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DESCRIBING FUNCTIONS

In this article we define and overview the basic concept of a describing function, and then we look at a wide
variety of usages and applications of this approach for the analysis and design of nonlinear dynamical systems.
More specifically, the following is an outline of the contents:

(1) Concept and definition of describing functions for sinusoidal inputs (sinusoidal-input describing functions)
and for random inputs (random-input describing functions)

(2) Traditional application of sinusoidal-input describing functions for limit cycle analysis, for systems with
one nonlinearity

(3) Application of sinusoidal-input describing function techniques for determining the frequency response of a
nonlinear system

(4) Application of random-input describing functions for the performance analysis of nonlinear stochastic
systems

(5) Application of sinusoidal-input describing functions for limit cycle analysis, for systems with multiple
nonlinearities

(6) Application of sinusoidal-input describing function methods for the design of nonlinear controllers for
nonlinear plants

(7) Application of sinusoidal-input describing functions for the implementation of linear self-tuning controllers
for linear plants and of nonlinear self-tuning controllers for nonlinear plants

Basic Concepts and Definitions

Describing function theory and techniques represent a powerful mathematical approach for understanding
(analyzing) and improving (designing) the behavior of nonlinear systems. In order to present describing func-
tions, certain mathematical formalisms must be taken for granted, most especially differential equations and
concepts such as step response and sinusoidal input response. In addition to a basic grasp of differential equa-
tions as a way to describe the behavior of a system (circuit, electric drive, robot, aircraft, chemical reactor,
ecosystem, etc.), certain additional mathematical concepts are essential for the useful application of describ-
ing functions—Laplace transforms, Fourier expansions, and the frequency domain being foremost on the list.
This level of mathematical background is usually achieved at about the third or fourth year in undergraduate
engineering.

The main motivation for describing function (DF) techniques is the need to understand the behavior of
nonlinear systems, which in turn is based on the simple fact that every system is nonlinear except in very
limited operating regimes. Nonlinear effects can be beneficial (many desirable behaviors can only be achieved
by a nonlinear system, e.g., the generation of useful periodic signals or oscillations), or they can be detrimental
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2 DESCRIBING FUNCTIONS

(e.g., loss of control and accident at a nuclear reactor). Unfortunately, the mathematics required to understand
nonlinear behavior is considerably more advanced than that needed for the linear case.

The elegant mathematical theory for linear systems provides a unified framework for understanding
all possible linear system behaviors. Such results do not exist for nonlinear systems. In contrast, different
types of behavior generally require different mathematical tools, some of which are exact, some approximate.
As a generality, exact methods may be available for relatively simple systems (ones that are of low order,
or that have just one nonlinearity, or where the nonlinearity is described by simple relations), while more
complicated systems may only be amenable to approximate methods. Describing function approaches fit in the
latter category: approximate methods for complicated systems.

One way to deal with a nonlinear system is to linearize it. The standard approach, often called small-
signal linearization, involves taking the derivative (slope) of each nonlinear term and using that slope as the
gain of a linear term. As a simple example, an important cause of excessive fuel consumption at higher speeds
is drag, which is often modeled with a term Bv2 sgn(v) (a constant times the square of the velocity times the sign
of v). One may choose a nominal velocity, e.g., v0 = 100 km/h, and approximate the incremental effect of drag
with the linear term 2Bv0(v −v0)� 2Bv0 δv. For velocity in the vicinity of 100 km/h (perhaps |δv| ≤ 5 km/h), this
may be reasonably accurate, but for larger variations it becomes a poor model—hence the term small-signal
linearization.

The strong attraction of small-signal linearization is that the elegant theory for linear systems may be
brought to bear on the resulting linear model. However, this approach can only explain the effects of small
variations about the linearization point, and, perhaps more importantly, it can only reveal linear system
behavior. This approach is thus ill suited for understanding phenomena such as nonlinear oscillation or for
studying the limiting or detrimental effects of nonlinearity.

The basic idea of the DF approach for modeling and studying nonlinear system behavior is to replace
each nonlinear element with a (quasi)linear descriptor, the DF, whose gain is a function of the input amplitude.
The functional form of such a descriptor is governed by several factors: the type of input signal, which is
assumed in advance, and the approximation criterion (e.g., minimization of mean square error). This technique
is dealt with very thoroughly in a number of texts for the case of nonlinear systems with a single nonlinearity
(1,2); for systems with multiple nonlinearities in arbitrary configurations, the most general extensions may be
attributed independently to Kazakov 3 and Gelb and Warren 4 in the case of random-input DFs (RIDFs) and
jointly to Taylor (5,6) and Hannebrink et al. (7) for sinusoidal-input DFs (SIDFs). Developments for multiple
nonlinearities have been presented in tutorial form in Ramnath, Hedrick, and Paynter (8).

Two categories of DFs have been particularly successful: sinusoidal-input DFs and random-input DFs,
depending, as indicated, upon the class of input signals under consideration. The primary texts cited above
(1,2) and some other sources make a more detailed classification (e.g., SIDF for pure sinusoidal inputs, sine-
plus-bias DFs if there is a nonzero dc value, RIDF for pure random inputs, random-plus-bias DFs); however,
this seems unnecessary, since sine-plus-bias and random-plus-bias can be treated directly in a unified way, so
we will use the terms SIDF and RIDF accordingly. Other types of DFs also have been developed and used in
studying more complicated phenomena (e.g., two-sinusoidal-input DFs may be used to study effects of limit
cycle quenching via the injection of a sinusoidal “dither” signal), but those developments are beyond the scope
of this article.

The SIDF approach generally can be used to study periodic phenomena. It is applied for two primary
purposes: limit cycle analysis (see the two sections below with that phrase in their titles) and characterizing
the input/output behavior of a nonlinear plant in the frequency domain (see the section “Frequency Response
Modeling”). This latter application serves as the basis for a variety of control system analysis and design
methods, as outlined in the section “Methods for Designing Nonlinear Controllers.” RIDF methods, on the other
hand, are used for the analysis and design of stochastic nonlinear systems (systems with random signals), in
analogous ways to the corresponding SIDF approaches, although SIDFs may be said to be more general and
versatile, as we shall see.
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Fig. 1. System configuration with one dominant nonlinearity.

There is one additional theme underlying all the developments and examples in this article: Describing
function approaches allow one to solve a wide variety of problems in nonlinear system analysis and design via
the use of direct and simple extensions of linear systems analysis machinery. In point of fact, the mathemati-
cal basis is generally different (not based on linear systems theory); however, the application often results in
conditions of the same form, which are easily solved. Finally, we note that the types of nonlinearity that can
be studied via the DF approach are very general—nonlinearities that are discontinuous and even multivalued
can be considered. The order of the system is also not a serious limitation. Given software such as MATLAB
(trademark of The MathWorks, Inc.) for solving problems that are couched in terms of linear system mathe-
matics (e.g., plotting the polar or Nyquist plot of a linear system transfer function), one can easily apply DF
techniques to high-order nonlinear systems. The real power of this technique lies in these factors.

Introduction to Describing Functions for Sinusoids. The fundamental ideas and use of the SIDF
approach can best be introduced by overviewing the most common application, limit cycle analysis for a system
with a single nonlinearity. A limit cycle (LC) is a periodic signal, xLC(t + T) = xLC(t) for all t and for some T (the
period), such that perturbed solutions either approach xLC (a stable limit cycle) or diverge from it (an unstable
one).

The study of LC conditions in nonlinear systems is a problem of considerable interest in engineering. An
approach to LC analysis that has gained widespread acceptance is the frequency-domain–SIDF method. This
technique, as it was first developed for systems with a single nonlinearity, involved formulating the system in
the form shown in Fig. 1, where G(s) is defined in terms of a ratio of polynomials, as follows:

where (·) denotes the Laplace transform of a variable and p(s), q(s) represent polynomials in the Laplace
complex variable s, with order (p) < order (q) �n. An alternative formulation of the same system is the
state-space description,

where x is an n-dimensional state vector. In either case, the first two relations describe a linear dynamic
subsystem with input e and output y; the subsystem input is then given to be the external input signal r(t)
minus a nonlinear function of y. There is thus one single-input single-output (SISO) nonlinearity, f (y), and linear
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dynamics of arbitrary order. The state-space description is seen to be equivalent to the SISO transfer function
on identifying G(s) = cT(sI − A)− 1b. Thus either system description is a formulation of the conventional “linear
plant in the forward path with a nonlinearity in the feedback path” depicted in Fig. 1. The single nonlinearity
might be an actuator or sensor characteristic, or a plant nonlinearity—in any case, the following LC analysis
can be performed using this configuration.

In order to investigate LC conditions with no excitation, r(t) = 0, the nonlinearity is treated as follows:
First, we assume that the input y is essentially sinusoidal, i.e., that a periodic input signal may exist, y ≈ a cos
ωt, and thus the output is also periodic. Expanding in a Fourier series, we have

By omitting the constant or dc term from Eq. (3) we are implicitly assuming that f (y) is an odd function,
f (−y) = −f (y) for all y, so that no rectification occurs; cases when f (y) is not odd present no difficulty, but are
omitted to simplify this introductory discussion. Then we make the approximation

This approximate representation for f (a cos ωt) includes only the first term of the Fourier expansion of
Eq. (3); therefore the approximation error (difference between f (a cos ωt) and Re[Ns(a)a ejωt]) is minimized in
the mean squared error sense (9). The Fourier coefficient b1 [and thus the gain Ns(a)] is generally complex
unless f (y) is single-valued; the real and imaginary parts of b1 represent the in-phase (cosine) and quadrature
(sine) fundamental components of f (a cos ωt), respectively. The so-called describing function Ns(a) in Eq. (4) is,
as noted, amplitude-dependent, thus retaining a basic property of a nonlinear operation.

By the principle of harmonic balance, the assumed oscillation—if it is to exist—must result in a loop gain
of unity (including the summing junction), that is, substituting f (y) ≈ Ns(a)y in Eq. (1) yields the requirement
Ns(a) G(jω) = −1, or

For the state-space form of the model, using X(jω) to denote the Fourier transform of x [X(jω) = F (x)], and
thus jωX = F(x), and again substituting f (y) ≈ Ns(a)y in Eq. (2) yields the requirement

for some value of ω and X(jω) �= 0. This is exactly equivalent to the condition (5).
The condition in Eq. (5) is easy to verify using the polar or Nyquist plot of G(jω); in addition the LC

amplitude aLC and frequency ωLC are determined in the process. More of the details of the solution for LC
conditions are exposed in the following section. Note that the state-space condition, Eq. (6), appears to represent
a quasilinearized system with pure imaginary eigenvalues; this is merely the first example showing how the
describing function approach gives rise to conditions that seem to involve linear systems-theoretic concepts.

It is generally well understood that the classical SIDF analysis as outlined above is only approximate, so
caution is always recommended in its use. The standard caveat that G(jω) should be “low pass to attenuate
higher harmonics” (so that the first harmonic in Eq. (3) is dominant) indicates that the analyst has to be
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cautious. Nonetheless, as demonstrated by a more detailed example in the following section, this approach is
simple to apply, very informative, and in general quite accurate. The main circumstance in which SIDF limit
cycle analysis may yield poor results is in a borderline case, that is, one where the DF just barely cuts the
Nyquist plot, or just barely misses it.

The next step in this brief introductory exposition of the SIDF approach involves showing a few elementary
SIDF derivations for representative nonlinearity types. The basis for these evaluations is the well-known fact
that a truncated Fourier series expansion of a periodic signal achieves minimum mean square approximation
error (9), so we define the DF Ns(a) as the first Fourier coefficient divided by the input amplitude [we divide by
a so that Ns(a) is in the form of a quasilinear gain]:

(1) Ideal Relay. f (y) = D sgn (y ), where we assume no dc level, y(t) = a cos ωt. We set up and evaluate the
integral for the first Fourier coefficient divided by a as follows:

(2) Cubic Nonlinearity. f (y) = K y3(t); again, assuming y(t) = a cos ωt, we can directly write the Fourier expansion
using the trigonometric identity for cos3 x as follows:

so the SIDF is Ns(a) = 3 K a2/4. Note that this derivation uses trigonometric identities as a shortcut to
formulating and evaluating Fourier integrals; this approach can be used for any power-law element.

The plots of Ns(a) versus a for these two examples are provided in Fig. 2. Note the sound intuitive logic of
these relations: a relay acts as a very high gain for small input amplitude but a low gain for large inputs, while
just the opposite is true for the function f (y) = K y3(t). One more example is provided in the following section,
to show that a multivalued nonlinearity (relay with hysteresis) in fact leads to a complex-valued SIDF. Other
examples and an outline of useful SIDF properties are provided in a companion article, Nonlinear Control
Systems, Analytical Methods. Observe that the SIDFs for many nonlinearities can be looked up in Refs. 1 and
2 (SIDFs for 33 and 51 cases are provided, respectively).

Finally, we demonstrate that the condition in Eq. (5) is easy to verify, using standard linear system
analytic machinery and software:

Example 1. The developments so far provide the basis for a simple example of the traditional application
of SIDF methods to determine LC conditions for a system with one dominant nonlinearity, defined in Eq. (1).
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Fig. 2. Illustration of elementary SIDF evaluations.

Assume that the plant depicted in Fig. 1 is modeled by

This transfer function might represent a servo amplifier and dc motor driving a mechanical load with
friction level and spring constant adjusted to give rise to the lightly damped complex conjugate poles indicated,
and the question is: will this cause limit cycling?

The Nyquist plot for this fifth-order linear plant is portrayed in Fig. 3, and the upper limit for stability
is Kmax = 2.07; in other words, a linear gain k in the range [0, 2.07) will stabilize the closed-loop system if f (y)
is replaced by ky. According to Eq. (5), limit cycles are predicted if there is a nonlinearity f (y) in the feedback
path such that −1/Ns(a) cuts the Nyquist curve, or in this case if Ns(a) takes on the value 2.07. For the two
nonlinearities considered so far, the ideal relay and the cubic characteristic, the SIDFs lie in the range [0, ∞), so
limit cycles are indeed predicted in both cases. Furthermore, one can immediately determine the corresponding
amplitudes of the LCs, namely setting Ns(a) = 2.07 in Eqs. (7), (8) yields an amplitude of aLC = 4 D/(2.07 π)
for the relay and aLC = 8.28/(3 K) for the cubic. In both cases −1/Ns(a) cuts the Nyquist curve at the standard
cross-over point on the real axis, so the LC frequency is ωLC = ωCO = 8.11/rad/s.

The LCs predicted by the SIDF approach in these two cases are fundamentally different, however, in one
important respect: stability of the nonlinear oscillation. An LC is said to be stable if small perturbations from
the periodic solution die out, that is, the waveform returns to the same periodic solution. While the general
analysis for determining the stability of a predicted LC is complicated and beyond the scope of this article
(1,2), the present example is quite simple: If points where Ns(a ) slightly exceeds Kmax correspond to a > aLC,
then the LC is unstable, and conversely. Therefore, the LC produced by the ideal relay would be stable, while
that produced by the cubic characteristic is unstable, as can be seen referring to Fig. 2. Note again that this
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Fig. 3. Nyquist plot for plant in Example 1.

argument appears to be based on linear systems theory, but in fact the significance is that the loop gain for a
periodic signal should be less than unity for a > aLC if a is not to grow.

To summarize this analysis, we first noted the simple approximate condition that allows a periodic signal
to perpetuate itself: Eq. (5), that is, the loop gain should be unity for the fundamental component. We then
illustrated the basis for and calculation of SIDFs for two simple nonlinearities. These elements came together
using the well-known Nyquist plot of G(jω) to check if the assumption of a periodic solution is warranted
and, if so, what the LC amplitude would be. We also briefly investigated the stability question, i.e., for which
nonlinearity the predicted LC would be stable.

Formal Definition of Describing Functions for Sinusoidal Inputs. The preceding outline of SIDF
analysis of LC conditions illustrates the factors mentioned previously, namely the dependence of DFs upon
the type of input signal and the approximation criterion. To express the standard definition of the SIDF more
completely and formally,

• The nonlinearity under consideration is f (y(t )), and is quite unrestricted in form; for example, f (y ) may be
discontinuous and/or multivalued.

• The class of input signals is y(t) = y0 + a cos ωt, and the input amplitudes are quantified by the parameters
(values) y0, a.

• The SIDFs are denoted Ns(y0, a) for the sinusoidal component and F0(y0, a) for the constant or dc part; that
is, the nonlinearity output is approximated by
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• The approximation criterion in Eq. (10) is the minimization of mean squared error,

Again, under the above conditions it can be shown that F0(y0,a) and a Ns(y0, a) are the constant (dc) and
first harmonic coefficients of a Fourier expansion of f (y0 + a cos ωt) (9).

Note that this approximation of a nonlinear characteristic actually retains two important properties:
amplitude dependence and the coupling between the dc and first harmonic terms. The latter property is a
result of the fact that superposition does not hold for nonlinear systems, so, for example, Ns depends on both
y0 and a.

Describing Functions for General Classes of Inputs. An elegant unified approach to describing
function derivation is given in Gelb and Vander Velde 1, using the concept of amplitude density functions to
put all DF formulae on one footing. Here we will not dwell on the theoretical background and derivations, but
just present the basic ideas and results.

Assume that the input to a nonlinearity comprises a bias component b and a zero mean component z(t),
in other words, y(t) = b + z(t). In terms of random variable theory, the expectation of z, denoted E(z), is zero and
thus E(y) = b. The nonlinearity input y may be characterized by its amplitude density function, p(α), defined in
terms of the amplitude distribution function P(α) as follows:

A well-known density function corresponds to the Gaussian or normal distribution,

Other simple amplitude density functions are called uniform, where the amplitude of y is assumed to lie
between b − A and b + A with equal likelihood 1/2A,

and triangular,
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Note that these three density functions are formulated so that the expected value of the variable is b in
each case, and the area under the curve is unity (Prob [y(t) < ∞] = i1∞ − ∞ p(α) dα = 1). From the standpoint of
random variable theory the next most important expectation is � = E((y(t) − b)2), the variance or mean square
value. In the normal case this is simply �n = σ2

n, where σn thus represents the standard deviation; for the
other amplitude density functions we have �u = A2/3 and �t = A2/6. To express the corresponding DFs in terms
of amplitude, the most commonly accepted measure is the standard deviation, σu = A/r1br3er and σt = A/r1br6

Now, in order to unify the derivation of DFs for sinusoids as well as the types of variables mentioned
above, we need to express the amplitude density function of such signals. A direct derivation, given y(t) = b + a
cos ωt, yields

Again, this density function is written so that E(y) = b; it is well known that the root mean square (rms)
value of a cos ωt is σs = a/r1br2

The above notation and terminology has been introduced primarily so that random-input describing
functions (RIDFs) can be defined. We have, however, put signals with sinusoidal components into the same
framework, so that one definition fits all cases. This leads to the following relations:

These relations again provide a minimum mean square approximation error. For separable processes (2),
this amounts to assuming that the amplitude density function of the nonlinearity output is of the same class
as the input, e.g., the RIDF for the normal case provides the gain that fits a normal amplitude density function
to the actual amplitude density function of the output with minimum mean square error. There is only one
restriction compared with the Fourier-series method for deriving SIDFs: multivalued nonlinearities (such as a
relay with hysteresis) cannot be treated using the amplitude density function approach. The case of evaluating
SIDFs for multivalued nonlinearities is illustrated in Example 2 in the following section; it is evident that the
same approach will not work for signals defined only in terms of amplitude density functions.

Describing Functions for Normal Random Inputs. The material presented in the preceding section
provides all the machinery needed for defining the usual class of RIDFs, namely those for Gaussian, or normally
distributed, random variables:
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Considering the same nonlinearities discussed in the first section, the following results can be derived:

(1) Ideal Relay. f (y) = D sgn (y), where we assume no bias (b = 0), y(t) = z(t) a normal random variable. We set
up and evaluate the expectation in Eq. (20) as follows:

(2) Cubic Nonlinearity. f (y) = K y3 (t). Again, assuming no bias, the random component DF is

Comparison of Describing Functions for Different Input Classes. Given the unified framework
in the subsection “Describing: Functions for General Classes of Inputs” above, it is natural to ask: how much
influence does the assumed amplitude density function have on the corresponding DF? To provide some insight,
we may investigate the specific DF versus amplitude plots for the four density functions presented above and
for the unity limiter or saturation element,

and the cubic nonlinearity. These results are obtained by numerical integration in MATLAB and shown in Fig. 4.
From an engineering point of view, the effect of varying the assumed input amplitude density function is not
dramatic. For the limiter, the spread, (SIDF − RIDF)/2, is less than 10% of the average, (SIDF + RIDF)/2, which
provides good agreement. For the cubic case, the ratio of the RIDF to the SIDF is more substantial, namely a
factor of two [taking into account that a2 = 2 σ2

s in Eq. (8)].
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Fig. 4. Influence of amplitude density function on DF evaluation: Limiter (top), cubic nonlinearity (bottom).

Fig. 5. Block diagram, missile roll-control problem (10).

Traditional Limit Cycle Analysis Methods: One Nonlinearity

Much of the process, terminology, and derivation for the traditional approach to limit cycle analysis has been
presented in the preceding section. We proceed to investigate a more realistic (physically motivated) and
complex example.

Example 2. A more meaningful example—and one that illustrates the use of complex-valued SIDFs
to characterize multivalued nonlinearities—is provided by a missile roll control problem from Gibson (10):
Assume a pair of reaction jets is mounted on the missile, one to produce torque about the roll axis in the
clockwise sense and one in the counterclockwise sense. The force exerted by each jet is F0 = 445 N, and the
moment arms are R0 = 0.61 m. The moment of inertia about the roll axis is J = 4.68 N·m/s2. Let the control jets
and associated servo actuator have a hysteresis h = 22.24 N and two lags corresponding to time constants of
0.01 s and 0.05 s. To control the roll motion, there is roll and roll-rate feedback, with gains of Kp = 1868 N/rad
and Kv = 186.8 N/(rad/s) respectively. The block diagram for this system is shown in Fig. 5.

Before we can proceed with solving for the LC conditions for this problem, it is necessary to turn our
attention to the derivation of complex-valued SIDFs for multivalued characteristics (relay with hysteresis). As
in the introductory section, we can evaluate this SIDF quite directly.
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Fig. 6. Complex-valued SIDF for relay with hysteresis.

Defining the output levels to be ±D and the hysteresis to be h (D = F0 in Fig. 5), then if we assume no dc
level [y(t) = a cos ωt], we can set up and evaluate the integral for the first Fourier coefficient divided by a as
follows:

where the switching point x1 is x1 = cos− 1 (−h/a). Note that strictly speaking Ns(a) ≡ 0 if a ≤ h, because the
relay will not switch under that condition; the output will remain at D or −D for all time, so the assumption
that the nonlinearity output is periodic is invalid. The real and imaginary parts of this SIDF are shown in
Fig. 6.

Given the SIDF for a relay with hysteresis, the solution to the problem of determining LC conditions for
the system protrayed in Fig. 5 is depicted in Fig. 7. For a single-valued nonlinearity, and hence a real-valued
SIDF, we would be interested in the real-axis crossing of G(jω), at ωCO = 28.3 rad/s, GCO = −0.5073. In this case,
however, the intersection of −1/ Ns with G(jω) no longer lies on the negative real axis, and so ωLC = 24.36 rad/s
�= ωCO. The amplitude of the variable e is read directly from the plot of −1/Ns(a) as ELC = 377.2; to obtain the LC
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Fig. 7. Solution for missile roll-control problem: Nyquist diagrams.

Fig. 8. Missile roll-control simulation result.

amplitude in roll, one must obtain the loop gain from e to φ, which is Gφ = R0 Ns(ELC)/(Jω2
LC) = 1/3033, giving

the LC amplitude in roll as ALC = 0.124 rad (peak). In 10 it is said that an analog computer solution yielded
ωLC = 22.9 rad/s and ALC = 0.135 rad, which agrees quite well. A highly rigorous digital simulation approach
(for which MATLAB-based software is available from the author (11)), using modes to capture the switching
characteristics of the hysteretic relay, yielded ALC = 0.130, ωLC = 23.1 rad/s, as shown in Fig. 8 which is in even
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better agreement with the SIDF analysis. As is generally true, the approximation for ωLC is better than that
for a − the solution for ωLC is a second-order approximation, while that for a is of first order (1,2).

Finally, it should be observed that for the particular case of nonlinear systems with relays a complementary
approach for LC analysis exists, due to Tsypkin (12); see also Ref. 2 and Nonlinear Control Systems, Analytical
Methods. Rather than assuming that the nonlinearity input is a sinusoid, one assumes that the nonlinearity
output is a switching signal, in this case a signal that switches between F0 and −F0 at unknown times; one may
solve exactly for the switching times and signal waveform by expressing the relay output in terms of a Fourier
series expansion and solving for the switching conditions and coefficients. Alternatively, one could extend the
SIDF approach by setting up and solving the harmonic balance relations for higher terms; that approach would
converge to the exact solution as the number of harmonics considered increases (13).

Frequency Response Modeling

As mentioned in the introductory comments, SIDF approaches have been used for two primary purposes: limit-
cycle analysis and characterizing the input/output (I/O) behavior of a nonlinear plant in the frequency domain.
In this section we outline and illustrate two methods for determining the amplitude-dependent frequency
response of a nonlinear system, hereafter more succinctly called an SIDF I/O model. After that, we discuss
some broader but more complicated issues, to establish a context for this process.

Methods for Determining the Frequency Response. As mentioned, SIDF I/O modeling may be
accomplished using either of two techniques:

(1) Analytic Method Using Harmonic Balance. Given the general nonlinear dynamics as

with a scalar input signal u(t) = u0 +ba cos ωt and the n -dimensional state vector x assumed to be nearly
sinusoidal,

The variable ax is a complex amplitude vector (in phasor notation), and xc is the state vector center value.
We proceed to develop a quasilinear state-space model of the system in which every nonlinear element is
replaced analytically by the corresponding scalar SIDF, and formulate the quasilinear equations:

Then, we formulate the equations of harmonic balance, which for the dc and sinusoidal components are
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One can, in principle, solve these equations for the unknown amplitudes xc, ax given values for u0, ba and
then evaluate ADF and BDF; however, this is difficult in general and requires special nonlinear equation-
solving software. Then, assuming finally that there is a linear output relation y = C x for simplicity, the I/O
model may be evaluated as

Note that all arrays in the quasilinear model may depend on the input amplitude, u0, ba. This approach was
used in Ref. 14 in developing an automated modeling approach called the model-order deduction algorithm
for nonlinear systems (MODANS); refer to Ref. 15 for further details in the solution of the harmonic balance
problem. This approach is subject to argument about the validity of assuming that every nonlinearity input
is nearly sinusoidal. It is also more difficult than the following, and not particularly recommended. It is,
however, the “pure” SIDF method for solving the problem.

(2) Simulation Method. Apply a sinusoidal signal to the nonlinear system model, perform direct Fourier inte-
gration of the system output in parallel with simulating the model’s response to the sinusoidal input, and
simulate until steady state is achieved to obtain the dynamic or frequency-domain SIDF G(jω; u0, ba) (16).

To elaborate on the second method and illustrate its use, we assume for simplicity that u0 = 0 and focus
on determining G(jω, b) for a range of input amplitudes [bmin, bmax] to cover the expected operating range of
the system and frequencies [ωmin, ωmax] to span a frequency range of interest. Then specific sets of values {bj
∈ [bmin, bmax]} and {ωj ∈ [ωmin, ωmax]} are selected for generating G(jωj, bi). The nonlinear system model is
augmented by adding new states corresponding to the Fourier integrals

where Re·and Im·are the real and imaginary parts of the SIDF I/O model G(jωj, bi), T = 2π/ωj, and y(t) is the
output of the nonlinear system. In other words, the derivatives of the argumented states are proportional to
y(t) cos ωt and y(t) sin ωt. Achieving steady state for a given bj and wj is guaranteed by setting tolerances
and convergence criteria on the magnitude and phase of GK, where K is the number of cycles simulated; the
integration is interrupted at the end of each cycle, and the convergence criteria checked to see if the results
are within tolerance (GK is acceptably close to GK − 1 ), so that the simulation can be stopped and G(jωj, bi)
reported. For further detail, refer to Refs. 16 and 17 It should be mentioned that convergence can be slow if
the simulation initial conditions are chosen without thought, especially if lightly damped modes are present.
We have found that a converged solution point from the simulation for ωj can serve as a good initial condition
for the simulation for ωj+1, especially if the frequencies are closely spaced. The MATLAB-based software for
performing this task is available from the author.

Example 3. First, a brief demonstration of setting up and solving harmonic balance relations. Given a
simple closed-loop system composed of an ideal relay and a linear dynamic block W(jω), as shown in Fig. 9. If
the input is u(t) = b cos ωt, then y(t) ≈ Re[c(b)ejωt] and similarly e(t) ≈ Re[e(b)ejωt], where, in general, c and e
are complex phasors. These three phasors are related by
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Fig. 9. System with relay and linear dynamics.

Fig. 10. Motor plus load: model schematic.

The SIDF for the ideal relay is Ns = 4 D/(π |e|), so the overall I/O relation is

Taking the magnitude of this relation factor by factor yields

It is interesting to note that the feedback does not change the frequency dependence of |W(jω)|, just the
phase—this is not surprising, since the output of the relay always has the same amplitude, which is then
modified only by |W (jω)|. The relationship between the phases of G and W is not so easy to determine, even in
this special case (ideal relay).

Example 4. To illustrate the simulation approach to generating SIDF I/O models, consider the simple
nonlinear model of a motor and load depicted in Fig. 10, where the primary nonlinear effects are torque
saturation and stiction (nonlinear friction characterized by sticking whenever the load velocity passes through
zero). This model has been used as a challenging exemplary problem in a series of projects studying various
SIDF-based approaches for designing nonlinear controllers, as discussed in a later section. The mathematical
model for stiction is given by the torque relation

where Te and Tm denote electrical and mechanical torque, respectively, and, of necessity, we include a viscous
friction term f vθ along with a Coulomb component of value f c.

To generate the amplitude-dependent SIDF models, we selected twelve frequencies, from 5 rad/s to 150
rad/s, and eight amplitudes, from quite small (b1 = 0.25 V) to quite large (b8 = 12.8 V). The results are shown in
Fig. 11. The magnitude of G(jω, b) varies by nearly a factor of 8, and the phase varies by up to 45 deg, showing
that this system is substantially nonlinear over this operating range.
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Fig. 11. Motor plus load: SIDF I/O models.

Methods for Accommodating Nonlinearity. Various ways exist to allow for amplitude sensitivity
in nonlinear dynamic systems. This is a very important consideration, both generally and particularly in the
context of models for control system design. Approaches for dealing with static nonlinear characteristics in
such systems include replacing nonlinearities with linear elements having gains that lie in ranges based on:

• Nonlinearity sector bounds
• Nonlinearity slope bounds
• Random-input describing functions (RIDFs), or
• Sinusoidal-input describing functions (SIDFs)

In brief, frequency-domain plant I/O models based on SIDFs provide an excellent tradeoff between conser-
vatism and robustness in this context. In particular, it can be shown by example that sector and slope bounds
may be excessively conservative, while RIDFs are generally not robust, in the sense that a nonlinear control
system design predicted to be stable based on RIDF plant models may limit cycle or be unstable. Another
important attribute of SIDF-based frequency-domain models is that they allow for the fact that the effect of
most nonlinear elements depends on frequency as well as amplitude; none of the other techniques capture both
of these traits. These points are discussed in more detail below; note that it is assumed that no biases exist in
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the nonlinear dynamic system, for the sake of simplicity; extending the arguments to systems with biases is
straightforward.

Linear model families (ẋ = Ax + Bu) can be obtained by replacing each plant nonlinearity with a linear
element having a gain that lies in a range based on its sector bound or slope bound. We will hereafter call these
model families sector I/O models and slope I/O models, respectively. (Robustness cannot be achieved using one
linear model based on the slope of each nonlinearity at the operating point for design, so that alternative is not
considered.)

From the standpoint of robustness in the sense of maintaining stability in the presence of plant I/O
variation due to amplitude sensitivity, it has been established that none of the model families defined above
provide an adequate basis for a guarantee. The idea that sector I/O models would suffice is called the Aizerman
conjecture, and the premise that slope I/O models are useful in this context is the conjecture of Kalman; both
have been disproven even in the case of a single nonlinearity (for discussion, see Ref. 18). Both SIDF and RIDF
models similarly can be shown to be inadequate for a robustness guarantee in this sense (see also Ref. 18).

Despite the fact that these model families cannot be used to guarantee stability robustness, it is also
true that in many circumstances they are conservative. For example, a particular nonlinearity may pass well
outside the sector for which the Aizerman conjecture would suggest stability, and yet the system may still be
stable. On the other hand, only very conservative conditions such as those imposed by the Popov criterion (19)
[MATLAB-based software for applying the Popov criterion is available from the author (20)] and the off-axis
circle criterion (21) serve this purpose rigorously—however, the very stringent conditions these criteria impose
and the difficulty of extension to systems with multiple nonlinearities generally inhibit their use. Thus many
control system designs are based on one of the model families under consideration as a (hopeful) basis for
robustness. It can be argued that designs based on SIDF I/O models that predict that limit cycles will not exist
by a substantial margin is the best one can achieve in terms of robustness (see also Ref. 22). In SIDF-based
synthesis the frequency-domain design objective (see “Design of Conventional Nonlinear Controllers” below)
must ensure this.

Returning to conservatism, considering a static nonlinearity, and assuming that it is single-valued and
its derivative exists everywhere, it can be stated that slope I/O models are always more conservative than
sector I/O models, which in turn are always more conservative than SIDF models. This is because the range
of an SIDF cannot exceed the sector range, and the sector range cannot exceed the slope range. An additional
argument that sector and slope model families may be substantially more conservative than SIDF I/O models
is based on the fact that only SIDF models allow for the frequency dependence of each nonlinear effect. This
is especially important in the case of multiple nonlinearities, as illustrated by the simple example depicted
in Fig. 12: Denoting the minimum and maximum slopes of the gain-changing nonlinearities f k by m k and m̄k
respectively, we see that the sector and slope I/O models correspond to all linear systems with gains lying in
the indicated rectangle, while SIDF I/O models only correspond to a gain trajectory as shown (the exact details
of which depend on the linear dynamics that precede each nonlinearity). In many cases, the SIDF model will
clearly prove to be a less restrictive basis for control synthesis.

Returning to DF models, there are two basic differences between SIDF and RIDF models for a static
nonlinearity, as mentioned above, namely, the assumed input amplitude distribution is different, and the
fact that SIDFs can characterize the effective phase shift caused by multivalued nonlinearities such as those
commonly used to represent hysteresis and backlash, while RIDFs cannot. In the section “Comparison of
Describing Functions for Different Input Classes” above, we see that the input amplitude distribution issue is
generally not a major consideration.

However, there is a third difference (15) that affects the I/O model of a nonlinear plant in a fundamental
way. This difference is related to how the DF is used in determining the I/O model; the result is that RIDF
plant models (as usually defined) also fail to capture the frequency dependence of the system nonlinear effects.

This difference arises from the fact that the standard RIDF model is the result of one quasilinearization
procedure carried out over a wide band of frequencies, while the SIDF model is obtained by multiple quasilin-
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Fig. 12. Frequency dependence of multiple limiters.

earizations at a number of frequencies, as we have seen. This behavior is best understood via a simple example
(15) involving a low-pass linear system followed by a saturation (unity limiter), defined in Eq. (23):

• Considering sinusoidal inputs of amplitude substantially greater than unity, the following behavior is
exhibited: Low-frequency inputs are only slightly attenuated by the linear dynamics, resulting in heavy
saturation and reduced SIDF gain; however, as frequency and thus attenuation increases, saturation
decreases correspondingly and eventually disappears, giving a frequency response G(jω, b) that approaches
the response of the low-pass linear dynamics alone.

• A random input with rms value greater than one, on the other hand, results in saturation at all frequencies,
so G(jω, b) is identical to the linear dynamics followed by a gain less than unity.

In other words, the SIDF approach captures both a gain change and an effective increase in the transfer
function magnitude corner frequency for larger input amplitudes, while the RIDF model shows only a gain
reduction.

Methods for Analyzing the Performance of Nonlinear Stochastic Systems

This application of RIDFs represents the most powerful use of statistical linearization. It also represents a
major departure from the class of problems considered so far. To set the stage, we must outline a class of
nonlinear stochastic problems that will be tackled and establish some relations and formalism (23).
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The dynamics of a nonlinear continuous-time stochastic system can be represented by a first-order vector
differential equation in which x(t) is the system state vector and w(t) is a forcing function vector,

The state vector is composed of any set of variables sufficient to describe the behavior of the system
completely. The forcing function vector w(t) represents disturbances as well as control inputs that may act
upon the system. In what follows, w(t) is assumed to be composed of a mean or deterministic part b(t) and
a random part u(t), the latter being composed of elements that are uncorrelated in time; that is, u(t) is a
white noise process having the spectral density matrix Q(t). Similarly, the state vector has a deterministic part
m(t) = E[x(t)] and a random part r(t) = x(t) − m(t); for simplicity, m(t) is usually called the mean vector. Thus
the state vector x(t) is described statistically by its mean vector m(t) and covariance matrix S(t) = E[r(t)rT(t)].
Henceforth, the time dependence of these variables will usually not be denoted explicitly by (t).

Note that the input to Eq. (35) enters in a linear manner. This is for technical reasons, related to the
existence of solutions. (In Itô calculus the stochastic differential equation dxi = f (x, t) dt + g(x, t) dβi has well-
defined solutions, where βi is a Brownian motion process. Equation (35) is an informal representation of such
systems.) This is not a serious limitation; a stochastic system may have random inputs that enter nonlinearly
if they are, for example, band-limited first-order Markov processes, characterized by ż= A(t)z +B(t)w, where
again w contains white noise components—in this case, one may append the Markov process states z to the
physical system states x so f (x, z) models the nonlinear dependence of ẋ on the random input z.

The differential equations that govern the propagation of the mean vector and covariance matrix for the
system described by Eq. (35) can be derived directly, as demonstrated in Ref. 24, to be

The equation for S can be put into a form analogous to the covariance equations corresponding to f (x, t)
being linear, by defining the auxiliary matrix NR through the relationship

Note that the RIDF matrix NR is the direct vector–matrix extension of the scalar describing function
definition, Eq. (18). Then Eq. (36) may be written as

The quantities f ◦ and NR defined in Eq. (36) and (37) must be determined before one can proceed to
solve Eq. (38). Evaluating the indicated expected values requires knowledge of the joint probability density
function (pdf) of the state variables. While it is possible, in principle, to evolve the n -dimensional joint pdf
p(x, t) for a nonlinear system with random inputs by solving a set of partial differential equations known as
the Fokker–Planck equation or the forward equation of Kolmogorov (24), this has only been done for simple,
low-order systems, so this procedure is generally not feasible from a practical point of view. In cases where the
pdf is not available, exact solution of Eq. (38) is precluded.
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One procedure for obtaining an approximate solution to Eq. (38) is to assume the form of the joint pdf of
the state variables in order to evaluate f ◦ and NR according to Eqs. (36) and (37). Although it is possible to use
any joint pdf, most development has been based on the assumption that the state variables are jointly normal;
the choice was made because it is both reasonable and convenient.

While the above assumption is strictly true only for linear systems driven by Gaussian inputs, it is often
approximately valid in nonlinear systems with non-Gaussian inputs. Although the output of a nonlinearity
with a Gaussian input is generally non-Gaussian, it is known from the central limit theorem (25) that random
processes tend to become Gaussian when passed through low-pass linear dynamics (filtered). Thus, in many
instances, one may rely on the linear part of the system to ensure that non-Gaussian nonlinearity outputs
result in nearly Gaussian system variables as signals propagate through the system. By the same token, if
there are non-Gaussian system inputs that are passed through low-pass linear dynamics, the central limit
theorem can again be invoked to justify the assumption that the state variables are approximately jointly
normal. The validity of the Gaussian assumption for nonlinear systems with Gaussian inputs has been studied
and verified for a wide variety of systems.

From a pragmatic viewpoint, the Gaussian hypothesis serves to simplify the mechanization of Eq. (38)
significantly, by permitting each scalar nonlinear relation in f (x, t) to be treated in isolation (4), with f ◦ and
NR formed from the individual RIDFs for each nonlinearity. Since RIDFs have been catalogued for numerous
single-input nonlinearities (1,2), the implementation of this technique is a straightforward procedure for the
analysis of many nonlinear systems.

As a consequence of the Gaussian assumption, the RIDFs for a given nonlinearity are dependent only
upon the mean and the covariance of the system state vector. Thus, f ◦ and NR may be written explicitly as

Relations of the form indicated in Eq. (39) permit the direct evaluation of f ◦ and NR at each integration
step in the propagation of m and S. Note that the dependence of f ◦ and NR on the statistics of the state vector
is due to the existence of nonlinearities in the system.

A comparison of quasilinearization with the classical Taylor series or small-signal linearization technique
provides a great deal of insight into the success of the RIDF in capturing the essence of nonlinear effects.
Figure 4 illustrates this comparison with concrete examples. If a saturation or limiter is present in a system
and its input v is zero-mean, the Taylor series approach leads to replacing f (v) with a unity gain regardless
of the input amplitude, while quasilinearization gives rise to a gain that decreases as the rms value of v, σv,
increases. The latter approximate representation of f (v) much more accurately reflects the nonlinear effect;
in fact, the saturation is completely neglected in the small-signal linear model, so it would not be possible to
determine its effect. The fact that RIDFs retain this essential characteristic of system nonlinearities—input-
amplitude dependence—provides the basis for the proven accuracy of this technique.

Example 5. An antenna pointing and tracking study is treated in some detail, to illustrate this method-
ology. This problem formulation is taken directly from Ref. 26; a discussion of the approach and results in Ref.
26 vis-à-vis the current treatment is given in Ref. 27.

The function of the antenna pointing and tracking system modeled in Fig. 13 is to follow a target line-of-
sight (LOS) angle θt. Assume that θt is a deterministic ramp,

where 
 is the slope of the ramp and u− 1 denotes the unit step function. The pointing error, e = θt − θa where
θa is the antenna centerline angle, is the input to a nonlinearity f (e), which represents the limited beamwidth
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Fig. 13. Antenna pointing and tracking model.

of the antenna; for the present discussion,

where ka is suitably chosen to represent the antenna characteristic. The noise n(t) injected by the receiver is a
white noise process having zero mean and spectral density q.

In a state-space formulation, Fig. 13 is equivalent to

where x1 is the pointing error e, x2 models the slewing of the antenna via a first-order lag, as defined in
Fig. 13, and

The statistics of the input vector w are given by

The initial state variable statistics, assuming x2(0) = 0, are

where me0 and σe0 are the initial mean and standard deviation of the pointing error, respectively.
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The above problem statement is in a form suitable for the application of the RIDF-based covariance
analysis technique. The quasilinear RIDF representation for f (e) in Eq. (41) is of the form

where m1 and σ2
1 are elements of m and S, respectively. The solution is then obtained by solving Eq. (38),

which specializes to

subject to the initial conditions in Eq. (46). As noted previously, Eq. (49) is exact if x is a vector of jointly
Gaussian random variables; if the initial conditions and noise are Gaussian and the effect of the nonlinearity
is not too severe, the RIDF solution will provide a good approximation.

The goal of this study is to determine the system’s tracking capability for various values of 
; for brevity,
only the results for 
= 5 deg/s are shown. The system parameters are: a = 50 s− 1, k = 10 s− 1, ka = 0.4 deg− 2;
the pointing error initial condition statistics are me0 = 0.4 deg, σe0 = 0.1 deg; and the noise spectral density is
q = 0.004 deg2. The RIDF solution depicted in Fig. 14 is based on the Gaussian assumption.

Three solutions are presented in Fig. 14, to provide a basis for assessing the accuracy of RIDF-based
covariance analysis. In addition to the RIDF results, ensemble statistics from a 500-trial Monte Carlo simula-
tion are plotted, along with the corresponding 95% confidence error bars, calculated on the basis of estimated
higher-order statistics (28). Also, the results of a linearized covariance analysis are shown, based on assuming
that the antenna characteristic is linear (ka = 0). The linearized analysis indicates that the pointing error
statistics reach steady-state values at about t = 0.2 s. However, it is evident from the two nonlinear analyses
that this not the case: in fact, the tracking error can become so large that the antenna characteristic effectively
becomes a negative gain, producing unstable solutions (the antenna loses track). The same is true for higher
slewing rates; for example, 
 = 6 deg/s was investigated in Refs. 26 and 27; in fact, the second-order Volterra
analysis in Ref. 26 also missed the instability (loss of track). Returning to the RIDF-based covariance analysis
solution, observe that the time histories of m1(t) and σ1(t) are well within the Monte Carlo error bars, thus
providing a excellent fit to the Monte Carlo data. The fourth central moment was also captured, to permit
an assessment of deviation from the Gaussian assumption; the parameter λ (kurtosis, the ratio of the fourth
central moment to the variance squared) grew to λ = 8.74 at t = 0.3s, which indicates a substantial departure
from the Gaussian case (λ = 3); this is the reason the error bars are so much wider at the end of the study
(t = 0.3s) than near the beginning when in fact λ ≈ 3—higher kurtosis leads directly to larger 95% confidence
bands (28).

Many other applications of RIDF-based covariance analysis have been performed (for several examples,
see Ref. 23). In every case, its ability to capture the significant impact of nonlinearities on system performance
has been excellent, until system variables become highly non-Gaussian (roughly, until the kurtosis exceeds
about 10 to 15). It is recommended that some cases be spot-checked by Monte Carlo simulation; however, one
should recognize that one will have to perform many trials if the kurtosis is high, and that knowing how many
trials to perform is itself problematical (for details, see Ref. 28).
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Fig. 14. Antenna pointing-error statistics.

Limit Cycle Analysis: Systems with Multiple Nonlinearities

Using SIDFs, as developed in the first two sections, is a well-known approach for studying LCs in nonlinear
systems with one dominant nonlinearity. Once that problem was successfully solved, many attempts were
made to extend this method to permit the analysis of systems containing more than one nonlinearity. At first,
the nonlinear system models that could be treated by such extensions were quite restrictive (limited to a
few nonlinearities, or to certain specific configurations; cf. Ref. 2). Furthermore, some results involved only
conservative conditions for LC avoidance, rather than actual LC conditions. The technique described in this
section (29) removes all constraints: Systems described by a general state vector differential equation, with
any number of nonlinearities, may be analyzed. In addition, the nonlinearities may be multi-input, and bias
effects can be treated. This general SIDF approach was first fully developed and applied to a study of wing-rock
phenomena in aircraft at high angle of attack (5). It was also applied to determine limit cycle conditions for
rail vehicles (7). Its power and use are illustrated here by application to a second-order differential equation
derived from a two-mode panel flutter model (30). While the mathematical analysis is more protracted than in
the single nonlinearity case, it is very informative and reveals the rich complexity of the problem.

The most general system model considered here is again as given in Eq. (25). Assuming that u is a vector
of constants, denoted u0, it is desired to determine if Eq. (25) may exhibit LC behavior. As before, we assume
that the state variables are nearly sinusoidal [Eq. (26)], where ax is a complex amplitude vector and xc is the
state-vector center value [which is not an equilibrium, or solution to f (x0, u0) = 0, unless the nonlinearities
satisfy certain stringent symmetry conditions with respect to x0]. Then we again neglect higher harmonics, to
make the approximation
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The real vector FDF and the matrix ADF are obtained by taking the Fourier expansion of f (xc + Re[ax
exp(jωt)], u0) as illustrated below, and provide the quasilinear or describing function representation of the
nonlinear dynamic relation. The assumed LC exists for u = u0 if xc and ax can be found so that

The nonlinear algebraic equations in Eq. (51) are often difficult to solve. A second-order system with two
nonlinearities (from a two-mode panel flutter model) can be treated by direct analysis, as shown below (6).
Even for this case the analysis is by no means trivial; it is included here for completeness and as guidance for
the serious pursuit of LC conditions for multivariable nonlinear systems. It may be mentioned that iterative
solution methods (e.g., based on successive approximation) have been used successfully to solve the dc and
first-harmonic balance equations above for substantially more complicated problems such as the aircraft wing-
rock problem [eight state variables, five multivariable nonlinear relations (5,29)]. More recently, a computer-
aided design package for LC analysis of free-structured multivariable nonlinear systems was developed (13)
using both SIDF methods and extended harmonic balance (including the solution of higher-harmonic balance
relations); it is noteworthy that the extended harmonic balance approach can, in principle, provide solutions
with excellent accuracy, as long as enough higher harmonics are considered—one interesting example included
balancing up to the 19th harmonic.

Example 6. The following second-order differential equation has been derived to describe the local
behavior of solutions to a two-mode panel flutter model (30):

Heuristically, it is reasonable to predict that LCs may occur for negative α (so the second term provides
damping that is negative for small values of χ but positive for large values). Observe also that there are three
singularities if β is negative: χ0 = 0, ±−β Making the usual choice of state vector, x = [χχ]T, the corresponding
state-vector differential equation is

The SIDF assumption corresponding to Eq. (26) for this system of equations is that

(From the relation x2 = χ it is clear that x2 has a center value of 0 and that a2 = − jωa1—recognizing
this at the outset greatly simplifies the analysis.) Therefore, the combined nonlinearity in Eq. (53) may be



26 DESCRIBING FUNCTIONS

quasilinearized to obtain

This result is obtained by expanding the first expression using trigonometric identities to reduce cos2 v,
cos3 v, and sin v cos2 v into terms involving cos kv, sin kv, k = 0, 1, 2, 3, and discarding all terms except the
fundamental ones (k = 0, 1).

Therefore, the conditions of Eq. (51) require that

where we have taken advantage of the canonical second-order form of an A matrix with imaginary eigenvalues
±jωLC; again, the canonical form of ADF ensures harmonic balance, not “pure imaginary eigenvalues.” The
relation in Eq. (55) shows two possibilities:

• Case 1. χc = 0, in which case Eq. (56) yields

The amplitude a1 and frequency ωLC must be real for LCs to exist. Thus, as conjectured, α < 0 is required
for a LC to exist centered about the origin. The second parameter must satisfy β > 3α, so β can take on any
positive value but cannot be more negative than 3α.

• Case 2. χc = ±(β − 6α)/5, yielding

For the two LCs to exist, centered at χc = ±r1br(β − 6α)/5er, it is necessary that 3α < β < α, so again limit
cycles cannot exist unless α < 0. One additional constraint must be imposed: |χc| > a1 must hold, or the two LCs
will overlap; this condition reduces the permitted range of β to 2α < β < α.
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The stability of the Case 1 LC can be determined as follows: Take any ε > 0, and perturb the LC amplitude
to a slightly larger value, say, a2

1 = −4α + ε. Substituting into Eq. (56) yields

which for ε > 0 has “slightly stable eigenvalues” (leads to loop gain less than unity). Thus a trajectory perturbed
just outside the LC will decay, indicating that the Case 1 LC is stable. A similar analysis of the Case 2 LC
is more complicated (since a perturbation in a1 produces a shift in χc that must be considered), and thus is
omitted.

Based on the SIDF-based LC analysis outlined above, the behavior of the original system Eq. (53) is
portrayed for α= −1 and seven values of β in Fig. 15. The analysis has revealed the rather rich set of possibilities
that may occur, depending on the values of α and β. One may use traditional singularity analysis to verify the
detail of the solutions near each center (29), as shown in Fig. 15, but that is beyond the scope of this article.
Also, one may use center manifold techniques to analyze the LC behavior shown here (30), but that effort would
require additional higher-level mathematics and substantially more analysis to obtain the same qualitative
results. We provide one simulation example in Fig. 16, for α =−1, β = −1.1, which should produce the behavior
portrayed in case E in Fig. 15. The results for two initial conditions, x1 = 0.4, 0.5, x2 = 0 (marked ◦), bracket the
unstable LC with predicted center at (0.99, 0), while for two larger starting values, x1 = 1.6, 2.0, x2 = 0 (marked
×), we observe clear convergence to the stable LC with predicted center at (0, 0). While the resultant stable
oscillation is highly nonsinusoidal (and thus the Case 1 LC amplitude prediction is quite inaccurate), the SIDF
prediction of panel flutter behavior is remarkably close.

Finally, it is worth mentioning that the “eigenvectors” of the matrix ADF [state-vector amplitude vectors
in phasor form, Eq. (51)] may be very useful in some cases. For the wing-rock problem mentioned previously
we encountered obscuring modes, slow unstable modes that made it essentially impossible to use simulation to
verify the SIDF-based LC predictions. We were able to circumvent this difficulty by picking simulation initial
conditions based on ax corresponding to the predicted LC and thereby minimizing the excitation of the unstable
mode and giving the LC time to develop before it was obscured by the instability.

Methods for Designing Nonlinear Controllers

Describing function methods—especially, using SIDF frequency-domain models as illustrated in Fig. 11—for the
design of linear and nonlinear controllers for nonlinear plants has a long history, and many approaches may be
found in the literature. In general, the approach for linear controllers involves a direct use of frequency-domain
design techniques applied to the family or a single (generally worst-case) SIDF model. The more interesting
and powerful SIDF controller design approaches are those directed towards nonlinear compensation; that is
the primary emphasis of the following discussions and examples.

A major issue in designing robust controllers for nonlinear systems is the amplitude sensitivity of the
nonlinear plant and final control system. Failure to recognize and accommodate this factor may give rise to
nonlinear control systems that behave differently for small and for large input excitation, or perhaps exhibit
LCs or instability. Sinusoidal-input describing functions (SIDFs) have been shown to be effective in dealing
with amplitude sensitivity in two areas: modeling (providing plant models that achieve an excellent tradeoff
between conservatism and robustness, as in the section “Frequency Response Modeling” above) and nonlinear
control synthesis. In addition, SIDF-based modeling and synthesis approaches are broadly applicable, in that
there are very few and mild restrictions on the class of systems that can be handled. Several practical SIDF-
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Fig. 15. Limit cycle conditions for the panel flutter problem (from Ref. 29).

based nonlinear compensator synthesis approaches are presented here and illustrated via application to a
position control problem.

Before delving into specific approaches and results, the question of control system stability must be
addressed. As mentioned in the subsection “Introduction to Describing Functions for Sinusoids” above, the use
of SIDFs to determine LC conditions is not exact. Specifically, if one were to try to determine the critical value
of a parameter that would just cause a control system to begin to exhibit LCs, the conventional SIDF result
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Fig. 16. Panel flutter problem: simulation result, α = −1.

might not be very accurate [this is not to say that more detailed analysis such as inclusion of higher harmonics
in the harmonic balance method could not eventually give accurate results (13)]. Therefore, if one desired to
design a system to operate just at the margin of stability (onset of LCs), the SIDF method would not provide
any guarantee.

To shun the use of SIDFs for nonlinear controller design for this reason would seem unwarranted, however.
Generally one designs to safe specifications (good gain and phase margin, for example) that are far from the
margin of stability or LC conditions. The use of SIDF models in these circumstances is clearly so superior to the
use of conventional linearized models (or even a set of linearized models generated to try to cover for uncertainty
and nonlinearity, as discussed in the section “Methods for Accommodating Nonlinearity” above) that we have no
compunctions about recommending this practice. The added information (amplitude dependence) and intuitive
support they provide is extremely valuable, as we hope the following examples demonstrate.

Design of Conventional Nonlinear Controllers. Design approaches based on SIDF models are all
frequency-domain in orientation. The basic idea of a family of techniques developed by the author and students
(15,16,31,32) is to define a frequency-domain objective for the open-loop compensated system and synthesize a
nonlinear controller to meet that objective as closely as possible for a variety of error signal amplitudes (e.g.,
for small, medium, and large input signals, where the numerical values associated with the terms “small,”
“medium,” and “large” are based on the desired operating regimes of the final system). The designs are then
at least validated in the time domain [e.g., step-response studies (16,31)]; recent approaches have added time-
domain optimization to further reduce the amplitude sensitivity (32,33). The methods presented below all
follow this outline.

Modeling and synthesis approaches based on these principles are broadly applicable. Plants may have
any number of nonlinearities, of arbitrary type (even discontinuous or hysteretic), in any configuration. These
methods are robust in several senses: In addition to dealing effectively with amplitude sensitivity, the exact form
of each plant nonlinearity does not have to be known as long as the SIDF plant model captures the amplitude
sensitivity with decent accuracy, and the final controller design is not specifically based on precise knowledge
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of the plant nonlinearities. The resulting controllers are simple in structure and thus readily implemented,
with either piecewise linear characteristics (16,31) or fuzzy logic (32,33).

Before proceeding, it is important to consider the premises of the SIDF design approaches that we have
been developing:

(1) The nonlinear system design problem being addressed is the synthesis of controllers that are effective
for plants having frequency-domain I/O models that are sensitive to input amplitude (e.g., for plants that
behave very differently for small, medium, and large input signals).

(2) Our primary objective in nonlinear compensator design is to arrive at a closed-loop system that is as
insensitive to input amplitude as possible.

This encompasses a limited but important set of problems, for which gain-scheduled compensators cannot
be used (gain-scheduled compensators can handle plants whose behavior differs at different operating points,
but not amplitude-dependent plants; while a gain-scheduled controller is often implemented with piecewise
linear relations or other curve fits to produce a controller that smoothly changes its behavior as the operating
point changes, these curve fits are usually completely unrelated to the differing behavior of the plant for various
input amplitudes at a given operating point) and for which other approaches (e.g., variable structure systems,
model-reference adaptive control, global linearization) do not apply because their objectives are different (e.g.,
their objectives deal with asymptotic solution properties rather than transient behavior, or they deal with the
behavior of transformed variables rather than physical variables).

A number of controller configurations have been investigated as these approaches were developed, ranging
from one nonlinearity followed by a linear compensator (which has quite limited capability to compensate for
amplitude dependence) to a two-loop configuration with nonlinear rate feedback and a nonlinear proportional–
integral (PI) controller in the forward path. Since the latter is most effective, we will focus on that option
(16).

An outline of the synthesis algorithm for the nonlinear PI plus rate feedback (PI + RF) controller is as
follows:

(1) Select sets of input amplitudes and frequencies that characterize the operating regimes of interest.
(2) Generate SIDF I/O models of the plant corresponding to the input amplitudes and frequencies of interest

(see the section “Frequency Response Modeling” above).
(3) Design amplitude-dependent RF gains, using an extension of the D’Azzo–Houpis algorithm (34) devised by

Taylor and O’Donnell (16).
(4) Convert these linear designs into a piecewise linear characteristic (RF nonlinearity) by sinusoidal-input

describing function inversion.
(5) Find SIDF I/O models for the nonlinear plant plus nonlinear RF compensation.
(6) Design PI compensator gains using the frequency-domain sensitivity minimization technique described in

Taylor and O’Donnell (16).
(7) Convert these linear designs into a piecewise linear PI controller, also by sinusoidal-input describing

function inversion.
(8) Develop a simulation model of the plant with nonlinear PI + RF control.
(9) Validate the design through step-response simulation.

Steps 1, 2, and 5 are already described in detail in the section “Frequency Response Modeling.” In fact,
the example and SIDF I/O model presented there (Fig. 11) were used in demonstrating the PI + RF controller
design method. Steps 3 and 4 proceed as follows:
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The general objective when designing the inner-loop RF controller is to give the same benefits expected in
the linear case, namely, stabilizing and damping the system, if necessary, and reducing the sensitivity of
the system to disturbances and plant nonlinearities. At the same time, we wish to design a nonlinearity
to be used with the controller that will desensitize the inner loop as much as possible to different input
amplitudes.

As shown in D’Azzo and Houpis (34), it is convenient to work with inverse Nyquist plots of the plant I/O
model, that is, invert the SIDF frequency-response information in complex-gain form and plot the result
in the complex plane. In the linear case, this allows us to study the closed-inner-loop (CIL) frequency
response GCIL (jω) in the inverse form

where the effect of H (jω) on 1/GCIL(jω) is easily determined.
The inner-loop tachometer feedback design algorithm given by D’Azzo and Houpis and referred to as Case

2 uses a construction amenable to extension to nonlinear systems. For linear systems, this algorithm is
based on evaluating a tachometer gain and external gain in order to adjust the inverse Nyquist plot to
be tangent to a given M circle at a selected frequency. The algorithm is extended to the nonlinear case by
applying it to each SIDF model G(jω, bi). Then for each input amplitude bi a tachometer gain KT,i and an
external (to the inner loop) gain A2,i are found. The gains A2,i are discarded, since the external gain will
be subsumed in the cascade portion of the controller that is synthesized in step 6.

The set of desired tachometer gains KT,i (bi) is then used to synthesize the tachometer nonlinearity f T. As
first described in Ref. 15, these gain–amplitude data are interpreted as SIDF information for an unknown
static nonlinearity. A least-squares routine is used to adjust the parameters of a general piecewise linear
nonlinearity so that the SIDF of that nonlinearity fits these gain–amplitude data with minimum mean
squared error; this generates the desired RF controller nonlinearity, completing this step. This process of
SIDF inversion is illustrated below (Fig. 17).

The final step in the complete controller design procedure is generating the nonlinear cascade PI compen-
sator. The general idea is to first generate SIDF I/O models for the nonlinear plant (which, in this approach, is
actually the nonlinear plant with nonlinear RF) over the range of input amplitudes and frequencies of interest.
This information forms a frequency-response map as a function of both input amplitude and frequency. A single
nominal input amplitude is selected, b∗, and a linear compensator is found that best compensates the plant at
that amplitude. This compensator, in series with the nonlinear plant, is used to calculate the corresponding de-
sired open-loop I/O model CG∗ (jω; b∗), the frequency-domain objective function. Then, at each input amplitude
bi a least-squares algorithm is used to adjust the parameters of a linear PI compensator, KP,i(bi) and KI,i(bi),
to minimize the difference between the resulting frequency responses, found using the linear compensator and
interpolating on the SIDF frequency- response map, and CG∗ (jω; b∗), as described in Ref. 31. The nonlinear PI
compensator is then obtained by synthesizing the nonlinearities f P and f I by SIDF inversion.

An important part of this procedure is the process called SIDF inversion, or adjusting the parameters
of a general piecewise-linear nonlinearity so that the SIDF of that nonlinearity fits the gain–amplitude data
with minimum mean squared error. This step is illustrated in Fig. 17, where the piecewise characteristic had
two breakpoints (δ1, δ2) and three slopes (m1, m2, m3) that were adjusted to fit the gain–amplitude data (small
circles) with good accuracy.

The final validation of the design is to simulate a family of step responses for the nonlinear control
system. The results for the controller from Ref. 16 [which are identical to the results obtained with a later
fuzzy-logic implementation that is also based on the direct application of this SIDF approach (33)] are depicted
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Fig. 17. Proportional nonlinearity synthesis via DF inversion.

in Fig. 18, along with similar step responses generated using the linear PI + RF controller corresponding to the
frequency-domain objective function. In both response sets input amplitudes ranging from b1 = 0.20 to b8 = 10.2
were used, and the output normalized by dividing by bi. Comparing the responses of the two controllers, it is
evident that the SIDF design achieves significantly better performance, both in the sense of lower overshoot
and less settling time and in the sense of very low sensitivity of the response over the range of input amplitudes
considered. The high overshoot in the linear case is caused by integral windup for large step commands, and the
long settling for small step inputs is due to stiction. The nonlinear controller greatly alleviates these problems.

Design of Autotuning Linear and Nonlinear Controllers.
Linear Autotuning Controllers. A clever procedure for the automatic tuning of proportional–integral–

derivative (PID) regulators for linear or nearly linear plants has been introduced and used commercially (35).
It incorporates a very simple SIDF-based method to identify key parameters in the frequency response of
a plant, to serve as the basis for automatically determining the parameters of a PID controller (a process
called autotuning). It is based on performing system identification via relay-induced oscillations. The system
is connected in a feedback loop with a known relay to produce an LC; frequency-domain information about the
system dynamics is derived from the LC’s amplitude and frequency. With an ideal relay, the oscillation will give
the critical point where the Nyquist curve intersects the negative real axis. Other points on the Nyquist curve
can be explored by adding hysteresis to the relay characteristic. Linear design methods based on knowledge of
part of the Nyquist curve are called tuning rules; the Ziegler–Nichols rules (36) are the most familiar.

To appreciate how these key parameters are identified, refer to Fig. 7: clearly, if the process is seen to be
in an LC, one can readily observe the amplitude and frequency of the oscillation. Since the relay height and
hysteresis are known, along with the amplitude, Ns(a) can be calculated [Eq. (24)], and the point −1/Ns(a)
establishes a point on the Nyquist plot of the process. On changing the hysteresis the locus of −1/Ns(a) will
shift vertically, the LC amplitude and frequency will also change, and one can calculate another point on the
Nyquist curve.

Basing identification on relay-induced oscillation has several advantages. An input signal that is near-
optimal for identification is generated automatically, and the experiment is safe in the sense that it is easy to
control the amplitude of the oscillation by choosing the relay height accordingly.
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Fig. 18. Linear and nonlinear controller: step responses.

The most basic tuning rules require only one point on G(jω), so this procedure is fast and easy to implement.
More elaborate tuning rules may require more points on G(jω), but that presents no difficulty.

Nonlinear Autotuning Controllers. This same procedure can be extended to the case of nonlinear plants
quite directly. The amplitude of the periodic signal forcing the plant is determined by the relay height D.
Therefore, by selecting a number of values, Di, one may identify points on the family of frequency response
curves, G(jω, bi). Nonlinear controllers can be synthesized from this information, using the methods outlined
and illustrated in the preceding section. This technique, and a sample application, are presented in Ref. 37.

Describing Function Methods: Concluding Remarks

Describing function methods all follow the formula “assume a signal form, choose an approximation criterion,
evaluate the DF N(a), use this as a quasilinear gain to replace the nonlinearity with a linear term, and
solve the problem using linear systems theoretic machinery.” We should keep in mind that in so doing we are
deciding what type of phenomena we may investigate, and thereby avoid the temptation to reach erroneous
conclusions; for example, if for some values of (m, S) the RIDF matrix NR [Eq. (39)] has “eigenvalues” that are
pure imaginary, we must not jump to the conclusion that LCs may exist. We should also take care not to slip
into “linear-system thinking” and read too much into a DF result—for example, X(jω) in Eq. (6) is not exactly
the Fourier transform of an eigenvector.

The DF approach has proven to be immensely powerful and successful over the 50 years since its concep-
tion, especially in engineering applications. The primary reasons for this are:
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(1) Engineering applications usually are too large and/or too complicated to be amenable to exact solution
methods.

(2) The ability to apply linear systems-theoretic machinery (e.g., the use of Nyquist plots to solve for LC
conditions) alleviates much of the analytic burden associated with the analysis and design of nonlinear
systems.

(3) The behavior of DFs (the form of amplitude sensitivity, Fig. 2) is simple to grasp intuitively, so one can even
use DFs in a qualitative manner without analysis.

The techniques and examples presented in this article are intended to demonstrate these points. This
material represents a very limited exposure to a vast body of work. The reference books by Gelb and Vander
Velde (1) and Atherton (2) detail the first half of this corpus (in chronological terms); subsequent work by
colleagues and students of these pioneers plus that of others inspired by those contributions, has produced a
body of literature that is massive and of great value to the engineering profession.
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