
CALCULUS

Calculus has its foundation in taking a limit. For example,
one can obtain the area of a circle as the limit of the ar-
eas of regular inscribed polygons as the number of sides
increases without bound. This example can be extended
to determining the perimeter of a circle or the volume of
a sphere. Similarly in algebra, this limiting approach is
used to seek the value of a repeating decimal. In plane an-
alytic geometry, this concept is used to explain tangents to
curves.

The two fundamental operations in calculus are differ-
entiation and integration. Both of these fundamental tools
have played an important role in the development of many
scientific theories. The Fundamental Theorem of Calculus
provides the connection between differentiation and in-
tegration and was discovered independently by Sir Isaac
Newton and Baron Gottfried Wilhelm Leibniz.

In the remainder of this article, a brief history of devel-
opment of calculus is presented. This introduction is fol-
lowed by a discussion of the principle of differentiation.
A similar discussion on integrals is presented next. Other
relevant topics important to electrical engineers are also
presented. Each section is augmented with examples using
classic problems in engineering to illustrate the practical
use of calculus.

HISTORY

The methods used by the Greeks for determining the area
of a circle and a segment of a parabola, as well as the vol-
umes of the cylinder, cone, and sphere, were in principle
akin to the method of integration. During the first half of
the 17th century, methods of more or less limited scope
began to appear among mathematicians for constructing
tangents, determining maxima and minima, and finding
areas and volumes. In particular, Fermat, Pascal, Rober-
val, Descartes, and Huygens discussed methods of drawing
tangents to particular curves and finding areas bounded by
certain special curves. Each problem was considered by it-
self, and few general rules were developed. The essential
ideas of the derivative and definite integral were, however,
beginning to be formulated. With this mathematical her-
itage, Newton and Leibniz, working independently of each
other during the latter half of the 17th century, defined the
concepts of derivatives and integrals. Leibniz used the no-
tation dy/dx for the derivative and introduced the integra-
tion symbol

∫
. The portion of mathematics that includes

only topics that depend on calculus is called analysis. In-
cluded in this category are differential and integral equa-
tions, theory of functions of real and complex variables, and
algebraic and elliptic functions.

Calculus has helped the development of other fields
of science and engineering. Geometry and number theory
make use of this powerful tool. In the development of mod-
ern physics and engineering, the concepts developed in cal-
culus and its extensions are continually utilized. For ex-
ample, in dealing with electricity, the current, I, through
a circuit due to the flow of charge, Q, is expressed as I ≡
dQ/dt; the voltage, v, across an inductor, L, is defined as v

≡ L dI/dt; and the voltage through a capacitor, C, is defined
as v ≡ (1/C)

∫
I dt.

NOTATION AND DEFINITIONS

Within this article, the parameters u, v, and w represent
functions of independent variable x, while other alphabetic
letters represent fixed real numbers. A variable in boldface
type denotes a vector quantity.

Limits

Of fundamental importance to the field of calculus is the
concept of the limit, which represents the value of an entity
under a given extreme condition. For instance, a limit can
be used to define the natural exponential function, e:

Given here are rules for computing limits. The limit of a
constant is the constant:

The limit of a function scaled by a constant is the constant
times the limit of the function:

The limit of a sum (or difference) is the sum (or difference)
of the limits:

The limit of a product is the product of the limits:

The limit of a quotient is the quotient of the limits, if the
denominator does not equal zero:

The limit of a function raised to a positive integer power,
n, is

The limit of a polynomial function
f(x) = bnxn + bn−1xn−1 + ··· + b1x + b0 is

The limits of a function are sometimes broken into left-
hand and right-hand limits. A function f(t) has a limit at a
if and only if the right-hand and left-hand limits at a exist
and are equal.

L’Hôpital’s Rule. If f(x)/g(x) has the indeterminate form
0/0 or ∞/∞ at x = a, then

provided that the limit exists or becomes infinite.
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Limits Example. A common application using limits is
the initial and final value theorems. Consider a time func-
tion, f (t) = 5 e−2t , whose transformation to the Laplacian
domain is

The final value may be obtained from

Likewise, the initial value is determined from

Hence, L’Hôpital’s rule must be used to find its initial value:

Continuity

A function y = f(x) is continuous at x = a if and only if all
three of the following conditions are satisfied:

1. f(a) exists where a is in the domain of f(x);
2. limx→a f(x) exists; and
3. limx→a f(x) = f(a).

If any of these three conditions fails to hold, then f(x) is
discontinuous at a. If f(x) is continuous at every point of its
domain, f(x) is said to be a continuous function. The sine
and cosine are examples of continuous functions.

DIFFERENTIAL CALCULUS

Derivative

If y is a single-valued function of x, y = f(x), the derivative
of y with respect to x is defined to be

This quantity is often written as dy/dx = lim�x→0

(�y/�x), where �x is an arbitrary increment of x and
�y = f(x + �x) − f(x). The derivative of a function, y = f(x),
may be represented in several different ways:

Likewise, a second derivative can be denoted by

The symbol Dx is referred to as the differential operator.
Inverse functions are denoted as f−1(x). Therefore,

This operation should not be confused with the reciprocal
of a function; that is,

It is important to note that dy/dx is not a quotient. It is
a number that is approached by the quotient �y/�x in the
limit. The symbols dy and dx, as they appear in dy/dx, have
no meaning by themselves. The term dy/dx represents the
limit of �y/�x.

The differential of y for a given value of x is defined as

Each derivative expression has a differential formula as-
sociated with it. For example, the chain rule

has an equivalent differential formula:

Application. A basic application of the first derivative is
the calculation of speed v(t) and acceleration a(t) from a
position function s(t):

This latter expression illustrates the concept of higher-
order derivatives—in this case, the second derivative. The
derivative is important in many applications—for exam-
ple, determining the tangents to curves and finding the
maxima and minima of a given function.

Tangents

The concept of derivative is best illustrated by consid-
ering the construction of a tangent to a curve. Consider
a parabola that is represented by the equation y = x2 as
shown in Fig. 1. Let Q be any point on the parabola, dis-
tinct from another point P. The line that joins Q and P is
a secant to the parabola. As Q approaches P, the secant
rotates about P. In the limit, as Q is infinitesimally near
P, without attaining it, the secant approaches the line that
touches the parabola at P without cutting across it. This
line is tangent to the parabola at point P.

The angle between the secant and the x-axis is the incli-
nation angle, θ. The slope of a line is defined as the trigono-
metric tangent of the inclination of the line. To determine
the slope of the tangent, it must be noted that in the limit,
as Q approaches P, the inclination angle of the secant ap-
proaches that of the slope at P. If lines PM and QM are per-
pendicular to each other, then the slope of PQ is QM/PM.

Let P have coordinates (x, y). As noted earlier, Q is
any point on the parabola with coordinates (x + �x, y + �y),
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Figure 1. The tangent to the curve at P is the secant PQ in the
limit as Q approaches P. The slope of the tangent at this point is
the trigonometric tangent of θ as defined by the ratio of QM and
PM.

where �x and �y equal PM and QM, respectively. There-
fore, the slope of PQ is �y/�x. The slope of the tangent at
P is then the value of this ratio as Q approaches P—that
is, as �x and �y approach zero. Using the equation of the
parabola, y = x2 we obtain:

y + �y = (x + �x)2

= x2 + 2x �x + (�x)2
.

By definition, y = x2, therefore:

�y = 2x �x + (�x)2
, or �y/�x = 2x + �x.

For the parabola, as �x approaches zero, �y/�x, the slope
of the tangent at P approaches 2x.

To generalize, consider any function of x, say y = f(x). For
the points P and Q on y, the limit of �y/�x, as Q approaches
P is the derivative of f(x), evaluated at point P. The expres-
sion dy/dx represents the derivative of the function y = f(x)
for any value of x. As was demonstrated in the previous
paragraphs, when y = x2 we have dy/dx = 2x.

Since each value of x corresponds to a definite value of
dy/dx, the derivative of y is also a function of x. The process
of finding the derivative of a function is called differentia-
tion, as was demonstrated for y = x2. It is important to point
out that there are classes of functions for which derivatives
do not exist. For example, in the limit as �x approaches
zero, the function’s value may either become infinite or os-
cillate without reaching a limit. In particular, the function
f (x) = |x| is not differentiable at x = 0 since the right-hand
limit (which is 1) does not equal the left-hand limit (which
is −1).

Partial Derivatives

Extension of differentiation to multivariable functions is
the important field of partial differential equations. Appli-
cations of this type involve surfaces and finding the max-
ima and minima of these functions. Selected operations
specific to partial differential equations are listed below.
The reader is referred to calculus texts for a more exten-
sive discussion on this topic.

Consider a function of the form z = f(x, y). The first par-
tial derivatives of f with respect to x and y, where y and x

are held constant, respectively, can be defined as

The function has three different second partial derivatives:

∂

∂x

(
∂ f

∂x

)
= ∂2 f

∂x2

∂

∂y

(
∂ f

∂y

)
= ∂2 f

∂y2

∂

∂x

(
∂ f

∂y

)
= ∂2 f

∂x ∂y

(19)

If the function and its partial derivatives are continuous,
then the order of differentiation is immaterial for the mixed
derivatives and they satisfy the following relationship:

Mean Value Theorem

The Mean Value Theorem states that if f(x) is defined and
continuous on the closed interval [a,b] and differentiable on
the open interval (a,b), then there is at least one number c
in (a,b) (that is, a < c < b) such that

f ′(c) = f (b) − f (a)
b − a

(21)

For a continuous function f(x,y,z) with continuous partial
derivatives, the mean value theorem is

f (x0 + h, y0 + k, z0 + �) − f (x0, y0, z0)

= h
∂ f

∂x
+ k

∂ f

∂y
+ �

∂ f

∂z
(22)

Maxima and Minima

Consider a function y = f(x) that has a derivative for every
x in a given range. At a point where y reaches a maximum
or a minimum, the slope of the tangent to the function is
zero. Because the first derivative of a function represents
the slope of the function at any point, the second derivative
represents the rate of change of the slope. Hence, a positive
second derivative indicates an increasing slope, whereas
a negative second derivative denotes a decreasing slope.
The concavity of a function is determined using the second
derivative of the function:

If f′′(x) > 0, then the function is concave upward.
If f′′(x) < 0, the function is concave downward (convex).

A point of inflection denotes the location where curvature
of the function changes from convex to concave, and the
second derivative of the function is zero. Maxima, minima,
and points of inflection are also known as critical points of
a function. The derivative tests for critical points are listed
in Table 1.

For all continuous functions, a maximum or minimum is
located where the first derivative equals zero, and a point
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Table 1. Conditions for Existence of Critical Points of a Function

First Derivative Second Derivative Critical Point
Zero Negative Maximum (local/global)
Zero Positive Minimum (local/global)
Any value Zero Probably an inflection point

of inflection is located where the second derivative equals
zero. The converse of these statements is not true. For ex-
ample, a straight horizontal line has a zero slope at all
points but this does not indicate a critical point. Also, any
linear function (y = mx + b) has a zero-valued second deriva-
tive, but this does not indicate points of inflection. Table 2
shows the necessary and sufficient conditions for existence
of the maximum and minimum points of the function z = f(x,
y) using partial derivatives.

Critical Points Example. Consider the use of calculus to
find the critical points of an alternating-current (ac) volt-
age source. Without specific knowledge of the cosine func-
tion, the critical points are found where the first derivative
is zero; the second derivative is then used to classify the
nature of these points. The voltage and its first and second
derivatives are

The critical points—that is, where v′(t) = 0—are located at
t = (nπ − θ)/ω, where n is an integer. Substitution of these
values of t into the second derivative finds two results:

Hence, maxima exist at even values of n and minima at
odd n values.

The points of inflection occur where the second deriva-
tive is zero, v′′(t) = 0, specifically here for t = [(2n + 1)π/2 −
θ]/ω. These points of inflection identify concavity changes.
Regions of specific concavity behavior can be ascertained
using v′′(t), namely,

These results are shown in Fig. 2.

Differentiation Rules

The following formulas represent the fundamental rules of
differentiation. The derivatives of elaborate functions can
be systematically evaluated using these rules. All argu-
ments in trigonometric functions are measured in radians,
and all inverse trigonometric and hyperbolic functions rep-
resent principal values.

Figure 2. Critical points for an ac voltage source, v(t) =VM
cos(ωt + θ). The maxima and minima are located where v′(t) = 0.
The points of inflection occur at v′′(t) = 0 where the concavity of
the curve changes.

Constants. The derivative of a constant is zero:

Scaling. If u is multiplied by a constant b, so is its deriva-
tive:

Linearity. The derivative of the sum or difference of two
or more functions is the sum or difference of the derivatives
of the functions:

Product Rule. The derivative of the product of two func-
tions is

For three functions the product rule is

which can be generalized to the product of more functions.

Quotient Rule. The derivative of the ratio of two func-
tions can be expressed as

Chain Rule. Let y be a function of u, which in turn de-
pends on x; then
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Given w = f(u, v), u = g(x, y), and v = h(x, y), the chain rule
for partial derivatives may be applied as

Derivative of Integrals. Given t as an independent vari-
able, we obtain

Power Rule.

The derivatives of a few selected functions appear in Table
3.

Differentiation Example. A classic network problem re-
quiring differential calculus is the determination of an ana-
lytical expression for the load resistance that results in the
maximum power transfer in a direct-current (dc) circuit.
Consider a reduced circuit consisting of a voltage source, v,
in series with a Thévenin equivalent resistance, RTh, and
the load resistance, RL. The power delivered to the load is

A maximum/minimum for P will occur where its derivative
with respect to RL is zero; that is, dP/dRL = 0. To determine
the derivative, the quotient (or product), power, and chain
rules along with the scaling property are utilized:

dP

dRL

= d

dRL

[
v2 RL

(RTh + RL)2

]

= v2

(RTh + RL)4

[
(RTh + RL)2 d RL

dRL

−RL

d(RTh + RL)2

dRL

]

= v2

(RTh + RL)4

[
(RTh + RL)2(1) − RL 2(RTh + RL)

d(RTh + RL)
dRL

]

= v2

(RTh + RL)3
[(RTh + RL) − RL 2] = v2 (RTh − RL)

(RTh + RL)3
.

Setting this last expression equal to zero yields the classic
solution of RL = RTh.

Mathematically speaking at this point, it is indetermi-
nate as to whether this value of RL provides the minimum
or maximum power transfer. To verify that this solution is
indeed the maximum, the second derivative of the power
with respect to the load resistance at the point RL = RTh is
calculated:

The product (versus quotient) rule is used here to broaden
the scope of this example:

Finally, the second derivative at the point of interest is

Since the second derivative is negative for all RTh, it may
be concluded that the maximum power transfer does occur
at RL = RTh .

Power Series

A power series is an infinite series of the form

where x0 is the center. Variables x, x0, and a0, a1, a2, . . . are
real.
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Maclaurin Series. The Maclaurin series uses the origin,
x0 = 0, as its reference point to expand a function:

Use of the Maclaurin series leads quickly to series expan-
sions for the exponential, (co)sine, and hyperbolic (co)sine
functions as given below:

Maclaurin Series Example. The Maclaurin series may be
used to expand ex to find Euler’s identities. Begin with

Adding and subtracting these two sinusoidal expressions

along with a division by 2 and 2j, respectively, form Euler’s
identities:

In the special case of θ = π, the identity becomes Euler’s
formula of

e j π + 1 = 0

This formula connects both the fundamental values (of 0, 1,
j, e and π) and the basic mathematical operators (addition,
multiplication, raised power and equals).

Taylor Series. The Taylor series is more general than the
Maclaurin series because it uses an arbitrary reference
point, x0:

Binomial Series. Related is the binomial series expan-
sion, which converges for x2 < a2:

where the binomial coefficients are given by

Binomial Series Example. The binomial series expansion
may be used to derive the classic expression for kinetic
energy from the relativistic expression below:

where β = v/c, the fraction of light speed an object is trav-
eling. The reciprocated square root term is expanded us-
ing the binomial formula above where n = −½, a = 1, and
x = −β2, which meets the convergence restriction. The ex-
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pansion then is

If v < c, the β4 and higher terms become insignificant. Sub-
stituting the expansion into the relativistic expression for
kinetic energy yields

Numerical Differentiation

Numerical differentiation, although perhaps less common
than numerical integration (presented later), is, to a first
order, a straightforward extension of Equation (14). For
small values of �x, the first derivative at xx is

f ′(xi) = f (xi + �x) − f (xi)
�x

(45)

If �x is positive, the above expression is referred to as a
forward-difference formula, whereas if �x is negative, it is
termed a backward-difference formula. Greater accuracy
can be obtained using formulas that employ data points on
both sides of xi . For instance, although f(xi ) does not explic-
itly appear in the following equations, they are known as
three-point and five point formulas respectively

f ′(xi) = f (xi + �x) − f (xi − �x)
2 �x

(46)

f ′(xi)

= f (xi − 2 �x) − 8 f (xi − �x) + 8 f (xi + �x) − f (xi + 2 �x)
12 �x

(47)

INTEGRAL CALCULUS

Indefinite Integrals

Differentiation and integration are inverse operations.
There are two fundamental issues associated with integral
calculus. The first is to find integrals or antiderivatives of
a function, that is, given an expression, find another func-
tion that has the first function as its derivative. The second
problem is to evaluate a definite integral as a limit of a sum.
As an example, consider y = x2, which is an integral of 2x.
It is important to point out that the integral is not unique
and that x2 represents a family of functions with the same
derivative. Therefore, the solution should be augmented
with an integration constant, c, added to each expression
to represent the indefinite integral. This is so because the
derivative of a constant is zero. If F(x) is an integral of f(x),
then

The addition of the integration constant represents all in-
tegrals of a function. The symbol

∫
, a medieval S, stands

for summa (sum).
The process of finding the integral of a function is called

integration. While the determination of the derivative of a
function is rather straightforward since definite rules ex-
ist, there is no general method for finding the integral of
a mathematical expression. Calculus gives rules for inte-
grating large classes of functions. When these rules fail,
approximate or numerical methods permit the evaluation
of the integral for a given value of x.

Selected indefinite integrals are given in Table 4. Al-
though extensive integral tables exist, there are expres-
sions whose integrals are not listed. Therefore, it is impor-
tant to be cognizant of rules such as integration by parts
or some form of transformation to arrive at the integral of
the desired mathematical expression.

Integration Rules

Properties that hold for the definite integral include scaling
and linearity:

They also include particular properties due to the limits of
integration:

Transformations

Transformation is one method to facilitate evaluating inte-
grals. Perhaps the simplest form of transformation is sub-
stitution. Other complex types of transformation are also
possible, and some integral tables suggest appropriate sub-
stitutions for integrals, which are similar to the integrals in
the table. Experience as well as intuition are the two most
important factors in finding the right transformation. In
performing the substitution with the definite integrals, it
is important to change the limits. Particularly, the change
of limits rule states that if the integral

∫
f(g(x))g′(x) dx is

subjected to the substitution u = g(x), so that the integral
becomes

∫
f(u) du, then

Substitution Example. To determine the area of the el-
lipse x2/a2 + y2/b2 = 1, as shown in Fig. 3, the function may
be rearranged to
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Figure 3. The area of the region encompassed by the ellipse
x2/a2 + y2/b2 = 1 may be obtained by taking advantage of the sym-
metric structure of the function. To this end, the total area is twice
the area of the region above the x-axis, which is equal to

∫ +a −a

b1 − (x/a)2 dx.

Taking advantage of the symmetric nature of the function,
the area of the ellipse is twice the area of its upper half:

Let u = x/a, which results in du = dx/a. When x = −a we ob-
tain u = −1; similarly, u = 1 for x = a. Thus

A = 2

a∫

−a

b

√
1 − (x/a)2

dx = 2b a

a∫

−a

(1/a)
√

1 − (x/a)2
dx

= 2b a

1∫

−1

√
1 − (u)2

du

We know that in general
∫ √

c2 − u2dx = u

2

√
c2 − u2 + c2

2
sin−1

(
u

c

)

Since here c = 1, the area is

A = 2 b a

1∫

−1

√
1 − (u)2

du

= 2 b a

[
u

2

√
1 − u2 + 1

2
sin−1(u)

]
|1−1

= 2 b a

{[
1
2

√
1 − (1)2 + 1

2
sin−1(1)

]

−
[−1

2

√
1 − (−1)2 + 1

2
sin−1(−1)

]}

= 2 b a

{[
0 +

(
1
2

)(
π

2

)]
−

[
0 +

(
1
2

)(−π

2

)]}

= π a b.

Integration Example. Calculation of the
root-mean-square (rms) value of a function is a clas-
sic use of the integral. The rms value is found by first
squaring the waveform, followed by computing its average,
and finally by taking its square root. Consider the deter-
mination of the rms value of a sinusoidal current, i(t) = IM

cos(ωt + θ), of constant frequency, ω, and constant phase
shift, θ. The rms current is found over a representative

period, T = 2π/ω:

The solution to the integral may be found using a change
of variables and the table of integrals. First, let u = ωt + θ,
such that du = ω dt. The variable change modifies the upper
and lower limits of integration to ωT + θ and θ, respectively.
The expression for integral now appears as

Using the table of integrals (Table 4), we obtain

Thus, the rms value is

Integration by Parts

One of the most important techniques of integration is the
principle of integration by parts. Let f(x) and g(x) be any
two functions and let G(x) be an antiderivative of g(x). Us-
ing the product rule for derivatives, the integral of the prod-
uct of the two functions can be derived as

For definite integrals we obtain

Integration by Parts Example. This example illustrates
integration by parts in evaluating the Laplace transform,
which is defined by

Here we transform a ramp function, f(t) = at. Let u = at and
dv = e−st dt. Hence, du = a dt and v = ∫

e−st dt = −e−st/s.
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The Laplace transform of a ramp is

F (s) =
∞∫

0

at e−st dt = at
−e−st

s
|∞0 −

∞∫

0

−e−st

s
a dt

=
[
a · ∞ −e−s∞

s
−a · 0

−e−s0

s

]
+ a

s

(
e−st

−s

)
|∞0

= 0 + −a

s2
(e−s∞ − e−s0) = a

s2
.

Definite Integrals

A definite integral is the limit of a sum. Common applica-
tions of the definite integral include determination of area,
arc length, volume, and function average. These quanti-
ties can be approximated by sums obtained by dividing the
given quantity into small parts and approximating each
part. The definite integral allows one to arrive at the ex-
act values of these quantities instead of their approximate
values.

The symbol
∫

b
a f(x) dx is the definite integral of f(x) dx

on interval [a, b]. Let f(x) be a single-valued function of
x, defined at each point on [a, b]. Choose points xi on the
interval such that

Let �xi = xi − xi−1. Choose in each interval �xi a point ti .
Form the sum

The limit of this sum, as the largest interval approaches
zero, is defined as the definite integral

∫
b

a f(x) dx, if it can
exist. The existence of f is guaranteed if it is a continuous
function on [a, b]. If F(x) is a function whose derivative is
f(x), then it can be shown that

This is essentially the fundamental theorem of calculus. If
F does not exist, numerical methods may be used to ob-
tain the value of the integral. Several definite integrals
important in engineering are listed in Table 5. For a more
comprehensive list of integrals, the reader is referred to a
number of calculus texts.

Applications. One use of definite integrals is to find the
areas bounded by certain curves. For example, the area
bounded by the polar function f(θ) and the lines θa and θb

is

Another application of integration is to find an average
(mean) value:

Integration is used to find arc length from point a to point
b:

Or it is used to find arc length in polar coordinates:

Multiple Integration

The double integral of f(x, y) over some region R is the
generalization of the definite integral and is denoted as

It is typically applied to find the volume encompassed by
a surface, the center of gravity of a given structure, and
moments of inertia.

Let f(x, y) be a function of two variables, and let g(x) and
h(x) be two functions of x alone. Furthermore, let a and b be
real numbers. Then, an iterated integral is an expression
of the form

where f(x, y) is first treated as a function of y alone. The
inner integral is evaluated between the limits y = g(x) and
y = h(x), which results in an expression that is a function of
x alone. The resultant integrand is then evaluated between
the limits of x = a and x = b.

A similar principle applies to function of three or more
independent variables. A change of variables in multiple
integrals is generally accomplished with the aid of the Ja-
cobian.

For a transformation of the form

x = f (u, v, w) y = g(u, v, w) z = h(u, v, w)

the Jacobian of the transformation is defined as

∂(x, y, z)
∂(u, v, w)

= |

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

| (63)

Special Functions

Various other special functions exist. The gamma function
is defined by the integral

�(n) =
∞∫

0

tn−1e−t dt , n > 0 (64)

The error function is given by

erf (x) = 2√
π

x∫

0

e−t2 dt (65)
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The complementary error function is simply: erfc(x) = 1 −
erf (x).

Numerical Integration

Numerical methods may be used to approximate the def-
inite integral in cases where either an analytical solu-
tion is unavailable or the function is unknown (as in the
case of sampled data). The simplest numerical integration
uses the Riemann sum in which the integral symbol be-
comes a summation, and the dx term becomes a partition,
�xi = [xi − xi−1], in [a, b]:

where wi is any number, usually the midpoint, in partition
�xi . The partition is typically a constant proportional to
the number of partitions, �x = (b − a)/n (rectangle rule). As
the magnitude of �x decreases, the accuracy of the numer-

ical estimates increases. A traditional approach of testing
the solution convergence is to repeatedly halve the parti-
tion width until an acceptable error is reached.

Trapezoidal Rule. The trapezoidal rule improves the nu-
merical estimate of the integral (as compared with the rect-
angle rule above) by fitting a piecewise linear approxima-
tion to each subinterval using its endpoints (see Fig. 4):

Simpson’s Rule. Simpson’s rule is a further improvement
employing a piecewise quadratic approximation. In this
method, the number of subintervals must be even (i.e.,



12 Calculus

Figure 4. For trapezoidal numerical integration the curve is sub-
divided into equal increments between the left-hand limit at x0 = a
and the right-hand limit at xn = b. The area within each subinter-
val is approximated as (xi − xi−1)f(xi ) + f(xi−1)/2. The integral is
then numerically approximated by the summation of the subin-
terval areas.

m = 2n) and �x = (b − a)/m. The numerical area is

Calculus Software

With the advent of powerful personal computers, software
has been developed for solving calculus problems and pro-
viding graphical visualization of their solutions. Many of
these programs rely on symbolic processing that was pio-
neered in artificial intelligence. Caution should, however,
be heeded in the use of these programs as they can result in
nonsensical solutions. Some of the more advanced and com-
mercial programs are Maple®, Mathematica®, Matlab®,
and MathCad®. A discussion on these programs and their
use in solving calculus problems is omitted here due to the
evolving nature of such software, but the reader is referred
to the Internet for Web-based calculus software resources.

ADDITIONAL TOPICS IN CALCULUS

Although differentiation and integration form the pillars of
the use of calculus in engineering there are other mathe-
matical tools, such as vectors and the convergence theorem,
which transcend the boundaries of calculus. These topics
are presented here.

Transformation of Coordinates

In some engineering applications, it is necessary to trans-
form a given mathematical expression from one coordinate
system to another. Examples of this transformation are
those for the Laplacian operator, which appear later in this
section. For the coordinate systems that appear in Fig. 5,
the transformations appear in Table 6.

Vector Calculus

Consider a vector function

Figure 5. Cartesian (a), cylindrical (b), and spherical (c) coordi-
nate systems are used in many engineering analyses. To facilitate
an analysis, the coordinates of a given point may be transformed
from one coordinate system to another. The transformation rules
appear in Table 6.

where i, j, and k are unit vectors in the positive x, y,
and z directions, respectively. The magnitude of the vec-
tor is

√
ν2

x + ν2
y + ν2

z . The dot product (also referred to as
the scalar or inner product) of v and w is defined as

where θ is the angle between v and w. Two vectors are
orthogonal if and only if v·w = 0.

The cross product or vector product of v and w is defined
as

Two vectors v and w are parallel if and only if v × w = 0.
The vector differential operator ∇ (“del”) is defined in

three dimensions as

The gradient of a scalar field, f(x, y, z), is defined as

The divergence of a vector field is the dot product of the
gradient operator and the vector field:

The curl of a vector field is the cross product of the gradient
and the vector function:

The curl of any gradient is the zero vector, ∇ × (∇f) = 0. The
divergence of any curl is zero, ∇·(∇ × F) = 0. The divergence
of a gradient of f is its Laplacian, denoted as ∇2f or �f. For
the Cartesian coordinate system the Laplacian is repre-
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sented as

� = ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(76)

for the cylindrical coordinate system it is represented as

and for the spherical coordinate system it is represented
as

Functions that satisfy Laplace’s equation, ∇2f = 0, are said
to be harmonic.

Vector Calculus Example. Let v = x2yi + zj + xyzi. The di-
vergence of the vector is

The curl of v is

Gauss’s and Stokes’s Theorems. Maxwell’s equations for
electromagnetic fields are derived using the concepts of
vector calculus applied to Faraday’s law, Ampere’s law, and
Gauss’s laws for electric and magnetic fields. The deriva-
tion is accomplished using Stokes’s theorem and Gauss’s
divergence theorem.

The divergence theorem of Gauss provides a transfor-
mation of volume integrals into surface intervals, and con-
versely. Given a vector function F with continuous first par-
tial derivatives in a region R bounded by a closed surface
S

where n is the outer unit normal to S. Physically, the flux
of F across a closed surface is the integral of the divergence
of F over the region.

Stokes’s theorem provides a transformation of surface
integrals into line integrals, and vice versa. The surface
integral of the normal component of curl F over S equals
the line integral of the tangential component of F taken

along the simple (nonintersecting) closed curve C, which
forms the boundary of the open surface S

where r is the position vector of the point on C. Stokes’s
theorem is a generalization of Green’s theorem to three
dimensions.

Singularity Functions in Engineering

Although strictly speaking they are not part of calculus,
there are several singularity functions used in engineer-
ing problems worth examining while the subjects of dif-
ferentiation and integration are explored. Two of the most
common singularity functions are the unit step, u(t), and
the unit impulse or delta function, δ(t). The unit step is
defined as

The unit step function is discontinuous at t = τ, where it
abruptly jumps from zero to unity. Two unit step func-
tions are oftentimes combined into a gate function as
u(t − τ) − u[t − (τ +T)], which is a pulse of period T. The
delta function is a pulse of infinitesimal width and area
(strength) of one, and it is defined as

Hence, the unit step function is the integral of the unit
impulse:

The integration of the step function results in a ramp func-
tion.
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