
ORDINARY DIFFERENTIAL EQUATIONS

INTRODUCTION

An ordinary differential equation is a relation involving
one or several derivatives of a function y(x) with respect to
x. The relation may also be composed of constants, given
functions of x, or y itself.

The equation

y′(x) = ex, (1)

where y′ = dy/dx, is of a first order ordinary differential
equation, the equation

y′′(x) + 2y(x) = 0, (2)

where y′′ = d2y/dx2 is of a second order ordinary differen-
tial equation, and the equation

2x2 y′′(x) y′(x) + 3e−x y′′(x) = (x2 + 1)y2(x), (3)

where y′′′ = d3y/dx3 is a third order ordinary differential
equation.

The order of an ordinary differential equation the high-
est derivative of y in the equation.

Definition [1] The explicit solution of a first-order differ-
ential equation is a function

y = g(x), a< x<b, (4)

defined and differentiable on (a, b), with the property that
the equation becomes an identity when y and y

′ are re-
placed by g and g

′ , respectively. The solution of a differen-
tial equation G(x, y) = 0 it is called the implicit solution.

Example. The explicit solution of the first-order differen-
tial equation

y′(x) = xy(x), (5)

is

y(x) = cex
2/2, (6)

where c is an arbitrary constant. The differential equation
(5) has many solutions. The function (6), with arbitrary c,
represents the general solution (the totality of all solutions
of the equation). If we consider a definite value of c, for ex-
ample c = 1, then the solution obtained y(x) = ex

2/2 is called
a particular solution.

FIRST ORDER DIFFERENTIAL EQUATIONS

Separable Equations

The equation

g(y)y′ = f (x), (7)

or

g(y)dy = f (x)dx, (8)

is called an equation with separable variables, or a separa-
ble equation. The variable x appears only on the right hand

side and the function y appears only on the left hand side
in Eq. (8). Integrating both sides we obtain∫

g(y)dy =
∫

f (x)dx+ c. (9)

If f and g are continuous functions the general solution of
Eq. (7) is obtained evaluating Eq. (9).
Example. Solve the equation

(y2 + 1)xdx+ (x+ 1)ydy = 0.

The above equation can be rewritten in the form
x

x+ 1
dx+ y

y2 + 1
dy = 0.

By integration we obtain

x− ln|1 + x| + 1
2
ln(1 + y2) = c, x+ 1 �= 0.

With x = 0 and y = 0 we calculate c = 1
2
ln2 and

2x+ ln
1 + y2

2
= ln(1 + x)2

, x �= − 1

Definition A first-order differential equation together
with an initial condition is called an initial value problem.
The initial condition is the condition that at some point
x = x0 the solution y(x) has a prescribed value y(x0) = y0.

Equations Reducible to Separable Form

The first-order differential equation

y′ = g(
y

x
), (10)

where g is any given function of y/x (g(x) = f (y/x)), can be
made separable equation by a simple change of variables.
The change of variable is

y

x
= u.

The function y = u x and by differentiation we obtain

y′ = u+ u′x. (11)

Combining the equations (16) and (14), and taking into ac-
count that g(y/x) = g(u) we obtain

u+ u′x = g(u).

By separating the variables u and x, the previous equation
takes the form

du

g(u) − u
= dx

x
.

After integration and replacement of u by y/x the general
solution of Eq. (14) is obtained.
Example. Solve the equation

dy

dx
= 2x+ 3y

3x+ 2y
and 3x+ 2y �= 0.

With the change of function y = ux we obtain

u′x+ u = 2 + 3u
3 + 2u
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or

u′x = 2 − 2u2

3 + 2u

and

1
2

3 + 2u
1 − u2

du = dx

x
.

Integrating ∫
dx

x
= 1

2

∫
3 + 2u
1 − u2

du

or

ln|x| = −1
2
ln|u2 − 1| − 3

4
ln|1 − u

1 + u
| + ln|c|.

We obtain x4(u2 − 1)2(
1 − u

1 + u
)
3

= c. Replacing u by y/x, the

general integral will be

(x2 − y2)
2
(x− y)3 = c(x+ y)3

.

Exact Differential Equations

A first-order differential equation

M(x, y)dx+N(x, y)dy = 0, (12)

is exact if the left-hand side is an exact differential,

d u(x, y) = ∂u

∂x
dx+ ∂u

∂y
dy. (13)

Equation (26) can be rewritten as

du = 0.

and by integration the general solution is

u(x, y) = c. (14)

If there is a function u(x, y) with the properties

(a)
∂u

∂x
= M, (b)

∂u

∂y
= N, (15)

then M(x, y) dx + N(x, y) dy = 0 is an exact differential equa-
tion.

The necessary and sufficient condition for M dx + N dy
to be an exact differential [1] is

∂M

∂y
= ∂N

∂x
. (16)

To find u(x, y) we have the following steps [1].
From Eq. (30a), if we consider y to be a constant, we

obtain

u =
∫
Mdx+ k(y), (17)

where k(y) is the “constant” of integration. k(y) is deter-
mined from Eq. (17) by deriving ∂u/∂y. From Eq. (30b) we
get dk/dy.
Example. Solve the equation

− x

2x− y
y′ + ln(2x− y) + 2x

2x− y
= 02x− y>0.

Writing the equation in the form (26), we get

− x

2x− y
dy + [ln(2x− y) + 2x

2x− y
]dx = 0 (18)

Equation (34) is exact. Consider M = ln(2x− y) + 2x
2x− y

and N = − x

2x− y
. Then by differentiation we obtain

∂M

∂y
= −1

2x− y
+ 2x

(2x− y)2 ,

∂N

∂x
= −1

2x− y
+ 2x

(2x− y)2 .

From Eq. (30b) we have N = ∂u

∂y
and by integration

u = xln(2x− y) + k(x).

To determine k(x) we differentiate u and apply Eq. (30a):

∂u

∂x
= ln(2x− y) + 2x

2x− y
+ dk

dx
= M.

By simple algebraic manipulations, we find that
dk

dx
= 0

and, consequently, k(x) = c, where c is an arbitrary constant.
We obtain the final form

xln(2x− y) = c.

Linear Differential Equations

We consider the first-order differential equation

y′ + f (x) y = r(x), (19)

which is linear in y and y
′ (f and r may be any given func-

tions of x).
If r(x) = 0, ∀ x (for all x) the equation is homogeneous.

For r(x) �= 0 the equation is said to be nonhomogeneous.
Assuming that f(x) and r(x) are continuous for x ∈ I, we

need to find a general formula for Eq. (39).

Case I Homogeneous equation
For the equation

y′ + f (x)y = 0, (20)

separating variables we have

dy

y
= − f (x)dx or ln|y| = −

∫
f (x)dx+ c∗,

and the solution is

y(x) = ce
−
∫

f (x)dx (c = ±ec∗ when y<0 or y>0). (21)

Case II Nonhomogeneous equation
Multiplying Eq. (39) by

F (x) = eh(x) where h(x) =
∫

f (x)dx.

we find

eh(y′ + fy) = ehr.
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Since h′ = f , we obtain

d

dx
(yeh) = ehr.

Integrating the above relation we have

yeh =
∫
ehrdx+ c.

The general solution of Eq. (39) in the form of an integral
may be written

y(x) = e−h[
∫
ehrdx+ c], h =

∫
f (x)dx. (22)

Example. Solve the differential equation

xy′ + (1 − x)y = xex.

We can rewrite the equation in the form

y′ + (
1
x

− 1)y = ex.

Comparing the previous equation to Eq. (47) we can iden-
tify

h =
∫

(
1
x

− 1)dx = log x− x,

no constant being added in the integration. Thus, the solu-
tion will be

y = e−log x+x(
∫
elog x−xex dx+ c)

= ex

x
(
∫

x

ex
ex dx+ c),

or

y = ex(
x

2
+ c

x
),

where c is an arbitrary constant.

Variation of Parameters

Another way of finding the general solution of linear dif-
ferential equation

y′ + f (x)y = r(x). (23)

is the method of variation of parameters.
The solution corresponding to a homogeneous equation

(r(x) = 0) is

v(x) = e
−
∫

f (x)dx
. (24)

With Eq. (54) we try to determine a function u(x) such that

y(x) = u(x)v(x), (25)

is the general solution of Eq. (53). This approach is called
the method of variation of parameters [1].

Equations (55) and Eq. (53) can be combined into

u′v+ u(v′ + fv) = r,

or u′v = r, since v′ + fv = 0. We find u′ = r

v
and by integra-

tion

u =
∫

r

v
dx+ c.

We obtain the general solution

y = uv = v(
∫

r

v
dx+ c), (26)

which is identical with Eq. (47) of the previous section.

SECOND ORDER DIFFERENTIAL EQUATION

Homogeneous Linear Equations

A second-order differential equation which can be written
as

y′′ + f (x)y′ + g(x)y = r(x) (27)

is said to be linear. It is said to be nonlinear if it cannot be
written in the form of Eq. (59). The functions f and g are
called the coefficients of the equation (59).

If r(x) �= 0, then Eq. (59) is said to be nonhomogeneous.
Otherwise, it is said to be homogeneous and takes the form

y′′ + f (x)y′ + g(x)y = 0. (28)

It is called a solution of a differential equation of the
second order on an interval J a function y = φ(x) which
is defined and two times differentiable on J. Moreover, the
equation becomes an identity if φ and its derivative replace
the unknown function y and its derivatives, respectively.
For the case of homogeneous equations, the following the-
orem states that solutions of Eq. (60) can be obtained from
known solutions by multiplication by constants and by ad-
dition.

Fundamental Theorem [1] If a solution of the homoge-
neous linear differential equation (60) on the interval J is
multiplied by any constant, the resulting function is also a
solution of Eq. (60) on J. The sum of two solutions of Eq.
(60) on J is also a solution of Eq. (60) on that interval.

Proof We assume that φ(x) obeys the conditions to be a
solution of Eq. (60) on J. If we replace y by cφ(x) is into Eq.
(60), we obtain

(cφ)′′ + f (cφ)′ + gcφ = c[φ′′ + fφ′ + gφ].

Since φ is a solution of Eq. (60), then φ′′ + fφ′ + gφ = 0 and
we find that c φ is also a solution of Eq. (60). The second
part of the theorem can be proved in the same way.

Example. The functions y1 = φ1 = x and y2 = φ2 = x2,
x∈R − {0} (J ≡R − {0}), are two solutions of the equation

x2y′′ − 2xy′ + 2y = 0.

The function y3 = c1φ1 + c2φ2 = c1x+ c2x
2 is also a solution

of the equation.

Homogeneous Equations with Constant Coefficients

We consider the homogeneous equations of the form

y′′ + ay′ + by = 0, (29)



4 Ordinary Differential Equations

where a, b∈R are constants, and x∈R. The solution of the
first-order homogeneous linear equation with constant co-
efficients

y′ + ky = 0,

is an exponential function,

y = C e−kx.

We assume that

y = eλx, (30)

may be a solution of Eq. (63) if λ is properly chosen. Sub-
stituting Eq. (66) and its derivatives

y′ = λeλx and y′′ = λ2eλx,

into Eq. (63), we obtain

(λ2 + aλ+ b)eλx = 0.

So Eq. (66) is a solution of Eq. (63), if λ is a solution of
the equation

λ2 + aλ+ b = 0. (31)

Eq. (69) is called the characteristic equation of Eq. (63).
Its roots are

λ1 = 1
2

(−a+
√
a2 − 4b), λ2 = 1

2
(−a−

√
a2 − 4b). (32)

From derivation it follows that the functions

y1 = eλ1x and y2 = eλ2x, (33)

are solutions of Eq. (63). This result can be verified by sub-
stituting Eq. (71) into Eq. (63).

Elementary algebra states that, since a and b are real,
the characteristic equation may have

Case I two distinct real roots,
Case II two complex conjugate roots, or
Case III a real double root.

Example 1. Solve the equation

2y′′ − 5y′ + 2y = 0.

The characteristic equation of the given differential equa-
tion will be

2λ2 − 5λ+ 2 = 0

so that

λ1 = 1
2
, λ2 = 2.

Then the general solution is

y = c1e
x/2 + c2e

2x.

Example 2. The equation

y′′ + 2y′ + 5y = 0

has the characteristic equation

λ2 + 2λ+ 5 = 0

from which

λ1,2 = −1 ± 2i.

The general solution will be

y = e−x(c1cos2x+ c2sin2x).

Example 3. The equation

y′′ − 2y′ + 1 = 0

has the characteristic equation

(λ− 1)2 = 0

which gives

λ1,2 = 1.

We obtain the general solution

y = ex.

General Solution. Fundamental System

Definition The general solution of a second order differ-
ential equation is a solution which contains two arbitrary
independent constants, i.e. the solution cannot be reduced
to a form containing only one arbitrary constant or none.
A particular solution is a solution obtained from the gen-
eral solution assigning specific values to the arbitrary con-
stants.

We consider the general homogeneous linear equation

y′′ + f (x)y′ + g(x)y = 0, (34)

and two solutions y1(x) and y2(x) of this equation. The Fun-
damental Theorem states that

y(x) = c1 y1(x) + c2 y2(x), (35)

is a general solution of Eq. (84), where c1 and c2 are two
arbitrary constants.

Two functions y1(x) and y2(x) are linearly dependent on
an open interval I where both functions are defined, if they
are proportional on I

(a)y1 = my2 or (b)y2 = n y1, (36)

for all x∈ I, where m and n are numbers. If the functions
are not proportional, they are linearly independent on I.

If at least one of the functions y1 and y2 is identically zero
on I, then the functions are linearly dependent on I. In any
other case the functions are linearly dependent on I if and
only if the quotient y1/y2 is constant on I. Hence, if y1/y2

depends on x on I, then y1 and y2 are linearly independent
on I [1].
Example 1. The functions

y1 = 9x and y2 = 3x

are linearly dependent, because the quotient y1/y2 = 3 =
const while the functions

y1 = x2 + x and y2 = x

are linearly independent because y1/y2 = x+ 1 �= const.
Two linearly independent solutions of Eq. (84) on I con-

stitute a fundamental system or a basis of solutions on I.
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Theorem [1] The solution

y(x) = c1y1(x) + c2y2(x) (c1, c2 arbitrary)

is a general solution of the differential equation Eq. (84) on
an interval I of the x-axis if and only if the functions y1 and
y2 constitute a fundamental system of solutions of Eq. (84)
on I. y1 and y2 constitute such a fundamental system if and
only if their quotient y1/y2 is not constant on I but depends
on x.

Example 2. The equation

y′′ − 2y′ − 15y = 0

has the solutions

y1 = e5x and y2 = e−3x.

These solutions constitute a fundamental system be-
cause the ratio y1/y2 is not constant. The general solution
is

y = c1y1 + c2y2 = c1e
5x + c2e

−3x.

Complex Roots of the Characteristic Equation. Initial
Value Problem

The solutions of the homogeneous linear equation with con-
stant coefficients

y′′ + ay′ + by = 0 (a, b real) (37)

are

y1 = eλ1x and y2 = eλ2x, (38)

where λ1 and λ2 are the roots of the corresponding charac-
teristic equation

λ2 + aλ+ b = 0. (39)

In the case of λ1 �= λ2, the quotient y1/y2 is not constant,
and the solutions constitute a fundamental system for all
x. The general solution is

y = c1 e
λ1x + c2 e

λ2x. (40)

The solutions of the Eq. (94) are real if the distinct roots
of the corresponding characteristic equation are real (Case
I). If λ1 and λ2 are complex conjugate roots of the form (Case
II)

λ1 = p+ iq, λ2 = p− iq,

then the solutions Eq. (94) are complex

y1 = e(p+iq)x, y2 = e(p−iq)x.

The real solutions can be derived from the complex so-
lutions by applying the Euler formulas

eiθ = cos θ + i sin θ, e−iθ = cos θ − i sin θ,

for θ = qx. The first solution becomes

y1 = e(p+iq)x = epxeiqx = epx(cos qx+ isin qx),

while the second one is

y2 = e(p−iq)x = epxe−iqx = epx(cos qx− i sin qx).

From Fundamental Theorem we can conclude that they
are solutions of the differential equation Eq. (93). The cor-
responding general solution is

y(x) = epx(Acos qx+ B sinqx) (41)

where A and B are arbitrary constants.
Example 1. Let us consider the second order differential
equation with constant coefficients

y′′ − 4y′ + 5y = 0

The corresponding characteristic equation is

λ2 − 4λ+ 5 = 0,

with the roots

λ1 = p+ iq = 2 + i and λ2 = p− iq = 2 − i.

For this example p = 2, q = 1, and from Eq. (102) the
answer is

y = e2x(Acos x+ B sin x).

Let us consider the values of the solution y(x) and its
derivative y′(x) at an initial point x = x0

y(x0) = K, y′(x0) = L, (42)

The conditions Eq. (107) and the equation Eq. (93) con-
stitute an initial value problem. To solve such a problem
we must find a particular solution of Eq. (93) satisfying
Eq. (107). Such a problem has a unique solution.
Example 2. Let us consider the initial value problem

y′′ − 4y′ + 5y = 0, y(0) = 2, y′(0) = 0.

A fundamental system of solutions is

e2x cos x and e2x sin x,

and the corresponding general solution is

y(x) = e2x(Acos x+ B sin x),

with the initial condition y (0) = A. The derivative

y′ = e2x[(2A+ B)cos x+ (2B − A)sin x)],

has the initial value y′(0) = 2A+ B. Solving the initial con-
ditions system,

y(0) = A = 2,
y′(0) = 2A+ B = 0.

we get A = 4, B = −1, and the general solution of the differ-
ential equation is

y = e2x(2 cos x− 4 sin x). (43)

Double Root of the Characteristic Equation

Now we consider the case when the characteristic equation
associated to a homogeneous linear differential equation
with constant coefficients has a double root (critical case).
If the differential equation takes the general form

y′′ + ay′ + by = 0, (44)

then the characteristic equation will be

λ2 + aλ+ b = 0. (45)
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A double root appears if an only if the discriminant of Eq.
(115) is zero, that is

a2 − 4b = 0, and, then, b = 1
4
a2.

The double root of the characteristic equation is λ = −a/2.
Then, the first solution of the differential equation is

y1 = eax/2. (46)

To find another solution y2(x) the method of variation of
parameters may be applied. The second solution takes the
form

y2(x) = u(x)y1(x) where y1(x) = e−ax/2.

Substituting y2 in the differential equation with b = a2/4
we obtain

u(y′′
1 + ay′

1 + 1
4
a2y1) + u′(2y′

1 + ay1) + u′′y1 = 0.

The expression in the first parentheses is zero because y1

is a solution. The second parentheses is also zero because

2y′
1 = 2(− a

2
)e−ax/2 = −ay1.

The equation reduces to u′′ y1 = 0, and a solution is u = x.
Consequently, the second solution is

y2(x) = xeλx (λ = − a
2

). (47)

We can observe that the solutions y1 and y2 are linearly
independent. This case can be summarized by the following
theorem

Theorem (Double root) [1] In the case of a double root
of Eq. (115) the functions (117) and (121) are solutions of
Eq. (114). They constitute a fundamental system. The cor-
responding general solution is

y = (c1 + c2x)eλx (λ = − a
2

). (48)

Example. Solve the following differential equation

y′′ − 4y′ + 4y = O.

The double root of the characteristic equation is λ = −4.
Then, the fundamental system of solutions is

e2x and xe2x

and the corresponding general solution is

y = (c1 + c2x)e2x.

All three cases are summarized in the following table:
Case Roots of Eq. (115) Fundamental system of Eq. (114) General solution of Eq. (114)
I Distinct real λ1, λ2 eλ1x, eλ2x y = c1e

λ1x + c2e
λ2x

II Complex conjugate λ1 = p+ iq, λ2 = p− iq epx cos qx epx sin qx y = epx(Acosqx+ Bsinqx)
III Real double root λ = −a/2 eλx, xeλx y = (c1 + c2x)eλx

Series Solutions

We consider the general homogeneous linear second-order
equation

P(x)
d2y

dx2
+Q(x)

dy

dx
+ R(x)y = 0 (49)

with P(x) �= 0 in the interval α<x<β. We want to deter-
mine a polynomial solution y(x) of Eq. (126).

Definition A functions f(x) can be expanded in power se-
ries so that

f (x) = a0 + a1(x− x0) + a2(x− x0)2 + . . . = n = 0
∑

an(x− x0)n.(50)

Such functions are said to be analytic at x = x0 and the
series (127) is called the Taylor series of f about x = x0.
The coefficients an can be computed with the formula an =
f (n)(x0)/n! where f (n)(x) = dn f (x)/dxn.

We consider the functions P (x), Q (x), and R (x) as power
series about x0

P(x) = p0 + p1(x− x0) + . . . ,Q(x) = q0 + q1(x− x0) + . . . ,

R(x) = r0 + r1(x− x0) + . . .

and y(x) = a0 + a1(x− x0) + . . ..

Theorem [2] Let the functions Q(x)/P(x) and R(x)/P(x)
have convergent Taylor series expansions about x = x0 for
|x− x0|<ρ. Then, every solution y(x) of the differential
equation

P(x)
d2y

dx2
+Q(x)

dy

dx
+ R(x)y = 0 (51)

is analytic at x = x0, and the radius of convergence of its
Taylor series expansion about x = x0 is at least ρ. The coef-
ficients a2, a3, . . . in the Taylor series expansion

y(x) = a0 + a1(x− x0) + a2(x− x0)2 + . . . (52)

are determined by plugging the series (130) into the differ-
ential equation (129) and setting the sum of the coefficients
of the like powers of x in this expression equal to zero.

Example. Solve the equation

x2 d
2y

dx2
+ (x2 + x)

dy

dx
− y = 0.

Assuming a solution of the form

y = k = 0
∑

akx
k,

we obtain

dy

dx
= k = 0

∑
kakx

k−1,
d2y

dx2
= k = 0

∑
k(k − 1)akxk−2,
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and hence

k = 0
∑

k(k − 1)akxk + k = 0
∑

kakx
k+1 + k = 0

∑
kakx

k − k = 0
∑

akx
k.

The first, third, and fourth summations may be combined
to give

k = 0
∑

[k(k − 1) + k − 1]akxk = k = 0
∑

(k2 − 1)akxk,

and hence there follows

k = 0
∑

(k2 − 1)akxk + k = 0
∑

kakx
k+1.

In order to combine these sums, we replace k by n in the
first and (k + 1) by n in the second, to obtain

n = 0
∑

(n2 − 1)anxn + n = 1
∑

(n− 1)an−1x
n.

Since the ranges of summation differ, the term correspond-
ing to n = 0 must be extracted from the first sum, after
which the remainder of the first sum can be combined with
the second. In this way we find

−a0 + n = 1
∑

[(n2 − 1)an + (n− 1)an−1]xn.

In order that the previous relation may vanish identically,
the constant term, as well as the coefficients of the suc-
cessive powers of x, must vanish independently, giving the
condition

a0 = 0

and the recurrence formula

(n− 1)[(n+ 1)an + an−1] = 0 (n = 1,2,3, . . .).

The recurrence formula is automatically satisfied when n
= 1. When n ≥ 2, it becomes

an = − an−1

n+ 1
(n = 2,3,4 . . .).

Hence, we obtain

a2 = −a1

3
, a3 = −a2

4
= a1

3 · 4
, a4 = −a3

5
= − a1

3 · 4 · 5
, . . . .

Thus, in this case a0 = 0, a1 is arbitrary, and all succeed-
ing coefficients are determined in terms of a1. The solution
becomes

y = a1(x− x2

3
+ x3

3 · 4
− x4

3 · 4 · 5
+ . . .).

If this solution is put in the form

y = 2a1

x
(
x2

2!
− x3

3!
+ x4

4!
− x5

5!
+ . . .)

= 2a1

x
[x− 1 + (1 − x

1!
+ x2

2!
− x3

3!
+ x4

4!
− . . .)],

the series in parentheses in the final form is recognized
as the expansion of e−x, and, writing 2a1 = c, the solution
obtained may be put in the closed from

y = c(
e−x − 1 + x

x
).

In this case only one solution was obtained. This fact in-
dicates that any linearly independent solutions cannot be
expanded in power series near x = 0. That is, it is not reg-
ular at x = 0.

Regular Singular Points

We consider the differential equations

x2 d
2y

dx2
+ αx

dy

dx
+ βy = 0 (53)

which can be rewritten in the form

d2y

dx2
+ α

x

dy

dx
+ β

x2
y = 0. (54)

A generalization of Eq. (147) is the equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 (55)

where p(x) and q(x) can be expanded in series of the form

p(x) = p0

x
+p1 + p2x+ p3x

2 + . . .

q(x) = q0

x2
+ q1

x
+q2 + q3x+ q4x

2 . . .
(56)

Definition [2] Equation (148) is said to have a regular
singular point at x = 0 if p(x) and q(x) have series expan-
sions of the form (149). Equivalently, x = 0 is a regular
singular point of Eq. (148) if the functions x p(x) and x2q(x)
are analytic at x = 0. Equation (148) is said to have a regu-
lar singular point at x = x0 if the functions (x− x0)p(x) and
(x− x0)2

q(x) are analytic at x = x0. A singular point of Eq.
(148) which is not regular is called irregular.

Example. Classify the singular points of Bessel’s equation
of order ν

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0, (57)

where ν is a constant 1.
For x = 0 we have P(x) = x2 = 0. Hence, x = 0 is the only

singular point of Eq. (150). Dividing both sides of Eq. (150)
by x2 gives

d2y

dx2
+ 1
x

dy

dx
+ (1 − ν2

x2
)y = 0.

The functions

x p(x) = 1 and x2 q(x) = x2 − ν2

are both analytic at x = 0. Hence Bessel’s equation of order
ν has a regular singular point at x = 0.

Nonhomogeneous Linear Equations

Let us consider a second-order linear nonhomogeneous
equation

y′′ + f (x)y′ + g(x)y = r(x). (58)

A general solution y(x) of Eq. (153) can be obtained from
a general solution yh(x) of the corresponding homogeneous
equation

y′′ + f (x)y′ + g(x)y = 0,

by adding to yh(x) any particular solution ỹ of Eq. (153)
involving no arbitrary constant [1]

y(x) = yh(x) + ỹ(x). (59)
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To show that y(x) is a solution of the nonhomogeneous
differential equation we substitute Eq. (155) into Eq. (153).
Then the left-hand side of Eq. (153) becomes

(yh + ỹ)′′ + f (yh + ỹ)′ + g(yh + ỹ).

or

(y′′
h + fy′

h + gyh) + ỹ′′ + f ỹ′ + gỹ.

The expression in the parentheses is zero because yh is a
solution of Eq. (155). The sum of the other terms is equal
to r(x) because ỹ satisfies Eq. (153). Hence y(x) is a general
solution of the Eq. (153).

Theorem [1] Suppose that f(x), g(x), and r(x) in Eq. (153)
are continuous functions on an open interval I. Let Y (x) be
any solution of Eq. (153) on I containing no arbitrary con-
stants. Then Y (x) is obtained from Eq. (155) by assigning
suitable values to the two arbitrary constants contained
in the general solution yh(x) of Eq. (155). In Eq. (155), the
function ỹ(x) is any solution of Eq. (153) on I containing no
arbitrary constants.

Proof Let set Y − ỹ = y∗. Then

y∗′′ + fy∗′ + gy∗ = (Y ′′ + fY ′ + gY ) − (ỹ′′ + f ỹ′ + gỹ) = r − r = 0,

that is, y∗ is a solution of Eq. (155) which does not contain
arbitrary constants. It can be obtained from yh by assigning
suitable values to the arbitrary constants in yh. From this,
since Y = y∗ + ỹ, the statement follows.

Theorem [1] A general solution y(x) of the linear nonho-
mogeneous differential equation Eq. (153) is the sum of a
general solution yh(x) of the corresponding homogeneous
equation Eq. (155) and an arbitrary particular solution
yp(x) of Eq. (153):

y(x) = yh(x) + yp(x) (60)

Example. Solve the equation

y′′ + y = sec x.

The homogeneous equation y′′ + y = 0 has the character-
istic equation λ2 + 1 = 0 with roots λ1 = i and λ2 = −i, so,
the general solution of the homogeneous equation is

y = c1 cos x+ c2 sin x.

Using the method of variation of parameter we have the
following system of equations

c′
1cos x+ c′

2sin x = 0,
−c′

1sin x+ c′
2cos x = sec x,

with the solution

c′
1 = −tan x, c′

2 = 1.

Thus by integrating,

c1 = −ln sec x+ A1, c2 = x+ A2,

and the general solution is of the nonhomogeneous equa-
tion is

y = A1 cos x+ A2 sin x− cos x ln sec x+ x sin x.

The Method of Variation of Parameters

This method can be applied to solve the nonhomogeneous
equation of the form

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = g(x), (61)

once the solutions of the homogeneous equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 (62)

are known. Let y1(x) and y2(x) be two linearly independent
solutions of the homogeneous equation (167). We will try to
find a particular solution ψ(x) of the nonhomogeneous Eq.
(166) of the form [2]

ψ(x) = u1(x)y1(x) + u2(x)y2(x). (63)

The differential equation (166) imposes only one condition
on the two unknown functions u1(x) and u2(x). We may im-
pose an additional condition on u1(x) and u2(x) such that
the left hand side of the nonomogeneous equation be as
simple as possible. Computing

d

dx
ψ(x) = d

dx
[u1y1 + u2y2]

= [u1y
′
1 + u2y

′
2] + [u′

1y1 + u′
2y2]

we see that d2ψ/dx2 will contain no second-order deriva-
tives of u1 and u2 if

y1(x)u′
1(x) + y2(x)u′

2(x) = 0. (64)

Imposing the condition (170) on the functions u1(x) and
u2(x) the left hand side of the Eq. (166) becomes

[u1y
′
1 + u2y

′
2]′ + p(x)[u1y

′
1 + u2y

′
2] + q(x)[u1y1 + u2y2]

= u′
1y

′
1 + u′

2y2′ + u1[y′′
1 + p(x)y′

1 + q(x)y1] + u2[y′′
2 + p(x)y′

2 + q(x)y2]
= u′

1y
′
1 + u′

2y
′
2.

If u1(x) and u2(x) satisfy the two equations

y1(x)u′
1 + y2(x)u′

2(x) = 0
y′

1(x)u′
1(x) + y′

2(x)u′
2(x) = g(x),

then ψ(x) = u1y1 + u2y2 is a solution of the nonhomoge-
neous equation (166). We solve the above system of equa-
tions as follows

[y1(x)y′
2(x) − y′

1(x)y2(x)]u′
1(x) = −g(x)y2(x)

[y1(x)y′
2(x) − y′

1(x)y2(x)]u′
2(x) = g(x)y1(x).

The function u′
1(x) and u′

2(x) are

u′
1(x) = − g(x)y2(x)

W[y1, y2](x)
and u′

2(x) = g(x)y1(x)
W[y1, y2](x)

, (65)

where W[y1, y2](x) is the Wronskian of the solutions

W[y1, y2](x) = | y1 y2

y′
1 y′

2
|.

Integrating the right-hand sides of Eqs. (174) we obtain
u1(x) and u2(x).
Example.

a. Find a particular solution ψ(x) of the equation

d2y

dx2
+ 4y = 8 sin x (66)
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b. Find the solution y(x) of Eq. (176) which satisfies the
initial conditions y(0) = 1, y′(0) = 1.

0.1. The functions y1(x) = cos 2x and y2(x) = sin2x are
two linearly independent solutions of the homo-
geneous equation y′′ + 4y = 0 with
W[y1, y2](x) = y1y

′
2 − y′

1y2 = (cos x)cos x− (−sin x)sin x = 1.
Thus, from Eqs. (174),

u′
1(x) = −8 sin2 x and u′

2(x) = 8 sin x cos x. (67)

Integrating the first equation of (178) gives
u1(x) = −8

∫
sin2x dx = −4

∫
(1 − cos 2x) dx

= −4
∫
dx+ 4

∫
cos 2x dx

= −4x+ 2 sin2x.
while integrating the second equation of (178)
gives

u2(x) =
∫

4 sin2x dx = 4
∫
sin2x dx = −2 cos 2x.

Consequently,
ψ(x) = cos x[−4x+ 2 sin2x] + sin x(−2 cos 2x)
is a particular solution of Eq. (176).

0.2. y(x) = c1 cos x+ c2 sin x+ cos x(−4x+ 2 sin2x) − 2 sin x cos 2x
for some choice of constants c1, c2. The con-

stants c1 and c2 are determined from the initial
conditions
1 = y(0) = c1 and 1 = y′(0) = c2 − 2.
Hence, c1 = 1, c2 = 3 and
y(x) = cos x+ 3 sin x+ cos x(−4x+ 2 sin2x) − 2 sin x cos 2x.

DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER

Homogeneous Linear Equations

A linear differential equation of nth order can be written
in the following general form

y(n) + f n−1(x)y(n−1) + . . .+ f 1(x)y′ + f 0(x)y = r(x) (68)

where the function r on the right-hand side and the coef-
ficient f 0, f 1, . . . , f n−1 are any given functions of x, and
y(n) is the nth derivative of y.

Eq. (185) is said to be homogeneous if r(x) = 0. Then, Eq.
(185) becomes

y(n) + f n−1(x)y(n−1) + . . .+ f 1(x)y′ + f 0(x)y = 0. (69)

If r(x) �= 0, Eq. (185) is said to be nonhomogeneous.
A function y = φ(x) is called a solution of a differential

equation of nth order on an interval I if φ(x) is defined
and n times differentiable on I and is such that the equa-
tion becomes an identity when we replace the unspecified
function y and its derivatives in the equation by φ and its
corresponding derivatives [1].
Existence and uniqueness theorem [1], [3]. If
f 0(x), . . . , f n−1(x) in Eq. (186) are continuous functions on
an open interval I, then the initial value problem consist-
ing of the equation Eq. (186) and the n initial conditions

y(x0) = K1, y
′(x0) = K2, . . . , y

(n−1)(x0) = Kn,

has a unique solution y(x) on I; here x0 is any fixed point in
I, and K1, . . . , Kn are given numbers.

A set of functions, y1(x), . . . , yn(x) are linearly dependent
on some interval I where they are defined, if one of them
can be represented on I as a “linear combination” of the
other n− 1 functions. Otherwise the functions are linearly
independent on I.

A fundamental system or a basis of solutions of the lin-
ear homogeneous equation Eq. (186) is a set of n linearly
independent solutions y1(x), . . . , yn(x) of that equation.

If y1, . . . , yn is such a fundamental system, then

y(x) = c1y1(x) + . . .+ cnyn(x) (c1, . . . , cn arbitrary) (70)

is a general solution of Eq. (186) on I. The test for linear
dependence and independence of solutions can be general-
ized to nth order equations as follows

Theorem [1] Suppose that the coefficients
f 0(x), . . . , f n−1(x) of Eq. (186) are continuous on an
open interval I. Then n solutions y1, . . . , yn of Eq. (186) on I
are linearly dependent on I if and only if their Wronskian

W(y1, . . . , yn) = |

y1 y2 . . . yn
y′

1 y′
2 . . . y′

n

...
... . . .

...
y(n−1)

1 y(n−1)
2 . . . y(n−1)

n

| (71)

is zero for some x = x0 in I. (If W = 0 at x = x0, then W ≡ 0
on I).

Theorem [1] Let Eq. (188) be a general solution of Eq.
(186) on an open interval I where f 0(x), . . . , f n−1(x) are
continuous, and let Y (x) be any solution of Eq. (186) on
I involving no arbitrary constants. Then Y (x) is obtained
from Eq. (188) by assigning suitable values to the arbitrary
constants c1, . . . , cn.

Example. The equation

y′′′ − 2y′′ − y′ + 2y = 0. (72)

has the solutions y1 = ex, y2 = e2x, and y3 = e3x.
The Wronskian is

W(ex, e2x, e3x) = |
ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x
| = 2e6x �= 0,

which shows that the functions constitute a fundamental
system of solutions of Eq. (190). The corresponding general
solution is

y = c1e
x + c2e

2x + c3e
3x.

Homogeneous Linear Equations with Constant
Coefficients

A linear homogeneous equation of order n with constant
coefficients

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = 0, (73)

has the correspondent characteristic equation

λn + an−1λ
n−1 + . . .+ a1λ+ a0 = 0. (74)
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If this equation has n distinct roots λ1, . . . , λn, then the n
solutions

y1 = eλ1x, . . . , yn = eλnx (75)

constitute a fundamental system for all x, and the corre-
sponding general solution of Eq. (193) is

y = c1e
λ1x + . . .+ cne

λnx. (76)

If λ is a root of order m, then

eλx, xeλx, . . . , xm−1eλx (77)

are m linearly independent solutions of Eq. (193) corre-
sponding to that root.
Example. Consider the differential equation

y′′′ + 3y′′ − 4y′ − 12y = 0.

The characteristic equation

λ3 + 3λ2 − 4λ+ 12 = 0

has the solutions λ1 = −2, λ2 = 2, and λ3 = −3, and the cor-
responding general solution Eq. (196) is

y = c1e
−2x + c2e

2x + c3e
−3x.

Linear Differential Equations in State Space Form

The nth-order differential equation

an(t)
dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ . . .+ a0y = 0,

can be transformed into a system of n first order equations.
With the notations

x1(t) = y, x2(t) = dy/dt, . . . xn(t) = dn−1y/dtn−1,

we obtain the system

dx1

dt
= x2,

dx2

dt
= x3, . . . ,

dxn−1

dt
= xn,

and

dxn

dt
= −an−1(t)xn + an−2(t)xn−1 + . . .+ a0x1

an(t)
.

A system of n first-order linear equations has the gen-
eral form

dx1

dt
= a11(t)x1 + . . .+ a1n(t)xn + g1(t),

...
dxn

dt
= an1(t)x1 + . . .+ ann(t)xn + gn(t),

(78)

and is said to be nonhomogeneous (gi(t) �= 0, i = 1, . . . , n).
The system

dx1

dt
= a11(t)x1 + . . .+ a1n(t)xn,

...
dxn

dt
= an1(t)x1 + . . .+ ann(t)xn,

(79)

is said to be homogeneous (gi(t) = 0, i = 1, . . . , n).

The homogeneous linear system with constant coeffi-
cients (ai j do not depend on t)

dx1

dt
= a11x1 + . . .+ a1nxn,

...
dxn

dt
= an1x1 + . . .+ annxn,

(80)

can be written in matrix notation as

ẋ = Ax, (81)

where

x = [

x1

x2
...
xn

] and A = [

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

].

Theorem (existence-uniqueness theorem) [2] There
exists one, and only one, solution of the initial-value prob-
lem for −∞< t <∞

ẋ = Ax, x(t0) = x0 = [

x0
1
x0

2
...
x0
n

]. (82)

The dimension of the space of all solutions of the ho-
mogeneous linear system of differential equations (208) is
n.

Solution via the Eigenvalue-Eigenvector Method. Consider
the linear homogeneous differential system

ẋ = Ax. (83)

Assuming a solution of the form

x(t) = eλt v, v = constant vector.

Eq. (211) becomes

λeλtv = eλtAv,

or

Av = λv. (84)

The solution of Eq. (211) is x(t) = eλtv if, and only if, λ and
v satisfy Eq. (214). A vector v �= 0 satisfying Eq. (214) is
called an eigenvector of A with eigenvalue λ.

The eigenvalues λ of A are the roots of the equation

det(A− λI) = det[

a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

...
...

an1 an2 . . . ann − λ

] = 0.

Case I Distinct eigenvalues
The matrix A has n linearly independent eigenvectors

v1, . . . ,vn with distinct eigenvalues λ1 �= λ2 �= . . . λn−1 �= λn.
For each eigenvalue λj we have an eigenvector v j and a
solution of Eq. (211) is of the form

x j(t) = eλj t v j.
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There are n linearly independent solutions x j(t) of Eq.
(211). Then the general solution of Eq. (211) is given by

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + . . .+ cne
λntvn. (85)

Case II Complex eigenvalues
If λ = α+ iβ is a complex eigenvalue of A with eigen-

vector v = v1 + iv2, then a complex-valued solution of Eq.
(211) is x(t) = eλtv.

Lemma [2] Let x(t) = y(t) + iz(t) be a complex-valued so-
lution of Eq. (211). Then both y(t) and z(t) are real-valued
solutions of Eq. (211).

The function x(t) can be written as

x(t) = e(α+iβ)t(v1 + iv2)
= eαt(cos βt + i sin βt)(v1 + iv2)
= eαt[(v1cos βt − v2sin βt) + i(v1sin βt + v2cos βt)].

If λ = α+ iβ is an eigenvalue of A with eigenvectorv = v1 +
iv2, then

y(t) = eαt(v1cos βt − v2sin βt)

and

z(t) = eαt(v1sin βt + v2cos βt)

are two real-valued solutions of Eq. (211).

Case III Equal eigenvalues
If the matrixA does not have n distinct eigenvalues, then

A may not have n linearly independent eigenvectors. Let
us assume that the n × n matrix A has only k < n linearly
independent eigenvectors. In this case Eq. (211) has only
k linearly independent solutions of the form eλtv.

To find additional solutions we present the following
method as described in [2]:

1. We pick an eigenvalue λ of A and find all vectors v
for which (A− λI)2v = 0, but (A− λI)v �= 0. For each
such vector v

eAtv = eλte(A−λI)t = eλt[v+ t(A− λI)v]

is an additional solution of Eq. (211). The process is
repeated for all eigenvalues of A.

2. If we still do not have enough solutions, then we
find all vectors v for which (A− λI)3v = 0, but
(A− λI)2v �= 0. For each such vector v,

eAtv = eλt[v+ t(A− λI)v+ t2

2!
(A− λI)2v]

is an additional solution of Eq. (211).
3. We keep proceeding in this fashion until n linearly

independent solutions are obtained.

Fundamental Solution Matrix. Definition A matrix X(t)
whose columns are x1(t), . . . ,xn(t), the n linearly indepen-
dent solutions of Eq. (208)

X(t) = [x1(t)|x2(t)| . . . |xn(t)].

is called the fundamental solution matrix of Eq. (208) Ev-
ery solution x(t) can be written in the form

x(t) = c1x
1(t) + c2x

2(t) + . . .+ cnx
n(t) (86)

In the matrix vector form, equation (224) can be written
as x(t) = X(t)c, where c is a constant vector.

Example [2]. Find a fundamental matrix solution of the
system of differential equations

ẋ = [
1 −1 4
3 2 −1
2 1 −1

]x.

It can be verified that the three linearly independent
solutions of the system are given by

et[
−1
4
1

], e3t[
1
2
1

] and e−2t[
−1
1
1

].

Therefore, the fundamental matrix solution for the system
is

X(t) = [
−et e3t −e−2t

4et 2e3t e−2t

et e3t e−2t
].

Theorem [2] Let X(t) be a fundamental solution matrix
of the differential equation ẋ = Ax. Then

eAt = X(t)X−1(0). (87)

where eAt is also a fundamental solution matrix.
We consider the example given in [2] and show as to how

eAt can be computed. In Eq. (208) let

A = [
1 1 1
0 3 2
0 0 5

].

The eigenvalues are computed from the relation

p(λ) = det(A− λI) = det[
1 − λ 1 1

0 3 − λ 2
0 0 5 − λ

] = (1 − λ)(3 − λ)(5 − λ).

Thus we have 3 distinct eigenvalues λ = 1, λ = 3, and
λ = 5. The eigenvectors corresponding to those eigenval-
ues, respectively, are

v1 = [
1
0
0

]v2 = [
1
2
0

]v3 = [
1
2
2

].

The three linear independent solutions of ẋ = Ax are

x1(t) = et[
1
0
0

] x2(t) = e3t[
1
2
0

] x3(t) = e5t[
1
2
2

].

The fundamental solution matrix is

X(t) = [
et e3t e5t

0 2e3t 2e5t

0 0 2e5t
].
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We compute

X−1(0) = [
1 1 1
0 2 2
0 0 2

]

−1

= [

0 − 1
2

0

0
1
2

0

0 0
1
2

],

and from the theorem

eAt = X(t)X−1(0) = [
et − 1

2
et + 1

2
e3t − 1

2
e3t + 1

2
e5t

0 e3t −e3t + e5t

0 0 e5t

].

The Nonhomogeneous Equation. The initial-value prob-
lem for a nonhomogeneous equation is

ẋ = Ax+ f (t),x(t0) = x0. (88)

Applying variation of parameter method, the solution is
assumed of the form

x(t) = X(t)u(t),

where X(t) = [x1(t), . . . ,xn(t)], and

u(t) = [

u1(t)
...

un(t)

].

Using this relation Eq. (236) yields

Ẋ(t)u(t) +X(t)u̇(t) = AX(t)u(t) + f (t). (89)

Since matrix X(t) satisfies

Ẋ(t) = AX(t), (90)

we obtain

X(t)u̇(t) = f (t). (91)

Matrix X(t) is nonsingular ( X−1(t) exists) and therefore

u̇(t) = X−1(t)f (t). (92)

Integrating this expression between t0 and t we have

u(t) = u(t0) + t0

∫
X−1(s)f (s)ds (93)

= X−1(t0)x0 + t0

∫
X−1(s)f (s)ds. (94)

Consequently,

x(t) = X(t)X−1(t0)x0 +X(t)t0

∫
X−1(s)f (s)ds. (95)

If X(t) = eAt then

x(t) = eA(t−t0)x0 + t0

∫
eA(t−s)f (s)ds. (96)

Example. Find the solution of the initial value problem

ẋ = [ 1 1
0 1

]x+ [ e
−t

0
], x0 = [ −1

1
]

From the homogeneous problem we can easily show that
the fundamental solution matrix is given by

X(t) = [ e
t tet

0 et
].

It is easily verified that Ẋ = AX and X(0) = I.

X−1(s) = [ 1 −s
0 1

]e−s.

and

0
∫
X(t)X−1(s)f (s)ds = [

1
2

(et − e−t)

0
].

Then from Eq. (245) the solution is given by

x(t) = [ (t − 1)et

et
] + [

1
2

(et − e−t)

0
].

Equilibrium and Stability

Consider the differential equation

ẋ = f (t,x), (97)

where

x = [

x1(t)
...

xn(t)

],

ẋ = dx

dt
,

and

f (t,x) = [

f 1(t, x1, . . . , xn)
...

f n(t, x1, . . . , xn)

],

is a nonlinear function. In general, Eq. (252)cannot be
solved explicitly. However, one can easily determine the
qualitative properties of solution of Eq. (252) in the neigh-
borhood of an equilibrium point.

The equilibrium points are the values

x0 = [

x0
1
...
x0
n

]

for which, x(t) = x0 is a solution of Eq. (252).
Observe that ẋ(t) is identically zero if x(t) ≡x0. The

value x0 is an equilibrium of Eq. (252), if, and only if,

f (t,x0) ≡ 0. (98)

Example [6]. Find all equilibrium values of the system of
differential equations

dx1

dt
= 1 − x2,

dx2

dt
= x3

1 + x2.

The value

x0 = [ x
0
1
x0

2
]
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is an equilibrium value if, and only if, 1 − x0
2 = 0 and (x0

1)3 +
x0

2 = 0. This yields x0
2 = 1 and x0

1 = −1. Hence [ −1
1

] is the

only equilibrium solution of this system.
Stability: Let φ(t) be a known solution of Eq. (252). Sup-

pose that ψ(t) is a second solution with ψ(0) very close to
φ(0) such that β(t) ≡ψ(t) − φ(t) can be viewed as the distur-
bance on φ(t).

The concept of stability is important in many applica-
tions.

Consider the equation of motion of a simple pendulum
of mass m and length l given by

d2y

dt2
+ g

l
sin y = 0,

where y is the angular displacement from the vertical axis
and g is acceleration due to gravity. With the notation x1 =
y and x2 = dy/dt we have

dx1

dt
= x2,

dx2

dt
= −g

l
sin x1. (99)

The system of Eq. (261) has equilibrium solutions {x1 =
0, x2 = 0}, and {x1 = π, x2 = 0}.

If we disturb the pendulum slightly from the equilib-
rium position {x1 = 0, x2 = 0}, then it will oscillate with
small amplitude about x1 = 0.

If we disturb the pendulum slightly from the equilib-
rium position {x1 = π, x2 = 0}, then it will either oscillate
with very large amplitude about x1 = 0, or it will rotate
around and around.

The two solutions have very different properties, and,
intuitively, we would say that the equilibrium value {x1 =
0, x2 = 0} is stable, while the equilibrium point {x1 =
π, x2 = 0} is unstable.

In the case when f (t,x) does not depend explicitly on t i.e.
f = f (x) the differential equations are called autonomous.

Phase-Plane

Let us consider a two dimensional system

dx

dt
= f (x, y),

dy

dt
= g(x, y). (100)

Every solution x = x(t), and y = y(t) of Eq. (262) defines a
curve in the three-dimensional space {t, x, y}.

For example the solution of the system of differential
equations

dx

dt
= −y, dy

dt
= x,

is x = cos t,y = sin t. This solution describes a helix in three-
dimensional space {t, x, y}.

Every solution x = x(t), and y = y(t), of Eq. (262), for
t0 ≤ t ≤ t1, also defines a curve in the x− y plane. This curve
is called the orbit, or trajectory, of the solution x = x(t),
y = y(t), and the xy plane is called the phase-plane of the
solutions of Eq. (262).

In the general case let x(t) be a solution of the vector
differential equation

·x = f (x), x = [

x1
...
xn

], f (x) = [

f 1(x1, . . . , xn)
...

f n(x1, . . . , xn)

] (101)

on the interval t0 ≤ t ≤ t1. As t runs from t0 to t1, the set
of points (x1(t), . . . , xn(t)) trace out a curve C in the n-
dimensional space x1, x2, . . . , xn. This curve is called the
orbit of the solution x = x(t), for t0 ≤ t ≤ t1, and the n-
dimensional space x1, . . . , xn is called the “phase-space” or
“state-space” of the solution of Eq. (264).

Linear Approximation at Equilibrium Points [5]

Consider again the Eq. (262)

dx

dt
= f (x, y),

dy

dt
= g(x, y),

with f (0,0) = g(0,0) = 0 as the equilibrium point. Using
Taylor expansion about this point, we can write

f (x, y) = ax+ by + P(x, y), g(x, y) = cx+ dy +Q(x, y),

where P(x, y) = O(r2) and Q(x, t) = O(r2) as r =√
x2 + y2 → 0, and

a = ∂ f

∂x
(0,0), b = ∂ f

∂y
(0,0), (102)

c = ∂g

∂x
(0,0), d = ∂g

∂y
(0,0). (103)

The linear approximation of Eq. (262) in the neighbourhood
of the origin is defined as the system

ẋ = ax+ by, ẏ = cx+ dy,

or

ẋ = Ax (104)

where

A = [ a b

c d
], x = [ x

y
], ẋ = [ ẋ

ẏ
]. (105)

The solutions of Eq. (270) are geometrically similar to those
of Eq. (262) near the origin unless one (or more) of the
eigenvalues of A is zero or has zero real part.

The two linearly independent solutions are of the form

x = u eλt, (106)

where

u = [ r
s

] �= 0. (107)

Then

·x = λu eλt,

and equations (270) and (272) yield

(A− λI)u = 0 (108)

where I is the identity matrix. With u �= 0 and Eq. (275), we
have

det(A− λI) = 0,
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or

| a− λ b

c d − λ
| = 0. (109)

The two eigenvalues are given by the solution of the
quadratic equation

λ2 − (a+ d)λ+ (ad − bc) = 0. (110)

The solutions of Eq. (275) are the eigenvectors: u1 cor-
responding to λ1, and u2 corresponding to λ2. The general
solution of Eq. (270) is

x = C1u1e
λ1t + C2u2e

λ2t , for λ1 �= λ2. (111)

Using the nonsingular linear transformation

x1 = Sx; S = [u1 u2], (112)

Eq. (270) becomes

ẋ1 = SAS−1x1 = Bx1, (113)

where B is diagonal or in Jordan form. The topological char-
acter of the transformed equilibrium point at the origin is
not affected in the new variable x1 = [x1, y1]T . The equa-
tions in the new coordinates are simpler.

Case I λ1 �= λ2 �= 0 and λ1, λ2 ∈R (real)
We can choose S so that

ẋ1 = λ1x1, ẏ1 = λ2y1,

and then the equation for the phase paths is

dy1

dx1
= λ2

λ1

y1

x1
.

The solutions are

y1 = C|x1|λ2/λ1 , where C = arbitrary.

The origin is a node (Figure 1) when λ2/λ1>0. The node
is stable when λ1, λ2<0 (Figure 1) and unstable when
λ1, λ2>0.

The origin is a saddle-point (Figure 2) when λ2/λ1<0.

Case II λ1 = λ2 = λ (b and c not both zero)
We can choose S so that

ẋ1 = λx1 + y1, ẏ1 = λy1, λ∈R,
and then the equation for the phase paths is

dy1

dx1
= λy1

λx1 + y1
.

The solutions are

y1 = 0, x1 = 1
λ
y1loge|y1| + Cy1 whereC = arbitrary.

The origin is a inflected node, stable if λ < 0 (Figure 3)
and unstable if λ > 0.

Case III λ1 = λ2 = α+ iβ with β �= 0
We can choose S so that the equations become

ẋ1 = αx1 − βy1, ẏ1 = βx1 + αy1.

Figure 1. Stable node

Figure 2. Saddle point

With z(t) = x1(t) + i y1(t) = r(t)eiθ(t) we have ż = (α+ iβ)z,
and r(t) = |z(t)|. The equations in polar coordinates are

ṙ = αr, θ̇ = β.

The origin is a stable spiral (or focus) if α < 0, β �= 0
(Figure 4), and an unstable spiral if α > 0, β �= 0. the origin
is a center if α = 0, β �= 0, (Figure 5).

We can sumarize all the above cases in the following
table [5].

(1) λ1, λ2 real, unequal, same sign Node
(2) λ1 = λ2 (real) b �= 0, c �= 0 Inflected node
(3) λ1, λ2 complex, non-zero real part Spiral
(4) λ1 �= 0, λ2 = 0 Parallel lines
(5) λ1, λ2 real, different sign Saddle point
(6) λ1, λ2 pure imaginary Center
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Figure 3. Stable inflected node

Figure 4. Stable spiral

Example. Classify the equilibrium point at (0,0) for the
system

ẋ = e−x−3y − 1, ẏ = −x(1 − y2).

Using Taylor expansion for the exponential function, the
linearized system of equations about (0,0) is

ẋ = −x− 3y, ẏ = −x,
or in matrix form

( ẋ
ẏ

) = ( −1 −3
−1 0

)( x
y

).

The eigenvalues are λ1,2 = −1 ± √
17

2
are real with differ-

ent sign. The equilibrium is a saddle point.

Figure 5. Center

PARTIAL DIFFERENTIAL EQUATIONS

The word “ordinary” in ordinary differential equation dis-
tinguishes it from partial differential equation (PDE), in-
volves partial derivatives of two or more independent vari-
ables. For a first order partial differential equation, a uni-
fied general theory exists; however, this a case for higher or-
der partial differential equations. Generally speaking, the
second order PDEs may be classified into three following
categories, viz., elliptic, hyperbolic, and parabolic types.

Normal Forms of Elliptic, Hyperbolic, and Parabolic
Equations

Consider a linear second order differential operator for the
function u(x, y) given by

L(u) = a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
, (114)

where a, b, and c are either constants or functions of x and
y. A corresponding quasilinear PDE may be represented by

L(u) + g(x, y, ∂u/∂x, ∂u/∂y) = L(u) + . . . . . . = 0, (115)

where g(x, y, ∂u/∂x, ∂u/∂y) is not necessarily linear and does
not contain any second derivative.

Let us introduce the transformations

ξ = αx+ βy,

η = γx+ δy.
(116)

Therefore, L(u) in Eq. (293) takes the form

L(u) = (aα2 + bαβ + cβ2)
∂2u

∂ξ2

+(2aαγ + b(αδ+ βγ) + 2cβδ)
∂2u

∂ξ∂η

+(aγ2 + bγδ+ cδ2)
∂2u

∂η2
.

(117)
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If the transformed operator is desired to be of the form
∂2u

∂ξ∂η
, then we need

aα2 + bαβ + cβ2 = 0, (118)

αγ2 + bγδ+ cδ2 = 0. (119)

If a = c = 0, then the trivial transformation ξ = y and η = y

provides the desired form. For the non-trivial case either a
or c or both are non-zero. Let us say a �= 0, thereby implying
that α �= 0, γ �= 0. Dividing Eq. (297) by β2 and Eq. (298)
by δ2, we obtain two quadratic equations in (α/β) and (γ/δ).
These yield

α/β = 1
2a

{−b±
√
b2 − 4ac}, (120)

γ/δ = 1
2a

{−b±
√
b2 − 4ac}. (121)

The ratios α/β and γ/δ must be different (by choosing pos-
itive sign in Eq. (299) and negative sign in Eq. (300)) so
that the transformation given by Eq. (295) is non-singular.
Further b2 − 4ac should be positive.

Therefore, L(u) reduces to the form
∂2u

∂ξ∂η
if and only if

b2 − 4ac>0, (122)

and this case is said to be “hyperbolic”. Then the transfor-
mation Eq. (295) takes the form

ξ = (−b+
√
b2 − 4ac)x+ 2ay,

η = (−b−
√
b2 − 4ac)x+ 2ay.

(123)

Then the PDE given by Eq. (294) reduces to

−4a(b2 − 4ac)
∂2u

∂ξ∂η
+ g(ξ, η,

∂u

∂ξ
,
∂u

∂η
) = 0. (124)

If b2 − 4ac = 0, then L is termed as “parabolic”. In this case
Eq. (299) and Eq. (300) reduce to a single equation and
α/β = − b/2a forces the coefficient of ∂2u/ξ2 in Eq. (296) to
vanish. Further, since b2 = 4ac or b/2a = 2c/b, the coefficient

of
∂2u

∂ξ∂η
also vanish. Thus the transformation (c.f. Eq. (302))

ξ = −bx+ 2ay,
η = x(arbitrary),

(125)

can be used to transform Eq. (294) into

a
∂2

∂η2
+ g() = 0. (126)

This is the normal form of a parabolic quasilinear PDE.
For the final case, b2 − 4ac<0, and the operator L(u) is

said to be “elliptic”. In this case it is not possible to elimi-

nate the coefficients of
∂2u

∂ξ2
or
∂2u

∂η2
. Nevertheless, if we use

the transformation

ξ = 2ay − bx√
4ac − b2

, η = t (arbitrary), (127)

then L(u) = a(
∂2u

∂ξ2
+ ∂2u

∂η2
), and the general PDE has the

form

a(
∂2u

∂ξ2
+ ∂2u

∂η2
) + g(ξ, η,

∂u

∂ξ
,
∂u

∂η
) = 0. (128)

For the linear case

∂2u

∂ξ2
+ ∂2u

∂η2
= 0. (129)

which is the well-known Laplace’s equation.
Once a PDE has been reduced to its normal form, the

method of characteristic may be effectively used to find its
solution.

However, in the following we discuss the solution of a
particular hyperbolic equation, known as the “wave equa-
tion” by the use of “separation of the variables” which is a
popular approach in engineering.

The equation

c2 ∂
2u(x, t)
∂x2

− «u(x, t) = 0, c = constant, (130)

is a partial differential equation. The following notation
was used

«u(x, t) = ∂2u(x, t)
∂t2

.

The initial conditions are

u(x,0) = f (x), u̇(x,0) = g(x). (131)

The boundary conditions are

∂u

∂x
(0, t) = ∂u

∂x
(l, t) = 0. (132)

We seek the solution of Eq. (309) in the form of a product
of a function of time and a function of position

u(x, t) = U(x)ϕ(t). (133)

Introducing (313) into (309), we replace Eq. (309) by the
system of two ordinary equations

«ϕ + β2c2ϕ = 0, (134)

d2U

dx2
+ β2U = 0, (135)

where β is for the time being an undetermined parameter.
The solution of Eqs. (314) and (315) is

ϕ(t) = Asinωt + B cos ωt, (136)

U(x) = C sin βx+Dcos βx, (137)

where ω = βc.
We first consider the second boundary conditions (312).

They imply that C = 0 and

Dβ sin βl = 0.

The latter condition is satisfied if

βn = nπ

l
, (n = 0,1,2, . . . ,∞). (138)

It is evident that every value of βn is associated with a
particular solution of Eq. (309), viz.

un(x, t) = (An sinωnt + Bn cos ωnt)Dcos βnx. (139)
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The general solution of (309) takes the form

u(x, t) = n = 0
∑

un(x, t) = n = 0
∑

(An sinωnt + Bn cos ωnt)Dcos βnx.(140)

The constants An, Bn are to be found from the initial
conditions (311) i.e.

f (x) = n = 0
∑

DBn cos βnx, g(x) = n = 0
∑

DωnAn cos βnx.(141)

The functions

Un(x) = Dcos βnx, (142)

are the eigenfunctions of the problem. They are orthogonal,
i.e.

0
∫
Un(x)Um(x)dx = 0, if n �=m,

0
∫
U2
n (x)dx = l

2
D2, if n = m,

(143)

as can easily be verified by integration. The constant D is
arbitrary.

Assume that D2 = 2/l. Then 0
∫
U2
n (x)dx = 1 and the

eigenfunctions

Un(x) =
√

2
l
cos βnx =

√
2
l
cos

nπx

l
, (144)

are called normalized eigenfunctions.
Making use of the normalized eigenfunctions we can

rewrite relations (322) in the form

f (x) =
√

2
l
n = 0

∑
Bn cos βnx, g(x) =

√
2
l
n = 0

∑
ωnAn cos βnx.(145)

To find the coefficient Bn we multiply the first equation
(326) by cos βnx and integrate with respect to x from 0 to l.
Then, making use of the orthogonality relations, we obtain

Bn =
√

2
l
0
∫
f (x)cos βnx dx, (n = 1,2, . . . ,∞),

B0 = 1
2

√
2
l
0
∫
f (x)dx.

(146)

Similarly we have

An = 1
cβn

√
2
l
0
∫
g(x)cos βnx dx, (n = 1,2, . . . ,∞),

A0 = 0.
(147)

Introducing the values of An, Bn into Eq. (321), we arrive
at the final solution.
Example. We consider next the equation

c2 ∂
2u

∂x2
− «u = 0, (148)

with assuming homogeneous initial conditions (u(x,0) =
u̇(x,0) = 0) and the boundary conditions

u(0, t) = 0,
∂u

∂x
(l, t) = P(t). (149)

Performing the Laplace transform in Eq. (329) for the
above boundary conditions, we obtain

c2 d
2u

dx2
− s2u = −su(x,0) − u̇(x,0), (150)

u(0, s) = 0;
du

dx
(l, s) = P(s), (151)

where

u(x, s) = 0
∫
e−stu(x, t)dt, P(s) = 0

∫
e−stP(t)dt.

The right-hand side of Eq. (331) vanishes in view of the
homogeneous initial conditions, hence its solution can be
represented in the form

u(x, s) = A(s)e−sx/c + B(s)esx/c. (152)

The functions A (s), B (s) can be determined by means of
the boundary conditions (332):

A(s) = −B(s),

B(s) = P(s)c

2s cosh
sl

c

. (153)

Hence

u(x, s) = P(s)l
2

esx/c − e−sx/c
sl

c
cosh sl

c

,

i.e.

u(x, s) = P(s)l sinh sx

c

sl

c
cosh sl

c

. (154)

Now we invert the Laplace transform in (337). Taking into
account that

L−1(
sinh

sx

c

s cosh
sl

c

) = 2
π
n = 1

∑ (−1)n−1

n− 1
2

sin[(n− 1
2

)
πx

l
]

sin[(n− 1
2

)
πlt

c
],

and

L−1P(s) = P(t),

and making use of the convolution theorem was obtain

u(x, t) = 2c
π
n = 1

∑ (−1)n−1

n− 1
2

sin[(n− 1
2

)
πx

l
]

0
∫
P(τ)sin[

2n− 1
2

πl

c
(t − τ)]dτ.

(155)

In the particular case

P(t) = P0H(t),

where H (t) is the Heaviside function, we have from Eq.
(340)

u(x, t) = 8P0c
2

π2L
n = 1

∑ (−1)n−1

(2n− 1)2 sin
2n− 1

2
πx

l

[1 − cos
(2n− 1)πlt

2c
].

(156)

Assume thatP(t) = P0e
iωt acts at the end x = 0 of the fixed

rod. Taking into account that u(x, t) = U(x)eiωt , we trans-
form Eq. (329) to the form

c2 d
2U

dx2
+ ω2U = 0. (157)
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The boundary conditions take the form

U(0) = 0,
dU

dx
(l) = P0. (158)

The constants A, B appearing in the solution

U(x) = Asin
ωx

c
+ B cos

ωx

c
, (159)

of Eq. (343) are determined from the boundary conditions
(344). Finally we obtain

u(x, t) = P0ce
iωt

ω

sin ωx

c

cos ωl
c

. (160)

If the frequencyω approaches any of the eigenfrequency,
the displacement u tends to infinity. Thus, we are faced
with resonance.

APPLICATIONS

Problem 1. A sphere of mass m falls on a vertical spring as
shown in the Figure 7. The sphere makes contact with the
spring and the spring compresses. The compression phase
ends when the velocity of the sphere is zero. Next phase
is the restitution phase when the spring is expanding and
the sphere is moving upward. At the end of the restitution
phase there is the separation of the sphere.

Find and solve the equation of motion for the sphere in
contact with the spring.
Solution The x-axis selected downward as shown in the
Figure 7.

At the moment t = 0 it is assumed that the sphere gets in
contact with the spring and has the velocity v(t = 0) = v0 = v0

ı.
Using Newton’s second law, the equation of motion for

the sphere in contact with the spring is:

ma =G+Fe or mẍ = mg− kx. (161)

The acceleration of the sphere is a = ẍı, where x is the lin-
ear displacement. The weight of the sphere is G = m g ı,
where g is the gravitational acceleration. The contact elas-
tic force is Fe = −k x ı, where k is the elastic constant of the
spring. The initial conditions are

x(0) = 0 and ẋ(0) = v0.

With the notation
k

m
= ω2, (ω>0),

Equation (347) becomes

ẍ+ ω2x = g. (162)

Assume the solution of Eq. (350) has the following expres-
sion

x = a cos(ωt − ϕ0) + b. (163)

Then

ẋ = −aω sin(ωt − ϕ0) and ẍ = −aω2 cos(ωt − ϕ0).

Substituting Eq. (354) into Eq. (350)

−aω2 cos(ωt − ϕ0) + ω2[a cos(ωt − ϕ0) + b] = g,

the constant b is obtained

b = g

ω2
. (164)

Using the initial conditions (x(0) = 0 and ẋ(0) = v0) the fol-
lowing expressions are obtained

x(0) = a cos(−ϕ0) + b = a cos ϕ0 + b = 0,
ẋ(0) = −aω sin(−ϕ0) = aω sin ϕ0 = v0,

or

a cos ϕ0 = −b = − g

ω2
and a sin ϕ0 = v0

ω
.

It results

a =
√
g2

ω4
+ v2

0

ω2
,

tan ϕ0 = − v0ω

g
or ϕ0 = −arctan v0ω

g
.

(165)

The relation for the displacement of the sphere is

x− g

ω2
= (

√
g2

ω4
+ v2

0

ω2
)cos(ωt + arctan

v0ω

g
). (166)

If the sphere would be connected to the spring, it would
oscillate around the position x = g

ω2
.

The sphere reaches the maximum position on x-axis at
t = t1 when ẋ(t1) = 0

ẋ(t1) = −aω sin(ωt1 − ϕ0) = 0 ⇒ ωt1 − ϕ0 = π

or

t1 = π

ω
+ 1
ω
ϕ0 = π

ω
− 1
ω
arctan

v0ω

g
. (167)

At the moment t = t2 = 2 t1, the sphere attains again the ref-
erence O. At this moment, the sphere separates itself and
moves upward, and the spring compresses. The velocity of
the sphere at t = t2 is

ẋ(t2) = aω sin(ωt2 − ϕ0) = −v0. (168)

The contact time between the sphere and the spring is:

t2 = 2t1 = 2π
ω

− 2
ω
arctan

v0ω

g
. (169)

The jump in velocity is

�v = ẋ(0) − ẋ(t2) = v0 − (−v0) = 2v0. (170)

The displacement at t1 is

x(t1) = a cos(ωt1 − ϕ0) + b = a+ b =
√
g2

ω4
+ v2

0

ω2
+ g

ω2
,

and the relative displacement is:

λ = x(0) − x(t1) = 0 − x(t1) = −(
g

ω2
+

√
g2

ω4
+ v2

0

ω2
). (171)

Numerical Example. The sphere with mass m = 10 kg
falls falls from the height h = 1 m on the spring with the
elastic constant k = 294 × 103 N/m. The initial velocity of
the sphere is v0 =

√
2gh = 4.42945 m/s. The total time of

contact t2 is calculated with Eq. (362), t2 = 0.0184728 s.
The relative displacement is |λ| = 0.0261689 m and the

jump in velocity is calculated with Eq. (363), �= 8.85889
m/s.
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Figure 6. General classification

Figure 7. Sphe in contact with a spring

The maximum elastic force is Fe max = k x(t1) = k
|λ| = 7693.65 N. The maximum elastic force is approxi-
mative 76 greater then the weight of the sphere. For this
dynamical problem the displacement of the sphere is very
small, almost null, while the the jump in velocity is big.

Figure 8 represents the dependence of the displacement
of the sphere with respect to time calculated with Eq. (358).
Figure 9 shows the variation in time of the velocity of the
sphere in contact with the spring. At t = 0 the sphere gets
in contact with the spring and at t = t2 the sphere separates

from the spring. Note that the initial velocity is equal with
the absolute value of the final velocity. Figure 10 shows the
variation of the elastic force with respect to time.

Problem 2. A rod AB with the mass M and the length 6a
is connected to the ground at the pin joint O as shown in
Figure 11a. A mass m is attached to the rod at point A. The
rod is connected to two springs, with the elastic constant
k, as depicted in Figure 11a.

Determine the equation of motion of the system for
small oscillations if the initial angular velocity of the rod
is ω0. The gravitational acceleration is g.
Solution At equilibrium the rod rotated around the pivot
O with the angle θs (Figure 11b). The sum of the moments
of the forces acting on the rod with respect to O are∑

M
equil
0 ⇒ mg(2a) + kaθsa−Mga+ k(4a)θs(4a) = 0,

or

a(2mg−Mg+ 17kaθs) = 0. (172)

The equation of motion of the rod in rotation is

−IOθ̈ = MO,

where IO is the mass moment of inertia of the rod and mass
m with respect to O

IO = m(2a)2 + M(6a)2

12
+Ma2 = 4a2(m+M). (173)

Consider the rod in a position defined by the angle (θs + θ)
(Figure 11c). The sum of the moments with respect to the
axis of rotation through O are

MO = mg(2a) + ka(θs + θ)a−Mga+ k(4a)(θs + θ)(4a).
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Figure 8. The displacement of the sphere

Figure 9. The velocity of the sphere

Figure 10. The elastic force
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Figure 11. Small vibrations of a rod

With the equilibrium condition given by Eq. (367) the mo-
ment becomes

MO = 17ka2θ, (174)

and the equation of motion is

4a2(m+M)θ̈ + 17ka2θ = 0,

or

θ̈ + 17k
4(m+M)

θ = 0. (175)

This is the equation of a free harmonic vibration (small
oscillation) with the circular frequency

ω =
√

17k
4(m+M)

= 1
2

√
17k
m+M

.

The period of small oscillation is:

T = 2π
ω

= 4π

√
m+M

17k
.

The general solution of the differential equation Eq. (373)
is:

θ = C1 cos ωt + C2 sin ωt.
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The initial conditions for t = 0 are θ = 0 and θ̇ = ω0. It results
C1 = 0 and C2 = ω

ω0
. The solution of the problem is

θ = ω0

ω
sinωt.

Problem 3. Two external forces acts on a body with the
mass m: a force proportional with time (the proportionality
factor is equal to k1) and a medium resistant force which is
proportional with the velocity of the body (the proportion-
ality factor being equal to k2). The gravity is neglected.

Find and solve the equation of motion of the body.

Solution The differential equation of motion is m
dv

dt
=

k1t − k2v. The following notation is used k1t − k2v = u. The

derivative with respect to t gives k1 − k2
dv

dt
= du

dt
. Multi-

plying by m the following relation is obtained

k1m− k2m
dv

dt
= m

du

dt
or k1m− k2u = m

du

dt
. (176)

The previous relation is an equation with separable vari-
ables,

du

k1m− k2u
= 1
m
dt.

After integration,∫
du

k1m− k2u
= 1
m

∫
dt + C⇒ − 1

k2
ln|k1m− k2u| = t

m
+ C.

From the initial condition v(0) = 0 it results u(0) = 0, hence

− 1
k2
ln|k1m| = C.

Replacing the value of C, yields

− 1
k2
ln|k1m− k2u| = t

m
− 1
k2
ln|k1m|.

Multiplying by (−k2)

ln|k1m− k2u| = ln|k1m| − k2

m
t

hence

k1m− k2u = k1me
− k2
m t ⇒ k2u = k1m− k1me

− k2
m t.

Replacing u by its expression depending on v the following
relation is obtained

k2k1t − k2
2v = k1m− k1me

− k2
m t ⇒ v(t) = k1m

k2
2

e−
k2
m t + k1

k2
t − k1m

k2
2

.

Next the dependence of the space in time is obtained using
the equations

v(t) = ds(t)
dt

or s(t) =
∫
v(t)dt + C, and s(0) = s0.

Then yields,

s(t) =
∫

(
k1m

k2
2

e−
k2
m t + k1

k2
t − k1m

k2
2

)dt + C = −k1m
2

k3
2

e−
k2
m t + k1

2k2
t2 − k1m

k2
2

t + C.

The constant C is determined from the initial condition

s(0) = s0 ⇒ s0 = C − k1m
2

k3
2

or C = s0 + k1m
2

k3
2

.

The equation of the space is given by

s(t) = s0 + k1m
2

k3
2

− k1m

k2
2

t + k1

2k2
t2 − k1m

2

k3
2

e−
k2
m t.

Problem 4. (The emptying of a reservoir) A reservoir has
the shape of a rotational surface about a vertical axis with
a hole at the bottom. The hole has the area A. Find and
solve the equations of motion for the liquid located in the
reservoir.

The following particular cases are considered for the
reservoir:

a. spherical shape of radius R;
b. conical frustum with the smaller radius, R1, as base

radius, the larger radius, R2, as top radius, and the
height is H;

c. conical frustum with the larger radius, R2, as base
radius, the smaller radius, R1, as top radius, and the
height is H;

d. right cone with the vertex at the bottom;
e. cylindric shape.

Solution From hydrodynamics it is known the expression
of the leakage velocity of a fluid through an orifice v = k

√
h,

where h is the height of the free surface of the fluid.
The equation of the median radius of the reservoir is of

the form r = r(h). The volume of liquid that leaks during
the elementary time dt is evaluated in the following way.
Through the hole leaks the volume of liquid which fills a
cylinder with base A and height v dt

dV = Av dt = Ak
√
hdt.

On the other side, the differential volume which leaks is
dV = −π r2 dh. The following expression is obtained

Ak
√
h dt = −πr2dh.

It results a differential equation with separable variables

dt = − π

Ak

r2(h)√
h
dh.

Solving the integral it is found

t = − π

Ak

∫
r2(h)√
h
dh+ C.

From the initial condition h(0) = H the constant C can be
determined.

a. In the case of a spherical shape (Figure 12) the me-
dian radius can be written as r2 = h(2R − h). Then,

t = − π

Ak

∫
h(2R− h)√

h
dh+ C,
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or

t = − π

Ak
[2R

∫ √
hdh−

∫
h3/2dh] + C =

− π

Ak
[
4
3
Rh3/2 − 2

5
h5/2] + C.

Using the condition

h(0) = H,

yields

C = π

Ak
[
4
3
RH3/2 − 2

5
H5/2],

and hence

t = π

Ak
[
4
3
R(H3/2 − h3/2) − 2

5
(H5/2 − h5/2)].

The time T for which h(T) = 0 is T = π

Ak
H3/2(

4
3
R−

2
5
H).

For H = R (the sphere is full) it results T =
(
14
15

)
πR5/2

Ak
.

b. From the geometry of the conical frustum (Figure 13),
r − R1

h
= R2 − R1

H
, and r = R1 + R2 − R1

H
h. Then,

r2

√
h

= R2
1√
h

+ 2R1(R2 − R1)
H

√
h+ (

R2 − R1

H
)
2

h3/2 and

substituting it in the expression of t, after the cal-
culus of the integral, yields

t = − π

Ak
[2R2

1

√
h+ (

4
3

)
R1(R2 − R1)

H
h3/2 + (

2
5

)
R2 − R2

1

H
h5/2] + C.

Using the condition

h(0) = H,

it is found that

C = π

Ak
[2R2

1

√
H + (

4
3

)
R1(R2 − R1)

H
H3/2 + (

2
5

)
R2 − R2

1

H
H5/2],

and hence,

t = π

Ak
[2R2

1(
√
H −

√
h) + (

4
3

)
R1(R2 − R1)

H
(H3/2 − h3/2)

+ (
2
5

)
R2 − R2

1

H
(H5/2 − h5/2)].

The condition h(T) = 0 implies

T = π
√
H

Ak
[2R2

1 + 4
3
R1(R2 − R1) + 2

5
(R2 − R1)2].

c. From Figure 14,
r − R1

H − h
= R2 − R1

H
and yields, r =

R2 + R1 − R2

H
h.

If in the expression of r from case b), R1 is replaced
by R2, one can find the expression of r from case c).
Consequently, the expressions of t and T for the case
c) will be obtained from the corresponding expres-
sions obtained at b), in which R1 will be replaced by
R2 and R2 by R1

t = π

Ak
[2R2

2(
√
H −

√
h) + (

4
3

)
R2(R1 − R2)

H
(H3/2 − h3/2)

+ 5
2

(
R1 − R2

H
)
2

(H5/2 − h5/2)],

T = π
√
H

Ak
[2R2

2 + 4
3
R2(R1 − R2) + 2

5
(R1 − R2)2].

Comparing the expressions of T for the cases b)
and c) and denoting by T

′ the expression in case c) it
results

T ′ − T = π
√
H

Ak
[2(R2

2 − R2
1) + 4

3
R2R1 − 4

3
R2

2 − 4
3
R1R2

+4
3
R2

1 + 2
5

(R1 − R2)2 − 2
5

(R2 − R1)2]

= π
√
H

Ak

2
3

(R2
2 − R2

1),

or,

T ′ = T + 2
3
π
√
H

Ak
(R2

2 − R2
1).

d. It is obtained from case b), taking R1 = 0, R2 = R.
Hence,

t = 2πR2

5AkH2
(H5/2 − h5/2) and T = 2πR2

5Ak

√
H.

e. It is obtained from case b), taking R1 = R2 = R. Then,

t = 2πR2

Ak
(
√
H −

√
h) and T = 2πR2

Ak

√
H.

Problem 5. Find the general solution of equation
y

y′ =
x+

√
x2 + y2.

Solution The equation can be written in the form y
dx

dy
=

x+
√
x2 + y2 or,

dx

dy
= x

y
+

√
x2

y2
+1..

Using the replacement
x

y
= u or x = yu. It results

dx

dy
= u+ y

du

dy
⇒ u+ y

du

dy
= u+

√
u2 + 1 ⇒ du√

u2 + 1
=

dy

y
⇒

∫
du√
u2 + 1

=
∫

dy

y
+ln c⇒ ln(u+

√
u2 + 1) =

ln y + ln c⇒ u+
√
u2 + 1 = cy⇒ x

y
+

√
x2

y2
+1 =
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Figure 12. Spherical reservoir

Figure 13. Conical frustum with smaller radius as base radius

Figure 14. Conical frustum with larger radius as base radius

Figure 15. The path of the swimmer

cy⇒
√
x2 + y2 = cy2 − x⇒ x2 + y2 = c2y4 − 2cxy2 +

x2 ⇒ c2y2 = 2cx+ 1 is the general solution.

Problem 6. (The problem of the swimmer) To cross a river,
a swimmer starts from a point P on the bank. He wants
to arrive at the point Q on the other side. The velocity of
the river is constant and equal to v1 = k1 and the velocity of
swimmer the is v2 = k2 where k2 is constant. Find the trajec-
tory described by the swimmer, knowing that the velocity
of the swimmer is always directed toward Q.
Solution Select Q as the origin of the system as shown
in Figure 15. Consider that M is the swimmer position at
time t. The components of the absolute velocity on the two
axes Ox and Oy are

dx

dt
= k1 − k2

x√
x2 + y2

,

dy

dt
= −k2

y√
x2 + y2

.

Dividing the previous relation it results

dx

dy
= x

y
− k

√
x2

y2
+ 1,

where k = k1

k2
.

The following notation is used x = yu and
dx

dy
= u+ y

du

dy
.

The differential equation becomes

y
du

dy
= −k

√
u2 + 1 or

du√
u2 + 1

= −k dy
y
.

After integration results

ln(u+
√
u2 + 1) = −k ln y + ln c(c>0) or u+

√
u2 + 1 = cy−k.
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Then, yields

u = 1
2

(
c

yk
− yk

c
).

Returning at x and y, x = 1
2
y(
c

yk
− yk

c
). From the conditon

for trajectory to pass through the initial point P(x0, y0) the
constant c is c = yk−1

0 (x0 +
√
x2

0 + y2
0).

The condition for trajectory to pass through Q is written

as y→ 0lim
1
2
y(
c

yk
− yk

c
) = 0 and it is possible if k<1.

For k1 = 0, k = 0 and the trajectory has the equation x =
x0

y0
y, i.e., the linear segment between P and Q.

Problem 7. Determine the minimum velocity of a body
thrown vertically upwards so that the body will not return
to the Earth. The air resistance is neglected.
Solution Denote the mass of the Earth by M and the mass
of the body by m. Using Newton’s law of gravitation, the

force of attraction f acting on the body m is f = k
Mm

r2
,

where r is the distance between the center of the Earth and
the center of gravity of the body and k is the gravitational
constant. The differential equation of the motion for the
body is

m
d2r

dt2
= −k Mm

r2
or

d2r

dt2
= −k M

r2
. (177)

The minus sign indicates a negative acceleration. The dif-
ferential Eq. (415) will be solved for the following initial
conditions

r(0) = R and
dr(0)
dt

= v0. (178)

Here, R is the radius of Earth and v0 is the launching veloc-

ity. The following notations are used
dr

dt
= v⇒ d2r

dt2
= dv

dt
=

dv

dr
(
dr

dt
) = v

dv

dr
, where v is the velocity of motion. Substi-

tuting in Eq. (415), results v
dv

dr
= −k M

r2
. Separating vari-

ables, it is found vdv = −kM dr

r2
. Integrating this equation,

yields
v2

2
= kM

1
r

+c1. From conditions (416), c1 is found

v2
0

2
= kM(

1
R

) + c1,

or,

c1 = −kM
R

+ v2
0

2
,

and

v2

2
= kM

1
r

+ (
v2

0

2
− kM

R
). (179)

The body should move so that the velocity is always pos-

itive, hence
v2

2
>0. Since for a boundless increase of r

the quantity
kM

R
becomes arbitrarily small, the condition

v2

2
>0 will be fulfilled for any r only for the case

v2
0

2
− kM

R
≥ 0 or v0 ≥

√
2kM
k
.

Hence, the minimal velocity is determined by the equation

v0 =
√

2kM
R

, (180)

where k = 6.66(10−8) cm3/(g s2), R = 63(107) cm. At the
Earth’s surface, for r = R, the acceleration of gravity is
g = 981 cm/s2. For this reason, from Eq. (415) yields g =
k
M

R2
or M = gR2

k
. Substituting this value of M into Eq.

421 it results

v0 =
√

2gR =
√

2(981)(63)(107) ≈ 11.2(105) cm/s = 11.2 km/s.
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