
68 DUALITY, MATHEMATICS

DUALITY, MATHEMATICS

The term duality used in our daily life means the sort of har-
mony of two opposite or complementary parts by which they
integrate into a whole. Inner beauty in natural phenomena is
bound up with duality, which has always been a rich source of
inspiration in human knowledge through the centuries. The
theory of duality is a vast subject, significant in art and natu-
ral science. Mathematics lies at its root. By using abstract
languages, a common mathematical structure can be found in

3 many physical theories. This structure is independent of the
physical contents of the system and exists in wider classes of
problems in engineering and sciences (see Ref. 1).

According to Tonti (2), for every physical theory we can
identify (a) some configuration variables that describe the
state of the system and (b) some source variables that describe
the source of the phenomenon. The displacement vector in
continuum mechanics and the scalar potential in electrostat-
ics are examples of configuration variables. Forces and
charges are examples of source variables. Besides these two
types of quantities, there are also some paired (i.e., one-to-
one) intermediate variables that describe the internal (or con-
stitutive) properties of the system, such as velocity and mo-
mentum in dynamics, electrical field intensity and the flux
density in electrostatics, and the two electromagnetic tensors
in electromagnetism.

Let U and U * be, respectively, the real vector spaces of
configuration variables and source variables, and let V and
V * denote the paired intermediate variable spaces. By intro-
ducing a so-called geometric operator � : U � V and an equi-
librium operator B : V * � U *, such that the duality relation
between V and V * is a one-to-one mapping, the primal sys-
tem S p :� �U , V ; �� and the dual system S d :� �U *, V *; B�
are linked into a whole system S � S p � S d. The system is
called geometrically linear if � is linear. In this case, B is the
adjoint operator of �. If � is an m � n matrix, then S is
a finite-dimensional algebraic system. Optimization in such
systems is known as mathematical programming. If � is a
continuous (partial) differential operator, then S is an infi-
nite-dimensional (partial) differential system, and optimiza-
tion problems fall into the calculus of variations. It is shown
in Ref. 3 that under certain conditions, if there is a theorem
in the primal system S p, then in the dual system S d there
exists a complementary theorem and vice versa. If there is a
theorem defined on the whole system S , then exchanging the
dual elements in this theorem leads to another parallel theo-
rem. Generally speaking, the theory of duality is the study of
the intrinsic relations between the primal system S p and the
dual system S d.

In the theory of optimization, let P : U � � and P* : V * �
� be real-valued functions. If P(u) � P*(v*) for all vectors
(u, v*) in the Cartesian product space U � V *, then an infi-
mum of P and a supremum of P* exist and inf P(u) � sup
P*(v*). Under certain conditions we have inf P(u) � sup
P*(v*). A statement of this type is called a duality theorem.
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Let L(u, v*) : U � V * � � be a so-called Lagrangian form. The readers who are interested primarily in the finite-di-
mensional case will not need knowledge of convex analysis inUnder certain conditions we have infu supv* L(u, v*) � supv*

infu L(u, v*). Such a statement is called a minimax theorem. what follows. Instead, they can simply interpret U � U * �
�n, V � V * � �m, with (u, u*) and �v, v*� as the ordinaryIn convex optimization, the minimax theorem is connected to

a saddle-point theorem. The main purpose of the theory of inner products on the Euclidean spaces �n and �m, respec-
tively. In this case, we can of course identify � with a certainduality in mathematical optimization is to make inquiries

about a corresponding pair of optimization problems, namely, m � n matrix A � �aij�, and
(a) the primal problem to find u such that P(u) � infu P(u)
and (b) the dual problem to find v* such that P*(v*) � supv*
P*(v*) and to discover relations between corresponding dual- 〈Auuu,vvv∗〉 =

m∑
j=1

n∑
i=1

ajiuiv
∗
j =

n∑
i=1

ui

�
m∑

j=1

ajiv
∗
j

�
= (uuu, A∗vvv∗)

ity, minimax, and theorems of critical points. In numerical
analysis, the primal problem provides only upper-bound ap-

So the adjoint of � � A is a transpose matrix A* � AT.proaches to the solution. However, the dual problem will give
A subset C � U is said to be a convex set if for any givena lower bound of solutions. The numerical methods to find the

� � [0, 1], we haveprimal–dual solution (u, v*) in each iteration are known as
primal–dual methods. In finite element analysis of boundary

θuuu1 + (1 − θ )uuu2 ∈ C ∀uuu1,uuu2 ∈ C
value problems, such methods as mixed/hybrid methods have
been studied extensively by engineers for more than 30 years. By a convex function F : U � �

}
:� [��, 	�] we shall mean

In the past decade, primal–dual algorithms have emerged as that for any given � � [0, 1], we obtain
the most important and useful algorithms for mathematical
programming (4).

Duality in natural science is amazingly beautiful. It has
F(θuuu1 + (1 − θ )uuu2) ≤ θF(uuu1) + (1 − θ )F(uuu2) ∀uuu1,uuu2 ∈ U

(4)
excellent theoretical properties, powerful practical applica-
tions, and pleasing relationships with the existing fundamen- F is strictly convex if the inequality is strict. The indicator
tal theories. In geometrically linear systems, the common function of a subset C � U is defined by
mathematical structure and theorems take particularly sym-
metric forms. The duality theory has been well studied for
both convex problems (see Refs. 5–8) and nonconvex problems �C(uuu) =

{
0 if uuu ∈ C

+∞ otherwise
(5)

(see Refs. 9 and 10). However, in geometrically nonlinear sys-
tems, where � is a nonlinear operator, such symmetry is bro-

which plays an important role in constrained optimization.ken. The duality theory in these systems was studied in Ref.
This is a convex function if and only if C is convex.11. An interesting triality theorem in nonconvex systems has

A function F on U is said to be proper if F(u) 
 �� �u �been discovered recently in Refs. 12 and 13, which can be
U and F(u) � 	� for at least one u. Conversely, given aused either to solve some nonlinear variational problems or
convex function F defined on a nonempty convex set C , oneto develop algorithms for numerical solutions in nonconvex,
can set F(u) � F(u) 	 
C (u). In this way one can relax thenonsmooth optimization (see Ref. 3).
constraint u � C on F to get a proper function F(u) 	 
C (u)
on the whole space U .

FRAMEWORK AND CANONIC EQUATIONS A function F on U is lower semicontinuous (l.s.c.) if

Let U , U * and V , V * be two pairs of real vector spaces, finite- lim
uuun→uuu

inf F(uuun) ≥ F(uuu) ∀uuu ∈ U (6)
or infinite-dimensional, and let (*, *) : U � U * � � and �*,
*� : V � V * � � be certain bilinear forms. We say that these

So 
C (u) is l.s.c. if and only if C is closed. A function F is saidtwo bilinear forms put the paired spaces U , U * and V , V *
to be concave, upper semicontinuous (u.s.c.) if �F is convex,in duality, respectively. Let the geometric operator � be a con-
l.s.c. The theory of concave functions thus parallels the theorytinuous linear transformation from U to V . The equilibrium
of convex functions, with only the obvious and dual changes.operator B in geometrically linear system is simply the adjoint

If F is finite on C , the Gâteaux variation of F at u � C inoperator �* : V * � U * defined by
the direction v is defined as

〈�uuu,vvv∗〉 = (uuu,�∗vvv∗ ) ∀uuu ∈ U ,vvv∗ ∈ V ∗ (1)
δF(uuu;vvv) = lim

θ→0+
F(uuu + θvvv) − F(uuu)

θ
(7)

Thus the two paired dual spaces U , U * and V , V * are linked,
respectively, by a so-called geometrical (or definition) equa-

F(u) is said to be Gâteaux (or G-) differentiable at u if �F(u;tion:
v) � (DF(u), v), where DF : C � U � U * is called the Gâteaux
derivative of F. In finite-dimensional space, the Gâteaux vari-vvv = �uuu (2)
ation is simply the directional derivative, and DF � �F.

Let F and V be two real-valued functions. Throughout thisand an equilibrium equation:
article we assume that F and V are (a) convex or concave and
(b) G-differentiable on the convex sets C � U and D � V ,uuu∗ = �∗vvv∗ (3)
respectively. Then the two duality equations between the
paired spaces U , U * and V , V * can be given byIn calculus of variations, if � is a gradient-like operator, its

adjoint �* should be a divergence-like operator, Eq. (1) is
uuu∗ = DF(uuu), vvv∗ = DV (vvv) (8)then the well-known Gauss–Green formula.
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where G(u, v*) is the so-called complementary gap function
introduced in Ref. 11:

G(uuu,vvv∗) = 〈−�n(uuu)uuu,vvv∗〉 (15)

In geometrically nonlinear systems, this gap function recovers
the duality theorems in convex optimization and plays an im-
portant role in nonconvex problems.

F(u) F*(u*)

V*(v*)V(v)

V V *

(u, u*)C

Λ*  for linear Λ,

Λ*  for nonlinear Λ,t

B =Λ

�v, v*�

U *U

D

C*

D*

Example 1. Let us consider a mixed boundary value problemFigure 1. Framework in fully nonlinear systems.
in electrostatics:

div[ε grad φ(x)] + ρ(x) = 0 ∀x ∈ 	 ⊂ R
n (16)In mathematical physics, the duality equation v* � DV(v) is

known as the constitutive equation. However, the duality
equation u* � DF(u) usually gives natural boundary condi-
tions in variational boundary value problems.

φ(x) = 0 ∀x ∈ 
1

nnn · grad φ(x) = Dn ∀x ∈ 
2


1 ∪ 
2 = ∂	

(17)

Let U a � �u � U � u � C , �u � D � be a so-called feasible
set. On U a, the three types of canonical equations, Eqs. (2),

The configuration u is the electrostatic potential �(x). The(3) and (8), can be written in a so-called fundamental equa-
source variable is the charge density u* � �(x) in � and elec-tion:
tric flux u* � Dn on �2. � is the dielectric constant. n � �n is
a unit vector normal to the boundary. Let � � �grad, and�∗DV (�uuu) = DF(uuu) (9)
thus v � �grad � is the electric field intensity, denoted by E.
Let D � H (�; �n) be a Hilbert space with domain � andThe system is called physically linear if both duality equa-
range �n, C � �� � H (�; �)� �(x) � 0 �x � �1�, andtions are linear. The system is called geometrically linear if

the geometric operator � : U � V is linear. By the term linear
system we mean that it is both geometrically and physically
linear. In this case, if, for a given u* � U *, F(u) � (u, u*) is

F(φ) =
∫

	

ρφ d	 +
∫


2

φDn d
 − �C (φ) (18)

linear and V(v) � ���Cv, v� is quadratic, where C : V � V * is
a linear operator, then the fundamental equation can be writ- V (EEE) =

∫
	

1
2

εEEETEEE d	 + �D(EEE) (19)
ten as

So on C and D , F and V are finite, G-differentiable. Thus�∗C�uuu = uuu∗ (10)
D � DV(E) � �E is the electric flux density, u*(x) � DF(�) �
��(x) �x � �, Dn �x � �2�. By the Gauss–Green theorem,If C is symmetric, then the operator K � �*C� : U � U * is

self-adjoint K � K*. In partial differential systems, K is an
elliptic operator if C is either positive or negative definite,
whereas K is hyperbolic if C is nonsingular and indefinite.

The common mathematical structure in geometrically lin-
ear systems is shown in Fig. 1. In the textbook by Strang (1),

〈�φ,DDD〉 =
∫

	

(−grad φ) · DDD d	

=
∫

	

φ(∇ · DDD) d	 −
∮

∂	

φnnn · DDD d
 = (φ,�∗DDD)

this nice symmetrical structure can be seen from continuous
Hence, the adjoint operator �* and the abstract equilibriumtheories to discrete systems. However, the symmetry in this
equation (3) arestructure is broken in geometrically nonlinear systems where

� is a nonlinear operator. If we assume that v � �(u) is Gâ-
teaux differentiable, then it can be split as uuu∗ = �∗DDD =

{
divDDD = ρ in 	

−nnn · DDD = Dn on 
2

(20)

� = �t + �n (11)

The fundamental equation, Eq. (10), in this problem is a Pois-where �t is the G-derivative of � and �n � � � �t, both of
son equation and K � �*C� � ��� is a Laplace operator forthem depending on u (see Ref. 11). For a given u* � U *, the
constant � � �.virtual work principle gives

FENCHEL–ROCKAFELLAR DUALITY〈δvvv(uuu;uuu),vvv∗〉 = (uuu,�∗
t (uuu)vvv∗ ) = (uuu,uuu∗

) ∀uuu ∈ U (12)

In this case, the equilibrium operator B � �*t : V * � U * is For a given function V : V � �
}

, its conjugate function is de-
the adjoint of �t, which depends on the configuration variable. fined by the following Fenchel transformation:
Then the equilibrium equation in geometrically nonlinear sys-
tems should be V ∗(vvv∗) = sup

vvv∈V

{〈vvv,vvv∗〉 − V (vvv)} (21)

�∗
t (uuu)vvv∗ = uuu∗ (13)

which is always l.s.c. and convex on V *. The following Fen-
chel–Young inequality holds:The relation between the two bilinear forms is then

V (vvv) ≥ 〈vvv,vvv∗〉 − V ∗(vvv∗) ∀vvv ∈ V ,vvv∗ ∈ V ∗ (22)〈�(uuu),vvv∗〉 = (uuu,�∗
t (uuu)vvv∗) − G(uuu,vvv∗) (14)
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If V is strictly convex, G-differentiable on a convex set D � If U a is an open set, the critical point u should be a global
minimizer of the convex function P on U a. Similarly, the criti-V , then Eq. (21) is the classical Legendre transformation, and
cal condition DP*(v*) � 0 gives the dual Euler–Lagrangethe following relations are equivalent to each other:
equation of (P *sup):

vvv∗ = DV (vvv) ⇔ vvv = DV ∗(vvv∗) ⇔ V (vvv) + V ∗(vvv∗ ) = (vvv,vvv∗ ) (23)
�DF∗(�∗vvv∗

) − DV ∗(vvv∗
) = 0 (33)

In this section we assume that If V *a is an open set, v* should be a global maximizer of the
concave function P* on V *a .

We say that (P inf) is stable if there exists at least one vec-
tor u0 � U such that F is finite at u0 and V(v) is finite and
continuous at v � �u0.

(A1)


V : V →

→
R := (−∞, +∞] is proper, convex and l.s.c.

F : U →
←
R := [−∞,+∞) is proper, concave and u.s.c.

(24)

Strong Duality Theorem 1. (P inf) is stable if and only if
The conjugate function of a concave function F is defined by (P *sup) has at least one solution and

inf P = max P∗ (34)F∗(uuu∗ ) = inf
uuu∈U

{(uuu,uuu∗) − F(uuu)} (25)

Dually, (P *sup) is stable if and only if (P inf) has at least one
Let C � U be a nonempty convex set on which F is finite, G- solution and
differentiable, and define C *, D , and D * similarly for F*, V,
and V*. Then on C * and D *, the duality equations are invert- min P = sup P∗ (35)
ible and

If (P inf) and (P *sup) are both stable, then both have solutions
anduuu = DF∗(uuu∗), vvv = DV ∗(vvv∗) (26)

+∞ > min P = max P∗ > −∞ (36)Two extremum problems associated with the fundamental
equation, Eq. (9), are This theorem shows that as long as the primal problem is

stable, the dual problem is sure to have at least one solution.
However, the existence conditions for the primal solution are(Pinf) minimize P(uuu) = V (�uuu) − F(uuu) ∀uuu ∈ U (27)

stronger.(P ∗
sup) maximize P∗(vvv∗) = F∗(�∗vvv∗) − V ∗(vvv∗)

∀vvv∗ ∈ V ∗ (28)

Existence and Uniqueness Theorem. Let U be a reflexive
(i.e., U � U **) Banach space with norm � �. We assume thatNote that P : U � �

�

is l.s.c., convex. It is finite at u if and
the feasible set U a � U is a nonempty closed convex subsetonly if the following implicit constraint of (P inf) is satisfied:
and conditions in (A1) hold. If C is bounded, or if P is coercive
over C , i.e. if

uuu ∈ Ua := {uuu ∈ U |uuu ∈ C , �uuu ∈ D} (29)
lim P(uuu) = +∞ ∀uuu ∈ C , ‖uuu‖ → ∞

A vector u � U a is called an optimal solution (or minimizer)
Then the problem (P inf) has at least one minimizer. The mini-to (P inf) if the infimum is achieved at u and is not 	�. We
mizer is unique if P is strictly convex over C .write P(u) � minu P(u). Similarly, the condition

All finite-dimensional spaces are reflexive. But some infi-vvv∗ ∈ V ∗
a := {vvv∗ ∈ V ∗|vvv∗ ∈ D, �∗vvv∗ ∈ C ∗} (30)

nite-dimensional vector spaces are not reflexive. So the pri-
mal solution in infinite-dimensional systems may or may not

is called the implicit constraint of (P *sup). A vector v* � V *a is
exist. If the primal solution does not exist, the dual problem

a dual optimal solution (or maximizer) to (P *sup) if the supre- can provide a generalized solution of the problem.
mum in (P *sup) is achieved at v* and is not ��. We write
P*(v*) � maxv* P*(v*). Dual Equivalence Theorem. The following statements are

For any given F and V, we always have equivalent to each others:

inf P(uuu) ≥ sup P∗(vvv∗) ∀uuu ∈ U ,vvv∗ ∈ V ∗ (31) 1. (P inf) is stable and has a solution u.
2. (P *sup) is stable and has a solution v*.

The difference inf P � sup P* is the so-called duality gap. The 3. The extremality relation P(u) � P*(v*) is satisfied.
duality gap is zero if P is convex.

A vector u � U a is called a critical point of P if P is G- On U a and V *a , the extremality condition P(u) � P*(v*)
differentiable at u and DP(u) � 0, which gives the Euler– and the Euler–Lagrange equations, Eqs. (32) and (33), are
Lagrange equation of (P inf): equivalent to each other. On the convex sets U a and V *a , the

extremum problems (P inf) and (P sup) and the following varia-
tional inequalities are equivalent to each other in the sense�∗DV (�uuu) − DF(uuu) = 0 (32)
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that they have the same solution set. then (u, v*) is a saddle point. Conversely, if L(u, v*) possesses
a saddle point (u, v*) � U � V *, then the following minimax
theorem holds:(PVI) (DP(uuu),uuu − uuu) ≥ 0 ∀uuu ∈ Ua (35)

(DVI) 〈DP∗(vvv∗
),vvv∗ − vvv∗〉 ≤ 0 ∀vvv∗ ∈ V ∗

a (36) L(uuu,vvv∗
) = min

uuu∈C
max

vvv∗∈V ∗ L(uuu,vvv∗) = max
vvv∗∈D∗ min

uuu∈U
L(uuu,vvv∗ ) (47)

Furthermore, if C � �u � U � u � 0� is a convex cone, C * �
This theorem shows that the existence of a saddle point�u* � U *� u* � 0� is its polar cone, then these problems are

implies the existence of a minimax point. However, the in-equivalent to the following nonlinear complementarity prob-
verse result holds only on C � D *. This is because maxV *lem (NCP):
L(u, v*) may not necessarily exist for all u � U and also
minU L(u, v*) may not necessarily exist for all v* � V *.(NCP) sss = DP(uuu), uuu ∈ C ,sss ∈ C ∗,uuu⊥sss (37)

The function L(u, v*) is said to be a Lagrangian form of
problem (P *sup) ifwhere s � C * is the so-called vector of dual slacks. The com-

plementarity condition u � s means that u and s are perpen-
L(uuu,vvv∗) = 〈�uuu,vvv∗〉 − V ∗(vvv∗) − F(uuu) (48)dicular to each other. Conditions in Eq. (39) are called the

Karush–Kuhn–Tucker (KKT) constraint qualification in con-
A vector u � U is said to be a Lagrange multiplier for (P *sup)vex programming. To construct the dual complementarity
if u is an optimal solution to (P inf).problem, we need the inverse operator ��1 (see Ref. 12). In

Dually, the Lagrangian form of problem (P inf) is defined byinfinite-dimensional systems, to find ��1 is usually very dif-
ficult. L∗(uuu,vvv∗) = −〈�uuu,vvv∗〉 + V (�uuu) + F∗(�∗vvv∗) (49)

which is also called the conjugate Lagrangian form. A vectorLAGRANGE DUALITY AND HAMILTONIAN
v* � V * is said to be a Lagrange multiplier for (P inf) if v* is
an optimal solution to (P *sup). Obviously, we have L 	 L* �In order to study duality theory in nonconvex problems, we
P 	 P*. If � : U � V and �* : V * � U * are one-to-one andneed the so-called Lagrangian form. Let L : U � V * � �

}
be

surjective, then the duals of the following results about L alsoan arbitrarily given real-valued function. The following in-
hold for L*.equality is always true:

A point (u, v*) � C � D * is said to be a critical point of L
if L is G-differentiable at (u, v*) with respect to both u andsup

vvv∗∈V ∗
inf
uuu∈U

L(uuu,vvv∗) ≤ inf
uuu∈U

sup
vvv∗∈V ∗

L(uuu,vvv∗ ) (40)
v* separately and

A point (u, v*) is said to be a minimax point of L if DuuuL(uuu,vvv∗
) = 0, ⇒ �∗vvv ∗ = DF(uuu) (50)

Dv∗v∗v∗ L(uuu,vvv∗
) = 0, ⇒ �uuu = DV ∗(vvv∗

) (51)sup
vvv∗∈V ∗

inf
uuu∈U

L(uuu,vvv∗ ) = L(uuu,vvv∗
) = inf

uuu∈U
sup

vvv∗∈V ∗
L(uuu,vvv∗) (41)

It is easy to establish the following result:
A point (u, v*) is said to be a saddle point of L if

Critical Points Theorem. If (u, v*) � C � D * is either a
L(uuu,vvv∗) ≤ L(uuu,vvv∗

) ≤ L(uuu,vvv∗
) ∀(uuu,vvv∗ ) ∈ U × V ∗ (42) saddle point or a super (or sub) critical point of L, then (u,

v*) is a critical point of L, DP(u) � 0, DP*(v*) � 0 and
A point (u, v*) is said to be a subcritical (or ��-critical) point
of L if P(uuu) = L(uuu,vvv∗

) = P∗(vvv∗
) (52)

L(uuu,vvv∗) ≥ L(uuu,vvv∗
) ≤ L(uuu,vvv∗

) ∀(u,vvv∗ ) ∈ U × V ∗ (43) If F : U � �
�

is u.s.c., concave, and V : V � �
�

is l.s.c., con-
vex, then L is a saddle function, and

A point (u, v*) is said to be a supercritical (or �	-critical) point
of L if P(uuu) = sup

vvv∗∈V ∗
L(uuu,vvv∗), P∗(vvv∗) = inf

uuu∈U
L(uuu,vvv∗) (53)

L(uuu,vvv∗) ≤ L(uuu,vvv∗
) ≥ L(uuu,vvv∗

) ∀(uuu,vvv∗ ) ∈ U × V ∗ (44)
In this case, P(u) � L(u, v*) � P*(v*) �(u, v*) � U � V *,
and we haveObviously, the function L possesses a saddle point (u, v*) on

U � V * if and only if
Saddle Point Theorem. (u, v*) is a saddle point of L if and
only if u is a primal solution of (P inf), v* is a dual solution ofmax

vvv∗∈V ∗ inf
uuu∈U

L(uuu,vvv∗ ) = min
uuu∈U

sup
vvv∗∈V ∗

L(uuu,vvv∗ ) = L(uuu,vvv∗
) (45)

(P *sup), and inf P � sup P*.

In general, we have the following connection between the If both F : U � �
�

and V : V � �
�

are convex, l.s.c., then
minimax theorem and the saddle point theorem: L : U � V * � �

�

is a supercritical function and

Minimax Theorem. If there exists a minimax point (u, v*) P(uuu) = sup
V ∗

L(uuu,vvv∗ ), P∗(vvv∗) = sup
uuu∈U

L(uuu,vvv∗) (54)
� U � V * such that

In this case, both P and P* are nonconvex and P(u) � L(u,
v*) � P*(v*) �(u, v*) � U � V *.

L(uuu,vvv∗
) = min

uuu∈U
max

vvv∗∈V ∗ L(uuu,vvv∗) = max
vvv∗∈V ∗ min

uuu∈U
L(uuu,vvv∗) (46)
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Dual Max–Min Theorem. If (u, v*) � C � D * is a super- versely, if there exists a uo � C such that Kuo � C *, then for
a given critical point u of Ic, any vector u � Ker K 	 u is acritical point of L, then either
critical point of I.

P(uuu) = sup
uuu∈U

P(uuu) = sup
vvv∗∈V ∗

P∗(vvv∗) = P∗(vvv∗
) (55)

A comprehensive study of duality theory in linear dynam-
ics is given in Ref. 15.or

P(uuu) = inf
uuu∈U

P(uuu) = inf
vvv∗∈V ∗ P∗(vvv∗) = P∗(vvv∗

) (56)
PRIMAL–DUAL SOLUTIONS AND CENTRAL PATH

Proof. Since P(u) � L(u, v*) � P*(v*), if u maximizes P, then Let us now demonstrate how the above scheme fits in with
finite-dimensional linear programming. Let U � U * � �n,
V � V * � �m, with the standard inner products (u, u*) �
uTu* in �n, and �v, v*� � vTv* in �m. For fixed u* � c � �n

and v � b � �m, the primal problem is a constrained linear

P(uuu) = sup P(uuu) = sup
uuu

sup
vvv∗

L(uuu,vvv∗ ) = sup
vvv∗

sup
uuu

L(uuu,vvv∗)

= sup
vvv∗

P∗(vvv∗) = P∗(vvv∗
)

(57)

optimization problem:
as we can take the suprema in either order. If u minimizes
P, then (Plin) min

uuu∈Rn
(ccc,uuu) s.t. Auuu = bbb,uuu ≥ 0 (62)

where A � �m�n is a matrix. To reformulate this linear con-
P(uuu) = inf P(uuu) = inf

uuu
sup

vvv∗
L(uuu,vvv∗) = L(uuu,vvv∗

)

strained optimization problem in the model form (P inf), we
Since v* is a critical point of P*, it could be either a local need to set � � A, C � �u � �n� u � 0�, and D � �v � �m� v
extremum point or a saddle point of P*. If v* is a saddle point � b�, and let
of P* and it maximizes P* in the direction v*o , then we have

F(uuu) = −(ccc,uuu) − �C (uuu), V (vvv) = �D (vvv)
P∗(vvv∗

) = sup
θ≥0

P∗(vvv∗ + θvvv∗
o ) = sup

uuu
sup
θ≥0

L(uuu,vvv∗ + θvvv∗
o ) = sup

uuu
P(uuu)

The conjugate functions in this elementary case may be calcu-
lated at once asBut u is a minimizer of P. This contradiction shows that v*

must be a minimizer of P*.

In geometrically linear systems, the Lagrangian L is usu-
ally a saddle function for static problems. But in dynamic

V ∗(vvv∗ ) = sup
vvv∈D

〈vvv,vvv∗〉 = 〈bbb,vvv∗〉 ∀vvv∗ ∈ D∗ = R
m

F∗(uuu∗ ) = inf
uuu∈C

(uuu,uuu∗ + ccc) = −�C ∗ (uuu∗ + ccc)

problems, L is usually a supercritical function. If V is a kinetic
energy and F is a potential energy, then P is called the total where C * is a polar cone of C . Let p � �v* � �m, the dual
action and P* is called the dual action. problem (P *sup) can be written as

By using the Legendre transformation, the Hamiltonian
H : U � V * � �

}
can then be obtained from the Lagrangian (P ∗

lin) max
ppp∈Rm

{P∗(ppp) = 〈bbb, ppp〉 − �C ∗ (ccc − A∗ppp)} (63)
as

The implicit constraint in this problem isH(uuu,vvv∗) = 〈�uuu,vvv∗〉 − L(uuu,vvv∗) (58)

ppp ∈ V ∗
a = {ppp ∈ Rm |ccc − A∗ppp ≥ 0}If H is G-differentiable on C � D *, we have the following

Hamiltonian canonical equations:
For a given � � �	 :� �� � ��� � 0�, let

�uuu = Dvvv∗ H(uuu,vvv∗), �∗vvv∗ = DuuuH(uuu,vvv∗ ) (59)
�α( ppp) = 1

2 α‖(A∗ppp − ccc)+‖2

If � � d/dt, its adjoint should be �* � �d/dt. If V(�u) �
����u, C�u� is quadratic and the operator K � �*C� � K* is where (x)	 � max�0, x�. We have
self-adjoint, then the total action can be written as

limα→∞�α( ppp) = �C ∗ (ccc − A∗ppp)
I(uuu) = 1

2 〈uuu, Kuuu〉 − F(uuu) (60)

So the inequality constraint in (P *lin) can be relaxed by the
Let Ic(u) � �P*(C�u), and thus the function Ic : U � �

}

following so-called external penalty method:

Ic(uuu) = 1
2 〈uuu, Kuuu〉 − F∗(Kuuu) (61)

(P ∗
p ) lim

α→∞ max
ppp∈Rm

{P∗
p( ppp; α) = 〈bbb, ppp〉 − �α( ppp)} (64)

is the so-called Clarke dual action (see Ref. 14). Let K : C �
For any given sequence ��k� � 	�, P*p : �m � � is alwaysU � U * be a closed, self-adjoint operator, and let Ker K �
concave, and the solution of (P *p ) should be also a solution of�u � U � Ku � 0 � U *� be the null space of K, then we have
(P *lin). The main disadvantage of the penalty method is that
the problem (P *p ) will become unstable when the penalty pa-Clarke Duality Theorem. If u � C is a critical point of I,

then any vector u � Ker K 	 u is a critical point of Ic. Con- rameter �k increases.
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The Lagrangian L(u, v*) of (P *lin) is The vector (u, p, s) is called a primal–dual solution of
(P lin). The so-called primal–dual methods in mathematical
programming are those methods to find primal–dual solu-
tions (u, p, s) by applying variants of Newton’s method to the

L(uuu, ppp) = 〈Auuu,−ppp〉 − 〈bbb,−ppp〉 + (ccc,uuu) = (bbb, ppp) − (uuu, A∗ppp − ccc)
(65)

three equations in Eq. (66) and modifying the search direc-
But for the inequality constraint in V *a , the Lagrange multi- tions and step lengths so that the inequalities in Eq. (66) are
plier u � �n has to satisfy the following KKT optimality con- satisfied at every iteration. If the inequalities are strictly satis-
ditions: fied, the methods are called primal–dual interior-point meth-

ods. In these methods, the so-called central path C path plays a
vital role in the theory of primal–dual algorithms. It is a
parametrical curve of strictly feasible points defined by

Auuu = bbb, sss = ccc − A∗ppp

uuu ≥ 0, sss ≥ 0, sssTuuu = 0
(66)

The problem to find (u, p, s) satisfying Eq. (66) is also known Cpath = {(uuuτ , pppτ ,sssτ )T ∈ R2n+m|τ > 0} (72)
as the mixed linear complementarity problem (see Ref. 16)

Combining both the penalty method and the Lagrange
where each point (u�, p�, s�) solves the following system:method, we have

Lpd(uuu, ppp;α) = L(uuu, ppp) − �α(ppp) (67) Auuu = bbb, A∗ppp + sss = ccc

uuu > 0, sss > 0, uisi = τ, i = 1, 2, . . ., n
(73)

The so-called augmented Lagrangian method for solving con-
strained problem (P *lin) is then This problem has a unique solution (u�, p�, s�) for each � 
 0

if and only if the strictly feasible set
(P ∗

pd) min
(α,uuu)∈R+×Rn

max
ppp∈Rm

Lpd(uuu, ppp;α) (68)

Fo = {(uuu, ppp,sss)| Auuu = bbb, AT ppp + sss = ccc,uuu > 0,sss > 0} (74)
Penalty–Duality Theorem. There exists a finite �o 
 0
such that for any given � � [�o, 	�), the solution of the fol- is nonempty. A comprehensive study of the primal–dual inte-
lowing saddle point problem: rior-point methods in mathematical programming has been

given in Ref. 4
min
uuu∈Rn

max
ppp∈Rm

Lpd(uuu, ppp;α) (69)

DUALITY IN FULLY NONLINEAR OPTIMIZATIONis also a solution of (P *lin). Moreover, for a given penalty-dual-
ity sequence (�k, uk) � �	 � �n, the optimal solution pk of the

In fully nonlinear systems, �(u) is a nonlinear operator. Thefollowing unconstrained problem
nonlinear Lagrangian form is (see Ref. 11)

max
ppp∈Rm

Lpd(uuuk, ppp;αk) (70)
L(uuu,vvv∗) = 〈�(uuu),vvv∗〉 − V ∗(vvv∗ ) − F(uuu) (75)

is an optimal solution of (P *lin) if and only if pk � V *a .
The critical condition �L(u, v*; u, v*) � 0 �(u, v*) � C � D *This theorem shows that by constructing a penalty-duality
gives the canonic equationssequence (�k, uk) � [�o, 	�) � �n, the constrained problem

(P *lin) can be relaxed by an unconstrained problem [Eq. (70)].
DuuuL(uuu,vvv∗

) = 0 ⇒ �∗
t (uuu)vvv∗ = DF(uuu) (76)This method is much better than the pure penalty method.

Detailed study of the augmented Lagrange methods and ap- DvvvL(uuu,vvv∗
) = 0 ⇒ �(uuu) = DV ∗(vvv∗

) (77)
plications are given in Ref. 17.

By using the vector of dual slacks s � �n, the dual problem Since V is either convex or concave on D , the inverse consti-
(P *lin) can be rewritten as tutive equation is equivalent to v* � DV(�(u)). Then the fun-

damental equation in fully nonlinear systems should be(P ∗
lin) max

ppp∈Rm
〈bbb, ppp〉 s.t. A∗ppp + sss = ccc, sss ≥ 0 (71)

�∗
t (uuu)DV (�(uuu)) = DF(uuu) (78)

We can see that the primal variable u is the Lagrange multi-
plier for the constraint A*p � c � 0 in the dual problem. We can see that the symmetry is broken in geometrically non-
However, the dual variables p and s are, respectively, La- linear systems.
grange multipliers for the constraints Au � b and u � 0 in If � is a quadratic operator, the Taylor expansion of � at
the primal problem. These choices are not accidents. u should be �(u 	 �u) � �(u) 	 �t(u)�u 	 ���2�(u; �u). We

now assume that
Strong Duality Theorem 2. The vector u � �n is a solution
of (P lin) if and only if there exists Lagrange multiplier (p, s)
� �m � �n for which the KKT optimality conditions [Eq. (66)]
hold for (u, p, s) � (u, p, s). Dually, the vector (p, s) � �m �

(A2) F : C → R is linear and � is a quadratic operator

such that δ2�(uuu; δuuu) = −2�n(δuuu)

�n is a solution of (P *lin) if and only if there exists a Lagrange
multiplier u � �n such that the KKT conditions [Eq. (66)] Under this assumption, if (u, v*) is a critical point of L, we

have L(u, v*) � L(u, v*) � G(u � u, v*). If V : D � �
�

ishold for (u, p, s) � (u, p, s).
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convex, then (see Ref. 12) and let � be a quadratic operator �u � ��[(d/dt)u]2 � ��(u,t)2.
Then w(�(u)) is a double-well function of � � ut, and

�t (u)u = u,tu,t, �n(u)u = − 1
2 u,tu,t (88)

(uuu,vvv∗
)is a saddle point of L if and only if G(uuu,vvv∗

) ≥ 0

∀uuu ∈ C (79)

For a mixed boundary value problem, the convex set C is a
hyperplane

(uuu,vvv∗
)is a supercritical point of L if and only if

G(uuu,vvv∗
) < 0 ∀uuu ∈ C (80)

In this case, P(u) � supv*�V * L(u, v*) � V(�(u)) � F(u). But C = {u ∈ H [0, 1]| u(0) = 0}
its conjugate function will depend on the sign of G (see Ref.

and D � �v � H [0, 1]� v(t) � 0 �t � [0, 1]� is a convex cone.12):
Then on the feasible set U a, P(u) is nonconvex, Gâteaux dif-
ferentiable.

P∗(vvv∗) =
{

infuuu∈U L(uuu,vvv∗) if G(uuu,vvv∗
) ≥ 0 ∀uuu ∈ U

supuuu∈U L(uuu,vvv∗) if G(uuu,vvv∗
) < 0 ∀uuu ∈ U

(81)

The direct methods for solving nonconvex variational prob-
lems are difficult. However, by the triality theorem, a closed-We have the following interesting result:
form solution of this problem can be easily obtained (see Ref.
12). To do so, we need first to find the conjugate functions.Triality Theorem. Suppose that the assumption (A2) holds
We let F(u) � �1

0 uf dt �u � C . On D , V(v) � �� �1

0 C(v � �)2

and V : V � �
�

is convex, proper and l.s.c. Let C b � D *b be a
dt is quadratic. Then the constitutive equation v* � � �neighborhood of a critical point (u, v*) of L such that on
DV(v) � C(v � �) is linear.

C b � D *b , (u, v*) is the only critical point. Then if G(u, v*) �
0, we obtain

P(uuu) = inf
uuu∈Cb

sup
vvv∗∈D∗

b

L(uuu,vvv∗ ) = sup
vvv∗∈D∗

b

inf
uuu∈Cb

L(uuu,vvv∗) = P∗(vvv∗
) (82)

F∗(u∗) = inf
u∈C

{∫ 1

0
uu∗ dt + u(1)u∗(1) −

∫ 1

0
uf dt

}
= −�C ∗ (u∗)

(89)

If G(u, v*) � 0, we have either

P(uuu) = inf
uuu∈Cb

sup
vvv∗∈D∗

b

L(uuu,vvv∗ ) = inf
vvv∗∈D∗

b

sup
uuu∈Cb

L(uuu,vvv∗) = P∗(vvv∗
) (83)

V ∗(σ ) = sup
vvv∈D

{∫ 1

0
σv dt − V (v)

}

=
∫ 1

0

� 1
2C

σ 2 + λσ

�
dt + �D∗ (σ )

(90)

or
where C * � �u* � H [0, 1]� u*(t) � f (t) �t � (0, 1), u*(1) � 0�
is a hyperplane, and D * � �� � H [0, 1]� � � 0� (� � 0 implies
that v � �.) Since v � ��u2

,t � 0 �u � C the range of � �

P(uuu) = sup
uuu∈Cb

sup
vvv∗∈D∗

b

L(uuu,vvv∗ ) = sup
vvv∗∈D∗

b

sup
uuu∈Cb

L(uuu,vvv∗) = P∗(vvv∗
) (84)

DV(v) should be D *r � �� � H [0, 1]� � �C � � � 	��.
The Lagrangian L : C � D * � � for this problem shouldThe proof of this theorem was given in Ref. 18. This theorem

becan be used to solve some nonconvex variational problems
(see Refs. 3, 18, and 19).

If V : D � �
�

is concave, then L(u, σ ) =
∫ 1

0

[
1
2

(u,t )
2σ −

� 1
2C

σ 2 + λσ

�
− fu

]
dt (91)

The optimality conditions for this problem are
(uuu,vvv∗

)is a saddle point of − L if and only if G(uuu,vvv∗
) ≤ 0

∀uuu ∈ C (85)

1
2

u2
,t = 1

E
σ + λ ∀t ∈ (0,1), u(0) = 0 (92)

(uuu,vvv∗
)is a subcritical point of L if and only if G(uuu,vvv∗

) > 0

∀uuu ∈ C (86)

−[utσ ],t = f (t) ∀t ∈ (0,1), σ (1) = 0 (93)
In this case, P(u) � supv* L(u, v*). The dual problem depends
also on the sign of the gap function and we have a similar

Let �(t) � u,t�. It is easy to find thattriality theorem (see Ref. 18).

Example 2. Let us consider the minimization of the follow- τ (t) =
∫ t

0
− f (s) ds +

∫ 1

0
f (s) ds (94)

ing nonconvex variational problem:

The gap function in this problem is a quadratic function
of u:(Pu) P(u) =

∫ 1

0
w(�(u))dt −

∫ 1

0
fu dt → min ∀u ∈ Ua

(87)

where the source variable f is a given function and we let
G(u, σ ) = 〈σ , −�n(u)u〉 = 1

2

∫ 1

0
σu2

,t dt

f (1) � 0; w(v) could be either a convex or concave function of
v � �(u). As an example, we simply let w(v) � ��C(v � �)2, If �� 0, then the gap function is positive on D *r . In this case,

P(u) is convex, and the problem has a unique solution. If � 
with a given parameter � 
 0 and a material constant C 
 0
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0, the gap function could be negative on D *r . In this case,
P(u) is nonconvex and the primal problem may have more
than one solution.

On D *, the conjugate function P* obtained by Eq. (81) is
well-defined:

P∗(σ ) = −
∫ 1

0

[
1

2C
σ 2 + λσ + 1

2
τ 2/σ

]
dt (95)
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The dual Euler–Lagrange equation in this example is a cubic
Figure 3. Lagrangian L(u, �).algebraic equation:

2σ 2
� 1

C
σ + λ

�
= τ 2 ∀t ∈ (0,1) (96)

CONCLUSIONS
For a given f (t) such that �(t) is obtained by Eq. (94), this
equation has at most three solutions �i (i � 1, 2, 3). Since Duality theory plays a crucial role in many natural phenom-
� � u,t�, u(0) � 0, the analytic solution for this nonconvex ena. It can be used to study wider classes of problems in engi-
variational problem is neering and science. For geometrically linear systems, duality

theory and methods are quite well understood. The excellent
textbooks by Strang (1) and Wright (4) are highly recom-
mended. An informal general result was proposed in Ref. 20.ui(t) =

∫ t

0

τ (s)
σi(s)

ds, i = 1, 2, 3 (97)

General Duality Principle. For a given system S , if thereBy the Triality Theorem we know that P(ui) � P*(�i). The
exists a geometrically linear operator � : U � V such thatproperties of ui are given by the triality theorem. For certain
the primal system S p � �U , V ; �� and the dual system S d �given f and � such that �1 
 0 
 �2 
 �3, u1 is a global mini-
�U *, V *; �*� are isomorphic, thenmizer of P, u2 is a local minimizer, and u3 is a local maximizer

of P. To see this, let C � 1; the conjugate function of
1. For each statement in the primal system S p, there ex-

ists a complementary statement, which is obtained byW∗(σ ) = − 1
2 (σ 2 + 2λσ + τ/σ ) (98)

applying this statement to the dual system S d; and
2. For each valid theorem defined on the whole system

is the well-known van der Waals double-well function:
S � S p � S d, the dual theorem, which is obtained by
changing all the concepts in the original theorem to
their duals, is also valid on S .W (u) = 1

2 ( 1
2 u2 − λ)2 − τu (99)

Figure 2 shows the graphs of W (solid line) and W* (dashed From the point of view of the category theory (see Ref. 21),
line). The Lagrangian associated with the problem min W(u) the primal system S p and the dual system S d are said to be
is simply given as isomorphic if there exists a so-called contravariant factor F

such that the map F : S p � S d is one-to-one and surjective.
The dual concepts include the paired variables (u, u*), (v,L(u, σ ) = 1

2 u2σ − ( 1
2 σ 2 + λσ ) − τu (100)

v*), conjugate functionals, as well as the dual operations (�,
�*), (�, �), (inf, sup), and so on.Figure 3 shows that L is a saddle function when � � 0. L is

In fully nonlinear systems, the one-to-one symmetrical re-concave if � � 0.
lations between the primal and dual systems do not usually
exist. The duality theory depends on the choice of the nonlin-
ear operator � and the associated gap function. The triality
theory reveals an intrinsic symmetry in fully nonlinear sys-
tems. For a given nonlinear system, the choice of � may not
be unique, but a quadratic operator will make problems much
easier. As long as the paired intermediate variables are de-
fined correctly, the duality theory presented in this article can
be used to develop both new theoretical results and powerful
numerical methods. A comprehensive study and applications
of the duality principle in nonconvex systems are given in Ref.
3. Primal–dual algorithms have been developed for both lin-
ear programming (see Ref. 4) and nonconvex problems (see
Ref. 22). Triality theory can be used to develop algorithms for

1
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robust numerical solutions in fully nonlinear, nonconvex
problems.Figure 2. Graphs of F(u) (solid) and F*(�) (dashed).
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