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NOTATION AND BASIC DEFINITIONS

Convolution is an algebraic operation that requires two input
signals and produces a third signal as the result. Convolution
is defined for signals from both the continuous-time and the
discrete-time domain. Continuous-time signals are simply
functions of a free parameter t that takes on a continuum of
values. We will denote continuous-time signals by a lowercase
letter and indicate the continuous-time parameter in paren-
theses [e.g., x(t)]. Similarly, discrete-time signals are func-
tions of a free parameter n that takes integer values only. We
denote discrete-time signals by a lowercase letter followed by
the discrete-time parameter enclosed in square brackets (e.g.,
x[n]). We will treat continuous-time and discrete-time convo-
lution in parallel and repeatedly explore connections between
the two.

Continuous Time

For continuous-time signals the convolution of two signals
x(t) and y(t) is denoted as z(t) � x(t) � y(t) and defined as

z(t) =
∫ ∞

−∞
x(τ )y(t − τ ) dτ (1)

where we assume the integral exists for all values of t.
To alleviate common confusion about this definition, sev-

eral observations can be made. First, the result z(t) is a func-
tion of t and, thus, a continuous-time signal. Furthermore,
the variable � is simply an integration variable and, therefore,

CONVOLUTION does not appear in the result. Most important, convolution
requires integration of the product of two signals; one of

Convolution may be the single most important arithmetic op- these, y(t � �), is time reversed with respect to the integration
eration in electrical engineering because any linear, time-in- variable � and its location depends on the variable t. We illus-
variant system generates an output signal by convolving the trate these considerations by means of an example.
input with the impulse response of the system. Because of its Let the signals to be convolved be given by
significance, convolution is now a well-understood operation
and is covered in any textbook containing the terms signals
or systems in the title.

x(t) = exp
�

− t
2

�
u(t) (2)

This article is intended to review some of the most impor-
tant aspects of convolution. The fundamental relationship be-
tween linear, time-invariant systems alluded to in the first

y(t) =



t
5

for 0 ≤ t ≤ 5,

0 else
(3)

paragraph is reexamined and important properties of convo-
lution, including several important transform properties, are where u(t) denotes the unit-step function [i.e., u(t) � 1 if t �
presented and discussed. 0 and u(t) � 0 otherwise]. The signals x(t) and y(t) are shown

Then this article discusses computational aspects. Even in Fig. 1.
though the name convolution may be a slight misnomer (it The definition of Eq. (1) prescribes that we must integrate
appears to intimidate students because of its similarity to the over the product of x(�) and y(t � �). Figure 2 shows these
word convoluted), it is a fact that continuous-time convolution signals for three different values of t in the left-hand column.
often cannot be carried out in closed form. This article dis- Considering these graphs from top to bottom, we see that
cusses in some detail procedures for approximating continu- y(t � �) slides from left to right with increasing t. Further-
ous-time convolution through discrete-time convolution. more, the orientation of y(t � �) is flipped relative to the orien-

Continuing with computational considerations, the article tation of the signal y(t) in Fig. 1. The signal x(�) is repeated
addresses the problem of computationally efficient, fast algo- for reference.
rithms for convolution. This has been an active area of re- The right-hand column in Fig. 2 shows the product of the
search until fairly recently, and the article provides insight two signals in the respective left-column plot. The result of
into the principal approaches for devising fast algorithms. the convolution is the integral of the product (i.e., the area

The article concludes by examining several areas in which indicated in the plots in the right column). Note that the area
convolution or related operations play a prominent role, in- depends on the value of t and, hence, the result of the convo-
cluding error-correcting coding and statistical correlation. Fi- lution operation is a function of t.
nally, the article provides a brief introduction to the idea of Once the principles of convolution are understood, it is

fairly easy to evaluate Eq. (1) analytically for this example.abstract signal spaces.
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Figure 3. The result z(t) of the convolution. Note that z(t) retains
features of both signals. For t between zero and 5, z(t) resembles the
ramp signal y(t). After t � 5, z(t) is an exponentially decaying signal
like x(t).
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and t. This is illustrated in the middle row in Fig. 2.
Figure 1. The signals x(t) (top) and y(t) (bottom) used to illustrate

Hence, we can writeconvolution.

First, note that y(t � �) extends from t � 5 to t (i.e., it is zero
outside this range). Hence, we should consider three different

z(t) =
∫ ∞

−∞
x(τ )y(t − τ ) dτ

=
∫ t

0
exp

�
−τ

2

� t − τ

5
dτ

(4)

cases as follows.

This integral is easily evaluated by parts and yields1. t � 0: In this case, the product of x(�) and y(t � �)
is equal to zero and, thus, the result z(t) equals zero
for t 	 0. This case is illustrated in the top row of z(t) = 2

5
t − 4

5

�
1 − exp

�
− t

2

��
(5)

Fig. 2.
2. 0 	 t � 5: Here, the nonzero part of y(t � �) overlaps 3. t � 5: in this case, the nonzero part of y(t � �) overlaps

partially with the nonzero part of x(�). Specifically, the completely with the nonzero part of x(�). Hence, the
product of x(�) and y(t � �) is nonzero for � between zero product of x(�) and y(t � �) is nonzero for � between t �

5 and t. The last row in Fig. 2 provides an example for
this case. To determine z(t), we can write

z(t) =
∫ ∞

−∞
x(τ )y(t − τ ) dτ

=
∫ t

t−5
exp

�
−τ

2

� t − τ

5
dτ

(6)

Thus, the only difference to the previous case is the
lower limit of integration. Again, the integral is easily
evaluated and yields

z(t) = 6
5

exp
�

−t − 5
2

�
+ 4

5
exp

�
− t

2

�
(7)

The resulting signal z(t) is plotted in Fig. 3.

Discrete Time

For discrete-time signals x[n] and y[n], convolution is denoted
by z[n] � x[n] � y[n] and defined as
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Figure 2. Illustration of convolution operation. The left-hand column
z[n] =

∞∑
k=−∞

x[k] · y[n − k] (8)

shows x(�) and y(t � �) for three different values of t. The right-hand
Notice the similarity between the definitions of Eqs. (1) andcolumn indicates the intergral over the product of the two signals in

the respective left-hand plots. (8).
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n 0 1 2 3 4 5 6 7 8

x[n] 2 4 6 4 2
y[n] 1 �3 3 �1

k � 0: x[0] · y[n � 0] 2 �6 6 �2
k � 1: x[1] · y[n � 1] 4 �12 12 �4
k � 2: x[2] · y[n � 2] 6 �18 18 �6
k � 3: x[3] · y[n � 3] 2 �6 6 �2
k � 4: x[4] · y[n � 4] 4 �12 12 �4

z [n] 2 �2 0 �6 12 �12 10 �4

Figure 4. Convolution of finite length sequences.

A simple algorithm can be used to carry out the computa-
tions prescribed by Eq. (8) for finite length signals. Notice
that z[n] is computed by summing terms of the form
x[k] 
 y[n � k]. We can take advantage of this observation by
organizing data in a tableau, as illustrated in Fig. 4. The ex-
ample in Fig. 4 shows the convolution of x[n] � �2, 4, 6, 4, 2�
with y[k] � �1, �3, 3, �1�. We begin by writing out the signal
x[n] and y[n]. Then we use a process similar to ‘‘long multipli-
cation’’ to form the output by summing shifted rows. The kth
shifted row is produced by multiplying the y[n] row by x[k]
and shifting the result k positions to the right. The final an-

x1[n] y1[n]

y[n]

Discrete-time
system

a1

+

x2[n] y2[n]Discrete-time
system

a2

+

+

x1[n]

y[n]Discrete-time
system

x2[n]

a1

+

a2

+

+

swer is obtained by summing down the columns. It is easily
Figure 6. Linearity. For the discrete-time system to be linear, theseen from this procedure that the length of the resulting se-
outputs y[n] of the two blocks must be equal to every choice of con-

quence z[n] must be one less than the sum of the lengths of stants a1 and a2 and for all input signals x1[n] and x1[n].
the inputs x[n] and y[n].

Linearity. Linear system are characterized by the so-called
principle of superposition. This principle says that if the inputLINEAR, TIME-INVARIANT SYSTEMS
to the system is the sum of two scaled signals, then we can
find the output by first computing the outputs due to eachThe most frequent use of convolution arises in connection
of the sequences and then add the two scaled outputs. Morewith the large and important class of linear, time-invariant formally, linearity is defined as follows. Let y1[n] and y2[n] be

systems. We will see that for any linear, time-invariant sys- the outputs of the system due to arbitrary inputs x1[n] and
tem the output signal is related to the input signal through a x2[n], respectively. Then the system is linear if, for arbitrary
convolution operation. For simplicity, we will focus on dis- constants a1 and a2, the output of the system due to input
crete-time systems in this section and comment on the contin- a1x1[n] � a2x2[n] equals a1y1[n] � a2y2[n].
uous-time case toward the end. This property is illustrated by the block diagrams in Fig.

6. The figure also indicates that linearity implies that the ad-
Systems dition and scaling of signals may be interchanged with the

operation of the system.To facilitate our discussion, let us briefly clarify what is
meant by the term system, and more specifically discrete-time Time Invariance. A system is time invariant if a delay of
system. As indicated by the block diagram in Fig. 5, a dis- the input signal results in an equally delayed output signal.
crete-time system accepts a discrete-time signal x[n] as its More specifically, let y[n] be the output when x[n] is the input.
input. This input is transformed by the system into the dis- If the input is delayed by n0 samples and becomes x[n � n0],
crete-time output signal y[n]. We use the notation then the resulting output must be y[n � n0] for the system to

be time invariant.
Figure 7 illustrates the concept of time invariance. The di-x[n] �−→ y[n] (9)

agram implies that for time-invariant systems the delay and
the operation of the system can be interchanged.to symbolize the operation of the system. Linear, time-invari-

ant systems form a subset of all systems. Before proceeding
to demonstrate the main point of this section, we pause
briefly to define the concepts of linearity and time invariance.

Delay
n0

x[n] x[n–n0] Discrete-time
system

y[n–n0]

Delay
n0

x[n] y[n]Discrete-time
system

y[n–n0]

Discrete-time
system

x[n] y[n]

Figure 7. Time invariance. The outputs y[n � n0] must be equal for
all delays n0 for the system to be time invariant.Figure 5. Discrete-time system.
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Impulse Response. The output of a system in response to an The left-hand side requires a little more thought. For a
given k, x[k] �[n � k] is a signal with a single nonzero sampleimpulse input is called the impulse response. Mathematically,

impulses are described by delta functions, and for discrete- at n � k. Hence, the sum of all such signals is itself a signal
and the samples are equal to x[n]. Thus, we conclude thattime signals the delta function is defined as

x[n] = x[n] ∗ δ[n] =
∞∑

k=−∞
x[k]δ[n − k] (14)δ[n] =

{
1 for n = 0
0 for n �= 0

(10)

We will revisit this fact later in this article.It is customary to denote the impulse response as h[n]. Hence,
The preceding discussion can be summarized by the rela-we may write

tionship
δ[n] �−→ h[n] (11)

x[n] �−→ x[n] ∗ h[n] (15)
We have now accumulated enough definitions to proceed

In words, the output of a linear, time-invariant system withand demonstrate that there exists an intimate link between
impulse response h[n] and input x[n] is given by x[n] � h[n].convolution and the operation of linear, time-invariant
Recall that we have only invoked linearity and time invari-systems.
ance to derive this relationship. Hence, this fundamental re-
sult is true for any linear, time-invariant system.Convolution and Linear, Time-Invariant Systems

We will show that the output y[n] of any linear, time-invari-
Continuous-Time Systemsant system in response to an input x[n] is given by the convo-

lution of x[n] and the impulse response h[n]. This is an amaz- The entire preceding discussion is valid for continuous-time
ing result, as it implies that a linear, time-invariant system systems, too. In particular, every linear, time-invariant sys-
is completely described by its impulse response h[n]. Further- tem is completely characterized by its impulse response h(t),
more, even though linear, time-invariant systems form a very and the output of the system in response to an input x(t) is
large and rich class of systems with numerous applications given by y(t) � x(t) � h(t). A proof of this relationship is a little
wherever signals must be processed, the only operation per- more cumbersome than in the discrete time case, mainly be-
formed by these systems is convolution. cause the continuous-time impulse �(t) is more cumbersome

To begin, recall that the output of a system in response to to manipulate than its discrete-time counterpart. We will dis-
the input �[n] is the impulse response h[n]. For time-invari- cuss �(t) later.
ant systems, the response to a delayed impulse �[n � k] must
be a correspondingly delayed impulse response h[n � k]. Fur-

FUNDAMENTAL PROPERTIESthermore, the relationship �[n � k] � h[n � k] must hold for
any (integer) value k if the system is time invariant.

The convolution operation possesses several useful properties.Additionally, if the system is linear, we may scale the in-
In many cases these properties can be exploited to simplifyput by an arbitrary constant and effect only an equal scale on
the manipulation of expressions involving convolution. Wethe output signal. In particular, the following relationships
will rely on many of the properties presented here in the sub-are all true for linear and time-invariant systems:
sequent exposition.

Symmetry

The order in which convolution is performed does not affect
the final result [i.e., x(t) � y(t) equals y(t) � x(t)]. This fact is
easily shown by substituting � for t � � in Eq. (1). Then we
obtain

z(t) =
∫ ∞

−∞
x(t − σ )y(σ )dσ (16)

...

x[−1]δ[n + 1] �−→ x[−1]h[n + 1]

x[0]δ[n] �−→ x[0]h[n]

x[1]δ[n − 1] �−→ x[1]h[n − 1]

...

x[k]δ[n − k] �−→ x[k]h[n − k]

...

(12)

which obviously equals y(t) � x(t). The corresponding relation-
Here x[n] is an arbitrary signal. ship for discrete-time signals can be established in the same

Finally, because of linearity, we may sum up all the sig- manner.
nals on the right-hand side and be assured that this sum is
the output for an input signal that is equal to the sum of the Convolving with Delta Functions
signals on the left-hand side. This means that

The delta function is of fundamental importance in the analy-
sis of signals and systems. The continuous-time delta function
is defined implicitly through the relationship

∞∑
k=−∞

x[k]δ[n − k] �−→
∞∑

k=−∞
x[k]h[n − k] = x[n] ∗ h[n] (13)

Thus, the output signal is equal to the convolution of x[n] and
h[n].

∫ ∞

−∞
x(t)δ(t − T ) dt = x(T ) (17)
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where the x(t) is an arbitrary signal that is continuous at t � system with impulse response h(t) to an input x(t) � exp(st).
Then the output is given byT. From this definition it follows immediately that

x(t) ∗ δ(t − t0) =
∫ ∞

−∞
x(τ )δ(t − t0 − τ ) dτ = x(t − t0) (18)

Hence, convolving a signal with a time-delayed delta function
is equivalent to delaying the signal. The induced delay of the
signal is equal to the delay t0 of the delta function.

Analogous to the continuous-time case, when an arbitrary

y(t) =
∫ ∞

−∞
h(τ )x(t − τ ) dτ

=
∫ ∞

−∞
h(τ )es(t−τ ) dτ

= est
∫ ∞

−∞
h(τ )e−sτ dτ

= est H(s)

(23)

signal x[n] is convolved with a delayed delta function �[n �
n0], the result is a delayed signal x[n � n0]. We have already

where H(s) denotes the Laplace transform of h(t). H(s) is com-seen this fact in Eq. (14) for the case n0 � 0.
monly called the transfer function of the system. Notice, in
particular, that the output y(t) is an exponential signal withConvolving with the Unit-Step Function
the same exponent as the input; the only difference between

An ideal integrator computes the ‘‘running’’ integral over an input and output is the complex-valued multiplicative con-
input signal x(t). That is, the output y(t) of the ideal inte- stant H(s). This observation is often summarized by the state-
grator is given by ment that (complex) exponential signals are eigenfunctions of

linear, time-invariant systems.
The Laplace transform of the convolution of signals x(t)

and y(t) can be written as
y(t) =

∫ t

−∞
x(τ ) dτ (19)

With the unit-step function u(t), we may rewrite this equality
as

L {x(t) ∗ y(t)} = L

{∫ ∞

−∞
x(τ )y(t − τ ) dτ

}

=
∫ ∞

−∞

∫ ∞

−∞
x(τ )y(t − τ )e−st dτ dt

(24)

y(t) = x(t) ∗ u(t) =
∫ ∞

−∞
x(τ )u(t − τ ) dτ (20)

Substituting � � t � � and d� � d� yields
The equality between the two expressions follows from the
fact that u(t � �) equals one for � between �� and t and
u(t � �) is zero for � � t.

The corresponding relationship for discrete-time signals is

L {x(t) ∗ y(t)} =
∫ ∞

−∞

∫ ∞

−∞
x(τ )y(σ )e−s(τ+σ ) dτ dσ

=
∫ ∞

−∞
x(τ )e−sτ dτ ·

∫ ∞

−∞
y(σ )e−sσ dσ

= X (s) · Y (s)

(25)

y[n] =
n∑

k=−∞
x[k] =

∞∑
k=−∞

x[k] · u[n − k] = x[n] ∗ u[n] (21)

Hence, we have the very important relationship that the
where u[n] is equal to one for n � 0 and zero otherwise. Laplace transform of the convolution of two signals, x(t) �

y(t), is the product of the respective Laplace transforms,
Transform Relationships X(s) 
 Y(s). Clearly, this property also holds for Fourier trans-

forms. This property may be used to simplify the computationFor both continuous- and discrete-time signals there exist
of the convolution of two signals. One would first compute thetransforms for computing the frequency domain description of
Laplace (or Fourier) transform of the signals to be convolved,signals. While these transforms may be of independent inter-
then multiply the two transforms, and finally compute theest in the analysis of signals, they also exhibit a very impor-
inverse transform of the product to obtain the final result.tant relationship to convolution.
This procedure is often simpler than direct evaluation of the
convolution integral of Eq. (1) when the signals to be con-Laplace and Fourier Transform. The Laplace transform of a
volved have simple transforms (e.g., when the signals are ex-signal x(t) is denoted by L �x(t)� or X(s) and is defined as
ponentials, including complex exponentials and sinusoids).

Finally, let x(t) be a periodic signal of period T. Then x(t)
can be represented by a Fourier seriesX (s) = L {x(t)} =

∫ ∞

−∞
x(t)e−st dt (22)

where s is complex valued and can be written as s � � � j�.
We will assume throughout this section that signals are such

x(t) =
∞∑

k=−∞
xk exp( j2πkt/T ) (26)

that their region of convergence for the Laplace transform in-
where the Fourier series coefficients xk are given bycludes the imaginary axis (i.e., the preceding integral con-

verges for ��s� � � � 0). Hence, we obtain the Fourier trans-
form, F �x(t)� or X( f), of x(t) by evaluating the Laplace
transform for s � j2�f .

xk = 1
T

∫ T

0
x(t) exp(− j2πkt/T ) dt (27)

The Laplace transform can be interpreted as the complex-
valued magnitude of the response by a linear, time-invariant A periodic signal is said to have a discrete spectrum.
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If x(t) is convolved with an aperiodic signal y(t), then it is The discrete-time equivalent of the Fourier series is the
discrete Fourier transform (DFT). Like the Fourier series, theeasily shown that the signal z(t) � x(t) � y(t) is periodic and

has a Fourier series representation DFT provides a signal representation using discrete, harmon-
ically related frequencies. Both the Fourier series and the
DFT representations result in periodic time functions or sig-
nals. For a discrete-time signal of length (or period) N sam-

z(t) =
∞∑

k=−∞
zk exp( j2πkt/T ) (28)

ples, the coefficients of the DFT are given by

with Fourier series coefficients zk equal to the product
xk 
 Y(k/T), where Y( f) is the Fourier transform of of y(t).

When two periodic signals are convolved, the convolution
Xk =

N−1∑
n=0

x[n] exp(− j2πkn/N) (32)

integral generally does not converge unless the spectra of the
two signals do not overlap, in which case the convolution The signal x[n] can be represented as
equals zero.

z-Transform and Discrete-Time Fourier Transform. For dis-
x[n] = 1

N

N−1∑
k=0

Xk exp( j2πkn/N) (33)

crete-time signals, the z-transform plays a role equivalent to
the Laplace transform for continuous-time signals. The When a periodic, discrete-time signal x[n] with period N
z-transform Z �x[n]� or X(z) of a discrete-time signal x[n] is and with DFT coefficients Xk is convolved with a nonperiodic
defined as signal y[n], the result is a periodic signal z[n] of period N.

Furthermore, the DFT coefficients of the result z[n] are given
by Xk 
 Y(k/N), where Y( f) is the Fourier transform of y[n].X (z) =

∞∑
n=−∞

x[n]z−n (29)

Circular Convolution. An interesting problem arises when
The variable z is complex valued, z � A 
 ej�. Analogous to our we ask ourselves which signal z[n] has DFT coefficients Zk �
assumption for the Laplace transform, we will assume Xk 
 Yk, for k � 0, 1, . . ., N � 1. First, because all three sig-
throughout that signals are such that their region of conver- nals have DFTs of length N, they are implicitly assumed to
gence includes the unit circle (i.e., the preceding sum con- be periodic with period N. Further, z[n] can be written as
verges for �z� � A � 1). Then the (discrete-time) Fourier trans-
form X( f) can be found by evaluating the z-transform for z �
exp( j2�f ). Notice that the discrete-time Fourier transform is
periodic in f (with period 1); the continuous-time Fourier

z[n] = 1
N

N−1∑
k=0

Zk exp( j2πkn/N) = 1
N

N−1∑
k=0

Xk · Yk exp( j2πkn/N)

(34)
transform, in contrast, is not periodic.

Additionally, just as complex exponential signals are ei- We can replace Xk using the definition for the DFT and obtain
genfunctions of continuous-time, linear, time-invariant sys-
tems, signals of the form x[n] � zn are eigenfunctions of dis-
crete-time, linear, time-invariant systems. Hence, if x[n] � zn z[n] = 1

N

N−1∑
k=0

N−1∑
l=0

x[l] exp(− j2πkl/N) · Yk exp( j2πkn/N) (35)
is the input, then y[n] � H(z)zn is the output from a linear,
time-invariant system with impulse response h[n] and corre-

Reversing the order of summation, z[n] can be expressed assponding z-transform H(z).
The z-transform of the convolution of sequences x[n] and

y[n] is given by z[n] =
N−1∑
l=0

x[l]
1
N

N−1∑
k=0

Yk exp( j2πk(n − l)/N) (36)

The second summation is easily recognized to be equal to
y[�n � l�], where �n � l� denotes the residue of n � l modulo
N (i.e., the remainder of n � l after division by N). The modu-
lus of n � l arises because of the periodicity of the complex

Z {x[n] ∗ y[n]} = Z

{ ∞∑
k=−∞

x[k] ∗ y[n − k]

}

=
∞∑

n=−∞

∞∑
k=−∞

x[k]y[n − k]z−n

(30)

exponential, specifically because exp( j2�k(n � l)/N) and
exp( j2�k(�n � l�)/N) are equal. Hence, z[n] can be written asBy substituting l � n � k and thus n � l � k, we obtain

z[n] =
N−1∑
k=0

x[k] · y[〈n − k〉] = x[n]� y[n] (37)

This operation is similar to convolution as defined in Eq. (8)
and referred to as circular convolution. The subtle, yet impor-
tant, difference from regular, or linear, convolution is the oc-

Z {x[n] ∗ y[n]} =
∞∑

l=−∞

∞∑
k=−∞

x[k]y[l]z−l−k

=
∞∑

k=−∞
x[k]z−k ·

∞∑
l=−∞

y[k]z−l

= X (z) · Y (z)

(31)

currence of the modulus in the index of the signal y[n]. An
immediate consequence of this difference is the fact that theTherefore, the z-transform of the convolution of two signals

x[n] and y[n] equals the product of the z-transforms X(z) and circular convolution of two length N signals is itself of length
N. The linear convolution of two signals of length N, however,Y(z) of the signals. Again, the same property also holds for

Fourier transforms. yields a signal of length 2N � 1.
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Incidentally, a similar relationship exists in continuous
time. Let x(t) and y(t) be periodic signals with period T and
Fourier series coefficients Xk and Yk, respectively. Then the
signal

z(t) = 1
T

∫ T

0
x(τ )y(〈t − τ 〉) dτ (38)

is periodic with period T and has Fourier series coefficients
Zk � Xk 
 Yk. This property can be demonstrated in a manner
analogous to that used for discrete-time signals.

We will investigate the relationship between linear and
circular convolution later. We will demonstrate that circular
convolution plays a crucial in the design of computationally
efficient convolution algorithms.
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The continuous-time convolution integral is often not comput- Figure 8. Numerical convolution.
able in closed form. Hence, numerical evaluation of the con-
tinuous-time convolution integral is of significant interest.

Reversing the order of integration and summation and evalu-When we are exploring means to compute the integral in Eq.
ating the (trivial) integral, we obtain(1) numerically, we will discover that the discrete-time convo-

lution of sampled signals plays a key role. Furthermore, by
employing ideal sampling arguments, we develop an under- z(nT ) ≈ T ·

∞∑
k=−∞

x(kT )y((n − k)T ) (43)
standing for the accuracy of numerical approximations to the
convolution integral. Hence, apart from the constant T, this approximation is equal

to the discrete-time convolution of sampled signals x(t) and
Riemann Approximation y(t).

To illustrate, let us consider the two signals from the ex-Let us begin by considering a straightforward approximation
ample given in the first section of this article. Figure 8 showsto continuous-time convolution based on the Riemann approx-
the exact result of the convolution together with approxima-imation to the integral. First, we approximate z(t) by a stair-
tions obtained by using T � 1, T � 0.2, and T � 0.05. Clearly,step function such that
the accuracy of the approximation improves significantly with
decreasing T. For T � 0.05, there is virtually no differencez(t) ≈ z(nT ) for nT ≤ τ < (n + 1)T (39)
between the exact and the numerical solution.

How to select T remains an open question. Our intuitionwhere T is a positive constant. Consequently, the convolution
tells us that T must be small relative to the rate of change ofintegral needs to be evaluated only at discrete times t � nT,
the signals to be convolved. Then the error induced by approx-and for these times we have
imating x(�) and y(nT � �) by the value of a nearby sample
will be small. These notions can be made more precise by con-
sidering a system with ideal samplers.z(nT ) =

∫ ∞

−∞
x(τ )y(nT − τ ) dτ (40)

Numerical Convolution via Ideal Sampling
Next, we use the Riemann approximation to an integral as Consider the system in Fig. 9. The signals x(t) and y(t) are
follows. The range of integration is broken up into adjacent, sampled before they are convolved. We will see that the result
non-overlapping intervals of width T. On each interval, we of this convolution depends directly on the discrete-time con-
approximate x(�) and y(nT � �) by volution of the samples x(nT) and y(nT). Finally, the signal

zp(t) is filtered to yield the signal ẑ(t). The objective of this
analysis is to derive conditions on the sampling rate T and
the filter h(t) such that ẑ(t) is equal to z(t).

x(τ ) ≈ x(kT ) for kT ≤ τ < (k + 1)T

y(nT − τ ) ≈ y((n − k)T ) for iT ≤ τ < (k + 1)T
(41)

A System with Ideal Samplers. The input signals x(t) andIf T is sufficiently small, this approximation will be very accu-
x(t) are first sampled using ideal samplers. Thus, the signalsrate. In the limit as T approaches zero, the exact solution
xp(t) and yp(t) are given byz(nT) is obtained. We will discuss the choice of T in more de-

tail later.
The Riemann approximation to the convolution integral is

z(nT ) ≈
∞∑

k=−∞

∫ (k+1)T

kT
x(kT )y((n − k)T ) dτ (42)

xp(t) =
∞∑

n=−∞
x(nT )δ(t − nT ) and

yp(t) =
∞∑

n=−∞
y(nT )δ(t − nT )

(44)
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tition and scaling of the Fourier transform of the original,
nonsampled signal. Specifically, the Fourier transforms Xp( f)
and Yp( f) of the signals xp(t) and yp(t) are given by

Xp( f ) = 1
T

∞∑
m=−∞

X
�

f − m
T

�
(50)

Yp( f ) = 1
T

∞∑
m=−∞

Y
�

f − m
T

�
(51)

where X( f) and Y( f) denote the Fourier transforms of x(t) and

h(t)

x(t)

Σ  (t – nT)δ

Σ  (t – nT)δ

+

+
y(t)

z(t)^zp(t)

xp(t)

yp(t)
*

y(t), respectively. Since the Fourier transform of the convolu-
tion of xp(t) and yp(t) equals the product of Xp( f) and Yp( f), itFigure 9. Convolution of ideally sampled signals. The input signals
follows that the Fourier transform Zp( f) of zp(t) isx(t) and y(t) are first sampled at rate 1/T and then convolved. The

result zp(t) is then filtered [i.e., convolved with h(t)] to produce the
approximation ẑ(t) to z(t). Zp( f ) = Xp( f ) · Yp( f ) = 1

T2

∞∑
m=−∞

∞∑
k=−∞

X
�

f − m
T

�
Y
�

f − k
T

�

(52)Then xp(t) and yp(t) are convolved to produce the signal zp(t),
which can be expressed as Recall that our objective is to obtain ẑ(t) approximately equal

to z(t) � x(t) � y(t). On the other hand, we know that the
Fourier transform Z( f) of z(t) equals X( f) 
 Y( f), and hence, we
must seek to have Ẑ( f) approximately equal to X( f) 
 Y( f). The
simplest way to achieve this objective is to choose T small
enough that X( f � m/T)Y( f � k/T) � 0 whenever m � k. In
other words, T must be small enough that each replica X( f �
m/T) overlaps with exactly one replica Y( f � k/T). Under this
condition, the expression for Zp( f) simplifies to

zp(t) = xp(t) ∗ yp(t) =
∫ ∞

−∞
xp(τ )yp(t − τ ) dτ

=
∫ ∞

−∞

∞∑
n=−∞

x(nT )δ(τ − nT )

∞∑
k=−∞

y(kT )δ(t − τ − kT ) dτ

=
∞∑

n=−∞

∞∑
k=−∞

x(nT )y(kT )

∫ ∞

−∞
δ(τ − nT )δ(t − τ − kT ) dτ

(45)

Based on our considerations regarding the delta function, we Zp( f ) = 1
T2

∞∑
m=−∞

X
�

f − m
T

�
Y
�

f − m
T

�
(53)

recognize that the integral in the last equation is given by
Notice that this is the Fourier transform of an ideally sam-
pled signal with original spectrum (1/T) X( f)Y( f). Expressed
in the time domain, if T is chosen to meet the preceding condi-

∫ ∞

−∞
δ(τ − nT )δ(t − τ − kT ) dτ = δ(t − (n + k)T ) (46)

tion, zp(t) is the ideally sampled version of z(t) � x(t) � y(t).
Substituting this result back into our expression for zp(t), we To summarize these observations, when T is sufficiently
obtain small that X( f � m/T)Y( f � k/T) �0 for all m � k, then

zp(t) =
∞∑

n=−∞

∞∑
k=−∞

x(nT )y(kT )δ(t − (n + k)T ) (47)

When we further substitute l � n � k, zp(t) becomes

zp(t) =
∞∑

l=−∞

� ∞∑
k=−∞

x((k − l)T )y(kT )

�
δ(t − lT ) (48)

zp(t) =
∞∑

n=−∞
z(nT )δ(t − nT )

=
∞∑

n=−∞
(x(t) ∗ y(t))|t=nTδ(t − nT )

=
∞∑

n=−∞
(x(nT ) ∗ y(nT ))δ(t − nT )

(54)

The term in parentheses is simply the discrete-time convolu- The convolution on the second line is in continuous time,
tion of the samples x(nT) and y(nT). Hence, zp(t) is equal to while the one on the last line is in discrete time.

Most important, we may conclude that if T is chosen prop-
erly then the samples z(nT) of z(t) � x(t) � y(t) are equal to
x(nT) � y(nT) [i.e., the discrete-time convolution of samples

zp(t) =
∞∑

n=−∞
(x(nT ) ∗ y(nT ))δ(t − nT ) (49)

x(nT) and y(nT)]. In other words, the order of convolution and
In other words, zp(t) is itself an ideally sampled signal with sampling may be interchanged provided that the sampling pe-
samples given by x(nT) � y(nT). It is important to realize, riod is sufficiently small.
however, that in general the discrete time signal x(nT) � How do we select the sampling period T to be sufficiently
y(nT) is not equal to the signal z(nT) obtained by sampling small? Assume that both x(t) and y(t) are ideally band limited
z(t) � x(t) � y(t) unless the sampling period T is chosen to f x and f y, respectively. Then X( f) � 0 for �f � � f x and Y( f) �
properly. 0 for �f � � f y. The first replica of Y( f) [i.e., Y( f � 1/T)] extends

from 1/T � f y to 1/T � f y. For this replica not to overlap with
Selection of Sampling Rate T. To understand the impact of the zeroth replica of X( f) [i.e., X( f) itself], T must be such that

T, it is useful to consider the frequency domain representa-
tion of our signals. It is well known that the Fourier trans-
form of an ideally sampled signal is obtained by periodic repe-

1
T

− fy > fx (55)
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Figure 10. The influence of the sampling
rate T on numerical convolution. The
spectra of the signals x(t) and y(t) to be
convolved are shown on the top row. The
spectra in the second and third rows are
the result of first sampling and then con-
volving x(t) and y(t). On the second row,
the sampling rate is insufficient and the
resulting spectrum is not equal to the
spectrum that results from ideally sam-
pling z(t) � x(t) � Y(t). On the bottom row,
the sampling rate is sufficient. This is evi-
dent because the product of X( f) and Y( f)(1
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is visible between �f y and f y.

Equivalently, T must satisfy attention to the choice of the filter labeled h(t) in Fig. 9. The
principal function of this filter is to interpolate between the
sample values. It produces the signal ẑ(t) by convolving zp(t)
and h(t). Since �(t � lT) � h(t) equals h(t � lT), we have imme-

T <
1

fx + fy
(56)

diately
Figure 10 illustrates these considerations. The first row

shows the spectra X( f) and Y( f) of two strictly band-limited
signals. The second and third rows contain plots that show ẑ(t) =

∞∑
n=−∞

(x(nT ) ∗ y(nT ))h(t − nT ) (57)

the spectra resulting from first sampling signals x(t) and y(t)
and then convolving the two sampled signals. An expression In particular, for the choice
for the resulting expression is provided by Eq. (53). Both spec-
tra are periodic with period 1/T and are thus spectra of ide-
ally sampled signals. h(t) =

{
T 0 ≤ t < T
0 else

(58)
However, the spectrum shown on the second row results

from a violation of the condition of Eq. (56) on the sampling
the same stair-step approximation as in the previous sectionrate, while for the bottom plot this condition holds. Notice in
is obtained.particular that the segment between �f y and f y in the bottom

The function of the interpolation filter is easily expressedplot is exactly equal to X( f) 
 Y( f), except for a scale factor. No
in the frequency domain. Because of the transform propertiessuch segment exists in the middle plot. Hence, the spectrum
discussed previously, the Fourier transform Ẑ( f ) of ẑ(t) isshown in the bottom plot corresponds to an ideally sampled
given bysignal with samples z(nT); the middle plot does not.

Finally, even for the bottom plot, the sampling rate vio-
Ẑ( f ) = Zp( f )H( f ) (59)lates the Nyquist criterion (T � 1/2f x) for the signal x(t). This

is evident, for example, in the region between f y and 1/T �
Assuming that our condition on the sapling rate is met, Ẑ( f )f y, where aliasing is clearly evident.
equals

Interpolation. We have demonstrated that the sampling
rate T should be selected such that 1/T exceeds the sum of
the bandwidths of the signals to be convolved. Let us turn our

Ẑ( f ) = 1
T2 H( f )

∞∑
m=−∞

X
�

f − m
T

�
Y
�

f − m
T

�
(60)
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This equation demonstrates that for Ẑ( f ) to be similar to We seek to take advantage of this approach for linear con-
volution. Toward this objective, let us take a closer look at theZ( f ), the interpolation filter must reject all replicas X( f �

m/T)Y( f � m/T) for m � 0. differences and similarities between linear and circular con-
volution.Furthermore, it should introduce the appropriate gain and

no distortion in the passband such that (1/T2) H( f )X( f )Y( f )
equals X( f )Y( f ). Thus, the ideal choice for H( f ) is an ideal Convolution via Matrix Multiplication. Both linear and circu-
lowpass filter. However, the ideal lowpass filter has an infi- lar convolution can be accomplished via matrix multiplica-
nite impulse response and is therefore not practical. tion. This fact is of independent interest in many signal pro-

Frequently used interpolation filters in practice include cessing applications but will be used here to highlight the
the simple ‘‘hold filter’’ with h(t), given in Eq. (58), or a linear relationship between linear and circular convolution.
interpolator, which can be realized by using a filter with im- To fix ideas, consider the convolution of signals x[n] and
pulse response y[n]. Assume for the moment that both of these signals are of

length N. The result of the linear convolution of x[n] and
y[n] will be denoted zl[n] and the result of the circular convo-
lution will be denoted zc[n]. Recall that the length of zl[n] is
2N � 1, while the length of zc[n] is N.

h(t) =




T · (1 − t) 0 ≤ t < T
T · (1 + t) −T ≤ t ≤ 0
0 else

(61)

Both convolution operations can be expressed as the multi-
plication of a suitably chosen matrix and vector. Linear convo-In particular, when T is much smaller than specified by the
lution can be written aspreceding condition, these simpler interpolators provide excel-

lent results.
Our discussion of numerical convolution can be summa- zl [n] = x[n] ∗ y[n] = Xl · yyy (62)

rized as follows: Continuous-time convolution can be approxi-
where Xl is a (2N � 1) � N matrix and y is the length Nmated with arbitrary accuracy through discrete-time convolu-
vector with elements y[n]. The matrix Xl is constructed withtion of sampled versions of the signals to be convolved as long
columns equal to shifted and zero-padded replicas of x[n], spe-as the sampling rate is sufficiently large. Specifically, the
cificallysampling period T must be chosen to exceed the sum of the

bandwidths of the signals to be convolved. We have shown
that under this condition, the discrete-time convolution pro-
duces a sequence of samples that is equal to samples of the
original continuous-time convolution. Intermediate values
may be produced via a suitable interpolation filter.

These considerations emphasize the practical importance
of computationally efficient algorithms for discrete-time con-
volution. In the next section, we discuss convolution algo-

Xl =

�
BBBBBBBBB�

x[0] 0 0 . . . 0
x[1] x[0] 0 . . . 0
x[2] x[1] x[0] . . . 0

...
...

...
...

...
0 . . . 0 x[N − 1] x[N − 2]
0 . . . 0 0 x[N − 1]

�
CCCCCCCCCA

(63)

rithms that rely heavily on ideas discussed in the context of
transforms. The equivalence between convolution and multiplication of

Xl and y is easily verified. When the length of y[n] is equal to
L, Xl is an (N � L � 1) � L matrix constructed as previouslyFAST ALGORITHMS FOR CONVOLUTION
and y is a length L vector.

Circular convolution can be written asFiltering signals with linear, time-invariant systems is proba-
bly the most common form of signal processing. Hence, there
is enormous interest in algorithms for computationally effi- zc[n] = x[n] ∗ y[n] = Xc · yyy (64)
cient (discrete-time) convolution. We will see that such algo-

where Xc is a N � N matrix and y is as before. In contrast torithms take advantage of the transform relationships that
Xl, the construction of Xc does not involve zero padding. In-were discussed previously. In particular, the development of
stead, columns (and rows) are constructed from circular shiftsfast algorithms for computing the discrete Fourier transform
of x[n], specificallyin the late 1960s has been seminal for the field of digital sig-

nal processing.

Linear Convolution via Circular Convolution

The operation of linear, time-invariant filters is characterized
by linear convolution. However, computationally attractive
transform relationships exist for circular convolution. Previ-
ously, we showed that the DFT of two circularly convolved sig-

Xc =

�
BBBBBBB�

x[0] x[N − 1] x[N − 2] . . . x[1]
x[1] x[0] x[N − 1] . . . x[2]
x[2] x[1] x[0] . . . x[3]

...
...

...
...

...
x[N − 1] . . . x[2] x[1] x[0]

�
CCCCCCCA

(65)

nals equals the product of the signals’ DFTs. Furthermore, fast
algorithms exist to compute the DFT of a signal. These algo- This form of matrix is called a circulant matrix, a special form

of Toeplitz matrix (1).rithms are commonly called fast Fourier transforms (FFT).
Thus, the principal idea for a fast circular convolution al- Comparison of the two matrices shows that we can trans-

form linear convolution into an equivalent circular convolu-gorithm is to compute the DFT of the signals to be convolved,
to multiply the two DFTs, and finally to compute the inverse tion. For that purpose, we must first pad both x[n] and y[n]

with zeros to make them length 2N � 1. We will refer to theDFT of this product. All three DFTs can be computed effi-
ciently using a suitable FFT algorithm. zero-padded signals as xp[n] and yp[n], respectively. The prod-
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uct of the (2N � 1) � (2N � 1) circulant matrix Xp generated In the preceding program, the length LFFT of the FFT is chosen
from xp[n] and the vector yp with elements yp[n] is equivalent to be a power of 2 such that an efficient radix-2 (or split-radix)
to linear convolution of x[n] and y[n]. In other words, FFT algorithm may be employed. Then the number of addi-
Xp 
 yp � Xe 
 ye. This is evident because the first N columns of tions and multiplications for each FFT is approximately pro-
this circulant matrix are equal to Xl and the remaining N � portional to LFFT log2 LFFT (2). Hence, the entire algorithm re-
1 columns are multiplied by the appended zeros in yp. quires approximately 3cLFFT log2 LFFT � LFFT computations,

Hence, linear convolution is equivalent to circular convolu- where c is a constant that depends on the specific FFT algo-
tion of zero-padded sequences if the length of both padded rithm used.
sequences is equal to the length of the result of the linear To illustrate these ideas, we have conducted a simple nu-
convolution, in our case 2N � 1. Actually, it may be advanta- merical experiment using MATLAB. We generated signals
geous to append even more zeros to x[n] and y[n] to yield se- varying in length between 10 and 10,000 and convolved these
quence lengths for which particularly good FFT algorithms signals using three different algorithms: direct convolution,
exist. In this case, excess zeros can simply be removed from convolution via FFTs of length equal to the smallest power of
the result. 2 greater than 2N � 1, and convolution via FFTs of length

We can summarize our observation as 2N � 1. For each algorithm, the number of floating point op-
erations, both additions and multiplications, was counted us-

z[n] = x[n] ∗ y[n] = xp[n]� yp[n] (66)
ing the MATLAB built-in command flops.

The results of this experiment are shown in Fig. 11. The
If the length of y[n] is equal to L � N, then xp[n] and yp[n]

figure shows that the direct convolution requires nearly ex-
must be padded to length N � L � 1 (or greater) for this

actly 8N2 operations. For short sequences, N 
 50, this algo-equality to hold.
rithm is the most efficient. However, for longer sequences the
algorithm using FFTs of length 2m (m integer) performs bet-

Fast Convolution via the FFT
ter. Furthermore, the advantage of the FFT based algorithm

We are now in position to exploit the fact that fast algorithms increases with the length of the sequence and reaches 2 or-
for computing the DFT of a discrete-time signal exist. Again, ders of magnitude as N � 10,000. Notice that we must take
we focus on the case of two signals of equal length N. The advantage of the existence of a fast algorithm to realize a
fundamental idea of fast convolution algorithms is to zero pad computational advantage through the use of transform-based
the signals to be convolved to at least length 2N � 1. Then convolution. If we rely on FFTs of length 2N � 1, there are
the DFTs of the padded sequences are computed and generally no highly efficient algorithms available and the
multiplied. Finally, the inverse DFT of the product is com-
puted and excess zeros are removed if necessary.

How does the computational efficiency of this algorithm
compare to direct evaluation of the convolution sum? Let us
consider both alternatives by first looking at the correspond-
ing MATLAB code implementations.

The direct evaluation of the convolution sum can be pro-
grammed as

for n=1:2�N�1
for m=max(1,n+1�N) :min(N,n)
z(n) = z(n) + x(m)�y(n+1�m);

end
end

A little thought reveals that the innermost statement is
reached N2 times and, hence, the direct computation of the
convolution sum requires N2 additions and multiplications.

A simple, FFT-based algorithm is given by

LEFT = 2∧ceil(log2(2�N�1)); % choose FFT length
as power of 2 104103102101100
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Sequence length N

Direct computation
FFT (power of 2)
FFT (length 2N – 1)

xp = zeros(1,LFFT); % zero-padding Figure 11. Computational complexity of convolution. The plot shows
yp = zeros(1,LFFT); the number of floating point operations, additions, and multiplica-
xp(1:N) = x; % set first N samples to signal tions, for three different convolutions algorithms as reported by the

MATLAB command flops. All sequences are complex valued. Theyp(1:N) = y;
direct computation of the convolution sum requires nearly exactly
8N2 operations. For values of N � 50 the number of operations forXp = fft(xp); % forward FFTs
the (radix 2) FFT based algorithm is lower than for direct convolu-

Yp = fft(yp);
tion. The third graph shows the number of operations if the length of

Zp = Xp.�Yp; % multiplication of DFTs the FFTs is not selected to be a power of 2. In this case, the trans-
zp = ifft(Zp); % inverse FFT form-based algorithm is not efficient. The large variation in the oper-

ation count is related to MATLAB’s FFT routine, which selects differ-
ent FFT algorithms depending on the sequence length.z = zp(1:2�N�1); % trim excess zeros
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computational burden is often increased over direct computa- are obtained from the original coefficients through convo-
lution.tion of the convolution.

Let p(x) and q(x) be two polynomials with coefficients pi
Sequences of Different Length and qi, respectively. When these polynomials are multiplied,

we obtain the polynomial r(x) asIt is often necessary to convolve sequences of very different
length. The impulse response of a filter h[n] is typically of
length 50 to 100, but the input signal x[n] may consist of
thousands of samples. In this case, it is possible to segment
the input data into shorter blocks, perform convolution on
these blocks, and combine the intermediate results. In light
of our preceding discussion, the block length B of the input
segments should be selected such that B � L � 1, where L is

r(x) = p(x) · q(x)

=
Np∑
k=0

pkxk ·
Nq∑
l=0

qlx
l

=
Np∑
k=0

Nq∑
l=0

pkqlx
k+l

(68)

the filter length, provides the opportunity to employ a good
FFT algorithm. For example, B � L � 1 can be selected to Substituting k � l � n, the last expression can be simplified
equal a power of 2. to

To illustrate the reassembly of the intermediate results,
let us consider the convolution of a length 3 filter h[n] with a
length 6 input sequence. We use two segments of block length
three, such that intermediate results are of length 3 � 3 �

r(x) =
Np +Nq∑

n=0

�
min(n, Np )∑

k=0

pkqn−k

�
xn (69)

1 � 5. These must be combined to yield the final result y[n]
of length 6 � 3 � 1 � 8. For our illustration, we use the The term in parentheses is the convolution of the sequences
matrix formulation of linear convolution as in Eq. (63): of coefficients of p(x) and q(x).

Hence, the resulting polynomial is of degree equal to the
sum of the original polynomials, and its coefficients are ob-
tained by convolving the original coefficient sequences.

Applications in Error-Correcting Coding

In all our discussions to this point, arithmetic operations were
assumed to be based on real number arithmetic. Error-cor-
recting coding relies on convolution with arithmetic over fi-
nite fields (e.g., binary arithmetic). Error-correcting coding is
a field that has attracted considerable research efforts over
the last 50 years, and we have to limit ourselves to simple
examples here. Good introductions to the field and consider-
ably more depth can be found in the classic book by Lin (5) or
the more recent book by Wicker (6).

�
BBBBBBBBBB�

y[0]
y[1]
y[2]
y[3]
y[4]
y[5]
y[6]
y[7]

�
CCCCCCCCCCA

=

�
BBBBBBBBBB�

h[0] 0 0 |
h[1] h[0] 0 |
h[2] h[1] h[0] |

0 h[2] h[1] | h[0] 0 0
0 0 h[2] | h[1] h[0] 0

| h[2] h[1] h[0]
| 0 h[2] h[1]
| 0 0 h[2]

�
CCCCCCCCCCA

·

�
BBBBBBBB�

x[0]
x[1]
x[2]

x[3]
x[4]
x[5]

�
CCCCCCCCA

(67)

Cyclic Codes. Cyclic codes constitute an important class of
practical error control codes and include such well-known rep-In this example, two intermediate sequences are obtained by
resentatives as Golay, BCH, and Reed-Solomon codes. An im-convolving h[n] with the top and bottom half of x[n], respec-
portant reason for the continuing practical relevance of thesetively. To assemble the final result requires that the two in-
codes is the fact that encoders and decoders can be imple-termediate sequences are added such that they overlap by
mented with simple, high-speed shift-register circuits. This isL � 1 � 2 samples. This method of convolving different length
of great importance in high-speed communications applica-sequences is appropriately called overlap-add convolution.
tions.More details on computational aspects of convolution are

Perhaps surprisingly, cyclic codes are based on ideas andprovided in the book by Burrus and Parks (3) or the recent
concepts from mathematical algebra. The key to the structurebook by Ersoy (4). An in-depth analysis and discussion of the
of cyclic codes lies in the association of a code polynomialstate-of-the art in fast algorithms for DFT and convolution is
c(x) with every code word c � (c0, c1, . . ., cn�1). Skipping manypresented in the tutorial article by Sorensen and Burrus (2).
important details, we only mention that code words (i.e., in-
formation sequences with error-correction capabilities) are ob-

APPLICATIONS AND EXTENSIONS tained from unprotected message words m � (m0, m1, . . .,
mk�1) through polynomial multiplication.

We conclude this article by looking at several applications be- Specifically, a polynomial m(x) � m0 � m1x � m2x2 � 
 
 
 �
yond filtering and signal processing in which convolution mk�1xk�1 is constructed and then multiplied by a suitably
arises naturally. Additionally, we provide pointers to several chosen generator polynomial g(x). The selection of g(x) is
interesting extensions of the material presented herein. crucial and discussed in detail in Chapter 5 of Ref. 6 or

Chapter 4 of Ref. 5. Then every code polynomial can be
Polynomial Multiplication

expressed as c(x) � g(x) 
 m(x). Since c(x) is obtained by
polynomial multiplication, the coefficients of c(x) and, hence,When two polynomials are multiplied, the result is another

polynomial and the coefficients of the resulting polynomial the elements of the code word c are obtained by convolution
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of the coefficients of g(x) and m(x). However, all arithmetic
operations are defined over a finite algebraic field. For ex-
ample, when binary arithmetic is used, the underlying field
is referred to as the Galois field of size 2 and modulo 2
arithmetic is used.

To fix ideas, let us consider a well-known (7, 4) cyclic code
with generator polynomial g(x) � 1 � x � x3. To encode the
message block m � (1110), we construct first the polynomial
m(x) � 1 � x � x2. Then the code polynomial c(x) is computed
as

+

+

..., x2, x1, x0

..., x2
2, x1

2, x2
0

..., x2
1, x1

1, x1
0

Figure 12. A rate-�� convolutional encoder.

c(x) = g(x) · m(x) = (1 + x + x3) · (1 + x + x2)

= 1 + (1 + 1)x + (1 + 1)x2

+ (1 + 1)x3 + x4 + x5

= 1 + x4 + x5

(70)

metic operations are modulo 2. Then the input sequence xThe last two lines are equal because in modulo 2 arithmetic
yields output sequences y1 and y2 with elements1 � 1 � 0. The resulting code word is c � (1000110).

To verify that a code word has been transmitted without
error, a decoder checks if the polynomial associated with a
received word r is a valid code polynomial by verifying that it

y1
n =

m1∑
m=0

xn−mg1,1
m = xn + xn−1 + xn−3 (mod 2) (73)

is divisible by g(x).
While the operation of the encoder and decoder may ap- and

pear awkward at first sight, they are implementable with
very simple, high-speed digital hardware. Both encoder and
decoder hardware can be implemented as feedback shift regis- y2

n =
m2∑

m=0

xn−mg1,2
m = xn + xn−2 + xn−3 (mod 2) (74)

ter circuits.

The operation of this convolutional encoder can be summa-
Convolutional Coding. As its name suggests, a convolu- rized by the block diagram in Fig. 12.

tional encoder employs convolution to insert error-correction Clearly, we have only scratched the surface on the topic of
information into a sequence of information symbols. As in cy- error-correcting codes. The inclined reader is referred to the
clic coding, all arithmetic operations are carried out over fi- Refs. 5 and 6 for further details.
nite fields. While linear block codes, including cyclic codes,
operate on message sequences of fixed length, convolutional

Convolution in Statisticscodes can be used to encode message sequences that are not
necessarily bounded in length. While filtering of random signals and the associated convolu-

Specifically, a convolutional encoder can be built around K tion operation are important operations in statistical signal
shift registers with mk memory elements, k � 1, 2, . . ., K, processing processing, the convolution operation appears in
into which the message sequence is fed. Let the message se- other problems of statistics as well. Background information
quence be given by on the concepts discussed in this section are contained in

Ref. 7.
xxx = (x1

0, x2
0, . . ., xK

0 , x1
1, x2

1, . . ., xK
1 , . . ., xk

n, . . . ) (71)
Sum of Independent Random Variables. The probability den-

sity function of the sum of two independent random variablesThen in symbol interval n the information symbol xk
n is fed

into the kth shift register. Also, at the beginning of symbol is related to the density function of the original random vari-
ables through convolution. To begin, let X and Y denote twointerval n, the kth shift register contains the information

symbols (xk
n�1, xk

n�2, . . ., xk
n�mk

). A rate K/L convolutional en- independent, continuous random variables with probability
density functions fX(x) and fY(y). When we form a third ran-coder generates L output sequences yl by convolving (over a

finite field) the information subsequences xk � (xk
0, xk

1, . . ., dom variable Z as the sum of X and Y, we can determine the
probability density function of Z as follows.xk

n, . . .) with KL generator sequences gk,l of length mk � 1.
Hence, the nth symbol in the lth output sequence is given by The distribution function FZ(z) of Z is defined as

FZ(z) = Pr(Z ≤ z) = Pr(X + Y ≤ z) (75)
yl

n =
K∑

k=1

� mk∑
m=0

xk
n−m · gk,l

m

�
(72)

The last term can be expressed via the joint density function
fXY(x, y) of X and Y as

where all arithmetic operations are performed over a finite
field (e.g., in modulo 2 arithmetic).

To fix ideas, let us consider a rate �� convolutional code with
generator sequences g1,1 � (1011) and g1,2 � (1101). All arith-

FZ(z) = Pr(X + Y ≤ z) =
∫ ∫
x+y≤z

fX Y (x, y) dx dy (76)
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For an independent random variable, fXY(x, y) � fX(x)fY(y). Notice that Eq. (82) bears a striking resemblance to the
convolution integral of Eq. (1). In fact, it is easily verified thatFurthermore, the range of integration can be rewritten such

that we obtain we can express R̂X(�) as

R̂X (τ ) = w(τ ) · x(τ ) ∗ x(−τ ) (83)
FZ(z) =

∫ ∞

−∞
fX (x)

∫ z−x

−∞
fY (y) dy dx (77)

where w(�) � (T � ���)�1.
Thus, the empirical autocorrelation function is essentiallySince we assumed continuous random variables, the density

equal to the convolution of a signal with a time-reversed ver-function fZ(z) is obtained by differentiation of FZ(z):
sion of itself. Consequently, our discussion on properties, nu-
merical evaluation, and efficient computation of the convolu-
tion integral applies equally to the empirical autocorrelationfZ(z) = dFZ(z)

dz
=

∫ ∞

−∞
fX (x) fY (z − x) dx = fX (z) ∗ fY (z) (78)

function.
Analogous arguments can be made for discrete-time ran-

Hence, the sum of two independent random variables yields dom processes, or random sequences, and for the cross-corre-
a density function that equals the convolution of the original lation function of two random processes or sequences.
densities. An analogous result can be derived for discrete ran-
dom variables.

Signal SpacesFinally, a transform relationship, very similar to those pre-
sented earlier, exists that captures the preceding result. For Modern signal processing and control theory rely extensively
a random variable with density function f (x), the moment on the concept of linear spaces from the mathematical field of
generating function M( j�) is defined as functional analysis. The results presented here are compiled

mainly from Refs. 8–10. Also, we restrict ourselves to scalar
signals; most of the referenced literature treats the more gen-
eral case of vector signals.

M( jν) =
∫ ∞

∞
f (x)e jνx dx (79)

Though most of our discussion is aimed at more abstract
spaces of functions (signals), it may be useful for the readerHence, the moment-generating function is essentially equal
to consider the space �N of length N real-valued vectors(except for the sign of the exponent) to the Fourier transform
throughout our exposition for illustrative purposes.of the density function f (x). If we denote the characteristic

functions of our independent random variables X and Y by
Linear Spaces, Norms, and Inner Products. A linear space con-MX( j�) and MY( j�), the characteristic function of Z � X � Y

sists of a set S (of signals, functions, or vectors), a scalar fieldis given by
F , usually the real or complex numbers, and rules that addi-
tion of elements of S as well as scalar multiplication of ele-MZ( jν) = MX ( jν)MY ( jν) (80)
ments of F and S obey. More specifically, both the addition
x � y of two elements of the space S and the multiplication

Correlation. The empirical autocorrelation of certain ran- �x, � � F , satisfy the usual laws of commutativity and asso-
dom processes is computed through an operation virtually ciativity. Also, inverse and neutral elements exist for addition
identical and closely related to convolution. To be specific, let over S , and a neutral element for scalar multiplication is con-
Xt denote a real-valued, wide-sense stationary random pro- tained in F . These properties of a linear space lend a well-
cess such that its autocorrelation function RX(�) is given by behaved algebraic structure to S .

By means of a norm on the elements of S , we can provide
RX (τ ) = E[Xt · Xt+τ ] (81) a topological structure for our space S . A linear space with a

norm is called a normed, linear space. A norm is simply a
where E[ 
 ] denotes statistical expectation. real-valued functions defined for all elements of S. The norm

In practice, one is often faced with the problem of estimat- of an element x � S is denoted as �x� and must satisfy the
ing the autocorrelation function from a single realization x(t) following conditions:
of Xt (observed for 0 	 t 	 T). If the random process is ergodic,
we may estimate the statistical average in Eq. (81) via the 1. �x� � 0
time average

2. �x � y� 	 �x� � �y� (triangle inequality)
3. ��x� � ��x�, � � F

4. �x� � 0 if and only if x � 0R̂X (τ ) = 1
T − |τ |

∫ T−|τ |

0
x(t)x(t + |τ |) dt (82)

From an engineering perspective, the most importantfor ��� � T In this expression, we have taken advantage of the
norm is defined for the space of finite-energy signals. For rea-symmetry property RX(�) � RX(��) � RX(���).
sons that will become apparent shortly, this space is conven-It is easily shown that R̂X(�) is an unbiased estimate of
tionally denoted L 2. The norm of a signal x(t) in L 2 is definedRX(�). However, the variance of R̂X(�) becomes infinite as � ap-
byproaches T. To alleviate this problem, a weighting function,

or window, may be used to ensure that the variance remains
finite as � approaches T. Further details can be found in Ref.
7, Chapter 13.

‖x(t)‖2 =
∫ ∞

−∞
|x(t)|2 dt (84)
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Hence, �x(t)�2 equals the energy of signal x(t). It is easily veri- is a Hilbert space. The space �N with norm
fied that this norm meets all four of the preceding require-
ments. In general, norms are useful primarily for quantifying
the difference between two elements x and y of a space S ‖x‖ =

N∑
k=1

|xk| (88)

through �x � y�.
Even more topological structure is induced if a space S is a Banach space.

also possesses an inner product. Fundamentally, an inner
product introduces important geometrical concepts such as or-

Lebesgue and Hardy Spaces. The following Banach and Hil-thogonality. We may even say that an inner product space is
bert spaces are of frequent practical interest. These spacesmore or less the generalization of Euclidean geometry to in-
consist of signals with certain properties and are distinctfinite dimensions. This leads directly to useful geometrical in-
through their norm (or inner product).terpretations of many problems in signal processing and

The Lebesgue Space L 2. As indicated previously, the spacecontrol.
of all finite energy signals is denoted L 2. Formally, we mayThe inner product is a function that associates with each
saypair x and y of elements of S a scalar. We denote the inner

product of x and y as (x, y). An inner product must satisfy the
L2 = { f : ‖ f‖2 < ∞} (89)

following properties:

in which
1. (x � y, z) � (x, z) � (y, z) (additivity)

2. (�x, y) � �(x, y) (homogeneity, � � F )

3. (x, y) � (y, x)* (symmetry, � denotes the complex conju-
‖ f‖2 =

�∫ ∞

−∞
| f (t)|2 dt

� 1
2

(90)

gate)
The space L 2 is a Hilbert space with inner product defined by4. (x, x) � 0, unless x � 0
Eq. (86). Two signals are said to be orthogonal if (x(t), y(t)) �
0. This provides a natural extension of orthogonality in �N.

Alternatively, we can consider the norm and inner productTwo observations are useful. First, any inner product
of the Fourier transforms of signals. Hence, the inner productspace is also normed, linear space because �x�2 � (x, x) satis-
of Fourier transforms X( f) and Y( f) is defined completely anal-fies all requirements for a norm. However, there are many
ogously to the time domain counterpart of Eq. (86) asnorms that cannot be expressed through an inner product.

Hence, inner product spaces form a subset of normed, linear
spaces. Second, the following inequality is often extremely
useful, particularly in optimization:

(X ( f ), Y ( f )) =
∫ ∞

−∞
X ∗( f )Y ( f ) d f (91)

Using the definition of the Fourier transform in Eq. (22), we|(x, y)| ≤ ‖x‖‖t‖ (85)
can rewrite the last expression as

Furthermore, equality holds if and only if x and y are collin-
ear. This result is known as the Schwarz inequality.

For the space L 2 introduced previously, the inner product
is given by

(X ( f ), Y ( f )) =
∫ ∞

−∞

∫ ∞

−∞
x ∗ (t)e j2π f t dt

∫ ∞

−∞
y(u)e j2π f udu d f

=
∫ ∞

−∞

∫ ∞

−∞
x(t)y(u)

�∫ ∞

−∞
e− j2π f (u−t) d f

�
dt du

(92)

The expression in parentheses equals �(u � t), and hence the
(x(t), y(t)) =

∫ ∞

−∞
x∗(t)y(t) dt (86)

entire expression simplifies to

The final concept we introduce is completeness. Complete-
ness becomes important when we consider infinite sequences
xn of elements of our abstract space S . Specifically, a normed,
linear space is complete when the limit of all sequences xn in
S is itself an element of S . Hence, in a complete space we
may consider limits without fear that the result maybe out-

(X ( f ), Y ( f )) =
∫ ∞

−∞

∫ ∞

−∞
x(t)y(u)δ(u − t) dt du

=
∫ ∞

−∞
x(t)y(t) dt

= (x(t), y(t))

(93)

side of the space S . Complete spaces play a crucial role,
prompting the following terminology. A complete normed, lin- This result is known as Parseval’s theorem. It establishes
ear space is called a Banach space and a complete inner prod- that there exists a so-called isomorphism between the time-
uct space is called a Hilbert space. domain and frequency-domain versions of L 2.

For example, the space �N with the inner product The Hardy Space H 2. Hardy spaces in general contain only
signals whose Laplace transforms X(s) are analytic in the
right half-plane �(s) � 0 [i.e., if X(s) is rational it does not
have poles in the right half plane]. The Hardy space H 2 is
formally defined as the set of signals with Laplace trans-

(x, y) =
N∑

k=1

xkyk (87)
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forms X(s) such that X(s) is analytic for �(s) � 0 and the It is straightforward to demonstrate that for equally likely
signals, the probability of error is given byfollowing norm is finite:

Pe = Q
�

(s0(t) − s1(t), h(t))√
2N0 · ‖h(t)‖

�
(99)‖X (s)‖2 =

�
sup
α>0

∫ ∞

−∞
X ∗(α + j2π f )X (α + j2π f ) d f

� 1
2

< ∞
(94)

where
It can be shown that the norm always assumes its supre-

mum as � approaches zero. If we define Xb( f) � lim��0X(� �
j2�f ), we may replace this norm by the simpler L 2 norm

Q(x) =
∫ ∞

x

1√
2π

e− y2
2 dy (100)

Thus, to minimize the probability of error of the receiver,
we must choose h(t) to maximize the ratio‖X (s)‖2 =

�∫ ∞

−∞
X ∗

b ( f )Xb( f ) d f
� 1

2
(95)

Thus, we may regard H 2 as a proper subspace of L 2. Further-
(s0(t) − s1(t), h(t))�

2N0‖h(t)‖
(101)

more, by the Paley–Wiener criterion we can conclude that
H 2 is isomorphic to the subspace of L 2 that contains only

However, because of the Schwarz inequality, we know imme-right-sided signals [i.e., signals such that x(t) � 0 for t � 0].
diately that we must select h(t) � s0(t) � s1(t) and the re-H 2 is a Hilbert space.
sulting probability of error equalsThe Hardy Space H �. The Banach space H � is the space of

all signals whose Laplace transform is not only analytic in
the right half plane but bounded. The norm for H � is given
by Pe = Q

�
‖s0(t) − s1(t)‖�

2N0

�
(102)

The filter with impulse response h(T � t) is known as the
‖X (s)‖∞ = sup

f
|Xb( f )| (96)

matched filter for the signals set s0(t) and s1(t).
where, as before, Xb( f) � lim��0X(� � j2�f ). Robust Control. A fundamental problem in robust control

As we will see shortly, the space H � plays a crucial role in is to ensure that a system is designed such that its output in
robust control theory. response to any finite energy signal has itself finite energy.

This is crucial in systems with noise or other disturbances
that can only be bounded in energy.Examples. To illustrate the usefulness of the concepts in-

Let x(t) denote the input to a system with impulse re-troduced previously, we consider two representative examples
sponse g(t) and let y(t) be the resulting output. Then we wouldfrom the areas of signal processing and control.
like to ensure that the ratio of output energy to input energyOptimum, Binary Detection. In a simple binary communica-
remains finite for all possible inputs. In terms of the normstion system, one of two equally likely signals s0(t) or s1(t) is
defined previously, we can formulate this problem by definingtransmitted to convey one bit of information. We assume that
the gain G aseach signal is of finite duration T and during transmission

the signal is corrupted by white Gaussian noise with autocor-
relation function N0/2 �(�).

A crucial aspect in the receiver is the design of a linear
filter that maximizes the ability to distinguish which of the
two possible signals was transmitted. If we denote the im-

G = sup
u(t) �=0

‖g(t) ∗ u(t)‖2

‖u(t)‖2

= sup
U ( f ) �=0

‖G( f )U ( f )‖2

‖U ( f )‖2

(103)

pulse response of the filter by h(T � t) and sample the output
of the filter at time t � T, then a random variable R with Here we have employed the transform property of convolu-
conditional Gaussian distribution is obtained. tion. We can invoke the Schwarz inequality again and further

Specifically, if s0(t) was transmitted, then the mean �0 and simplify the last expression to obtain
variance �2

0 of R are given by
G = sup

f
|G( f )| = ‖G(s)‖∞ (104)

Thus, the H � norm measures the maximum possible in-
crease in signal energy for all possible finite energy inputs.

µ0 = s0(t) ∗ h(T − t)|t=T =
∫ T

0
s0(t)h(t)dt = (s0(t), h(t))

σ 2
0 = N0

2

∫ T

0
|h(t)|2 dt = N0

2
‖h(t)‖2 (97)

Because of the preceding considerations, we say that the H �

norm is induced by the cal H2 norm on the input and output
Similarly, if s1(t) was transmitted, we obtain signals.

SUMMARY

In this article, we have examined in some detail the convolu-
tion operation. We have seen that convolution is an operation

µ1 = s1(t) ∗ h(T − t)|t=T =
∫ T

0
s1(t)h(t)dt = (s1(t), h(t))

σ 2
1 = N0

2

∫ T

0
|h(t)|2 dt = N0

2
‖h(t)‖2 (98)
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that is fundamental for all linear, time-invariant systems.
After examining important properties of convolution, includ-
ing several transform properties, we turned our attention to
the numerical evaluation of the continuous-time convolution
integral. Then we discussed possible approaches for computa-
tionally efficient convolution algorithms, emphasizing algo-
rithms based on the fast Fourier transform.

We concluded by examining several applications in which
convolution or related operations arise, including error cor-
recting coding and correlation. Finally, we gave a brief intro-
duction to the concept of abstract signal spaces.
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