D5(t — £'). 
This last result follows by formally taking the limit At —> 0 in Eq. (9) where, 
loosely speaking, one replaces the 1/At by (5(0). Such a noise is called a 
'white' noise. Thus, in the continuum limit At —> 0, Eq. (8) reduces to the 
celebrated Langevin equation, 

¥-«" (10) 

where £(£) is a white noise. Moreover, in the continuum limit At —> 0, 
one can assume, without any loss of generality, that the white noise £(£) is 
Gaussian. This means that the joint probability distribution of a particular 
history of the noise variables [{£(r)}, for 0 < T < t] can be written as 

ct 
Prob[{£(/r)}] oc exp M e(T)d\ ("I 

/o 
We will see later that this particular fact plays the key role in the representa­
tion of Brownian motion as a path integral. The Brownian motion x(t) can 
thus be represented as the integrated white noise, x(t) = x(0) + f0 £(T)CIT. 

While the physicists call this a Brownian motion, the mathematicians call 
this integrated white noise the Wiener process, named after the mathemati­
cian N. Wiener. 

Langevin's formulation in Eq. (10) also makes a correspondence between 
Brownian motion and the random walk problem where the position xn of 
a random walker after n steps evolves via 

xn = xn-i + £n (12) 
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where £n 's are independent random variables, each drawn from the com­
mon distribution (f>(£) for each step n. In fact, the idea of understanding 
Brownian motion in terms of random walks was first conceived by Smolu-
chowsky [4]. The Langevin equation representation of Brownian motion 
makes this connection evident, the Brownian motion is just the suitably 
taken continuum limit of the random walk problem. For large n, by virtue 
of the central limit theorem, the results for the random walk problem re­
duce to those of the Brownian motion. This is an important point because 
in many applications, especially those in computer science as will be dis­
cussed later, one often encounters discrete random walks as in Eq. (12) 
which are often more difficult to solve than the continuum Brownian mo­
tion. However, since in most applications one is typically interested in the 
large time scaling-limit results, one can correctly approximate a discrete 
random walk sequence by the continuum Brownian process and this makes 
life much simpler. 

3. Brownian Process as a Path Integral 

The solution of the diffusion equation (6) can be easily obtained in free 
space by the Fourier transform method. For simplicity, we set D = 1/2 for 
the rest of the article. One gets 

/

oo 

dxoGo(x,t\xo,0)P(xo,0) (13) 

where P(XQ, 0) is the initial condition and the diffusion propagator 

G0(x,t\x0,0) = —== exp [-(x - x0)
2/2t] (14) 

V 27r£ 

denotes the conditional probability that the Brownian particle reaches x 
at time t, starting from xo at t = 0. It was M. Kac who first made the 
important observation [9] that this diffusion propagator can be interpreted, 
using Feynman's path integral formalism, as the quantum propagator of a 
free particle from time 0 to time t. This is easy to see. Using the property 
of the Gaussian noise in Eq. (11) and the Langevin equation (10), it is clear 
that the probability of any path {X(T)} can be written as 

P[{;E(T)}] OC exp 
1 

2 f Jo (¥ {dT, 

2 

) 
/ 

dr (15) 
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Thus the diffusion propagator, i.e. the probability that a path goes from 
XQ at t = 0 to x at t can be written as a sum of the contributions from all 
possible paths propagating from XQ at r = 0 to x at r = t. This sum is 
indeed Feynman's path integral [13] 

fxi^=x 1 /•* /dx\2 

Go(x,t\xo,0) = / X>x(r)exp - - / — dr 
Jx(0)=x0

 2 JO \aTj 

(16) 
fx(t)=:X 

x(0)=x0 

One immediately identifies the term |(<ir) a s *^e classical kinetic energy 
of a particle of unit mass and the integral \ fQ ( ^ ) dr as the Lagrangian 
of a free particle of unit mass. Following Feynman [13], one then identifies 
the path integral in Eq. (16) as a quantum propagator 

G0{x,t\x0,0) = (x\e-"ot\x0) (17) 

where Ho = — \~§x^ IS * n e Quantum Hamiltonian of a free particle (we 
have set the mass m = 1 and the Planck's constant H = 1). To make the 
connection complete, the quantum propagator on the r.h.s. of Eq. (17) can 
be easily evaluated by expanding it in the free particle eigenbasis. Noting 
that Ho has free particle eigenfunctions ipk(x) = -j==e%kx with eigenvalue 
fc2/2, one gets 

Go(x,t\xo,0) = {x\e-"ot\x0) = / (x\k)(k\x0)e-k2t/2dk 

Performing the Gaussian integration, one gets back the classical result in 
Eq. (14) that was obtained by solving the diffusion equation. Thus the two 
approaches, one by solving a partial differential equation usually referred 
to as the Fokker-Planck approach and the other using the path integral 
method are completely equivalent. 

One may argue that once the basic propagator is known, the Brownian 
motion is well understood and there is nothing else interesting left to study! 
This is simply not true because there are intricate questions associated with 
the diffusion process that are often rather nontrivial. A notable nontrivial 
example is the calculation of the persistence exponent associated with a 
diffusion process [14]. Consider a diffusive field <j>{r,t) evolving via the 
d-dimensional diffusion equation 
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starting from the initial condition (f>(f, 0) which is a random Gaussian field, 
uncorrelated in space. The solution at time t can be easily found using 
d-dimensional trivial generalization of the diffusion propagator in Eq. (14) 

<!>(?, t) = J^J^ J dfom, 0) exp [-(f - f0)
2/2t] . (20) 

Now, suppose that we fix a point f in space and monitor the field (p(f, t) 
there as a function of time t and ask: what is the probability P(t) that 
the field <j>(f, t) at r does not change sign up to time t starting initially 
at the random value (f>(f, 0)? By translational invariance, P(t) does not 
depend on the position r. This probability P(t) is called the persistence 
probability that has generated a lot of interest over the last decade in the 
context of nonequilibrium systems [14]. For the simple diffusion process 
in Eq. (20), it is known, both theoretically [15] and experimentally [16] 
that at late times t, the persistence P(t) has a power law tail P(t) ~ t~e 

where the persistence exponent 9 is nontrivial (even in one dimension!), 
e.g. 6 « 0.1207 in d = 1, 9 « 0.1875 in d = 2, 9 « 0.2380 in d = 3, etc. 
While this exponent 6 is known numerically very precisely and also very 
accurately by approximate analytical methods [15], an exact calculation 
of 9 has not yet been achieved and it remains as an outstanding unsolved 
problem for the diffusion process [17]. This example thus clarifies that while 
the knowledge of the diffusion propagator is necessary, it is by no means 
sufficient to answer more detailed history related questions associated with 
the diffusion process. 

Note that in the persistence problem discussed above, the relevant 
stochastic process at a fixed point r in space, whose properties one is in­
terested in, is actually a more complex non-Markovian process [14] even 
though it originated from a simple diffusion equation. In this article, we 
will stay with our simple Brownian motion in Eq. (10) which is a Markov 
process and discuss some of the nontrivial aspects of this simple Brownian 
motion. For example, in many applications of Brownian motion in physics, 
finance and computer science, the relevant Brownian process is often con­
strained. For example, an important issue is the first-passage property of 
a Brownian motion [18-20], i.e. the distribution of the first time that a 
Brownian process crosses the origin? For this, one needs to sample only a 
subset of all possible Brownian paths that do not cross the origin up to a 
certain time. This can be achieved by imposing the constraint of no cross­
ing on a Brownian path. Apart from the constrained Brownian motion, 
some other applications require a knowledge of the statistical properties of 
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a Brownian functional up to time t, defined as Tt = J0 U(X(T)) dr, where 
U(x) is a specified function. We will provide several examples later and 
will see that while the properties of a free Brownian motion are rather sim­
ple and are essentially encoded in its propagator in Eq. (14), properties 
of constrained Brownian motion or that of a Brownian functional are of­
ten nontrivial to derive and the path integral technique discussed above is 
particularly suitable to address some of these issues. 

3.1. Brownian motion with constraints: first-passage 
property 

As a simple example of a constrained Brownian motion, we calculate in 
this subsection the first-passage probability density f(xo,t). The quantity 
f(xo,t)dt is simply the probability that a Brownian path, starting at XQ 
at t = 0, will cross the origin for the first time between time t and t + dt. 
Clearly, f(xo,t) = —dq(xo,t)/dt where q(xo,i) is the probability that the 
path starting at XQ at t = 0 does not cross the origin up to t. The probability 
q(xo, t) can be easily expressed in terms of a path integral 

/•OO rx(t)=X I" ^ l-t /dx\
2 

q(x0,i)= dx Vx{r)exp - - ( — J dr 1[0[X{T)] (21) 

where the paths propagate from the initial position x(0) = XQ to the final 
position x at time t and then we integrate x over only the positive half-
space since the final position x can only be positive. The term n r = o ^[X(T)] 
inside the path integral is an indicator function that enforces the constraint 
that the path stays above the origin up to t. We then identify the path 
integral in Eq. (21) as an integral over a quantum propagator, 

q(x0,t)= dxG{x,t\xo,0); G(x,t\x0,0) = (x\e-"lt\x0) (22) 
Jo 

where the Hamiltonian H± = ~\-§^ + V(x) with the quantum potential 
V(x) = 0 if x > 0 and V(x) = oo if x < 0. The infinite potential for x < 0 
takes care of the constraint that the path cannot cross the origin, i.e. it 
enforces the condition f 3 x = 0 6'[x(x)]. The eigenfunction of Hi must vanish 
at x = 0, but for x > 0 it corresponds to that of a free particle. The correctly 

normalized eigenfunctions are thus ipk(x) = \ f sm{kx) with k > 0 with 

eigenvalues fc2/2. The quantum propagator can then be evaluated again by 
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decomposing into the eigenbasis 

G(x,t\xo,0) = - / sin(/ca;o)sin(fcx)e^fc2t/2dA; 
n Jo 

fe-(x-x0f/2t _ e-(x+x0f/2U _ /23) 

Note that this result for the propagator can also be derived alternately 
by solving the diffusion equation with an absorbing boundary condition at 
the origin. The result in Eq. (23) then follows by a simple application of 
the image method [18, 20]. Integrating over the final position in x one 
gets from Eq. (22) the classical result [19], q(xo,t) = erf(x/v /2i) where 
erf (z) = -^ f* e~u du. The first -passage probability density is then given 
by 

dq(x0,t) x0 e-
x°/2t 

f M = _ = _ _ ^ . (24) 

For t ^> XQ, one thus recovers the well known i~3/2 decay of the first-passage 
probability [18, 19] density. 

3.2. Brownian functionals: Feynman-Kac formula 

In this subsection we will discuss how to calculate the statistical properties 
of a Brownian functional defined as 

t 
U{x{T))dT (25) 

where X(T) is a Brownian path starting from XQ at r = 0 and propagating 
up to time r = t and U(x) is a specified function. Clearly T is random 
variable taking different values for different Brownian paths. The goal is to 
calculate its probability distribution P(T, t\xo). The choice of U(x) depends 
on which quantity we want to calculate. Brownian functionals appear in 
a wide range of problems across different fields ranging from probability 
theory, finance, data analysis, disordered systems and computer science. 
We consider a few examples below. 

1. In probability theory, an important object of interest is the occupa­
tion time, i.e. the time spent by a Brownian motion above the origin 
within a time window of size t [21]. Thus the occupation time is simply, 
T = J0 6[x{r)]dT. Thus, in this problem the function U(x) = 6{x). 
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2. For fluctuating (1 + l)-dimensional interfaces of the Edwards-
Wilkinson [22] or the Kardar-Parisi-Zhang (KPZ) [23] varieties, the 
interface profile in the stationary state is described by a one-dimensional 
Brownian motion in space [24]. The fluctuations in the stationary 
state are captured by the pdf of the spatially averaged variance of 
height fluctuations [25] in a finite system of size L, i.e. the pdf of 
a2 = j ; J0 h2(x)dx where h(x) is the deviation of the height from its 
spatial average. Since h{x) performs a Brownian motion in space, a2 is 
a functional of the Brownian motion as in Eq. (25) with U(x) = x2. 

3. In finance, a typical stock price S(T) is sometimes modeled by the ex­
ponential of a Brownian motion, S(T) = e~~,3x(T\ where /3 is a constant. 
An object that often plays a crucial role is the integrated stock price 
up to some 'target' time t, i.e. T = JQ e~^x^dT [26]. Thus in this 
problem U(x) — e~@x. Interestingly, this integrated stock price has an 
interesting analogy in a disordered system where a single overdamped 
particle moves in a random potential. A popular model is the so-called 
Sinai model [27] where the random potential is modeled as the trace of a 
random walker in space. Interpreting the time T as the spatial distance, 
x(j) is then the potential energy of the particle and e~l3x^ is just the 
Boltzmann factor. The total time t is just the size of a linear box in 
which the particle is moving. Thus T = JQ e~^x^T'dr is just the parti­
tion function of the particle in a random potential [28]. In addition, the 
exponential of a Brownian motion also appears in the expression for the 
Wigner time delay in one-dimensional quantum scattering process by a 
random potential [29]. 

4. In simple models describing the stochastic behavior of daily tempera­
ture records, one assumes that the daily temperature deviation from 
its average is a simple Brownian motion X{T) in a harmonic potential 
(the Ornstein-Uhlenbeck process). Then the relevant quantity whose 
statistical properties are of interest is the so-called 'heating degree days' 
(HDD) defined as T = J0 X(T) 8(X(T)) dr that measures the integrated 
excess temperature up to time t [30]. Thus in this example, the function 
U{x) = x0{x). 

5. Another quantity, first studied in the context of economics [31] and later 
extensively by probabilists [32] is the total area (unsigned) under a Brow­
nian motion, i.e. T — JQ \X(T)\CIT. Thus in this example, U{x) — \x\. 
The same functional was also studied by physicists in the context of 
electron-electron and phase coherence in one-dimensional weakly disor­
dered quantum wire [33]. 
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We will mention several other examples as we go along. Note that in all 
the examples mentioned above the function U(x) is such that the random 
variable T has only positive support. Henceforth we will assume that. For a 
given such function U(x), how does one calculate the pdf of T? It was Kac 
who, using the path integral techniques developed by Feynman in his Ph.D 
thesis, first devised a way of computing the pdf P(T,t\xo) of a Brownian 
functional [9] that led to the famous Feynman-Kac formula. We summarize 
below Kac's formalism. 

Feynman-Kac formula: Since T has only positive support, a natural 
step is to introduce the Laplace transform of the pdf P(T, t\xo), 

Q{xo,t) 
/>oo 

/ e-pTP{T,t\x0)dT = EX0[e-ptiuWT»dT] 
Jo 

(26) 

where the r.h.s is an expectation over all possible Brownian paths {x(r)} 
that start at XQ at r = 0 and propagate up to time r = t. We have, 
for notational simplicity, suppressed the p dependence of Q(xo,t). Using 
the measure of the Brownian path in Eq. (15), one can then express the 
expectation on the r.h.s of Eq. (26) as a path integral 

Q(x0,t) = EX0[e-*tiuWT»dT] 

/•x(t)—x 

[ dx J 
J — oo J x (0)=a;o 

dx(x\e |xo> 

2?a;(T)exp 
Jo 

dr 
dx\' 

pU{x{r)) 

(27) 

(28) 

\lk? +pU(x) corresponds to the 

-m 

where the quantum Hamiltonian H 
Shrodinger operator with a potential pU(x). Note that in Eq. (27) all paths 
propagate from x(0) = XQ to x(t) = x in time t and then we have integrated 
over the final position x. The quantum propagator G(x,t\xo) = (x\e 
satisfies a Shrodinger-like equation 

0G_ ld2G 
~dt 

xo) 

2dx2 -pU(x)G 

(x\e 
-Ht 

(29) 

xo) which can be easily established by differentiating G(x,t\xo) 
with respect to t and using the explicit representation of the operator H. 
The initial condition is simply, G(x,0|a;o) = S(x — XQ). Thus the scheme 
of Kac involves three steps: (i) solve the partial differential equation (29) 
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to get G(x,t\xo) (ii) integrate G(x,t\xo) over the final position x as in 
Eq. (28) to obtain the Laplace transform Q{XQ, t) and (iii) invert the Laplace 
transform in Eq. (26) to obtain the pdf P(T, t\xo). Equations (26), (28) 
and (29) are collectively known as the celebrated Feynman-Kac formula. 

A shorter backward Fokker-Planck approach: An alternative and 
somewhat shorter approach would be to write down a partial differential 
equation for Q(xo,t) in Eq. (28) directly. An elementary exercise yields 

dQ ld2Q 

-di=2^xl-pU{Xo)Q (30) 

where note that the spatial derivatives are with respect to the initial po­
sition XQ. This is thus a 'backward' Fokker-Planck approach as opposed 
to the 'forward' Fokker-Planck equation satisfied by G in Eq. (29) of Kac 
where the spatial derivatives are with respect to the final position of the 
particle. Basically we have reduced the additional step (ii) of integrating 
over the final position in Kac's derivation. The solution Q{x$, t) of Eq. (30) 
must satisfy the initial condition Q(xo, 0) = 1 that follows directly from the 
definition in Eq. (26). To solve Eq. (30), it is useful to take a further Laplace 
transform of Eq. (30) with respect to t, Q(xo,a) — JQ Q(xo,t)e~atdt. Us­
ing the initial condition Q(XQ,0) = 1, one arrives at an ordinary second 
order differential equation 

\d^--la+PU(x0)}Q = ~l (31) 

which needs to be solved subject to the appropriate boundary conditions 
that depend on the behavior of the function U{x) at large x. Given that 
T = JQ U(X(T)) dr has positive support, there are two typical representative 
asymptotic behaviors of U(x): 

1. If the function U{x) approaches a constant value at large x, i.e. U(x) —> 
c± as x —> ±oo, then it is easy to argue (for an example, see below) that 
Q(XQ —> ±oo,a) = l/[pc± + a]. In this case, the underlying quantum 
Hamiltonian H = —\-§^z +pU(x) has scattering states in its spectrum, 
in addition to possible bound states. 

2. If the function U(x) —> oo as x —> ±oo, then Q(XQ —> ±oo, a) = 0. 
In this case the underlying quantum Hamiltonian H has only bound 
states and hence a discrete spectrum. 
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Thus, in principle, knowing the solution Q(xo,a) of Eq. (31), the original 
pdf P(T,t\xo) can be obtained by inverting the double Laplace transform 

Q(x0,a)= dte~at dTe~pTP(T,t\xQ). 
Jo Jo 

(32) 

Below we provide an example where all these steps can be carried out 
explicitly to obtain an exact closed form expression for the pdf P(T, t\xo)-

3.3. A simple illustration: Levy's arcsine law for the 
distribution of the occupation time 

As an illustration of the method outlined in the previous subsection, let us 
calculate the distribution of the occupation time T = JQ 6[x(T)]dr. This 
distribution was first computed by Levy using probabilistic methods [21]. 
Later Kac derived it using Feynman-Kac formalism discussed above [9]. We 
present here a derivation based on the backward Fokker-Planck approach 
outlined above. 

Substituting U(XQ) = 0(xo) in Eq. (31) we solve the differential equation 
separately for XQ > 0 and Xo < 0 and then match the solution at xo = 0 by 
demanding the continuity of the solution and that of its first derivative. In 
addition, we use the boundary conditions Q(xo —• oo,a) = l / ( a + p) and 
Q(XQ —> — oo,a) = 1/a. They follow from the observations: 

1. If the starting point XQ —> oo, the particle will stay on the positive 
side for all finite t implying T = JQ 9(X(T)) dr = t and hence Q(a;o —> 
oo, t) = E[e~pT] = e~pt and its Laplace transform Q{XQ —> oo,a) = 
J™e-(a+P^dt = l/(a+p). 

2. If the starting point XQ —> — oo, the particle stays on the negative side 
up to any finite t implying T = J0 9{X{T)) dr = 0 and hence Q(XQ —> 
—oo, t) = E[e~pT] = 1 and its Laplace transform Q(xo —> — oo, a) = 
/0°° e-atdt = 1/a. 

Using these boundary and matching conditions, one obtains an explicit 
solution 

Q(x0,a) 
(a+p) 

1 ya+p- y/a) g _ v ^^) . 

\ + {y/a-ya+p) e^2^Xo 

for x0 > 0 (33) 

for x0 < 0. (34) 
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The solution is simpler if the particle starts at the origin XQ — 0. Then one 
gets from above 

Q{0,a) = -=t==. (35) 

Inverting the Laplace transform, first with respect to p and then with re­
spect to a, one obtains the pdf of the occupation time for all 0 < T < t 

P(T, t\x0 = 0) = - . 1 . (36) 

In particular, the cumulative distribution 

J P(T', t\x0 = 0)dT' = - arcsin f J j j (37) 

is known as the famous arcsine law of Levy [21]. 
The result in Eq. (36) is interesting and somewhat counterintuitive. The 

probability density peaks at the two end points T = 0 and T = t and has a 
minimum at T = 1/2 which is also the average occupation time. Normally 
one would expect that any 'typical' path would spend roughly half the time 
t/2 on the positive side and the other half on the negative side. If that was 
the case, one would have a peak of the occupation time distribution at the 
average value t/2. The actual result is exactly the opposite — one has 
a minimum at T = t/2! This means that a typical path, starting at the 
origin, tends to stay either entirely on the positive side (explaining the peak 
at T = t) or entirely on the negative side (explaining the peak at T = 0). 
In other words, a typical Brownian path is 'stiff' and reluctant to cross the 
origin. This property that 'the typical is not the same as the average' is 
one of the hidden surprises of Einstein's Brownian motion. 

The concept of the occupation time and related quantities have been 
studied by probabilists for a long time [34]. Recently they have played 
important roles in physics as well, for example, in understanding the dy­
namics out of equilibrium in coarsening systems [35], ergodicity properties 
in anomalously diffusive processses [36], in renewal processes [37], in models 
related to spin glasses [38], in understanding certain aspects of transport 
properties in disordered sysyems [39] and also in simple models of blinking 
quantum dots [40]. 
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4. Area Under a Brownian Excursion: Applications in 
Physics and Computer Science 

In this section we consider an example where, by applying the path integral 
method outlined in the previous section, one can compute exactly the dis­
tribution of a functional of a Brownian process that is also constrained to 
stay positive over a fixed time interval [0, t\. A Brownian motion X{T) in an 
interval 0 < r < t, that starts and ends at the origin x(0) = x(t) = 0 but 
is conditioned to stay positive in between, is called a Brownian excursion. 
The area under the excursion, A = J0 x{r)dr, is clearly a random variable 
taking a different value for each realization of the excursion. A natural ques­
tion that the mathematicians have studied quite extensively [41-45] over 
the past two decades is: what is the pdf P(A, t) of the area under a Brown­
ian excursion over the interval [0,i]? Since the typical lateral displacement 
of the excursion at time r scales as */T, it follows that the area over the 
interval [0,i] will scale as £3/2 and hence its pdf must have a scaling form, 
P(A,t) = t-3/2f(A/t3/2). The normalization condition /0°° P(A,t)dA = 1 
demands a prefactor t~3'2 and also the conditions: f(x) > 0 for all x and 
J0 f(x)dx = 1. One then interprets the scaling function fix) as the distri­
bution of the area under the Brownian excursion x(u) over a unit interval 
u G [0,1]. The function /(re), or rather its Laplace transform, was first 
computed analytically by Darling [41] and independently by Louchard [42], 

/*°° °° 
f(s)= f(x)e~sxdx = sV2^y2e-aks2/32~1/3, (38) 

Jo fc=i 

where a^s are the magnitudes of the zeros of the standard Airy function 
Ai(z). The Airy function Ai(z) has discrete zeros on the negative real 
axis at e.g. z = -2.3381, z = -4.0879, z = -5.5205, etc. Thus, ax = 
2.3381.. . , «2 = 4.0879 . . . , 013 = 5.5205 . . . , etc. Since the expression of 
f{x) involves the zeros of Airy function, the function f{x) has been named 
the Airy distribution function [44], which should not be confused with the 
Airy function Ai(a;) itself. Even though Eq. (38) provides a formally exact 
expression of the Laplace transform, it turns out that the calculation of 
the moments Mn = J0°° xnf(x)dx is highly nontrivial and they can be 
determined only recursively [43] (see Sec. 2). Takacs was able to formally 
invert the Laplace transform in Eq. (38) to obtain [43], 

/ (*) = ^mlte~bk/x2bl/3 ^ ( - 5 / 6 , 4 / 3 A / z 2 ) , (39) 
X k-l 
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where bk = 2 a | / 27 and U{a, b, z) is the confluent hypergeometric func­
tion [47]. The function f(x) has the following asymptotic tails [43, 48], 

f{x) ~ x~5
 e-2«?/27*2

 a s x _ , 0 

2 (40) 
/ (x) ~ e 6a: as i - > o o . 

So, why would anyone care about such a complicated function? The reason 
behind the sustained interest and study [43-46] of this function f[x) seems 
to be the fact that it keeps resurfacing in a number of seemingly unre­
lated problems, in computer science, graph theory, two-dimensional growth 
problems and more recently in fluctuating one-dimensional interfaces. We 
discuss below some of these applications. 

The result in Eq. (38) was originally derived using probabilistic meth­
ods [41, 42]. A more direct physical derivation using the path integral 
method was provided more recently [49], which we outline below. Following 
the discussion in the previous section, our interest here is in the functional 
T = A = JQ x(j)d,T. However, we also need to impose the constraint that 
the path stays positive between 0 and t, i.e. we have to insert a factor 
rjr^[a;(r)] in the path integral. However, one needs to be a bit careful in 
implementing this constraint. Note that the path starts at the origin, i.e. 
x(0) = 0. But if we take a continuous time Brownian path that starts at 
the origin, it immediately recrosses the origin many times and hence it is 
impossible to restrict a Brownian path to be positive over an interval if 
it starts at the origin. One can circumvent this problem by introducing a 
small cut-off e, i.e. we consider all paths that start at x(0) = e and end at 
x{t) = e and stays positive in between (see Fig. 1). We then first derive the 
pdf P(A, t, e) and then take the limit e —• 0 eventually. 

Following the method in the previous section, the Laplace transform of 
the pdf is now given by 

Q{e,t)=Ee[e-pti^dT] 

fx(t)=t 

-I 
ZE Jx 

Vx{T)e- J"o dr[\{dx/drf+px(r)] T T g ^ y ^ 

(0)=e T = 0 

where Zg is a normalization constant 

rx(t)=€ rX{t)=e -

/ Dx(T)e-5/od-(<W^)2 TT«[i(T)] (42) 
Jx(0)=e ~_n 

ZE = 
'x(0)=e ^ 

that is just the partition function of the Brownian excursion. 
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Fig. 1. A Brownian excursion over the time interval 0 < r < t starting at x(0) • 
ending at x(t) = e and staying positive in between. 

e and 

-2e"t\ 

Clearly, ZE = (e\e~Hlt\e) where Hi = -\j^s + V(x), with the po­
tential V{x) = 0 for x > 0 and V(x) = oo for x < 0. We have already 
evaluated this in Sec. 3.1 in Eq. (23). Putting x = XQ = e in Eq. (23) we 

I list. The path integral in the numer-get ZE =G{e,t\e,0) = {l-e 
ator in Eq. (41) is simply the propagator (e\e~Ht\e) where the Hamiltonian 
H = —\j^i +pU(x) with a triangular potential U(x) = x for x > 0 and 
U(x) = oo for x < 0. The Hamiltonian H has only bound states and 
discrete eigenvalues. Its eigenfunctions are simply shifted Airy functions 
and eigenvalues are given by the negative of the zeros of the Airy function. 
Expanding the propagator into its eigenbasis and finally taking the e —• 0 
limit (for details see Ref. [49]), one derives the result 

Q(0 
/•OO _ _ 

,t)= P(A, t) e~p AdA=^hr (pt3^2) V e -2-1'3a.k(pt3'2),2'!i (43) 

where a^ 's are the negative of the zeros of the Airy function. The result 
in Eq. (43) indicates that its inverse Laplace transform has the scaling 
form, P(A, t) = i - 3 / 2 / ( A t - 3 / 2 ) where the Laplace transform of the scaling 
function f(x) is given in Eq. (38). 

Applications of the Airy Distribution Function: The Airy distribu­
tion function in Eq. (39) has appeared in a number of applications ranging 
from computer science and graph theory to physics. Below we mention 
some of these applications. 
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1. Cost function in data storage: One of the simplest algorithms 
for data storage in a linear table is called the linear probing with hashing 
(LPH) algorithm. It was originally introduced by D. Knuth [50] and has 
been the object of intense study in computer science due to its simplicity, 
efficiency and general applicability [44]. Recently it was shown [51] that 
the LPH algorithm gives rise to a correlated drop-push percolation model 
in one dimension that belongs to a different universality class compared 
to the ordinary site percolation model. Knuth, a pioneer in the analysis 
of algorithms, has indicated that this problem has had a strong influence 
on his scientific career [44]. The LPH algorithm is described as follows: 
Consider M items x\, x2, • • •, xM to be placed sequentially into a linear 
table with L cells labelled 1, 2, . . . , L where L > M. Initially all cells are 
empty and each cell can contain at most one item. For each item Xi, a hash 
address hi £ {1,2,..., L} is assigned, i.e. the label hi denotes the address 
of the cell to which Xi should go. Usually the hash address hi is chosen 
randomly from the set {1 ,2 , . . . , L}. The item x» is inserted at its hash 
address hi provided the cell labelled hi is empty. If it is already occupied, 
one tries cells hi + 1, hi+ 2, etc. until an empty cell is found (the locations 
of the cells are interpreted modulo L) where the item Xi is finally inserted. 
In the language of statistical physics, this is like a drop-push model. One 
starts with an empty periodic lattice. A site is chosen at random and one 
attempts to drop a particle there. If the target site is empty, the incoming 
particle occupies it and one starts the process with a new particle. If the 
target site is occupied, then the particle keeps hopping to the right until it 
finds an empty site which it then occupies and then one starts with a new 
particle and so on. 

From the computer science point of view, the object of interest is the 
cost function C(M, L) defined as the total number of unsuccessful probes 
encountered in inserting the M items into a table of size L. In particular, 
the total cost C = C(L, L) in filling up the table is an important measure 
of the efficiency of the algorithm. The cost C is clearly a random variable, 
i.e. it has different values for different histories of filling up the table. A 
central question is: What is its pdf P(C, L)l It has been shown rigorously 
by combinatorial methods [44] that P(C, L) has a scaling form for large 
L, P{C, L) ~ L~3/2f(CL~3/2) where the scaling function f(x) is precisely 
the Airy distribution function in Eq. (39) that describes the distribution of 
area under a Brownian excursion. To understand the connection between 
the two problems, consider any given history of the process where the table, 
starting initially with all sites empty, gets eventually filled up. We define 
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Fig. 2. The LPH algorithm for a table of 10 sites. The figure shows an incoming item 
which chose randomly the site 1 to drop, but since site 1 is already occupied, the incoming 
item keeps hopping to the right until it finds an empty cell at location 4 to which it gets 
absorbed. 

a stochastic quantity Xi that measures the total number of attempts at 
site i till the end of the process in any given history. Clearly Xi > 1 and 
out of Xi attempts at site i, only one of the attempts (the first one) has 
been successful in filling up the site, the rest (Xi — 1) of them had been 
unsuccessful. Thus, the total cost is C = ^2i=i(Xi — 1). Now, the site 
(i — 1) has been attempted Xi-i times, out of which only the first one was 
successful and the rest (Xj_i — 1) attempts resulted in pushing the particle 
to the right neighbor i and thus each of these unsuccessful attempts at (i — 1) 
result in an attempt at site i. Thus, one can write a recursion relation 

Xi = Xi_1-l + t:i (44) 

where & is a random variable that counts the number of direct attempts 
(not coming from site (i — 1)) at site i. Thus Prob(£ = k) = Prob (the site 
i is chosen for direct hit k times out of a total L trials) = (fc)(l/L)fc(l — 
l/L)L~k, since for random hashing, the probability that site i is chosen, 
out of L sites, is simply 1/L. Clearly the noise £ has a mean value, (£) = 1. 
If we now define Xi = Xi — 1, then XJ'S satisfy 

Xi = Xi-! + r\i (45) 

where rji = £j — 1 is a noise, independent from site to site, and for each site 
i, it is chosen from a binomial distribution. Note that (rji) = (&) — 1 = 0. 
Thus, Xj's clearly represent a random walk in space from 0 to L with pe­
riodic boundary conditions. Moreover, since Xi > 1, we have Xi > 0, 
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Fig. 3. The five possible rooted planar tree with (3 + 1) vertices. Each configuration 
has an associated total internal path length d listed below the configuration. Any given 
tree configuration, say the second one in the figure, has a one to one correspondence to 
a Dyck path, i.e. a configuration of a Brownian excursion (discrete time random walk). 

indicating that it is a discrete version of a Brownian excursion and the 
total cost C = ^2i=1(Xi — 1) = J2i=i xi is J u s t the area under the Brown­
ian excursion. For large number of steps L, the discrete and the continuum 
version share the same probability distribution, thus proving that the prob­
ability distribution of the total cost in LPH algorithm is precisely the same 
as that of the area under a Brownian excursion. 

2. Internal path lengths on rooted planar t rees: Rooted planar 
trees are important combinatorial objects in graph theory and computer 
science [52]. Examples of rooted planar trees with n + 1 = 4 vertices are 
shown in Fig. 3. There are in general Cn+i = ^ + T ( ^ ) number of possible 
rooted planar tree configurations with (n+1) vertices. For example, C\ = 1, 
C2 = 1, Cz = 2, C4 = 5, CQ — 14, etc. — these are the Catalan numbers. 
An important quantity of interest is the total internal path length d of a 
tree which is simply the sum of the distances of all the n vertices from the 
root, d = Y^i=i di, di being the distance of the ith vertex from the root. 
Each tree configuration has a particular value of d, e.g. in Fig. 3 the five 
different configurations have values d = 6, d = 4, d = 4, d = 5 and d = 3, 
respectively. Suppose that all Cn+i configurations of trees for a fixed n 
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are sampled with equal probability: what is the probability density P(d, n) 
of the internal path length dl This problem again can be mapped [43] to 
the problem of the area under a Brownian excursion as shown in Fig. 3. 
Starting from the root of a planar tree with (n + 1) vertices, suppose one 
traverses the vertices of a tree as shown by the arrows in Fig. 3, ending 
at the root. We think of this route as the path of a random walker in one 
dimension. For each arrow pointing away from the root on the tree, we draw 
a step of the random walker with an upward slope. Similarly, for each arrow 
pointing to the root on the tree, we draw a step of the random walker with a 
downward slope. Since on the tree, one comes back to the root, it is evident 
by construction that the corresponding configuration of the random walker 
xm is an excursion (i.e. it never goes to the negative side of the origin) that 
starts at the origin and ends up at the origin after 2n steps, xo = 0 and 
%2n = 0. Such excursions of a discrete random walk are called Dyck paths. 
Now, the total internal path length d of any tree configuration is simply 
related to the total 'area' under a Dyck path via, 2d = Y^m=i Xm + n ' 
as can be easily verified. Now, for large n, Dyck paths essentially becomes 
Brownian excursions and the object X^m^i Xm ls s imply the area A2n under 
a Brownian excursion over the time interval [0,2n]. Since A-m ~ (2n)3/2 

for large n, it follows that d ~ ^2 n / 2 . Therefore, its probability density 
P(d,n) has a scaling form, P{d,n) = / -

1
3 / 2 /(rf/V^n3/2) where f{x) is 

precisely the Airy distribution function in Eq. (39). 

3. Maximal relative height distribution for fluctuating inter­
faces: Fluctuating interfaces have been widely studied over the last two 
decades as they appear in a variety of physical systems such as growing 
crystals, molecular beam epitaxy, fluctuating steps on metals and grow­
ing bacterial colonies [24]. The most well studied model of a fluctuating 
(1 + l)-dimensional surfaces is the so-called Kardar-Parisi-Zhang (KPZ) 
equation [23] that describes the time evolution of the height H(x,t) of an 
interface growing over a linear substrate of size L via the stochastic partial 
differential equation 

where rj(x,t) is a Gaussian white noise with zero mean and a correla­
tor, {f](x,t)rj(x't')) = 25{x — x')8(t — £')• If the parameter A = 0, the 
equation becomes linear and is known as the Edwards-Wilkinson equa­
tion [22]. We consider the general case when A > 0. The height is 
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usually measured relative to the spatially averaged height, i.e. h(x,t) — 
H(x,t) — JQ H(x',t)dx'/L. The joint probability distribution of the rela­
tive height field P({h},t) becomes time-independent as t —> oo in a finite 
system of size L. An important quantity that has created some interests 
recently [53-55] is the pdf of the maximal relative height (MRH) in the 
stationary state, i.e. P(hm,L) where 

hm = lim max.x[{h(x,t)},0 < x < L] . (47) 
t—*oo 

This is an important physical quantity that measures the extreme fluctua­
tions of the interface heights. Note that in this system the height variables 
are strongly correlated in the stationary state. While the theory of ex­
tremes of a set of uncorrelated (or weakly correlated) random variables is 
well established [56], not much is known about the distribution of extremes 
of a set of strongly correlated random variables. Analytical results for such 
strongly correlated variables would thus be welcome from the general theo­
retical perspective and the system of fluctuating interfaces provides exactly 
the opportunity to study the extreme distribution analytically in a strongly 
correlated system. This problem of finding the MRH distribution was re­
cently mapped [49, 54] again to the problem of the area under a Brownian 
excursion using the path integral method outlined in Sec. 3 and it was 
shown that for periodic boundary conditions, P(hm, L) = L~x/2 f(hm/vL) 
where f(x) is again the Airy distribution function in Eq. (39). Interestingly, 
the distribution does not depend explicitly on A. This is thus one of the 
rare examples where one can calculate analytically the distribution of the 
extreme of a set of strongly correlated random variables [49, 54]. 

4. Other applications: Apart from the three examples mentioned above, 
the Airy distribution function and its moments also appear in a number of 
other problems. For example, the generating function for the number of 
inversions in trees involves the Airy distribution function f(x) [57]. Also, 
the moments Mn's of the function f(x) appear in the enumeration of the 
connected components in a random graph [58]. Recently, it has been con­
jectured and subsequently tested numerically that the asymptotic pdf of 
the area of two-dimensional self-avoiding polygons is also given by the Airy 
distribution function f(x) [59]. Besides, numerical evidence suggests that 
the area enclosed by the outer boundary of planar random loops is also 
distributed according to the Airy distribution function f(x) [59]. 
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Pig. 4. A Brownian path X(T) , starting at xo at r = 0, crosses the origin for the first 
time at T = tf, tf being the first-passage time. 

5. First-Passage Brownian Functional 

So far we have studied the pdf of a Brownian functional over a fixed time 
interval [0, t]. In this section, we show how to compute the pdf of a Brownian 
functional over the time interval [0, tf] where tf is the first-passage time of 
the process, i.e. tf itself is random. More precisely, we consider a functional 
of the type 

rtf 
T= U{x{r))dT (48) 

Jo 
where x{r) is a Brownian path starting from XQ > 0 at r = 0 and propagat­
ing up to time r = t and U(x), as before, is some specified function. The 
integral in Eq. (48) is up to the first-passage time tf which itself is random 
in the sense that it varies from realization to realization of the Brownian 
path (see Fig. 4). Such functionals appear in many problems (some exam­
ples are given below) in physics, astronomy, queuing theory, etc. and we 
will generally refer to them as first-passage Brownian functionals. 

We would like to compute the pdf P(T\XQ) of T in Eq. (48) given that 
the Brownian path starts at the initial position x$. As before, it is useful 
to consider the Laplace transform 

Q{x0) = / e~pTP(T\x0)dT = {e-i>S° £>(*M)*-) (49) 
Jo 

where the r.h.s. is an average over all possible Brownian paths starting at XQ 
at T = 0 and stopping at the first time they cross the origin. For brevity, we 

first-passage time 
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have suppressed the p dependence of Q(XQ). Note tha t each path, start ing 

from XQ, evolves via Eq. (10) where £(£) is a delta correlated white noise. 

Note also tha t tf varies from pa th to path. Thus at first sight, this seems 

to be a rather difficult problem to solve. However, as we will see now tha t 

in fact this problem is simpler than the previous problem over a fixed t ime 

interval [0,£]! 

To proceed, we split a typical pa th over the interval [0, tf] into two parts : 

a left interval [0, A T ] where the process proceeds from XQ to XQ + Ax = 

xo + £ ( 0 ) A T in a small t ime A T and a right interval [ A T , tf] in which 

the process s tar ts at XQ + Ax at time A T and reaches 0 at time tf. The 

integral JQ
f U(X(T)) dr is also split into two parts : f f = f0

 T + J^T- Since 

the initial value is XQ, one gets J*0 U(X(T)) dr = U(XO)AT for small A T . 

Then, Eq. (49) can be writ ten as 

Q(x0) = (e-p^ U(x(r))d^ = (e-pU{x0)*TQ(Xo + Ax))Ax ] ( 5 0 ) 

where we have used the fact tha t for the right interval [ A T , tf], the start ing 

position is XQ + Ax = XQ + £ ( 0 ) A T , which itself is random. The average in 

the second line of Eq. (50) is over all possible realizations of Ax. We then 

substi tute Ax = £ ( 0 ) A T in Eq. (50), expand in powers of A T and average 

over the noise £(0). We use the fact tha t the noise £(£) is delta correlated, 

i.e. (£2(0)) = 1 / A T as A T —> 0. The leading order term on the right-hand 

side of Eq. (50) is independent of A T and is simply Q(XQ) which cancels 

the same term on the left-hand side of Eq. (50). Collecting the rest of the 

terms we get 

'ld2Q 
2dx2 PU(xo)Q(xo) AT + 0((AT)2) = 0 . (51) 

Equating the leading order term to zero provides us an ordinary differential 

equation 

\^-pU(xo)Q(xo)=0 (52) 

which is valid in XQ G [0, oo] with the following boundary conditions: (i) 

When the initial position XQ —> 0, the first-passage t ime tf must also be 

0. Hence the integral fQ
f U(X(T)) dr = 0. From the definition in Eq. (50), 

we get Q(xo — 0) = 1 and (ii) when the initial position XQ ~^> oo, the 

first-passage t ime tf —> oo, hence the integral J0
f U(x(r)) dr also diverges 

in this limit, at least when U(x) is a nondecreasing function of x. The 

definition in Eq. (50) then gives the boundary condition, Q(XQ —*• oo) = 0. 



Brownian Functionals in Physics and Computer Science 119 

So, given a functional U(x), the scheme would be to first solve the or­
dinary differential equation (52) with the appropriate boundary conditions 
mentioned above to obtain Q(XQ) explicitly and then invert the Laplace 
transform in Eq. (49) to get the desired pdf P(T\XQ) of the first-passage 
functional. As a simple test of this method, let us first consider the case 
U(x) = 1. In this case the functional T = JQ

f
 U(X(T)) dr = tf is the first-

passage time itself. The differential equation (52) can be trivially solved 
and the solution satisfying the given boundary conditions is simply 

Q(x0)=e-^x°. (53) 

Inverting the Laplace transform with respect to p gives the pdf of the first-
passage time 

p{tflxo) = vk^^> (54) 

which is identical to the result in Eq. (24) obtained by the path integral 
method. Below, we provide a few nontrivial examples and applications of 
this method. 

5.1. Area till the first-passage time 

Here we calculate the pdf of the area under a Brownian motion (starting 
at XQ) till its first-passage time [60]. Thus the relevant functional is A = 
J0

f x(r)dT and hence U{x) = x. In Fig. 4, A is just the area under the 
curve over the time interval [0, £/]. This problem has many applications 
in combinatorics and queuing theory. For example, an important object 
in combinatorics is the area of a lattice polygon in two dimensions [61]. 
A particular example of a lattice polygon is the rooted staircase polygon 
whose two arms can be thought of as two independent random walkers 
whose trajectories meet for the first time at the end of the polygon. The 
difference walk between these two arms then defines, in the continuum limit, 
a Brownian motion. The area of such a polygon can then be approximated, 
in the continuum limit, by the area under a single Brownian motion till its 
first-passage time [60]. This picture also relates this problem to the directed 
Abelian sandpile model [62] where tf is just the avalanche duration and 
the area A is the size of an avalanche cluster. Another application arises in 
queueing theory, where the length of a queue ln after n time steps evolves 
stochastically [61]. In the simplest approximation, one considers a random 
walk model, ln = ln-i + £n where £n 's are independent and identically 
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distributed random variables which model the arrival and departure of new 
customers. When the two rates equal, (£n) = 0. In the large n limit, ln can 
be approximated by a Brownian motion x(r), whereupon tf becomes the 
so-called 'busy' period (i.e. the time until the queue first becomes empty) 
and the area A then approximates the total number of customers served 
during the busy period. 

Substituting U(x) = x in Eq. (52), one can solve the differential equation 
with the prescribed boundary conditions and the solution is [60] 

Q(x0) = 3 2 / 3r(2/3)Ai(2 1 /V / 3^o) (55) 

where Ai(z) is the Airy function. It turns out that this Laplace transform 
can be inverted to give an explicit expression for the pdf [60] 

2 1 / 3 x0 
P ( A M = 3575f(l73) A& 6XP 

2*31 
(56) 

9 A 

Thus the pdf has a power law tail for large A 3> x3,, P(A\xo) ~ A~4/3 

and an essential singularity P(A\xo) ~ exp[—2:c3
)/9yl] for small A —» 0. 

Following the same techniques, one can also derive the pdf of the area till 
the first-passage time under a Brownian motion with a drift towards the 
origin — in this case the pdf has a stretched exponential tail for large A [60], 
P(A\x0) ~ A-3/Aexp[-y/8n3A/3] where p, is the drift. 

Note the difference between the pdf of the area P(A\XQ), under a Brow­
nian motion till its first-passage time starting at XQ at r = 0, as given in 
Eq. (56) and the pdf of the area under a Brownian excursion P(A, t) in 
Eq. (43). In the latter case, the Brownian path is conditioned to start at 
XQ = 0 at T = 0 and end at x = 0 at T = t and one is interested in the 
statistics of the area under such a conditioned path over the fixed time in­
terval t. In the former case on the other hand, one is interested in the area 
under a free Brownian motion starting at XQ > 0 and propagating up to its 
first-passage time tf that is not fixed but varies from one realization of the 
path to another. 

5.2. Time period of oscillation of an undamped particle in 
a random potential 

The study of transport properties in a system with quenched disorder is 
an important area of statistical physics [63]. The presence of a quenched 
disorder makes analytical calculations hard and very few exact results 
are known. Perhaps the simplest model that captures some complexities 



Brownian Functionals in Physics and Computer Science 121 

associated with the transport properties in disordered systems is that of a 
classical Newtonian particle moving in a one-dimensional random potential 
0(1) 

where F(x) = —dfi/dx is the force derived from the random potential 4>{x), 
T is the friction coefficient and £(t) is the thermal noise with zero mean 
and a delta correlator, (£(*)£(*')) = 2DS(t - t') with D = kBT/Y by the 
Stokes-Einstein relation (3). 

It turns out that even this simple problem is very hard to solve ana­
lytically for an arbitrary random potential <p(x). A special choice of the 
random potential where one can make some progress is the Sinai poten­
tial [27], where one assumes that cj>(x) = f£ rj(x')dx'. The variables 77(2;)'s 
have zero mean and are delta correlated (r)(x\)ri(x2)) = 5{x\ — X2). Thus 
the potential 4>(x) itself can be considered as a Brownian motion in space. 
In the overdamped limit when the frictional force is much larger than the 
inertial force, Eq. (57) then reduces to the Sinai model [27] 

Tft=F{x = x{t))+m (58) 

where the random force F(x) = —d<f)/dx = r)(x) is just a delta correlated 
white noise with zero mean: (F(x)) = 0 and (F(x)F(x')) = 5(x — x'). 

Here we consider a simple model [64] where the particle diffuses in the 
same Sinai potential <j>(x) = JQ rj(x')dx', but we consider the opposite limit 
where the particle is undamped, i.e. T = 0 and is driven solely by the inertial 
force. For simplicity, we also consider the zero temperature limit where the 
thermal noise term drops out of Eq. (57) as well and one simply has 

m^=F(x = x{t)) (59) 

where F(x) is a same random Sinai force as mentioned above. We set m = 1 
and assume that the particle starts at the origin x = 0 with initial velocity 
v > 0. Thus the particle will move to the right till it reaches a turning 
point xc where the potential energy becomes equal to the kinetic energy, 
i.e. 4>(xc) = v2/2 and then it will move back to x = 0 with a velocity — v 
(see Fig. 5). After returning to the origin with velocity —v, the particle 
will go to the left till it encounters the first turning point on the left of 
the origin where it will turn and then will return to the origin. Let T and 
T" denote the time for the particle to go from the origin to the turning 
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Fig. 5. A Newtonian particle in a Brownian potential with initial velocity v. The 
right/left turning points are shown as xc and x'c, respectively where the potential energy 
first becomes equal to the kinetic energy, <j> = v2 / 2 . 

point at the right and to the one at the left, respectively. Thus the particle 
will oscillate between the two turning points nearest to the origin on either 
side and the time period of oscillation is Tosc = 2(T + X"). Note that 
the variables T and T" will vary from one sample of quenched disorder to 
another. The goal is to compute the probability distribution of T and T" 
and hence that of T0sc- Since <p(x) is a Brownian motion in x, it follows 
from its Markov property that <j>(x) for x > 0 and for x < 0 are completely 
independent of each other. Thus T and T" are also independent and by 
symmetry, have identical distributions. The distribution of Tosc can then 
be easily calculated by convolution. 

To compute the pdf P(T) of T (starting at xo = 0), we first express T 
as a functional of the Brownian potential 

dx , . 
. 60 

y/v2 - 20(a;) 

where xc is defined as the point where <p(xc) = v2. On identifying the space 
as the time x = r and the random potential <j> as the trajectory of a random 
walk in space x, i.e. <j> <-> x, x <-> r, T in Eq. (60) is of the general form in 
Eq. (48) with U(x) = \j\Jv2 — 2x and xc = tf denoting the first-passage 
time to the level x = v2/2, starting at XQ. Following the general scheme, we 
need to solve the differential equation (52), now valid for — oo < XQ < v2/2, 
with U(x) = l/\/v2 — 2x and the boundary conditions, Q{XQ —> —oo) = 0 
and Q^o —> v2/2) = 1. Upon finding the solution one needs to put XQ = 0 

Jo 

file:///j/Jv2
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and then invert the Laplace transform. This can be done explicitly and one 
obtains [64] 

2 2 /3 2 j 

P(T) = 0 4 / a T V o / 0 , = » exp 
2vA 

~9T 
(61) 

34 /3r(2/3) T 5 / 3 

This is one of the rare examples of an exact result on a transport property 
in a quenched disorderd system, thus illustrating the power of the approach 
outlined in this section. 

5.3. Distribution of the lifetime of a comet in solar system 

In this final subsection we provide an example from astrophysics [65] where 
the general technique of the first-passage Brownian functional is applicable. 
A comet enters a solar system with a negative energy EQ < 0 and keeps 
orbiting around the sun in an elliptical orbit whose semimajor axis length 
a is determined by the relation Eo — —GM/2a where G is the gravitational 
constant and M is the mass of the sun. It was first pointed out by Lyttle-
ton [66] that the energy of the comet gets perturbed by Jupiter each time 
the comet visits the neighborhood of the sun and the planets and successive 
perturbations lead to a positive energy of the comet which then leaves the 
solar system. It is convenient to work with the negative energy x = —E > 0 
of the comet. We assume that the comet enters the solar system with initial 
negative energy XQ and has values of x equal to xi, X2, • •., xtf at successive 
orbits till the last one labelled by tf when its value of x crosses 0 (energy 
becomes positive) and it leaves the solar system. The lifetime of the comet 
is given by 

T = U{x0) + U(Xl) + ...U(xtf) (62) 

where U(x) is the time taken to complete an orbit with negative energy 
x > 0. According to Kepler's third law, U(x) = cx~3/2 where c is an 
constant which we set to c = 1 for convenience. Moreover, a simple way 
to describe the perturbation due to Jupiter is by a random walk model, 
xn = %n-i +£,n where £n is the noise induced by Jupiter and is assumed to 
be independent from orbit to orbit [65]. Within this random walk theory, 
the lifetime of a comet in Eq. (62), in the continuum limit becomes a first-
passage Brownian functional [65] 

T= [ ' [x(T)]-3/2dT (63) 
Jo 
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where the random walk starts at XQ and ends at its first-passage time tf 
when it first crosses the origin. The pdf P(T\XQ) was first obtained by 
Hammersley [65]. Here we show how to obtain this result using the general 
approach outlined here for first-passage Brownian functionals. 

Following our general scheme, we thus have U(x) = x~zl2 in the differ­
ential Eq. (52). The solution, satisfying the proper boundary conditions, 
can be easily found 

Q(x0) = 1 6 p x 0
1 / 2 # 2 ( \ / 3 2 W / 4 ) (64) 

where Ki{z) is the modified Bessel function of degree 2. Next, we need to 
invert the Laplace transform in Eq. (64) with respect to p. This can be 
done by using the following identity 

v/2 

I r y-'-ie-n-Vvdy = 2 (^) Kv{2^p). (65) 

Choosing /? = S^JXQ, we can invert the Laplace transform to obtain the 
exact pdf P(T\XQ) of the lifetime of a comet 

, , . 64x0 P(T\x0) = - ^ 3 - exp 8,/xo 
(66) 

It is worth pointing out that in all three examples above, the pdf 
P(T\XQ) of the first-passage Brownian functional has a power law tail 
P{T\XQ) ~ T~J for large T and an essential singularity in the limit T —» 0. 
While the exponent of the power law tail can be easily obtained using a 
scaling argument, the essential singular behavior at small T is not easy to 
obtain just by a scaling argument. 

6. Conclusion 

In this article I have provided a brief and pedagogical review of the 
techniques to calculate the statistical properties of functionals of one-
dimensional Brownian motion. It also contains a section devoted to 'first-
passage' Brownian functional, a quantity that appears in many problems 
but the techniques to calculate its properties are somewhat less known 
compared to the standard Feynman-Kac formalism for the usual Brown­
ian functional. A simple backward Fokker-Planck approach is provided 
here to calculate the probability distribution of a first-passage Brownian 
functional. Several examples and applications of the standard Brownian 
functionals as well as the first-passage Brownian functionals from physics, 
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probability theory, astronomy and in particular, from computer science are 
provided. 

The techniques detailed in this article are valid for free Brownian motion 
in one dimension. However, they can be easily generalized to study the 
functionals of a Brownian motion in an external potential. The external 
potential can represent e.g. a constant drift [28, 29, 60] or a harmonic 
potential [30]. Alternately, the external potential can be random as in a 
disordered system. The backward Fokker-Planck approach reviewed here 
has been particularly useful in calculating exactly the disorder averaged 
distributions of Brownian functionals in the Sinai model [28, 39, 67]. 

There are several open directions for future research. For example, to 
the best of my knowledge, the properties of first-passage Brownian func­
tionals have so far not been studied in disordered systems. The techniques 
discussed here could be useful in that direction. Though there have been few 
studies of Brownian functionals in higher dimensions, there are still many 
open problems with direct relation to experiments [12] and more studies 
in that direction would be welcome. Finally, the discussion in this article 
is tilted to the simple Brownian motion which is a Gaussian as well as a 
Markov process. In many real systems, the relevant stochastic process often 
is non-Gaussian and/or non-Markovian. It would certainly be interesting 
to study the properties of functionals of such stochastic processes. 

In summary, I hope I have been able to convey to the reader the beauty 
and the interests underlying Brownian 'functionalogy' with its diverse appli­
cations ranging from physics and astronomy to computer science, making it 
a true legacy of Albert Einstein whose 1905 paper laid the basic foundation 
of this interesting subject. 
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C H A P T E R 7 

Bose-Einstein Condensation: Where Many Become One 
and So There is Plenty of Room at the Bottom 

N. KUMAR 

Raman Research Institute, Bangalore 560 080, India 

Classically identical particles become quantum mechanically indistin­
guishable. Satyendra Nath Bose taught us, in 1924, how to correctly 
count the distinct microstates for the indistinguishables, and for a gas 
of light quanta (later photons), whose number is not conserved, e.g. can 
vary with temperature, he gave a proper derivation of Planck's law of 
black body radiation. Einstein, in 1925, generalized the Bose statistics 
to a quantum gas of material particles whose number is now fixed, or con­
served, e.g. 4He, and thus opened a new direction in condensed matter 
physics: He showed that for low enough temperatures (~1 Kelvin and 
below), a macroscopic number of the particles must accumulate in the 
lowest one-particle state. This degenerate gas with an extensively occu­
pied single one-particle state is the Bose-Einstein condensate, now called 
BEC. (Fragmented BEC involving a multiplicity of internal states of non-
scalar Bose atoms is, however, also realizable now.) Initially thought to 
be a pathology of an ideal non-interacting Bose system, the BEC turned 
out to be robust against interactions. Thus, the Bose-Einstein conden­
sation is a quantum phase transition, but one with a difference — it is a 
purely quantum statistical effect, and requires no inter-particle interac­
tion for its occurrence. Indeed, it happens in spite of it. The condensate 
fraction, however, diminishes with increasing interaction strength — to 
less than ten per cent for 4He. The BEC turned out to underlie su­
perfluidity, namely that the superfluid may flow through finest atomic 
capillaries without any viscosity. Interaction, however, seems essential to 
superfluidity. But, the precise connection between BEC and the super­
fluidity remains elusive. Thus, for example, we may have superfluidity in 
two-dimensions where there is no condensate! Seventy years later now, 
the BEC has come alive with the breakthrough in 1995 when near-ideal 
BEC was created in dilute alkali gases of 8 7Rb and 23Na atoms cooled in 
the gaseous state down to nanokelvins and localized in a trap. There are 
reasons why we ought to be mindful of the BEC — if only because here 
even the interaction between the particles is tunable at will — the sign 
as well as the strength of it. BEC has now become an ideal laboratory 
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for basic and condensed matter experiments, and for high resolution ap­
plications. Properly viewed, it is indeed a new state of matter. This 
article is about the saga of BEC that really began with Einstein in 1925. 

Let me begin with what may seem like an apology, which it is certainly not, 
and a touch of history of Bose-Einstein condensation, that it is. The point is 
that if we go strictly by the calendar, then the Bose-Einstein condensation 
does not belong in the miracle year of 1905, which is being observed as 
the World Year of Physics by many learned bodies around the world. In 
fact, Bose-Einstein condensation came in twenty years too late, in the 
year 1925 when Einstein, already famous at 45, derived the condensate 
for a degenerate quantum gas of permanent particles, i.e. of fixed number, 
such as helium (4He), as a necessary consequence following from the novel 
quantum statistics [1] proposed a year earlier in 1924 by the young Indian 
lecturer, Satyendra Nath Bose at 25, then at the Dacca University, for the 
gas of light quanta (later photons). Bose had shown how to correctly count 
the distinct distributions (microstates or complexions) of indistinguishable 
objects (particles) among the distinguishable boxes (phase-space cells) with 
no restrictions on the occupation numbers. Actually, Bose had proposed 
this new quantum statistics in an attempt to give a logical derivation of 
the celebrated Planck law of black body radiation (Fig. 1), without the 
ad hoc assumptions that Planck had to make. His paper was, however, 
turned down by the editors of the Philosophical Magazine. Convinced that 
he was right, Bose sent his manuscript to Einstein. It was Einstein who 
first saw the important conceptual advance - the indistinguishability of 
identical particles — in Bose's work. At his (Bose's) request, contained 
in the letter accompanying the manuscript, Einstein personally translated 
it in German and got it published speedily in Zeitschrift fuer Physik, the 
prestigious physics journal of the time. (It is of certain historical note that 
in his letter young Bose had addressed Einstein as 'Respected master' in 
the typically Indian tradition of Ekalavya. They met only later in 1925 in 
Berlin. Einstein also promoted Bose's work in the Prussian Academy of 
Sciences.) Einstein at once saw the deep connection between Bose's view 
of the Planck thermal radiation as a gas of massless light quanta and an 
ideal quantum gas of identical material particles of non-zero mass, such as 
helium or hydrogen. The crucial point was that of indistinguishability of 
the identical quantum particles and the quantum-statistically correct way 
of counting them. As an act of pure transference, Einstein applied [2-5] 
the quantum statistics of Bose to a gas of identical particles, but with the 
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Fig. 1. Bose-Einstein condensation and quantum statistical phase transition: From the 
photon gas to a gas of indistinguishable molecules. 

proviso that, unlike the case of photons, the number of particles must be 
conserved now. Hence, the introduction of a chemical potential that, at low 
enough temperatures, led to the condensation [4] (that now bears his name 
jointly with the name of Bose, see Fig. 1). This condensation was much 
to the disbelief of many leading physicists of the time; among them were 
Planck, Schrdinger, and Einstein himself perhaps. Einstein never returned 
to Bose-Einstein condensate (BEC) after 1925. 

But, all this was about twenty years after the miracle year of 1905. The 
question then is why include BEC in this centennial issue. One obvious 
answer is that BEC was a landmark in the developments that followed the 
quantum revolution unfolding at the turn of the 20th century. C. N. Yang 
has remarked to the effect that just BEC alone would have assured a place 
for Einstein, and certainly for Bose, in the annals of physics. There is, 
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however, to my mind, yet another, more efficient cause for its inclusion 
here. While it is true that BEC was not born in the miracle year of 1905, it 
did have a miraculous resurrection seventy years later in 1995, nearer our 
own times, when the near-ideal BEC was realized experimentally in a dilute 
gas of alkali atoms at a few billionths of a degree Kelvin (nanokelvins) above 
the absolute zero of temperature! For a review, see Refs. 6-8. This was 
an ideal condensation (one hundred per cent!) — a dream for a quantum 
condensed matter physicist! Indeed, the term BEC came into being just 
then — for this new state of matter. The saga of BEC that really began in 
1925 with Einstein, lived through 1995 to our own times, and will certainly 
live on far beyond. See the timeline at the end. Thus justified, let us turn 
now to the physics of BEC. 

Bose-Einstein condensation: The phenomenon 

Normally, a gas such as the air in a room has its molecules distributed over a 
broad range of energy-momentum. This is familiar from the Maxwell distri­
bution of velocities known from the 19th century. The velocity distribution 
is smooth and sparse — the occupancy number of an elementary molecular 
phase space cell (dpdq ~ h3) being typically <1 . As the temperature is 
lowered, however, the situation begins to change. The gas condenses into 
liquid and then into the solid state, through successive phase transitions at 
which some of the thermodynamic quantities become singular. All these 
transitions involve interactions among the particles, e.g. the long-range van 
der Waals attraction. Something much more subtle happens for certain 
gases, such as helium that remains fluid down to the absolute zero of tem­
perature under its own vapor pressure. (Helium (4He) can be solidified only 
under pressure of about 25 atmospheres. This is because of its low atomic 
mass and weak inter-atomic attraction, giving it a large zero point energy 
— we call it a quantum liquid.) The helium (4He), however, does undergo 
a phase transition at a critical temperature Tc = 2.18 K — a second or­
der phase transition at which its specific heat at constant volume has a 
logarithmic singularity (A-shaped and hence the name A-point for the tran­
sition). A non-interacting (ideal) Bose gas has a gentler singularity, namely 
a cusp — a third order transition in the sense of Ehrenfest. The interaction 
drives it to the second order. Very spectacularly, the lower-temperature 
phase (called He II) turns out to be superfluid (with zero viscosity) while 
the higher-temperature phase (He I) remains normal. At a deeper level, 
however, for T < Tc, the velocity distribution ceases to be sparse, and a 
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finite fraction of the 4He atoms accumulates in the zero-momentum state. 

This macroscopic, extensive occupation of the single one-particle state is 

the Bose-Einstein condensation, or BEC for short. It is driven not by any 

inter-particle at tract ion, but is a purely quantum statistical effect. Much 

of this was, of course, not known in 1925. Einstein was led to the conden­

sation from his close examination of the ideas tha t followed from the new 

quantum statistics tha t Bose had proposed in the previous year, 1924, for 

the gas of light quanta in the black body radiation. Einstein clearly saw the 

deep concept of indistinguishability of identical particles tha t was implicit 

in Bose's derivation of the Planck radiation law. All he really had to do 

then was to replace the gas of massless photons (with the relativistic disper­

sion relation p = hv/c) by the gas of material particles (with non-zero mass 

and the non-relativistic dispersion relation E = p2/2m), and to introduce a 

chemical potential \i to ensure a fixed particle number N. A brief account 

of essentially his derivation of the condensate, and the underlying quantum 

gas statistics, is given below. 

BEC and the quantum gas statistics 

All statistics is about counting. And the quantum gas statistics is about 

counting the indistinguishables. It is concerned with finding the most prob­

able distribution of the gas molecules over the molecular phase space sub­

ject to certain given constraints or subsidiary conditions, e.g. given total 

energy and the total number of particles. The term probability is used 

here in the sense of Planck, namely, tha t the probability of a macrostate 

(coarse grained macroscopic description) is determined by (proportional to) 

the number of distinct microstates (fine-grained microscopic descriptions or 

complexions) tha t are consistent with it (assuming tha t these microstates 

are degenerate in energy and equally probable). This is a problem in combi­

natorics — in how many ways (W) can we distribute N objects (particles) 

among Z boxes (phase-space cells) with the ih box containing m objects. 

For the classical case (classical gas statistics) the boxes are, of course, dis­

tinct, but the N objects, though identical, are also distinguishable, and 

we have the classical Boltzmann result, Wc — -/Vl/Hn;! Here, permuting 

(exchanging) the rij objects within the ith box obviously creates no new 

microstates; but a permutat ion involving exchange of the particle between 

different boxes does create new microstates, and must be counted as such. 

Now, let the classically identical objects become quantum mechanically in­

distinguishable, as it must be in the case of quantum gas statistics. Then the 
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permutations of the objects even between different boxes must be dis­
counted — indeed, a permutation of the indistinguishables generates no 
new microstates! Then, the Boltzmannian number of microstates (com­
plexions) for the classical case, Wc (3> 1), must be replaced in the quantum 
case by the correctly counted WQ = 1. This is the essence of indistinguisha-
bility and of the quantum statistics that Einstein had made use of. 

BEC derived 

Proceeding with Einstein, consider an ideal (non-interacting) gas of indis­
tinguishable molecules for which the molecular phase-space lying in the 
energy shell Ev ± 1/2AEV has the number of elemental phase-space cells 
Zv given by 

Zv = (2WI h*){2mfl2 El'2 dEv , (1) 

{h being the volume of the elementary phase space cell after Planck). 
We can now distribute Nv of the indistinguishable molecules among the 

Zv distinct cells in Wv ways, where 

WV = (NV + ZV-1)\/NV\(ZV-1)\ (2) 

(To see that this is so, just imagine placing Zv partitions separating the 
Nv objects arranged on a line, and count the number of ways of doing this. 
This is essentially same as Bose's way of defining a microstate in terms 
of the set of occupation numbers of the cells; or equivalently, distributing 
the distinguishable (Z„) cells among the indistinguishable (Nv) molecules.) 
It is assumed here that Zv ^> 1, which is true for a gas extended over a 
large volume with a phase-space that is a continuum. The total number of 
microstates for the N indistinguishable molecules distributed over the total 
phase-space is then 

W = UWV . (3) 

The rest follows the standard exercise in maximizing the associated entropy 
(S) function subject to the subsidiary conditions, or constraints, of the given 
number (N) and energy (E): 

S = fcj3 oc nW , 

JV = SiV„ , (4) 

E = T.EVNV. 
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The constraints are to be imposed through the introduction of the cor­
responding Lagrange multipliers. Maximization of the entropy function 
is facilitated in the thermodynamic limit (N —> oo, V —> oo, with N/V 
= number density; n = constant) through the Stirling approximation for 
the otherwise tyrannical factorials, oc nN\XN oc nN — N, for i W l . This 
straightforwardly leads to the distribution: 

* « = ^ ( f i . - , ) - i ' ( 5 ) 

with 

where j3 = l/kBT. 
Note that the expression for Zv hides in it the single-particle density-

of-states factor which depends on the dimensionality. 
Several observations can now be made on Eqs. (5) and (6) that 

eventually gave the BEC [4]: 

(a) The expression on the right-hand-side of Eq. (5) is singular for Ev = /i. 
The singularity is, however, integrable for a 3D gas, but logarithmically 
divergent in 2D. 

(b) The chemical potential must be negative, including zero, as Nv has to 
be a non-negative number. 

(c) The chemical potential must increase towards zero as the temperature 
is lowered for a given N, while the right-hand-side of Eq. (6) decreases 
continuously. 

(d) At a certain critical value Tc, the chemical potential vanishes and re­
mains stuck at zero then on for lower temperatures. 

(e) Below the critical temperature, the right-hand-side of Eq. (6) becomes 
less than N for a given T: the thermal distribution now cannot hold all 
of N bosons in the thermally excited non-zero energy states — there 
is an over-population! 

(f) The excess population must necessarily accumulate in the singularity 
at the lowest single-particle state, i.e. the zero momentum state. This 
is how Einstein had argued, and was thus led to condensation, and to 
the condensate fraction. The above-the-condensate fraction remains as 
a saturated ideal gas (vapor) in equilibrium with the condensate. 

The critical condition (/j, = 0) for the condensation is best expressed in 



138 N. Kumar 

terms of the phase-space density: 

n\3
dB> 2.612, 

AdB = h/{2MkBT)1'2. 

This is also called the condition for quantum degeneracy. The equality sign 
in Eq. (7) holds at the critical temperature. Here AdB is the thermal de 
Broglie wavelength, and n = N/V is the number density. (This condition 
for BEC can be restated as that the mean inter-particle spacing be less 
than the de Broglie wavelength ensuring appreciable overlap of the thermal 
wavepackets, that makes the indistinguishability effective.) 

It is clear from Eq. (6) that there is no BEC in a 2D gas where the 
density-of-states has a non-zero value at zero energy. This is unlike the case 
of a 3D gas where the density-of-states vanishes at the bottom, i.e. at the 
zero of the single-particle energy. It is the wholeness of the BEC (a single 
macroscopic object) that accommodates the excess plurality (population) 
in the single zero-momentum state. It is in this sense that there is plenty 
of room at the bottom. 

Einstein clearly realized that BEC is a purely-quantum statistical ef­
fect. He did not refer to the condensation as a phase transition. Einstein, 
however, had the mental picture of the condensate fraction in equilibrium 
with the above-the-condensate fraction much as the saturated vapor is in 
equilibrium with the liquid phase under isothermal conditions. Though, in 
a BEC the phase separation is in the momentum space. 

Several other things also followed naturally from his derivation: The 
Nernst Theorem was satisfied (entropy vanished at the zero of temperature 
as there was a single state — the BEC); the Gibbs paradox was obviated, 
without recourse to any fixing or correction, such as dropping the factorial 
N\ from the Boltzmann way of counting. This made the entropy correctly 
additive. 

Note on indistinguishability 

Two objects may be said to be indistinguishable if they are merely two 
different states of the same underlying entity. This, of course, happens 
naturally in a quantum-field description where the particles are the excita­
tions of an underlying field — just its internal movements. At a somewhat 
heuristic level, one can understand the quantum indistinguishability of the 
classically identical particles. Classically, it is possible in principle to keep 
track of the identity of the particles as they are being permuted — here 
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permutation is viewed as a process. The continuous tracking makes it al­
ways possible to know which is which. Quantum mechanically, however, 
there are no trajectories and thus keeping track of the identical particles 
is forbidden, in principle. Hence their indistinguishability. This is as op­
erational as one can get. There remains, however, a question: is there a 
degree of indistinguishability, e.g. two particles differing arbitrarily slightly 
in their masses. Is approximate indistinguishability meaningful, or must it 
be an absolute condition? Some of these questions had occurred to Einstein 
[3] — in the form of a paradox involving a mixture of two gases with slightly 
differing molecular masses. Einstein also examined thermal fluctuations of 
the number in the Bose system (fluctuations, and, of course, invariances be­
ing his abiding interests). He found the wave noise (an interference effect) 
in addition to the shot noise-rediscovered many a time since. 

Finally, a note on BEC in a spatially localized quantum gas. This is 
relevant to the BEC now realized in the optical and magnetic traps [6-9] 
Here the usual condition Zv 3> 1 for the phase-space elements on an energy 
shell is clearly not satisfied. One must do the fully quantum treatment 
using the occupation number representation for the Bose system with its 
second quantized creation/annihilation operators [8]. 

Generalization of BEC 

The BEC derived by Einstein was only for an ideal gas of non-interacting 
scalar bosons, extended uniformly in the three-dimensional (3D) space. 
Generalization has since been considered and in some cases realized: 

(a) fragmented BEC [10-12] — extrinsically into non-overlapping regions 
of coordinate or momentum space; and intrinsically in terms of their 
internal (hyperfine) spin structures, or even their macroscopic quantum 
mechanical phases. Then, there is the question of their thermodynamic 
stability — repulsive interaction as in 4He has been shown to disfavor 
fragmentation for reasons of the energetics of exchange interactions 

[ii]; 
(b) Dimension — there is no BEC in two dimensions, as can be readily 

seen from the fact that the sum of the thermal occupation numbers 
(see Eq. (6)) over the molecular states for the system then diverges at 
all temperatures for chemical potential ji = 0. The absence of BEC 
in two dimensions, of course, follows from a rather general theorem in 
condensed matter physics; 

(c) Localized condensates [6-9] — BEC has now been realized in dilute 
alkali atomic gases in harmonic traps, magnetic and optical; 
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(d) Interactions [13] — interacting bosons, for example 4He, has been 
treated extensively by the many-body theorists. Interactions (repul­
sive) deplete the condensate; 

(e) Condensate fraction — neutron scattering [14] has been an experimen­
tal technique of choice for determining the condensate fraction in 4He. 

In neutron scattering with high energy-momentum transfer rates, the struck 
atoms of the condensed system are excited to energies much greater than 
the binding energy, and thus the scattered cross-section gives directly the 
momentum distribution (the so-called Compton profile) of the system. The 
macroscopic occupation of the zero momentum single-particle state (the 
BEC) should now show up as sharp delta-function singularity (peak) in 
the measured momentum distribution, which is, however, yet to be clearly 
seen. It is essentially a deep inelastic scattering in the context of condensed 
matter. A novel method to demonstrate that a BEC really exists is the 
technique of quantum evaporation [15]. Here, a collimated beam of phonons 
injected into the sample causes evaporation of the atoms from the sample 
in a single-excitation to single-atom process. The angular distribution of 
the evaporated atoms was then inverted to show that there indeed is an 
accumulation of the atoms in the zero-momentum state — a BEC. 

Bose-Einstein correlation 

Closely related to BEC is the phenomenon of Bose-Einstein correlation 
(bee), where bosons of the same kind emitted from nearby sources get 
correlated in energy (E) and momentum (P), or time (£) and space (x). 
This is best seen with reference to the scattering of the two Bose particles 
at an ideal 50:50 beam splitter as depicted in Fig. 2. 

For the one-boson incoming state, we have 

af\vac) —> ( ra j + ta±)\vac), 

a^lvac) —> (ra^ — ta±)\vac), 

in obvious notation, where af is the Bose creation operator for the ith 
channel, and r and —t the (real) elements of the scattering matrix for the 
beam splitter. 

Now, for the two-boson incoming state, we have 

af a%\vac) ->• ir2(a^)2 - i 2 ( a | ) 2 - rtafa^ + rtajaf)\vac). 

Thus, for our beam splitter with r — t, we have only the doubly occupied 
outgoing states inasmuch as a j and aj" commute for bosons. (For fermions, 
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Fig. 2. Bosons emitted from nearby sources tend to be correlated in P and E o n 
and t. 

of course, the reverse is true, and we will have only the singly occupied 
outgoing states.) This flocking of bosons of the same kind is, of course, 
crucial to BEC and to bosonic stimulation [16]. 

BEC and bosonic stimulation 

This is closely connected with the (1 + N) factor that multiplies the prob­
ability of a scattering event in which a Bose particle is scattered into a 
single-particle state that already has Ar bosons of the same kind. (This 
is, indeed, the 'crazy idea' that had intrigued Bose and Saha in the pa­
pers of Einstein and Ehrenfest [17] and of Pauli [18] written in the context 
of the probability of Compton scattering that depended on the radiation 
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density at the scattering frequency that would arise in the process.) Bosonic 
stimulation is clearly involved in the kinetics of BEC growth, and may be 
used to amplify certain extremely weak effects in condensed matter. 

Macroscopic wavefunction for BEC 

Einstein had considered only the quantum statistics and the resulting ther­
modynamics of BEC. Fritz London [19] introduced the idea of BEC as a 
single macroscopic quantum object. The proximity of TBEC = 3.13 K, cal­
culated for 4He regarded as an ideal Bose gas, and the observed T\<p 2.18 K, 
led him to identify the lambda transition with the BEC. This eventually 
led to a nonlinear Schrodinger-like equation, the Gross-Pitaevskii equation 
[7, 8], for the macroscopic matter-wave function \l/(r), of a single coordi­
nate r, describing the BEC in a realistic Bose system with interactions (e.g. 
4He): 

ih—Mr,t) = - — V2Mr,t) + g\Mr,t)\2Mr,t),g = - ^ , (8) 

with ^o(r,t) = Complex order parameter = y/no(r,t)eie°^r,t\ no(r,t) = 
BEC number density; 6o(r,t) = phase, v = velocity = (H/m)V9o(r,t), 
where a is the s-wave scattering length that parametrizes the self-
interaction (a > 0 for repulsive interaction). 

*o describes BEC 

Space-time coherent phenomena — interference, diffraction 
Superfluid flow through capillaries, past obstacles 
Quantized vortices (h/m = quantum of circulation) 
Tunneling through barrier 
Nonlinear Matter Waves (4 wave mixing) 
Collective excitations (the sounds). 
At T — 0, the condensate fraction <1 , but the superfluid fraction = 1. 

BEC localized in traps 

When Einstein derived the condensation for an ideal (non-interacting) gas 
of particles obeying the quantum (Bose) statistics, he had in mind helium, 
hydrogen (which are actually strongly interacting), and also the gas of 
electrons (wrongly, as electrons actually obey the Fermi-Dirac statistics, of 
course, not known then). A BEC with high condensate fraction requires a 
high phase-space density without having to encounter the adverse effects of 
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strong interactions that not only deplete the condensate, but also actually 
pre-empt it by causing solidification. This suggests low densities and corre­
spondingly low enough temperatures, and of course, low-mass atoms. This 
is precisely what has been achieved in the dilute gaseous alkali atom BECs, 
with typically ~10 orders of magnitude lower than the normal condensed 
matter density and a temperature ~100 nanokelvins. Thus, the domain 
of BEC has been extended far beyond helium, or shall we say, outside the 
helio-centric boundary in the laboratory. Extreme BECs are suspected in 
the cores of compact astrophysical objects, and in the cosmological vacua. 
Very recently [20], superfluidity (and by implication BEC) has been demon­
strated in solid 4He. Given below is the Zoo of BECs: 

4He (the inert noble, but Nobel-active gas) 
Hj (spin-polarized hydrogen), an example of effectively spin-half Bose gas 
Excitonic condensates 
Composite bosons, e.g. (e~-e~); (3He-3He) . . . 
Alkali atomic (bosonic) isotopes 87Rb, 85Rb, 7Li, 23Na, . . . 
Alkali molecules (fermionic-isotope pairs) 40K2, 6Li2 
Protonic/neutronic and pion condensates — neutron star interior. 
Cosmological condensates — field vacua. 

Also, listed below are some parameter values typical of BECs in the 
laboratory for neutral bosonic alkali atoms: 

Temperature 
Number density 
Total number 
Size and shape 

Cooling cycle time 

Open problems 

Some of these are: 

(a) Connection between BEC and superfluidity; 
(b) Interaction and dimensionality; 
(c) Fragmented BEC for composite bosons with internal structure; 
(d) Kinetics of BEC growth; 
(e) BEC and decoherence; 
(f) Amplification of weak effects, e.g. the extremely small rotational mag­

netic moments expected of hydrogen molecules may add up coherently 

: 500 nk - 2 /ik 
: 1014 - 1015 cm"3 

: 103 - 107 - 109 

: 10-50 /im spherical 
15 /im x 300 /im cigar shaped 

: few x seconds — few x minutes. 
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to give a large macroscopic magnetic polarization in H2 BEC!; 
(g) Bosonic stimulation — one may even speculate about the decay rate 

of a radioactive nucleus being enhanced many-fold if embedded in the 
BEC of one of its bosonic decay products; 

(h) BEC being a superfluid solid — a supersolid. 

Timeline (fuzzy and annotated) of BEC 

1900 • Planck's Quantum Hypothesis; Planck's Law of Black Body 
Radiation ('... happy guesswork'). 

1924 • Planck's Law and Light Quantum Hypothesis; Satyendra 
Nath Bose, Zeit. f. Phys., 1924, 26, 178. The pre-factor 
2 x (4iri>2/c3) also derived. 

• Beginning of Quantum Statistics: Loss of identity of light 
quanta. A new way of counting the indistinguishables. 

• Photons indistinguishable but the phase space cells distinct. 
• Photon number not conserved: Chemical potential /x = 0 

Quantum theory of the monatomic ideal gas, A. Ein­
stein, Preuss. Akad. Wiss., 1925, p. 3. 

1925 • Extension of the Bose Statistics: Particle Number Conserved 
— Chemical potential \i ^ 0, e.g. Helium (4He). 

• Gibbs paradox (the tyranny of N!) resolved, and the Nernst 
Theorem obeyed. 

• Startling consequences: Macroscopic occupation of the 
lowest single-particle state — Bose-Einstein Condensation 
(BEC). 

• Purely quantum statistical phase transition sans interaction. 
• Initial reaction to BEC: 
• Einstein . . . ' . . . tha t is only by the way . . . ' , Planck 

. . . frankly disbelieved it, 
• Schrodinger . . . suspected an error in it. 

1926 • P. A. M. Dirac21 gave antisymmetric wavefunction for 
fermions (3He) obeying Pauli's exclusion principle with the 
occupation numbers restricted to 0 and 1 (the exclusive 
Fermi-Dirac statistics); and symmetric wavefunction for the 
bosons (4He) obeying inclusive statistics with occupation 
numbers not restricted (the inclusive Bose-Einstein statis­
tics). Matters of statistics were clarified by 1927. 
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1928 

1938 

1940 

1948 

1956 

1957 

1966 

1972 
millikelvin 
1980s 
microkelvin 

• W. Hendrik Keesom: He I (normal helium) - He II 
(superfluid helium) phase transition — the A-transition 
at a critical temperature Tc = 2.18 K. 

• Pyotr Kapitza: Discovers superfluidity of helium (4He). 
(Earlier in 1911 Heike Kamerlingh Onnes had discovered 
superconductivity in Sn). 

• Fritz London Hypothesis: Superfluidity of 4He a mani­
festation of BEC. A macroscopic wavefunction proposed 
for this phase. Now called the order parameter. 

• W. Pauli [22] derived spin-statistics connection from 
special relativity and quantum mechanics: bosons for 
integer spin and fermions for half-integer spins. 

• N. N. Bogoliubov [13]: First microscopic theory of in­
teracting Bose-gas: 4He — Superfluidity and BEC con­
nected. Depletion of BEC due to strong interactions in 
liquid 4He. 

• O. Penrose and Lars Onsager [23]: First estimation of 
BEC fraction -10% for 4He. 

• Bardeen-Cooper-Schrieffer (BCS) theory of supercon­
ductivity: Condensation of Bose-like Cooper pairs in 
the zero momentum state. 

• Seminal suggestion of P. Hohenberg and P. Platzman 
initiates probing of the condensate fraction by high-
energy (epithermal) neutron scattering — momentum 
distribution (Compton Profile). But conflicting results 
for BEC fraction [14]. 

• Condensation of bosonic pairs of fermionic 3He. 

• Advances in laser cooling and trapping of neutral alkali 
atoms down to microkelvins; Steven Chu and William 
D. Phillips; and Claude Cohen-Tannoudji. 

BEC SAGA: 70 years after 1925 and end of helio-
centricity [6—8] 

1995 BEC RESURRECTED MIRACULOUSLY 
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^nanokelvin 

-1999 — 

-2003 — 

-2004 — 

Eric A. Cornell (NIST) Wolfgang Ketterle (MIT) and 

Carl E. Wieman (JILA +Univ. Colorado) obtain 

BEC in dilute gases of 8 7 Rb alkali atoms at ~ 2 0 nK 

(0.00000002 K) and 2 3Na. BEC fraction ~100%, the 

ideal value. 

New State of Matter : TUNABLE CONDENSATE 

Coherent mat ter waves-atom laser 

Bosonic stimulation 

Nonlinear mat ter — wave interaction: four-wave mixing 

(4 WM) 

Quantum phase transition: BEC in optical lattice 

Interaction tunable through Feshbach resonance 

Fermionic a tom pairs (Composite bosons): 4 0K2, 6Li 

molecular condensates. 

Close encounters: Cold collisions for scattering length 

<C de Broglie wavelength. 

BEC (real-space pairs) — to — BCS (momentum-space 

pairs) crossover in fermionic systems 

Molecular BEC: Chemistry with cold coherent matter; 

Photo-association of atoms into molecules. 

Highest spatial and spectral resolutions; sensitive detec­

tors (possibly for gravitational waves?). 

BEC on a microchip. 

BEC: A ' laboratory ' for testing condensed mat ter mod­

els of strongly interacting systems, e.g. Mott insulator 

to superfluid transition. 
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Our ideas about the behavior of a collection of large number of elec­
trons in solids are based on regarding them as a quantum gas or fluid. 
This enables us to make sense of much of solid state science. How­
ever, an increasingly large number of families of systems where electrons 
move not freely but are subject, for example, to very strong short range 
(effective) repulsion, continue to be discovered and explored. Examples 
are high temperature superconducting cuprates, colossal magnetoresis-
tance manganites and rare earth heavy fermion intermetallics. These 
systems exhibit a rich variety of qualitatively new properties which, per­
haps, require fundamentally different ideas for many electron behavior 
of strongly correlated systems. I describe here some examples of such 
strange goings on; this is one of the major contemporary departures in 
the physics of condensed matter. 

1. I n t r o d u c t i o n 

A few years before 1905, the miraculous year whose centenary is being 

marked as the World Year of Physics, P Drude proposed (in 1900) a stagger­

ingly simple model for electrons in solids [1]. Just three years earlier, it had 

been recognized (J. J. Thomson) tha t electrons are constituents of all mat­

ter. Drude suggested tha t the outer electrons of the atoms/molecules con­

sti tuting the solid be regarded as forming an ideal, perfect, gas of charged 

particles. The broad reason is tha t each of these outer electrons is strongly 

influenced by the other atoms nearby, and so cuts loose from its parental 

ionic mooring (becomes unbound) and can move throughout the entire solid. 

Wi th this simple model, Drude was able to describe well, for the first t ime, 
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many observed (electromagnetic) properties of metals (e.g. their optical 
conductivity and 'skin' effect). 

Two important reasons why this classical ideal electron gas description 
is basically inadequate, are the following. Firstly, electrons are actually 
waves, and their typical wavelength (thermal de Broglie wavelength) is 
comparable to the characterristic distance between them in solids, so that 
the electron gas is highly quantum mechanical; it needs to be thought of 
as a collection of a large number of independent waves satisfying the Pauli 
exclusion principle (namely there is only one electron in one state, the latter 
being characterized by the propagation vector of the electron wave and its 
spin direction). The quantum energy scale ep for typical electron densities 
in solids corresponds to a temperature of a few ten thousands of degrees, 
namely ep = ksTp with Tp ~ 5 x 104 K, say. Thus at temperatures 
normally accessible to us, e.g. 0 K < T < 103 K, one is deep in the quan­
tum regime, T <C Tp. This leads to novel universal electronic properties 
common to all such solids (metals), e.g. specific heat linear in tempera­
ture and paramagnetic (spin) susceptibility independent of temperature. 
This is indeed observed and contrasts with expectations from the classi­
cal Drude model, of temperature independent specific heat (Dulong Petit 
law) and T~l (Curie) behavior for spin susceptibility. The electromagnetic 
properties as calculated by Drude do not change. 

Secondly, the electron waves move not in a homogeneous, neutralizing, 
dynamically inert background, but in the background of ions which (for a 
crystal) are arranged in a spatially periodic lattice. This leads to states with 
energies of progressive electron waves being organized in bands separated by 
forbidden gaps. There is then the possibility of semiconductors or insulators 
in addition to metals, the former being realized when the number of unfilled 
shell electrons is such that the (highest allowed) energy band is completely 
full, and is separated from the lowest energy unfilled band state by an 
energy gap. 

Much of our knowledge of electronic behavior of solids is based essen­
tially on these ideas, and on treating other physical effects as perturbations. 
Such effects arise for example from the fact that the ions are not fixed but 
vibrate (phonons), or from disorder in their spatial arrangement; electrons 
also repel each other via electrostatic or Coulomb interactions so that they 
cannot be regarded as moving independently of each other. Each of the 
above effects if strong, is known to lead to qualitatively new electronic 
behavior. Here we focus largely on the last. 
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Coulomb interactions between electrons are clearly always present and 
can be strong. A natural and simple approximation is to consider each 
electron as moving in a self-consistently determined average static poten­
tial or mean field due to the others. A sophisticated version of this, due to 
Landau (1954) [2], describes the elementary low lying excitations in met­
als as well-defined quasiparticles interacting with each other. The quantum 
numbers of these quasiparticles are in one to one correspondence with those 
of free fermions, e.g. having wavevector k and spin a. Interaction deter­
mines the excitation energy E^ of a quasiparticle, and the coupling /g ^,a, 
between them. This is clearly a picture of the low energy excitations of the 
interacting Fermi system (commonly called a Fermi liquid) as a true image 
of the noninteracting one. The fundamental reason as to why Landau's 
Fermi liquid theory might be realistic is that the Pauli exclusion principle 
strongly constrains the transitions from a given state that can be caused 
by interactions; for small excitation energy e with respect to the chemical 
potential /j, (namely the surface in wavevector space with zero excitation 
energy i.e. the Fermi surface) the decay rate T(e) oc e2, so that crudely 
F(e) ~ (VJ2

lt//u
3)e2 where V;nt is the interaction strength. Clearly, for small 

enough e, r(e) < s n o matter how large is V|nt, so that low excitation energy 
states are long lived and well defined. The ideas involved in the Landau 
Fermi liquid theory are thus that there is a continuity in the states or state 
quantum numbers between the independent and the interacting fermion 
systems and that the effect of the interaction (e.g. on T) can be at least 
formally thought of perturbatively. 

In 1937, de Boer and Verwey found and pointed out that a number 
of transition metal oxides which might to be metallic in band theory (i.e. 
because the number of electrons in each unit cell of the appropriate crys­
talline solid is an odd integer) are actually insulators. Peierls and Mott 
realized immediately that this fundamental difference could be because of 
strong interaction between electrons which forces them to 'stay home' with 
their parent atoms. Thus if the number of electrons per unit cell is integral 
(even or odd), the system is an insulator, since each electron is localized 
by correlation. In 1949, Mott proposed a simple hypothetical model, of 
a lattice of hydrogen atoms. As its lattice constant increases, the system 
goes from being a half-filled band metal to an insulating collection of hydro­
gen atoms. This metal to insulator transition is called a Mott transition, 
and the electron correlation driven insulator, a Mott insulator. Strong cor­
relation causes here a qualitatively new phenomenon, the localization of 
electrons. Experimentally, several families of solids with strong electronic 
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correlations are known; many are being discovered and explored. All are 
strange, being quite different in their physical properties from 'Fermi liquid' 
type of systems we have been familiar with. I briefly describe three families 
below, while outlining the challenges they pose. 

I do not mention several families of strongly correlated electron systems 
e.g. sodium cobaltate Na^CoC^ (of great current interest as home to a 
Curie-Weiss metal, for unusual charge ordering and superconductivity as 
well as possible realization of naturally frustrated triangular lattice systems 
with large and the quantum effects), spin chains and spin ladders. The 
great success story of fractional quantum Hall effect (FQHE) has not been 
touched on. The FQHE is the defining characteristic of an incompressible 
quantum fluid which owes its existence to (strong) interactions between 
electrons residing in the lowest Landau level. This novel quantum fluid in 
addition to exhibiting quantization of Hall conductance, has fractionally 
charged excitations (e.g. charge e/3) which have been observed. This is 
one example of a many electron system determined by interactions and 
understood in several ways, e.g. ground state wave function and excitations 
as well as effective low energy quantum field theory. 

2. Cuprates 

Perhaps the best known family of oxides in which strong correlation be­
tween electrons defines their low energy behavior is rare earth cuprates (3). 
The present period of intense interest and activity dates to 1986, when 
high temperature superconductivity was discovered by Bednorz and Muller 
in La2-a;Sra;Cu04 with x ~ 0.2. Nearly two decades and almost a hun­
dred thousand papers later, we have a richly detailed experimental picture 
of their properties. There is, however, no agreement on the underlying 
theoretical description. There is direct experimental evidence e.g. from 
core photoemission that correlation energy U (effective onsite electron re­
pulsion) is rather large, of order 5 eV or so, in these systems whereas 
the kinetic energy is much smaller, the intersite hopping energy i^ be­
tween nearest neighbors i and j is about 0.3 eV. (The nominal bandwidth 
is D = 2zt where z the number of nearest neighbors is 4 for a square 
lattice; thus in these systems, U is much larger than D, a signature of 
strong correlation.) 

The parent compound La2Cu04 was studied by Ganguly and Rao in 
1980 or so. It is a nearly two-dimensional solid, with the electronically 
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CuO, 

a = 3.78A 

Pig. 1. Crystal structure of I ^ C U C M - A unit cell is shown. The ions are not to scale. 
(http:/7hoffm an. physics. harvard.edu/research/SCmaterials.php) 

active Cu+ +(d9) ions forming a nearly square planar lattice with each 
C u + + surrounded by four 0~ ions; the (C11O2) planes are interspersed with 
(La-0)+ planes (Fig. 1). The sp electrons of Cu, O and La are strongly 
bonded; the low energy excitations of the solid involve the dx2_y2 orbitals 
of the d state in Cu, appropriately hybridized with the surrounding oxy­
gen atom states. These electrons have relatively weak interplanar coupling. 
Ganguly and Rao found that L^CuO^ is an antiferromagnetically ordered 
insulator; the antiferromagnetic coupling between nearest neighbor C u + + 

spins in plane is estimated to be about 0.15 eV, an unusually large value. 
Above the Neel temperature of about 210 K, the paramagnet continues to 
be insulating. This is the signature of a Mott insulator, since there is an 
odd number of electrons in each unit cell containing one C u + + ion, namely, 
one d hole or one dX2 — y2 orbital electron for each C u + + . 

Replacing trivalent La with a divalent alkaline earth effectively removes 
a dx2_y2 electron, so that one has a doped Mott insulator, which is metallic 
because of hole motion. Bednorz and Muller found in 1986 that such a 
compound is a superconductor with an unprecedentedly high transition 
temperature; in the La2-zSrxCu04 family the highest Tc is about 30 K, and 

http://harvard.edu/research/SCmaterials.php
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non-Rjrmi liquid Crossover 

Fermi liquid 

x (doping level) 

(underdoped) (optimally doped) (overdoped) 

Fig. 2. The generic, schematic phase diagram of hole doped cuprates as a function of 
hole concentration x and temperature T . (Courtesy: C. M. Varma) 

occurs for x ~ 0.20 ('optimum doping'). A number of cuprate families are 
known; the highest Tc observed is about 140 K. The generic 'phase diagram' 
of cuprates as a function of doping x and temperature T is shown in Fig. 2. 
Two kinds of ordered phases, namely antiferromagnetic insulator for very 
low doping, and a dome shaped superconducting region are shown. The 
metallic or 'normal' regime outside these can be of several types, there is a 
smooth crossover between them. The three large regions are characterized 
as pseudogap, non-Fermi liquid and Fermi liquid. 

A qualitatively new feature of the metallic state (both the pseudogap 
and the non-Fermi liquid) is that an electron of a definite momentum fc|| 
(i.e. k in the plane) does not have a definite energy, but has a broad spread 
of energies. There are no well-defined quasiparticles, in stark contrast to 
expectations from Landau's Fermi liquid picture where it is believed that no 
matter how strong the interaction, electronic excitations with k close to the 
Fermi surface ought to be well defined. Recent advances in angle resolved 
photoemission spectroscopy (ARPES) enable very accurate measurement of 
the energy distribution of electrons with a well-defined momentum ejected 
from the solid by an incident photon. The expected ARPES 'spectrum' is 
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0 (e-u) 

Fig. 3. Schematic ARPES intensity spectrum p(e) as a function of energy (e — /Li), for 
a particular planar electron wavevector. 

a rather narrow peak. This is not what is seen (Fig. 3). The absence of 
well-defined quasiparticles marks cuprates out as a qualitatively new kind 
of many electron system. Intriguingly, a quasiparticle peak returns in the 
superconducting state; its strength is proportional to the supernuid density. 

The cuprates are characterized by a host of unusual properties (3). We 
mention a few here. It has been noticed for long that in-plane resistivity 
in the non-superconducting, 'normal', phase is basically linear in T over an 
unusually wide range, roughly from Tc to 103 K or so. In conventional met­
als, there is a quantum energy scale e0 for the resistive (bosonic) scatterers 
which sets the temperature above which p(T) oc T, with a clear tendency for 
p(T) to saturate as temperature increases to high values. In cuprates, this 
language would imply that e0 is very small, nearly zero and that there is no 
tendency for resistivity saturation. Again unlike other metals, the electronic 
specific heat is not linear in temperature. The underdoped {x < ^optimum) 
region is electronically very unusual. There is a pseudogap regime above Tc. 
Here, the single particle excitations as seen from ARPES show a soft gap 
about the Fermi energy; the gap has fourfield symmetry in wavevector or k 
space, similar to that of the superconducting gap Ag. The latter fourfold 
symmetry feature specifically the k dependence A^ ~ A0(cos kxa ~ cos kya) 
for k in the x — y plane, is characteristic of cuprates; they are 'd-wave' su­
perconductors. We notice that the gap vanishes at the points kx = ±ky on 
the Fermi surface. The strongly underdoped region is seen to have coex­
isting real space order ( 4 x 4 superstructure) and superconductivity. The 
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pseudogap reduces the density of low energy charge and spin excitations; 
this is seen, for example, in the characteristic decrease of low temperature 
resistivity below the linear dependence, and in the spin susceptibility (spin 
gap). 

The attempts to make sense of electronic properties of cuprates range 
from assuming that they are ordinary metals but with a new kind of 'glue' 
that helps form electron pairs, to models with radically new elementary 
excitations. None has the comprehensive explanatory power to successfully 
confront the large number of novel experimental features. I briefly men­
tion here the strong correlation viewpoint. It is based on the realization, 
as mentioned above, that the undoped cuprate is a Mott insulator with 
effectively one d electron (with spin 1/2) locked to each site, and with an-
tiferromagnetic (AF) coupling J between such spins at nearest neighbor 
sites. On hole doping, an electron can find itself next to a site with a hole, 
and can hop on to it so that the system can become metallic because of the 
mobility of electrons (or of holes). Nearest neighbor electrons form singlets 
due to the coupling J. The superconductor is a coherent superposition of 
singlet pairs. Making a reliable theory out of such ideas proves difficult, 
essentially because it is hard to weave strong local constraints (namely that 
low energy states have exactly one or no electron per site) into global many 
fermion quantum dynamics. Thus the origin of the different non-Fermi liq­
uid, nonsuperconducting metallic regimes, i.e. the question of how exactly 
do strong correlation, exchange J^- and electron hopping tij lead to the ob­
served states is not clearly answered; indeed there are several theories which 
argue for other interactions and degrees of freedom as being necessary. 

3. Manganites 

Alkaline earth doped rare earth manganites, namely Rei_x AkKMn03 where 
Re is a rare earth ion e.g. La, Pr, Nd and Ak is an alkaline earth ion e.g. Sr, 
Ca, Ba . . . are a family of structurally simple (perovskite, basically cubic) 
oxides with a rich variety of unusual phenomena and phases [4]. The best 
known of their properties is colossal magnetoresistance, namely the large 
change in electrical resistivity in a magnetic field. This change, several 
orders of magnitude larger than in typical metals, is one of a large number of 
properties which can be described as being due to the persistent proximity 
of the metallic and the insulating states. There is no general agreement on 
the origin of their unusual behavior. I mention below some characteristic 
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Pig. 4. (a) Corner sharing Mn-O-6 octahedra with 'interstitial' ( R e i - i A ^ ) ions. 
(b) Spontaneous ferromagnetic magnetization M as a function of temperature T, and 
(c) dependence of resistivity with temperature in zero magnetic field and in a field of 
5T, both for a ceramic manganite. 

p r o p e r t i e s , a f ter a br ief d e s c r i p t i o n of t he i r sol id s t a t e e l e c t r o n i c s t r u c t u r e . 

The kind of strong correlation effects which could be relevant, and a two 
electron fluid model proposed by us are then mentioned. 

The manganites are made up of corner sharing octahedra. The Mn 
ion is at the center of octahedron and the oxygen ions are at the corners. 
The rare earth/ alkaline earth ions are located between the octahedra, in 
the interstitial spaces [Fig. 4(a)]. Because of the octahedral coordination, 
the d electron states, which are five-fold orbitally degenerate in the free 
atom (isotropy) split into three-fold degenerate t2g levels and two-fold de­
generate (eg orbitals the two levels are denoted dx2^.y2 and d3z2-r2). The 
compound Rei-^AkxMnO.-i has a fraction (1 — a;) sites with Mn3 + ions 
(igej) and x sites with Mn4+ ions {t\ge°g). The tig levels are thus always 
occupied at every Mn site by three electrons and can be thought of spins 
as Si. The two-fold degeneracy of the eg level is spontaneously broken by a 
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Jahn-Teller distortion of the (Mn-Oe) octahedron on sites where one elec­
tron occupies the eg state. In manganites, the Jahn-Teller energy lowering 
EjT is large (~ 1 eV), as is the corresponding Jahn-Teller polaronic dis­
tortion, since the relevant electron lattice coupling A is strong. The strong 
local Coulomb repulsion between electrons in the Mn d orbital has at least 
two effects. One is described phenomenologically by Hund's rule; in the 
ground state the £25 spins have their maximum value i.e. Si = 3/2 and the 
eg and t2g spins at a site tend to be parallel. This last is described by an 
effective ferromagnetic coupling —JHSI- Si with JH — 2 eV where Si is the 
eg spin at site i. The second effect is the effective repulsion U between eg 

electrons. U is estimated to be about 5 eV. Thus in say Lao.8Cao.2Mn03, 
eg electrons (in a mixture of two orbital states) hop from site to site under 
the influence of three strong local interactions, namely coupling to lattice 
(strength A), Hund's rule coupling to tig spins (JH) and electron repulsion 
U. The intersite hopping energy has a scale t ~ 0.2 eV with a factor of 
order unity which depends on the initial and final orbitals. This system is 
thus strongly correlated since t -C EJT, JH and U. Orbital, lattice and 
spin degrees of freedom are explicit and strongly coupled. If the local in­
teraction were to have no qualitative effect, the result of hole doping would 
be to enable the eg electrons to move through the lattice; electronically the 
hole doped manganite would be a metal. In fact, this is not true over a 
wide range of doping x so that the local interactions have qualitatively new 
effects. 

The manganites exhibit a variety of orbital, magnetic and structural 
order; electronically both metallic and insulating states are found. As 
expected from the above description, there is an intimate connection 
between them all. An example is colossal magnetoresistance (cmr), 
which is found near the Curie or paramagnetic-ferromagnetic transition, 
which also nearly coincides with an insulator-metal transition [Fig. 4(b)]. 
Figure 4(c) shows the large reduction in resistivity near the Curie transition 
due to a 5T magnetic field. Figure 5 shows the magnetic and structural 
phases in La-^Ca^MnOa for different doping x. One has different kinds of 
AF order in the insulating ground state, as well as ferromagnetic insulating 
(FI) and ferromagnetic metallic (FM) ground states. There is no orbital 
order for 0.2 < x < 0.5, (orbital liquid regime) but orbital order with re­
lated structural long range order exists for x ~ 0.5. While the complexity 
of the system and the presence of many interactions could be the reason for 
the richness of phase diagram, other manganites show similar phases with 
systematic differences. 
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La1xCaxMn03 

Cax 

Fig. 5. Phase diagram of Lai -^CaxMnOa; different structural and magnetic phases are 
shown. The symbols stand for the following: R (rhombohedral) O*, O (orthorhombic) 
CAF (C type antiferromagnet), CO (charge order), FI (ferromagnetic insulator), FM 
(ferromagnetic metal), AF (antiferromagnet, insulating). (S. W. Cheong and H. Y. 
Hwang, in Collossal Magnetoresistive Oxides, ed. Y. Tokura (Gordon and Breach, 
Amsterdam, 2000)) 

As mentioned earlier, a special characteristic of manganites is the fact 
that metallic and insulating electronic configurations seem close in energy 
over a wide range of composition and temperature. We mention some illus­
trative examples. Such proximity is peculiar since electronic states near the 
Fermi energy need to be either localized, or be extended and gapped, for an 
insulator. The opposite is true for a metal. So, generally a physical system 
is one or the other, and only for special conditions (e.g. of temperature, 
pressure or composition) does a transition takes place. By contrast, e.g. in 
La-aCa^MnOs, there is an insulator to metal transition on cooling, over 
the entire composition range 0.2 < x < 0.5. Colossal magnetoresistance it­
self implies that a magnetic field is enormously effective in 'metallizing' the 
system. A manganite compound (Lai_j,Pry)o.7Cao.3Mn03 at y = 0.75 is 
poised so close to the transition that replacing O18 by O16 changes it from 
insulator to metal. Another interesting feature of manganites is that the in­
sulating, charge and orbitally ordered state (x > 0.5) 'melts' in a relatively 
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small magnetic field into a metal. Finally, there is a large amount of di­
rect experimental evidence from various local probes that two electronically 
very different regions, namely metallic with no local lattice distortion, and 
insulating with local lattice distortion, coexist on length scales ranging from 
nanometers to microns; the regions can be static or dynamic. One of the 
major questions in this field is whether these electronic inhomogeneities are 
extrinsic or intrinsic, the origin of their length and time scales, and whether 
this is a defining characteristic ('electronic softness') of strongly correlated 
systems. 

While from the description above it is apparent one might attribute the 
unusual and varied properties of manganites to strong local interactions, 
theoretical descriptions take these into account selectively, perhaps because 
only some (depending on the experimental conditions) could be qualita­
tively significant. For example, large Hund's rule coupling in tandem with 
eg electron hopping leads to a new effective ferromagnetic coupling (double 
exchange) between nearest neighbor eg spins whose strength is roughly pro­
portional to (1 — x)t, ((1 — x) being the fractional number mobile electrons 
and t the electron hopping) times a spin 1/2 overlap factor which decreases 
further from unity as the nearest neighbor t2g spins become less parallel. 
The effect of the large Jahn-Teller electron phonon coupling is to create 
a polaron (electron with associated local lattice distortion) states. In the 
static or classical approximation for the lattice displacements these states 
continue to form a broad band. In the presence of large U, the effective 
bandwidth of the eg electrons is proportional to the hole density x. It could 
be assumed that this effect renormalizes the bare eg bandwidth and also 
has no qualitative consequences. Recently, some of us (T. V. Ramakrish­
nan, H. R. Krishnamurthy, S. R. Hassan and G. V. Pai) [5] have proposed 
a strong correlation two fluid model as a basic theoretical picture for man­
ganites. We argue that because of strong Jahn-Teller coupling, there is a 
JT polaron (denoted It) with site energy lowered by EJT whenever there is 
an eg electron on that site (as pointed by Millis, Littlewood, Mueller and 
Shraiman, who also were the first to analyze the significance of polarons 
for mangnite phenomena). 

There is also at each site, an othogonal state &;. The intersite hop­
ping of the £ polaron is reduced by a factor ~ exp(—EjTf2hu}0) where 
Hu)0, the Jahn-Teller phonon energy fuv0 ~ 0.05 eV. Since this factor 
is ~ (1/200), the I polaron fluid is essentially site localized (this is a 
consequence of phonon dynamics; it is absent if lattice displacements are 
treated classically). 
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The b electron hops from site to site without any polaronic reduction in 
bandwidth, avoiding polaronic sites because of the large onsite repulsion U 
between £ and b states. Thus of the three strong onsite interactions, one 
(the electron lattice coupling) leads to two fermion species, an £ polaron 
which is essentially localized with site energy —EJT and a band electron (6). 
The strong correlation U and the Hund's rule coupling JH affect £b dynam­
ics. In a strong correlation, single self-consistent site (dynamical mean field 
theory, DMFT) approximation, we show that many of the observed novel 
phenomena in the orbital liquid regime are due to the relative occupation 
of the b band and the £ level. The system is not a Fermi liquid. Since the b 
bandwidth effectively decreases with decreasing x (an effect of strong cor­
relation U) and decreases with increasing temperature T (effect of Hund's 
rule coupling JH) so does the average b electron number fib. Using this 
idea, metal insulator transitions as a function of x and T, and interestingly 
colossal magnetoresistance, the smallness of carrier density (in our model 
the b electron density) can all be physically and quantitatively explained. A 
number of phenomena (in this strong correlation model) depend on spatial 
correlation between orbitals, £ polaron hopping, disorder, etc. Theoreti­
cal description of these is to be developed. The approach however shows 
that strong coulomb correlation and electron lattice effects in these systems 
crucially determine the physics and act in concert. 

4. Heavy Fermions 

Intermetallic compounds containing rare earth ions, e.g. CeA^3, can be de­
scribed electronically as of a collection of / and spd electrons. The former 
continue to be 'attached' to their parent atoms while the latter are free 
electrons spread throughout the solid. The / electron number in each atom 
is integral (strong correlation limit) and thus each atom has a magnetic 
moment. The / electron also hybridizes weakly with the conduction or spd 
electrons. The presence of strongly correlated localized states which mix 
with band states leads again to several new kinds of phenomena in those 
systems. Anderson showed, in a famous paper on localized moments in 
metals (1957) that if the local correlation energy U is, roughly, larger than 
the decay rate of the local state due to hybridization, the local state has a 
moment in a (mean field) theory in which the average effect of conduction 
electrons is considered. But it is clear that a moment in the sense of a local 
rotational symmetry breaking state cannot survive quantum fluctuations 
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Fig. 6. Schematic plot of the temperature T, pressure P phase diagram of a typical 
heavy fermion system. Pc is the quantum critical point. For P < Pc, the ground state 
is shown to be an antiferromagnetically ordered metal. For P > Pc, it is a paramagnetic 
metal without magnetic moments. The (generally) non-Fermi liquid metal exists above 
the Neel temperature Tfi for P > Pc and the crossover 'heavy fermon' temperature TjJ. 
(shown by the dot dashed line) for P > Pc- (Courtesy: P. Coleman) 

involving the residual coupling of the local moment with conduction elec­
trons which restores notational symmetry; this is the Kondo effect. The 
Kondo temperature scale is exponentially small. In a lattice of / electron 
atoms, the moments interact, and the / electrons move through the lattice 
via the conduction electrons. They thus effectively form a narrow band of 
heavy fermions. Effective mass values a few hundred times the free elec­
tron mass have been observed. The heavy fermions (basically / electrons) 
form a Fermi system with a characteristic Fermi temperature which ranges 
from 0 to 102K\ There is a competition between coupling among magnetic 
moments which tends to order them spatially (e.g. antiferromagnetically), 
the Kondo effect which tends to 'quench' each moment locally, and, heavy 
fermion behavior. One consequence of this competition is that as a func­
tion of some control parameter (e.g. pressure) the ground state may change 
from that with moments and long range (antiferro) magnetic order to one 
in which moments disappear and the system is a nonmagnetic metal, at a 
quantum critical point (QCP) (Fig. 6). The domain at nonzero T around 
the QCP, without long range order, is a novel kind of metal, often seen to be 
a non-Fermi liquid. It is a special kind of strongly correlated system which 
is home to a novel kind of competition between spatially local magnetic 
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fluctuations which restore rotational symmetry and interactions between 
magnetic moments which are consequences of strong correlation. Experi­
mentally, there is a wide variety of systems in this family. The phenomena 
can also be tuned by magnetic fields in addition to standard methods such 
as pressure and composition, and can be thought of as arising from the 
interplay of coupled bosonic excitations involving moments and low energy 
fermionic excitations. There is great ferment, both theoretical and experi­
mental, in this field, with proposals for novel kinds of interacting quantum 
field behavior and topological effects, e.g. for QCP and related phenomena, 
as well as unexpected experimental discoveries [6-9]. 

5. Conclusion 

I have mentioned above several families of many electron systems in which 
quite likely because of strong local interaction between electrons, novel 
kinds of phenomena occur. No comprehensive paradigm, akin to the free 
electron gas/Fermi liquid theory exists. Perhaps there is no single/simple 
way in which local ('gauge') constraints and global quantum many fermion 
dynamics can be integrated. A number of quantum field theoretical mod­
els have been proposed and investigated. These theories open our eyes 
to many new kinds of ground states, order, excitations and correlations 
possible and are often realized as some of the 'quantum complexities' of 
condensed matter. However, I have tried to focus on a few broad classes 
of strongly correlated systems whose rich phenomena are not yet compre­
hensively understood. The ingredients are often known, and there are very 
many attempts to explore theoretically these systems in terms of known 
ideas suitably adapted, or in terms of novel interacting field models. They 
do not often seem to meet the essential experimental realities; there is a 
need for appropriate level strong correlation many body theories. The situ­
ation was described by Anderson some years ago as a 'logjam in condensed 
matter physics'. While there is exciting progress in our ability to exper­
imentally design and probe new quantum worlds on the atomic scale, a 
number of these worlds are well-described theoretically, and this interac­
tion continues to be creative, I have tried to make the point that the core 
problem of strongly correlated electron systems continues to be experimen­
tally rich with unexpected discoveries, perhaps requiring new approaches. 

It is thus specially appropriate to recall this area as we celebrate the 
world year of physics. 
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We review here the main contributions of Einstein to the quantum 
theory. To put them in perspective, we first give an account of Physics 
as it was before him. It is followed by a brief account of the problem 
of black body radiation which provided the context for Planck to in­
troduce the idea of quantum. Einstein's revolutionary paper of 1905 
on light-quantum hypothesis is then described as well as an application 
of this idea to the photoelectric effect. We next take up a discussion 
of Einstein's other contributions to old quantum theory. These include 
(i) his theory of specific heat of solids, which was the first application of 
quantum theory to matter, (ii) his discovery of wave-particle duality for 
light and (iii) Einstein's A and B coefficients relating to the probabilities 
of emission and absorption of light by atomic systems and his discov­
ery of radiation stimulated emission of light which provides the basis 
for laser action. We then describe Einstein's contribution to quantum 
statistics viz Bose-Einstein Statistics and his prediction of Bose-Einstein 
condensation of a boson gase. Einstein played a pivotal role in the dis­
covery of Quantum Mechanics and this is briefly mentioned. After 1925, 
Einstein contributed mainly to the foundations of Quantum Mechanics. 
We choose to discuss here (i) his Ensemble (or Statistical) Interpreta­
tion of Quantum Mechanics and (ii) the discovery of Einstein-Podolsky-
Rosen (EPR) correlations and the EPR theorem on the conflict between 
Einstein-Locality and the completeness of the formalism of Quantum 
Mechanics. We end with some comments on later developments. 

1. P h y s i c s before E i n s t e i n 

Albert Einstein (1879-1955) is one of the two founders of quantum theory 

along with Max Planck. Planck introduced the 'quantum' of energy in his 

investigations of black body radiation in 1900. He was followed by the young 
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Einstein who proposed the 'light quantum hypothesis' in 1905. Albert 
Einstein sent his revolutionary "light quantum" paper for publication on 
17 March 1905 to Annalen der Physik. He was twenty six years of age and it 
was his first paper on quantum theory. He had published five papers earlier 
during 1901-1904 in the same journal. Those dealt with capillarity and 
statistical mechanics. The major frontier areas of research in physics then 
were thermodynamics and electrodynamics. The main conceptions about 
the physical universe prevalent in physics of that time were as follows. 

1.1. 'Newton's mechanical conception' 

The earliest of these was that of a "mechanical universe" given by Isaac 
Newton in his magnum opus "Principia" in 1687. The physical universe in it 
was regarded as composed of discrete point-particles endowed with masses. 
They moved with time along well defined trajectories, in the fixed arena of 
a three-dimensional Euclidean space, under the influence of mutual forces. 
The trajectories could be deterministically calculated by using Newton's 
three laws of motion provided one knew the forces involved and also the 
initial position and velocities of all the particles. The forces involved were 
of the "action at a distance" type. Newton also discovered the universal 
attractive force of gravitation which acts between any two mass points and 
falls off as the square of the interparticle distance. Astronomy was thereby 
brought into the fold of physics unlike the case in Aristotlean physics of 
ancients. 

It was known that there exists other forces such as magnetic forces, elec­
tric forces, chemical affinity, etc. It was part of post-Newtonian program 
of research to determine their laws. The force law between two "magnetic 
poles" was determined by John Mitchell in 1750, while that between two 
electric charges was conjectured theoretically by Joseph Priestley, the dis­
coverer of Oxygen, in 1769 and experimentally verified in the unpublished 
work of Henry Cavendish done in 1771. It was however published first, 
based on his own work, by Charles Coulomb in 1785 and is now known as 
Coulomb's law. Alessandro Volta used electric currents, produced by his 
Voltaic pile, to dissociate a number of substances e.g. water into Hydrogen 
and Oxygen. After this work, it was a clear possibility that the forces re­
sponsible for chemical binding may be reducible to electrical forces. Matter 
could consist entirely of electrically charged mass points. 
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1.2. Light as waves 

Newton was also inclined to view light also to be discrete stream of particles, 
'light-corpuscles'. Christian Huygens communicated his researches on light 
to members of French Academy in 1678, and published in 1690 as 'Traite de 
la Lumiere', wherein he advanced the notion that light is a wave phenomena. 
The wave theory of light got strong boost from the discoveries of interference 
of light in 1801 by Thomas Young, and by the studies of Augustin Fresnel 
on diffraction of light begining in 1815. As a result, the wave theory of light 
was firmly established. It was inconcievable, in those days, to have a wave 
motion without a medium for it to propagate, so a "luminiferous aether" 
was postulated for its' propagation. 

1.3. Energetics program 

We just saw that light had proved refractory to being accomodated within 
Newton's mechanical conception of the universe. In thermodynamics, it 
was easy to see that the first law of thermodynamics, which refers to the 
law of energy conservation, could be easily interpreted within Newtonian 
framework. However it did not look possible to interpret the second law of 
thermodynamics, dealing with increasing entropy, within it. Ludwig Boltz-
mann's H-theorem was an attempt towards this goal during 1842-1877 
using his kinetic theory of gases. This attempt attracted strong criticism 
from Ernst Zermelo and others. Georg Helm and Ludwig Ostwald, sup­
ported by Ernst Mach, therefore denied the reality of atoms and suggested 
that energy is the most fundamental concept and the whole program of 
physics should be reduced to a "generalized thermodynamics". This pro­
gram, "Energetics", was subscribed to by a small but strongly vocal and 
influencial minority. In fact, Einstein's work on Brownian motion in 1905 
played a crucial role in its fall. 

1.4. Electromagnetic conception of the universe 

Michael Faraday introduced the concept of continuous fields, like electric 
and magnetic fields, defined over the whole space-time, in contrast to dis­
crete particles. He did this in order to have a deeper understanding of his 
law of electromagnetic induction in eighteen thirtees. These fields are pro­
duced by electric charges, and electric currents produced by these charges 
in motion. They then interact with other electric charges elsewhere. There 
is no "action at a distance" but every interaction is a local interaction. 
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Faraday quoted the old saying "matter cannot act where it is not" in a 
letter to Richard Taylor in 1844. Faraday also thought the gravitational 
force, which appears to act at a distance between two masses, could also 
be understood as a local interaction by the introduction of a gravitational 
field. 

Clerk Maxwell's equations for electric and magnetic fields, given in 
1864, unified these two disparate entities into a coherent single entity "elec­
tromagnetic field". Maxwell, synthesized the earlier known discoveries of 
Coulomb's law, Gauss' laws of magnetic induction, Oersted's work on pro­
duction of magnetic fields by electric current, and Faraday's laws of electro­
magnetic induction into one set of equations using the field concept. He also 
appended a new element, now called "Maxwell's displacement current", to 
this synthesis. 

A brilliant windfall from the Maxwell's equations was the prediction of 
the existence of transverse electromagnetic waves with a constant veloc­
ity (now denoted by the latter c). The velocity c agreed with the known 
velocity of light. It was therefore natural for Maxwell to propose "electro­
magnetic wave theory" of light. The subject of optics thus became a branch 
of electromagnetic theory. The luminiferrous aether was identified as the 
aether for electromagnetic fields as well. 

The tantalizing possibility, the electromagnetic conception of the uni­
verse, arose now. Could it be that even point charged particles can be 
viewed as arising from the aether? The mass of an electron could be en­
tirely due to its electromagnetic energy. If so, the "electromagnetic aether" 
would be the sole ontological entity in terms of which one would be able to 
understand the whole nature. 

1.5. Two clouds on the horizon 

In a lecture delivered in April 1900 before the Royal Institution, Lord Kelvin 
talked about two "Nineteenth Century Clouds Over the Dynamical Theory 
of Heat and Light". It was such a rare case of penetrating insight into the 
nature of physics that one is left admiring it even now. It is the resolution 
of these two "clouds" that gave rise to the two revolutions in twentieth 
century physics. One of these clouds referred to the continued unsuccessful 
attempts to detect the motion of the earth through aether and its resolution 
was achieved by Einstein's special theory of Relativity [1905]. We shall not 
be dealing with this any further here. The other cloud referred to the failure 
of the equipartition theorem in classical statistical mechanics. It resolution 
required the second revolution, associated with the quantum. 
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2. The Problem of Blackbody Radiation: From Kirchhoff 
to Planck 

Max Planck, in 1900, was first to introduce the quantum ideas in physics 
and he did this in the context of blackbody radiation. We now discuss the 
early history of this problem for providing the setting of his work. 

2.1. Kirchhoff 

All heated bodies emit and absorb radiation energy. The emissivity e(A, T) 
of a body, for the radiation with wave length A, depends on the nature of 
body and its temperature T. It is the same for its absorptivity a(A,T). 
Using the consideration of thermodynamics equilibrium, it was shown by 
Gustav Kichhoff of Berlin, in 1859, that the ratio of emissivity e(A,T) to 
its absorptivity a(X, T) is independent of the nature of the heated body i.e. 

e(X,T) = E(X,T)a(X,T) 

where E(X, T) is a universal function of only the wave length A of the 
radiation and its temperature T. 

If we define, following Kirchhoff, a perfect blackbody as one whose ab­
sorptivity is equal to unity, i.e. perfect absorption, then the universal func­
tion E(X, T) can be identified with the emissivity of a perfect blackbody. 
He also showed that the radiation inside a heated cavity which is opaque 
and maintained at temperature T, behaves like blackbody radiation. One 
can therefore experimentally study the blackbody radiation by using the 
radiation issuing out a cavity through a small hole. 

2.2. Boltzmann 

Ludwig Boltzmann, in 1884, using Maxwell's electromagnetic theory 
showed that 

E(X,T) = (c/8ir)p(v,T), 

where p(u, T) is the energy density of radiation at frequency v and temper­
ature T. (c = velocity of light in vacuum, v = frequency of the radiation 
= c/A). He further showed using thermodynamics consideration, together 
with Maxwell's relation P = |w between pressure P and energy density u of 
the radiation, that the total radiant energy per unit volution is proportional 
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where a is called Stefan-Boltzmann Constant. Since Josef Stefan had con­
jectured the truth of this law on the basis of his experimental work in 1879 
for all heated bodies, but it is strictly true only for a blackbody. 

2.3. Wien 

Further progress was made by Wilham Wien in 1894, when he studied the 
thermodynamics of extremely slow, i.e. adiabatic, contraction of the cavity 
on the blackbody radiation contained in it. From these, he concluded that 

p(v,T) = v3f(V/T). 

This is known as 'Wien's displacement law'. We have thus reduced the 
problem of determining p(y,T), a function of two variables v and T, to 
that of determining a function f{v/T) of a single variable {v/T). This is 
as far as one can go on the basis of purely thermodynamic considerations. 

To give a representation of the experimental data Wien also proposed 
a form for this function 

p(v,T) = av3e-bv/T , 

which we shall refer to as Wien's radiation law. In this a and b are numerical 
coefficients to be fixed from the data. 

2.4. Rayleigh-Jeans 

In June 1900, Lord Rayleigh decided to apply equipartion theorem of 
Maxwell-Boltzmann to the problem of radiation and derived 

p(v,T) = Clv*T. 

He did not calculate at that time the numerical coefficient Ci, which he 
did in May 1905. He however, made a mistake of a factor of 8 which was 
corrected by James Jeans in June 1905. With the numerical factor included 
we have 

P(u,T)=8-^-kT 

which is known as Rayleigh-Jeans' radiation law. Here k is the Boltzmann 
constant. Rayleigh felt that this is a limiting form of p(y, T) for v/T —> 0. 
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Note that if this law was correct for all v, then it would lead to ultraviolet 
catastrophe. The total energy would be infinite. 

2.5. Planck 

Max Planck succeeded to the chair of Kirchhoff at Berlin in 1889. He 
was naturally drawn to the problem of determining the universal function 
p(v,T) introduced by his predecessor. As he said, "The so-called normal 
energy distribution represents something absolute, and since the search for 
absolutes has always appeared to me to be the highest form of research, I 
applied myself vigorously to its solution". He argued that since the uni­
versal p(v, T) does not depend on the nature of the material of walls, its 
determination would be facilitated if one assumes a simple model for it. He 
proposed to regard the wall to be made of Hertzian oscillators, each one 
capable of emitting or absorbing radiation of only a single frequency v. He 
then showed, using electromagnetic theory i.e. 

p{y,T) = ^-E{u,T) 

where E(y, T) is the average energy of the Hertzian oscillator of frequency 
v at temperature T. He had this result on May 18, 1899. 

Earlier experimental work by Friedrich Paschen on blackbody radiation 
had shown that Wien's radiation law fitted the data well as it was known in 
1897 for A = 1 - 8/z and T = 400 - 1600 °K. Later work by Otto Lummer 
and Ernst Pringhsheim, in the region A = 12 — 18/x and T = 300 — 1650 K, 
had however revealed the deviations from Wien's radiation law in February 
1900. On Oct 19, 1900 Kurlbaum announced the measurements done with 
Rubens for even higher wavelength region, A = 30 — 60/J. and T = 200 — 
1500 K. Planck then gave his radiation law as a discussion remark to this 
announcement. In modern notation, (first done in 1906), it reads as 

8nu2 hv 

where h is now known as Planck's constant. This suggested radiation law 
fitted the data perfectly. Note also that it reduces to (i) Rayleigh-Jean's 
law for v/T —> 0 and (ii) has the same form as Wien's radiation law for 
v/T —> oo and (iii) provides the 'correct' interpolation formula between the 
two regions. At this stage it was a purely empirical formula without any 
derivation. He then got busy looking for one. 
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Planck, when he began his research career was inclined to the 
"energetics" school and believed in the deterministic significance, unlike 
what was advocated by Boltzmann who took the probabilistic view, of en­
tropy. In Boltzmann's view the entropy S of a configuration was related to 
its thermodynamic probability W i.e. 

S = k\nW. 

Planck, as an "act of desperation", was forced to use Boltzmann's view to 
derive his formula. In order to calculate thermodynamic probability for a 
configuration of N oscillators, with total energy UN = NU and entropy 
SN = NS, he assumed that UN is made up of finite energy elements e 
i.e. UN = Pe, and worked out the total number of possible ways WN of 
distributing P energy elements e among N oscillators. He obtained 

WN-{N + P-1)[ 

P\(N -iy. 

The thermodynamic probability W was taken proportional to WN- This 
leads to 

c _ ^N_ _k 1 + - In 1 + In 
e / \ e / e e 

On using fgp = 5*, we obtain 

ee/kT _ 1 ' 

which on using Wien's displacement law, leads to (in modern notation) 

e = hv. 

Planck presented this derivation of his radiation law on 14 December 1900 
to German Physical Society and this can be taken as the birth date of 
quantum theory. The really new element was his assumption that the 
Hertzian oscillators with frequency v can emit or absorb radiation in the 
units of e = hv. Planck however did not realize the revolutionary nature 
of his procedure. As he said, "this was purely a formal assumption and I 
really did not give it much thought except that, no matter what the cost, 
I must bring about a positive result". 
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3. Einstein's Light Quantum Paper 

3.1. Light quantum hypothesis 

Albert Einstein was the first person to have a clear realization that Planck's 
introduction of energy quanta was a revolutionary step and thus one which 
would have larger significance for physics than just for the problem of black-
body radiation. In 1905, Einstein's annus mirabilis, he published his light 
quantum paper. 

Einstein started in this paper by first noting that the unambiguous 
prediction of electrodynamics and equipartition theorem for the material 
oscillators is that given by the radiation law, now called "Rayleigh-Jeans 
law". He was in fact the first person to derive this law from classical physics 
correctly as his work was done before Jeans obtained the proper numeri­
cal constant in it. As such Abram Pais, even felt that it would be more 
proper to call it Rayleigh-Einstein-Jean's law. Since this radiation law did 
not agree with experiments, and theoretically suffered from "ultraviolet 
catastrophe" (i.e. infinite total energy), it led to a clear failure of classical 
physics. Something in classical physics had to yield. 

In his search for the cause of failure, Einstein was motivated by his dis­
satisfaction with asymmetrical treatment of matter and radiation in classi­
cal physics. As we saw earlier matter is discrete and particulate while the 
radiation is continuous and wave-field like in classical physics. He wondered 
whether the failure of the classical radiation theory was in not treating ra­
diation also as discrete and particulate. He thus proposed his hypothesis 
of "light quantum". Of course he was well aware of the enormous suc­
cess which wave theory of light had in dealing with the phenomenon of 
interference, diffraction, etc. of light. About this aspect, his comments: 

"The wave theory, operating with continuous spatial functions, has 
proved to be correct in representing purely optical phenomena and will 
probably not be replaced by any other theory. One must, however, keep 
in mind that the optical observations are concerned with temporal mean 
values and not with instantaneous values, and it is possible, in spite of the 
complete experimental verification of the theory of reflection, refraction, 
diffraction, dispersion and so on that the theory of light which operates 
with continuous spatial functions may lead to contradictions with observa­
tions if we apply it to the phenomenon of generation and transformation of 
light". 
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Einstein then proceeded to show that an analysis of "experimental" 
Wien's radiation law, valid in "nonclassical" regime of large v/T, gave an 
indication of the particle nature. For this purpose he did an elaborate cal­
culation of the probability p that the monochromatic radiation of frequency 
v, occupying a volume Vo, could all be found later in a volume V. He found 
it, on using Wien's radiation law, to be given by 

p = (V/V0)
n with n = E/{hv), 

(in modern notation), where E is the total energy. This is of the same 
form as that of a gas of n particles. From this remarkable similarity in 
the two results, he concluded "Monochromatic radiation of small energy 
density behaves, as long as Wien's radiation law is valid, for thermodynamic 
considerations, as if it consisted of mutually independent energy quanta of 
magnitude Rf3i//N". (The quantity R(3v/N is now denoted by hv.) This 
was the introduction by Einstein of light quanta hypothesis. 

In the light quantum picture of Einstein "in the propagation of a light 
ray emitted from a point source, the energy is not distributed continuously 
over ever-increasing volumes of space, but consists of a finite number of 
energy quanta localized at points of space that move without dividing, and 
can be absorbed or generated as complete units". He then went on to apply 
the light quantum hypothesis to other phenomena involving the generation 
and transformation of light. The most important of these was his treatment 
of photoelectric effect. They also involved his successful application to 
eluciding the Stokes' rule in photoluminescence and to the ionization of a 
gas by ultraviolet light. 

3.2. The photoelectric effect 

In 1887, Heinrich Hertz observed that the ultraviolet light incident on met­
als can cause electric sparks. In 1899, J. J. Thomson established that the 
sparks are due to emission of the electrons. Phillip Lenard showed in 1902 
that this phenomenon, now called the Photoelectric effect, showed "not the 
slightest dependence on the light intensity" even when it was varied to a 
thousandfold. He also made a qualitative observation that photoelectron 
energies increased with the increasing light frequency. The observations of 
Lenard were hard to explain on the basis of electromagnetic wave theory 
of light. The wave theory would predict an increase in photoelectron en­
ergy with increasing incident light intensity and no effect due to increase 
of frequency of incident light. 
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In Einstein's light quantum picture, a light quantum, with energy his, 
when colliding with an electron in the metal, gives its entire energy to it. 
An electron from the interior of a metal has to do some work, W, to escape 
from the interior to the surface. We therefore get the Einstein photoelectric 
equation, for the energy of the electron E, 

E = hv-W. 

Of course, electron may lose some energy to other atoms before escaping to 
the surface, so this expression gives only the maximum of photo-electron 
energy which would be observed. One can see that Einstein's light quantum 
picture explains quite naturally the intensity independence of photoelectron 
energies and gives a precise quantitative prediction for its dependence on 
incident light frequency. It also predicts that no photoelectrons would be 
observed if v < VQ where hvo = W. The effect of increasing light inten­
sity should be an increase in the number of emitted electrons and not on 
their energy. Abram Pais called this equation as the second coming of the 
Planck's constant. 

Robert A. Millikan spent some ten years testing Einstein equation and 
he did the most exacting experiments. He summarized his conclusions as 
well as his personal dislike of light quantum concept, as follows: "Einstein's 
photoelectric equation • • • appears in every case to predict exactly the ob­
served results • • • yet the semi-corpuscular theory by which Einstein arrived 
at his equations seems at present wholly untenable" (1915) and "the bold, 
not to say reckless hypothesis of electromagnetic light corpuscle" (1916). 

3.3. Envoi 

Einstein's light quantum paper, which was titled, Uber einen die Erzeugung 
und Verwandlung des Lichtes betreffenden heuristichen Geischtpunkt" (on 
a heuristic point of view concerning the generation and transformation of 
light), was completed on March 7, 1905 and appeared in Annalen der Physik 
17, 132-148 (1905) and was received by them on March 18, 1905. 

It was thus his first paper during his annus mirabilis during which he 
also wrote papers on Brownian motion, special theory of relativity, and 
E = mc2. Though, in public mind, he is associated indissolubly with 
relativity, with relativity as his most revolutionary contribution, Einstein 
himself regarded his light quantum paper among his papers written in 1905 
as the "most revolutionary". The opinion of the recent historians of science 
tends to agree with Einstein. He was awarded the Nobel prize in physics in 
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1921 for this paper, and it was announced in Nov. 1922. Paranthetically 
his Nobel Lecture is on relativity theory. 

Einstein's light-quantum is now known as "photon", a name given by 
G. N. Lewis, in as late as 1926. Though Einstein talked about photon energy 
E = hv, it is curious that he introduced the concept of photon momentum 
p, with magnitude \p\ = hv/c only in 1917. As we have seen, even Millikan 
did not believe in photon concept in 1915-1916 despite his having spent 
years on experimental work confirming it. In 1923, the kinematics of the 
Compton effect was worked out on the basis of it being an elastic electron-
photon scattering by A. H. Compton. After that, it was generally accepted 
by physicists that light sometimes behaves as a photon. 

4. Contributions to the Old Quantum Theory 

4.1. Specific heat of solids 

Both Planck in 1900, and Einstein 1905 used the quantum theory to un­
derstand problems of radiation. Einstein in 1907 was first to apply it to 
the problems of matter. This was the problem of specific heat of solids. 

In 1819 Pierre Dulong and Alexis Petit, as a result of their joint ex­
perimental work on a number of metals and sulpher at room temperature, 
noted that all of them have almost the same specific heat Cy, at constant 
volume, with a value of 6 calories per mol. per K i.e. Cy = 3-R. Here R 
is universal gas constant. When other solids were investigated, especially 
carbon, the deviations were found from the Dulong-Petit Rule. In early 
1870's Friedrich Weber conjectured and then verified that Cy approaches 
the value 3R even for those cases at higher temperature i.e. Cy = 3R is 
only an asymptotic result. Theoretically Ludwig Boltzmann applied energy 
equipartition theorem to a three-dimensional lattice crystal and showed 
that Cy = 3i?. However, the generality of the theorem left no scope for 
any deviations from this result within classical physics. There were similar 
problems which arose in the application of energy equipartition theorem for 
gases. As Lord Rayleigh noted in 1900 "What would appear to be wanted 
is some escape from the destructive simplicity of the general conclusions 
(following from energy equipartition theorem)". As we have noted earlier, 
Lord Kelvin regarded this problem as one of the clouds on the horizon of 
classical physics. 

Einstein was first to realize that a use of equipartition theorem of classi­
cal statistics leads to Rayleigh-Jeans radiation law which was only asymp-
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totically correct for large temperature. To get the correct Planck's radiation 
law one had to use quantum theory. It was therefore natural for him to try 
the same remedy to the problem of specific heat of solids. Besides he was 
always inclined to a symmetrical treatment of radiation and matter. 

Einstein assumed a simple model of the solid. It is that of three-
dimensional crystal lattice where all the atoms on the lattice oscillate har­
monically and independently and with the same frequency. For a solid with 
N atoms we thus have a system of 3iV harmonic oscillators of frequency 
v. Using the earlier expression, in deriving Planck's expression for the av­
erage energy of an oscillator of frequency v, and in thermal equilibrium at 
temperature T, we thus get for the total energy U of the solid, 

U = 3N- h
 h" . 

ehv/kT _ ^ 

This leads to Einstein's expression for specific heat for his model 

£2e^ hv 

It has the desirable feature that for £ small i.e. large T, we get the Dulong-
Petit result i.e. 

Cv —> 3R as £ - • 0 , 

which is the classical equipartion result. It provides a one parameter, i.e. 
u, formula for the specific heat of a solid. The deviations from Dulong-
Petit value are also in broad agreement with the experimental data. The 
model of solid assumed is too simplistic in that only a single frequency is 
assumed for all the oscillations. It was improved by Peter Debye in 1912, 
and a more exact treatment of atomic oscillations was given by Max Born 
and Theodore von Karman in 1912-1913. 

A preliminary formulation of the third law of thermodynamics was given 
by Walter Nernst in Dec. 1905 according to which the entropy of a system 
goes to zero at T = 0. Einstein's specific heat expression has the property 
that Cy —• 0 as T —• 0 and provides the first example of a model which is 
consistent with Nernst's heat theorem, as was noted by Nernst in 1910. 

4.2. Wave-particle duality 

In 1905, Einstein had used phenomenological Wien's radiation law to ar­
gue the particle nature of light. In 1909 he used Planck's radiation law to 
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argue that light has both a particle and a wave aspect. For this purpose, 
he calculated an expression for the mean of square of energy fluctuations 
(e2(v,T)) in the frequency interval v and v + dv. From general thermody­
namic considerations, we have 

in a subvolume v. 
If we calculate this quantity using Rayleigh-Jeans radiation law p = 

PR-J(V,T), we obtain 

e2 

{t2{v,T))R-j = -^—2PR-Jvdl'-

Note that Rayleigh-Jean derivation is based on the wave picture of light. 
If on the other hand, we calculate this quantity using Wien's radiation law, 
P = Pwien(v, T), we obtain 

( e 2 0 , T ) )w ien = hlspWienvdl> . 

As we know, Wien's radiation law supports a particle picture of light. 
We now use the correct Planck's law of radiation p = ppianck^, T) and 

obtain 

c2 

( e 2 ( I / i r ) ) Planck = hvppianck_vdv + 2PPlanckvdV-

It is a very suggestive expression. The first term is of the form we obtain 
using Wien's law and supporting the particle picture light, while the second 
term has the same form as that given by Rayleigh-Jeans law which uses 
a wave picture of light. We also know that the contribution to the mean 
square fluctuations arising from independent causes are additive. This ra­
diation has both wave and particle aspects. This was the first appearance 
in physics of wave-particle duality, here for light radiation. 

Einstein was quite prophetic in his remarks on the implications of these 
results. He said "it is my opinion that the next phase in the development of 
theoretical physics will bring us a theory of light which can be interpreted 
as a kind of fusion of the wave and emission theory • • • wave structure and 
quantum structure • • • are not to be considered as mutually incompatible 
• • •. We will have to modify our current theories, not to abandon them 
completely". 
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4.3. Einstein's A and B coefficients and the discovery of 
stimulated emission of light 

In 1916-1917 Einstein gave a new and wonderful derivation of Planck's 
radiation law which provides a lot of new insights. As he wrote to his 
friend Michel Besso, in 1916, "A splendid light has dawned on me about 
the absorption and emission of radiation". 

He considered the thermodynamic equilibrium of a system comprising 
a gas of "molecules" and radiation. The "molecules" here referred to any 
material system which is interacting with radiation. Let the energy levels 
of the "molecules" be denoted by Em and let the number of "molecules" 
be given by Nm when they occupy the energy level Em. 

Consider two of these levels E2 and E\ with E2 > E\ and consider 
the transitions from level 2 to level 1 and the reverse. Einstein postulated 
that the number of transitions, in time dt, in the "molecules" for the higher 
state E2 to the lower state E\ consists of two components. One of these due 
to spontaneous jumps from E2 to E\. The number of transitions however 
is given by the term A2\N2dt. Here the coefficient A21 is related to the 
intrinsic probability of this jump and does not depend on the radiation 
density. The second of these is due to stimulated emission of radiation. The 
number of transitions is here taken to be given by the term B2\N2pdt and 
is taken proportional to the radiation density p. Here the coefficient B — 21 
is related to the probability of this process. The presence of radiation will 
also induce transitions from the lower level 1 to higher level 2. The number 
of these transitions is taken to B^Nipdt and is again taken proportional 
to the radiation density p. The coefficient B\2 again is related to the 
probability of this process. The Aij's and Bij's are called Einstein's A and 
B coefficients. 

In equilibrium, the number of transitions from level 1 to level 2 must 
be same as the number of transitions from level 2 to level 1. We therefore 
get the relation 

N2(A21 + B21p) = NiBuP, 

or 

{A21/B21) 
(B12\ / j V g \ _ -r 
\B21J {NrJ 

Following Boltzmann, we have 

N - v e-
E™/kT 

file:///B21J
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where pm is the relevant weight factor, and using it, we get 

(A21/B21) 

(Bi2P2\ (E!-E2)/kT _ 1 ' 
\B2iPi ) 

From Wiens displacement we conclude that 

E2-E1=hv, 

a relation given by Bohr in 1913. These transitions must involve emission 
or absorption of radiation of frequency v. Further for large temperatures, 
i.e. T —> oo, the p must reduce to Rayleigh-Jean's law. This is possible 
only if we have 

A21 _ 8irhv3 

p2B12 = piB2i • 

Through this analysis we have got insights into the probabilities of tran­
sitions and correct quantitative relations between them. A calculation of 
these was not possible until the full apparatus of quantum electrodynamics 
was in place which came much later, only in 1927. 

The concept of stimulated emission, given by the coefficient B2\, was 
introduced by Einstein here for the first time. He was forced to take this 
step, since otherwise he would have been led to Wien's radiation law by 
these considerations and not to the correct Planck's law. This concept is 
of fundamental importance in the theory of lasers. 

5. Quantum Statistics: Bose and Einstein 

The last great contribution to quantum theory, before the advent of quan­
tum mechanics, by Einstein was to develop quantum statistics for a system 
of material particles. Here, the original idea was due to the Indian physi­
cist — Satyendranath Bose from Dacca University — and was given in the 
context of radiation theory. Einstein extended it to matter. As such this 
quantum statistical method is known as Bose Statistics or Bose-Einstein 
statistics. All integral spin particles in nature have been found to obey 
this statistics and are called "Bosons". All half-odd integral spin particles 
obey Fermi-Dirac statistics, which was given later in 1926 and are called 
"Fermions". 
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5.1. Bose 

On June 4, 1924 Bose sent a short paper to Einstein containing a new 
derivation of Planck's law. It was accompanied by a very unusual request 
to translate it into German and get it published in Zeitschrift fur Physik, if 
he found it worthwhile. Bose explained his chutzpah in doing it by saying 
"Though a complete stranger to you, I do not feel any hesitation in making 
such a request, because we are all your pupils though profiting only by your 
teachings through your writings". He also mentioned that he "was the one 
who translated your paper on Generalized Relativity" when the first ever 
English translation of the relativity papers of Einstein was published by the 
Calcutta University in 1920. We also know now, through William Blanpied, 
that this paper had earlier been rejected for publication by the Philosophical 
Magazine. 

Bose noted "since it's (Planck's law's) publication in 1901, many meth­
ods for deriving this law have been proposed • • •. In all cases it appears 
to me that the derivations have not been sufficiently justified from a logi­
cal point of view. As opposed to these, the light quantum combined with 
statistical mechanics (as formulated to meet the needs of the quantum) 
appears sufficient for the derivation of the law independent of the classical 
theory". 

Bose's idea was to regard the blackbody radiation as a free photon gas 
and then treat it by the method of statistical mechanics. This was his 
strategy to derive Planck's radiation law in a logically consistent manner. 

Now photons of frequency v have energy hv and a momentum, with 
magnitude phv/c, on the light quantum hypothesis of Einstein. A straight­
forward calculation of the phase space volume element leads to the factor 
4irp2dpV, where V is the volume of the gas. Bose multiplied it by a further 
factor of 2, in order to take into account the two polarization states of the 
light, to obtain 8Trp2dpV. If we now divide it by a factor h3, following 
Planck's proposal of 1913 "that phase space cells have a volume /i3" we ob­
tain for the number of phase space cells in this phase space volume element 
8np2dpV/h:i. This leads to, using p = hv/c, the first factor %-Kv2dv/c3 in 
the Planck's radiation law. Bose has thus shown that the number As of 
the phase space cells between radiation frequency vs and vs + dvs to be 
given by 

s _ 8ix{vs)2Vdvs 

— ; 
c? 

in a novel way. Note that Bose obtained this factor here, unlike Planck, 
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without making any use of the electromagnetic theory. Bose emphasized 
this aspect of his derivation in his letter to Einstein. 

If Bose had proceeded further and used the statistical methods of Boltz-
mann, at this stage, he would have obtained Wien's law and not the de­
sired Planck's law. He however chose to interpret As, not as the number 
of "particles" but as number of "cells", which played the role of "particles" 
in Boltzmann's counting. This procedure then led to Planck's law. This is 
equivalent to treating photons as indistinguishable in contrast to classical 
Boltzmann statistics where particles are identical but distinguishable. To 
give a simple example, if we have to distribute two identical balls, which 
are distinguishable, by being colored red and blue, into three containers, 
there are nine possible different configurations and probability of each one 
is 1/9 (Boltzmann counting). On the other hand, if two identical balls are 
not distinguishable, as we are color blind, then there are only six possible 
different configurations. This is so since the red ball in one container and 
blue ball in the other container are indistinguishable from the configura­
tion in which we interchange the two balls. The probability of each distinct 
configuration flow is now 1/6 (Bose counting). 

5.2. Einstein 

Einstein immediately saw the importance of Bose's work and got it pub­
lished in Zeitschrift fur Physik after translating it into German together 
with an appreciative note. Not only that, in view of his predilection to 
treat radiation and matter on the same footing, he extented it immediately 
to a gas of material particles during 1924-1925. For a photon gas there is 
no constraint of holding the total number of photons fixed but for material 
particles, let us say "atoms", we have also a new constraint to hold the to­
tal number fixed. This introduced another parameter, chemical potential, 
which has to be determined using this constraint. Bose did not comment on 
the indistinguishably aspect in his paper. To bring this aspect out Einstein 
also rewrote the Bose's formula for the total number of configuration in the 
form it is normally found in textbooks. 

We have seen that Einstein's model of solids was the first known example 
in which Nernst's theorem was valid. The case of Bose-Einstein gas, which 
Einstein worked out, provides the first model of a gas for which Nernst's 
theorem holds. 

Einstein also studied the fluctuations for the ideal Bose-Einstein gas, 
as he had done earlier for radiation. On calculating the mean square 
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fluctuation (An2) for the number n(e) of atoms having energy between 
e and e + de, he found it to consist again of two terms 

(An)2 = n(e) + - ^ 

where Z(e) is the number of particle states in the energy interval e and 
e + de. The first term is the expected one for particles. 

For an interpretation of the second term, which implies a wave aspect 
for matter, Einstein suggested that this is due to the wave nature of atoms 
as postulated by Louis de Broglie in his recent doctoral thesis of 1924. 
Einstein was aware of this thesis as Pierre Langevin had sent him a copy for 
his opinion, and it was only Einstein's favorable comments on it which made 
Langevin accept de Broglie's thesis. Einstein also suggested associating a 
scalar field with these waves. 

5.3. Bose-Einstein condensation 

A free boson gas undergoes a phase transition below a critical temperature 
TBE- A macroscopic fraction of the atoms condense into the lowest energy 
state. This phase transition is not due to interparticle attractive interaction 
but is simply a manifestation of the tendency of bosons to stick together. 
This was again a first solvable model for a phase transition. 

Despite a lot of efforts it was not possible to experimentally test this 
prediction of Bose-Einstein until quite late. It was finally observed only in 
1995. The Nobel Prize in Physics for the year 2001 was awarded to Eric 
Cornell, Carl Wieman and Wolfgang Ketterle for this discovery. 

6. Foundations of Quantum Mechanics 

6.1. Discovery of quantum mechanics 

After a quarter century of long and fruitful interaction between the old 
quantum theory and the experimental work on atomic systems and radi­
ation, this heroic period came to an end in 1925 with the discovery of 
Quantum Mechanics. It was discovered in two different mathematical for­
mulations viz first as Matrix Mechanics and a little later as Wave Mechanics. 

Werner Heisenberg discovered Matrix mechanics during April-June 
1925. A complete formulation was achieved by Max Born, Werner Heisen­
berg and Pascual Jordan in October 1925. After the mathematical formal-
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ism was in place, the problems of its interpretation arose. At Copenhagen, 
Niels Bohr and Heisenberg and others devoted their full attention to this 
talk. The resulting interpretation, called 'The Copenhagen Interpretation 
of Quantum Mechanics', was to dominate the physics, despite some other 
contenders, for a long time. Heisenberg proposed his famous 'uncertainty 
principle' in Feb. 1927 in this connection. In this work he was strongly influ­
enced by a conversation he had with Einstein in 1926 at Berlin. Heisenberg 
acknowledged to Einstein the role which relativity with its analysis of phys­
ical observation had played in his own discovery of matrix mechanics. His 
motivation in formulating it had been to rid the theory of physical unob-
servables. Einstein differed and said "it is nonsense even if I had said so 
• • • on principle it is quite wrong to try founding a theory on observables 
alone • • •. It is the theory which decides what is observable". 

The second formulation, wave mechanics, was published during the first 
half of 1926, as a series of four papers "Quantization as an Eigenvalue 
problem" in Annalen der Physik by Erwin Schrodinger. He was led to 
study the papers of de Broglie, wherein he suggested that matter should 
also exhibit a wave nature, through a study of Einstein's papers on Bose-
Einstein gas. He prefered a wave theory treatment to the photon treatment 
of Bose and could avoid new statistics. As he said "That means nothing 
else but taking seriously the de-Broglie-Einstein wave theory of moving 
particles" in a paper on Bose-Einstein gas theory. His next step was to 
make the idea of matter-waves more precise by writing a wave equation 
for them. This is the famous Schrodinger wave equation for matter waves 
resulting in the birth of wave mechanics. As Schrodinger acknowledged "I 
have recently shown that the Einstein gas theory can be founded on the 
consideration of standing waves which obey the dispersion law of de Broglie 
• • •. The above considerations about the atom could have been presented 
as a generalization of these considerations". As Pais says "Thus Einstein 
was not only one of three fathers of the quantum theory but also the sole 
godfather of wave mechanics". The three fathers alluded to here are Planck, 
Einstein and Bohr. 

The mathematical equivalence of these two formulations was soon es­
tablished by Schrodinger and Carl Eckart in 1927. 

After the discovery of quantum mechanics the focus of Einstein shifted 
from applications of quantum theory to various physical phenomena to the 
problems of understanding what the new mechanics means. With his deep 
committment to the reality of an objective world Einstein was not in tune 
with the Copenhagen interpretation. 
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6.2. Discussions at Solvay conferences 

The fifth Solvay Conference was held at Brussels in October 1927. It was 
in this meeting that the claim of completeness of quantum mechanics as a 
physical theory was put forward first. In this connection Einstein discussed 
the example of single hole diffraction of the electron in order to illustrate 
two contrasting points of view: 

(i) "the de Broglie-Schrodinger waves do not correspond to a single elec­
tron but to a cloud of electrons extended in space. The theory does 
not give any information about the individual processes", and 

(ii) "the theory has the presentations to be a complete theory of individual 
processes". 

The first viewpoint is what is now known as statistical or ensemble 
interpretation of quantum mechanics if we clarify the phrase "a cloud of 
electrons" to refer to an ensemble of single electron systems rather that 
to a many electron system. This is the view which Einstein held in his 
later work. He was thus the originator of "The Statistical or Ensemble 
interpretation of Quantum Mechanics". This view was also subscribed to 
by many others including Karl Popper and Blokhintsev. It is essentially 
the minimalist interpretation of quantum mechanics. 

The second view point is the one upheld by the Copenhagen School and 
very many others and may be termed as the maximalist interpretation. 
Here a pure state provides the fullest description of an individual system 
e.g. an electron. 

The setup envisaged by Einstein was as follows: Consider a small hole 
in an opaque screen and let an electron beam fall on it from the left side. 
Let it be surrounded by another screen, on the right side, a hemispherical 
photographic plate. From quantum mechanics the probability of an elec­
tron hitting at any point of the photographic is uniform. In the actual 
experiment, the electron will be found to have been recorded at a single 
definite point on the plate. As Einstein noted that one has to "presuppose 
a very peculiar mechanism of action at a distance which would prevent the 
wave function, continuously distributed over space from acting at two places 
of the screen simultaneously • • • if one works exclusively with Schrodinger 
waves, the second interpretation of T/> in my opinion implies a contradiction 
with the relativity principle". Here Einstein is worried about, what we 
now call "the collapse of the wave function" postulate and its consistency 
with special theory of relativity. Einstein therefore opted for the statis-
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tical interpretation of quantum mechanics. A detailed discussion of this 
interpretation would be out of place here. 

Apart from the formal discussion remark of Einstein noted above there 
were also lots of informal discussions between him and Niels Bohr. In 
these discussions Einstein generally tried to evade or violate Heisenberg's 
uncertainty relations for individual processes by imagining various possible 
experimental setups and Bohr constantly tried to find the reason as why 
they would not work. The uncertainties involved were taken to be due to 
errors involved in the simultaneous measurement of position-momentum or 
energy-time pairs. These discussion continued also at Solvay Conference 
held in 1930. These dialogues are quite famous and Niels Bohr wrote an 
elegant account of them later. It is generally agreed that in these discussions 
Bohr was successful in convincing Einstein that it was not possible to evade 
the uncertainty principle. However later developments, such as Bohm's 
realistic model have shown that these discussions are somewhat irrelevant 
to the problem of interpretation of quantum mechanics. 

6.3. Quantum nonseparability and Einstein-Podolsky-Rosen 
correlations 

In quantum mechanics, if two systems have once interacted together and 
later separated, no matter how far, they cannot any more be assigned sep­
arate state vectors. Since physical interaction between two very distant 
systems is negligible, this situation is very counterintuitive. Schrodinger 
even emphasized this aspect, "I would not call that one but rather the 
characteristic of quantum mechanics". More technically, this is so for all 
two particle systems having a nonseparable wave function. A wave func­
tion is regarded as nonseparable, if no matter what choice of basis for single 
particle wave function is used, it cannot be written as a product of single 
particle wave functions. Such wave functions are called entangled. The 
entanglement is a generic feature of two particle wave functions. 

In 1935, A. Einstein, B. Podolsky and B. Rosen (EPR) published a 
paper "Can Quantum Mechanical Description of Reality be Considered 
Complete?" in Physical Review. It had a rather unusual title for a paper 
for this journal. In view of this they provided the following two definitions 
at the beginning of the paper: 

(1) A necessary condition for the completeness of a theory is that every 
element of the physical reality must have a counterpart in the physical 
theory. 
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(2) A sufficient condition to identify an element of reality: "If, without 
in any way disturbing a system, we can predict with certainty (i.e. 
with probability equal to unity) the value of a physical quantity, then 
there exists an element of physical reality corresponding to this physical 
quantity". 

We now illustrate the use of these definitions for a single-particle system. 
Let the position and momentum observable of the particle be denoted by 
Q and P, respectively. Since in an eigenstate of Q, we can predict with 
certainty the value of Q, which is given by its eigenvalue in that eigenstate, 
it follows that the position Q of the particle is an element of physical reality 
(e.p.r.). Similarly the momentum P is also an e.p.r. The position Q and 
the momentum P however are not simultaneous e.p.r. So at the single 
particle level there is no problem with quantum mechanics, as far as these 
definitions of 'completeness' and 'elements of reality' are concerned. 

Interesting new things are, however, encountered when a two-particle 
system is considered. Let the momenta and position of the two particles be 
denoted respectively by P\ and Q\ for the first particle and by P-i and Q? for 
the second particle. Consider now the two-particle system in the eigenstate 
of the relative-position operator, Q2 — Q\ with eigenvalue qo. The relative 
position Q2 — Q\ can be predicted to have a value qo with probability one 
in this state and thus qualifies to be an e.p.r. We can also consider an 
eigenstate of the total momentum operator, Pi + P2, with an eigenvalue po-
The total momentum can be predicted to have a value po with probability 
one and thus also qualifies to be an e.p.r. Furthermore relative position 
operator, Q2 — Qi, and total momentum operator, Pi + P2, commute with 
each other and thus can have a common eigenstate, and thus qualify to be 
simultaneous elements of physical reality. 

We consider the two-particle system in which two particles are flying 
apart from each other having momenta in opposite directions and are thus 
having a large spatial separation. The separation will be taken so that no 
physical signal can reach between them. Let a measurement of position 
be made on the first particle in the region R\ and let the result be q\. It 
follows from standard quantum mechanics that instantaneously the particle 
2, which is a spatially far away region R2, would be in an eigenstate qo + qi 
of Q2- The Q2 is thus an e.p.r., the position of second particle gets fixed to 
the value qo + qi, despite the fact that no signal can reach from region Ri to 
R2 where the second particle is, a "spooky action at a distance" indeed. On 
the other hand, a measurement of the momentum P\ of the first particle, 
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in the region Ri can be carried out and let it result in a measured value 

p\. It then follows from the s tandard quantum mechanics, tha t the particle 

2, in the region R2 would be in an eigenstate of its momentum P2 with 

an eigenvalue po ~ Pi- The P2 is thus also an e.p.r. This however leads to 

a contradiction since Q2 and P2 cannot be a simultaneous e.p.r. as they 

do not commute. We quote the resulting conclusion following from this 

argument as given by Einstein in 1949. 

EPR Theorem: The following two assertions are not compatible with each 

other 

(1) the description by means of the ?/>-function is complete 

(2) the real states of spatially separated objects are independent of each 
other. 

The predilection of Einstein was tha t the second postulate, now referred 

to as "Einstein locality" postulate, was t rue and thus E P R theorem estab­

lishes the incompleteness of quantum mechanics. 

As Einstein said "But on one supposition we should in my opinion, 

absolutely hold fast: the real factual situation of the system S2 is indepen­

dent of what is done, with system S i , which is spatially separated from the 

former". 

Einstein, Podolsky and Rosen were aware of a way out of the above 

theorem but they rejected it as unreasonable. As they said "Indeed one 

would not arrive at our conclusion if one insisted tha t two or more quantities 

can be regarded as simultaneous elements of reality only when they can be 

simulateneously measured or predicted. On this point of view, either one 

or the other, but not bo th simultaneously, of the quantities P and Q can 

be predicted, they are not simultaneously real. This makes the reality 

of P and Q depend upon the process of measurement carried out on the 

first system, which does not disturb the second system in any way. No 

reasonable definition of reality could be expected to permit this". 

6.4 . Later developments 

David Bohm reformulated the Einstein-Podolsky-Rosen discussion in a 

much simpler form in terms of two spin one-half particles in a singlet s tate 

in 1951. This reformulation was very useful to John Bell, who in 1964, 

gave his now famous Bell-inequalities on spin correlation coefficients fol­

lowing from Einstein locality for E P R correlations. These inequalities are 
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experimentally testable. In experiments of increasingly higher precision 

and sophistication, they have shown agreement with quantum mechanics 

and a violation of local realism though some loopholes remain. Bell's work 

on hidden variable theories and Einstein-Podolsky-Rosen correlations had 

a profound influence on the field of foundations of quantum mechanics, in 

tha t it moved it from a world of sterile philosophical discussions to a world 

of laboratory experiments. 

More recently E.P.R. correlations and quantum entanglement has been 

found useful in developing new technologies of quantum information such 

as quantum cryptography, quantum teleportation. They have ceased to 

be embarrasments but are seen as useful resources provided by quantum 

mechanics. There are even hopes of developing quantum computing which 

would be much more powerful t ha t the usual universal Turing machines. 

Einstein's legacy in physics still looms large. Talking about his work, 

Max Born once said "In my opinion he would be one of the greatest the­

oretical physicists of all times even if he had not writ ten a single line of 

relativity". 

Bibi lographica l N o t e s 

A brief and nontechnical summary of this paper appeared in Singh, V. 

[2005], The Quan tum Leap, Frontline, 22, # 1 0 , 22-24. It also overlaps in 

places with author 's earlier related writings cited in various notes below. 

R e f e r e n c e s 

[1] On the life and science of Einstein, the literature is enormous. The best 
biography for physicists is, 
Pais, A. [1982] 'Subtle is the Lord •••'.• The Science and the Life of Albert 
Einstein (Clarendon Press, Oxford: Oxford University Press, New York). 
It however needs supplementing by more recent work on foundational aspects 
of quantum mechanics: Also important is 
Schilpp, P. A. (ed.) [1949] Albert Einstein: Philospher Scientist, Library of 
Living Philosophers Vol. 7, La Salle, 111.: Open Court (Harper Torch Books 
reprint, 1959). 
It contains Einstein's "Autobiographical notes" and "Reply to criticism" as 
well as a "Bibilography of the writings of Albert Einstein to May 1951" apart 
from 25 papers on the science and philosophy of Einstein by various authors. 
At a more popular level, we have 
French, A. P. (ed.) [1979] Einstein: A Centenary Volume (Harvard University 



190 V. Singh 

Press, Cambridge, MA); 
Bernstein, J. [1973] Einstein (The Viking Press, New York). 

[2] (a) For the writings of the Einstein we have the multivolume ongoing series, 
[1987] The Collected Papers of Albert Einstein (Princeton University Press, 
Princeton, NJ), 
and the companion volumes 
[1987] The Collected Papers of Albert Einstein: English Translation (Prince­
ton University Press, Princeton, NJ). 
His papers from the miraculous year 1905 are available in English translation 
also in 
Stachel, J. (ed.) [1998] Einstein's Miraculous Year: Five Papers that Changed 
the Face of Physics (Princeton) (Indian reprint: Scientia, An imprint of 
Srishti Publishers for Centre for Philosophy and Foundations of Science, New 
Delhi, 2001). 
(b) for the references to some specific Einstein papers discussed in this paper, 
see 

(i) [1905] Light quantum paper. Annalen der Physik, 17, 132-148. 
(ii) [1907] Specific heat of solids: Annalen der Physik, 22, 180-190, 800. 

(iii) [1909] wave-particle duality: Phys. Zeitschrift, 10, 185, 817. 
(iv) [1916] A- and B-coefficients: Verh. Deutsch Phys. Ges. 18, 318; [1916] 
Mitt. Phy. Ges. (Zurich), 16, 47; [1917] Phys. Zeitschrift 18, 121. 
The concept of photon momentum is introduced in the 1917 paper mentioned 
here. 
(v) [1924] Bose-Einstein Gas: Sitzungber. Preus. Akad. Wiss. Phys. Math. 

KL, p. 261; [1925] p. 3 and [1928] p. 18. 
(vi) Einstein-Bohr dialogues: Bohr, N., Discussions with Einstein on Episte-
mological Problems in Atomic Physics, in the Schilpp Volume cited earlier. 
(vii) E.P.R. Theorem: Einstein, A., Podolsky, B. and Rosen, N. [1935] Phys. 
Rev. 57, 777, and Schilpp Volume cited earlier. 
(c) Other English translations of his light quantum paper and 1917 paper on 
A-B coefficients are also available in 
Boorse, H. A. and Motz, L. (eds.) [1966] The World of Atoms (Basic Books, 
New York); and 
ter Haar, D. [1967] The Old Quantum Theory (Pergamon, Oxford). 
An English translation of Einstein's first two paper on Bose-Einstein statis­
tics is available also in 
Sengupta, N. D. [1983] Phys. News 14, 10 and [1983] 14, 36. 
Einstein quotes used in the text are from various sources and are sometimes 
slightly modified or abridged. 

[3] For Physics before Einstein, see 
Whittaker, E. T. [1960] A Theory of Aether and Electricity, Vol. 1, Classical 
Theories (Harper Torchbacks); 
Bork, A. M. [1966] Science 152, 597; 
Singh, V. [1980] Science Today, p. 19-23. 

[4] For a historical account of Quantum Mechanics, see 
Whittaker, E. T. [1960] A Theory of Aether and Electricity, Vol. 2, Modern 



Einstein and the Quantum 191 

Theories (1900-1926) (Harper Torchbacks); 
Jammer, M. [1966] The Conceptual Development of Quantum Mechanics 
(New York); 
Hermann, A. [1971] The Genesis of Quantum Theory (1899-1913), translated 
by Nash, C. W. (MIT Press, Cambridge, MA), 
Hund, F. [1974] The History of Quantum Theory, translated by G. Reece 
(Harrap, London); 
Kragh, H. [2001] Quantum Generations: A History of Physics in the 
Twentieth Century (Princeton Univ. Press) (Indian reprint, Universities 
Press, Hyderabad, 2001). 

[5] The work of S. N. Bose appeared in 
Bose, S. N. [1924] Zeits. fur Physik 26, 178 and [1924] 27, 384. 
Two English translations exist of both the papers, one by 
Banerjee, B. [1974] Phys. News 5, 2, 40, 42 
and another by 
Theimer, O. and Ram, B. [1976] Am. J. Phys. 44, 1058 and [1977] 45, 242. 
About his life and science, see 
Blanpied, W. A. [1972] Am. J. Phys. 40, 1212; 
Singh, V. [1974] Science Today, p. 29-34; 
Mehra, J. [1975] Biographical Memories of the Fellows of Royal Society, 
London 21 , 117; 
Chatterjee, S. D. [1983] Biographical Memories of the Fellows of Indian 
National Science Academy, 7, 59. 

[6] For later developments on the foundations of quantum mechanics see, 
Ballentine, L. E. [1970] Rev. Mod. Phys. 42, 358 and [1972] Am. J. Phys. 40, 
1763; 
Jammer, M. [1974] The Philosophy of Quantum Mechanics (New York); 
Bell, J. [1987] Speakable and Unspeakable in Quantum Mechanics (Cam­
bridge) ; 
Selleri, F. [1988] Quantum Mechanics versus Local Realism: The Einstein-
Podolsky-Rosen Paradox (Plenum); 
Home, D. [1997] Conceptual Foundations of Quantum Physics (Plenum, New 
York). 
Nielsen, M. and Chuang, I. L. [2000] Quantum Computation and Quantum 
Information (Camabridge); 
Singh, V. [2004] Quantum mechanics and reality, arXive: quant-ph/0412148; 
Singh, V. [2005] Hidden variables, noncontextuality and Einstein locality in 
quantum mechanics, arXive: quant-ph/0507182. 





C H A P T E R 10 

E i n s t e i n ' s L e g a c y : R e l a t i v i s t i c C o s m o l o g y 

JAYANT V. NARLIKAR 

Inter-University Centre for Astronomy and Astrophysics, 
Post Bag 4, Ganeshkhind, Pune Jf.ll 007, India 

This review gives a historical account of how cosmology has developed 
since the 1917 paper of Albert Einstein. Current frontier level science 
draws on contemporary astronomy as well as contemporary physics, 
stretching both as far as extrapolations will permit. Thanks to nu­
merous observations at different wavelengths, cosmologists today have 
their plates full. Extrapolations of laboratory tested physics are required 
for to understand all information within the framework of a standard 
model. The success and shortcomings of this approach are briefly dis­
cussed against the historical backdrop. 

1. His tor ica l B a c k g r o u n d 

Two years after proposing his general theory of relativity in 1915, Albert 

Einstein [1] used it in an ambitious way to propose a model of the entire 

universe. This simple model assumed tha t the universe is homogeneous 

and isotropic and also static. Homogeneity means tha t the large scale view 

of the universe and its physical properties at any given epoch would be 

the same at all spatial locations. Isotropy demands tha t the universe looks 

the same in all directions, when viewed from any spatial location. The 

requirement of a static universe was motivated by the perception then tha t 

there is no large-scale systematic movement in the universe. 

Tha t was the general belief at the time. In fact the realization tha t 

there is a vast world of galaxies spread beyond the Milky Way had not 

yet seeped into the astronomical community. Although there were isolated 

measurements of nebular redshifts, these did not convey any impression 

tha t the universe as a whole is not static. However, to obtain such a static 

model Einstein had to modify his general relativistic field equations to 
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include an additional cosmological constant term A which corresponded to 
a long range force of repulsion. 

The original equations were: 

Rik - l/2gikR = -[8irG/c4]Tik . (1) 

Here the left-hand side relates to the spacetime geometry of the universe 
and the right-hand side describes the physical contents of the universe. 
These equations did not yield a static solution and so Einstein sought to 
modify them in the simplest possible way. This led him to the following 
equations: 

Rik - l/2gikR + \gik = -[8TTG/'c4]Tlk . (2) 

In the "Newtonian approximation" this additional term corresponds to an 
acceleration of Arc2 between any two matter particles separated by a dis­
tance r. The constant A is called the cosmological constant since its value 
is very small (today's estimate is ~ 1 0 - 5 6 cm~2) and it does not affect the 
motion of matter significantly on any but the cosmological scale. 

The Einstein Universe, as the model came to be known described the 
universe by a spacetime metric given by 

ds2 = c2dt2 - S2[dr2/(1 - r2) + r2{d62 + sin2 0d<p2)}, (3) 

where the spherical polar coordinates have their usual meaning on the sur­
face of a hypersphere of radius S. The field Eq. (2) then gives the density 
and radius of the universe in terms of the fundamental constants G, c and A. 
To Einstein this was an eminently satisfactory outcome as it related physics 
of the universe to its spacetime geometry in a unique way. The gravity of 
the matter "curled up" the space into a finite volume, showing the essence 
of the general relativistic relationship between gravity and space curvature. 
He felt that the uniqueness of the solution attached special significance to 
the model in terms of credibility. 

He was in for disappointment on this count as within a few months 
de Sitter [2] found another solution to the same equations with the metric 
given by 

ds2 = c2dt2 - e2Ht[dr2 + r2(d82 + sin2 Odcf)] , (4) 

where H = constant. The de Sitter Universe was homogeneous and 
isotropic but non-static. It described an expanding but empty universe. 
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One can say that whereas the Einstein universe had matter without mo­
tion, the de Sitter universe had motion without matter. In 1917, the as­
tronomical data did not support the de Sitter model, which remained a 
mathematical curiosity. 

In 1922-1924, Alexander Friedmann [3], however, showed that one can 
obtain homogeneous and isotropic solutions without the cosmological term, 
but they describe models of an expanding universe. In 1927, Abbe Lemaitre 
[4] also obtained similar solutions, but these, along with the Friedmann 
models were considered as mathematical curiosities. 

Meanwhile, on the observational side, the early (pre-1920) perception 
of a universe mostly confined to the Milky Way Galaxy with the Sun at 
its center, eventually gave way to the present extra-galactic universe in 
which our location has no special significance. Indeed this 1905 quotation 
of Agnes Clerke [5] in her popular book on astronomy expresses the current 
dogma of those times: 

The question whether nebulae are external galaxies hardly any 
longer needs discussion. It has been answered by the progress of 
research. No competent thinker, with the whole of the available ev­
idence before him, can now, it is safe to say, maintain any single 
nebula to be a star system of co-ordinate rank with the Milky Way. 
A practical certainty has been attained that the entire contents, 
stellar and nebula, of the sphere belong to one mighty aggregation, 
and stand in ordered mutual relations within the limits of one all 
embracing scheme. 

This perception represented the majority view which was still current in 
1920 when the famous Shepley-Curtis debate [6] took place. Shapley spoke 
in support of this view while Curtis represented the slowly emerging view 
that many of the faint nebulae were external galaxies far away from the 
Milky Way. 

During the 1920s Edwin Hubble gradually established this picture in 
which spiral and elliptical galaxies are found all over the universe. The 
erroneous observations of Van Maanen [7] contradicting this picture and 
arguing that all spiral nebulae were galactic, had been influential in the 
delay in accepting this revised picture. These were eventually set aside. 
In 1929, Hubble established what is today known as the Hubble Law [8] 
which is generally interpreted as coming from an expanding universe. In 
this Hubble spectroscopically determined the Doppler radial velocities of 
galaxies and found these to vary in proportion to their distances. The 
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constant of proportionality is called the Hubble constant and today it is 
denoted by H. Thus one may write Hubble's law in terms of redshifts as: 

z = (H/c)-D, (5) 

where D is the distance of the extragalactic object with redshift z. The 
Friedmann-Lemaitre models now no longer were mathematical curiosities 
but were seen as the correct models to explain Hubble's law. They were all 
describable with the line element 

ds2 = c2dt2 - S2[dr2/{l-kr2)+r2(d02 + sin2 Qd<\>2)], (6) 

where the parameter k takes values 1, 0 or — 1. The Einstein universe 
had k = 1 whereas the de Sitter universe had k = 0. The coordinates 
r, 9, <p a r e constant for a typical galaxy and may be called its comoving 
coordinates. The motion of the galaxy is manifest through the scale factor 
S(t). The redshift is interpreted in terms of this model as coming from 
a time-dependent increasing scale-factor S(t): if the light signal from the 
source left at time t\ and it reached the observer at time to then we have 

l + z = S(t0)/S(t1). (7) 

The scale-factor S(t) and the curvature parameter k were to be deter­
mined from Einstein's field equations. Einstein also decided that his cos-
mological constant was no longer needed and gave it up. Incidentally the 
much-publicised remark by Einstein that the cosmological constant was 
the "greatest blunder" of his life has no direct authentication in Einstein-
literature. It has been ascribed to George Gamow who claimed that this is 
what Einstein said to him [9]. 

The stage was thus set to launch cosmology as a discipline wherein 
the theoretical predictions based on relativistic models could be tested by 
observations of the extragalactic universe. 

2. Early Cosmology 

During the 1930s, cosmologists led by Eddington [10] and Lemaitre [11] 
discussed the theoretical models of the expanding universe and all these 
led to the concept of a "beginning" when the universe was dense and very 
violent. Lemaitre called the state that of a primeval atom. Later, Fred 
Hoyle, an opponent of this idea referred to the state as of "big bang", a 
name that caught on when the model became more popular. 
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The crucial effect in Hubble's law was the redshift found in the spectra 
of galaxies and its progressive increase with the galactic distances. The 
linear law discovered by Hubble was believed to be an approximation of 
the exact functional relationship between redshift and distance according 
to any of the various Friedmann-Lemaitre models. Attempts were made 
by succeeding astronomers to carry out deeper surveys to test the validity 
of this extrapolation. This will be discussed later. 

Hubble's own priorities on the observational side, were elsewhere [12]. 
He wanted to fix the value of the mathematical parameter k of the model 
by observing galaxies and counting them to larger and larger distances. 
He made several unsuccessful attempts before realizing that the ability of 
the 100-inch Hooker telescope fell short of making a significant test of the 
relativistic models. The 5-metre telescope at the Palomar Mountain was 
proposed by him for this very reason as this bigger telescope was expected 
to settle this cosmological problem. By the time the telescope was com­
pleted and began to function (late 1940s) Hubble had realized that his 
observational programme was not a realistic one and the telescope in fact 
came to be used for other important works. 

The reason Hubble's programme was unworkable was that in order to 
detect the effects of spacetime curvature through galaxy counts, one needed 
to look very far, out to redshifts of the order unity, and this requirement 
was hard to satisfy for two reasons. (1) Observational techniques were not 
yet sophisticated enough to detect galaxies of such large redshifts. (2) The 
number of galaxies to be counted was enormously large if one were to use 
the counts to be sensitive enough to draw cosmological conclusions. There 
was a third difficulty with the number count programme, to which I shall 
return in Sec. 9. 

3. The Advent of Radio Astronomy 

Astronomy became more versatile after World War II, after radio astronomy 
came into existence as a viable tool of observations. In their enthusiasm 
about the new technique, radio astronomers felt that they could under­
take Hubble's abandoned programme by applying it to the counts of radio 
sources. In the 1950s radio astronomers in Cambridge, England and in 
Sydney as well as Parkes, Australia, began their attempts to solve this 
problem by counting radio sources out to very faint limits. Radio astron­
omy apparently got round the two difficulties mentioned above. Radio 
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galaxies could be observed, it was felt, to greater distances than optical 
galaxies and there were far fewer of them to count. 

The basic test of counting of radio sources went thus. If one accepts that 
radio sources are of uniform luminosity and are homogeneously distributed 
in the universe, then in the static Euclidean model, it can be easily shown 
that the number (AT)-flux density (P) relation satisfies the relation 

logiV = -1.5 log P + constant. (8) 

The relation for a typical expanding Friedmann-Lemaitre model shows a 
relation starting with Eq. (8) at high flux end and getting flatter at low 
fluxes. If, however, one put in an ad hoc assumption that the number 
density of radio sources per unit comoving coordinate volume was higher 
than at present, then one could get slopes steeper than —1.5. 

While the Australians felt that within the existing error-bars, their sur­
veys did not show any evidence inconsistent with the Euclidean model, the 
Cambridge group under the leadership of Martin Ryle made several claims 
to have found a steep slope. While the early Cambridge data were later 
discounted as being of dubious accuracy, the data in the early 1960s (the 
3C and 4C surveys) did show a slope of —1.8 at high flux density, which 
subsequently flattened at low flux densities. The steepness was claimed by 
Ryle to have confirmed the big bang models. However, it later became clear 
that these radio surveys might tell us more about (1) local inhomogeneity 
and (2) the physical properties of the sources rather than about large scale 
geometry of the universe [13]. 

4. The Steady State Theory 

In 1948, there emerged a rival to the classic big bang theory. Authored 
by Hermann Bondi, and Thomas Gold [14] and independently by Fred 
Hoyle [15], this theory was based on a model of the universe with the 
de Sitter metric, but which had a constant non-zero density of matter. Such 
a model can be obtained from Einstein's gravitational equations (without 
the cosmological term), provided on the right-hand side one introduces a 
negative energy field, called originally the C-field. Hoyle and later Maurice 
Price (private communication) worked on the C-field concept and a theory 
based on a scalar field derivable from an action principle emerged in 1960. 
This idea was developed further by Hoyle and Narlikar [16]. Although the 
concept of a negative energy scalar field was considered by physicists to be 



Einstein's Legacy: Relativistic Cosmology 199 

unrealistic in the 1960s, today, four decades later it is appreciated that the 
currently popular phantom fields are no different from the C-field. 

Since, as the name implies, the steady state theory described an un­
changing universe (on a large enough scale), the observational predictions 
of the theory were unambiguous and this was cited as a strength of the the­
ory. Ryle's main attack was directed against this theory with the assertion 
that the radio source counts disproved this theory. This claim was refuted 
by Hoyle and Narlikar [17] with the demonstration that in a more realis­
tic structure of the universe inhomogeneities on the scale of 50-100 Mpc 
(megaparsec: 1 parsec is approximately 3 light years) would give rise to 
steep slopes of the log iV-logP curve for radio sources. 

Although the steady state theory survived Ryle's challenges, it appeared 
to receive a mortal blow in 1965 by the discovery of the cosmic microwave 
background. Also, it could not account for the rather large fraction (~25%) 
by mass of helium in the universe. To understand the implications of this 
result one needs to look back at the studies of the early universe in rela­
tivistic cosmology. 

5. The Early Hot Universe 

In the mid-1940s, George Gamow [18, 19] started a new programme of 
studying the physics of the big bang universe close to the big bang epoch. 
For example, calculations showed that the universe in its early epochs was 
dominated by relativistically moving matter and radiation and that the 
temperature T of the universe, infinite at the big bang, dropped according 
to the law: 

T = B/S • B = constant. (9) 

Thus it fell to about ten thousand million degrees after one second. In 
the era 1-200 second, Gamow expected thermonuclear reactions to play a 
major role in bringing about a synthesis of the free neutrons and protons 
that were lying all over the universe. Were all the chemical elements we see 
today in the universe formed in this era? 

This expectation of Gamow turned out to be incorrect. Only light 
nuclei, mainly helium could have formed this way. Also, one could adjust 
the density of matter in the universe over a wide band to produce the right 
cosmic abundance of helium. The heavier elements could, however, be 
formed in stars, as was shown later by the comprehensive work of Geoffrey 
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and Margaret Burbidge, William Fowler and Fred Hoyle [20]. Today it 
looks as if the light nuclei were made in Gamow's early universe, as the 
stars do not seem to be able to produce them in the right abundance. It 
was because of this circumstance that the steady state universe which did 
not have a very hot era, failed in the production of helium. 

Apart from this evidence, there was another prediction [21] made by 
Gamow's younger colleagues, Ralph Alpher and Robert Herman, namely 
that the radiation surviving from that early hot era should be seen today 
as a smooth Planckian background of temperature of around 5 K. This pre­
diction has been substantiated. In fact in 1941, McKeller [22] had deduced 
the existence of such a background of temperature 2.3 K from spectroscopic 
observations of CN and other molecules in the galaxy. This result was not 
widely known or appreciated at the time. In fact it was the serendipitous 
observation of an isotropic radiation background in 1965 by Arno Penzias 
and Robert Wilson [23] that drew physicists and cosmologists to the big 
bang model in a big way. Penzias and Wilson found the temperature to be 
~3.5 K. 

The post-1965 development of cosmology took a different turn. The 
finding of the cosmic microwave background radiation (CMBR) was taken 
as vindication of the early hot universe and on the observational side ef­
forts were made to observe the spectrum of the radiation as accurately as 
possible. In 1990, the COBE satellite gave a very accurate Planckian spec­
trum [24] thus providing confirmation of the Alpher-Herman expectation 
of a relic black body spectrum. Another expectation, of finding small scale 
inhomogeneities in the background was also fulfilled two years later when 
COBE found [25] such fluctuations of temperatures AT/T of the order 
of a few parts in a million. On the theoretical side the emphasis shifted 
from general relativistic models to models of a very small scale universe 
with high temperature corresponding to fast moving particles. Theorists 
also began to come to grips with the problem of formation of large-scale 
structure ranging from galaxies to superclusters. We will consider these 
developments next. 

6. Physics of the Early and Very Early Universe 

The cosmic microwave background radiation (CMBR) prompted many 
physicists to look in depth at the physics of the post- and pre-
nucleosynthesis era. For example, as the universe cools down, the chemical 
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binding can become important and trap the free electrons into protons to 
make neutral hydrogen atoms. This eliminates the major scattering agency 
from the universe and radiation can subsequently travel freely. Calculations 
[26] show that this epoch was at redshift of around 1000-1100. 

If instead we explore epochs earlier than the nucleosynthesis one, we 
would encounter larger temperature and more energetic activity. This has 
attracted particle physicists to the big bang models for here they have a 
possibility of testing their very high energy physics. The very early epochs 
when the universe was 10 - 3 8 second old had particles of energy so high 
that they might have been subject to the grand unification scheme which 
could therefore be tested. Energies required for such testing are, however, 
some 13 orders of magnitude higher than what can be produced by the 
most powerful accelerators on the Earth. 

Such a combination of disciplines is called astroparticle physics. One of 
its most influential 'gifts' has been the notion of inflation [27]. This is the 
rapid exponential expansion of the universe lasting for a very short time, 
produced by the phase transition that took place when the grand unified in­
teraction split into its component interactions (the strong and electroweak 
interactions). Inflation is believed to solve some of the outstanding prob­
lems of the standard big bang cosmology, such as the horizon problem, the 
flatness problem, the entropy problem, etc. Another article by Sarkar in 
this volume deals with the main aspects of astroparticle physics. 

7. Dark Matter and Dark Energy 

One of the conclusions of inflation is that the space part of the universe is 
flat. Theoretically it requires the matter density to be pc = 3H2/8TTG. Here 
H is the Hubble constant and G is the gravitational constant. This value, 
sometimes known as the closure density, leads straightaway to a conflict 
with primordial nucleosynthesis which tells us that at this density there 
would be almost no deuterium produced. Even if we ignore inflation, and 
simply concentrate on the empirical value of matter density determined by 
observations, we still might run into a serious conflict between theory and 
observation: there is evidence for greater matter density than permitted by 
the above deuterium constraint. 

For, while the visible matter in the form of galaxies and intergalactic 
medium leads to a value of density which is less than 4% of the closure 
density, there are strong indications that additional dark matter may be 
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present too [13]. The adjective 'dark' indicates the fact that this matter is 
unseen but exerts gravitational attraction on visible matter. Such evidence 
is found in the motions of neutral hydrogen clouds around spiral galaxies 
and in the motions of galaxies in clusters. Even this excess matter would 
cause problem with deuterium. 

To get round this difficulty, the big bang cosmologists have hypothesized 
that the bulk of dark matter is non-baryonic, that is it does not influence 
nucleosynthesis. Writing the ratio of the density of non-baryonic matter to 
the closure density as flnb and the corresponding ratio for baryonic matter 
as fib, we should get as per inflation flnb + flb = 1. Thus if the baryonic 
matter is 4%, the non-baryonic matter should be 96%. 

However, even this idea runs into difficulty as there is no direct evidence 
for so much dark matter. A solution is provided, however, by resurrecting 
the cosmological constant that Einstein had abandoned in the 1930s. We 
can define its relative contribution to the dynamics of expansion through a 
parameter analogous to the density parameter: 

flA = 3XH2/c2 . (10) 

Thus we now get something like: fib = 0.04, flnb = 0.23, and flA = 0.73. 
This extra energy put in is called dark energy. The total of these values is 
meant to add up to unity, as expected by the inflationary hypothesis. 

8. Structure Formation 

These issues are important to the understanding of how large scale struc­
ture developed in the universe. To this end, the present attempts assume 
that small fluctuations were present in the very early universe and these 
grew because of inflation and subsequent gravitational clustering. Various 
algorithms exist for developing this scenario. One of the basic inputs is the 
way the total density is split up between baryonic matter, non-baryonic 
matter and dark energy. The non-baryonic dark matter can be hot (HDM) 
or cold (CDM) depending on whether it was moving relativistically or non-
relativistically at the time it decoupled from ordinary (baryonic) matter. 

A constraint to be satisfied by this scenario is to reproduce the observed 
disturbances found in the CMBR by these agents and also the observed 
extent of clustering of galaxies today. For, observations of small inhomo-
geneities of the CMBR rule out various combinations and also suggest what 
kind of dark matter (cold or hot or mixed) might be required. Currently 



Einstein's Legacy: Relativistic Cosmology 203 

the model favored is called the ACDM-model to indicate that it has dark 
energy and cold dark matter. 

9. Observational Tests 

Like any physical theory cosmology also must rely on observational tests 
and constraints. There are several of these. There have been tests of 
cosmological models of the following kinds: (i) Geometry of the universe; 
(ii) Physics of the universe. 

The first category includes the measurement of Hubble's constant, the 
redshift magnitude relation to high redshifts, the counting of radio sources 
and galaxies, the variation of angular size with redshift and the variation 
of surface brightness with redshift. The measurement of Hubble's constant 
has been a tricky exercise right from the early days dating back to Hubble's 
original work. The problem is to be sure that no systematic errors have 
crept in the distance measurement, as these have not yet been fully de­
bugged. Which is why we still have serious observing programmes yielding 
values close to 70 km/s/Mpc as well as to 55 km/s/Mpc. At the time of 
writing this review, the majority opinion favors the higher value but 'rule 
of the majority' has not always been a successful criterion in cosmology. 

The measurement of z-m relation had been attempted by Allan Sandage 
for quite a long time and during the period 1960-1990 the overall view was 
that the relation as applied to brightest galaxies in clusters treated as stan­
dard candles, favored decelerating models. These models are naturally given 
by the Friedmann solutions without the cosmological constant. However, in 
the late 1990s, the use of Type la supernovae has led to a major reversal 
of perception and the current belief [28] is that the universe is accelerating. 
The other tests like number counts or angular size variation have not been 
so clearcut in their verdict as they get mixed up with evolutionary param­
eters. Apart from the difficulties encountered by Hubble in the 1930s, any 
cosmological test using source populations of a certain type necessarily gets 
involved with the possibility that the source yardstick may be evolving with 
age. 

Currently cosmologists are most attracted to measurements of the angu­
lar power spectrum of the microwave background inhomogeneities. These 
can be related to other dynamical features of the universe, given a cosmolog­
ical model satisfying Einstein's equations with the cosmological constant. 
Using the details from WMAP satellite [29] one can get a range of models 
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with fc = 0. Among these models those with a positive cosmological con­
stant are favored. As mentioned before, the favored solution has fib = 0.04, 
Qnb = 0.23, and OA = 0.73. We recall that the low value of baryonic density 
is required to understand the abundance of deuterium. 

Many cosmologists feel that there is now a 'concordance' between vari­
ous tests that suggest the above combination for the energy content of the 
universe together with the higher of the two values of the Hubble constant 
mentioned above. It is felt that this set of parameters describes accurately 
most of the observed features of the universe. With this optimistic view 
one may be tempted to think that the quest for the model of the universe 
that began with Einstein in 1917 is coming to an end. 

10. Need for Caution and Alternatives 

However, there needs to be some caution towards this optimism. The con­
cordance has been achieved at the expense of bringing in a lot of speculative 
element into cosmology. Thus there is as yet no independent evidence for 
the non-baryonic dark matter, nor any for the dark energy. When one finds 
that these two make up more than 96% of matter in the universe leav­
ing only about 4% to the astronomer for direct observation, one wonders 
whether the claims based on the unseen and the untested are really as firm 
as one wants in science. Then a lot revolves round the concept of inflation 
which is still not describable as a process based on a firm physical theory. 
Nor is the inflationary era observable by any telescopes today. The den­
sities of matter one is talking about when inflation took place were some 
1050 times the density of water. Recall how much investigation went into 
the equation of state for neutron stars where the matter density was a mere 
1015 times the density of water. Yet one finds no discussions of such esoteric 
matter amongst the cosmologists. Likewise, the inflationary time scales of 
the order of 10~38 second defy any operational physical meaning. These are 
some twenty five orders of magnitude smaller than the shortest measurable 
time scale known to physics, viz. those measured by the atomic clocks. So 
a physicist may wonder if the concordence cosmology is a rigorous physical 
exercise at all. 

The concordance picture looks good today if one is happy with the num­
ber of epicycles that have gone into it. Non-baryonic dark matter and dark 
energy are two of them. They had to be introduced in order to ensure 
the survival of the model: they have no independent direct confirmation. 
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These are examples of extrapolations of known physics to epochs that are 
astronomically unobservable. While indirect observations showing an over­
all consistency of these assumptions are necessary for the viability of the 
concordance model, they cannot be considered sufficient. 

This is why there appears to be the need for new ideas in cosmology 
especially alternative scenarios that are less speculative and follow very 
different tracks from the above standard scenario. Some attempts are in 
vogue at present, like the Quasi-Steady State Cosmology (QSSC) [30] or 
the Modified Newtonian Dynamics (MOND) [31], which are, however very 
much minority efforts. Perhaps by 2017, a hundred years after Einstein's 
paper on cosmology we may have a more realistic perception of how complex 
our universe is. I can do no better than end with a quotation from Fred 
Hoyle [32]: 

' . . . / think it is very unlikely that a creature evolving on this planet, 
the human being, is likely to possess a brain that is fully capable 
of understanding physics in its totality. I think this is inherently 
improbable in the first place, but even if it should be so, it is surely 
wildly improbable that this situation should just have been reached 
in the year 1970 ... ' 

Fred Hoyle said this at the Vatican Conference held towards the end 
of the 1960-1970 decade when cosmologists were making equally confident 
remarks about how well the universe was being understood. This was before 
inflation, dark matter, dark energy, etc. were even thought of. Are today's 
cosmologists sure that they have all pieces of the jigsaw puzzle that make 
up our universe? 
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Prom an observational perspective, cosmology is today in excellent 
shape — we can now look back to when the first galaxies formed ~ 1 Gyr 
after the Big Bang, and reconstruct the thermal history back to the pri­
mordial nucleosynthesis era when the universe was ~ 1 s old. However, 
recent deep studies of the Hubble diagram of Type la supernovae in­
dicate that the expansion rate is accelerating, requiring the dominant 
component of the universe to have negative pressure like vacuum energy. 
This has been indirectly substantiated through detailed studies of an­
gular anisotropies in the cosmic microwave background and of spatial 
correlations of the large-scale structure of galaxies, which also require 
most of the matter component to be non-baryonic. Although there are 
plausible candidates for the constituent of the dark matter in physics 
beyond the Standard Model (e.g. supersymmetry), the energy scale of 
the required 'dark energy' is ~ 10 - 1 2 GeV, well below any known scale 
of fundamental physics. This has refocussed attention on the notorious 
cosmological constant problem at the interface of general relativity and 
quantum field theory. It is likely that the resolution of this issue will 
require fundamental modifications to Einstein's ideas about gravity. 

1. I n t r o d u c t i o n 

In the accompanying article, Jayant Narlikar recounts how in 1917 Ein­

stein boldly applied his newly developed theory of general relativity to the 

universe as a whole [1]. The first cosmological model was static to match 

prevalent ideas about the universe (which, at t ha t time, was confined to 

the Milky way!) and to achieve this, Einstein introduced the 'cosmological 

constant ' term in his equation [2]. Within a decade it had become clear 

207 
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from the work of Slipher and Hubble that the nebulae on the sky are in 
fact other 'island universes' like the Milky Way and that they are receed-
ing from us — the universe is expanding. Einstein wrote to Weyl in 1933: 
"If there is no quasi-static world, then away with the cosmological term". 

This however was not easy — after all the symmetry properties of Ein­
stein's equation do allow any constant proportional to the metric to be 
added to the left-hand side: 

1 „ , -8TT3^ 
R-IW ~ ~^9livR + ^9nv — —T72 i (1) 

where we have written Newton's constant, GN = 1/Mp (where Mp ~ 
1.2 x 1019GeV), in natural units (h = ks = c = 1). Moreover, with the 
subsequent development of quantum field theory it became clear that the 
energy-momentum tensor on the right-hand side can also be freely scaled 
by another additive constant proportional to the metric which reflects the 
(Lorentz invariant) energy density of the vacuum: 

(Tftv)fields = — (p)fieldsS/^ • (2) 

This contribution from the matter sector adds to the "bare" term from the 
geometry, yielding an effective cosmological constant: 

A _ . 8TT(P) fieids 

A - A + ^ , (3) 

or, correspondingly, an effective vacuum energy: pv = AMp/8n. 
For an (assumed) homogeneous and isotropic universe with the 

Robertson-Walker metric ds2 = g^dx^dx" = dt2 - R2(t)[dr2/(1 - kr2) + 
r2dfl2], we obtain the Friedmann equations describing the evolution of the 
cosmological scale-factor R(t): 

' i ? \ 2
 8TT k A R 4TT . n . A ,A. 

) =3M2p-R~2 + 3' i? = - 3 M ^ + 3 p ) + 3 ' ( 4 ) 

where k = 0, ±1 is the 3-space curvature signature and we have used for 
"ordinary" matter (and radiation): T^ = pg^ + (p + p)u,j,uv, with u^ = 
da;M/ds. The conservation equation T.£" = 0 implies that d(pR3)/dR = 
—3pR2, so that given the 'equation of state parameter' w = p/p, the evo­
lution history can be constructed. Since the redshift is z = R/Ro — 1, for 
non-relativistic particles with w ~ 0, /ONR OC (1 + z)~3, while for relativistic 
particles with w = 1/3, pn oc (1 + z)~4, but for the cosmological constant, 
w = — 1 and pv =constant! Thus radiation was dynamically important only 
in the early universe (in fact for z <; 104) and for most of the expansion 
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history only non-relativistic matter is relevant. The Hubble equation can 
then be rewritten with reference to the present epoch (subscript 0) as 

H2 = H2[ttm(l + zf + fifc(l + z)2 + fiA], 

o = ^° o = k o = -A_ ^ 
m ~ Pc ' h~ R2H2' A ~ 3 # 2 ' 

yielding the sum rule fim + flk + ttA = 1- Here pc = 3H$M£/8n ~ ( 3 x 
10~12 GeV)4/i2 is the 'critical density' for a k — 0 universe (in the absence 
of A) and the present Hubble parameter is HQ = lOO/i km s - 1 Mpc - 1 with 
h ~ 0.7, i.e. about 10"42 GeV. 

As Weinberg discussed in his influential review in 1989 [3], given that 
the density parameters Q.m and fi^ were observationally known to be not 
much larger than unity, the two terms in Eq. (3) are required to somehow 
conspire to cancel each other in order to satisfy the approximate constraint 

|A| £ H2, (6) 

thus bounding the present vacuum energy density by pv <, 10~47GeV4 

which is a factor of 10123 below its 'natural' value of ~ Mp — the cos-
mological constant problem! The major development in recent years has 
been the recognition that this inequality is in fact saturated with £l\ ~ 0.7, 
£lm ~ 0.3 (fifc ~ 0) [5], i.e. there is non-zero vacuum energy of just the 
right order of magnitude so as to be detectable today. 

In the Lagrangian of the Standard Model of electroweak and strong 
interactions, the term corresponding to the cosmological constant is one 
of the two 'super-renormalizable' terms allowed by the gauge symmetries, 
the second one being the quadratic divergence in the mass of fundamen­
tal scalar fields due to radiative corrections [4]. To tame the latter suffi­
ciently in order to explain the experimental success of the Standard Model 
has required the introduction of a supersymmetry between bosonic and 
fermionic fields which is (softly) broken at about the Fermi scale. Thus 
the cutoff scale of the Standard Model, viewed as an effective field the­
ory, can be lowered from the Planck scale Mp down to the Fermi scale, 

— 1/2 

-MEW ~ GF ~ 300 GeV, albeit at the expense of introducing about 150 
new parameters in the Lagrangian, as well as requiring delicate control of 
the many non-renormalizable operators which can generate flavor-changing 
neutral currents, nucleon decay, etc., so as not to violate experimental 
bounds. This implies a minimum contribution to the vacuum energy den­
sity from quantum fluctuations of 0 (Mj | w ) , i.e. "halfway" on a logarithmic 
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scale down from the Planck scale to the energy scale of C ( M | W / M p ) cor­

responding to the observationally indicated vacuum energy. Thus even the 

introduction of supersymmetry cannot eradicate a discrepancy by a factor 

of at least 1060 between "theory" and observation. 

It is generally believed tha t a t rue resolution of the cosmological con­

stant problem can only be achieved in a full quantum theory of gravity. 

Recent developments in string theory and the possibility tha t there exist 

new dimensions in Nature have generated many interesting ideas concern­

ing possible values of the cosmological constant [2, 6]. Nevertheless it is 

still the case tha t there is no generally accepted solution to the enormous 

discrepancy discussed above. Of course the cosmological constant prob­

lem is not new but there has always been the expectation tha t somehow 

we would understand one day why it is exactly zero. However, if it is in 

fact non-zero and dynamically important today, the crisis is much more 

severe since it also raises a cosmic 'coincidence' problem, viz. why is the 

present epoch special? It has been suggested tha t the 'dark energy' may 

not be a cosmological constant but rather the slowly evolving potential en­

ergy V(4>) of a hypothetical scalar field <j> named 'quintessence' which can 

track the mat ter energy density. This however is also fine-tuned since one 

needs V1^ ~ 1 0 " 1 2 G e V but y/d2V/d<j)2 ~ H0 ~ 10" 4 2 GeV (in order 

t ha t the evolution of (f> be sufficiently slowed by the Hubble expansion), 

and moreover, does not address the fundamental issue, viz. why are all the 

other possible contributions to the vacuum energy absent? Admittedly the 

lat ter criticism also applies to a t t empts to do away with dark energy by 

interpreting the da ta in terms of modified cosmological models. Given the 

'no-go' theorem against dynamical cancellation mechanisms in Eq. (3) in 

the framework of general relativity [3], it might appear t ha t solving the 

problem will necessarily require our understanding of gravity to be mod­

ified. However, to date no such alternative which is phenomenologically 

satisfactory has been presented. The situation is so desperate tha t 'an-

thropic ' arguments have been advanced to explain why the cosmological 

constant is just of the right order of magnitude to allow of our existence 

today, notwithstanding the fact t ha t we have little or no understanding of 

its prior probability distribution! 

Given this sorry situation on the theoretical front, this article will focus 

solely on the new observational developments and present a critical assess­

ment of the evidence for dark energy. It is no exaggeration to say tha t this 

tiny energy density of the present vacuum poses the biggest challenge tha t 

fundamental theory and cosmology have ever faced. 
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2. The Observational Situation 

That we live in an universe which has evolved from a hot dense past is now 
well established, primarily on the basis of the exquisite match (see Fig. 1) 
of a Planck spectrum to the intensity of the cosmic microwave background 
(CMB), with 

T0 = 2.725 ±0.001K, (7) 

as determined by the COBE satellite [7]. It has also been shown that 
the blackbody temperature does increase with the redshift as T = Tb(l + 
z), by observing fine-structure transitions between atomic levels of C I 
in cold gas clouds along the line of sight to distant quasars [10]. These 
observations are difficult to accomodate within the 'Quasi-Steady State 
Cosmology' in which the CMB arises through thermalization of starlight 
[11] — a mechanism that was already severely constrained by the closeness 
of the observed CMB spectrum to the Planck form [12]. Moreover, the 
absence of spectral distortions requires that the evolution must have been 
very close to adiabatic (i.e. constant entropy per baryon) back at least to 
the epoch when the universe was dense enough and hot enough for radiative 
photon creation processes to be in equilibrium (at z ^ 107) [8]. 

A modest extrapolation in redshift back to z ~ 1010 takes us back to 
the epoch of Big Bang nucleosynthesis (BBN) when the weak interactions 
interconverting neutrons and protons became too slow to maintain chemical 
equilibrium in the cooling universe, and the subsequent nuclear reactions 
rapidly converted about 25% of the total mass into the most stable light 
nucleus 4He. Trace amounts of D, 3He and 7Li were also left behind with 
abundances sensitive to the baryon density. As shown in Fig. 2, the primor­
dial abundances of all these elements as inferred from a range of observa­
tions are in reasonable agreement with the standard calculation [9]. More­
over, the implied baryon-to-photon ratio 77 = n-ajn^ = 2.74 x 10~8^l-Qh2 

(fie = PB/PC) is in good agreement with the value deduced from obser­
vations of CMB anisotropics generated at a redshift of z ~ 103 when the 
primordial plasma recombines and requires that baryons (more precisely, 
nucleons) contribute only fie = 0.012 — 0.025)/i-2, i.e. most of the matter 
in the universe must be non-baryonic. Moreover this concordance is an 
extremely powerful constraint on new physics, e.g. it requires that, barring 
conspiracies, the strengths of all the fundamental interactions (which to­
gether determine the n/p ratio at decoupling) cannot have been significantly 
different (more than a few per cent) from their values today. Furthermore, 



212 S. Sarkar 

10 -17 

18 lO"10 ^ 

* 10 -19 

0 10-20 

10"21 

10" 

10 
Wavelength (cm) 

1.0 0.1 

-

r 

• x1^ — 
- X + FIRAS 
E / * DMR 

' .* * U B C 

r / ^ o LBL-Italy 
"-_•,/( D Princeton 
/f 1 A Cyanogen 

: 

\ : 

2.73 K blackbody \ E 

COBE satellite \~= 
COBE satellite \ : 
sounding rocket \-
White Mt. & South Pole 1 
ground & balloon 5 
optical " 

i 

10 100 
Frequency (GHz) 

1000 

63 

K 

1 

0.1 

0.01 

10-3 

io - 4 

in-5 

Qbh
2 = 0.02 

-

/ 

. / 

1-
-

-

-

10 10' 10 l HT 10 l 10 l 10' 10 £ 

Redshift(l+2) 

Fig. 1. The spectrum of the cosmic microwave background, demonstrating the excellent 
fit to a blackbody; as shown in the bottom panel, this imposes severe constraints on any 
deposition of entropy in the universe back to the thermalization epoch [8]. 

the dominant energy density in the universe at that epoch must have been 
radiation — photons and three species of (light) neutrinos. This rules out 
for example the interesting possibility that there has always been a cosmo-
logical constant A of 0(H2), since according to the Friedmann equation 
(4), this is equivalent (taking k = 0) to a significant renormalization of the 
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Pig. 2. The abundances of 4He, D, 3He and 7Li as predicted by the standard model 
of Big Bang nucleosynthesis as a function of ??io = 77/IO -10 [9]. Boxes indicate the 
observed light element abundances (smaller boxes: 2<r statistical errors; larger boxes: 
±2cr statistical and systematic errors); the narrow vertical band indicates the CMB 
measure of the cosmic baryon density. 

Planck scale (i.e. Newton's constant) which would be in conflict with the 
observed light element abundances. 

These are two of the 'pillars' that the standard Big Bang cosmology is 
based on and they provide a secure understanding of the thermal history 
back to when the universe was hot enough to melt nuclei at an age of ~ 1 
s. We turn now to a detailed discussion of the third 'pillar', viz. the Hubble 
expansion, which has been probed back only to a redshift of 0(1) but this 
of course encompasses most of the actual time elapsed since the Big Bang. 

2 .1 . The age of the universe and the Hubble constant 

Advances in astronomical techniques have enabled radioactive dating to 
be performed using stellar spectra. Figure 3 shows the detection of the 
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Fig. 3. Detection of 238TJ i n the old halo star CS31802-001; synthetic spectra for three 
assumed values of the abundance are compared with the data [13]. The right panel shows 
the color (B-V) versus the magnitude (V) for stars in a typical globular cluster M15; the 
age is deduced from the luminosity of the (marked) 'main sequence turn-off' point [14]. 

386 nm line of singly ionized 238U in an extremely metal-poor (i.e. very old) 
star in the halo of our Galaxy [13]. The derived abundance, log(U/H) = 
—13.7±0.14±0.12 corresponds to an age of 12.5±3 Gyr, consistent with the 
age of 11.5±1.3 Gyr for the (oldest stars in) globular clusters inferred, using 
stellar evolution models, from the observed Hertzprung-Russell diagram 
[14]. To this must be added ~ 1 Gyr, the estimated epoch of galaxy/star 
formation, to obtain the age of the universe. 

For the Big Bang cosmology to be valid this age must be consis­
tent with the expansion age of the universe derived from measurement 
of the present Hubble expansion rate. The Hubble Space Telescope Key 
Project [15] has made direct measurements of the distances to 18 nearby 
spiral galaxies (using Cepheid variables) and used these to calibrate five 
secondary methods which probe further; all data are consistent with 
Ho = 72 ± 3 ± 7 km s _ 1 Mpc"1 , as shown in Fig. 4. It has been argued 
however that the Key Project data need to be corrected for local peculiar 
motions using a more sophisticated flow model than was actually used, and 
also for metallicity effects on the Cepheid calibration — this would lower 
the value of H0 to 63 ± 6 km s _ 1 Mpc - 1 [16]. Even smaller values of H0 are 
also obtained by 'physical' methods such as measurements of time delays in 
gravitationally lensed systems, which bypasses the traditional 'distance lad­
der' and probes to far deeper distances than the Key Project. At present ten 
multiply-imaged quasars have well measured time delays; taking the lenses 
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Fig. 4. Hubble diagram for Cepheid-calibrated secondary distance indicators; the bot­
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distance [15]. The right panel shows deeper measurements using SNe la (filled circles), 
gravitational lenses (triangles) and the Sunyaev—Zeldovich effect (circles), along with 
some model predictions [19]. 
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to be isothermal dark matter halos yields HQ = 48 ± 3 km s _ 1 Mpc - 1 [17]. 
Measurements of the Sunyaev-Zeldovich effect in 41 X-ray emitting galaxy 
clusters also indicate a low value o f i 7 o ~ 6 1 ± 3 ± 1 8 km s _ 1 Mpc - 1 for a 
fim = 0.3, Q,\ = 0.7 universe, dropping further to Ho ~ 54 km s"1 M p c - 1 

if Qm = 1 [18]. Both these models imply an acceptable age for the universe, 
taking these uncertainties into account. 

2.2. The deceleration parameter 

The most exciting observational developments in recent years have un­
doubtedly been in measurements of the deceleration parameter q = 
AH-1 /At — 1 = ^ — QA- This has been found to be negative through 
deep studies of the Hubble diagram of Type la supernovae (SNe la) pio­
neered by the Supernova Cosmology Project [20] and the High-z SN Search 
Team [21]. Their basic observation was that distant supernovae at z ~ 0.5 
are Am ~ 0.25 mag (corresponding to io A m / 2 - 5 — 1 ~ 25%) fainter than 
would be expected for a decelerating universe such as the fim = 1 Einstein-
deSitter model. This has been interpreted as implying that the expansion 
rate has been speeding up since then, thus the observed SNe la are actually 
further away than expected. Note that the measured apparent magni­
tude m of a source of known absolute magnitude M yields the 'luminosity 
distance': 

— M = 5 1 o g G ! c - ) + 2 5 < dL = (1+^r^y (8) 

which is sensitive to the expansion history, hence the cosmological param­
eters. According to the second Friedmann equation (4) an accelerating ex­
pansion rate requires the dominant component of the universe to have neg­
ative pressure. The more mundane alternative possibility that the SNe la 
appear fainter because of absorption by intervening dust can be constrained 
since this would also lead to characteristic reddening, unless the dust has 
unusual properties [22]. It is more difficult to rule out that the dimming is 
due to evolution, i.e. that the distant SNe la (which exploded over 5 GYr 
ago!) are intrinsically fainter by ~ 25% [23]. Many careful analyses have 
been made of these possibilities and critical reviews of the data have been 
given [24]. 

Briefly, SNe la are observationally known to be a rather homogeneous 
class of objects, with intrinsic peak luminosity variations <; 20%, hence 
particularly well suited for cosmological tests which require a 'standard 
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Fig. 5. The residual Hubble diagram of SNe la relative to the expectation for an empty 
universe, compared to models; the bottom panel shows weighted averages in redshift 
bins [28]. 

candle' [25]. They are characterized by the absence of hydrogen in their 
spectra [26] and arc believed to result from the thermonuclear explosion of 
a white dwarf, although there is as yet no "standard model" for the progen­
itors) [27]. However, it is known (using nearby objects with independently 
known distances) that the time evolution of SNe la is tightly correlated with 
their peak luminosities such that the intrinsically brighter ones fade faster 
- this can be used to make corrections to reduce the scatter in the Hub­

ble diagram using various empirical methods such as a 'stretch factor' to 
normalize the observed apparent peak magnitudes [20] or the 'Multi-color 
Light Curve Shape' method [21]. Such corrections are essential to reduce 
the scatter in the data sufficiently so as to allow meaningful deductions to 
be made about the cosmological model. 

Figure 5 shows the magnitude-redshift diagram of SNe la obtained re­
cently by the Supernova Search Team [28] — this uses a carefully compiled 
'gold set' of 142 SNe la from ground-based surveys, together with 14 SNe la 
in the range z ~ 1 — 1.75 discovered with the HST. The latter are brighter 
than would be expected if extinction by dust or simple luminosity evolu­
tion is responsible for the observed dimming of the SNe la upto z ~ 0.5, 
and thus support the earlier indication of an accelerating cosmological ex­
pansion. However, alternative explanations such as luminosity evolution 
proportional to lookback time, or extinction by dust which is maintained 
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at a constant density are still possible. Moreover for reasons to do with how 
SNe la are detected, the dataset consists of approximately equal subsamples 
with redshifts above and below z ~ 0.3. It has been noted that this is also 
the redshift at which the acceleration is inferred to begin and that if these 
subsets are analyzed separately, then the 142 ground-observed SNe la are 
consistent with deceleration; only when the 14 high-z SNe la observed by 
the HST&re included is there a clear indication of acceleration [29]. Clearly 
further observations are necessary particularly at the poorly sampled inter­
mediate redshifts z ~ 0.1 — 0.5, as is being done by the Supernova Legacy 
Survey [30] and ESSENCE [31]; there is also a proposed space mission — 
the Supernova Acceleration Probe [32]. 

3. The Spatial Curvature and the Matter Density 

Although the first indications for an accelerating universe from SNe la 
were rather tentative, the notion that dark energy dominates the universe 
became widely accepted rather quickly [33]. This was because of two inde­
pendent lines of evidence which also suggested that there is a substantial 
cosmological constant. The first was that contemporaneous measurements 
of degree-scale angular fluctuations in the CMB by the Boomerang [34] and 
MAXIMA [35] experiments provided a measurement of the sound horizon 
(a 'standard ruler') at recombination [36] and thereby indicated that the 
curvature term K ~ 0, i.e. the universe is spatially flat. The second was that, 
as had been recognized for some time, several types of observations indicate 
that the amount of matter which participates in gravitational clustering is 
significantly less than the critical density, Qm ~ 0.3 [37]. The cosmic sum 
rule then requires that there be some form of 'dark energy', unclustered 
on the largest spatial scales probed in the measurements of f2m, with an 
energy density of 1 — i~lm ~ 0.7. This was indeed consistent with the value 
of QA ~ 0.7 suggested by the SNe la data [20, 21] leading to the widespread 
identification of the dark energy with vacuum energy. In fact all data are 
consistent with w = — 1 i.e. a cosmological constant, hence the model is 
termed ACDM (since the matter content must mostly be cold dark matter 
(CDM) given the constraint from BBN on the baryonic component). 

Subsequently a major advance has come about with precision measure­
ments of the CMB anisotropy by the WMAP satellite, and of the power 
spectrum of galaxy clustering by the 2dFGRS and SDSS collaborations. 
The paradigm which these measurements test is that the early universe 
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underwent a period of inflation which generated a gaussian random field 
of of small density fluctuations (5p/p ~ 10 - 5 with a nearly scale-invariant 
'Harrison-Zeldovich' spectrum: P(k) oc kn,n ~ 1), and that these grew by 
gravitational instability in the sea of (dark) matter to create the large-scale 
structure (LSS) as well as leaving a characteristic anisotropy imprint on 
the CMB. The latter are generated through the oscillations induced when 
the close coupling between the baryon and photon fluids through Thom­
son scattering is suddenly reduced to zero as the universe turns neutral 
at z ~ 1000 [36]. The amplitudes and positions of the resulting 'acoustic 
peaks' in the angular power spectrum of the CMB are sensitive to the cos-
mological parameters and it was recognized that precision measurements 
of CMB anisotropy can thus be used to determine these accurately [38]. 
However, in practice, there are many 'degeneracies' in this exercise because 
of the 'prior' assumptions that have to be made [39]. An useful analogy 
is to see the generation of CMB anisotropy and the formation of LSS as a 
sort of cosmic scattering experiment, in which the primordial density per­
turbation is the "beam", the universe itself is the "detector" and its matter 
content is the "target" [40]. In contrast to the situation in the laboratory, 
neither the properties of the beam, nor the parameters of the target or 
even of the detector are known — only the actual "interaction" may be 
taken to be gravity. In practice, therefore assumptions have to be made 
about the nature of the dark matter (e.g. 'cold' non-relativistic or 'hot' 
relativistic?) and about the nature of the primordial perturbation (e.g. 
adiabatic or isocurvature?) as well as its spectrum, together with further 
'priors' (e.g. the curvature parameter k or the Hubble constant h) before 
the cosmological density parameters can be inferred from the data. 

Nevertheless as Fig. 6 shows, the angular spectrum of the all-sky 
map of the CMB by WMAP is in impressive agreement with the ex­
pectation for a flat ACDM model, assuming a power-law spectrum for 
the primordial (adiabatic only) perturbation [41]. The fitted parame­
ters are VtBh2 = 0.024 ± 0.001, flmh2 = 0.14 ± 0.02, h = 0.72 ± 0.05, 
with n = 0.99 ± 0.04 so it appears that this does herald the dawn of 
"precision cosmology". Even more impressive is that the prediction for 
the matter power spectrum (obtained by convoluting the primordial per­
turbation with the CDM 'transfer function') is in good agreement with the 
2dFGRS measurement of the power spectrum of galaxy clustering [42] if 
there is no 'bias' between the clustering of galaxies and of CDM. Subse­
quent studies using the power spectrum from SDSS [43] and also from spec­
tral observations of the Lyman-a 'forest' (intergalactic gas clouds) [44] have 
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Fig. 6. Angular power spectrum of the CMB measured by WMAP (gray dots are the 
unbinned data) and the fit to the ACDM model; the bottom panel shows the predicted 
matter power spectrum compared with the 2dFGRS data assuming no bias between 
galaxies and dark matter [41]. 

confirmed these conclusions and improved on the precision of the extracted 
parameters. Having established the consistency of the ACDM model, such 
analyses also provide tight constraints e.g. on a 'hot dark matter' (HDM) 
component which translates into a bound on the summed neutrino masses 
of Y/mv <0.42eV. 
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It must be pointed out however that cosmological models without dark 
energy can fit exactly the same data by making different assumptions for 
the 'priors'. For example, an Einstein-deSitter model is still allowed if 
the Hubble parameter is as low as ft, ~ 0.46 and the primordial spec­
trum is not scale-free but undergoes a change in slope from n ~ 1 to 
n ~ 0.9 at a wavenumber k ~ 0.01 Mpc - 1 [19]. To satisfactorily fit the 
LSS power spectrum also requires that the matter not be pure CDM but 
have a HDM component of neutrinos with (approximately degenerate) mass 
0.8 eV (i.e. ^ m ^ = 2.4 eV) which contribute £lv ~ 0.12. An alternative 
to a sharp break in the spectrum is a "bump" in the range k ~ 0.01 — 0.1 
Mpc - 1 , such as is expected in models of 'multiple inflation' based on su-
pergravity [45]. Although such models might appear contrived, it must be 
kept in mind that they do fit all the precision data (except the SNe la Hub­
ble diagram) without dark energy and that the degree to which parameters 
must be adjusted pales into insignifance in comparison with the fine-tuning 
required of the cosmological constant in the ACDM model! 

4. Conclusions 

Thus for the moment we have a 'cosmic concordance' model with fim ~ 
0.3,11A ~ 0.7 which is consistent with all astronomical data but has no 
explanation in terms of fundamental physics. One might hope to eventu­
ally find explanations for the dark matter (and baryonic) content of the 
universe in the context of physics beyond the Standard Model but there 
appears to be little prospect of doing so for the apparently dominant com­
ponent of the universe — the dark energy which behaves as a cosmological 
constant. Cosmology has in the past been a data-starved science so it has 
been appropriate to consider only the simplest possible cosmological models 
in the framework of general relativity. However, now that we are faced with 
this serious confrontation between fundamental physics and cosmology, it 
is surely appropriate to reconsider the basic assumptions (homogeneity, 
ideal fluids, trivial topology, . . . ) or even possible alternatives to general 
relativity. 

General relativity has of course been extensively tested, albeit on rela­
tively small scales. Nevertheless the standard cosmology based on it gives 
a successful account of observations back to the BBN era [46]. However, 
it is possible that the ferment of current theoretical ideas, especially con­
cerning the possibility that gravity may propagate in more dimensions than 
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matter , might suggest modifications to gravity which are significant in the 

cosmological context [47, 48], Astronomers are of course entitled to, and 

will continue to, analyze their da ta in terms of well-established physics and 

treat the cosmological constant as just one among the parameters specifying 

a cosmological model. However, it is important for it to be recognized tha t 

"Occam's razor" does not really apply to the construction of such models, 

given tha t there is no physical understanding of the key ingredient A. 

Landu famously said "Cosmologists are often wrong, but never in 

doubt". The situation today is perhaps bet ter captured by Pauli 's enig­

matic remark — the present interpretation of the da ta may be " . . . not 

even wrong". However, we are certainly not without doubt! The crisis 

posed by the recent astronomical observations is not one tha t confronts 

cosmology alone; it is the spectre tha t haunts any a t t empt to unite two of 

the most successful creations of 20th century physics — quantum field the­

ory and general relativity. It is quite likely tha t the cosmological constant 

which Einstein allegedly called his "biggest blunder" will tu rn out to be the 

catalyst for triggering a new revolution in physics in this century. 
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Gravitational Radiation — In Celebration of 
Einstein's Annus Mirabilis 
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School of Physics and Astronomy, Cardiff University, 
Cardiff, CF24 3AA, UK 

Two of Einstein's 1905 papers were on special theory of relativity. Al­
though general relativity was to come a decade later, it was special rel­
ativity that was responsible for the existence of wave-like phenomena in 
gravitation. A hundred years after the discovery of special relativity we 
are poised to detect gravitational waves and the detection might as well 
come from another inevitable and exotic prediction of relativity, namely 
black holes. With interferometric gravitational wave detectors taking 
data at unprecedented sensitivity levels and bandwidth, we are entering 
a new century in which our view of the Universe might be revolutionized 
yet again with the opening of the gravitational window. The current 
generation of interferometric and resonant mass detectors are only the 
beginning of a new era during which the gravitational window could be 
observed by deploying pulars and microwave background radiation. 

1. I n t r o d u c t i o n 

We are celebrating 100 years of Einstein's Annus Mirabilis 1905, during 

which he published four papers on three subjects, thereby laying the foun­

dation for quantum theory, the theory of Brownian motion, and the special 

theory of relativity. Each of these subjects has revolutionized our world view 

but the story is not over yet. Though it was not until 1915 tha t he founded 

the general theory of relativity, it was special relativity tha t is responsible 

for the existence of gravitational radiation. The waves have eluded direct 

detection so far but there is little doubt today about their existence thanks 

to spectacular observations of the decay in the orbital period of Galactic 

binary neutron stars [1, 2]. 
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Gravity is generated by the densities and currents of the energy and 

momentum of matter; if they change then the gravitational field changes. 

In Einstein's theory of gravity, unlike in Newtonian gravity, changes in the 

distribution of a source cannot travel instantaneously but at the speed of 

light. Indeed, the field equations of general relativity admit wave-like so­

lutions tha t are in many ways similar to electromagnetic (EM) radiation 

but with important differences. Gravitational interaction is Universal and, 

although weak, gravity is nonlinear. Universality of gravitation means t ha t 

one cannot infer the influence of gravitational waves by watching an isolated 

particle in space, as opposed to EM radiation whose influence on a single 

charged particle can be inferred. One would need at least two particles, just 

as one would in Einstein's gedanken lift-experiment to infer the presence 

of the Ear th ' s gravitational field. The weakness of the interaction means 

tha t on the one hand it will be very difficult to generate gravitational waves 

in the laboratory; only catastrophic astronomical events involving massive 

accelerations of bulk mat ter , as opposed to E M waves which are produced 

by accelerated charged particles, can produce significant amplitudes of the 

radiation. On the other hand, the radiation carries the t rue signature of 

the emitting source, be it the core of a neutron star or a supernova, the 

quasi-normal mode oscillations of a black hole, or the bir th of the Universe, 

thereby making it possible to observe phenomena and objects tha t are not 

directly accessible to the electromagnetic, neutrino or the cosmic-ray win­

dow. This is unlike EM waves which interacts very strongly with mat ter 

and therefore imprint on the radiation from a source is the characteristics 

of its 'surface' rather than the core. Nonlinearity of gravitational waves 

implies tha t the waves interact with the source resulting in a rich structure 

in the shape of the emitted signals tha t will be useful for testing relativity 

in new ways. 

Gravitational radiation can be characterized by a dimensionless ampli­

tude which is a measure of the deformation in space caused by the wave 

as it passes by. For instance, if two masses are initially separated by a 

distance £, a wave of amplitude h causes a change in length 5£ = hi/2. 

Typical astronomical events, say a binary black hole merger at 100 Mpc, 

would have an amplitude h ~ 10~ 2 3 at a frequency ~ 100 Hz. Detectors 

tha t are currently in operation will be able to observe such events which 

are expected to occur about once per year. 

In the rest of this article we will discuss astronomical sources of gravita­

tional waves. This article chiefly deals with compact objects, namely neu­

tron stars (NS) and black holes (BH). Unless specified otherwise we shall 
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assume that a NS has a mass of M = 1.4MQ and radius R = 10 km, and by 
a stellar mass BH we shall mean a black hole of mass M = 10M©. We shall 
assume a flat Universe with a cold dark matter density of Q,M = 0.3, dark 
energy of OA = 0.7, and a Hubble constant of H$ = 65kms _ 1 Mpc - 1 . 
We shall use a system of units in which c = G = 1, which means 
1M© ~ 5 x 1(T6 s ~ 1.5 km, 1 Mpc ~ 1014 s. 

I will begin this article with a brief overview of gravitational wave (GW) 
theory and their interaction with matter and how that is used in the con­
struction of detectors. The main focus of the article will be the astronomical 
sources of gravitational waves. 

2. Gravitational Wave Theory — A Brief Overview 

A key point of Newton's gravity is that because the potential satisfies Pois-
son equation, V2</?(£, x) = 4np(t, x), there are no retardation effects. Since 
there are no time-derivatives involved on the LHS and the same time t 
appears both on the LHS and the RHS, any change in the distribution 
of density at the location of the source would instantaneously change the 
potential at the remote field point. In Einstein's theory the metric com­
ponents of the background spacetime are the gravitational potentials and 
they satisfy a "wave" equation and hence there will be retardation effects. 
This is explicitly seen in the linearized version of Einstein's equations. 

Under the assumption of weak gravitational fields one can assume that 
the background metric gap of spacetime to be only slightly different from the 
Minkowski metric r)ap = Diag(-1, 1, 1, 1) : ga/3 = f]a/3 + haf3. \ha/3\ < 1, 
called the metric perturbation, describes the departure of the spacetime 
from flatness. Under the assumption of weak gravitational fields, general 
relativistic equations for the metric perturbation can be linearized to obtain 
a set of wave equations for the metric perturbation: Ohap = !6irTap, where 
2hap = 2hap — r/aph't, and • is the wave operator, • = rf^dadp, and Tap 
is the energy-momentum tensor. These equations have the formal solution 

Now the metric perturbation at the field point x at time t is determined by 
the configuration of the source Tap at a retarded time t— |x—x'| (recall that 
we are using units in which the speed of light is unity). Hence disturbances 
in the source travel only at a finite speed. Indeed, any non-stationary source 
Tap will give rise to wave-like solutions for the potentials hap, which extract 
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energy, momentum and angular-momentum from the source, propagating 
at the speed of light. 

2.1. Effect of gravitational waves on matter 

Just as in EM theory, there are only two independent polarizations of the 
field, denoted as h+ (h-plus) and hx (h-cross), and not ten components 
as one might expect from the tensorial nature of ha0. This is because the 
theory is generally covariant and there are gauge degrees of freedom. 

A wave of plus-polarization traveling along, say, z-axis continuously 
deforms a circular ring of beads in the x-y plane, taking the ring from a 
circle to an ellipse with its semi-major axis first oriented along, say, the x-
axis after one-quarter of the wave, then along the y-axis after three-quarter 
and so on. Monitoring the distance from the center of the ring to the 
beads at the ends of two orthogonal radial directions can best measure the 
deformation of the ring. This is the principle behind a laser interferometer 
antenna. If the ring's original radius was R the semi-major and semi-minor 
axes of the ellipse would be (1 + h/2)R and (1 — h/2)R, respectively. A wave 
of cross-polarization has similar effect but the whole pattern of deformation 
gets rotated by 7r/4. This contrasts with the oscillatory response of a single 
charged particle to an EM wave and the two polarizations of light are at 
an angle of 7r/2 relative to each other. 

Gravitational wave interferometers are quadrupole detectors with a 
good sky coverage. A single antenna, except when it is a spherical res­
onant detector, cannot determine the polarization state of a transient wave 
or the direction to the source that emits the radiation. Interferometers or 
resonant bars do not measure the two polarizations separately but rather 
a linear combination of the two given by: 

h{t) = F+(9, <p, ^)h+{t) + Fx(0, tp, iP)hx(t), (2) 

where F+ and Fx are the antenna patterns. To infer the direction (9, (p) 
to the source, the polarization amplitudes (/i+, hx), and the polarization 
angle ip> it is necessary to make five measurements, which is possible with 
three interferometers: each interferometer gives a response, say h\(t), h,2{t) 
and /i3(i), and one can infer two independent delays, say t\ —t2, and £2 — £3, 
in the arrival times of the transient at the antennas. Therefore, a network 
of antennas, geographically widely separated so as to maximize the time 
delays and hence improve directionality, is needed for GW observations. 
Moreover, detecting the same event in two or more instruments helps to 
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remove the non-Gaussian and non-stationary backgrounds, while adding a 
greater degree of confidence to the detection of an event. In the case of 
continuous waves and stochastic backgrounds the motion of the detector 
relative to the source causes a Doppler modulation of the response which 
can be de-convolved from the data to fully reconstruct the wave (as one 
would in the case of a point source) or reconstruct a map of the sky (as one 
would in the case of a stochastic background). 

2.2. Amplitude, luminosity and frequency 

The amplitude h and luminosity £ of a source of GW is given in terms of 
the famous quadrupole formula (see for details, e.g. [3]): 

2 .. \ 
h"mn\t> r J = ~~ tmnXp r j , L, = — \ - £ m n - £ ) , (o) 

r 5 
where an overdot denotes derivative with respect to time; angular brack­
ets denote a suitably defined averaging process (say, over a period of 
the GW); 1mn is the reduced (or trace-free) quadrupole moment tensor 
which is related to the usual quadrupole tensor Imn = J T00xrnxndsx, via 
Imn = Imn — SmnI

k
k/3. In simple terms, for a source of size R, mass M 

and angular frequency UJ, located at a distance r from Earth, 

h~eh—R2u;2, C^tcM
2RAw6. (4) 

r 
where th,c are dimensionless efficiency factors that depend on the orien­
tation of the system relative to the observer (in the case of h only) and 
how deformed from spherical symmetry the system is. Eh,c ~ 1 for ideally 
oriented and highly deformed sources. The amplitude of the waves, just 
as in the case of electromagnetic radiation, decreases as inverse of the dis­
tance to the source. However, there is a crucial difference between EM and 
GW observations that is worth pointing out: Let n be the largest distance 
from which an EM or a GW^ detector can observe standard candles. In the 
case of EM telescopes r; is limited by the smallest flux observable, which 
falls off as the inverse-square of the distance. This is because astronomical 
EM radiation is the superposition of waves emitted by a large number of 
microscopic sources, each photon with its own phasing; we cannot follow 
each wave separately but only a superposition of many of them. This, of 
course, is the reason why in conventional astronomy the number counts of 
standard candles increase a s r , ' . In the case of GW, signals we expect 
to observe are emitted by the coherent bulk motion of large masses and 
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hence it is possible to observe each cycle of the wave as it passes through 
the antenna. Indeed, one can fold many wave cycles together to enhance 
the visibility of the signal buried in noise, provided the shape of the signal 
is known before-hand. Because we can follow the amplitude of a wave the 
number of sources which an antenna can detect increases as rf. 

For a self-gravitating system, say a binary system of two stars of masses 
mi and m2 (total mass M = mi + 7712 and symmetric mass ratio 77 = 
mim2/M2), the linear velocity v and angular velocity u> are related to the 
size R of the system via Keplar's laws: w2 = M/R3, v2 = M/R. It turns 
out that the efficiency factors for such a system are e^ = 4?? C, tc = 32T72/5, 

so that 

h^irfC™™ C^r,2vw, /GW = 2 U , (5) 
r R 5 

where C ~ 1 is a constant that depends on the orientation of the source 
relative to the detector, /GW is the GW frequency which is equal to twice 
the orbital frequency /orb-1 The above relations imply that the amplitude of 
a source is greater the more compact it is and the luminosity is higher from 
a source that is more relativistic. The factor to covert the luminosity from 
G = c = 1 units to conventional units is £0 = c5/G ~ = 3.6 x 1059 erg s _ 1 . 
Since v < 1, £0 denotes the best luminosity a source could ever have and 
generally C <C £o-

3. Gravitational Wave Detector Projects 

There are chiefly two types of GW detectors that are currently in opera­
tion taking sensitive data: (i) resonant bars and (ii) laser interferometers. 
The sensitivity of a detector is defined in terms of the smallest discernible 
dimensionless strain caused by an astronomical source against background 
noise of the instrument. Because a GW antenna can follow the phase of 
GW, the sensitivity of an antenna is given in terms of the amplitude noise 
spectrum as a function of frequency and is measured in Hz - 1 / 2 . Figure 1, 
bottom panel, shows in solid lines the design sensitivity goals of three gen­
erations of ground-based interferometers (shown here for the American ini­
tial and advanced LIGO, and a possible third generation European detector 

For a binary consisting of two equal masses the configuration of the system is identical 
on rotation by n, rather than 2TT, radians. This is the reason why the frequency of GW 
is twice the orbital frequency. In general, the wave would contain the orbital frequency 
and its harmonics with twice the orbital frequency being the dominant. 
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Fig. 1. Amplitude noise spectrum (in H z - 1 ' 2 ) of space-based LISA (top panel) and 
three generations of ground-based interferometers, initial LIGO, advanced LIGO, and 
EGO (bottom panel). Also plotted on the same graph are the source strengths for an 
archetypal binary, continuous and stochastic radiation in the same units. A source will 
be visible in a network of three interferometers if it is roughly five times above the noise 
curve. 
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EGO). The top panel shows the same for the space-based LISA. Also plotted 
in Fig. 1 are source strengths to be discussed in Sec. 4 

3.1. Ground-based interferometers 

Interferometers operate in a broad band with a peak sensitivity at frequency 
of ~ 150 Hz (see Schutz [4] for a fuller description). In a laser interferomet-
ric antenna the tidal deformation caused in the two arms of a Michelson 
interferometer is sensed as a shift in the fringe pattern at the output port 
of the interferometer. The sensitivity of such a detector is limited at low 
frequencies (10-40 Hz) by anthropogenic sources and seismic disturbances, 
at intermediate frequencies (40-300 Hz) by thermal noise of optical and 
suspended components, and at high frequencies (> 300 Hz) by photon shot 
noise. Three key technologies have made it possible to achieve the current 
level of sensitivities: (1) An optical layout that makes it possible to recycle 
the laser light exiting the interferometer and build effective powers that are 
1000's of times larger than the input thereby mitigating the photon shot 
noise. This technique allows us to operate the interferometer either in the 
wide band mode (as in Fig. 1), or with a higher sensitivity in a narrow band 
of about 10-50 Hz centered at a desired frequency, say 300 Hz, but at the 
cost of worsened sensitivity over the rest of the band. This latter mode of 
operation is called signal recycling and is particularly useful for observing 
long-lived continuous wave sources. (2) Multiple suspension systems that 
filter the ground motion and keep the mirrors essentially free from seismic 
disturbances. (3) Monolithic suspensions that help isolate the thermal noise 
to a narrow frequency band. 

There are currently six long baseline detectors in operation: The Amer­
ican Laser Interferometer Gravitational-Wave Observatory (LIGO) [5], 
which is a network of three detectors, two with 4 km arms and one with 2 km 
arms, at two sites (Hanford, Washington and Livingstone, Louisiana), the 
French-Italian VIRGO detector with 3 km arms at Pisa [6], the British-
German GEO600 [7] with 600 m arms at Hannover and the Japanese 
TAMA300 with 300 m arms in Tokyo [8]. Australia has built a 80 m 
test facility with a plan to build a km-size detector sometime in the future. 
The American LIGO detectors are already close to their design sensitivity. 
Figure 2 shows the sensitivity of these detectors during the fourth science 
run (called S4). The GEO600 and Virgo detectors are expected to operate 
at their design sensitivity during the course of the next year. LIGO and 
GEO600 began a year long science run in late 2005, to be joined in due 
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Fig. 2. Amplitude noise spectrum (in H z - 1 ' 2 ) of LIGO interferometers during the 
fourth science run S4. At this time the LIGO instruments were roughly within a factor 
of 2 of their design goal, but are currently running at design sensitivity. 

course by TAMA300 and Virgo. The data from the worldwide network will 
be the best ever, providing a real chance for a first direct detection. 

Plans are well underway both in Europe and the USA to build, by 
2010-2013, the next generation of interferometers that are 10-15 times 
more sensitive than the initial interferometers or to enhance the sensitivity 
in the kHz region where we can expect to observe neutron star cores and 
quasi-normal modes of stellar mass black holes. With a peak sensitivity 
of h ~ 10- 2 4 Hz" 1 / 2 the advanced LIGO and VIRGO detectors will be 
able to detect NS ellipticities in the range 10~ 6-10 - 8 from sources in our 
Galaxy, BH-BH binaries of total mass 50M© at a redshift of z ~ 0.5, and 
stochastic background at the level of P-GW ~ 10 - 9 . The high-frequency 
upgrade of GEO600, called GEO-HF, is being designed to observe normal 
mode oscillations of neutron stars, believed to result from star quakes and 
the root cause of glitches in pulsar timing when the frequency of the pulsar 
seems to suddently increase. 

In the longer term, over the next 10 to 15 years, we might see the de­
velopment of third generation GW antennas. The sensitivity of the current 
and next generation instruments is still far from the fundamental limitations 
of a ground-based detector: The gravity gradient noise at low frequencies 
due to natural (winds, clouds, earth quakes) and anthropogenic causes, and 
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the quantum uncertainty principle of mirror position at high frequencies. 
A detector subject to only these limitations requires the development of 
new optical and cryogenic techniques that form the foundation of a third 
generation GW detector that is currently undergoing a design study. 

3.2. Space-based interferometers 

Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project 
to develop a space-based gravitational wave detector. The plan is to put in 
space three spacecraft in heliocentric orbit, 60 degrees behind the Earth, 
in an equilateral triangular formation of size 5 million km [10], sched­
uled to be ready by 2015. LISA's sensitivity is limited by difficulties 
with long time-scale (> 105 s) stability, photon shot-noise at high fre­
quencies (~ 10~3 Hz) and large size (> 10_ 1 Hz). LISA will be able to 
observe Galactic, extra-Galactic and cosmological point sources as well as 
stochastic backgrounds from different astrophysical populations and per­
haps from certain primordial processes. Feasibility studies are now un­
derway to assess the science case and technology readiness for covering 
the frequency gap of LISA and ground-based detectors. The Deci-Hertz 
Interferometer Gravitational-Wave Observatory (DECIGO) [11] by the 
Japanese team and the Big-Bang Observer (BBO), a possible follow-up 
of LISA [12], are aimed as instruments to observe the primordial GW back­
ground and to answer cosmological questions on the expansion rate of the 
Universe and dark energy. 

4. Sources of Gravitational Waves 

Gravitational wave detectors will unveil dark secrets of the Universe by 
detecting sources in extreme physical environs: strong nonlinear gravity, rel-
ativistic motion, extremely high density, temperature and magnetic fields, 
to list a few. We shall focus our attention on compact objects (in isolation 
or in binaries) and stochastic backgrounds. 

4.1. Compact binaries 

An astronomical binary consisting of a pair of compact objects, i.e. a neu­
tron star and/or a black hole, is called a compact binary. GWs are emit­
ted as the two bodies in such a system orbit around each other, carrying 
away, in the process, the orbital angular momentum and energy from the 
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system. The dissipation of energy and angular momentum leads to a slow 
inspiral of the stars towards each other. The inspiral phase of the evolu­
tion, which can be treated adiabatically due to low loss of energy (at least 
initially), is very well modeled to a high order in post-Newtonian (PN) 
theory and we have a precise theoretical prediction of the phasing of the 
emitted radiation given the masses of the two bodies. Thus a compact 
binary is an astronomer's ideal standard candle [13]: A parameter called 
the chirp mass M = rf/3M, completely fixes the absolute luminosity of 
the system. Hence, by observing GW from a binary we can measure the 
luminosity distance to the source provided the source chirps, that is the or­
bital frequency changes, by as much as \/T during an observational period 
T, thereby enabling the measurement of the chirp mass. Consequently, it 
will be possible to accurately measure cosmological parameters and their 
variation as a function of red-shift. 

The dynamics of a compact binary consists of three phases: (i) inspiral, 
(ii) plunge and (iii) merger. In the following we will discuss each in turn. 

(i) The early inspiral phase: This is the phase in which the system 
spends 100's of millions of years and the power emitted in GW is low. 
This phase can be treated using linearized Einstein's equations and post-
Newtonian theory with the energy radiated into gravitational waves bal­
anced by a loss in the binding energy of the system. The emitted GW 
signal has a characteristic shape with its amplitude and frequency slowly 
increasing with time and is called a chirp waveform. Formally, the inspi­
ral phase ends at the last stable orbit (LSO) when the effective potential 
of the system undergoes a transition from having a well-defined minimum 
to the one without a minimum, after which stable orbits can no longer be 
supported. This happens roughly when the two objects are separated by 
R ~ 6 GM/c2, or when the frequency of GW is / L S o - 4400 (MQ/M) Hz. 
The signal power drops as / ~ 7 / 3 and the photon shot-noise in an interfer­
ometer increases as f2 beyond about 200 Hz so that it will only be possible 
to detect a signal in the range from about 10 Hz to 500 Hz (and a narrower 
bandwidth of 40-300 Hz in initial interferometers) during which the source 
brightens up half-a-million fold (recall that the luminosity oc v10 oc / 1 0 ^ 3 ) . 

For M ^ 10 MQ, inspiral phase is the only phase sensed by the in­
terferometers and lasts for a duration of r = 5576 ry_1 (M/M Q )~ 5 / 3 (/o/ 
10Hz) - 8 ' 3 s, where /o is the frequency at which the observation begins. 
The phase development of the signal is very well modeled during this epoch 
and one can employ matched filtering technique to enhance the visibility 
of the signal by roughly the square root of the number of signal cycles 
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•̂ cyc ~ (8/5)r/o. Since a large number of cycles are available it is possi­
ble to discriminate different signals and accurately measure the parameters 
of the source such as its location (a few degrees each in co-latitude and 
azimuth) [14], mass (fractional accuracy of 0.05-0.3% in total mass and a 
factor 10 worse for reduced mass, with greater accuracy for NS than BH), 
and spin (to within a few percents) [15]. 

(ii) The late inspiral, plunge and merger phase: This is the phase when 
the two stars are orbiting each other at a third of the speed of light and 
experiencing strong gravitational fields with the gravitational potential be­
ing ip = GM/Rc2 ~ 0.1. This phase warrants the full nonlinear structure of 
Einstein's equations as the problem involves strong relativistic gravity, tidal 
deformation (in the case of BH-BH or BH-NS) and disruption (in the case 
of BH-NS and NS-NS) and has been the focus of numerical relativists [16] 
for more than two decades. However, some insights have been gained by 
the application of advanced mathematical techniques aimed at accelerating 
the convergence properties of post-Newtonian expansions of the energy and 
flux required in constructing the phasing of GW [17-19]. This is also the 
most interesting phase from the point of view of testing nonlinear gravity as 
we do not yet fully understand the nature of the two-body problem in gen­
eral relativity. Indeed, even the total amount of energy radiated during this 
phase is highly uncertain, with estimates in the range 10% [20] to 0.7% [18]. 
Since the phase is not well-modeled, it is necessary to employ sub-optimal 
techniques, such as time-frequency analysis, to detect this phase and then 
use numerical simulations to gain further insights into the nature of the 
signal. 

(iii) The late merger phase: This is the phase when the two systems have 
merged to form either a single NS or a BH, settling down to a quiescent state 
by radiating the deformations inherited during the merger. The emitted 
radiation can be computed using perturbation theory and gives the quasi-
normal modes (QNM) of BH and NS. The QNM carry a unique signature 
that depends only on the mass and spin angular momentum in the case 
of BH, but depends also on the equation-of-state (EOS) of the material in 
the case of NS. Consequently, it is possible to test conclusively whether or 
not the newly born object is a BH or NS: From the inspiral phase it is 
possible to estimate the mass and spin of the object quite precisely and use 
that to infer the spectrum of normal modes of the BH. The fundamental 
QNM of GW from a spinning BH, computed numerically and then fitted, 
is [21] /QNM = 750[1 -0.63(1 - a ) 0 3 ] (100M o /M)Hz , with a decay time of 
r = 5 . 3 / [ / Q N M ( 1 — a)0 4 5] ms, where a is the dimensionless spin parameter 
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of the hole taking values in the range [0, 1]. The signal will be of the form 
h(t;T,u>) = ft-oe_t'r cos(27r/QNMt), t > 0, ho being the amplitude of the 
signal that depends on how deformed the hole is. 

It has been argued that the energy emitted in the form of QNM might be 
as large as 3% of the system's total mass [20]. By matched filtering, it should 
be possible to detect QNM resulting from binary mergers of mass in the 
range 60-103MQ at a distance of 200 Mpc in initial LIGO and from z ~ 2 
in advanced LIGO. In Fig. 1 filled circles (connected by a dotted line) show 
the amplitude and frequency of QNM radiation from a source at z = 2, and 
total mass 1000, 100 or 10M©. Such signals should serve as a probe to test 
if massive black holes found at galactic cores initially formed as small BHs 
of 1O3M0 and then grew by rapid accretion. Moreover, there is a growing 
evidence [22] that globular clusters might host BHs of mass M ~ 1O3M0 at 
their cores. If this is indeed true then the QNM from activities associated 
with such BHs would be observable in the local Universe, depending on how 
much energy is released into GW when other objects fall in. EGO could 
also observe QNM in stellar mass black holes of mass M ~ 1O-2OM0. 

The span of an interferometer to binaries varies with the masses as 
771/2M5/'6, greater asymmetry in the masses reduces the span but larger 
total mass increases the span. In Fig. 3 we have plotted the distance up to 
which binaries can be seen as a function of the binary's total mass for an 
equal mass system when including both the inspiral and merger part of the 
signal. This estimate is based on the effective-one-body approach [18, 23] 
which predicts 0.7% of the total mass in the merger waves. 

4.1.1. NS-NS binaries 

Double NS coalescences can be seen in initial LIGO to a distance of about 15 
Mpc and in advanced LIGO to a distance of 300 Mpc as shown in Fig. 3 (top 
panel). Based on the observed small population of binary NS that merge 
within the Hubble time, Kalogera et al. [2, 24] conclude that the Galactic 
coalescence rate is ~ 1.8 x 10 - 4 y r - 1 , which would imply an event rate of 
NS-NS coalescences is 0.25 and 1500 y r - 1 , in initial and advanced LIGO, 
respectively. The rates are uncertain by a factor of about 100, however, due 
largely to the small number of coalescing binaries that are known today. 
As the spins of NS are very small (a <C 1) and because the two stars would 
merge well outside the LIGO's sensitivity band, the current state-of-the-
art theoretical waveforms [25] will serve as good templates for matched 
filtering. However, detailed relativistic hydro dynamical simulations (see, 
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Fig. 3. The top plot shows the span of initial and advanced LIGO and EGO for compact 
binary sources when including both the inspiral and merger waveforms in our search 
algorithms. BH mergers can be seen out to a red-shift of z = 0.28 in advanced LIGO 
and % = 0.9 in EGO. In the bottom plot we show the SNR achieved by LISA for inspiral 
signals from supermassive black hole binaries at z = 1. The plot shows the SNR for 
different masses of one of the black holes as a function of the other black hole's mass. 

e.g. Ref. [26]) would be needed to interpret the emitted radiation during the 
coalescence phase, wherein the two stars collide to form a bar-like structure 
prior to merger. The bar hangs up over a couple of dynamical time-scales 
to get rid of its deformity by emitting strong bursts of GW. Observing 
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the radiation from this phase should help to deduce the EOS of NS bulk 
matter. Also, an event rate as large as in advanced LIGO and EGO will be 
a valuable catalogue to test astronomical predictions, for example if 7-ray 
bursts are associated with NS-NS and/or NS-BH mergers [27]. 

4.1.2. NS-BH binaries 

These are binaries consisting of one NS and one BH and are very interesting 
from an astrophysical point of view: The initial evolution of such systems 
can be treated analytically fairly well, however, the presence of a BH with 
large spin can cause the NS to be whirled around in precessing orbits due to 
strong spin-orbit coupling. The evolution of such systems is really not very 
well understood. However, it should be possible to use the "point-mass" 
approximation in which the NS is treated as a point-particle orbiting a BH, 
in getting some insight into the dynamics of the system. The evolution will 
also be complicated by the tidal disruption of the NS before reaching the 
last stable orbit. It should be possible to accurately measure the onset of 
the merger phase and deduce the radius of the NS to ~ 15% and thereby 
infer its EOS [28]. 

Advanced interferometers will be sensitive to NS-BH binaries out to a 
distance of about 650 Mpc. The rate of coalescence of such systems is not 
known empirically as there have been no astronomical NS-BH binary iden­
tifications. However, the population synthesis models give [29] a Galactic 
coalescence rate in the range 3 x 10_ 7-5 x 10~6 yr_ 1 . The event rate of 
NS-BH binaries will be worse than BH-BH of the same total mass by a 
factor of (4?7)3/2 since the SNR goes down as \/4rj. Taking these factors into 
account we get an optimistic detection rate of NS-BH of 0.05 and 400 per 
year in initial and advanced LIGO, respectively. 

4.1.3. BH-BH binaries 

Black hole mergers are the most promising candidate sources for a first 
direct detection of GW. These sources are the most interesting from the 
view point of general relativity as they constitute a pair of interacting 
Kerr spacetimes experiencing the strongest possible gravitational fields be­
fore they merge with each other to form a single Kerr BH, and serve as a 
platform to test general relativity in the nonlinear regime. For instance, 
one can detect the scattering of GW by the curved geometry of the bi­
nary [30], [31], test post-Newtonian theory to a very high order [32] and 
measure, or place upper limits on, the mass of the graviton to 2.5 x 10 - 2 2 eV 
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and 2.5 x 10~26 eV in ground- and space-based detectors, respectively [33]. 
High SNR events (which could occur once every month in advanced LIGO) 
can be used to test the full nonlinear gravity by comparing numerical sim­
ulations with observations and thereby gain a better understanding of the 
two-body problem in general relativity. As BH binaries can be seen to cos­
mological distances, a catalogue of such events compiled by LIGO can be 
used to measure Cosmological parameters (Hubble constant, expansion of 
the Universe, dark energy) and test models of Cosmology [27]. 

The span of interferometers to BH-BH binaries varies from 100 Mpc 
(with the inspiral signal only) to 150 Mpc (inspiral plus merger signal) in 
initial LIGO and to a red-shift of z = 0.28 in advanced LIGO, and z = 0.9 in 
EGO (cf. Figs. 1 and 3). As in the case of NS-BH binaries, here too there 
is no empirical estimate of the event rate. Population synthesis models 
are highly uncertain about the Galactic rate of BH-BH coalescences and 
predict [29] a galactic rate of 3 x 10~8-10~5 yr_ 1 , which is smaller than 
the predicted rate of NS-NS coalescences. However, owing to their greater 
masses, BH-BH event rate in our detectors is larger than NS-NS by a factor 
M 5 / 2 for M ^ 100MQ. The predicted event rate is a maximum of 1 y r - 1 

in initial LIGO and 500 yr _ 1 to 20 day - 1 in advanced LIGO. 

4.1.4. Massive black hole binaries 

It is now believed that the center of every galaxy hosts a BH whose mass 
is in the range 106-109MQ [34]. These are termed as massive black holes 
(MBH). There is now observational evidence that when galaxies collide the 
MBH at their nuclei might get close enough to be driven by gravitational 
radiation reaction and merge within the Hubble time [35]. For a binary with 
M = 1O6M0 the frequency of GW at the last stable orbit is /LSO = 4 mHz, 
followed by merger from 4 mHz to the QNM at 24 mHz (if the spin of the 
black holes is negligible). This is in the frequency range of LISA which has 
been designed to observe the MBH: their formation, merger and activity. 

The SNR for MBH-MBH mergers in LISA is shown in Fig. 3. These 
mergers will appear as the most spectacular events requiring no templates 
for signal identification, although good models would be needed to extract 
source parameters. Supermassive black hole mergers can be seen almost 
wherever they occur; one can observe galaxy mergers throughtout the Uni­
verse and address astrophysical questions about the origin, growth and 
population of MBH. The recent discovery of a MBH binary [35] and the as­
sociation of X-shaped radio lobes with the merger of MBH [36] has raised 
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the optimism concerning MBH mergers and the predicted rate for MBH 
mergers is the same as the rate at which galaxies merge, about 1 y r _ 1 out 
to a red-shift of z — 5 [37]. 

4.1.5. Smirches 

The MBH environment of our own galaxy is known to constitute a large 
number of compact objects and white dwarfs. Three-body interaction will 
occasionally drive these compact objects, white dwarfs and other stars into 
a capture orbit of the central MBH. The compact object will be captured 
in an highly eccentric trajectory (e > 0.99) with the periastron close to 
the last stable orbit of the MBH. Due to relativistic frame dragging, for 
each passage of the apastron the compact object will experience several 
turns around the MBH in a near circular orbit. Therefore, long periods of 
low-frequency, small-amplitude radiation will be followed by several cycles 
of high-frequency, large-amplitude radiation. The apastron slowly shrinks, 
while the periastron remains more or less at the same location, until the 
final plunge of the compact object before merger. There will be a lot of 
structure in the waveforms which arise as a result of a number of different 
physical effects: Contribution from higher order multipoles, precession of 
the orbital plane that changes the polarization of the waves observed by 
LISA, the rich spectrum that results from a precessing elliptic orbit, etc. 
This complicated structure smears the power in the signal in the time-
frequency plane [38] as compared to a sharp chirp from a non-spinning BH 
binary and for this reason this spin modulated chirp is called a smirch [39]. 

As the compact object tumbles down the MBH it will sample the space-
time geometry in which it is moving and the structure of that geometry 
will be imprint in the GW emitted in the process. By observing smirches, 
LISA offers a unique opportunity to directly map the spacetime geometry 
around the central object and test whether or not this structure is in ac­
cordance with the expectations of general relativity [40]. Indeed, according 
to Einstein's theory the geometry of a rotating black hole is uniquely de­
termined to be the Kerr metric involving just two parameters, the mass of 
the MBH and its spin. Thus, the various multipole-moments of the source 
are uniquely fixed once we have measured the mass and spin of the BH. 
With the observed smirch one can basically test whether general relativity 
correctly describes the spacetime region around a generic BH and if the 
central object is indeed a BH or some other exotic matter. 
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The SNR from smirches will be between 10-50 depending on the mass 
of the central object (cf. Fig. 3) but it might be very difficult to detect 
them by matched filtering due to their complicated shapes, although the 
event rate is expected to be rather high. Indeed, a background population of 
these smirches will cause confusion noise and only sources in the foreground 
will be visible in LISA. The foreground event rate is somewhat uncertain, 
ranging from 1-10 y r - 1 within 1 Gpc [41]. 

4.2. Neutron stars 

Neutron stars are the most compact stars in the Universe. With a density 
of 2 x 1014 g cm - 3 , and surface gravity tp = M/R ~ 0.1, they are among the 
most exotic objects whose composition, equation-of-state and structure, are 
still largely unknown. Being highly compact they are potential sources of 
GW. The waves could be generated either from the various normal modes of 
the star, or because the star has a tiny deformation from spherical symmetry 
and is rotating about a non-axisymmetric axis, or because there are density 
inhomogeneities caused by an environment, or else due to certain relativistic 
instabilities. We will consider these in turn. 

4.2.1. Supernovae and birth of NS 

The birth of a NS is preceded by the gravitational collapse of a highly 
evolved star or the core collapse of an accreting white dwarf. Type II 
supernovae (SN) are believed to result in a compact remnant. In any case, 
if the collapse is non-spherical then GW could carry away some of the 
binding energy and angular momentum depending on the geometry of the 
collapse. It is estimated that in a typical SN, GW might extract about 
10~7 of the total energy [42]. The waves could come off in a burst whose 
frequency might lie in the range ~ 200-1000 Hz. Advanced LIGO will be 
able to see such events up to the Virgo supercluster with an event rate of 
about 30 per year. 

4.2.2. Equation of state and normal modes of NS 

In order to determine the equation of state (EOS) of a neutron star, and 
hence its internal structure, it is necessary to independently determine its 
mass and radius. Astronomical observations cannot measure the radius 
of neutron stars although radio and X-ray observations do place a bound 
on their mass. Therefore, it is has not been possible to infer the EOS. 
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Neutron stars will have their own distinct normal modes and G W obser­

vations of these modes should resolve the mat te r here since by measuring 

the frequency and damping times of the modes it would be possible to infer 

both the radius and mass of NS. The technique is not unlike helioseismol-

ogy where observation of normal modes of the Sun has facilitated insights 

into its internal structure. In other words, G W observations of the normal 

modes of the NS will allow gravitational asteroseismology [43]. 

Irrespective of the nature of the collapse a number of normal modes 

will be excited in a newly formed NS. The star will dissipate the energy in 

these modes in the form of GWs as a superposition of the various normal 

modes and soon the star settles down to a quiescence state. Normal modes 

could also be excited in old NS because of the release of energy from star 

quakes. The strongest of these modes, the ones tha t are important for G W 

observations, are the p- and w-modes for which the restoring forces are the 

fluid pressure and space-time curvature, respectively. Both of these modes 

will emit transient radiation which has a generic form of a damped sinusoid: 

h(t; V,T) = / ioexp(—£/T)COS(27TZ^), where ho is the amplitude of the wave 

tha t depends on the external per turbat ion tha t excites the mode and v and 

T are the frequency and damping time of the mode, respectively, and are 

determined by the mass and radius of the NS for a given EOS and depend 

on the type of mode excited. 

To make an order-of-magnitude estimate let us assume tha t the mass 

of the NS is M* = 1.4M© and tha t its radius is R* = 10 km. For the p-

modes, which are basically fluid modes, the frequency of the fundamental 

mode, also called the /-mode, is simply the dynamical frequency of the fluid, 

namely Vf ~ ^/p, where p is the density of the fluid. For a NS of radius i?* 

and mass M* this corresponds to a frequency of \/3M*/(47r.R3) ^ 3 kHz. 

If the star radiates the energy E deposited in the mode at a luminosity 

C, the damping time of the mode would be r ~ E/C. Since E oc Ml/R* 

and C oc M^R^LO6 = M^/Rl, we get r ~ Ri/M*. Indeed, detailed mode 

calculations for various EOS have been fitted to yield the following relations 

for /-modes [43] 

vf = 0.78 + 1.635( y±\ 

1/2 

22.85 - 1 4 . 6 5 ^ 
R* 

kHz , 

(6) 

and similarly for w-modes. The / - and w-mode frequencies nicely separate 

into two distinct groups even when considering more than a dozen different 
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EOS: The /-modes are in the frequency range 1-4 kHz, w-modes are in the 
range 8-14 kHz, and therefore, detecting a signal at these frequencies places 
it in one or the other category. The frequency and damping time, together 
with the relations above, can then be used to fix the radius and mass of 
the star. Observing several systems should then yield a mass-radius curve 
which is distinct for each EOS and thereby helps to address the question 
of NS structure. 

The amplitude of /- and w-modes corresponding to 12 different EOS 
from NS at 10 kpc to 15 Mpc is shown in Fig. 1 (bottom panel) as two 
shaded regions. In a typical gravitational collapse the amount of energy 
expected to be deposited in / - or tu-modes, ~ 10 _ 8MQ , makes it impossible 
to detect them in initial LIGO and barely in advanced LIGO instruments, 
even for a Galactic source. However, EGO should be able to detect these 
systems with a high SNR. The event rates for these systems would be at 
least as large as the supernova rate, i.e. about 0.1-0.01 y r _ 1 in our galaxy, 
increasing to 10-100 yr _ 1 within the Virgo supercluster. 

The same plot can also be used to infer the sensitivity of the detectors 
to normal modes that might be excited in magnetars or radio pulsars, by 
noting that the amplitude scales inversely with the distance to the source 
and directly as the square-root of the energy in the modes. Thus, EGO 
will be sensitive to normal modes excited with E ~ 1Q~12MQ in the Vela 
pulsar (300 pc away), which is seen to glitch rather frequently. 

4.2.3. Relativistic instabilities in NS 

NS suffer dynamical and secular instabilities caused by hydrodynamical and 
dissipative forces, respectively. What is of interest to us is the secular 
instability driven by gravitational radiation. GW emission from a normal 
mode in a non-spinning NS would always lead to the decay of the mode. 
However, the situation might reverse under certain conditions: Imagine a 
NS spinning so fast that a normal mode whose angular momentum (AM) in 
the star's rest frame is opposite to its spin, appears to an inertial observer 
to be co-rotating with the spin. In the inertial frame, GW extracts positive 
AM from the mode; therefore the mode's own AM should become more 
negative. In other words, the amplitude of the mode should grow as a result 
of GW emission, and hence the instability. The energy for the growth of 
the mode comes from the rotational energy of the star, which acts like a 
pump field. Consequently, the star would spin down, the mode's angular 
momentum with respect to the inertial observer will vanish and thereby 
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halt the instability. It was expected that this instability, called the CFS 
instability [44, 45], might drive the /-modes in a NS unstable, but the star 
should spin at more than 2 kHz (the smallest /-mode frequency) for this 
to happen. Moreover, it has been shown that due to viscous damping in 
the NS fluid the instability would not grow sufficiently large, or sustain for 
long, to be observable (see e.g. Ref. 43). 

It was recently realized [46] that modes originating in current-
multipoles, as opposed to mass-multipoles which lead to the /-mode, could 
be unstable even in a non-spinning NS. These modes, called the r-modes, 
have received a lot of interest because they could potentially explain why 
spin frequencies of NS in low-mass X-ray binaries are all clustered in a 
narrow range of 300-600 Hz or why no NS with spin periods smaller than 
1.24 ms have been found. The role of r-modes in these circumstances is 
as yet inconclusive because the problem involves very complicated astro-
physical processes (magnetic fields, differential rotation, superfluidity and 
superconductivity), microphysics (the precise composition of NS — hyper-
ons, quarks) and full nonlinear physics of general relativity. It is strongly 
expected that r-modes will be emitted by newly formed NS during the first 
few months of their birth [43, 47]. The frequency of these modes will be 
4/3 of the spin frequency of the star and might be particularly important 
if the central object in a low-mass X-ray binary is a strange star [48]. The 
radiation might last for about 300 years and the signal would be detectable 
in initial LIGO with a few weeks of integration. 

4.2.4. NS environment 

A NS with an accretion disc would be spun up due to transfer of AM from 
the disc. Further, accretion builds up density inhomogeneities on the NS 
that could lead to the emission of GW. The resulting radiation reaction 
torque would balance the accretion torque and halt the NS from spinning 
up. It has been argued [49] that GW emission could be the cause for 
spin frequencies of NS in low-mass X-ray binaries to be locked up in a 
narrow frequency range of 300-600 Hz. It is also possible that r-modes 
are responsible for the locking up of frequencies instead, in which case the 
waves would come off at a different frequency [48]. These predictions can 
be tested with advanced LIGO or EGO as Sco-Xl, a nearby low-mass X-ray 
binary, would produce quite a high SNR (marked as A in Fig. 1, bottom 
panel). 
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4.2.5. Spinning NS with asymmetries 

Our galaxy hosts a population of ~ 108 NS and they normally spin at high 
rates (several to 500 Hz) which would induce considerable equatorial bulge 
and flattening of the poles. The presence of a magnetic field may cause 
the star to spin about an axis that is different from the symmetry axis 
leading to a time-varying quadrupole moment [50]. Gravitational waves 
emitted by such a NS, a distance of r = lOkpc from the Earth, will have 
an amplitude [51] h ~ 8 x 10~26/kHz

e-6; where /kHz is the frequency of 
GW in kHz and e_6 is the ellipticity of the star in units of 10~6. Figure 1, 
bottom panel, plots the signal strength expected from a NS with e = 10~6 

at 10 kpc integrated over four months. 
The ellipticity of neutron stars is not known but one can obtain an 

upper limit on it by attributing the observed spin-down rate of pulsars 
as entirely due to gravitational radiation back reaction, namely that the 
change in the rotational energy is equal to GW luminosity. The ellipticity 
of the Crab pulsar inferred in this way is e < 7 x 10 - 4 . The GW amplitude 
corresponding to this ellipticity is h < 10 - 2 4 . Noting that Crab has a spin 
frequency of 25 Hz (GW frequency of 50 Hz), on integrating the signal for 
107 s one obtains h = 3.3 x 10~21 Hz - 1 / 2 , which is easily reachable by LIGO. 
It is unlikely that the ellipticity is so large and hence the GW amplitude is 
probably much less. However, seeing Crab at a hundredth of this ellipticity 
is quite good with advanced LIGO as indicated by a diamond in Fig. 1 
(Note that Crab is at 2 kpc, so with an ellipticity of e = 7 x 10~6 the signal 
strength would be 35 times higher than the NS line.) 

4.3. Stochastic background 

Incoherent superposition of radiation from a population of background 
sources and/or quantum processes in the early Universe [29] might pro­
duce stochastic signals that would fill the whole space. By detecting such a 
stochastic signal we can gain knowledge about the underlying populations 
and physical processes. A network of antennas can be used to discover 
stochastic signals buried under the instrumental noise background. It is 
expected that the instrumental background will not be common between 
two geographically well-separated antennas. Thus, by cross-correlating the 
data from two detectors we can eliminate the background and filter the in­
teresting stochastic signal. However, when detectors are not co-located the 
SNR builds only over wavelengths longer than twice the distance between 
antennas, which in the case of the two LIGO antennas means over frequen-
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cies ^ 40 Hz [52]. The visibility of a stochastic signal integrated over a 
period T and bandwidth / only increases as ( /T) 1 / 4 since cross-correlation 
uses a 'noisy' filter. But the noise in a bandwidth / is \/fSh(f)- Thus, the 
signal effectively builds up as (T/f)1/4. 

4.3.1. Astronomical backgrounds 

There are thousands of white dwarf binaries in our galaxy with their period 
in the range from a few hours to ~ 100 seconds, which is in the frequency 
band of the space-based LISA. Each binary will emit radiation at a single 
frequency, but over an observation period T each frequency bin of width 
A / = 1/T will be populated by many sources. Thus, unless the source 
is nearby it will not be possible to detect it amongst the confusion back­
ground created by the underlying population. However, a small fraction 
of this background population might be detectable as strong foreground 
sources. The parameters of many white dwarfs are known so well that we 
can precisely predict their SNRs in LISA and thereby use them to calibrate 
the antenna. In Fig. 1 the curve labeled WDB (top panel) is the expected 
confusion noise from Galactic white dwarfs [29, 53]. NS and BH popula­
tions do not produce a large enough background to be observable. Note 
that the white dwarf background imposes a limitation on the sources we 
can observe in the frequency region from 0.3 mHz to about 1 mHz — the 
region where we expect smirches to occur. 

4.3.2. Primordial background 

A cosmological background should have been created in the very early 
Universe and later amplified, as a result of parametric amplification, by 
its coupling to the background gravitational field [29]. Imprint on such a 
background are the physical conditions that existed in the early Universe, 
as also the nature of the physical processes that produced the background. 
Observing such a background is, therefore, of fundamental importance as 
this is the only way we can ever hope to directly witness the birth of the 
Universe. The cosmic microwave background, which is our firm proof of 
the hot early phase of the Universe, was strongly coupled to baryons for 
350,000 years after the big bang and therefore the signature of the early 
Universe is erased from it. The GW background, on the other hand, is 
expected to de-couple from the rest of matter 10~24 s after the big bang, 
and would, therefore, carry uncorrupted information about the conditions 
in the very early Universe. 
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The strength of stochastic GW background is measured in terms of the 
fraction flow of the energy density in GW as compared to the critical 
density needed to close the Universe and the amplitude of GW is given 
by [51]: h = 8 x 1CT19 fl1^/'/, for H0 = 65 kms _ 1 Mpc. By integrating 
for 107 s, over a bandwidth / , we can measure a background density at 
! 1 G W ~ 4 x 1(T5 in initial LIGO, 5 x 10"9 in advanced LIGO, 10"10 in 
EGO and 10~10 in LISA (cf. Fig. 1 dot-dashed curves marked J2QW)- In 
the standard inflationary model of the early Universe, the energy density 
expected in GW is ^ G W SS 10~15, and this will not be detected by future 
ground-based detectors or LISA. However, space missions currently being 
studied (DECIGO/BBO) to exploit the astrophysically quiet band of 10_ 2~ 
1 Hz might detect the primordial GW and unveil the origin of the Universe. 

5. Conclusions 

Direct detection of gravitational radiation will be an extremely important 
step in opening a new window on the Universe. Interferometric and reso­
nant mass detectors will play a key role in this step. Gravitational radiation 
they are expected to observe should facilitate both quantitatively and qual­
itatively new tests of Einstein's gravity including the measurement of the 
speed of gravitational waves, and hence (an upper limit on) the mass of the 
graviton, polarization states of the radiation, nonlinear effects of general rel­
ativity untested in solar system or Hulse-Taylor binary pulsar observations, 
uniqueness of axisymmetric spacetimes, the mystery of galaxy formation, 
and so on. 

The future holds other ways of observing cosmic gravitational waves. 
Radio astronomy promises to make it possible to observe both primordial 
gravitational waves and point sources. Polarization spectra of the cos­
mic background radiation will carry the signature of the primordial waves. 
Future radio antennas (most notably, the Square Kilometer Array) will 
monitor tens of thousands of pulsars which can be used as an array of 
high-precision clocks to observe the gravitational Universe. 
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Alber t Einstein: Radical Pacifist and Democra t 
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We draw attention here to the radical political grounding of Einstein's 
pacifism. We also drescribe some less commonly known aspects of his 
commitment to civil liberties, particularly in the context of the anti-left 
hysteria and anti-racism current in the United States of the late 1940s 
and 1950s. We also examine briefly his views on socialism. 

To Einstein himself, his scientific work was always to be at the core of his 

being, the very definition of his persona. Nowhere is this clearer than in 

the substance and style of his Autobiographical Notes tha t he wrote for the 

volume Albert Einstein: Philosopher-Scientist, edited by P. A. Schlipp [1]. 

The note, which Einstein begins by describing it as an 'my own obituary ' , 

has no reference even to the bare facts of his life, apar t from brief com­

ments on his education and the intellectual influences of his childhood and 

youth. It is entirely devoted to a short account of his main work and the 

philosophical and scientific questions tha t led up to them. He interrupts 

a critique of Newtonian physics in the note to remark: ' "Is this supposed 

to be an obituary?" the astonished reader will likely ask. I would like to 

reply: essentially yes. For the essential in the being of a man of my type 

lies precisely in what he thinks and how he thinks, not in what he does or 

suffers.' 

In this account there is not even the briefest mention of his views on any 

subject other than the scientific questions tha t occupied him throughout 

his scientific career. But this stance, tha t virtually dismisses his social 

and political views, belies Einstein's considerable and not inconsequential 

engagement with many of the major social and political issues of his day. 

Einstein's broad involvement in public affairs was undoubtedly par t of the 

reason for the iconic s tatus tha t he was to at tain. While it was Einstein's 
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science that propelled him to international fame, Einstein remained in the 
public eye not in the least due to his regular and willing intervention in 
public affairs. 

Einstein's life spanned some of the most tumultuous years of a turbulent 
century. His annus mirabilis was a decade before the First World War. 
By the time he died, two World Wars had run their tragic course, the 
first atomic bombs had been tested, and global politics was dominated by 
the Cold War that split the world into two camps, armed to their teeth 
with nuclear weapons, that confronted each other across the globe. The 
years between the two World Wars was very much the era of the socialist 
revolution even if most of them were short-lived attempts with the sole 
exception of the Russian revolution that gave rise to the Soviet Union. 
Fascism rose to power and was defeated in the course of the Second World 
War, but not before perpetrating the Holocaust and extracting a grim toll of 
human lives, particularly in Eastern Europe. The socialist wave continued 
in the immediate aftermath of the Second World War, even if its appeal was 
far more dominant in the Third World. A wave of national independence 
movements in the first half of the century ended the old style of colonial 
rule that had held sway over a significant section of the world's population 
even though colonial powers did not cede their powers before sowing the 
seeds of conflicts in areas such as the Middle East that continue to take 
their toll even today. 

In his reactions to these developments and the political and social issues 
that they raised, Einstein did not articulate at length an unified political 
and social philosophy, unlike some of his contemporaries such as the British 
biologist J. D. Bernal. But from the considerable body of his comments, 
observations, letters and interventions in such matters that is available some 
enduring themes are clearly visible. These themes indeed are not mutually 
contradictory and one can certainly discern a certain coherence in Einstein's 
social and political views. 

The hallmark of Einstein's political vision was his deep and abiding 
commitment to the cause of peace. Einstein's contribution to the promotion 
of nuclear disarmament in the post-Second World War period is perhaps 
more generally known. But without examining the record of Einstein's 
pacifism in the context of the First World War, one would miss the radical 
mould in which his pacifism was cast. 

If the Second World War had a clear moral justification, there was little 
such moral underpinning for the one preceding it. The Great War, as 
it was known in its time, was accompanied by an extreme outpouring of 
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nationalist chauvinism in all the countries participating in the war. The 
high human cost of the war, marked by long drawn out positional warfare 
that resulted in huge casualties without any substantial military gain and 
the introduction of chemical warfare in the form of poison gas, bred in turn 
a growing radical opposition to the conflict. Opposition to the war and the 
espousal of pacifism implied a political position that, in part at least, was 
associated with the radical Left in the politics of that era. The most radical 
opposition was in Russia, where withdrawal from the war and the signing 
of peace with Germany was one of the slogans of the radical movement for 
the overthrow of the Tsar. 

Einstein's pacifism first found public expression in this context [2], where 
those opposing the war, on both sides of the conflict, risked being labeled 
traitors and attracted the punitive attention of the state. Despite the risk, 
in October 1914, Einstein joined a small group of academics in the Uni­
versity of Berlin in signing a manifesto calling for European unity. The 
manifesto itself was a counter to another, issued by an array of German in­
tellectuals, including many of Germany's leading scientists (and Einstein's 
colleagues and friends) that defended Germany's conduct of the war in the 
face of allegations of atrocities by the Allies. 

In November 1914, Einstein joined the New Fatherland League, an orga­
nization to promote peace and European unity, as a founding member and 
began to participate in its activities. The organization was subsequently 
banned by the German government in early 1916. It, of course, attracted 
the attention of the police and Einstein's name appeared on the list of 
pacifists that they were to keep a watch on. Remarkably, as Einstein's 
pre-eminent scientific biographer, Abraham Pais, notes, this was also the 
period when Einstein was at the height of his scientific prowess, completing 
his formulation of general relativity, and publishing no less than fifty papers 
during the war years. 

Einstein's political vision, as expressed in this early political activism, 
continued to be further sharpened in the period between the two World 
Wars. By the early 1930s he had moved to a critical view of the nationalist 
state, identifying the maintenance of national armies as playing a key role 
in promoting militarism. In a Gandhian vein, he emphasized the impor­
tance of individual moral commitment as a political act in the resistance to 
war, urging individual refusal to participate in military service, including 
compulsory military service in peace-time [3]. Einstein's perception of na­
tionalism as providing the ideological justification for militarism and thus 
encouraging the preparedness for war, was to find later expression in his 
calls for a world government to halt the spread of nuclear weapons. 
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Nothing expresses more forcefully the radical, indeed revolutionary, cast 
of Einstein's pacifism than the following words from a 1931 article: "There 
are two ways of resisting war — the legal way and the revolutionary way. 
The legal way involves the offer of alternative service, not as a privilege for 
a few, but as a right for all. The revolutionary view involves uncompromis­
ing resistance, with a view to breaking the power of militarism in time of 
peace or the resources of the state in time of war ... both tendencies are 
valuable . . . certain circumstances justify the one and certain circumstances 
the other." (emphasis added) [4]. 

Einstein certainly did not suffer from the weakness of converting his 
own beliefs and opinions into dogma. In the face of Nazism, he recognized 
the need to resist it by force of arms if necessary. With the accession of 
Hitler to power in Germany, he recognized the need of other European 
nations to arm themselves to resist fascism. If in his earlier emphasis on 
the importance of individual commitment to refusing military service he 
had echoed Gandhian views, he made a sharp departure from it now with 
his view that conscientious objection was an inappropriate policy in the 
face of the fascist threat. 

Einstein returned to his pacifism after the war. Deeply unhappy at the 
bombing of Hiroshima and Nagasaki (he was to say later that Roosevelt 
would not have permitted it if he had been alive [5]), Einstein returned more 
insistently than ever before to the theme of ensuring peace in the future by 
handing over the control of nuclear weapons to a supranational government 
or organization. Einstein initially hopefully urged the government of the 
United States in this direction, appealing for co-operation with the Soviet 
Union, and was even willing to countenance the manufacture of nuclear 
weapons by the U.S. in the interim period. But he was soon disappointed 
and turned sharply critical of United States policy. Despite his criticism 
of the Soviet opposition to his proposals, he nevertheless acknowledged the 
failure of the United States to deliver any credible assurance to the Soviet 
Union regarding its security that would have encouraged the latter to co­
operate in the search for some means of supranational control of nuclear 
weapons. He was particularly critical of the unwillingness of the United 
States to guarantee the 'no first use' (as it would be known in current 
nuclearspeak) of nuclear weapons. 

By 1952, Einstein had returned once again to an absolute pacifism, more 
absolute perhaps than his position in his inter-war years [6]. He argued for 
the radical abolition of all wars and the threat of wars by agreement between 
nations as the only solution to the problem of peace rather than trying to 
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limit the means by which wars were waged. "One has to be resolved," he 
wrote, "not to let himself be forced into actions that run counter to this 
goal." As for the means of achieving this goal, he turned once again to the 
example of Gandhi's leadership of the Indian freedom struggle, citing it as 
an example of "how a will governed by firm conviction is stronger than a 
seemingly invincible material power." 

We may note here that Einstein certainly considered that scientists and 
technologists had a particular moral responsibility, especially in the era of 
nuclear weapons. Einstein himself was at the forefront in mobilizing his 
scientific colleagues on questions of peace and disarmament. But it is also 
evident that his own pacifism was rooted in a political and moral standpoint 
that went much deeper than the question of the social responsibility of 
scientists and technologists alone. 

In the light of Einstein's radical pacifism it is unsurprising that Einstein, 
as the years went by, was an increasingly powerful voice in defending the 
rights of individuals and groups against the power of the state. Einstein 
was not in the least hesitant to use his considerable prestige and influence 
to speak up on behalf of those whom he saw as standing up to the tyranny 
of the state. One of the first such interventions by Einstein was his appeal 
on behalf of Priedrich Adler, a notable radical socialist leader in his day 
and a fellow-student and friend from Zurich. In 1916 Adler assassinated 
the Minister-President of Austria, notorious for his authoritarian rule. Ein­
stein readily offered to intervene on his behalf [7] and publicly defended his 
friend [8]. 

Einstein's readiness to defend the right to the freedom of thought and 
expression was to find full expression in his defence of those who were the 
targets of the anti-Communist witch-hunting in the United States of the 
McCarthy era. Einstein's defence of the American Left in a period of sus­
tained attack on their rights is one of the many examples from this period. 
Einstein did not hesitate to be publicly associated with known American 
communists such as the singer Paul Robeson and the historian and civil 
rights leader W. E. B. Du Bois [9]. Einstein turned again to Gandhi and 
advocated "revolutionary non-cooperation in the sense of Gandhi's" [10] 
as the only option for the intellectuals who were sought to be intimidated 
by being hauled up before U.S. Congressional committees. If intellectuals 
were not prepared to resist this intimidation, "then the intellectuals of this 
country deserve nothing better than the slavery that is intended for them." 

Einstein also devoted considerable attention to the question of racism 
[9, 11]. In 1946, a year marked by racist incidents including several 
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lynchings involving returning black American soldiers, he despatched a 
letter to President Truman, asking for the passage of an anti-lynching law. 
Einstein's home in the United States, Princeton, was itself steeped in 
racism. As late as 1942, Princeton University refused to admit black 
students as white Southern students would find it offensive. In this at­
mosphere, Einstein made his own anti-discrimination stance amply clear. 
When in 1937, a noted black opera singer could not find accomodation in 
Princeton town, Einstein invited her home to stay with him, thus beginning 
a friendship that was to continue to the end of Einstein's life. 

As he had demonstrated continually from the days of the First World 
War, Einstein never lacked in personal courage when it came to speaking 
up for freedom. If on the one hand his own enormous prestige gave him 
ample protection, Einstein on the other hand went farther than most of 
his eminent contemporaries in speaking up against any form of authoritar­
ianism. Einstein's prestige was unable to protect him only when it came 
to Nazism, leading to Einstein's early departure from Germany before the 
Nazis seized power. In the United States, Einstein was often the subject of 
right-wing attacks in the United States and the target of editorial criticism 
even in newspapers such as the New York Times and the Washington Post 
in the McCarthy era. As is publicly known today, the Federal Bureau of 
Investigation of the United States Government, under its notorious head, 
J. Edgar Hoover, continually spied on him throughout his entire life in the 
United States [12]. It is unclear whether Einstein was aware of the FBI's 
surveillance, but it undoubtedly had little effect on him or his political 
activism. 

Einstein's courage in defending the right to the freedom of expression 
is all the more remarkable for the great lack of it that characterized aca­
demic life, particularly in the sciences, in the United States even in the 
post-McCarthy era. In Einstein's own discipline of physics, the leading fig­
ures of the next generation were noteworthy for their political conformism 
and readiness to collaborate with U.S. militarism. Even after the upheavals 
of 1968, it was not until the disastrous end of the Vietnam war that at­
titudes began to change. Only in the era of the Star Wars programme, 
after the great anti-nuclear protests of the 1970s, did opposition to nuclear 
militarism became respectable again in mainstream physics circles in the 
United States. 

Einstein's radical pacifism extended also to a close interest in social­
ist political thought. The Zurich of Einstein's student days was home to 
an array of socialist leaders and thinkers, many of them exiles from their 
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homeland. Socialism was very much in the air as an ideology and Einstein 
must not have been unaware of the different currents of political thought 
swirling around him. His friendship with Friedrich Adler, referred to ear­
lier, would have certainly occassioned some exposure to socialist thought, 
since Friedrich, apart from being an active socialist himself, was the son of 
one of the leading Austrian social-democrats of his day, Victor Adler [13]. 

Einstein was certainly sympathetic to the socialist experiment in the 
Soviet Union. For almost a decade he was part of the central committee of 
a German organization to promote public knowledge about developments 
in the Soviet Union, the "Society of German friends of the new Russia" 
[14]. Though Einstein appears to have never taken the Soviet state to 
task publicly in strong terms on the question of freedom of speech and 
expression, it is likely that he would have been critical of the Soviet state 
on that score. But nevertheless he was clearly attracted to the economic 
aspects of socialist thought. The most detailed account of Einstein's views 
on socialism comes from the little essay titled 'Why Socialism' that he wrote 
for the inaugural number of the American Marxist journal Monthly Review 
in 1949 [15, 16]. 

Einstein's presence as an eminent contributor in that inaugural issue is 
itself an interesting illustration of the close contact that Einstein maintained 
with left-wing political circles [9]. The journal was founded by Leo Huber-
man and Paul Sweezy, who had both participated in the U.S. presidential 
campaign of the Progressive Party candidate Henry Wallace in 1948. The 
party, formed from the left-wing of Roosevelt's New Deal coalition, had a 
number of those who felt that a clearer socialist position should have been 
articulated in the campaign and the founders of the Monthly Review were 
among these. Einstein personally endorsed and supported the Wallace cam­
paign. He was invited to contribute to the inaugural number of the new 
journal by Huberman's friend Otto Nathan, who was himself a left-wing 
social democrat and a close friend of Einstein (Otto Nathan and Einstein's 
secretary Helen Dukas were the two trustees named in Einstein's will). 

It is clear from Einstein's essay that he is attracted by the socialist cri­
tique of capitalism. In characteristic fashion though, Einstein's attraction 
to this critique is founded in his preoccupation with the role of the indi­
vidual in society. For Einstein, the individual is, as he argues at length 
in the first part of the essay, very much a social being. While this fact is 
unalterable, society itself and thus the 'cultural constitution' that individ­
uals acquire from society (as distinct from the 'biological constitution' that 
human beings acquire from nature as a species) is susceptible to change. 
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It is this that gives hope that human life may be made more tolerable by 
striving to change it in a desirable fashion. 

In Einstein's view the "essence of the crisis of our time" is rooted in 
the individual's relationship to society. Though individuals are ever more 
dependent on society as a whole and ever more conscious of this dependence, 
they are unable to perceive this as a 'positive asset' or a 'protective force'. 
Instead this relationship is perceived as a threat to one's natural rights 
or even economic existence, leading to a progressive deterioration of an 
individual's social drives. The real source of this alienation, this "crippling 
of the social consciousness of individuals" as Einstein puts it, is in his 
view due to the economic anarchy of capitalism and the attitudes that 
it promotes. Only the elimination of the anarchy of capitalism by the 
establishment of a socialist economy, together with an educational system 
that is oriented towards social goals rather than inculcating an "exaggerated 
competitive attitude" could solve the crisis of the individual in society. 

Einstein is careful to note that socialism does not automatically fol­
low once the anarchy of capitalism is eliminated by the establishment of 
a planned economic system that produces for use and not for profit. For 
Einstein, as he indicates in the closing lines of the essay, the problem of 
countering the power of the bureaucracy associated with a planned econ­
omy and safeguarding the rights of the individual remains an unsolved one. 
This is clearly a reference to the Soviet Union of his time and his view that 
socialism, in the sense of doing away with the alienation of the individual 
in society, was yet to be established there. 

The other notable political issue that occupied Einstein was the Pales­
tine question [17]. Einstein had considerable sympathy for the idea of a 
Jewish homeland even before the Second World War and was an active 
supporter of the Zionism of the pre-War period. Though he was born into 
an irreligious Jewish family, the adult Einstein clearly felt his Jewishness 
keenly. Einstein always maintained a distanced and objective view of other 
denominational religions. But he tended to a softer approach on Judaism, 
viewing it on occasion as rather more of a cultural expression of a particu­
lar community than a religion. In this period he was also concerned with 
promoting Jewish-Arab unity, spoke out against Jewish extremism and was 
not in favor of the partition of Palestine. 

Subsequent to the horror of the Holocaust (among the victims were 
several of his relatives and two of his cousins), he was an even more ac­
tive supporter of the idea of a Jewish homeland in Palestine. But as late 
as 1946-1947, Einstein continued to argue for a Palestine that would be 
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governed under the trusteeship of the United Nations with a constitution 
that guaranteed that neither the Jews nor the Arabs would outvote each 
other and disclaimed any sympathy for the idea of an exclusive Jewish state. 
Paradoxically though, at the same time he maintained his close relations 
with the Zionist leadership that certainly had a different agenda. 

Subsequently when the United Nations ended the British mandate in 
Palestine and violence broke out between Jews and Arabs, Einstein ap­
pealed for an end to fanaticism and violence. With the creation of the 
state of Israel, Einstein accepted it as a fait accompli, and worked to as­
sist the new state, particularly in its scientific development. Mercifully, 
Einstein passed away before the Palestine question acquired the complex­
ity that we see today. 

The record of Einstein's involvement in public affairs and his engage­
ment with the foremost political and social questions of his age is one of 
remarkable consistency and courage. As in his science, he was not to choose 
the comfort of conformism. In the pursuit of his political commitments, 
Einstein was willing and able to engage with the world at large in a man­
ner that had few parallels amongst his colleagues. Einstein, as numerous 
personal accounts testify, was as at ease in the company of radical political 
activists who devoted their lives to the cause of the underprivileged, as he 
was in the company of statesmen and world leaders. 

From the question of world peace to the crisis of the individual's relation 
to society under capitalism, many of the political and social issues that 
Einstein sought to address continue to be important questions even today. 
The manner in which he attempted to engage with these issues is no less 
inspiring today than it was to the world in his day and age. 
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