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EIGENVALUES AND EIGENFUNCTIONS

DEFINITION OF EIGENVALUE AND EIGENFUNCTION

Many physical system models deal with a square matrix A �
[ai, j]n�n and its eigenvalues and eigenvectors. The eigenvalue
problem aims to find a nonzero vector x � [x1]1�n and scalar �
such that they satisfy the following equation:

Ax = λx (1)

where � is the eigenvalue (or characteristic value or proper
value) of matrix A, and x is the corresponding right eigenvec-
tor (or characteristic vector or proper vector) of A.

The necessary and sufficient condition for Eq. (1) to have
a nontrivial solution for vector x is that the matrix (�I � A)
is singular. Equivalently, the last requirement can be rewrit-
ten as a characteristic equation of A:

det(λI − A) = 0 (2)

where I is the identity matrix. All n roots of the characteristic
equation are all n eigenvalues [�1, �2, . . ., �n]. Expansion of
det(�I � A) as a scalar function of � gives the characteristic
polynomial of A:

L(λ) = anλn + an=1λ
n−1 + · · · + a1λ + a0 (3)

where �k, k � 1, . . ., n, are the corresponding kth powers of
�, and ak, k � 0, . . ., n, are the coefficients determined via
the elements aij of A.

Each eigenvalue also corresponds to a left eigenvector l,
which is the right eigenvector of matrix AT where the super-
script T denotes the transpose of A. The left eigenvector satis-
fies the equation

(λI − AT )l = 0 (4)

The set of all eigenvalues is called the spectrum of A.
Eigenfunction is defined for an operator in the functional

space. For example, oscillations of an elastic object can be de-
scribed by

ϕ ′′ = Lϕ (5)

where L� is some differential expression. If a solution of Eq.
(5) has the form � � T(t)u(x), then with respect to function
u(x), the following equation holds:

L(u) + λu = 0 (6)

In a restricted region and under some homogenous conditions
on its boundary, parameter � is called eigenvalue, and non-
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zero solutions of Eq. (6) are called eigenfunctions. More de- From these equations, the matrix form can be obtained as
scriptions of this eigenfunction are given in the sequel (1–7). follows:

Along with the eigenvalues, singular values are often used.
If a matrix (m � n) can be transformed in the following form: T−1AT = J (12)

where J is a matrix containing a Jordan block, and T is the
modal matrix containing the generalized eigenvectors, T �U∗AV =

[
S 0
0 0

]
, where S = diag[σ1, σ2, . . ., σr] (7)

[u1u2, . . ., um, . . ., un]. For example, when the number of
multiple eigenvalues is 3, matrix J takes the form:where U and V are (m � m) and (n � n) orthogonal matrix

respectively, and all �k � 0, then expression (7) is called a
singular value decomposition. The values �1, �2, . . ., �r are
called singular values of A, and r is the rank of A. If A is a
symmetric matrix, then matrices U and V coincide, and �k are
equal to the absolute values of eigenvalues of A. The singular
decomposition (7) is often used in the least square method,
especially when A is ill conditioned (1), where condition num-

J =




λ δ

λ δ 0
λ

λm+1

0 λm+2

λn




(13)

ber of a square matrix is defined as k(A) � �A�1� � �A�; a large
k(A) or ill-conditioned A is unwanted when solving linear

where � � 0 or 1 (1).equations, since a small variation in the system during com-
putation causes a large displacement in the solution.

EIGENVALUE ANALYSIS FOR ORDINARY
DIFFERENTIAL EQUATIONSSOME PROPERTIES OF EIGENVALUES AND EIGENVECTORS

The eigenvalue approach is applied to solving the ordinary dif-Eigenvectors corresponding to distinct eigenvalues are lin-
ferential equations (ODE) given in the following linear form:early independent.

Eigenvalues of a real matrix appear as real numbers or
complex conjugate pairs. dx

dt
= Ax + Bu (14)

A symmetric real matrix has all real eigenvalues.
The product of all eigenvalues of A is equal to the determi-

where A is the state matrix and u is the vector of controls.nant of A; in other words,
When A is a matrix with all different eigenvalues �i and Eq.
(14) is homogeneous (that is u � 0), then a solution of Eq.λ1λ2, . . ., λn = det A (8)
(14) can be found in the following general form:

Eigenvalues of a triangle or diagonal matrix are the diago-
nal components of the matrix.

The sum of all eigenvalues of a matrix is equal to its trace; x(t) =
n∑

l=1

cie
λi t (15)

that is,

where ci are coefficients that are determined by the initialλ1 + λ2 + · · · + λn = tr A = a11 + a22 + · · · + ann (9)
conditions x(0). For the case of m � n different eigenvalues,

Eigenvalues for Ak are �k
1, �k

2, . . ., �k
n, e.g., eigenvalues for the general solution of Eq. (14) for u � 0 is

A�1 are ��1
1 , ��1

2 , . . ., ��1
n .

A symmetric matrix A can be put in a diagonal form with
eigenvalues as the elements along the diagonal as shown be- x(t) =

m∑
i=1

Km−1∑
k=0

cikt
keλi t (16)

low:

where Km is the multiplicity of �1. If the system is inhomoge-A = T�T∗ = T diag[λ1, λ2, . . ., λn]T∗ (10)
neous (that is u is nonzero), a solution of Eq. (14) can be found

where T � [tij]n�n is the transformation matrix and T* is its as a sum of a general solution for the homogeneous system
complex conjugate transpose matrix, T* � [t*ji ]n�n. (15) and (16) and a particular solution of the inhomogeneous

However non-semi-simple matrices cannot be put into di- system.
agonal form, though, they can be put into the so-called Jordan The elements of Eqs. (15) and (16) corresponding to each
form. For a non-semi-simple multiple eigenvalue �, the eigen- real eigenvalue �i � �i or to each pair of complex conjugate
vector u1 is dependent on (m � 1) generalized eigenvectors eigenvalues �i � �i � j�i are called aperiodic and oscillatory
u2, . . ., um: modes of the system motion, respectively. The eigenvalue real

part �i is called damping of the mode i, and the imaginary
part �i determines the frequency of oscillations.

When A is a matrix with all different eigenvalues, by sub-
stituting

x = Tx′, u = Tu′ (17)

the original ODE can be transformed into

Tdx′/dt = ATx′ + Tu′ (18)

Au1 = λu1

Au2 = λu2 + u1

. . .

Aum = λum + um−1

Aum+1 = λm+1um+1

. . .

Aun = λnun

(11)
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If T is a nonsingular matrix chosen so that where

T−1AT = � = diag[λ1, λ2, . . ., λn] (19)
∫ b

a
ri(ζ )ql (ζ )x(ζ )dζ = const. (28)

we get a modal form of ODE:
So Eq. (27) can be reduced to the following problem:

dx′/dt = T−1ATx′ + u′ = �x′ + u′ (20)

In the modal form, state variables x� and equations are x(t) = f (t) + λ

n∑
j=1

xjq j(t) (29)

independent, and T is the eigenvector matrix. Diagonal ele-
ments of the matrix � are eigenvalues of A, which can be used

By substitution, we have:to solve ODE (1).
For a general nth order differential equation,

xi =
∫ b

a
ri(ζ )[ f (t) + λ

n∑
j=1

xjq j (t)] dζ , i = 1, 2, . . ., n (30)

An
dnx
dtn + An−1

dn−1x
dtn−1 + · · · + A1

dx
dt

+ A0x = 0 (21)

The equation of the system can be obtained as
Besides solving it through transferring it into a set of first

order differential equations (1,5), it can also be solved using (I − λA)x = b (31)
the original coordinate. The matrix polynomial of system (21)

wherefollows:

L(λ) = Anλn + An−1 + · · · + A1λ + A0 (22)

The solutions and eigenvalues as well as eigenvectors of
the system (21) can be obtained by solving the eigenvalue
equation:

x = [x1, x2, . . ., xn]T

A = [ai, j] =
[∫ b

a
rl (ζ )qj(ζ ) dζ

]

b = [bi] =
[∫ b

a
rl (ζ )qj(ζ ) dζ

]
L(λ)u = 0 (23)

The values of � which satisfywhere L(�) is the matrix (22) containing an eigenvalue � hav-
ing the corresponding eigenvector u. If vectors u1, u2, . . .,

der[I − λA] = 0 (32)um, where m � n, satisfies the equation:

are the eigenvalues of the integral equation.
To find x(t) by solving an integral equation similar to (26)

except for the interval, which is [a, b] instead of [0, t], the
eigenfunction approach can also be used. First, x(t) is rewrit-
ten as

L(λ)u1 = 0

L(λ)u2 + 1
1!

dL(λ)

dλ
u1 = 0

. . .

L(λ)um + 1
1!

dL(λ)

dλ
um−1 + · · · + 1

(m − 1)!
dm−1L(λ)

dλm−1 u1 = 0

(24)

x(t) = f (t) +
∞∑

n=1

anφn(t) (33)

then
where �1(t), �2(t), . . . are eigenfunctions of the system, and
satisfyx(t) = [tm−1u1/(m − 1)! + · · · + tum−1/1! + um]eλ1 (25)

is a solution to the ODE system (1). The set of equations (24)
defines the Jordan Chain of the multiple eigenvalue � and

φ(t) = λn

∫ b

a
k(ζ , t)φn(ζ )dζ (34)

the eigenvector u1.
where �1, �2, . . . are eigenvalues of the integral equation.
After substituting the eigenfunction into the integral equa-EIGENVALUES AND EIGENFUNCTIONS
tion and further simplification, the solution x(t) is obtained asFOR INTEGRAL EQUATIONS

An integral equation takes the following general form (1): x(t) = f (t) +
∞∑

n=1

λ fn

λn − λ
φn(t) (35)

where fn � �b

a f (�)�(�)d�.x(t) = f (t) + λ

∫ t

0
k(ζ , t)x(ζ ) dζ (26)

LINEAR DYNAMIC MODELS AND EIGENVALUESIn eigenanalysis, we concentrate on the integral equation,
which can be rewritten as

State Space Modeling

In control systems, where the purpose of control is to make a
variable adhere to a particular value, the system can be mod-

x(t) = f (t) + λ

∫ b

a

n∑
i=1

ri(ζ )qi(ζ )x(ζ ) dζ (27)
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eled by using the state space equation and transfer functions. to introduce the control canonical form as follows:
The state space equation is

ẋ = Ax + Bu

y = Cx + Du
(36)

where x is the (n � 1) vector of state variables, ẋ is its first-
order derivative vector, u is the (p � 1) control vector, and y

Ac =




−a1 −a2 . . . −an

1 0 . . . 0
...

...
...

...
0 0 1 0


 , Bc =




1
0
...
0




Cc = [b1 b2 . . . bn], Dc = 0

(40)

is the (q � 1) output vector. Accordingly, A is the (n � n) state
where the subscript c denotes that the associated matrix is inmatrix, B is a (n � p) matrix, C is a (q � n) matrix, and D is
control canonical form.of (q � p) dimension.

For a linear time-invariant system, the necessary and suf-
ficient condition for the system state controllability is the full

Model Analysis on the Base of Eigenvalues and Eigenvectors rank of controllability matrix Qc. The controllability matrix is
Model analysis is based on the state space representation (36).
It also explores eigenvalues, eigenvectors, and transfer func- Qc = [B

... AB
... · · ·

... An−1B] (41)
tions (8–10).

Consider a case where matrix D is a zero matrix. Then the and the system is controllable if and only if Rank Qc � n.
state space model can be transformed using Laplace transfor- When the linear time-invariant system has distinct eigen-
mation in a transfer function that maps input into output: values, then after the modal transformation, the new system

becomes
G(s) = C(sI − A)−1B (37)

ż = T−1ATz + T−1Bu (42)
where s is the Laplace complex variable, and G(s) is composed

where T	1AT is diagonal matrix. Under such condition, theof denominator a(s) and a numerator b(s):
sufficient and necessary conditions for state controllability is
that there are no rows in the matrix T	1B containing all zero
elements.

When matrix A has multiple eigenvalues, and every multi-

G(s) = b(s)/a(s)

= (b0sn + b1sn−1 + · · · + bn)/(sn + a1sn−1 + · · · + an)

(38) ple eigenvalue corresponds to the same eigenvector, then the
system can be transformed into the new state space form,
which is called the Jordan canonical form:The closed-loop transfer function for a feedback system is

ż = Jz + T−1Bu (43)Gc(s) = [I + G(s)H(s)]−1G(s) (39)

where the matrix J is Jordan canonical matrix. Then the suf-where H(s) is a feedback transfer function.
ficient and necessary condition for state controllability is thatThe system model (36) can be analyzed using the observ-
not all the elements in the matrix T	1B, corresponding to theability and controllability concepts. Observability indicates
last row of every Jordan sub-matrix in matrix J, are zero.whether all the system’s modes can be observed by monitor-

The output controllability sufficient and necessary condi-ing only the sensed outputs. Controllability decides whether
tion for linear time-invariant system is that the matrixthe system state can be moved from an initial point to any
[CB�CAB� 
 
 
 �CAn	1B�D] is full rank; that is,other point in the state space within infinite time, and if ev-

ery mode is connected to the controlled input. The concepts
rank[CB

...CAB
... · · ·

...CAn−1B
... D] = n (44)can be described more precisely as follows (8,9,11):

Similarly, the sufficient and necessary observability condi-
1. For a linear system, if within an infinite time interval, tion for linear time-invariant system is that the observability

t0 � t � t1, there exists a piecewise continuous control matrix is full rank; that is,
signal u(t), so that the system states can be moved from
any initial mode x(t0) to any final mode x(t1), then the QD = [C

...CA
... · · ·

...CAn−1]T (45)
system is said to be controllable at the time t0. If every
system mode is controllable, then the system is state and rank Q0 � n. When the system has distinct eigenvalues,
controllable. If at least one of the states is not controlla- then after a linear nonsingular transformation, the system
ble, then the system is not controllable. takes the form (when control vector u is zero):

2. For a linear system, if within an infinite time interval,
t0 � t � t1, every initial mode x(t0) can be observed exclu-
sively by the sensed value y(t), then the system is said

ż = T−1ATz

y = CTz
(46)

to be fully observable.

then the condition for observability is that there are no rows
in the matrix CT which have only zero elements. Even thoughMatrix transformations are required to assess observabil-

ity and controllability. To study controllability, it is necessary the system has multiple eigenvalues, and every multiple ei-
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genvalue corresponds to the same eigenvector, the system braic Equation (DAE):
after transformation looks like

ẋ = f (x, y, p) f : Rn+m+q → Rn

0 = g(x, y, p) g : Rm+n+q → Rm (50)ż = Jz

y = CTz
(47)

where x � Rn, y � Rm, p � Rq; x is the vector of dynamic state
variables, y is the vector of static or instantaneous state vari-where J is the Jordan matrix. The observability condition is

that there are no columns corresponding to the first row of ables, and p is a selected system parameter affecting the stud-
ied system behavior. Variable y usually represents a stateeach Jordan submatrix having only zero elements.
variable whose dynamics is instantaneously completed as
compared to that of the dynamic state variable x. Parameter

EIGENVALUES AND STABILITY p belongs to the system parameters which have no dynamics
at all at least if modeled by Eq. (50) (13). For example, in

Since the time-dependent characteristic of a mode corre- power system engineering, typical dynamic state variables
sponding to an eigenvalue �i is given by e�it, the stability of are chosen from the time-dependent variables such as ma-
the system matrix can be determined by the eigenvalues of chine angle and machine speed. The static variables are the
the system state matrix, as in the following (see Ref. 37). load flow variables including bus voltages and angles. Param-

A real eigenvalue corresponds to a nonoscillatory mode. A eter p can be selected from static load powers, or control sys-
negative real eigenvalue represents a decaying mode. The tem parameters.
larger its magnitude, the faster the decay. A positive real A system is said to be in its equilibrium condition when
eigenvelue represents aperiodic instability. the derivatives of its state variables are equal to zero, which

Complex eigenvalues occur in conjugate pairs, and each means there is no variation of the state variables. For the
pair corresponds to an oscillatory mode. The real component system modeled in Eq. (50), this condition is given as follows:
of the eigenvalues gives the damping, and the imaginary com-
ponent defines the frequency of oscillation. A negative real
part indicates a damped oscillation and a positive one repre-

0 = f (x, y, p)

0 = g(x, y, p)
(51)

sents oscillation of increasing amplitude. For a complex pair
of eigenvalues, � � 	� � j�, the frequency of oscillation in Solutions (x0, y0, p0), of the preceding system are the system
hertz can be calculated by equilibrium points. Small-signal stability analysis uses the

system represented in linearized form, which is done by dif-
f = ω/2π (48) ferentiating the original system respect to the system vari-

ables and parameters around its equilibrium point (x0, y0,
which represents the actual or damped frequency. The damp- p0). This linearization is necessary for the Lyapunov method
ing ratio is given by and via computing system eigenvalues and eigenvectors.

For the original system (50), its linearized form is given in
the following:ζ = σ

p
σ 2 + ω2

(49)

From the point of view of a system modeled by a transfer
function, the concept of natural frequency is given based on
complex poles which correspond to the complex eigenvalues of

�ẋ = ∂ f
∂x

�x + ∂ f
∂y

�y

0 = ∂g
∂x

�x + ∂g
∂y

�y
(52)

the state matrix A, as in Eq. (36). Let the complex poles be
s � 	� � j�, and the denominator corresponding to them be For simplicity, system (52) is rewritten as
d(s) � (s 
 �)2 
 �2. Then its transfer function is represented
in polynomial form as H(s) � �2

n/(s2 
 2��ns 
 �2
n), where

� � ��n and � � �n�(1 	 � 2). This introduces the definition
�ẋ = A�x + B�y

0 = C�x + D�y
(53)

of the undamped natural frequency, �n, and again the damp-
ing ratio, �. where matrices A, B, C, and D are the partial derivatives’

More fundamentally, the Lyapunov stability theory forms matrices. If the algebraic matrix D is not singular (i.e., det
a basis for stability analysis. There are two approaches to D � 0), the state matrix As is given as
evaluate system stability (4,8,9,11,12):

As = A − BD−1C (54)
1. the first Lyapunov method and

which is studied in stability analysis using the eigenvalue2. the second Lyapunov method.
and eigenvector approach.

The use of the first Lyapunov method involves the follow-The first Lyapunov method is based on eigenvalue and ei-
ing steps (12,14,15):genvector analysis for linearized systems and small distur-

bances. It finds its application in many areas, for example, in
1. linearization of the original system (50) as in (52);the area of power systems engineering.

To study small-signal stability, it is necessary to clarify 2. elimination of the algebraic variables to form the re-
duced dynamic state matrix As;some basic concepts regarding the following Differential-Alge-
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3. computation of the eigenvalues and eigenvectors of the 2. uniformly stable, if for each � � 0, there exists � � �(�)
� 0, such that �x(t0)� � ⇒ �x(t)� � �, �t � t0 �0;state matrix As;

4. stability study of the system (16): 3. unstable otherwise;
a. If eigenvalues of the state matrix are located in the 4. asymptotically stable, if it is stable and there is c �

left-hand side of the complex plane, then the system c(t0) � 0 such that, for all �x(t0)� � c, limt�� x(t) � x0;
is said to be small-signal stable at the studied equi- 5. uniformly asymptotically stable if it is uniformly stable
librium point; and there is a time invariant c � 0, such that for all

b. If the rightmost eigenvalue is zero, the system is on �x(t0)� � c, limt�� x(t) � x0. This holds for each � � 0, if
the edge of small-signal aperiodic instability; there is T � T(�) � 0, such that �x(t)� � �, �t � t0 


T(�), ��x(t0)� � c;c. If the rightmost complex conjugate pair of eigenval-
ues has a zero real part and a nonzero imaginary 6. globally uniformly asymptotically stable if it is uni-
part, the system is on the edge of oscillatory instabil- formly stable and for each pair of positive numbers �
ity depending on the transversality condition (17); and c, there is a T � T(�, c) � 0, such that �x(t)� � �,

�t � t0 
 T(�, c), ��x(t0)� � c.d. If the system has eigenvalue with positive real parts,
the system is not stable;

The corresponding stability theorem follows.e. For the stable case, analyze several characteristics
including damping and frequencies for all modes, ei-
genvalue sensitivities to the system parameters, ex- Let f (t, x, u)�(t*,x*,u*) � 0 be an equilibrium point for the nonlin-
citability, observability, and controllability of the ear time-varying system (55), where f : [0, �) � D � Rn is
modes. continuously differentiable, D � �x � Rn��x�2 � r�, the Jacobian

matrix is bounded and Lipschitz on D, uniformly in t. A(t) �
More precise definitions for the first Lyapunov method (�f /�x)(t, x)�x�x0

is the Jacobian; then the origin is exponen-
have been addressed in the literature (16,18). The general tially stable for the nonlinear system if it is an exponentially
time-varying or nonautonomous form is as follows: stable equilibrium point for the linear system ẋ � A(t)x.

ẋ = f (t, x, u) (55)
The second Lyapunov method isa potentially most reliable

and powerful method for the original nonlinear and nonau-where t represents time, x is the vector of state variables, and
tonomous (or time-varying) systems. But it relys on the Lya-u is the vector of system input. In a special case of the system
punov function, which is hard to find for many physical(55), f is not explicitly dependent on time t; that is,
systems.

ẋ = f (x) (56)

EIGENVALUES AND BIFURCATIONSand the system is said to be autonomous or time-invariant.
Such a system does not change its behavior at different

The bifurcation theory has a rich mathematical descriptiontimes (16).
and literature for various areas of applications. Many physi-An equilibrium point x0 of the autonomous system (56) is
cal systems can be modeled by the general form

1. stable if, for each � � 0, there exists � � �(�) � 0 such
that �x(0)� � � ⇒ �x(t)� � �, �t � 0; x′ = f (x, p) (57)

2. unstable otherwise;
where x is vector of the system state variables, and p is the3. asymptotically stable, if it is stable, and � can be chosen
system’s parameter, which may vary during system operationsuch that: �x(0)� � � ⇒ limt�� x(0) � x0. in normal as well as contingency conditions.

Bifurcations occur where, by slowly varying certain systemThe definition can be represented in the form of eigenvalue
parameters in some direction, the system properties changeapproach as given in the Lyapunov first-method theorem.
qualitatively or quantitatively at a certain point (14,19). Local
bifurcations can be detected by monitoring the behavior of ei-Let x0 be an equilibrium point for the autonomous system
genvalues of the systems operation point. In some direction of(54), where f : D � Rn is continuously differentiable and D is
parameter variation, the system may become unstable be-a neighborhood of the origin. Let the system Jacobian be A �
cause of the singularity of the system dynamic state matrix(�f /�x)(x)�x�x0

, and � � [�1, �2, . . ., �n] be the eigenvalues of
associated with zero eigenvalue or because of a pair of com-A, then the origin is asymptotically stable if Re �i � 0 for all
plex conjugate eigenvalues crossing the imaginary axes of theeigenvalues of A, or the origin is unstable if Re �i � 0 for one
complex plane. These two phenomena are saddle node andor more eigenvalues of A.
Hopf bifurcations, respectively. Other conditions that may
drive the system state into instability may also occur. TheseLet us take one step further. The stability definition for a
include singularity-induced bifurcations, cyclic fold, periodtime-varying system, where the system behavior depends on
doubling, and blue sky bifurcations or even chaos (15,19,20).the origin at the initial time t0, is as follows. The equilibrium

For the general system (57), a point (x0, p0) is said to be apoint x0 for the system (55) is (16)
saddle node bifurcation point if it is an equilibrium point of
the system; in other words, f (x0, p0) � 0, the system Jacobian1. stable, if for each � � 0, there exists � � �(�, t0) � 0

such that �x(t0)� � � ⇒ �x(t)� � �, �t � t0 �0; matrix, f y(x0, p0) has a simple zero eigenvalue �(p0) � 0, and
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the transversal conditions hold (17,21). More generally (24),
the saddle bifurcation satisfy the following conditions:

1. The point is the system’s equilibrium point [i.e., f (x0,
p0) � 0].

2. The Jacobian matrix, f y(x0, p0) has a simple and unique
eigenvalue �(p0) � 0 with the corresponding right and
left eigenvectors l and r, respectively.

3. Transversality condition of the first-order derivative:
lTf y(x0, p0) � 0

4. Transversality condition of the second-order derivative:
lT[f yy(x0, p0)r]r � 0

A Hopf bifurcation occurs when the following conditions
are satisfied:

1. The point is a system operation equilibrium point [i.e.,
f (x0, p0) � 0];

2. The Jacobian matrix f y(x0, p0) has a simple pair of pure
imaginary eigenvalues �(p0) � 0 � j� and no other ei-
genvalues with zero real part;

3. Transversality condition: d[Re �(p0)]/dp � 0.

The last condition guarantees the transversal crossing of

+10

1. Saddle node bifurcation

j

+10

2. Hopf bifurcation

•

j

+10

3. Supercritical and subcritical
Hopf bifurcations

5. Supercritical bifurcations

j

+10

4. Singularity induced bifurcations

j

1

[y]

6. Subcritical bifurcations

[y]

λ
the imaginary axis. The sign of d[Re �(p0)]/dp determines
whether there is a birth or death of a limit cycle at (x0, p0). Figure 1. Bifurcation diagrams for different bifurcations. 
1, real
Depending on the direction of transversal crossing the imagi- axis; j, imaginary axis; 1–4: eigenvalue trajectories as a result of sys-
nary axis, Hopf bifurcation can be further categorized into tem parameter variation; 5, 6: system state variable branch dia-

grams. The branching properties of the system state variable move-supercritical and subcritical ones. The supercritical Hopf bi-
ment determine the type of bifurcations.furcation happens when the critical eigenvalue moves from

the left half plane to the right half plane. The subcritical Hopf
bifurcation occurs when the eigenvalue moves from the left
half plane to the right half plane and is unstable. The system

where As � A 	 BD	1C � f x 	 f yg	1
y gx is the state matrix, 0 
transients are diverged into an oscillatory style at the vicinity

j� is its eigenvalue, l � l� 
 jl� is the corresponding left eigen-of the subcritical Hopf bifurcation points.
vector, p � p0 
 ��p is the system parameter vector varyingSingularity-induced bifurcations occur when the system’s
from the point p0 in direction �p. By taking zero � and l�,equilibrium approaches singularity, and some of the system

eigenvalues become unbounded along the real axis (i.e., �i � saddle node bifurcation can be computed as well.
�). In case of the DAE model (50), the singularity of the alge- Indirect methods are mainly Newton–Raphson type
braic Jacobian D � gy causes the singularity-induced bifurca- method using predictor and corrector to trace the bifurcation
tions. In that case, singular perturbations or noise techniques diagram. A detailed description of the continuation methods
must be used to analyze the system dynamics (22). When sin- can be found in Refs. 17, 23, 25–27, and 33.
gularity-induced bifurcation occurs, the system behavior be- As an example of applied bifurcation analysis, let us con-
comes hardly predictable and may cause fast claps type insta- sider a task from the area of power system analysis (20,26).
bility (22). The power system model is composed of two generators and

A graphical illustration of these three major bifurcations one load bus. The system is shown in Fig. 2.
is given in Fig. 1.

Methods of computing bifurcations can be categorized into
direct and indirect approaches. The direct method has been
practiced by many researchers in this area (13–15,17,19,
20,22–32). For example, the direct method computes the Hopf
bifurcation condition by solving directly the set of equations
(15,17,20,26):

f (x, p0 + τ�p) = 0 (58)

A′
s(x, p0 + τ�p)l ′ + ωl ′′ = 0 (59)

E0 0

P jQ

C

+

y0 0(– /2)–θ π ym m(– /2)–θ π
V

M

δ Em mδ

A′
s(x, p0 + τ�p)l ′′ − ωl ′ = 0 (60)

Figure 2. A simple power system model. The system dynamics are
introduced mainly by the induction motor and generators.‖l‖ = 1 (61)
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Static and an induction motor load are connected with the
load bus in the middle of the network. A capacitor device is
also connected with the same bus to provide reactive power
supply and control the voltage magnitude; E and �m are gener-
ator terminal voltage and angle, respectively; V is load bus
voltage; � is load bus voltage angle; Y is line conductance; and
M stands for induction motor load. The system is modeled by
the following equations:
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Figure 3. The Q–V curve branch diagrams. S—stable periodic
branch; U—unstable periodic branch; SNB—saddle node bifurcation;
SHB—stable (supercritical) Hopf bifurcation; UHB—unstable (sub-
critical) Hopf bifurcation; CFB—cyclic fold bifurcation. These bifurca-

δ′
m = ω

Mω̇ = −δmω + Pm

+ Em ymV sin(δ − δm − θm)

+ E2
m ym sin θm

Kqwδ̇ = −Kqv2V
2 − KqvV + E ′

0 y′
0V cos(δ + θ ′′

0 )

+ Em ymV cos(δ − δm + θm)

− (y′
0 cos θ ′

0 + ym cos θ ′
mV 2 − Q0 − Q1

TKqwKpvV̇ = KqwK2
qvV

2 + (KpwKqv − KqwKpv)V

+
p

(K2
qw + K2

pw)[−E ′
0 y′

0V cos(δ + θ ′
0 − h)

− Em ymV cos(δ − δm + θm − η) + (y′
0 cos(θ ′

0 − η)

+ ym cos(θm − η))V 2] − Kqw(P0 + P1)

+ Kpw(Q0 + Q1)

tions are associated with system eigenvalue behavior while the reac-
tive load power Q1 is consistently increased. This shows that for a
simple dynamic system, as given in Fig. 3, stability-related phenom-
ena are very rich.where � � tan	1(Kqw/Kpw). The active and reactive loads are

featured by the following equations:

R � [r1, r2, . . ., rn]T, and ��1� � ��2� � 
 
 
 � ��n�. For any
vector x � 0, we havePd = P0 + P1 + Kpwδ + Kpv(V + TV ′)

Qd = Q0 + Q1 + Kqwδ + KqvV + Kqv2V
2

x =
n∑

i=1

ciri (62)

The system parameter Q1 is selected as the bifurcation pa-
rameter to be increased slowly. Voltage V is taken as a depen-
dent parameter for illustration. Figure 3 shows the dynamics
for the system in the form of a Q–V curve (19).

The eigenvalue trajectory around a Hopf bifurcation point
is given in Fig. 4 where both supercritical and subcritical
Hopf bifurcations can be seen.

NUMERICAL METHODS FOR THE EIGENVALUE PROBLEM

Computing Eigenvalues and Eigenvectors

Although roots of the characteristic polynomial L(�) � an�
n 


an	1�
n	1 
 
 
 
 
 a1� 
 a0 are eigenvalues of the matrix A, a

direct calculation of these roots is not recommended because
of the rounded errors and high sensitivity of the roots to coef-
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ficients ai (1). Figure 4. An illustration of subcritical (I) and supercritical (II) Hopf
We start by introducing the power method, which locates bifurcations. (I) corresponds to movement of the eigenvalue real part

the largest eigenvalue. Suppose a matrix A has eigenvalues from the left to the right side of the s-plane; (II) indicates a reverse
movement.� � [�1, �2, . . ., �n]T and the corresponding right eigenvectors
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By multiplying (62) by A, A2, . . ., it can be obtained that A1 = RQ = Q1R1

. . .

Ai = Ri−1Qi−1 = QiRi = Q−1
i−1Al−1Ql−1

(66)

where the tth unitary matrix Qt is obtained by solving

QT
t A = Rt

and QT
t is determined in a factorized form, such as the product

of plane rotations or of elementary Hermitians. Then, the ma-
trix RtQt is obtained by successive post-multiplication of Rt

x(1) = Ax =
n∑

i=1

ciλ1ri

x(2) = Ax(1) =
n∑

i=1

ciλ
2
i ri

. . .

x(m) = Ax(m−1) =
n∑

i=1

ciλ
m
i ri

(63)

with the transposition of the factors of QT
t (5).

After a number of iterations, diagonal elements of Rm ap-After a number of iterations, x(m) � �m
1 c1r1. Therefore, �1 can

proximate eigenvalues for A (1). To reduce the number of iter-be obtained by dividing the corresponding elements of x(m)

ations and speed up computations because less computationaland x(m	1) after a sufficient number of iterations, and the ei-
effort is required at each iteration, the studied matrix A isgenvector can be obtained by scaling x(m) directly. Other eigen-
initially reduced to the Hessenberg form, which is preservedvalues and eigenvectors can be computed by applying the
during iterations (1,5).same method to the new matrix:

A more general form of the eigenvalue problem can be mod-
eled asA1 = A − λ1r1v1∗ (64)

Ax = λBx (67)
where v1 is the reciprocal vector of the first eigenvector r1. It

If A and B are nonsingular, the problem can be trans-can be observed that the matrix A1 has the same eigenvalues
formed into the standard form of eigenvalue problems by ex-as A except the first eigenvalue, which is set to zero by the
pressingtransformation. By applying the method successively, all ei-

genvalues and corresponding right eigenvectors of matrix A B−1Ax = λx or A−1Bx = λ−1x (68)
can be located. The applicability of this method is restricted
by computational errors. Convergence of the method depends Then methods discussed earlier can be applied to solve the
on separation of eigenvalues determined by the ratios ��i/�1�, problem.
��i/�2�, etc. As evident, the method can compute only one ei- There are cases when the computation can be simplified
genvalue and eigenvector at a time. (1). When both A and B are symmetric and B is positive defi-

The Schur algorithm can also be used to locate eigenvalues nite, matrix B can be decomposed as B � CTC where C is a
from �2 while knowing �1 by applying the power method to nonsingular triangular matrix. Then the problem can be ex-
A1 after the following transformation (1): pressed as

Ax = λCTCx (69)

If vector y is chosen so that y � Cx, the final transformation

[
λ1 B1

0 A1

][
1

y(2)

]
= λ2

[
1

y(2)

]
(65)

is obtained as

A general idea of the inverse power method is to use the (Cγ )−1AC1y = Gy = λy (70)
power method determining the minimum eigenvalues. By
shifts, any eigenvalue can be made the minimum one. The and the problem is simplified into the eigenvalue problem
inverse method can compute eigenvectors accurately even with matrix G. Techniques dealing with other situations of
when the eigenvalues are not well separated. The method im- the generalized eigenvalue problem can be found in Ref. 34.
plies the following. Let �*i be an approximation of one of the In many cases, matrix A is a sparse matrix with many zero
eigenvalues �i of A. The steps involved follow: elements. Different techniques solving the sparse matrix ei-

genvalue problem are derived. The approaches can be catego-
rized into two major branches: (1) problems where the LU• Obtain a tridiagonal matrix T by reduction of matrix A;
factorization is possible, or (2) where it is impossible.• Find zeros of (T 	 �*i I)	1y0, i.e. �z1�(T 	 �*l I)z1 � y0);

In the first case, after transformation of the generalized
• Set y1 � z1/�z1�; eigenvalue problem as B	1Ax � �x, or y � LTx, so that
• Solve (T 	 �*i I)	1z2 � y1, etc. L	1AL	Ty � �y, the resulting matrices may not necessarily be

sparse. There are several aspects of the problem. First, the
matrix should be represented in such a way that it dispensesThe eigenvector li of �i is approximated by yk � zk/�zk� pro-

vided y0 contains a nonzero term in li. If ��*i 	 �i� is sufficiently with zero elements and allows new elements to be inserted
as they are generated by the elimination process during thesmall, the inverse iteration method obtains the eigenvector

associated with �i within only several iterations. decomposition; second, pivoting must be performed during the
elimination process to preserve sparsity and ensure numeri-The QR method is one of the most popular algorithms for

computing eigenvalues and eigenvectors. By using a factoriza- cal stability (31,35). The power method is sometimes used for
large sparse matrix problems to compute eigenvalues.tion of the product of a unitary matrix Q and an upper-trian-

gular matrix R, this method involves the following iteration When matrices A and B become very large, performing the
LU factorization for the general eigenvalue problem becomesprocess:
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more and more difficult. In this case, a function should be
constructed so that it reaches its minimum at one or more of
the eigenvectors, and the problem is to minimize this function
with an appropriate numerical method (31). For example, the
successive search method can be used to minimize this func-

 +

 –
KG(s)Σ

tion. Also, other gradient methods can be employed.
Figure 5. Block diagram for the feedback system: Y(s)/R(s) �Among all these computation methods for eigenvalue prob-
H(s) � KG(s)/[1 
 KG(s)].lems, many factors influence the efficiency of a particular

method. For a large matrix, whether it is dense or sparse, the
power method is suitable when only a few large eigenvalues
and corresponding eigenvectors are required. The inverse it-
eration method is the most robust and accurate in calculating The criteria say that all the zeros of the polynomial f (z)
eigenvectors. Nevertheless, the most popular general method have negative real parts iff det Hi � 0, for i � 1, 2, . . ., n.
for eigenvalue and eigenvector computations is the QR This also indicates that the eigenvalues � of the matrix asso-
method. However, in many cases, especially when the matrix ciated with the characteristic polynomial f (�) have all nega-
is Hermitian or real symmetric, many methods can provide tive real parts, so the matrix is stable.
satisfactory results. The Nyquist stability criterion is another indirect approach

to evaluating stability conditions. For the feedback systemLocalization of Eigenvalues
given in Fig. 5, it relates the system open loop frequency re-

Along with the direct method based on computation of eigen- sponse to the number of closed-loop poles in the right half of
values, there are several indirect methods to determine a do- the complex plane (8).
main in the complex plane where the eigenvalues are located. Stability of the system is analyzed by studying the Nyquist
A particular interest for the stability studies is to decide plot (polar plot) of the open loop transfer function KG( j�).
whether all eigenvalues have negative real parts. Some meth- Because it is based on the poles of the closed-loop system,
ods can also count the number of stable and unstable modes which is decided by 1 
 KG(s) � 0, the point 	1 is the critical
without solving the general eigenvalue problem. Also, there point for study of the curve KG( j�) in the polar plot. The fol-
are methods that determine a bounded region where the ei-

lowing steps are involved. First, draw the magnitude andgenvalues are located.
angle of KG( j�). Second, count the number of clockwise encir-The following algebraic results can help to identify the sta-
clements of 	1 as N. Third, find the number of unstable polesbility of a matrix (4):
of G(s), which is P. The system is stable if the number of un-

• If the matrix A � Rn�n is stable and W � Rn�n is positive stable closed-loop roots Z � N 	 P is zero, which means that
(nonnegative) definite, then there exists a real positive there are no closed-loop poles in the right half plane. There
(positive or nonnegative) definite matrix V such that are other methods exploiting godographs of the system trans-
AV� 
 VA � 	W. fer function as functions of �.

• Let V � Rn�n be positive definite, define the real symmet- The Gershgorin’s theorem is also used in eigenvalue local-
ric matrix W by A�V 
 VA � 	W. Then A is stable if for ization. It states that any of the eigenvalues of a matrix A �
the right eigenvector r associated with every distinct ei- [ai, j]n�n lies in at least one of the circular discs with centers
genvalue of A, there holds the relation r*Wr � 0 where ai,i and radii as sum of �ai, j� for all i � j. If there are s such
r* means conjugate transpose of eigenvector r. circular discs forming a connected domain isolated from other

• If W is positive definite, then A is stable if A�V 
 VA � discs, then A has exactly s eigenvalues within this domain
	W has a positive definite solution matrix V. (5,36). This theorem finds its application in perturbation

analysis of eigenvalues.Also, the stability problem can be studied by locating the
eigenvalues using coefficients of the characteristic polyno-
mial det(�I 	 A) � 0 rather then the matrix itself. The Mode Identification
Routh–Hurwitz criterion is one of these approaches. For the
monic polynomial with real coefficients, Identification of a mode of a system finds its application in

many engineering tasks. Based on nonlinear simulations orf (z) = zn + a1zn−1 + · · · + an (71)
measurements, system identification techniques can be used
for this purpose. The least-squares method is among thoseand the Hurwitz matrices are defined as
widely used. The major approaches in system modeling and
identification include system identification based on an FIR
(MA) system model, system identification based on all All-
Pole (AR) system model, and system identification based on a
Pole-Zero (ARMA) system model. As one of the typically used
methods in identfiying modes of a dynamic system, Prony’s
method is a procedure for fitting a signal y(t) to a weighted
sum of exponential terms of the form:

ŷ(t) =
n∑

i=1

Rie
λi t (73a)

H1 = a1

H2 =
[

a1 1
a3 a2

]

. . .

Hn =




a1 1 0 0 0
a3 a2 a1 1 0
a3 a4 a3 a2 ·
· · · · ·

a2n−1 · · an+1 an




(72)
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or in a discrete form: The left and right vectors are also associated with impor-
tant features of the system dynamics.

The left eigenvector is a normal vector to the equal damp-
ing surfaces, and the right eigenvector shows the initial dy-

ŷ(k) =
n∑

i=1

Riz
k
i (73b)

namics of the system at a disturbance (15). They also provide
where ŷ(t), ŷ(k) are the Prony approximation to y(t), Ri is sig- an efficient mathematical approach to locating these equal
nal residue, �i is the s-plane mode, zi is the z-plane mode, and damping surfaces in the parameter spaces (15,20).
n is the Prony fit order. Supposing that the signal y is a linear The elements of the right and left eigenvectors are depen-
function of past values, the modes and signal residues can be dent on units and scaling associated with the state variables.
calculated by the following equation: This may cause difficulties when these eigenvectors are ap-

plied individually for identification of the relationship be-
tween the states and the modes. The participation matrix Py(k) = a1y(k − 1) + a2y(k − 1) + · · · + any(k − n) (74)

is needed to solve the problem. The participation matrix com-
which can be applied repeatedly to form the linear set of bines the right and left eigenvectors and can serve as a mea-
equations as shown in Eq. (75), where N is the number of sure of the association between the state variables and the
sample points: modes. It is defined as


y(n + 0) y(n − 1) · · · y(1)

y(n + 1) y(n + 0) · · · y(2)

· · ·
y(N − 1) y(N − 2) · · · y(N − n)







a1

a2

· · ·
an


 =




y(n + 1)

y(n + 2)

· · ·
y(N)



(75)

P = [P1P2, . . ., Pn] with Pi =




P1i

P2i

...
Pni


 =




ρ1iϑi1

ρ2iϑi2

...
ρniϑin


 (78)

From Eq. (75), the coefficients ai can be calculated. The where �ki is the kth entry of the right eivengector ri, and �ik is
modes zi are the roots of the polynomial: zn 	 a1zn	1 	 
 
 
 	 the kth entry of the left eigenvector li. The element is the
an � 0. The signal residues Ri can be calculated by solving the participation factor, which measures the relative participa-
linear equations: tion of the kth state variable in the ith mode, and vice versa.

Regarding the eigenvector normalization, the sum of the par-
ticipation factors associated with any mode (�n

i�1 Pki) or with
any state variable (�n

k�1 Pki) is equal to 1 (37).

A Power System Example




z1
1 z1

2 · · · z1
n

z2
1 z2

2 · · · z2
n

· · ·
zN

1 zN
2 · · · zN

n







R1

R2

Rn


 =




y(1)

y(2)

y(N)


 (76)

Let us take a power system example in DAE form, using a
from which the s-plane modes �i can be computed by �i �

comprehensive numerical method (15) to calculate the follow-
loge(zi)/�t, where �t is the sampling time interval (36a). A

ing important small-signal stability characteristic points:
similar estimation method is the Shanks’ method, which em-
ploys a least-squares criterion (36b).

• load flow feasibility points, beyond where there exists no
solution for the system load flow equations;

SOME PRACTICAL APPLICATIONS OF EIGENVALUES • aperiodic and oscillatory stability points;
AND EIGENVECTORS

• min/max damping points.

Some Useful Comments
The method employs the following constrained optimiza-

In the area of stability and control, eigenvalues give such im- tion problem:
portant information as damping, phase, and magnitude of os-
cillations (15,20,37). For example, for the system dynamic a2 ⇒ min/max (79)
state matrix As critical eigenvalue �i � �i � j�i, which is the
eigenvalue with the largest real part �i, the damping constant subject to
is � � �i, and frequency of oscillation is �i in radius per sec-
ond unit, or �i/2� in hertz. f (x, p0 + τ�p) = 0 (80)

The eigenvalue sensitivity analysis is often needed to assess As(x, p0 + τ�p)l ′ − al ′ + ωl ′′ = 0 (81)
the influence of certain system parameters p on damping and
enhance system stability (2,15): As(x, p0 + τ�p)l ′′ − al ′′ − ωl ′ = 0 (82)

l ′
l − 1 = 0 (83)

l ′′
i = 0 (84)

where a is the real part of system eigenvalue of interest, � is

∂α j

∂ pi
= Re




lT
j

∂As

∂ pi
r j

lT
j r j


 (77)

the imaginary part; l� and l� are real and imaginary parts of
the corresponding left eigenvector l; l�i 
 jl�i is the ith elementlj and rj are the corresponding left and right eigenvectors for

the jth eigenvalue �j, and �As/�pi is the sensitivity of the dy- of the left eigenvector l; p0 
 ��p specifies a ray in the space
of p; and As stands for the state matrix. In the preceding set,namic state matrix to the ith parameter pi.
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