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selves to routine use. Often it is necessary to devise a new
approach for each problem. For example, suppose that one
needs to fit a nonlinear function of x to a data set y over a
specific interval by adjusting parameters a, b, and c. It may
happen that a dominates the function over a portion of the
interval and then becomes unimportant over the rest of the
interval. Similarly, b may have little or no effect on the peak
value of the function but control the rate of decay of the func-
tion. One must first examine the function to see what effect
each parameter has, and then perhaps adjust them sepa-
rately. This may be fairly easy to do by inspection, but diffi-
cult to automate. By contrast, linear functions give equal im-
portance to each variable and to all parts of the interval
(although it is possible to weight some parts of the interval
more heavily than others in many cases).

The insistence on linear functions for prediction is some-
times compromised. For example, a polynomial may be
treated as a linear sum of powers of the variable. Other non-
linear functions may be inserted into the summation with lin-
ear multipliers.

The choice of an rms criterion for judging the quality of a
predictor is not necessarily obvious and should not always be
taken for granted. In some cases it may be more important to
minimize the worst-case error than the rms error. This crite-
rion leads to a minimax problem. In a few cases the average
of the absolute value of the error may be a better criterion.
This may lead to median estimators.

However, the rms criterion has proven to be by far the
most fruitful assumption in the majority of cases. This is due
largely to the ease with which second moments of rms solu-
tions can be followed through linear transformations of the

CORRELATION THEORY variables.
It is important to understand that correlation analysis can

In the vernacular, if two variables are correlated, then they never prove a cause-and-effect relationship. If two variables
are somehow related. In scientific discussion the term correla- are causally related, correlation analysis cannot determine
tion has a more limited and specific meaning. If two variables which variable is the cause. Often both variables are caused
are said to be correlated, this means that both variables can

by a third variable that is not even known. About the only
be characterized by real or complex numbers. It also implies

thing that can be said with certainty is that if two variablesthat either of the variables can be used to predict the other.
are independent then they are uncorrelated.More specifically, the prediction can be accomplished by a lin-

However, correlation analysis is an important tool to studyear function. For example, the variable � and the function
relationships of many types. That two variables are uncorre-cos � are uncorrelated. The function can be predicted exactly
lated is not reason enough to dismiss the possibility that theyfrom the variable, but the prediction method is not linear.
are related. But if they are correlated it is reasonable to tryThese (usually unspoken) assumptions are implicit in all
to figure out why. Also, the absence of a predicted correlationcorrelation analyses: numerical representation, linear predic-
can lead to important discoveries.tion, and judgment of the prediction by a least-squares, or

root mean square (rms), criterion.
The problem of finding a numerical representation for the

PHYSICAL MEASUREMENTS AND THE DECIBEL SCALEdata is not always easy. Most of the following discussion will
assume that the data originate as time-dependent waveforms.

In this discussion, the key quantities of interest are often ra-However, these long strings of numbers are rarely immedi-
tios of averages of squares of variables. In physical systems,ately useful. There are too many of them, and most of them
the variables often are voltages or pressures or flux densities.contain little or no useful information. The first task is usu-
In these cases the physical power is proportional to theseally to extract parameters from these waveforms. Often corre-
mean squared values. Discussion of these power levels oftenlation analysis is used first to extract the parameters and
involves several problems.then to analyze the parameters.

First, the quantities often vary over ranges that are diffi-It is always legitimate to question whether only linear
cult to imagine. The quietest sound that a human can hearfunctions should be considered. In many cases there is good
corresponds to a pressure on the order of 0.00002 Pa (rms),reason to believe that a nonlinear function is appropriate. The
while the sound level on a jet plane can be over 5 Pa. Second,problem of fitting a nonlinear function to a data set is not
the uncertainty of the measurement often varies with thealways more difficult than fitting a linear function. The diffi-

culty is that there are no standard techniques that lend them- level. A good acoustic measurement may have an uncertainty
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of 20%, making measurements at low levels appear much bet- ferent frequencies. The output at each frequency depends only
on the input at that frequency and is independent of anyter than measurements at higher levels.

The usual solution to these problems is the decibel (dB) other frequency.
Thus, the most useful approach known for studying how ascale. The decibel scale is a logarithmic scale. However, a

common logarithmic scale is felt to be a bit too coarse, so the waveform will change as it passes through a linear filter is as
follows: First the waveform is represented as a summation oflogarithm is multiplied by 10. The key to understanding the

decibel scale is to remember that by convention it is always a complex exponentials at various frequencies. Then the effect
on each frequency is calculated separately to see how its am-ratio of power, or energy values. Suppose the rms acoustic

pressure in a room is 0.2 Pa. An acoustician, remembering plitude and phase will change as it passes through the filter.
Finally, the altered exponentials are summed to give thethat acoustic power goes as the square of the rms pressure,

might compute 10 log(0.22/0.000022) � 80 and say, ‘‘The sound waveform that emerges from the filter. Since so much of our
world is governed by linear differential equations, the impor-level in the room is 80 dB relative to 0.00002 Pa.’’ Of course,

he or she could get the same answer by computing 20 log(2/ tance of understanding waveforms in terms of their Fourier
representation is difficult to exaggerate.0.0002), so it is often said that the sound level goes as 20

times the logarithm of the pressure. The Fourier transform is often best understood by thinking
of it as a frequency shift followed by a low-pass filter. For aIn some instrumentation problems it can be tricky to keep

track of whether the values should be plotted as 10 log or 20 frequency of interest, the waveform is frequency-shifted by
multiplying it by the sine and cosine waves, or the complexlog. The key to keeping it straight is to ask, ‘‘How would the

quantity behave if the power were doubled?’’ exponential wave. This shifts the information of interest to
the band around zero frequency. The waveform is then low-In the same vein, the decibel scale says nothing about the

units of measurement. The reference to 0.00002 Pa is a speci- pass-filtered to eliminate information at other frequencies,
and the result is the Fourier coefficient that describes thefication of a physical state, not a system of units. If one cannot

relate the variables to a power level, then the decibel scale is waveform at the frequency of interest.
It is tempting to believe that the complex exponentials arenot appropriate. Engineers will occasionally make comments

like ‘‘His salary went up by 1 dB when he got the promotion.’’ only mathematical artifacts, while reality is restricted to the
wave as it is represented in time. Common experience refutesThe implied humor is that the speaker is also saying ‘‘Money

is power.’’ this. For example, an AM radio receives an electrical signal
that is mostly meaningless noise. The circuitry then separates
out the real information for the station of interest and sends
the resulting Fourier coefficients to the speaker to produceTRANSFORMATIONS
meaningful sounds (plus advertisements and political com-
mentary).Modern data collection problems tend to involve great

amounts of data, most of which have no value. It is important The Fourier coefficients are usually represented by com-
plex numbers, so the theory of complex numbers is intimatelyto select the small subset of the data that is of potential value.

The solution is to attempt to transform the data in such a connected with many engineering problems.
The terminology of complex variables is misleading andway as to concentrate the important information into a small

number of parameters. The most effective way to do this is unfortunate. The name ‘‘complex numbers’’ suggests that they
are difficult to handle. In fact, complex variables are popularusually with the Fourier transform.

In its most common form, the Fourier transform represents because their use greatly simplifies many problems. The ter-
minology also suggests that the ‘‘imaginary’’ part of the com-the data as a summation of sine and cosine waves, or complex

exponentials. Other function sets are sometimes used, (e.g., plex variable is somehow less intimately connected with real-
ity than the ‘‘real’’ part. This idea is dangerously wrong. ForWalsh functions or Bessel functions), but not often. The rea-

son for the preeminence of complex exponentials as basis example, electrical circuits sometimes develop large imagi-
nary voltages. These imaginary voltages can cause arcing be-functions is the ease with which time translations are han-

dled. Often the data look the same from one time to another tween supposedly isolated parts of the circuit. They can break
down circuit components, and they can kill unwary handlers.and absolute time has no physical significance in interpreting

the waveform. (This assumption is referred to as time sta- In the following discussion, the term analytic will be used
to describe a function that is analytic in the sense of complextionarity. Various types of stationarity are defined, depending

on how rigorous a concept of time stationarity is needed, but analysis theory. Any of several equivalent definitions may be
used. For example, a function is analytic if it has a derivativethe general idea is that it is impossible to infer absolute time

from the waveform.) Even if the waveform is impulsive, it is in the ordinary sense, or if it is the derivative of another func-
tion, or if it has a power series (Taylor series) representation.confusing if its representation changes drastically with arbi-

trary shifts of the time origin, as happens with some of the In the same vein, an analyticity is a point at which a function
is analytic. When a function is analytic that fact has profoundalternatives to the complex exponentials.

This invariance with respect to the start time of the signal implications, most of which are far beyond the scope of this
article.gives rise to another important aspect of the complex expo-

nentials. They look the same after they have been operated
on by a linear filter (i.e., the complex exponentials are eigen-
functions of linear differential equations). This is the key THE DETECTION PROBLEM
idea. If a summation of complex exponentials is passed
through the linear filter, the filter may amplify or delay each Correlators are often used to decide the presence or absence

of a particular signal. The investigator begins with a wave-component by a different amount, but it does not mix the dif-
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a multibeam radar. Returns from a single pulse may come in
from 100 directions. In each direction there may be on the
order of 10,000 range bins. This means that on each pulse,
there are on the order of 106 opportunities for a false alarm.
In order to avoid overloading the operator, it may be neces-
sary to keep the system false-alarm rate below about one per
100 pulses.

Figure 2 shows another way to analyze the performance of
a detector. This is the same detector discussed in Fig. 1, but
the signal strength is now treated as a variable. This means
that for a given threshold setting the probability of detection
depends on the signal strength. Figure 2 shows how the prob-
ability of detection varies with the signal-to-noise ratio. In
this case, the threshold has been set for a false-alarm rate of
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10�6. Figure 2 illustrates an important point that is common
with most detectors operating at these low false-alarm rates:Figure 1. Probability density curves for noise only (left) and signal

plus noise (right) for matched filter detector. The threshold is chosen The transition from a very low probability of detection to a
for a false-alarm rate of 10%. The detector characteristics are deter- very high probability of detection occurs over a fairly narrow
mined entirely by the ratio of the horizontal separation (the signal decibel range. This is consistent with experience in auditory
strength) and the standard deviation. testing. Initially, the investigator sets the signal strength

very low and the subject hears nothing. As the signal strength
is increased, at some point the subject begins to hear the sig-
nal very faintly and with much uncertainty. By the time theform that may or may not contain the signal. By correlating

the waveform with the signal, a value is obtained whose sta- signal strength has increased 3 dB beyond that point, the sub-
ject hears the signal clearly and calls it with no hesitation.tistics depend on the amount of signal energy in the wave-

form. The analytic details will be discussed below, but the For this reason, there is usually no need to measure the
probability of detection very accurately. Once the signal-to-reasoning used for the test is illustrated in Fig. 1.

Figure 1 shows the probability density function for the cor- noise ratio necessary for a 50% probability of detection is es-
tablished, the 10% and 90% values are not far away.relator output when the signal is absent and when it is

present. In each case, the probability density function is bell- The lower asymptote in Fig. 2 is not zero. It is the false-
alarm rate. This is easy to see in Fig. 1, where the distribu-shaped. Sometimes the function is truly Gaussian, and some-

times it can be approximated as Gaussian. (This approxima- tions become identical as the signal strength goes to zero.
tion is sometimes dangerous, as will be discussed below.) A
threshold has been established, which is indicated by the ver-

LEAST-SQUARES PREDICTION AND ESTIMATIONtical line, and if the correlator output is above this threshold
the equipment is to issue an alarm signal.

Minimum-mean-squared-error estimation is among the mostThe probability of a false alarm is the area under the left
fruitful problems that have been investigated. Other criteriacurve that is to the right of the threshold. In the illustration,
for goodness of fit have often been suggested, and in somea threshold has been set to provide a 10% probability of a
cases may be more appropriate. However, they have notfalse alarm (Pfa � 10%). That is, when no signal is present,
proven as rich in implications.the correlator will produce an alarm 10% of the time. The

signal strength is represented by the horizontal separation of
the two curves. When the signal is present, the probability of
detecting it is the area under the right curve that is to the
right of the threshold. In this case, the signal energy is strong
enough that, when present, it will be correctly detected 60%
of the time. This is the probability of detection (Pd � 60%).
The areas under the curves to the left of the threshold give
the probability of a correct dismissal (Pcd � 90%) and the
probability of a miss (Pm � 40%).

Figure 1 also illustrates several other important concepts.
The noise is measured not by the average level, but by the
standard deviation of the noise-only distribution. The impor-
tant measure of a signal is the ratio of the signal strength to
the standard deviation of the noise. The detector performance
is characterized by this ratio and the threshold.

In most problems, a 10% false-alarm rate is too high. In
standard statistical testing one often talks about ‘‘confidence’’
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values of 5% or 1%. However, in most signal-processing appli- Figure 2. Probability of detection versus signal-to-noise ratio for the
cations the false-alarm rate must be several orders of magni- detector in Fig. 1. The false-alarm rate has been reduced to one per
tude lower for the system to be useful. That is because the million. The transition from low probability of detection to high prob-

ability of detection occurs over a range of about 2 dB.rate is an individual-detection value. Consider, for example,
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In the following discussion, the expectation of a variable, trary which element is being predicted. It follows that if a
x, will be denoted by �[x], while the average of the available variable becomes extremely predictable, the corresponding di-
data will be denoted by �x�. The transpose of a matrix or vec- agonal element in the inverse will become very large. If any
tor x will be denoted by xT, while the complex conjugate of the variable becomes completely predictable, the covariance ma-
transpose will be denoted by xH. The trace of a matrix, A, will trix becomes singular.
be denoted by tr A. This also provides a way to study multiple coherence. The

In its simplest form the problem is to estimate variable y multiple coherence of y with respect to a set of variables x1

from another variable, x. Since mean values are easy to add . . . xn, denoted Cohy;x1,. . .,xn
� 1 � �o/	y, is the fraction of the

or remove, usually nothing is lost by assuming that both x variance of 	y that can be removed by a linear predictor based
and y are zero-mean. This means that the estimate ŷ is equal on the x’s.
to ax. The error criterion, or goodness-of-fit criterion, is � � This forms the basis of some valuable methods for screen-
�[(y � ŷ)2] � �[y2] � 2a�[xy] � a2�[x2], which is easily reduced ing data. By computing the covariance matrix of experimental
to variables one can look for large correlations. This may be eas-

ier if the matrix is normalized so that the diagonal elements
are all one, that is, Ci,j � Ci,j/�Ci,iCj,j. When the matrix is
inverted, the diagonal elements will indicate if any variable

ε = E[y2]
�

1 − E[xy]2

E[x2]E[y2]

�
+ E[x2]

�
a − E[xy]

E[x2]

�2

is predicted especially well or poorly. If one diagonal element
in the inverse is unusually small, it may be an indication thatThis equation illustrates several common terms. Obviously
that variable somehow does not belong with the others. If onethe error � is a minimum when the second term is zero, so
diagonal element of the inverse is unusually large, it can indi-the optimum coefficient is ao � �[xy]/�[x2]. The quantity
cate that a variable is almost completely predicted from the�[y2] is called the variance of y, while the quantity �[xy] is
others and therefore contributes little information to the datacalled the covariance between x and y. The covariance can be
set. In the same vein, the optimum linear predictor for anynormalized to give a correlation coefficient between x and y,
variable can be extracted from the row or column of the in-�[xy]/��[x2]�[y2], which is limited to the range between �1
verse containing the corresponding diagonal element. Theand 1. The square of this quantity, �[xy]2/(�[x2]�[y2]), is called
rows or columns of the inverse matrix can also be interpretedthe coherence between x and y. The important point is that
as a data-whitening filter.the coherence is the fraction of the variance of y that can be

The above pattern holds when the problem is generalized.removed by the linear predictor. If the problem were turned
around, so that y was used to predict x, the same coherence A vector y can be estimated by a linear transformation ŷ �
would still predict the fraction of the variance of x that could AHx. The important correlation matrices are Cx � �[xxH],
be removed. Cy � �[yyH], and V � �[xyH]. In this case, the error quantity

This pattern of analysis also works when multiple vari- is � � �[(y � ŷ)H(y � ŷ)] � tr �[(y � AHx)(y � AHx)H] �
ables are involved. In this case, it is convenient to group the tr[(A � C�1

x V)HCx(A � C�1
x V)] � tr(Cy � VHC�1

x V). This, of
coefficients and the independent variables, which may be course, immediately gives �o � tr(Cy � VHC�1

x V) and Ao �
complex, into column vectors, a and x. The variable, y is then C�1

x V. The total covariance matrix and its inverse take the
estimated by a scalar product ŷ � aHx. The error criterion is form
� � �[(y � aHx)*(y � aHx)] � �[y*y] � aH�[y*x] � �[yxH]a �
aH�[xxH]a. Again, it is convenient to define correlation quan-
tities. The covariance matrix of x is Cx � �[xxH]. If v �
�[y*x] and 	y � �[y*y], then

[
Cy V H

V Cx

]−1

=
[

Ry −(C−1
y V H)Rx

−AoRy Rx

]

ε = σy − vvvHC−1
x vvv + (aaa − C−1

x vvv)HCx(aaa − C−1
x vvv) where Ry � (Cy � VHC�1

x V)�1 and Rx � (Cx � VC�1
y VH)�1.

At first glance it may seem that the introduction of com-
Since a covariance matrix is necessarily positive definite, the plex variables is an unnecessary complication. After all, the
last term is greater than or equal to zero, and can only be complex numbers can be treated as pairs of real numbers, so
zero if ao � C�1

x v, in which case the minimum mean squared by doubling the size of the matrices we can solve the problem
error is �o � 	 � vHC�1v. This takes a more interesting form using only real variables. However, we cannot easily solve
if one uses the total covariance matrix

quite the same problem. The form ŷ � ax carries an analytic
assumption. For example, the solution can never take on the
form Re y � Re x � Im x, Im y � Re x � Im x, because this
would not be an analytic function. In order to make the prob-

C = E

[[
y
xxx

]
[y∗ xxxH]

]
=

[
σy vvvH

vvv Cx

]

lem equivalent one would have to pose the estimation as ŷ �
because the inverse is ax � bx*, giving up the analytic assumption. Usually the

choice of complex variables for the original problem statement
is determined by the physics of the problem. Thus, the use of
complex variables injects certain a priori assumptions. If the
complex functions seem appropriate to the problem definition,
one should be careful about assuming that real variables

C−1 =




1
εo

− 1
εo

aaaH
o

− 1
εo

aaao

�
Cxxx − 1

σy
vvvvvvH

�−1




could produce a sensible solution. Only if a nonanalytic solu-
tion can easily be given a physical interpretation should realBy interchanging rows and columns it is easy to see that, in

terms of the total covariance matrix and its inverse, it is arbi- variables be considered.
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For the same reason, the most general form of the linear The above argument may give a good lower bound on the
error, but it gives no help in finding a way to achieve thatestimation procedure is rarely seen. It is ŷ � Ax � Bx*. How-

ever, even if an analytic solution is not necessary, it may be bound. One of the most intuitive lines of reasoning leads to
the maximum likelihood estimator. It seems unreasonable tobest to work the problem with complex variables in order to

more easily give a physical interpretation to the problem assume that the observation R was extremely improbable,
given the true value of A. The extension of that idea is thatdefinition or the solution.
the best guess for A is the one that would have made R seem
most likely. The maximum likelihood estimate is the value of

MAXIMUM LIKELIHOOD, CRAMÉR–RAO, A that would maximize the probability density function
AND FISHER’S INFORMATION MATRIX probR�A(R�A)—in other words, the value of A that solves

The predictors in the previous section are based on the con-
straint that a linear function is to be used. An obvious ques-

d
dA

probR|A(R|A) = 0

tion is whether some nonlinear predictor could do better. As
Often it is easier to solvewill be seen below, if the data are Gaussian, the answer is

no. In non-Gaussian cases the minimum-mean-squared-error
predictor is often difficult or impossible to find. However, even d

dA
ln probR|A(R|A) = 0

when this predictor cannot be found, it is sometimes possible
to obtain bounds on how well any predictor can perform. Any

It turns out that if the maximum likelihood estimator exists,candidate prediction function can then be compared with
and if it is unbiased, then the maximum likelihood estimatorthose bounds.
is efficient.The most popular method to find such performance bounds

Maximum likelihood estimators are often used with goodis to use the Cramér–Rao inequality. The reasoning goes as
results. For example, suppose that R is a Gaussian variablefollows.
with unit variance and unknown mean. In order to estimateAn unknown quantity, A, is to be estimated. Here, A is a
the mean from a single sample, consider that the logarithmreal number. Although A cannot be directly observed, an ex-
of the probability density function isperiment is run that produces a real-number result, R, which

depends in part on A. That is, the probability density function ln probR|A(R|A) = − 1
2 ln (2π) − 1

2 (R − A)2
of R depends on A and can be written as probR�A(r�A). The in-
vestigator must now make an estimate of A. The estimate,

so the maximum likelihood estimator is Â � R. The meanwhich depends on R, is denoted by â(R). The estimate may
squared error ishave a bias, �(A) � �[â(R) � A]. The question is ‘‘How good,

in a mean-squared-error sense, can â(R) be?’’ The Schwarz
inequality can be used to show that −

�
∂2

∂A2

[− 1
2 ln 2π − 1

2 (R − A)2
]�−1

= 1

This is the best possible unbiased estimator in a mean-
squared-error sense.

This idea can be generalized to the multivariable problem
through the use of Fisher’s information matrix. In this case a
vector A is to be estimated after observing another vector R
by use of an estimating function â(R). The elements of Fish-
er’s information matrix, J, can be defined in either of two
equivalent ways:

E
[
[â(R) − A]2] ≥

�
1 + d

dA
β(A)

�2

E

[�
∂

∂A
ln probR|A(R|A)

�2
]

=

� d
dA

E[â(R)]
�2

E

[�
∂

∂A
ln probR|A(R|A)

�2
]

or, equivalently,
Ji, j = E

[
∂ ln probR|A(R|A)

∂Ai

∂ ln probR|A(R|A)

∂Aj

]

or

Ji, j = −E

[
∂2 ln probR|A(R|A)

∂Ai ∂Aj

]E
[
[â(R) − A]2] ≥

−
� d

dA
E[â(R)]

�2

E
[

∂2

∂A2
ln probR|A(R|A)

]

To see how this works, consider the estimation error of theThis is of most interest when the estimator is unbiased, that
ith component of A. It has a bias error of �i(A) � �[âi(R) �is �(A) � 0. In this case the numerator of the right side of the
Ai] and a mean squared error of �i � �[(âi(R) � Ai)2]. It isabove equations becomes one, and the right side of the equa-
convenient to define the vector b(i) � (
/
Aj)�[âi(R)]. (Oftions is independent of the estimating procedure, â(R). Thus,
course, if the estimator is unbiased, then b(i) has a 1 in thefor any unbiased estimator, one can arrive at bound on the
ith position and zeros elsewhere.) Thengoodness of the estimator in a mean-squared-error sense. Any

estimator that gives equality with the bound is said to be ef-
ficient. No unbiased estimator can do better. εi ≥ bbb(i)TJ−1bbb(i)
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It is important not to confuse the concept of efficiency with rier transform components are defined as
optimality. Arguments that an estimator is optimum must be
based on game theory or decision theory. This mistake is
tempting partly because it seems intuitively that an unbiased X (m) = η

M−1∑
n=0

x(n)e−i2πmn/M

estimator should be better than a biased estimator. However,
this is not necessarily true. The following problem illustrates This formula is often referred to as the discrete Fourier trans-
the difficulty. form (DFT). Since the original data sequence can be recovered

Suppose one needs to estimate the variance of a zero mean by
Gaussian variable.

x(n) = 1
ηM

M−1∑
m=0

X (m)e i2πmn/M

ln probR|A(R|A) = − 1
2 ln 2π − 1

2 ln A − R2

2A

the transformation has lost no information.The Cramér–Rao bound is
The choice of � is arbitrary and usually depends on the

software package used. Most standard programming pack-
ages use � � 1, and the reader can safely assume this for the
following discussion. However, a few packages [e.g., MathCad

−1

E
[

∂2

∂A2

�
− 1

2 ln 2π − 1
2 ln A − R2

2A

�] = 2A2

(MathSoft, Inc.)] use � � 1/�M, which makes the above for-
mulas symmetrical.

and the maximum likelihood estimator is Â � R2. The follow- It is important to keep track of the exact form of the Fou-
ing observations follow easily: rier transform used, because it determines the form of

Parseval’s theorem. With the above definitions, Parseval’s
theorem says that1. Â � R2 is an unbiased maximum likelihood estimator

of A.
2. Â � R2 is an efficient estimator of A, that is, it meets

the Cramér–Rao bound with equality.

M−1∑
n=0

x∗(n)x(n) = 1
η2M

M−1∑
m=0

X ∗(m)X (m)

3. Â � R2 is obviously not an optimal, or even a good, esti-
This is the key to computing the power spectral density.mator for A. In fact, if one were to ignore R and simply

The power spectral density SP(m) of a waveform is a func-make Â � 0 the average mean squared error would only
tion that, when integrated over a frequency band, will givebe half of that given by the efficient estimator.
the power of the waveform in that band. The equations must
be calibrated in order to make the integral over the total fre-In fact, a better estimator would be Â � R2/3. It would have
quency band come out right. Since the frequency resolution ofa mean squared error of only one-third that of the efficient es-
the analysis is f s/M, the approximations to Riemann integralstimator.
look likeIn many cases, especially those involving small sample

sizes, it may be worthwhile to investigate the possibilities of
biased estimators. Little seems to be known about how a good
bias function can be chosen.

power = 1
M

M−1∑
n=0

x∗(n)x(n) =
M−1∑
m=0

SP(m)
fs

M

so Parseval’s theorem gives
FOURIER TRANSFORMS AND SPECTRUM ESTIMATION

Fourier transforms can be viewed as the solution to a least-
SP(m) = 1

η2 fsM
X ∗(m)X (m)

squared-error estimation problem. This is useful for analysis
of existence, convergence, uniqueness, and so on. However, This gives a procedure for stationary waveforms. However,
when designing analysis procedures it is much easier to think if one needs to analyze impulsive functions a different line of
of them as a frequency translation and filtering process. Let thought is necessary. An impulse will be defined here as a
x(n) denote a sequence of data values sampled at regular in- function that takes on nonzero values only within the interval
tervals at a rate of f s samples per second. Then x(n)e�i2�nf/fs is 0 � n � M. In this case, power is not an interesting quantity
a time sequence that has the same structure as x(n) except and the energy in the waveform becomes important. The en-
that it is shifted so the information that was at frequency f is ergy spectral density is found by first noting the energy in the
now at 0 Hz. The spectral coefficient for frequency f is now waveform is
found by low-pass filtering with a summation filter function
to get

energy =
M−1∑
n=0

x∗(n)x(n)
1
fs

=
M−1∑
m=0

SE (m)
fs

M

In this case, Parseval’s theorem gives

M−1∑
n=0

x(n)e−i2πn f / fs

For a time period T � M/f s, the complex exponentials at f �
f sm/M are uncorrelated, where m is any integer. So the Fou-

SE (m) = 1
η2 f 2

s
X ∗(m)X (m)
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In either case, when the results are plotted, the usual proce- window width were measured to the points 3 dB or 6 dB
down, the width would be about �� times the width of thedure is to plot the spectral density versus frequency on a deci-

bel scale. If the original level of �[x*x] was specified in deci- boxcar window of the same length. The sidelobes would be
about 27.3� � 6 dB down from the main lobe. Thus, if a givenbels relative to a reference level, the spectral data should be

plotted in decibels per hertz relative to the reference level. level of sidelobe rejection is specified, one can immediately
see how narrow a main lobe is possible (i.e., what the bestThe spectrum should not be labeled as ‘‘per Hz1/2’’ unless the

author really intends that the function is to be integrated possible frequency resolution is). Or if the frequency resolu-
tion of the window is specified, one can see how much sidelobewith respect to the square root of the frequency. This mistake

is made by a remarkable number of authors. rejection is possible.
The Dolph–Chebyshev window is rarely used, for two rea-When the waveform contains pure tonals (defined as sig-

nals whose bandwidth is less than the analysis resolution), sons. First, although the worst sidelobes are well down, all of
the other sidelobes are equally high. They do not taper off.special problems arise. A pure sinusoid would have an infinite

power spectral density, and be properly modeled as a Dirac Second, the endpoints of the window are often quite high.
These problems are sometimes alleviated by convolving thedelta function in frequency. This cannot be sensibly plotted

on the same scale as power that is distributed over an identi- Dolph–Chebyshev window with a short binomial window. The
binomial window has a very broad main lobe but no sidelobesfiable frequency band. In this case, the total power in the

tonal should be estimated. Then the peak should be deleted at all. When the two windows are convolved in the time do-
main, they are multiplied in the frequency domain. The timefrom the plot, and replaced by a line indicating the sinusoidal

power. For example, suppose the spectral density in the domain convolution smooths out the spikes at the end of the
window, while the frequency domain multiplication reducesneighborhood of 60 Hz is 150 dB/Hz, while the indicated

power spectral density for the 60 Hz bin is 160 dB/Hz. If the the distant sidelobes.
The Kaiser–Bessel window is a more popular choice. It isfrequency resolution from the Fourier transform were 1/50

Hz, this would mean that the power in the line was 160 obtained by sampling the function
dB � 17 dB � 143 dB (since 10 log 1/50 � �17). When the
data are reported, the plot should show a smooth spectrum at
150 dB/Hz through the 60 Hz region and a vertical line rising
to a level of 143 dB.

w(t) =



1
T

I0

�
πβ

r
4
� t

T

��
1 − t

T

��
, 0 ≤ t ≤ T

0 otherwise
The above formulas are usually considered to be a bad way

to estimate a spectrum, because of sidelobe leakage. There- where T is the time duration of the window and I0 is a Bessel
fore a window function, w(n), is usually used. To see the ef- function (1) computed by
fect, it is easiest to think of the equivalent low-pass filter.We
can write the Fourier transform as a convolution filter: I0(z) = 1 + z2/4

(1!)2 + (z2/4)2

(2!)2 + (z2/4)3

(3!)2 + · · ·

The first (and worst) sidelobe of the filter is approximately
X ( f,n) =

M−1∑
L=0

w(L)x(n − L)e−i2π (n−L) f / fs

27.3� � 20 log � � 2.5 dB down from the peak response. The
first null occurs at approximately �(1 � 0.333/�2)/T Hz. If aThen the Fourier transformation consists in sampling this
boxcar filter is used, the first null occurs at a frequency offunction at regular intervals. The intervals are not necessar-
1/T Hz.ily simply related to the length of the Fourier transform.

The actual process of computing the Fourier transforms isIn the first case, w(n) was a boxcar filter. That is, w(n) �
usually done using an algorithm called the fast Fourier trans-1 if 0 � n � M, and w(n) � 0 otherwise. Many good window
form (FFT). It provides a much faster computation with lessfunctions are known.
rounding error than one would get from a DFT. For presentWhen analyzing a window, it helps to compare it with the
purposes it is important only to understand that the FFT hasboxcar window. Relative to a boxcar window, the more popu-
no theoretical significance. It is simply a quick way to com-lar window functions widen the main-lobe frequency re-
pute the same result that could otherwise be obtained withsponse, reducing the frequency resolution, in order to lower
a DFT.the sidelobes. A window is usually judged by two criteria:

To be efficient the FFT requires that M be a highly compos-How much does it broaden the main lobe, and how much does
ite number, usually a power of 2. Since the length of the avail-it lower the sidelobes? The Dolph–Chebyshev window has the
able data string is unlikely to be a power of 2, this mightlowest worst-case sidelobe for a given main-lobe width. Al-
seem to be a problem. However, the problem is easily solvedthough this window is rarely used, it is a quick way to see
by padding the data with zeros to fill out the input vector.what can be done. The window shape, in the frequency do-
The effect of this is to overresolve the spectrum. This turnsmain, is controlled by a parameter �. For an M-point window,
out to be very beneficial if the spectrum contains sharp fea-
tures that might otherwise be difficult to resolve. Of course,
one could get the same effect by interpolation, but it would be

W ( f ) = TM−1

� cos(π f/ fs )

cos(πβ/M)

�

much more difficult. This works out so well that often the
analyst may make M much longer than the size of the datawhere TM�1 is a Chebyshev polynomial of order M � 1. (This

works because the Chebyshev polynomials are themselves so- set in order to get a smooth spectrum that is easy to interpret.
The use of a window and zero padding requires a modifi-lutions of a minimax problem.) The first zero of a boxcar win-

dow of the same length would be at f s/M. The first zero of a cation of the equation calibration. Parseval’s theorem again
provides guidance.Dolph–Chebyshev window is at approximately �f s/M. If the
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STATIONARITY ISSUES The phase angle is independent of the spectrum. Under some
circumstances, it is possible that this phase angle might be

Most signal-processing theory assumes time-stationary pro- used as a test of stationarity. However, no such test proce-
dures have been worked out.cesses, at least for the noise. All physical systems are ulti-

mately not time-stationary. It is often important to arrive at If one suspects that circularity might not hold, it may be a
good precaution to multiply each Fourier coefficient bysome clear opinion about how nearly stationary the data are.

A time sequence is time-stationary if, for any set of values e�i2�m/M. This will have the effect of decorrelating the real and
imaginary components. However, it will also maximize thex(n), x(n � 1), . . ., x(n � M � 1) and any function a(x(n),

x(n � 1), . . ., x(n � M � 1)) of those points, the average of difference in their magnitudes.
Usually �c(m) is small enough to ignore safely. Therefore,a, or �[a(x(n), x(n � 1), . . ., x(n � M � 1))], is not a function

of n. In other words, absolute time has no meaning for the the following sections will assume that the Fourier coeffi-
cients are circular. However, it is not clear when the rare ex-sequence. This condition is usually impossible to test and

stronger than is needed for most analyses. Therefore, it is ceptions occur. They are associated with steep changes in the
spectrum. It is possible, in situations where a narrowbandmuch more common to assume that the data are wide-sense

stationary, or second-order stationary. This means simply that signal is on a steep spectral slope, that the signal will be more
detectable on looking only at one part of the Fourier coeffi-all of the first and second moments of the data stream are

independent of time. In this case it is possible to identify an cients. This is not commonly done.
autocorrelation function, A(n) � �[x(t)x(t � n)], where A(n) is
independent of t. BANDWIDTH AND TIME–BANDWIDTH PRODUCTS

When the data sequence is not second-order stationary, it
is often possible to choose the Fourier transform lengths so The entire frequency range available for analysis is usually
that the spectrum changes slowly relative to the Fourier wider than the signals of interest. Often, the signal energy is
transform interval. Then sequential spectra can be compared confined between two frequencies, f 1 and f 2. Then it is conve-
and peaks in the spectrum followed as they change in time. nient to define a frequency bandwidth W � f 2 � f 1. Recalling
When several spectra are plotted, one above another, on a that the integration time of the Fourier transform is T �
single display, these peaks often follow characteristic paths M/f s, the frequency resolution of the analysis is 1/T � f s/M,
down the display. Since the peaks trace out a visible line, so there are K � WT Fourier transform bins that contain the
narrowband components of a spectrum are often referred to signal. K is referred to as the time–bandwidth product of the
as lines. Often a great deal of study and experience is re- signal. It is often important to know what the duration and
quired to interpret these lines. For example, lines at frequen- the bandwidth of the signal are.
cies that are harmonics of power frequencies (50 Hz or 60 Curiously, there is no generally agreed-upon way to define
Hz, depending on the country) are apt to be a symptom of the bandwidth of a signal. Indeed, a similar problem may ex-
instrumentation problems. ist in defining the duration of a signal. Sometimes the nature

Assuming that the data sequence is stationary, two as- of the problem may dictate a definition that is appropriate
sumptions are usually made that are only approximately only to that problem. For example, when considering the un-
true. The first is that Fourier coefficients corresponding to dif- certainty principle, the bandwidth and time duration of a sig-
ferent frequencies are uncorrelated, that is, �[X*(m1)X(m2)] � nal are defined by
0 for all m1 � m2. The second is that the real and imagin-
ary parts of the Fourier coefficients are uncorrelated and of
equal variance, that is, �[Xr(m)Xi(m)] � 0 and �[X2

r(m)] � W2 =
∫ ∞

−∞
f 2S( f ) df and T2 =

∫ ∞

−∞
t2|x(t)|2 dt

�[X2
i (m)] for all m. Another way to state the condition is that

�[X2(m)] � 0. As will be seen below, this second condition when the signal is normalized so that
means that for Gaussian data the probability density function
of X(m) depends only on the magnitude of X(m). Equal-proba-
bility contours of X(m) then are circles in the complex plane, 1 =

∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
S( f ) df

so the variables are called circular.
The Fourier coefficients from different frequency bins usu- This leads to the uncertainty principle (2)

ally have a small but nonzero correlation because of sidelobe
leakage in the window function. The amount of correlation is WT ≥ 1/4π

controlled by the choice of window and the extent to which
the data have been whitened prior to study. However, these definitions for W and T seem not to be used

for any other purpose than proving the uncertainty principle.The circularity issue has not been fully explored. In order
to do so, it is probably useful to define a circularity anomaly, More frequently, the edges of the frequency band are de-

fined as the points at which the spectrum is 3 dB down from
the peak. This is especially appropriate when working with
Butterworth filters. In this case the 3 dB down frequency is

αc(m) = −η2
M−1∑
n−0

A(n) sin
2πnm

M
known as the corner frequency. This identity of the corner fre-

that is, the sine transform of the autocorrelation function. quency and the 3 dB down frequency is not true for most
Then other filter types, but they drop off fast enough that the error

is small.
Square law detection theory can provide another useful

definition of bandwidth. As will be seen below, in this case
E[X 2(m)] = 2αc(m)

sin(2πm/M)
e i2πm/M
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the detectability of a random signal increases as the square uct, from the effect of the energy ratios. If this is done, then
root of the time–bandwidth product and the average signal-
to-noise ratio across the frequency band. Thus, for maximum E[U |H1] =

√
2K〈σ/ν〉f

detectability one would want to choose f 1 and f 2 to maximize
If the noise is white (i.e., the spectrum is flat over the band)
the above detector is called a matched filter. In this case, the
signal-to-noise ratio reduces to the ratio of the total signal

1√
f2 − f1

∫ f2

f1

S( f )

N( f )
df

energy to the noise power spectral density.
The detection process consists in selecting a thresholdThis prescription leads to

value, Uth, and comparing it with the filter output. The false-
alarm rate, or probability of false alarm, can be found from
the usual Gaussian distributionS( f1)

N( f1)
= S( f2)

N( f2)
= 1

2
1

f2 − f1

∫ f2

f1

S( f )

N( f )
df

PF = Q(Uth)

In other words, the edges of the frequency band should be
where Q( ) is characterized by Eq. (26.2.3) of Ref. 1. Possiblychosen so that the signal-to-noise ratio at each edge is 3 dB
useful values arebelow the average signal-to-noise ratio over the band.

SINGLE-WAVEFORM TESTING AND
SQUARE LAW DETECTORS

One of the most instructive and fundamental detection prob-

Q(3.72) = 10−4

Q(4.75) = 10−6

Q(5.61) = 10−8

Q(6.36) = 10−10

lems involves a waveform that may or may not be present in
Gaussian noise. The two possibilities are denoted as H0 (no The probability of detection is at least 50% if 2K�	/�f �
signal present) and H1 (one signal present). The noise is as- U2

th. If a � log Uth, then the signal excess can be defined as
sumed to be from a time-stationary random process, and is
known only by its spectrum. This can be denoted by (m) � SEc = 10 log 〈σ/ν〉f + 10 log K + 3 − 2a
�[X*(m)X(m)�H0].

The problem usually takes one of two different forms, de- Two points may surprise the knowledgeable reader. First,
pending on what a priori information about the signal is as- SE is not a simple function of integrated signal power and
sumed. In the first case the signal is assumed to be known integrated noise power. The averaging is done only after the
exactly. This is appropriate for study of active sonar or radar. ratio has been taken. The second is the 10 log dependence on
The signal is then a waveform that takes on nonzero values K. This is an important difference between detection of a
only for a limited time. The Fourier transform of the signal known signal and of an unknown signal (discussed below).
will be denoted by S(m), with the signal power designated as If the noise is white,
	(m) � S(m)*S(m). Several lines of thought lead to use of a
correlator or a convolution operator. This detector may be im-
plemented in either the time domain or the frequency do-

SEc = 10 log(total signal power)

− 10 log(noise power spectral density) + 3 − 2a
main. However, it is easier to analyze in the frequency do-
main. The detector uses a linear filter described by H(m) and The quantity 3 � 2a is sometimes referred to as the ‘‘recog-
is equivalent to forming a test statistic nition differential.’’ However, this term is used in a confusing

variety of different ways, so one is usually better off to avoid
U = ∑

Re[H(m)X (m)] using it altogether.
The second important variant on this problem is the un-

where the sum is taken over the K � WT frequency bins that known signal. In this case, the signal is assumed to be a time-
contain significant signal energy. The issue is the statistics stationary Gaussian signal known only by its spectrum,
of U, which will be denoted by 	(m) � �[X*(m)X(m)�H1] �

�[X*(m)X(m)�H0]. Several arguments lead to a square law de-
E[U |H0] = 0 and E[U |H1] = ∑

Re[H(m)S(m)] tector,

The only other quantity of interest is the variance, V = ∑
X ∗(m)X (m)H(m)

Assuming the signal spectrum is accurately known, the best
choice of the frequency weights is

E[U2|H0] = 1
2

∑
H∗(m)H(m)ν(m)

It can be easily shown that the optimum choice of filter
function is H(M) � S*(m)/(m). However, nothing is lost by

H(m) = σ (m)

ν(m)[ν(m) + σ (m)]
scaling H(M) so that �[U2�H0] � 1. It also helps to designate
the average signal-to-noise ratio over the band as �	/�f. This This is approximated by the Eckart filter, H(m) � 	(m)/2(m)

(3). However, for various reasons, including difficulty inis a different type of average than used above. It enables one
to separate the effect of averaging, or time–bandwidth prod- knowing the signal spectrum, it is often more practical to use



374 CORRELATION THEORY

a noise-whitening filter followed by a band-pass filter, For detection of tonals, this equation takes a somewhat
different form because a different definition of 	 is used.
When investigating tonals, or nearly pure sinusoids, instead
of specifying the power spectral density of the signal, only the

H(m) = 1
Kν(m)

total signal power is specified. The spectrum of the signal is
This means that then treated as a Dirac delta function times that signal

power. The key assumption is that the total width of the sig-
nal is less than the width of a Fourier bin. Then the apparentE[V |H0] = 1 and E[V |H1] = 1 +

〈
σ

ν

〉
f signal power spectral density depends on the bin width, which

is now W. With this new different definition of 	,
At this point it is tempting to use the central limit theorem

(CLT) to argue that the distribution of V is Gaussian and the
detection statistics can be estimated as above. However, the SEs = 10 log

〈
σ

ν

〉
+ 5 log T − 5 log W − a − 10 log

�
1 + b√

K

�

CLT works poorly on the tails of the distribution, and fortu-
nately this approximation is not necessary. In fact, V has the As suggested above, it is often difficult to obtain good a
form of a chi-square variable, and the distribution of V is the priori information about the signal. However, similar prob-
gamma distribution. If �( , ) denotes the incomplete gamma lems occur for the noise. If the absolute level of the noise is
function, then the probability density function of V is unknown, then it must be measured before thresholds can be

set. When attempting to detect narrowband signals, this pro-
cess is referred to as noise spectrum equalization, or NSE. InG(K, KV ) = 	(K, KV )

	(K) its simplest form, NSE can be analyzed as follows.
When attempting to detect a narrowband signal, a commonThis equation differs slightly from Eq. (26.4.19) of Ref. 1 be-

approach is to plot the power spectral density and look forcause of different normalization and because K is only half
sharp narrow peaks. The eye can then easily identify the av-the number of degrees of freedom.
erage level of the noise and judge whether a particular spikeThen if Vth denotes the threshold,
is significantly higher than that average level. To quantify
this, assume that L bin levels around the signal bin are aver-PF = G(K, KVth)
aged. If K is the time–bandwidth product for each bin, then
the average noise level is being estimated with a time–Exact evaluation of this equation is cumbersome. However, it
bandwidth product of KL. What the eye actually sees, espe-is easily approximated by
cially if the spectrum is plotted on a decibel scale, is the ratio
of the estimated power in the signal bin to the estimated
power in the surrounding noise bins. This is a ratio of two
powerlike variables. This ratio will have an F distribution.

(KV )K−1

(K − 1)!
e−KV < G(K, KV ) <

1

1 − K − 1
KV

(KV )K−1

(K − 1)!
e−KV

Let � � 	(m)/(m) denote the signal-to-noise ratio in the sig-
nal bin, and assume that the noise spectrum is flat over theIn fact, G(K, KV) stays much closer to the upper bound.
L frequency bins around the signal. The probability densityThis gives an easy way to estimate PF for various values of
function of the ratio isK and Vth. However, it is also useful to be able to turn the

problem around and find the required Vth for a given PF and
K. In most cases this problem cannot be solved in closed form.
It has been found empirically that, for realistic false-alarm
rates, a good approximating equation is

probZ(z) = (K + KL − 1)!(KL)KL

(K − 1)!(KL − 1)!

×
� K

1 + ρ

�K zK−1

� zK
1 + ρ

+ KL
�K+KL

10 log(Vth − 1) = a − 5 log K + 10 log
�

1 + b√
K

�

The cumulative probability function can be written asFor this purpose, the following table may be adequate:

ProbZ(z) = Bz/z+L(1+ρ)(K, KL)

B(K, KL)
= Iz/(z+L(1+ρ))(K, KL)

where B�(K, KL) is the incomplete beta function (1). To com-
pute the false-alarm rate, simply set � � 0.

PF = 10−4, a = 5.705, b = 1.2

PF = 10−6, a = 6.77, b = 1.65

PF = 10−8, a = 7.49, b = 2

PF = 10−10, a = 8.03, b = 2.4
This type of detector can work very well when the time–

bandwidth products are large. However, for small time–As above, one can define a signal excess equation as
bandwidth products the price of having to estimate the nor-
malization factor is severe. The extreme case occurs when
K � L � 1. In this case, the false-alarm rate, for a threshold

SEs = 10 log
〈
σ

ν

〉
f

+ 5 log WT − a − 10 log
�

1 + b√
K

�

value of th, is 1/(th � 1). This means that if one wanted a
false-alarm rate of 10�4, it would take a signal-to-noise ratioThe last term may be interpreted as the error that would

have resulted if a Gaussian distribution assumption had been of 40 dB to give a 50% probability of detection. As the time–
bandwidth product of the detector increases, the detectionmade for V.
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performance improves rapidly, approaching the performance
of a square law detector as L becomes large. This pattern—
the importance of large time–bandwidth product when a nor-
malization factor is estimated from the data—will reappear
below in the discussion of two-channel detectors.

The general problem of detection of Gaussian signals in
Gaussian noise, or even of sinusoids in Gaussian noise, is far
from solved. For example, effects of sidelobe leakage in the
Fourier transforms have been ignored. More importantly, if

1 +
�σ

ν

�
1

= T1

�σ

ν

�
2

= T2

(σ/ν)3

(σ/ν)3 + 1
= T3, or

�σ

ν

�
3

= T3

1 − T3

(σ/ν)2
4

[(σ/ν)4 + 1]2
= T4, or

�σ

ν

�
4

=
√

T4

1 − √
T4

the noise power spectral density is significantly far from
These four signal-to-noise ratios will be called threshold sig-white, the resulting detection statistic is a sum of unequal
nal-to-noise ratios. However, they are actually bin signal-to-chi-square variables. The probability distribution of such a
noise ratios. To reconcile the following discussion with stan-variable is so cumbersome as to be nearly useless. A good
dard detection equations, one would have to at least correctmethod for approximating it is needed.
for the bandwidth of the frequency bins. Further, due to
asymmetries in the distribution functions, the threshold sig-
nal-to-noise ratios do not correspond precisely with a 50%

TWO-CHANNEL DETECTION probability of detection. The errors from this asymmetry are
usually very small.

Detection or estimation of a signal that is believed to be com- The false-alarm rates are, of course, determined by the
mon to two different waveforms may be done in several differ- threshold values. For the correlator the false-alarm rate is
ent ways, depending on the a priori information available and
the type of information to be extracted. In the following dis-
cussion, X(n) and Y(n) are the two complex data sequences. PF (T2) = 1

22K−1(K − 1)!

K−1∑
n=1

(2K − n − 2)!2n

n!(K − n − 1)!
	(n + 1, 2KT2)

Usually they are Fourier coefficients from successive trans-
form intervals. In the following equations, � � denotes the av- For the correlation coefficient detector the false-alarm rate is
erage over K data samples. It will also be initially assumed (4)
that the signal-to-noise ratio in both sequences is the same.
That is, �[X*X�H0] � �[Y*Y�H0] �  and �[X*X�H1] �

�[Y*Y�H1] �  � 	. The noise will be assumed to be Gaussian,
uncorrelated between the two sequences, and independent of

PF (T3) = (K − 1)!
√

π

�2K − 3
2

�
!

∫ 1

T3

(1 − t2)(2κ−3)/2 dt

the signal.
There are four principal functions from which one may Although this formula can be integrated in closed form, the

choose: solution is very cumbersome. However, it lends itself to nu-
merical integration. For the coherence detector the false-
alarm rate is (5)

PF (T4) = (1 − T4)K−1

These formulas were used to compute Figs. 3, 4, 5, and 6.
In each case the plot was designed to answer the question, ‘‘If

u1 = 〈X ∗X 〉 ?
> T1ν square law

u2 = Re〈X ∗Y )〉 ?
> T2ν correlator

u3 = Re〈X ∗Y 〉√〈X ∗X 〉〈Y ∗Y 〉
?
> T3 correlation coefficient

u4 = |〈X ∗Y 〉|2
〈X ∗X 〉〈Y ∗Y 〉

?
> T4 coherence

The first function is included as a reference. It is the sim-
ple square law detector, analyzed previously. It forms a base-
line for judgement of the other detectors, since it simply uses
one of the two sequences. The comparison gives an indication
of the value of having two sequences instead of one. An impor-
tant case that is not considered here is �(X � Y)*(X � Y)�.
This is because it does not really constitute a separate case.
It is simply the square law detector with a 3 dB increase in
signal-to-noise ratio.

In each case, the quantity u is compared with a threshold.
(In the first two cases it is necessary to know  in order to set
the threshold.) It is important to know how the false-alarm
rate will be determined by the threshold. However, this is
only part of the story, since the probability of detection is also
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important. In each case, it is possible to associate a signal-to- Figure 3. Log of false-alarm rate versus threshold signal-to-noise
noise ratio with the threshold that will produce approxi- ratio for a square law detector. The curves are separated by about 1.5
mately a 50% probability of detection. The critical signal-to- dB for large WT products, but performance deteriorates more rapidly

for small WT products.noise ratios are



376 CORRELATION THEORY

WT = 1

4

8
16

32
64

128
256

512
1024

–1
–2
–3
–4
–5
–6
–7
–8
–9

–10
–11
–12

–10 –5 0 5 10 15

Threshold signal-to-noise ratio (dB)

L
o

g
 (

fa
ls

e
-a

la
rm

 r
a

te
) 2

WT = 8
16

32
64

128

256
512

1024

–1
–2
–3
–4
–5
–6
–7
–8
–9

–10
–11
–12

–10 –5 0 5 10 15
Threshold signal-to-noise ratio (dB)

L
o

g
 (

fa
ls

e
-a

la
rm

 r
a

te
)

Figure 4. Log of false-alarm rate versus threshold signal-to-noise Figure 6. Log of false-alarm rate versus threshold signal-to-noise
ratio for a correlator. The curves approximate those in Fig. 3 with a ratio for a coherence. Again, the performance deteriorates rapidly for
doubling of the WT product. small WT products.

the detector is set up to detect a signal at a given signal-to- closely overlays the curve for WT � 2 in Fig. 3. In other
words, the advantage in having a second waveform and usingnoise ratio, what will the false-alarm rate of the detector be?’’

In each case, a threshold signal-to-noise ratio was chosen and a correlator over using a square law detector on one waveform
is a factor of 2 in the integration time needed.the corresponding threshold value calculated. Then the proba-

bility of a noise-only false alarm was calculated and plotted. For large WT, the curves in Figs. 4, 5, and 6 nearly coin-
cide. In other words, for large WT, all three of these tech-This was done for several values of K � WT, the time–

bandwidth product. Since in general low false-alarm rates are niques give nearly the same performance. Selection among
these formulas can be made on the basis of considerationsnecessary, the curves are mainly useful for the region of

Pfa � 10�4. The following discussion will address only this other than detection performance, such as ease of implemen-
tation.region.

In Fig. 3, for a given false-alarm probability, the curves For small WT, the performance of the normalized detectors
deteriorates so rapidly that curves for WT less than 8 wereare separated by about 1.5 dB in the large-WT cases. This

agrees with the general rule that the integration gain of a not even plotted. This is consistent with the previous observa-
tions about normalized spectra. Normalized detection formu-detector is 5 log WT. However, for small WT values the sepa-

ration increases to about 2.5 dB. This is because the 5 log las work well only with large sample sizes. For WT less than
128, the normalized formulas do not work as well as a squareWT is based on application of the CLT, which breaks down

for small WT. In some cases this can lead to a difference of 3 law detector using only one sequence.
or 4 dB in minimum detectable signal.

The curves in Fig. 4 nearly overlie those in Fig. 3, with a
shift in WT. For example, the curve for WT � 1 in Fig. 4 GAUSSIAN DISTRIBUTIONS

Most theoretical work on signal-processing problems assumes
a Gaussian noise distribution. This assumption rests on two
points of practical experience. First, much of the noise en-
countered in operating systems is approximately Gaussian.
Second, data-processing systems based on Gaussian noise as-
sumptions have a good track record in a wide range of prob-
lems. (This record is partly due to the coincidence between
solutions based on Gaussian noise theory and solutions based
on least-squares theory, as will be seen below.)

From a theoretical viewpoint the key feature of the
Gaussian distribution is that a sum of Gaussian variables has
a Gaussian distribution. (Other distributions with this prop-
erty, called alpha stability, exist. One example is the Cauchy
distribution. However, their role has yet to be established.)
The importance of this fact is difficult to exaggerate. It
means, among other things, that when Gaussian noise is
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passed through a linear filter, the output will still beFigure 5. Log of false-alarm rate versus threshold signal-to-noise
Gaussian. (Unfortunately, little is known about what happensratio for a correlation coefficient. The curves approximate those in
to the distribution of non-Gaussian noise when it is filtered.Fig. 4 for large WT products but deteriorate rapidly for small WT
It is often said that because of the CLT the output of the filterproducts. This illustrates the difficulty of estimating a normalization

factor from local data unless the WT factor is very large. can be assumed to be Gaussian. However, many important
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counterexamples are known, e.g., AM radio.) Partly because Gaussian vectors of length n and m respectively, the total co-
variance matrix can be defined asof this, the Gaussian distribution is almost the only distribu-

tion for which the extension to multiple variables or complex
variables is understood.

The CLT is often cited as another reason to assume a Etotal = E

[[
x́xx
ýyy

]
[x́xxH ýyyH]

]
=

[
Exx Exy

Eyx Eyy

]
=

[
F11 F12

F21 F22

]−1

Gaussian distribution. The CLT says that if a variable y is an
average of a large number of variables, x1, x2, . . ., xN, then

Then the joint distribution of x and y isthe distribution of y is approximately Gaussian and that this
approximation improves as N increases, that is, y is asymp-
totically Gaussian. The necessary and sufficient conditions for
this theorem are not known. However, several sets of suffi-

1

πn+m
√|Etotal|

exp

�
−1

2
[x́xxH ýyyH]E−1

total

[
x́xx
ýyy

]�

cient conditions are known, and they seem to cover most rea-
sonable situations. For example, one set of sufficient condi- while the conditional distribution of x given y is
tions is that the xi’s are independent and have equal variance.

The reader should, however, use some caution in invoking
the CLT. It is an asymptotic result that is only approximately prob(xxx|yyy) =

√|F11|
πn e− 1

2 (x́xx−ExyE−1
yy ýyy)HF11 (x́xx−ExyE−1

yy ýyy)

true for finite N. Further, the accuracy of this approximation
is often very difficult to test. It tends to come into play fairly The moment generating function of a complex vector s is
quickly in the central portions of the distribution, so when
the experimental distribution is plotted the data look decep- mgf(sss) ≡ Ee−sssHxxx−xxxHsss = e

1
2 śssHEśss = esssH	sss+(sssHCsss∗+sssTC∗sss)/2

tively close to a Gaussian curve. However, detection and esti-
mation problems tend to depend on the tails of the distribu- For a single variable, this simplifies to
tion, which may be very slow to converge to a Gaussian limit
and cause large errors that are poorly understood. The inves- Ee−s∗x+x∗s = e s∗γ +(s∗2c+s2c∗ )/2

tigator should always be alert for the possibility that a
Gaussian distribution is not appropriate and should therefore Matching up coefficients for the fourth moments gives a little-
consider alternatives. known result,

Let x denote a column vector of real variables, xT �
[x1 x2 � � � xn], and let C � �[xxT] denote the covariance ma- E[(x∗x)2] = γ 2(2 + ρ∗ρ)
trix of x. Then the statement that x is Gaussian means that

In other words, the kurtosis, defined here as the ratio of the
fourth moment to the square of the second moment, varies
between 2 and 3 depending on the degree of circularity of the

probxxx(xxx) = 1√
(2π)n|C|

e− 1
2 xxxTC−1xxx

variable. For real variables, � � 1, so the kurtosis is 3. For
If the variables are complex, it is possible to define two impor- circular Gaussian variables, the most commonly used complex
tant square matrices, � � �xxH� and C � �xxT�. It is customary distribution, � � 0, so the kurtosis is 2. (Some authors sub-
to assume that C � 0, which is the circularity assumption. tract 3 from the ratio in their definition of kurtosis, so that
This custom will be adopted later. In this case, it is conve- for real Gaussian variables the kurtosis is zero. For formula-
nient to define the accent vector tions that include complex variables this is not a simplifi-

cation.)

x́xx =
[

xxx
xxx∗

]
LIKELIHOOD DETECTORS FOR GAUSSIAN NOISE

The moment matrices and their inverses take the form Assuming a known signal, s, in Gaussian noise the likelihood
ratio for a sample variable x is

E[x́xxx́xxH] = E =
[

	 C
C∗ 	∗

]
=

[
A B
B∗ A∗

]−1

The probability density function of x́ is

1

πn
√|E|

e− 1
2 (x́xx−śss)HE−1 (x́xx−śss)

1

πn
√|E| e− 1

2 x́xxHE−1x́xx

Isolating the terms that depend on x, the likelihood ratio de-
prob(xxx) = 1

πn
√|E|

e−xxxH Axxx−(xxxHBxxx∗+xxxTB∗xxx)/2

pends only on the expression
For a single complex Gaussian variable x, this simplifies. Let
� � �[xx*], let c � �[x2], and let � � c/�. Then x́xxHE−1śss

This provides a justification for the correlation structure dis-
cussed above.

prob(x) = 1

πγ
√

1 − ρ∗ρ
exp

�−[x∗x − 1
2 (x2ρ∗ + z∗2ρ)]

γ (1 − ρ∗ρ)

�

The Gaussian signal assumption leads to a more compli-
cated structure. In its simplest form, the signal is modeled asUsing the accent notation for the variables, the joint and con-

ditional distributions take simple forms. If x and y are jointly a random complex amplitude times a signal model vector v
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that is normalized so that vHv � n. If we admit that the signal where T is a 2 � 2 matrix defined by
may be noncircular, the signal covariance matrix takes a
rank-two form: T−1 = D−1 + V HE−1V

and W is a 2n � 2n nonnegative matrix of rank 2. This pro-
vides justification for the square law detector discussed above.

OTHER DISTRIBUTIONS

As signal-processing applications become more sophisticated,
other functions of complex variables come into play. For ex-
ample, in the above discussions products of complex variables
have already been encountered. In some deconvolution prob-

P =
[

σvvvvvvH cvvvvvvT

c∗vvv∗vvvH σvvv∗vvvT

]

=
[ √

cvvv
√

cvvv√
c∗vvv∗ −√

c∗vvv∗

]



σ/
√

c∗c + 1
2

0

0
σ/

√
c∗c − 1
2




[√
c∗vvvH √

cvvvT
√

c∗vvvH −√
cvvvT

]

lems, quotients also arise.
The extension of standard probability theory to complexThis notation can be simplified by introducing matrices V and

variables is an interesting exercise. The reason is that proba-D so that the above equation becomes P � VDVH. Ignoring
bility density functions are not analytic functions. (Obviously,terms that are independent of x, the log of the likelihood ratio
they cannot be, since they always take on only real values.)becomes
Thus, standard theory of analytic continuation is not helpful.
It seems that the easiest way to deal with this is simply tox́xxHE−1x́xx − x́xxH

(E + VDV H)−1x́xx
modify the basic definitions to accommodate the complex

This simplifies to a quadratic form numbers and then do a set of derivations that parallel those
already familiar for real variables. The following table shows
some of the parallel formulas. (In the Gaussian case, only cir-x́xxHE−1VTV HE−1x́xx = x́xxHWx́xx

Real Variables Complex Variables

dAx � dxr dxi

Probability density function

PX (X � x) � �x

��
pX (t) dt PX (X � A) � � �

A
pX (x) dAx

Average

E [X ] � ��

��
x pX (x) dx �[X ] � � �

�
xpX (x) dAx

Gaussian

pX (x) �
1

�2�
e�x2/2 pX (x) �

1
�

e�x*x /

Gaussian (multivariable)

pX (x) �
1

(2�)n/2��C �
e�1/2xTC�1x pX (x) �

1
�n�C �

e�xHC�1x

Sum Z � X � Y

pZ (z) � ��

��
pX,Y (z � y, y) dy pZ (z) � � �

�
pX,Y (z � y, y) dAy

Product (general) Z � XY*

pZ (z) � ��

��

pX,Y (z/y, y)
�y�

dy pZ (z) � � �
�

pX,Y (z/y*, y)
y*y

dAy

Product (Gaussian) Z � XY*

pZ (z) �
1

��1 � �
exp � �z

1 � �2	K0 � z
1 � �2	 pZ (z) �

2
�(1 � �*�)

exp ��*z � �z*
1 � �*�

	K0 � 2�z*z
1 � �*�

	
Quotient (general) Z � X/Y

pZ (z) � ��

��
�y� pX,Y (zy, y) dy pZ (z) � � �

�
y*y pX,Y (zy, y) dAy

Quotient (Gaussian) Z � X/Y

pZ (z) �
�1 � �2

� [(z � �)2 � (1 � �2)]
pZ (z) �

(1 � �*�)
� [(z � �)*(z � �) � (1 � �*�)]2

Moment generating function

mX (s) � ��

��
e�sxpX (x) dx mX (s) � � �

�
e�(s*x�x*s)pX (x) dAx

Gaussian moments
�[(X*X )i ] � i!  i

�[X 2i ] �
(2i)! i

2i(i)!
Fourth moment (Gaussian)
�[X1 X2 X3 X4] � �[X1 X2]�[X3 X4] � �[X1 X4]�[X3 X2] � �[X1 X3]�[X2 X4] �[X1 X*2 X3 X*4 ] � �[X1 X*2 ]�[X3 X*4 ] � �[X1 X*4 ]�[X3 X*2 ]
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5. N. R. Goodman, On the joint estimation of the spectra, cospectrum,cular variables are considered.) For the real variable case,
and quadrature spectrum of a two-dimensional stationary gaussian� � �[xy]. For the complex case � � �[xy*].
process, Technical Report, Engineering Statistics Laboratory,
New York University, 1957.

FUTURE TRENDS
Reading List

As the above discussion indicates, there are numerous points
A. Bertlesen, On non-null distributions connected with testing thatwhere the current understanding is inadequate. The field is

a real normal distribution is complex, J. Multivariate Anal., 32:
rich in opportunities for investigation of improved theory 282–289, 1990.
and techniques.

R. Fortet, Elements of Probability Theory, London: Gordon and
If one wants to improve on the methods described above, Breach, 1977.

probably the best place to start will be to find ways to better
C. G. Khatri and C. D. Bhavsar, Some asymptotic inferential prob-

incorporate a priori information into the procedure. A clear lems connected with complex elliptical distribution, J. Multivari-
understanding of the problem and the nature of the data will ate Anal., 35: 66–85, 1990.
often make the difference between a valuable and a useless C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Distri-
analysis. butions and Applications, New York: Wiley, 1995.

The use of higher-order cumulants as functions of higher- B. Picinbono, On circularity, IEEE Trans. Signal Process., 42: 3473–
order moments which have the properties of correlations is 3482, 1994.
increasing. Since cumulants above the second order are zero A. K. Saxena, Complex multivariate statistical analysis: An anno-
for Gaussian data, they may be a good way to filter out tated bibliography, Int. Statist. Rev., 46: 209–214, 1978.
Gaussian noise in order to study non-Gaussian components. R. A. Wooding, The multivariate distribution of comlpex normal vari-
This use is handicapped by two problems. First, the probabil- ables, Biometrika, 43: 212–215, 1956. Historical interest aside,
ity distributions for the estimators are not as well understood. this paper is interesting for the connection with Hilbert trans-
This makes testing of estimates, and estimation of false- forms.
alarm rates, difficult. This is aggravated by the fact that un-
less the sample size is very large, the random variability of DAVID J. EDELBLUTE

SPAWAR Systems Center Santhe cumulant estimators is very large. Second, it is often not
Diegoclear which cumulants to use. To date, the best innovations

in this area seem to have consisted in clever identification of
cumulants of interest.

The most useful data analysis techniques tend to be based
on arguments from decision theory and/or game theory. Infor-
mation theory has also played a role, primarily in the use of
ideas about entropy. In the future, information theory will
probably play a more important role. From this viewpoint, the
binary decision problem, that is, the detection problem, seems
well supported by convincing theoretical arguments. This is
much less true for the multiple-hypothesis problem, that is
the estimation problem. Occasionally, the basic ideas here
should be carefully revisited.
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