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(voltage distribution) is of Laplace type for the source-free en-
vironment and of Poisson type in regions containing sources.
The solution of such second-order partial differential equa-
tions can be readily obtained using the FDM.

Although the application of FDM to homogeneous materi-
als is simple, complexities arise as soon as inhomogeneity and
anisotropy are introduced. The following discussion will pro-
vide essential details on how to overcome any potential diffi-
culties in adapting FDM to boundary-value problems involv-
ing such materials. The analytical presentation will be
supplemented with abundant illustrations that demonstrate
how to implement the theory in practice. Several examples
will also be provided to show the complexity of problems that
can be solved by using FDM.

BRIEF HISTORY OF FINITE DIFFERENCING
IN ELECTROMAGNETICS

The utility of the numerical solution to partial differential
equations (or PDEs) utilizing finite difference approximation
to partial derivatives was recognized early (1). Improvements
to the initial iterative solution methods, discussed in Ref. 1,
by using relaxation were subsequently introduced (2,3). How-
ever, before digital computers became available, the applica-
tions of the FDM to the solution of practical boundary-value
problems was a tedious and often impractical task. This was
especially true if high level of accuracy were required.

With the advent of digital computers, numerical solutionBOUNDARY-VALUE PROBLEMS
of PDEs became practical. They were soon applied to various
problems in electrostatics and quasistatics such as in the

Many problems in electrical engineering require solution of
analysis of microstrip transmission lines (4), among many

integral or differential equations which describe physical phe-
others. The FDM found quick acceptance in the solution of

nomena. The choice whether integral or differential equations
boundary-value problems within regions of finite extent, and

are used to formulate and solve specific problems depends on
efforts were initiated to extend their applicability to open re-

many factors, whose discussion is beyond the scope of this
gion problems as well (5).

article. This article strictly concentrates on the use of the fi-
As a point of departure, it is interesting to note that some

nite-difference method (FDM) in the numerical analysis of
of the earliest attempts to obtain the solution to practical

boundary-value problems associated with primarily static and
boundary-value problems in electrostatics involved experi-

to some extent quasistatic electromagnetic (EM) fields. Al-
mental methods. They included the electrolytic tank approach

though all examples presented herein deal with EM-related
and resistance network analog technique (6), among others,

engineering applications, some numerical aspects of FDM are
to simulate the finite difference approximations to PDEs.

also covered. Since there is a wealth of literature in numerical
Finally, it should be mentioned that in addition to the ap-

and applied mathematics about the FDM, little will be said
plication of FDM to static and quasistatic problems, the FDM

about the theoretical aspects of finite differencing. Such is-
was also adapted for use in the solution of dynamic, full-wave

sues as the proof of existence or convergence of the numerical
EM problems in time and frequency domain. Most notably,

solution will not be covered, while the appropriate references
the use of finite differencing was proposed for the solution to

will be provided to the interested reader. Instead, the cover-
Maxwell’s curl equations in the time domain (7). Since then,

age of FDM will deal with the details about implementation
a tremendous amount of work on the finite-difference time-

of numerical algorithms, compact storage schemes for large
domain (or FD-TD) approach was carried out in diverse areas

sparse matrices, the use of open boundary truncation, and ef-
of electromagnetics. This includes antennas and radiation,

ficient handling of inhomogeneous and anisotropic materials.
scattering, microwave integrated circuits, and optics. The in-

The emphasis will be placed on the applications of FDM to
terested reader can consult the authoritative work in Ref. 8,

three-dimensional boundary-value problems involving objects
as well as other articles on eigenvalue and related problems

with arbitrary geometrical shapes that are composed of com-
in this encyclopedia, for further details and additional refer-

plex dielectric materials. Examples of such problems include
ences.

modeling of discrete passive electronic components, semicon-
ductor devices and their packages, and cross-talk in multicon-
ductor transmission lines. When the wavelength of operation ENGINEERING BASICS OF FINITE DIFFERENCING
is larger than the largest geometrical dimensions of the object
that is to be modeled, static or quasistatic formulation of the It is best to introduce the FDM for the solution of engineering

problems, which deal with static and quasistatic electromag-problem is appropriate. In electrostatics, for example, this im-
plies that the differential equation governing the physics netic fields, by way of example. Today, just about every ele-
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mentary text in electromagnetics—as well as newer, more nu- On the other hand, when the boundary-value problem in-
cludes inhomogeneous dielectrics (i.e., �r varying from pointmerically focused introductory EM textbooks—will have a

discussion on FDM (e.g., pp. 241–246 of Ref. 9 and Section to point in space), the surface integral equation methods are
no longer applicable (or are impractical). Instead, such prob-4.4 of Ref. 10) and its use in electrostatics, magnetostatics,

waveguides, and resonant cavities. Regardless, it will be ben- lems can be formulated using volumetric PDE solvers such as
the FDM.eficial to briefly go over the basics of electrostatics for the

sake of completeness and to provide a starting point for gen- It is important to note that similar considerations (to those
stated above) also apply to the solution of the Poisson equa-eralizing FDM for practical use.
tion. In this case, in addition to the integration over the con-
ductor boundaries, integration over the actual sources (chargeGOVERNING EQUATIONS OF ELECTROSTATICS
density) must also be performed. The presence of the sources
has the same effects on PDEs and FDM, as their effects mustThe analysis of electromagnetic phenomena has its roots in
be taken into account at all points in space where they exist.the experimental observations made by Michael Faraday.

These observations were cast into mathematical form by
Direct Discretization of Governing EquationJames Clerk Maxwell in 1873 and verified experimentally by

Heinrich Hertz 25 years later. When reduced to electrostatics, To illustrate the utility and limitations of FDM and to intro-
they state that the electric field at every point in space within duce two different ways of deriving the numerical algorithm,
a homogeneous medium obeys the following differential equa- consider the geometry shown in Fig. 1. Note that for the sake
tions (9): of clarity and simplicity, the initial discussion will be re-

stricted to two dimensions.
The infinitely long, perfectly conducting circular cylinder∇ ×

→
E = 0 (1)

in Fig. 1 is embedded between two dielectrics. To determine
the potential everywhere in space, given that the voltage on∇ · ε0εr

→
E = ρv (2)

the cylinder surface is V0, the FDM will be used. There are
where �v is the volumetric charge density, �0 (�8.854 � 10�12

two approaches that might be taken to develop the FDM algo-
Farads/m) is the permittivity of freespace, and �r is the rela- rithm. One approach would be to solve Laplace (or Poisson)
tive dielectric constant. The use of the vector identity � 	 equations in each region of uniform dielectric and enforce the
�
 � 0 in Eq. (1) allows for the electric field intensity, E

�

boundary conditions at the interface between them. The other
(volts/m), to be expressed in terms of the scalar potential E

�

� route would involve development of a general volumetric algo-
��
. When this is substituted for the electric field in Eq. (2), rithm, which would be valid at every point in space, including
a second-order PDE for the potential 
 is obtained: the interface between the dielectrics. This would involve seek-

ing the solution of a single, Laplace-type (or Poisson) differen-∇ · (εr∇φ) = −ρv/ε0 (3)
tial equation:

which is known as the Poisson equation. If the region of
space, where the solution for the potential is sought, is
source-free and the dielectric is homogeneous (i.e., �r is con-
stant everywhere), Eq. (3) reduces to the Laplace equation
�2
 � 0.

The solution to the Laplace equation can be obtained in

∇ · (εr(x, y)∇φ) = εr(x, y)

(
∂2φ

∂x2 + ∂2φ

∂y2

)

+
(

∂εr

∂x
∂φ

∂x
+ ∂εr

∂y
∂φ

∂y

)
=


−

0

ρ(x, y)

ε0

(4)

several ways. Depending on the geometry of the problem, the
solution can be found analytically or numerically using inte-

which is valid everywhere, except for the surface of the con-gral or differential equations. In either case, the goal is to
ductor.determine the electric field in space due to the presence of

The numerical approach to solving Eq. (4) starts with thecharged conductors, given that the voltage on their surface is
approximation to partial derivatives using finite differences.known. For example, if the boundaries of the charged conduc-

tors are simple shapes, such as a rectangular box, circular
cylinder, or a sphere, then the boundary conditions (constant
voltage on the surface) can be easily enforced and the solution
can be obtained analytically. On the other hand, when the
charged object has an irregular shape, the Laplace equation
cannot be solved analytically and numerical methods must be
used instead.

The choice as to whether integral or differential equation
formulation is used to determine the potential heavily de-
pends on the geometry of the boundary-value problem. For
example, if the charged object is embedded within homoge-
neous medium of infinite extent, integral equations are the
preferable choice. They embody the boundary conditions on

y

x

V0

a
1

1

the potential 
 at infinity and reduce the numerical effort to
finding the charge density on the surface of the conductor (see Figure 1. Charged circular cylinder embedded between two differ-

ent dielectrics.Sections 5.2 or 4.3 of Ref. 9 or 10 for further details).
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In the above equation, the Y factors contain the material pa-
rameters and distances between various adjacent grid points.
They are expressed below in a compact form:
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Figure 2. ‘‘Staircase’’ approximation to boundary of circular cylinder
and notation for grid dimensions.

This requires some form of discretization for the space (area
or volume in two or three dimensions) where the potential is
to be computed. The numerical solution of the PDE will lead
to the values of the potential at a finite number of points
within the discretized space. Figure 2 shows one possible dis-
cretization scheme for the cylinder in Fig. 1 and its surround-
ings. The points form a two-dimensional (2-D) grid and they

Yj±1 = 2
(hj + hj−1)2
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need not be uniformly spaced. Note that the grid points,
where the potential is to be computed, have to be defined all Yi, j = Yi+1, j + Yi−1, j + Yi, j+1 + Yi, j−1 (10)

along the grid lines to allow for properly approximating the
It is important to add that in deriving the above equations, aderivatives in Eq. (4). In other words, the grid lines cannot
particular convention for associating the medium parametersabruptly terminate or become discontinuous within the grid.
to individual grid cells was employed. Specifically, it was as-Using finite differences, the first-order derivative at any
sumed that the medium parameter values of the entire gridpoint in the grid can be approximated as follows:
cell were associated with (or assigned to) the lower left corner
of that cell. For example, �i, j is assumed to be constant over
the shaded grid cell area shown in Fig. 2, while �i, j�1 is con-
stant over the hatched area, which is directly below.

Observe what are the consequences of converting the con-
tinuous PDE given in Eq. (4) to its approximate discrete form
stated in Eq. (7). First, the boundary-value problem over the
continuous space, shown in Fig. 1, was ‘‘mapped’’ onto a dis-

(
∂φ

∂x

)
i, j

≈
(φI1 ,J − φI−1,J)

(hi + hi−1)/2

=
[(
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(5)

crete grid (see Fig. 2). Clearly, if the number of grid points
with the help of intermediate points I, J (black circles in Fig. increases, then spacing between them will become smaller.
2). The approximation for the second derivatives can be ob- This provides a better approximation to the actual continuous
tained in a similar manner and is given by problem. In fact, in the limit as the number of grid point

reaches infinity, the discrete and continuous problems be-
come identical.

In addition to illustrating the ‘‘mapping’’ of a continuous
problem to its discrete analog, Fig. 2 also clearly demon-
strates one of FDM’s undesirable artifacts. Note that objects
with smooth surfaces are replaced with a ‘‘staircased’’ approx-
imation. Obviously, this approximation can be improved by
reducing the discretization grid spacing. However, this will

[
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× 1
(hi + hi−1)/2

(6)

increase the number of points where the potential has to be
calculated, thus increasing the computational complexity ofOnce all derivatives in Eq. (4) are replaced with their respec-

tive finite-difference approximations and all similar terms are the problem. One way to overcome this is to use a nonuniform
grouped together, the discrete version of Eq. (4) takes on the discretization, as depicted in Fig. 2. Specifically, finer discreti-
following form: zation can be used in the region near the smooth surface of

the cylinder to better approximate its shape, followed by grad-
ually increasing the grid point spacing between the cylinder
and grid truncation boundary.

At this point, it is also appropriate to add that other, more
rigorous methods have been proposed for incorporating
curved surfaces into the finite-difference type of algorithms.
They are based on special-purpose differencing schemes,

φi, j ≈ 1
Yi, j

(Yi+1φi+1, j + Yi−1φi−1, j + Yj+1φi, j+1 + Yj−1φi, j−1)

+




0

(ρi, j + ρi−1, j + ρi, j−1 + ρi−1, j−1)

ε0

(7)
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which are derived by recasting the same PDEs into their To illustrate this ‘‘indirect’’ discretization procedure in 2-
D, consider surface SUi, j (that is, just a contour) shown in Fig.equivalent integral forms. They exploit the surface or contour

integration and are used to replace the regular differencing 3, which completely encloses grid point i, j. The integral in
Eq. (11) reduces to four terms, each corresponding to one ofalgorithm on the curved surfaces or contours of smooth ob-

jects. This approach was already implemented for the solution the faces of SUi, j. For example, the integral over the right edge
(or face) of SUi, j can be approximated asof dynamic full-wave problems (11) and could be adapted to

electrostatic boundary-value problems as well.
Finally, Eq. (7) also shows that the potential at any point

in space, which is source-free, is a weighted average of the
φi+1, j − φi, j

hi

(hj−1

2
εi, j−1 + hj

2
εi, j

)
(12)

potentials at the neighboring points only. This is typical of
PDEs, because they only represent physical phenomena lo- When the remaining integrals are evaluated and the like
cally—that is, in the immediate vicinity of the point of inter- terms are grouped together, the final form of the ‘‘indirect’’
est. As will be shown later, one way to ‘‘propagate’’ the local FDM algorithm is obtained. This algorithm is identical in
information through the grid is to use an iterative scheme. In form to that given earlier in Eq. (7). However, the weighting
this scheme, the known potential, such as V0 at the surface of Y factors are different from those appearing in Eqs. (8) and
the conducting cylinder in Fig. 1, is carried throughout the (9). Their complete expressions are given by
discretized space by stepping through all the points in the
grid. The iterations are continued until the change in the po-
tential within the grid is very small. Y{

i+1
i−1

} =
(

hj−1ε
{

i, j−1
i−1, j−1

} + hjε
{

i, j
i−1, j

}
)

1
2h{

i
i−1

} (13)

‘‘Indirect’’ Discretization of Governing Equation
with Yi, j being the sum of all other Y’s, the same as beforeAs shown in the previous section, appropriate finite-difference
[see Eq. (10)].approximations were required for the first- and second-order

It should be added that this approach has been suggestedderivatives in order to convert Eq. (4) to a discrete form. In-
several times in the literature—for example, in Refs. 12 andtermediate points (I, J) were used midway between the regu-
13. Therein, Eq. (11) was specifically used to enforce thelar grid nodes for obtaining average values of the potential,
boundary conditions at the interface between different dielec-its first derivatives, and dielectric constants to facilitate the
trics only in order to ‘‘connect’’ FDM algorithms based on thederivation of the final update equation for the potential. This
Laplace equation for the homogeneous regions. However,can be avoided and an alternative, but equally valid finite
there is no reason not to use Eq. (11) at every point in space,differencing scheme to that given in Eq. (7), which for the
especially if the boundary-value problem involves inhomoge-sake of brevity is restricted to the Laplace equation only, can
neous media. This form of FDM scheme is completely analo-be obtained. The first step is to simplify Eq. (4) by recasting
gous to that presented in the previous section. In fact, it is ait into an integrodifferential form. To achieve this, Eq. (4)
little simpler to derive and involves a fewer number of arith-should be integrated over a volume, which completely en-
metic operations.closes any one of the grid nodes. This will be referred to as

the volume of the unit cell (VU), which is bounded by surface
Numerical Implementation in Two-DimensionsSU (see Fig. 3). Stoke’s theorem is applied to replace the vol-

ume integration by a surface integral: There are several important numerical issues that must be
addressed prior to implementing FDM on the computer. Such
questions as how to terminate the grid away from the region
of interest and which form of the FDM algorithm to choose
must be answered first. The following discussion provides
some simple answers, postponing the more detailed treatment

∫
VU

∇ · (εr(x, y)∇φ) dv =
∮

SU

(εr(x, y)∇φ) · n̂ ds

=
∮

SU

εr(x, y)
∂φ

∂n
ds = 0

(11)

until later.
where n̂ is the unit vector, normal to SU and pointing out of it.

Simplistic Grid Boundary Truncation. Clearly, since even to-
day’s computers do not have infinite resources, the computa-
tional volume (or space) must somehow be terminated (see
Fig. 4). The simplest approach is to place the truncation
boundary far away from the region of interest and to set the
potential on it equal to zero. This approach is valid as long as
the truncation boundary is placed far enough not to interact
with the charged objects within, as for example the ‘‘stair-
cased’’ cylinder shown in Fig. 4. The downside of this ap-
proach is that it leads to large computational volumes,
thereby requiring unnecessarily high computer resources.
This problem can be partly overcome by using a nonuniform
grid, with progressively increasing spacing from the cylinder
toward the truncation boundary. It should be added that

hi –1

hj –1

hj

hi

i

j

SU 

VU 

there are other ways to simulate the open-boundary condi-
tions, which is an advanced topic and will be discussed later.Figure 3. Closed surface completely enclosing a grid node.
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criterion, the following approach, which seems to work quite
well, is presented instead. As stated below, it is based on cal-
culating the change in the potential between successive itera-
tions at every point in the grid and comparing the maximum
value to the (user-selectable) error criterion:

ERRmax =
Nx∑
i=1

Ny∑
j=1

max(|φp+1
i, j − φp

i, j |) (15)

Regardless of it being simple, the redeeming feature of this
approach is that the error is computed globally within the
grid, rather than within a particular single grid node. The
danger in monitoring the convergence of the algorithm at a
single node may lead to premature termination or to an un-
necessarily prolonged execution.

Now that an error on which the algorithm termination cri-
terion is based has been defined, the iteration process can be
initiated. Note that there are several ways to ‘‘march’’
through the grid. Specifically, the updating of the potential
may be started from point A, as shown in Fig. 4, and end at
point B, or vice versa. If the algorithm works in this manner,
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the solution will tend to be artifically ‘‘biased’’ toward one re-
Figure 4. Complete discretized geometry and computational space gion of the grid, with the potential being ‘‘more converged’’ in
for cylinder in Fig. 2. regions where the iteration starts. The obvious way to avoid

this is to change the direction of the ‘‘marching’’ process after
every few iterations. As a result, the potential will be updated

Iteration-Based Algorithm. Several iteration methods can be throughout the grid uniformly and will converge at the same
applied to solve Eq. (7), each leading to different convergence rate. Note from Fig. 4 that the potential only needs to be com-
rates (i.e., how fast an acceptable solution is obtained). A com- puted at the internal points of the grid, since the potential at
plete discussion of this topic, as well as of the accuracy of the the outer boundary is (for now) assumed to be zero. Moreover,
numerical approximations in FDM, appears in Ref. 14 and it should also be evident that the potential at the surface of
will not be repeated here. The interested reader may also find the cylinder, as well as inside it, is known (V0) and need not
Ref. 15 quite useful, because it covers such topics in more be updated during the iteration process.
rigorous detail and includes a comprehensive discussion on
the proof of the existence of the finite-differencing solution to Matrix-Based Algorithm. Implementation of the finite-dif-
PDEs. However, for the sake of brevity, this article deals with ference algorithms is not restricted to relaxation techniques
the most popular and widely used approach, which is called only. The solution of Eq. (4) for the electrostatic potential can
successive overrelaxation (SOR) (see, e.g., Ref. 14). also be obtained using matrix methods. To illustrate this, the

SOR is based on Eq. (7), which is rearranged as FDM approximation to Eq. (4)—namely, Eq. (7)—will be re-
written as

(Yi+1φi+1, j + Yi−1φi−1, j + Yj+1φi, j+1 + Yj−1φi, j−1)

− Yi, jφi, j ≈ 0 (16)

The above equation must be enforced at every internal point
in the grid, except at the surface of and internal to the con-
ductors, where the potential is known (V0). For the particular

φp+1
i, j ≈ φp

i, j + �

Yi, j
(Yi+1φ

p
i+1, j + Yi−1φ

p+1
i−1, j + Yj+1φ

p
i, j+1

+ Yj−1φp+1
i, j−1 − Yi, jφ

p
i, j )

= (1 − �)φp
i, j + �

Yi, j
(Yi+1φ

p
i+1, j + Yi−1φ

p+1
i−1, j

+ Yj+1φ
p
i, j+1 + Yj−1φ

p+1
i, j−1 )

(14)

example of the cylinder shown in Fig. 4, these points are num-
bered 1 through 92. This implies that there are 92 unknowns,In the above equation, superscripts p and p�1 denote the
which must be determined. To accomplish this, Eq. (16) mustpresent and previous iteration steps and � is the so-called
be enforced at 92 locations in the grid, leading to a system ofoverrelaxation factor, whose value can vary from 1 to 2. Note
92 linear equations that must be solved simultaneously.that � accelerates the change in the potential from one itera-

To demonstrate how the equations are set up, considertion to the next at any point in the grid. It can be a constant
nodes 1, 36, and 37 in detail. At node 1 (where i � j � 2), Eq.throughout the entire relaxation (solution) process or be vary-
(16) reduces toing according to some heuristic scheme. For example, it was

found that the overall rate of convergence is improved by set-
ting � near 1.8 at the start of the iteration process and gradu- Y i

3φ12 + Y j
3 φ2 − Y2,2φ1 = 0 (17)

ally reducing it to 1.2 with the numbers of iterations.
At this point, the only remaining task is to define the ap- where the fact that the potential at the outer boundary nodes

(i, j) � (1, 2) and (2, 1) is zero was taken into account andpropriate criteria for terminating the FDM algorithm. Al-
though there are rigorous ways of selecting the termination superscripts i and j on Y’s were introduced as a reminder
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whether they correspond to Yi�1 or Yj�1. In addition, the poten- which can be written more compactly as
tial at nodes (i, j) � (2, 2), (3, 2) and (2, 3) was also relabeled
as 
1, 
2, and 
12, respectively. Similarly, at nodes 36 (i, j � [Y ][φ] = [V0] (21)
4, 5) and 37 (i, j � 5, 5), Eq. (16) becomes

Clearly, the coefficient matrix of the above system of equa-
tions is very sparse, containing few nonzero elements. In fact,Y i

5φ37 + Y i
3φ35 + Y j

6 φ44 + Y j
4 φ25 − Y4,5φ36 = 0 (18)

for boundary-value problems in two dimensions with isotropic
dielectrics, there will be at most five nonzero terms in a singleand
row of the matrix. Although standard direct matrix solution
methods, such as Gauss inversion of LU decomposition andY i

4φ36 + Y j
4 φ26 − Y5,5φ37 = −Y i

6V0 − Y j
6 V0 = V37 (19)

back-substitution, can be applied to obtain the solution to Eq.
(20), they are wasteful of computer resources. In addition towhere in Eq. (19) the known quantities (the potentials on the
performing many unnecessary numerical operations withsurface of the cylinder at nodes 5, 6 and 6, 5) were moved to
zeroes during the solution process, a large amount of memorythe right-hand side.
has to be allocated for storing the coefficient matrix. This canSimilar equations can be obtained at the remaining free
be avoided by exploiting the sparsity of the coefficient matrix,grid nodes where the potential is to be determined. Once Eq.
using well-known sparse matrix storage techniques, and tak-(16) has been enforced everywhere within the grid, the re-
ing advantage of specialized sparse matrix algorithms for di-sulting set of equations can be combined into the following
rect (16) or iterative (17–19) solution methods.matrix form:

Since general-purpose solution techniques for sparse linear
equation systems are well-documented, such as in Refs. 16–
19, they will not be discussed here. Instead, the discussion
will focus on implementation issues specific to FDM. In par-
ticular, issues related to the efficient construction of the [Y]
matrix in Eq. (20) and to the sparsity coding scheme are em-
phasized.

In the process of assembling [Y], as well as in the postpro-
cessing computations such as in calculating the E field, it is
necessary to quickly identify the appropriate entries 
k within
the vector [
], given their locations in the grid (i, j). Such
searching operations are repeated many times, as each ele-
ment of [Y] is stored in its appropriate location. Note that the
construction of [Y], in large systems (500–5000 equations),
may take as much CPU time as the solution itself. Thus, opti-
mization of the search for index locations is important.

One approach to quickly find a specific number in an array
of N numbers is based on the well-known Bisection Search
Algorithm (Section 3.4 in Ref. 17). This algorithm assumes
that the numbers in the array are arranged in an ascending
order and requires, at most, log2(N) comparisons to locate a
particular number in the array. In order to apply this method,
a mapping that assigns a unique code to each allowable com-
bination of the grid coordinates i, j is defined. One such map-
ping is

code = i · Ny + j (22)

where Ny is the total number of grid points along the j direc-
tion. The implementation of this algorithm starts by defining
two integer arrays: CODE and INDEX. The array CODE
holds the identification codes [computed from Eq. (22)], while
INDEX contains the corresponding value of k. Both CODE
and INDEX are sorted together so that the elements of CODE
are rearranged to be in an ascending order. Once generated
and properly sorted, these arrays can be used to find the in-
dex k (to identify 
k) for grid coordinates (i, j) in the follow-
ing manner:

1. Given i and j, compute code � i � Ny � j.
2. Find the array index m, such that code � CODE(m),

using the Bisection Search Algorithm.




−Y2,2 Y j
3

0 · 0 Y i
3 0 ·

0 0 · · 0 0 0 Y j
4

0 · 0 Y i
3 −Y4,5

0 0 · · 0 0 0 0 Y j
4

0 · 0 Y i
4

· 0

Y i
5 0 · 0 Y j

6
0 · · 0

−Y5,5 0 · · 0 · · · 0







φ1
φ2
·
·
·

φ12
·

φ25
φ26
·
·

φ35
φ36
φ37
·
·
·

φ44
·

φ92




=




0
·

·
0

V37
·

0




(20)
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3. Look up k using k � INDEX(m), thereby identifying the the L and U factor matrices are considerably fuller than the
original matrix [Y], even if the nodes are optimally ordered.appropriate 
k, given i, j.
Therefore, direct solution techniques are not as attractive for

The criteria for selecting a particular sparsity coding scheme use in FDM as they are for large network problems.
for the matrix [Y] are (a) the minimization of storage require- Unlike the direct solution methods, there are iterative
ments and (b) optimization of matrix operations—in particu- techniques for solving matrix equations, which do not require
lar, multiplication and LU factoring. One very efficient LU factoring. One of them is the Conjugate Gradient
scheme is based on storing [Y] using four one-dimensional Method (17–19).
arrays: This method uses a sequence of matrix/vector multiplica-

tions, which can be performed very efficiently using the spar-
1. Real array DIAG(i) � diagonal entry of row i sity coding scheme described above.
2. Real array OFFD(i) � ith nonzero off-diagonal entry

(scanned by rows) Convergence. Given the FDM equations in matrix form, ei-
3. Integer array IROW(i) � index of first nonzero off-diag- ther direct (16) or iterative methods (17–19) such as the Con-

onal entry of row i jugate Gradient Method (CGM) can be readily applied. It is
4. Integer array ICOL(i) � column number of ith nonzero important to point out that CGM-type algorithms are consid-

off-diagonal entry (scanned by rows) erably faster than direct solution, provided that a good initial
guess is used. One simple approach is to assume that the po-

Assuming a system of N equations, the arrays DIAG, IROW, tential is zero everywhere, but on the surface of the conduc-
OFFD, and ICOL have N, N � 1, 4N, and 4N entries, respec- tor, and let this be an initial guess to start the CGM algo-
tively. Therefore, the total memory required to store a spar- rithm. For this initial guess, the convergence is very poor and
sity coded matrix [Y] is approximately 40N bytes (assuming the solution takes a long time. To improve the initial guess,
32-bit storage for both real and integer numbers). On the several iterations of the SOR-based FDM algorithm can be
other hand, 4N2 bytes would be needed to store the full form performed to calculate the potential everywhere within the
of [Y]. For example, in a system with 1000 equations, the full grid. It was found that for many practical problems, 10 to 15
storage mode requires 4 megabytes, while the sparsity coded iterations provide a very good initial guess for CGM.
matrix occupies only 40 kilobytes of computer memory. From the performance point of view, the speed of CGM was

Perhaps the most important feature of sparsity coding is most noticeable when compared to the SOR-based algorithm.
the efficiency with which multiplication and other matrix op- In many problems, CGM was found to be an order of magni-
erations can be performed. This is best illustrated by a sam- tude faster than SOR. In all fairness to SOR, its implementa-
ple FORTRAN coded needed to multiply a matrix stored in tion, as described above, can be improved considerably by us-
this mode, by a vector B(i): ing the so-called multigrid/multilevel acceleration (20–21).

The idea behind this method is to perform the iterations over
coarse and fine grids alternatively, where the coarse grid
points also coincide with and are a part of the fine grid. This
means that iterations are first performed over a coarse grid,
then interpolated to the fine grid and iterated over the fine
grid. More complex multigrid schemes involve several layers
of grids with different levels of discretization, with the itera-

DO I =1,N
C(I) = DIAG(I) ∗ B(I)

DO J = IROW(I),IROW(I+ 1) − 1
C(I) = C(I) + OFFD(J) ∗ B(ICOL(J))

ENDDO

ENDDO

(23)

tions being performed interchangeably on all grids.
Finally, it should be pointed out that theoretical aspects of

The above double loop involves 5N multiplications and 4N ad- convergence for algorithms discussed thus far are well-docu-
ditions, without the need of search and compare operations. mented and are outside the main scope of this article. The
To perform the same operation using the brute force, full stor- interested reader should consult Refs. 15, 18, or 19 for de-
age approach would require N2 multiplications and N2 addi- tailed mathematical treatment and assessment of conver-
tions. Thus, for a system of 1000 unknowns, the sparsity- gence.
based method is at least 200 times faster than the full storage
approach in performing matrix multiplication.

To solve Eq. (20), [Y] can be inverted and the inverse
ADVANCED TOPICS

multiplied by [V0]. However, for sparse systems, complete ma-
trix inversion should be avoided. The reason is that, in most

Open Boundary Truncation
cases, the inverse of a sparse matrix is full, for which the
advantages of sparsity coding cannot be exploited. The solu- If the electrostatic boundary-value problem consists of

charged conductors in a region of infinite extent, then thetion of sparsity coded linear systems is typically obtained by
using the LU decomposition, since usually the L and U factors simplest approach to truncate the computational (or FDM)

boundary is with an equipotential wall of zero voltage. Thisare sparse. Note that the sparsity of the L and U factor matri-
ces can be significantly affected by the ordering of the grid has the advantage of being easy to implement, but leads to

erroneous solution, especially if the truncation boundary isnodes (i.e., in which sequence [
] was filled). Several very suc-
cessful node ordering schemes that are associated with the too close to the charged conductors. On the other hand, plac-

ing it too far from the region of interest may result in unac-analysis of electrical networks were reported for the solution
of sparse matrix equations (see Ref. 16). Unfortunately, the ceptably large computational volume, which will require large

computational resources.grid node connectivity in typical FDM problems is such that
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B2u =
(

∂

∂r
+ 3

r

)(
∂u
∂r

+ u
r

)
= O

(
1
r5

)
→ 0 as r → ∞

(26)

where u is the scalar electric potential function, 
, that satis-
fies the Laplace equation, and r � �r�� is the radial distance
measured from the coordinate origin (see Fig. 5). Since FDM
is based on the iterative solution to the Laplace equation,
small increases in the overall lattice (discretized 3-D space
whose planes are 2-D grids) size do not slow the algorithm
down significantly, nor do they require an excessive amount
of additional computer memory. As a result, from a practical
standpoint, the fictitious boundary truncation surface need
not be placed too close to the region of interest, therefore not
requiring the use of high-order ABC operators in order to sim-

z

n = r

r ′ y

x

⁄ ⁄

r

R = r – r ′

Charged conductor
system

Fictitious outer
boundary

ulate proper behavior of the potential at lattice boundaries
accurately. Consequently, in practice, it is sufficient to useFigure 5. Virtual surface used for boundary truncation.
the first-order operator, B1, to model open boundaries. Previ-
ous numerical studies suggest that this choice is indeed ade-
quate for many engineering problems (25).Although some early attempts to overcome such difficulties

To be useful for geometries that mostly conform to rectan-(5) provided the initial groundwork, rigorous absorbing
gular coordinates, the absorption operator B1, when expressedboundary truncation operators were recently introduced (22–
in Cartesian coordinates, takes on the following form:24) for dynamic problems, which can be modified for electro-

statics. They are based on deriving mathematical operators
that help simulate the behavior of the potential on a virtual

∂u
∂x

≈ ∓
(

u
x

+ y
x

∂u
∂y

+ z
x

∂u
∂z

)
(27)

boundary truncation surface, which is placed close to charged
conductors (see Fig. 5). In essence, these operators provide
the means for numerically approximating the proper behavior

∂u
∂y

≈ ∓
(

u
y

+ x
y

∂u
∂x

+ z
y

∂u
∂z

)
(28)

of the potential at infinity within a computational volume of
finite extent. ∂u

∂z
≈ ∓

(
u
z

+ x
z

∂u
∂x

+ y
z

∂u
∂y

)
(29)

Such absorbing boundary conditions (ABCs) are based on
the fact that the potential due to any 3-D charge distribution

where 
 signs correspond to the outward pointing unit nor-is inversely proportional to the distance measured from it.
mal vectors n̂ � �(x̂, ŷ, ẑ) for operators in Eqs. (27), (28), andConsider an arbitrary collection of charged conductors shown
(29), respectively.in Fig. 5. Although it is located in free unbounded space, a

The finite-difference approximations to the above equa-fictitious surface will be placed around it, totally enclosing
tions which have been employed in the open boundary FDMall conductors. If this surface is far away from the charged
algorithm are given byconductor system—namely, if r� is much greater that r��—then

the dominant radial variation of potential, 
, will be given by

1

|→r − →
r ′|

→ 1
r

(24)

If the fictitious boundary is moved closer toward the conduc-
tor assembly, then the potential will also include additional
terms with higher inverse powers of r. These terms will con-

ui+1, j,k = ui−1, j,k − (hi + hi−1)

(xi, j,k − xref)[
ui, j,k + (yi, j,k − yref)(ui, j+1,k − ui, j−1,k)

(hj + hj−1)

+ (zi, j,k − zref)(ui, j,k+1 − ui, j,k−1)

(hk + hk−1)

]
(30)

tribute to the magnitude of the potential more significantly
than those with lower inverse powers of r, as r becomes small.

The absorbing boundary conditions emphasize the effect of
leading (dominant) radial terms on the magnitude of the po-
tential evaluated on the fictitious (boundary truncation) sur-
face. The ABCs provide the proper analytic means to annihi-
late the nonessential terms, instead of simply neglecting their

ui, j+1,k = ui, j−1,k − (hj + hj−1)

(yi, j,k − yref)[
ui, j,k + (xi, j,k − xref)(ui+1, j,k − ui−1, j,k)

(hi + hi−1)

+ (zi, j,k − zref)(ui, j,k+1 − ui, j,k−1)

(hk + hk−1)

]
(31)

contribution. Numerically, this can be achieved by using the
so-called absorbing boundary truncation operators.

In general, absorbing boundary operators can be of any or-
der. For example, as shown in Ref. 23, the first- and second-
order operators in 3-D have the following forms:

B1u = ∂u
∂r

+ u
r

= O
(

1
r3

)
→ 0 as r → ∞

(25)

ui, j,k+1 = ui, j,k−1 − (hk + hk−1)

(zi, j,k − zref)[
ui, j,k + (xi, j,k − xref)(ui+1, j,k − ui−1, j,k)

(hi + hi−1)

+ (yi, j,k − yref)(ui, j+1,k − ui, j−1,k)

(hj + hj−1)

] (32)
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where, as before, 
 correspond to the outward pointing unit
normal vectors n̂ � �(x̂, ŷ) for operators in Eqs. (33) and (34)
or (35a) and (35b), respectively. The points xi, j and yi, j denote
those points in the grid that are located one cell away from
the truncation boundary, while xref and yref correspond to the
center of the cylinder in Figs. 2 and 4.

Finally, another approach to open boundary truncation,
which is worth mentioning, involves the regular finite-differ-
ence scheme supplemented by the use of electrostatic surface
equivalence (26). A virtual surface Sv is defined near the ac-
tual grid truncation boundary. The electrostatic potential due
to charged objects, enclosed within Sv, is computed using the
regular FDM algorithm. Subsequently, it is used to calculate
the surface charge density and surface magnetic current,
which are proportional to the normal and tangential compo-
nents of the electric field on Sv.

Once the equivalent sources are known, the potential be-
tween the virtual surface and the grid truncation boundary
can be readily calculated (for details see Ref. 26). This proce-
dure is repeated every iteration, and since the potential on

hk + 1

h i + 1

h ihk

h j

(i, j, k + 1)

(i, j, k)

Point on the lattice
truncation boundary

z

y

h j + 1

x

(i– 1, j, k)

(i+ 1, j, k)

(i, j+ 1, k)

(i, j– 1, k)

(i, j, k – 1)

the virtual surface is estimated correctly, it produces a physi-
cal value of the potential on the truncation boundary. As dem-Figure 6. Detail of FDM lattice near the boundary truncation
onstrated in Ref. 26, this approach leads to very accurate re-surface.
sults in boundary-value problems with charged conductors
embedded in open regions.

It is vastly superior to simply using the grounded conduc-where (x, y, z)ref are the x, y, and z components of a vector
tor to terminate the computational space.pointing (referring) to the geometric center of the charged

conductor assembly, with other quantities that appear in Eqs.
Inclusion of Dielectric Anisotropy(30) through (32) shown in Fig. 6. It is important to add that

the (x, y, z)i, j,k � (x, y, z)ref terms are the x, y, and z components Network Analog Approach. Many materials such as printed
of a vector from the truncation boundary to the geometrical circuit board and microwave circuit substrates, which are
center of the charged conductor system. commonly used in electrical engineering exhibit anisotropic

Notice that Fig. 6 graphically illustrates the FDM imple- behavior. The electrical properties of these materials vary
mentation of the open boundary truncation on lattice faces with direction and have to be described by a tensor instead of
aligned along the xz plane. On this plane, the normal is in a single scalar quantity. This section will examine how the
the y direction, for which Eq. (31) is the FDM equivalent of anisotropy affects the FDM and how the algorithnm must be
the first-order absorbing boundary operator in Cartesian coor- changed to accommodate the solution of 3-D problems con-
dinates. Similarly, Eqs. (32) and (30) are used to simulate the taining such materials. The theoretical development pre-
open boundary on xy and yz faces of the lattice, respectively. sented below is a generalization of that available in Ref. 27

When reduced to two dimensions, the absorption operator, and is restricted to linear anisotropic dielectrics only.
B1, in Cartesian coordinates, takes on the form given below: In an attempt to provide a more intuitive interpretation to

the abstract nature of the FDM algorithm, an equivalent cir-
cuit model will be used for linear inhomogeneous, anisotropic

∂u
∂x

≈ ∓
(

1
x

+ y
x

∂u
∂y

)
(33)

regions. This approach is called resistance network analog (6).
It was initially proposed for approximating the solution of the
Laplace equation in two dimensions experimentally, with a

∂u
∂y

≈ ∓
(

1
y

+ ∂u
∂x

)
(34)

network of physical resistors whose values could be adjusted
to correspond to the weighting factors [e.g., the Y’s in Eq. (7)]The discrete versions of the above equations can be written
that appear in the FDM algorithm. Since its introduction, theas
resistance network approach has been implemented numeri-
cally in the analysis of (a) homogeneous dielectrics in 3-D (28)
and (b) simple biaxial anisotropic materials (described by di-
agonal permitivitty tensors) in 2-D (29).

Since the resistance network analog gives a physical inte-
pretation to FDM, the discretized versions of the Laplace
equations for anisotropic media will be recast into this form.
As the details of FDM were described earlier, only the key
steps in developing the two-dimensional model are summa-
rized below. Moreover, for the sake of brevity, the discussion
of the three-dimensional case will be limited to the final equa-
tions and their pictorial interpretation.

ui+1, j = ∓
{

ui−1, j − (hi + hi−1)

(xi, j − xref)[
ui, j + (yi, j − yref)(ui, j+1 − ui, j−1)

(hj + hj−1)

]}
(35a)

ui, j+1 = ∓
{

ui, j−1 − (hj + hj−1)

(yi, j − yref)[
ui, j + (xi, j − xref)(ui+1, j − ui−1, j )

(hi + hi−1)

]}
(35b)
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The Laplace equation for boundary-value problems involv-
ing inhomogeneous and anisotropic dielectrics in three-di-
mensions is given by

∇ · (ε0[εr(x, y, z)] · ∇φ(x, y, z)) = 0 (36)

In the above equation, [�r] stands for the relative dielectric
tensor and is defined as

[ε] =




εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


 (37)

i – 1, jε[         ] i, jε[     ]

i – 1, j – 1ε[             ] i, j – 1ε[          ]

i, j

i – 1, j – 1 i + 1, j – 1i, j –1

i, j + 1

i – 1, j

i – 1, j + 1 i + 1,  j + 1

i + 1,  j

h j –1

h j

h jh i –1
Since the material properties need not be homogeneous in the
region of interest, the elements of [�r] are assumed to be func- Figure 7. Detail with FDM cell for anisotropic medium in two di-

mensions.tions of position. The dielectric is assumed to occupy only part
of the modeling (computational) space, and its properties may
vary from point to point. When Eq. (37) is substituted into
Eq. (36) and rewritten in a matrix form as Yi±1, j±1 =Yi±1, j∓1 =

(
2

hi + hi−1

)(
2

hj + hj−1

)
[
εyz

i, j + εyz
i−1, j + εyz

i−1, j−1 + εyz
i, j−1 + εzy

i, j

+ εzy
i−1, j + εzy

i−1, j−1 + εzy
i, j−1

]
(42)

Yi, j = Yi+1 + Yi−1 + Yj+1 + Yj−1 (43)

[
∂

∂x
∂

∂y
∂

∂z

]
·




εxx
∂φ

∂x
+ εxy

∂φ

∂y
+ εxz

∂φ

∂z

εyx
∂φ

∂x
+ εyy

∂φ

∂y
+ εyz

∂φ

∂z

εzx
∂φ

∂x
+ εzy

∂φ

∂y
+ εzz

∂φ

∂z


 = 0 (38)

Note that unlike the treatment of isotropic dielectrics, the
permittivity of each cell is now described by a tensor (see Fig.it provides the starting point for developing the corresponding
7). In addition, the presence of the anisotropy is responsibleFDM algorithm.
for added coupling between the voltage 
i, j and voltages

After eliminating the z-dependent terms and fully ex-

i�1, j�1 (actually all four combinations of the subscripts).

panding the above equation by following the notation used The symbols Y in Eq. (39) can be interpreted as admit-
throughout this paper, the finite-difference approximation for tances representing the ‘‘electrical link’’ between the grid
the potential at every nodal point in a 2-D grid is given by point voltages. The resulting equivalent network for Eq. (39)

can thus be represented pictorially as shown in Fig. 8.
Similarly, after fully expanding Eq. (36) in three dimen-

sions, the following finite-difference approximation for the po-
tential at every nodal point in a 3-D lattice can be obtained:

φp+I
i, j,k

= (1 − �)φp
i, j,k

+ �φnew

Yi, j,k
(44)

φp+1
i, j = (1 − �)φp

i, j + �

Yi, j

×




(φp
i+1, j

Yi+1φ
p+1
i−1, j

Yi−1)

+(φp
i, j+1

Yj+1 + φp+1
i, j−1

Yj−1)

+(φp
i+1, j+1

Yi+1, j+1 + φp+1
i−1, j−1

Yi−1, j−1)

−(φp
i−1, j+1

Yi−1, j+1 + φp+1
i+1, j−1

Yi+1, j−1)




(39)

where

Yi±1 =
(

(εyy
i, j−1

+ εyy
i, j

(εyy
i−1, j−1

+ εyy
i−1, j

)

)(
1
hi

+ 2
hi + hi−1

)

+
(

2
hi + hi−1

)(
2

hj + hj−1

)[(
εzy

i, j + εzy
i−1, j

)
− (

εzy
i−1, j−1 + εzy

i, j−1

)]
(40)
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Figure 8. Network analog for 2-D FDM algorithm at grid point i, j

Yj±1 =
(

(εzz
i−1, j + εzz

i, j )

(ezz
i−1, j−1 + εzz

i, j−1)

)(
1
hj

+ 2
hj + hj−1

)

+
(

2
hi + hi−1

)(
2

hj + hj−1

)[(
εyz

i, j−1 + εyz
i, j

)
− (

εyz
i−1, j−1 + εyz

i−1, j

)]
(41)

for arbitrary anisotropic medium.
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where 
new is defined as
Y A

4 = 2

(
2

hj +hj−1

)(
2

hi +hi−1

)(T1,xy +T2,xy

8
+ T1,yx +T2,yx

8

)

(54)

Y A
5 = 2

(
2

hk +hk−1

)(
2

hi +hi−1

)(
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8
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8

)
(55)

Y A
6 = 2
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hj +hj−1

)(
2
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8
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8
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i, j+1,k

(
Yj+1 + Y A

2

)+ φp−1
i, j−1,k

(
Yj−1 − Y A

2

)
+ φp

i, j,k+1

(
Yk+1 + Y A

3

)+ φp−1
i, j,k−1

(
Yk−1 − Y A

3

)
+Y A

4

[(
φp

i+1, j+1,k
−φp−1

i−1, j−1,k

)− (
φp

i−1, j+1,k
+ φp

i+1, j−1,k

)]
+ Y A

5

[(
φp

i+1, j,k+1
+ φp−1

i−1, j,k−1

)− (
φp

i−1, j,k+1
+ φp

i+1, j,k−1

)]
+ Y A

6

[(
φp

i, j+1,k+1
+ φp−1

i, j−1,k−1

)− (
φp

i, j+1,k−1
+ φp

i, j−1,k+1

)]
(45)

with the T terms having the following forms:and

T1,xx = εxx
i, j−1,k−1 + εxx

i, j,k−1 + εxx
i, j−1,k + εxx

i, j,k (57a)Yi, j,k = Yi+1 + Yi−1 + Yj+1 + Yj−1 + Yk−1 + Yk+1

T2,xx = εxx
i−1, j−1,k−1 + εxx

i−1, j,k−1 + εxx
i−1, j−1,k + εxx

i−1, j,k (57b)
The Y terms appearing in Eqs. (44) and (45) are given by

T1,yy = εyy
i−1, j,k−1

+ εyy
i, j,k−1

+ εyy
i−1, j,k

+ εyy
i, j,k

(58a)

T2,yy = εyy
i−1, j−1,k−1

+ εyy
i, j−1,k−1

+ εyy
i−1, j−1,k

+ εyy
i, j−1,k

(58b)

T1,zz = εzz
i−1, j−1,k + εzz

i, j−1,k + εzz
i−1, j,k + εzz

i, j,k (59a)

Yi−1 = 2
hi + hi−1

[
T1,xx

(
1

hi−1
− 2

hi + hi−1

)

+T2,xx

(
1

hi−1
+ 2

hi + hi−1

)] (46)

T2,zz = εzz
i−1, j−1,k−1 + εzz

i, j−1,k−1 + εzz
i−1, j,k−1 + εzz

i, j,k−1 (59b)

T1,xy = εxy
i, j−1,k−1

+ εxy
i, j,k−1

+ εxy
i, j−1,k

+ εxy
i, j,k

(60a)

T2,xy = εxy
i−1, j−1,k−1

+ εxy
i−1, j,k−1

+ εxy
i−1, j−1,k

+ εxy
i−1, j,k

(60b)

Yi+1 = 2
hi + hi−1

[
T1,xx

(
1
hi

+ 2
hi + hi−1

)

+T2,xx

(
1
hi

+ 2
hi + hi−1

)] (47)

T1,xz = εxz
i, j−1,k−1 + εxz

i, j,k−1 + εxz
i, j−1,k + εxz

i, j,k (61a)

T2,xz = εxz
i−1, j−1,k−1 + εxz

i−1, j,k−1 + εxz
i−1, j−1,k + εxz

i−1, j,k (61b)

T1,yx = εyx
i−1, j,k−1

+ εyx
i, j,k−1

+ εyx
i−1, j,k

+ εyx
i, j,k

(62a)

Yj−1 = 2
hj + hj−1

[
T1,yy

(
1

hj−1
− 2

hj + hj−1

)

+T2,yy

(
1

hj−1
+ 2

hj + hj−1

)] (48)

T2,yx = εyx
i−1, j−1,k−1

+ εyx
i, j,−1,k−1

+ εyx
i−1, j−1,k

+ εyx
i, j−1,k

(62b)

T1,yz = εyz
i−1, j,k−1

+ εyz
i, j,k−1

+ εyz
i−1, j,k

+ εyz
i, j,k

(63a)

T2,yz = εyz
i−1, j−1,k−1

+ εyz
i, j−1,k−1

+ εyz
i−1, j−1,k

+ εyz
i, j−1,k

(63b)

T1,zx = εzx
i−1, j−1,k + εzx

i, j−1,k + εzx
i−1, j,k + εzx

i, j,k (64a)

Yj+1 = 2
hj + hj−1

[
T1,yy

(
1
hj

+ 2
hj + hj−1

)

+T2,yy

(
1
hj

− 2
hj + hj−1

)] (49)

T2,zx = εzx
i−1, j−1,k−1 + εzx

i, j−1,k−1 + εzx
i−1, j,k−1 + εzx

i, j,k−1 (64b)

T1,zy = εzy
i−1, j−1,k

+ εzy
i, j−1,k

+ εzy
i−1, j,k

+ εzy
i, j,k

(65a)

T2,zy = εzy
i−1, j−1,k−1

+ εzy
i, j−1,k−1

+ εzy
i−1, j,k−1

+ εzy
i, j,k−1

(65b)

Yk−1 = 2
hk + hk−1

[
T1,zz

(
1

hk−1
− 2

hk + hk−1

)

+T2,zz

(
1

hk−1
+ 2

hk + hk−1

)] (50)

Note that Eq. (45) has a similar interpretation as its 2-D
counterpart Eq. (39). It can also be represented by an equiva-
lent network, whose diagonal terms are shown in Fig. 9. For
clarity, the off-diagonal terms, which provide the connections

Y A
1 =

(
2

hj + hj−1

)(
2

hi + hi−1

)
(T1,yx − T2,yx)

+
(

2
hk + hk−1

)(
2

hi + hi−1

)
(T1,zx − T2,zx)

(51)

of 
i, j,k to the voltages at the remaining nodes in Eq. (45), are
shown separately in Fig. 10.

Coordinate Transformation Approach. Coordinate transfor-
mations can be used to simplify the solution to electrostatic
boundary-value problems. Such transformations can reduce

Y A
2 =

(
2

hj + hj−1

)(
2

hi + hi−1

)
(T1,xy − T2,xy)

+
(

2
hk + hk−1

)(
2

hj + hj−1

)
(T1,zy − T2,zy)

(52)

the complexity arising from complicated geometry or from the
presence of anisotropic materials. In general, these methods
utilize coordinate transformation to map complex geometries
or material properties into simpler ones, through a specific
relationship which links each point in the original and trans-
formed problems, respectively.

Y A
3 =

(
2

hk + hk−1

)(
2

hi + hi−1

)
(T1,xz − T2,xz)

+
(

2
hk + hk−1

)(
2

hj + hj−1

)
(T1,yz − T2,yz)

(53)
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dence is assumed) the Laplace equation can be written as

∇ · ([εr(x, y)]∇φ) = 0 (66)

where

[εr] =
[
εxx εxy

εyx εyy

]
(67)

If the principal (crystal or major) axes of the dielectric are
aligned with the coordinate system of the geometry, then the
off-diagonal terms vanish. Otherwise, [�r] is a full symmetric

i + 1, j, k    

i – 1, j,k

i, j, k+1

i, j+1, ki, j, k

i, j, k –1

Y j +1+Y2
A

Y j –1–Y1
A

Y k –1–Y3
A

Y j –1–Y2
A

Y j +1+Y1
A

Y k +1+Y1
A

i, j –1,k

matrix. In this case, any linear coordinate transformation of
Figure 9. Network analog for 3-D FDM algorithm at grid point i, j the form
for anisotropic dielectric with diagonal permittivity tensor. [

x′

y′

]
= [A]

[
x
y

]
(68)

One class of coordinate transformations, known as confor-
mal mapping, is based on modifying the original complex ge- (where [A] is a 2 	 2 nonsingular matrix of constant coeffi-
ometry to one for which an analytic solution is available. This cients) also transforms the permittivity tensor as follows:
technique requires extensive mathematical expertise in order
to identify an appropriate coordinate transformation function. [ε ′] = [A]−1[εr][A] (69)
Its applications are limited to a few specific geometrical
shapes for which such functions exist. Furthermore, the appli- Next, consider the structure shown in Fig. 11(a). It consists
cations are restricted to two-dimensional problems. Even of a perfect conductor (metal) embedded in an anisotropic di-
though this technique can be very powerful, it is usually electric, all enclosed within a rectangular conducting shell.
rather tedious and thus it is considered beyond the scope of The field within the rectangular shell must be determined
this article. The interested reader can refer to Ref. 30, among given the potentials on all conductors. In this example, [�r] is
others, for further details. assumed to be diagonal:

The second class of coordinate transformations reduces the
complexity of the FDM formulation in problems involving ani-
sotropic materials. As described in the previous section, the [εr] =

[
εxx 0
0 εyy

]
(70)

discretization of the Laplace equation in anisotropic regions
[Eq. (36)] is considerably more complicated than the corre-

By scaling the coordinates withsponding procedure for isotropic media [Eq. (7)]. However, it
can be shown that a sequence of rotation and scaling transfor-
mations can convert any symmetric permittivity tensor into
an identity matrix (i.e., free space). As a result, the FDM solu-

[A] =
[

1/
√

εxx 0
0 1/

√
εyy

]
(71)

tion of the Laplace equation in the transformed coordinate
system is considerably simplified, since the anisotropic dielec- the permittivity can be transformed into an identity matrix.

The geometry of the structure is deformed as shown in Fig.tric is eliminated.
11(b), with the corresponding rectangular discretization gridTo illustrate the concept, this technique will be demon-
depicted in Fig. 11(c). Note that the locations of the unknownstrated with two-dimensional examples. In 2-D (no z depen-
potential variables are marked by white dots, while the con-
ducting boundaries are represented by known potentials and
their locations are denoted by black dots. The potential in the
transformed boundary-value problem can now be computed
by applying the FDM algorithm, which is specialized for free
space, since [�r] is an identity matrix.

Once the potential is computed everywhere, other quanti-
ties of interest, such as the E field and charge, can be calcu-
lated next. However, to correctly evaluate the required space
derivatives, transformation back to original coordinates is re-
quired, as illustrated in Fig. 11(d). Note that in spite of the
resulting simplifications, this method is limited to cases
where the entire computational space is occupied by a single
homogeneous anisotropic dielectric.

In general, when the principal (or major) axes of the per-i + 1, j– 1, k – 1 i + 1, j+ 1, k – 1
i + 1, j, k – 1 

i –1, j – 1, k + 1 i –1, k + 1 

i – 1, j+1, k – 1

i – 1, j+1, k 

i – 1, j+1, k + 1

i, j+1, k – 1

i + 1, j– 1, k + 1

i, j– 1, k + 1

i + 1, j – 1, k 

mittivity are arbitrarily orientated with respect to the coordi-
nate axes of the geometry, [�r] is a full symmetric matrix. InFigure 10. Network analog for 3-D FDM algorithm at grid point i, j

for arbitrary anisotropic dielectric. this case, [�r] can be diagonalized by an orthonormal coordi-
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is a diagonal matrix. The angle � is defined as the angle by
which the coordinate system should be rotated to align it with
the major axes of the dielectric.

Consider the structure shown in Fig. 12(a), which is en-
closed in a metallic shell. However, in this example the non-
conducting region of interest includes both free space and an
anisotropic dielectric. Furthermore, the major axis of [�r] is at
30 degrees with respect to that of the structure. The effect of
rotating the coordinates by � � �30 degrees leads to a geome-
try shown in Fig. 12(b). In the transformed coordinate system,
the major axis of the permittivity is horizontal and [�r] is a
diagonal matrix. Observe that this transformation does not
affect the dielectric properties of the free-space region (or of
any other isotropic dielectrics, if present). However, the sub-
sequent scaling operation for transforming the properties of
the anisotropic region to free space is not useful. Such trans-
formation also changes the properties of the original free-
space region to those exhibiting anisotropic characteristics.
Regardless of this limitation, the coordinate rotation alone
considerably simplifies the FDM algorithm of Eq. (45) to

φnew = φp
i+1, j,k

(
Yi+1 + Y A

1

)+ φp−1
i−1, j,k

(
Yi−1 − Y A

1

)
+ φp

i, j+1,k

(
Yj+1 + Y A

2

)+ φp−1
i, j−1,k

(
Yj−1 − Y A

2

) (74)

where all z-dependent (or k) terms have been removed.
Without the rotation, the permittivity is characterized by

Eq. (67). Under such conditions, the corresponding FDM up-
date equation includes four additional potential variables, as
shown below:

φnew = φp
i+1, j,k

(
Yi+1 + Y A

1

)+ φp−1
i−1, j,k

(
Yi−1 − Y A

1

)
+ φp

i, j+1,k

(
Yj+1 + Y A

2

)+ φp−1
i, j−1,k

(
Yj−1 − Y A

2

)
+ Y A

4

[(
φp

i+1, j+1,k
− φp−1

i−1, j−1,k

)
− (

φp
i−1, j+1,k

+ φp
i+1, j−1,k

)]
(75)

The simplification resulting from coordinate rotation in three
dimensions is even more significant. In the general case, the
full FDM algorithm [Eq. (45)] contains 18 terms, while in the
rotated coordinates the new equation has only 6.

Next, a rectangular discretization grid is constructed for
the transformed geometry as shown in Fig. 12(c), with the
unknown potential represented by white dots and conducting
boundaries denoted by black dots. As can be seen, the rotation
complicates the assignment (or definition) of the boundary
nodes. In general, a finer discretization may be required to

(c)

y′

(b)

(a)

y′

y

Major axis

y

Metal

Anisotropic dielectric

Equivalent isotropic dielectric

x

x′

x′

x

(d) approximate the metal boundaries more accurately.
Once the potential field is computed, the transformationFigure 11. Graphical representation of coordinate transformation

for homogeneous anisotropic dielectric with diagonal permittivity back to the original coordinates is performed by applying the
tensor. inverse rotation [A]T, as illustrated in Fig. 11(d). Note that in

the original coordinate system, the grid is rotated and, as
nate transformation. Specifically, there exists a rotation ma- such, complicates the computation of electric field. In addition
trix of the form: to the required coordinate mapping, this method is also lim-

ited to boundary-value problems containing only one type of
anisotropic dielectric, though any number of isotropic dielec-
tric regions may be present.

[A] =
[

cos θ − sin θ

sin θ cos θ

]
(72)

The above examples illustrate that coordinate transforma-
tions are beneficial in solving a narrow class of electrostaticsuch that the product,
problems. Undoubtedly, considerable computational savings

[ε ′] = [A]T [εr][A] (73) can be achieved in the calculation of the potential using FDM.
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However, the computational overhead associated with the
pre- and postprocessing can be significant, since the geometry
is usually complicated by such transformations.

SAMPLE NUMERICAL RESULTS

To illustrate the versatility of FDM in solving engineering
problems that involve arbitrary geometries and inhomoge-
neous materials, consider the cross section of a microwave
field effect transistor (FET) shown in Fig. 13. Note that this
device is composed of many different materials, each of differ-
ent thickness and cross-sectional profile. The FET is drawn
to scale, with the 1 �m thickness of the buffer layer serving
as a reference. FDM can be used to calculate the potential
and field distribution throughout the entire cross section of
the FET. This information can be used by the designer to in-
vestigate such effect as material breakdown near the metallic
electrodes. In addition, the computed field information can be
used to determine the parasitic capacitance matrix of the
structure, which can be used to improve the circuit model of
this device and is very important in digital circuit design. Fi-
nally, it should be noted that the losses associated with the
silicon can also be computed using FDM as shown in Eq. (25).

It should be added that in addition to displaying the poten-
tial distribution over the cross section of the FET, Fig. 13 also
illustrates the implementation of open boundary truncation
operators. Since the device is located in an open boundary
environment, it was necessary to artificially truncate the com-
putation space (or 2-D grid). Note that, as demonstrated in
Ref. 25, only the first-order operator was sufficient to obtain
accurate representation of the potential in the vicinity of the
electrodes as well as near the boundary truncation surface.

A sample with three-dimensional geometry that can be
easily analyzed with the FDM is shown in Fig. 14. The insula-
tor in the multilayer ceramic capacitor is assumed to be aniso-
tropic barium titanate dielectric, which is commonly used in
such components. The permittivity tensor is diagonal and its
elements are �xx � 1540, �yy � 290, and �zz � 1640. To demon-
strate the effect of anisotropy on this passive electrical compo-
nent, its capacitance was calculated as a function of the mis-
alignment angle between the crystal axes of the insulator and
the geometry of the structure (see Fig. 15).

For the misalignment angle (or rotation of axes) in the yz
plane, the capacitance of this structure was computed. The
results of the computations are plotted in Fig. 16. Note that
the capacitance varies considerably with the rotation angle.
Such information is invaluable to a designer, since the goal of
the design is to maximize the capacitance for the given di-
mensions of the structure.

The above examples are intended to demonstrate the ap-
plicability of FDM to the solution of practical engineering
boundary-value problems. FDM has been used extensively in
analysis of other practical problems. The interested reader
can find additional examples where FDM was used in Refs.
31–37.

SUMMARY

y

y

Major axis

Metal

Free space

Dielectric

y′

y′

x

x'x′

x′

x

(c)

(b)

(a)

(d)

Figure 12. Graphical representation of coordinate transformation Since the strengths and weaknesses of FDM were mentioned
for inhomogeneous anisotropic dielectric with diagonal permittivity throughout this article, as were the details dealing with the
tensor. derivation and numerical implementation of this method,
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Figure 13. Equipotential map of dc-bi-
ased microwave FET. From Computer-
aided quasi-static analysis of coplanar
transmission lines for microwave inte-
grated circuits using the finite difference
method, B. Beker and G. Cokkinides, Int.
J. MIMICAE, 4 (1): 111–119. Copyright 
1994, Wiley.)

Vgs = –0.75 V
Vds = 2.75 V

SiO2

Si substrate

Ground plane

GaAs

Buffer layer

Source Drain

Gate

SiO2

they need not be repeated. However, the reader should realize
that FDM is best suited for boundary-value problems with
complex geometries and arbitrary material composition. The
complexity of the problem is the primary motivating factor for
investing the effort into developing a general-purpose volu-
metric analysis tool.
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