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arrays. In this article, the following two-dimensional, second-
order linear partial differential equation (PDE)
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∂2u
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∂2u
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∂u
∂y

+ e(x, y)
∂2u
∂x∂y

+ f (x, y)u = g(x, y) (1)

and its numerical solution via Successive Over-Relaxation
(SOR) methods is considered. Given an initial estimate u(0),
the SOR methods (7) obtain a refined estimate u(R) of the solu-
tion of Eq. (1) discretized over an M � N grid by using R
iterations which iteratively improve each of the discretized
solution estimate components u(r)

m,n by combining the previous
estimate u(r�1)

m,n with recent estimates of its northern, western,
eastern, and southern neighbors. Thus

u(r)
m,n = u(r−1)

m,n − ω(r)[βm,n,Nu(∗N )

m−1,n + βm,n,W u(∗W )

m,n−1 + u(r−1)
m,n

+ βm,n,Eu(∗E )

m,n+1 + βm,n,Su(∗S)

m+1,n − γm,n]
(2)

for r � 1, 2, . . ., R and for all (m, n) � �, given the relax-
ation sequence �(r) for r � 1, 2, . . ., R, an initial discretized
solution estimate u(0)

m,n for all (m, n) � � and boundary condi-
tions u(R)

m,n � u(0)
m,n for all (m, n) � � where

� =
{

(m, n)

∣∣∣∣m ∈ {0,1, . . ., M + 1}
n ∈ {0,1, . . ., N + 1}

}

where � and � denote the interior and boundary of , re-
spectively, and where each sweeping ordering parameter �N,
�W, �E, and �S takes a value of r or (r � 1) and implies a se-
quence of precedence among the computations of u(r)

m,n. A fam-
ily of parallel SOR algorithms is obtained by segmenting the
SOR algorithms into arithmetic grains, parameterizing the
assignment of the arithmetic grains to at most P parallel pro-
cesses intended for execution on P processors, and parameter-
izing the number of arithmetic grains computed between com-
munications events. To evaluate the complexity and
performance of the parallel algorithms presented here, it is
assumed that �(r) and R are known and that the discretization
grid is static.

Because the numerical performance and parallelism of a
given algorithm depend on the ordering parameters (8–11),
the Jacobi (J), red–black Gauss–Seidel (RB), and natural
Gauss–Seidel (GS) orderings are considered. In the Jacobi or-
dering, �N � �W � �E � �S � r � 1. Thus with the J ordering,
all components at iteration r may be computed in parallel. In

ELLIPTIC EQUATIONS, PARALLEL OVER
SUCCESSIVE RELAXATION ALGORITHM

Numerous numerical parallel techniques exist for solving el-
liptic partial differential equation discretizations (1–4). The
most popular among these are parallel Successive Over-Re-
laxation (SOR) (5) and parallel multigrid methods (6) for a
variety of parallel architectures, including shared memory
machines, vector processors, and one- and two-dimensional

Table 1. Ordering Parameters

Sweeping Order *N *W *E *S

Jacobi (J) r � 1 r � 1 r � 1 r � 1

Red–black red r � 1 r � 1 r � 1 r � 1

(RB) black r r r r

Gauss–Seidel (GS) r r r � 1 r � 1
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Figure 1. Linear array with bidirectional
communication links.
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the RB ordering, the components of u are divided into two To evaluate the complexity and performance of the parallel
groups; um,n is red if (m � n) is even, and black if (m � n) is algorithms presented in this article, it is assumed that the
odd. Red components at iteration r are updated using black relaxation sequence is known, that R is fixed and known, and
components from iteration (r � 1), that is, �N � �W � �E � that the discretization grid is static.
�S � r � 1. Black components at iteration r are updated using
red components from iteration r, that is, �N � �W � �E � �S �
r. Thus with the RB ordering, all red components may be com-

ARCHITECTURE AND ARCHITECTURAL PARAMETERSputed in parallel followed by the computation of all black
components in parallel. In the GS ordering, �N � �W � r, and

The target architecture and associated software protocol con-�E � �S � r � 1, and thus all components with identical values
sists of P processors connected in a linear array with bidirec-of (m � n) may be computed in parallel. These orderings are
tional communication links, as shown in Fig. 1. The linearsummarized in Table 1.
array was chosen for several reasons. First, it is among theIf the number of iterations R, which guarantee a solution
least complex of all parallel architectures. If a parallel algo-of desired accuracy is not known, then a dynamic stop rule
rithm can be devised to execute efficiently on a linear array,can be implemented by redefining an arithmetic grain to in-
then it is not necessary to consider more complicated architec-clude accumulating the magnitudes of the terms in the paren-
tures. Second, an algorithm developed for a linear-array to-thesis of Eq. (2) for each iteration and comparing the accumu-
pology is portable among architectures because it can be exe-lation to a threshold.
cuted on topologies which include the linear array. Third,The number of iterations R which guarantee a solution of
linear arrays require less hardware, are physically smaller,desired accuracy depend on the relaxation sequence �(r). There
consume less power, require less cabling and backplane wir-are many relaxation schemes including static (7), unadaptive
ing, and are less expensive than more heavily connected to-dynamic (7,12), global adaptive dynamic (13), and local adap-
pologies.tive dynamic (14–16). In the static and unadaptive dynamic

There are two communication links between processor pcases, the relaxation sequence �(r) is known before execution
and processor (p � 1) designated Win (West in) and Wout (Westof the SOR and therefore the evaluation of the SOR requires
out) on processor p. Likewise, there are two communicationno computations other than those in Eq. (2). In the global
links between processor p and processor (p � 1) designatedadaptive dynamic and local adaptive dynamic cases, the re-
Ein (East in) and Eout (East out) on processor p. The unidirec-laxation sequence is computed as the SOR iterations proceed.
tional link from processor p to processor q is designated L(p,In these cases, again an arithmetic grain can be redefined to
q). Each processor executes an instruction stream consistingincorporate the computations of such adaptive strategies.
of arithmetic and message initiation instructions. Input andThe use of an adaptive grid is another strategy that can
output message initiations must be paired for two processorsenhance SOR algorithm performance (17). This strategy com-
to communicate and exchange data. Communication betweenputes an initial, crude, approximate solution on a coarse mesh
processors is synchronized. When data is passed between twowith a low-order numerical method that is enriched until a
processors, the output processor is blocked until the inputprescribed accuracy is attained. Enrichment indicators, which
processor is ready and vice versa (18). Furthermore, outputare frequently estimates of the local discretization error, are
messages are not initiated until the last word of a messageused to control the adaptive process. Resources are introduced
has been computed.in regions having large enrichment indicators and are deleted

Total latency is a combination of arithmetic latency andfrom regions where indicators are low. This strategy can also
communication latency. Each processor requires time 	a tobe incorporated by redefining an arithmetic grain to include

the calculation and usage of enrichment indicators. execute an arithmetic instruction where 	a includes the cost
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Figure 3. Nonconcurrent message startup blockage from (p � 1)Figure 2. Nonconcurrent message startup blockage from p to (p � 1).
to p.
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Figure 4. Concurrent message startup blockage.
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Figure 6. Data-dependency blockage.

of instruction fetch and decode, operand fetch and save,
caching, operand index calculation, loop overhead, etc..

transferred from (p � 1) to p. In this case, it is still the pro-Each processor requires overhead time 	d to initiate a mes-
cessor that finishes message initiation first (p) which blocks.sage, where 	d includes the cost of initializing source ad-

dress, destination address, and message length registers,
Concurrent Architecturepossible buffer allocation, etc. A communication link re-

quires time 	c(W) � 	s � W	� to transfer a W-word message In concurrent architecture, the processors are capable of exe-
across a link where 	s is the message start-up time and 	� cuting arithmetic instructions or message-initiation instruc-
is the per word transfer time if the other processor partici- tions simultaneously with bidirectional communications on
pating in the communication is ready for the message all communication links. A processor that finishes message
transfer. If the other processor is not ready, then the link initiation first blocks, as in the nonconcurrent case. However,
blocks and transfer of the message is delayed. Message after the second processor finishes message initiation, execu-
startup time 	s includes the time to synchronize clocks, tion of arithmetic instructions or message initiation may re-
transfer header information, etc. sume, as shown in Fig. 4 in addition to the unblocking of the

The capabilities of the P processors classify the architec- communication link.
ture as either nonconcurrent or concurrent. The presence or Initiation of a message on a communication link is blocked
absence of concurrency is usually determined by the presence until any message in progress on that link completes. For ex-
or absence of a direct memory access (DMA) unit. ample, message initiations from processor p to processor (p �

1) are blocked on both p and (p � 1) until the transfer from p
to (p � 1) is complete, as shown in Fig. 5.Nonconcurrent Architecture

If arithmetic instructions depend on message data, pro-
In nonconcurrent architecture, the P processors perform ei-

cessing is blocked until message completion. For example in
ther the execution of arithmetic instructions, message initia-

Fig. 6, processor (p � 1) executes A1 arithmetic instructions,
tion instructions, or unidirectional communications across

blocks until the message transfer is complete, and then exe-
one communication link at any given time. When a (synchro-

cutes A2 arithmetic instructions which are assumed to depend
nized) communication takes place from processor p to pro-

on message data.
cessor (p � 1) across a communication link, the processor

Note that if instructions are properly coordinated among
which finishes its corresponding message initiation first, say

processors, then it is possible for a processor to execute arith-
p, blocks as seen in Fig. 2. When the other processor (p � 1)

metic instructions simultaneously with the transfer of mes-
finishes its message initiation, the link unblocks and message

sages on all communications links, as shown in Fig. 7.
startup occurs on the communication link for a duration 	s. At
the conclusion of startup, words are transferred across the
communication link with a latency of 	� for each word until THE PARAMETERIZED FAMILY OF SOR ALGORITHMS
the message transfer is complete. Arithmetic and message-
initiation processing remains blocked throughout the message An arithmetic grain, denoted by its output u(r)

m,n, consists of the
operations of Eq. (2) for fixed m, n, and r. The arithmetic com-transfer. At the conclusion of the message transfer, arithme-

tic or message-initiation processing resumes on both pro- plexity and communication among grains are summarized in
Table 2. Thus R iterations of SOR consist of MNR arithmeticcessors (dashed boxes). Figure 3 shows a similar situation

with the direction of communication reversed, that is, data is grains whose execution require 11MNR operations.
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Figure 7. Maximum arithmetic and com-
munications concurrency.
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The assignment of the MNR grains to the P processes is The order in which arithmetic grains are executed by each
process must take into account their interprocess dependen-dictated by P arithmetic grain aggregation coefficients h1, h2,

. . ., hP, where cies. Because the GS sweeping dependencies are supersets of
the RB dependencies, which in turn are supersets of the J
sweeping dependencies, the arithmetic grain ordering for GS
sweeping is chosen. For RB sweeping, the indices are rela-

⌊
N
P

⌋
≤ hp ≤

⌈
N
P

⌉
, p = 1, 2, . . ., P, and

P∑
p=1

hp = N

beled so that all red arithmetic grains precede black arithme-
tic grains. The execution of arithmetic grain u(r)

m,n depends onThen the arithmetic grain aggregation coefficients are used to
the input variables given in Table 2. To satisfy these depend-define the cumulative arithmetic grain aggregation coefficients
encies, the arithmetic grains are executed from top to bottomH0, H1, . . ., HP, where
among rows and from left to right within a row (see Fig. 9).

A communication grain is the communication of a singleH0 = 0,Hp = Hp−1 + hp, p = 1,2, . . ., P
word of boundary information by any process p to the western
process (p � 1) or to the eastern process (p � 1). There is anThe arithmetic grains assigned to process p for p � 1, 2, . . .,
input and output communication grain associated with eachP are u(r)

m,n for all m � 1, 2, . . ., M, for all n � Hp�1 � 1,
arithmetic grain on the left and right edges of Fig. 9. TheHp�1 � 2, . . ., Hp, and for all r � 1, 2, . . ., R. The relation-
order in which the communication grains are executed is cho-ship between the discretization grid and the processing array
sen as the order in which the corresponding boundary infor-is shown in Fig. 8.
mation is needed and generated by each process according toBecause the number of arithmetic grains assigned to pro-
the arithmetic grain execution ordering described before.cess p is hpMR, the number of arithmetic operations executed
Communication grains between process p and western pro-by process p is 11hpMR. For each r � 1, 2, . . ., R, each pro-
cess (p � 1) are executed from top to bottom, and communica-cess p depends on receiving a western boundary of M words
tion grains between process p and eastern process (p � 1) areconsisting of u(*W)

m,Hp�1 for m � 1, 2, . . ., M and an eastern
also executed from top to bottom.boundary of M words consisting of u(*E)

m,Hp�1 for m � 1, 2, . . .,
Let an arithmetic step be the contiguous arithmetic grainsM. In addition, for each r � 1, 2, . . ., R, each process p must

executed between communications events, and let U be thesend a western boundary of M words consisting of u(r)
m,Hp�1�1 for

number of communication grains in any message. The choicem � 1, 2, . . ., M and an eastern boundary of M words con-
of U induces the number of arithmetic grains in each arithme-sisting of u(r)

m,Hp
for m � 1, 2, . . ., M. The total arithmetic and

tic step. Because the time to communicate a W-word messagecommunication complexities for process p are summarized in
Table 3. is 	c(W) � 	s � W	w, longer messages, that is, large U, result

Table 2. Arithmetic Grain Computation and Communication Complexities

Operations Input Output

� � Total Variables Words Variables Words

6 5 11 u(*N)
m�1,n , u(*W)

m,n�1 , u(r�1)
m,n , u(*E)

m,n�1 , u(*S)
m�1,n 5 u(r)

m,n 1
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Figure 8. Discretization grid and processing-array relationship.

in a smaller average per word transfer time that reduces
overall latency. However, longer messages also contribute to
delaying computations on processors that depend on message
data; thereby increasing overall latency. Thus expressing la-
tency as a function U affords a means to determine this trade-
off optimally.
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The number of input and output words to each process is
MR, and therefore, the number of messages to and from each Figure 9. Arithmetic steps for process p.
process is given by

words and received S messages for s � 1, 2, . . ., S from pro-
cess (p � 1) totaling MR words, excluding the boundary pro-

S =
⌈

MR
U

⌉

cesses p � 1 and p � P, where the communication to process
(p � 1) and (p � 1), respectively, is null.The reception of each U-word message by process p from pro-

cess (p � 1) with the corresponding message from process
(p � 1) enables computing Uhp arithmetic grains which gener-

LATENCY ANALYSISate a pair of U word messages, one needed by process (p � 1)
and the other needed by process (p � 1). Thus the execution

In this section, upper bounds on the overall latencies of theof Uhp arithmetic grains is bracketed by communications
parameterized SOR algorithms are quantified for executionevents which define an arithmetic step and therefore the
on a linear array of processors. In each case, the bounds arenumber of arithmetic steps is S.
computed by evaluating the latency of the process q that hasFive subroutines common to both concurrent and noncon-
the maximum number of arithmetic grains associated with it,current parallel implementations of the SOR algorithm are
that is, hq � N/P, and adding the latency of those processesnow defined. Each subroutine call of Comp(s), Wout(s),
or portions of processes required before and after execution

Eout(s), Win(s), and Ein(s), executes approximately 1/S of
process q. For convenience, the execution time of an arithme-the total of arithmetic grains, western output grains, eastern
tic grain is denoted �g, and thus �g � 11�a.output grains, western input grains, or eastern input grains,

respectively where the argument s � [1, 2, . . ., S] specifies
Nonconcurrent SORwhich 1/S of the total grains is executed for a particular sub-

routine call. For instance, when ui,j � u(r)
m,n with i � M(r � 1) When arithmetic computations and communications cannot

� m and j � n, then Comp(s) executes ui,j for i � U(s � 1) � be done simultaneously, the algorithm described in Fig. 10 is
1, U(s � 1) � 2, . . ., Us and j � Hp�1 � 1, Hp�1 � 2, . . ., used for the J and RB sweepings, and the algorithm described
Hp. in Fig. 11 is used for the GS sweeping, where the parallel

When the algorithm is executed, each process p has com- execution of instructions 1, 2, . . ., n is indicated by
puted S arithmetic steps for s � 1, 2, . . ., S, totaling gpMR
grains, sent S messages for s � 1, 2, . . ., S to process (p � instruction 1//instruction 2//. . .//instruction n
1), totaling MR words, received S messages for s � 1, 2, . . .,
S messages from process p � 1, totaling MR words, sent S To satisfy dependency constraints, it is required that U � M
messages for s � 1, 2, . . ., S to process (p � 1), totaling MR in the J case, and U � M/2 in the RB and GS cases.

In the J and RB cases, dependencies allow executing the
worst-case process to begin immediately, and then execution
proceeds without blocking because its western and eastern
neighbors have at most the same number of grains to compute
at each arithmetic step. Thus the latency in the J and RB
cases is bounded from above by LJn and LRBn with

LJn = LRBn = S(4(τd + τs + Uτw ) + hqUτg)

=
⌈

MR
U

⌉
(4τd + 4τs + 4Uτw + �N/P�Uτg)

Table 3. Grain Computation and Communication
Complexities for Process p

Input to Output from
Process Process

Arithmetic p, Words p, Words

Grains Operations p � 1 p � 1 p � 1 p � 1

hpMR 11hpMR MR MR MR MR
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Figure 10. Nonconcurrent 1-D Jacobi/red–black
algorithm.

DO IN PARALLEL FOR p � 1, . . ., P DO IN PARALLEL FOR p � 1, . . ., P
for s � 1, 2, . . ., S for s � 1, 2, . . ., S
Wout(s) Ein(s)
Eout(s) Win(s)
Win(s) Eout(s)
Ein(s) Wout(s)
Comp(s) Comp(s)

end end
END END
p = EVEN p = ODD

Minimizing over the communication granularity parameter U and the latency incurred following the process q loop is given
byin the J case gives U � M and latency bound

LJn = 4Rτd + 4Rτs + 4MRτw + MR
⌈

N
P

⌉
τg 2(P − q)(τd + τs + Uτw ) +

P∑
p=q

hpUτg

and in the RB case gives U � M/2 and latency bound Thus the latency in the GS case is bounded from above by
LGSn with

LRBn = 8Rτd + 8Rτs + 4MRτw + MR
⌈

N
P

⌉
τg

In the nonconcurrent GS case, dependencies block the execu-
tion of the worst case process q until processes p � 1, 2, . . .,

LGSn =
�

4
⌈

MR
U

⌉
+ 2P − 7

�
(τd + τs + Uτw )

+
[�⌈

MR
U

⌉
− 1

�⌈
N
P

⌉
U + NU

]
τg

q � 1 have executed their respective first triplet of input com-
munications, arithmetic step, and output communications. Given an SOR algorithm, architectural parameters P, �a, �d,
Then execution of the worst case process proceeds unblocked �w, and �s, and problem parameters M, N, and R, the corre-
because its western and eastern neighbors have at most the sponding latency bound can be plotted as a function of the
same number of grains to compute at each arithmetic step. communication granularity U, and the optimal U may be ob-
When the worst case process concludes, processes p � q � 1, tained from the plot. For example, in the nonconcurrent GS
q � 2, . . ., P must execute their final triplet of input commu- case with architectural parameters P � 8, �a � 1.34 �s, �d �
nications, arithmetic step, and output communications. The 120.0 �s, �w � 9.0 �s, and �s � 12.2 �s, and problem parame-
latency incurred before the process q loop can begin executing ters M � N � 90 and R � 10, LGSn is plotted as a function of
is expressed by U in Fig. 12. One sees that U � 1 yields 669.0 ms for the

latency bound and that U � 20 yields 240.7 ms, the minimum

[1 + 2(q − 2)](τd + τs + Uτw ) +
q−1∑
p=1

hpUτg

the latency incurred executing the process q loop is given by

4(S − 1)(τd + τs + Uτw ) + (S − 1)hqUτg
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Figure 12. Gauss–Seidel latency vs. communication granularity for

DO IN PARALLEL FOR p � 1, . . ., P
Wout(1)
Ein(1)
for s � 1, 2, . . ., S � 1
Win(s)
Winout(s � 1)
Comp(s)
Eout(s)
Ein(s � 1)

end
Win(S)
Comp(S)
Eout(S)

END
P � 8, �a � 1.34 �s, �d � 120.0 �s, �w � 9.0 �s, �s � 12.2 �s, M �

N � 90, R � 10.Figure 11. Nonconcurrent 1-D Gauss–Seidel algorithm.
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Figure 13. Concurrent 1-D Jacobi/red-black algo-

DO IN PARALLEL FOR p � 1, . . ., P
Wout(1) // Eout(1) // Win(1) // Ein(1)
for s � 1, 2, . . ., S � 1
Wout(s � 1) // Eout(s � 1) // Win(s � 1) // Ein(s � 1) // Comp(s)

end
Comp(S)

END
rithm.

latency bound. This may be compared to the single processor nications, arithmetic step, and output communications. Then
execution of the worst case process proceeds unblocked be-latency of 1193.8 ms, and we may conclude that the use of the

customary U produces an efficiency of 22%, and the use of the cause its western and eastern neighbors have at most the
same number of grains to compute at each arithmetic step.optimal U produces an efficiency of 62%.
When the worst case process concludes, processes p � q � 1,
q � 2, . . ., P must execute their final triplet of input commu-Concurrent SOR
nications, arithmetic step, and output communications. The

When arithmetic computations and communications can be latency incurred before process q can begin executing is ex-
done simultaneously, the algorithm given in Fig. 13 is used pressed by
for the J and RB cases, the algorithm given in Fig. 14 is used
for the GS case. To satisfy dependency constraints and to per-
mit the concurrent execution of arithmetic grains and commu-
nication grains, it is required that U � M/2 in the J case and

q−1∑
p=1

(τs + Uτw + max{τs + Uτw, hpUτg + τd})

U � M/4 in the RB and GS cases.
the latency incurred executing process q is expressed byAs in the nonconcurrent situation, dependencies in both

the J and RB cases, allow execution of the worst case process
to begin immediately and to proceed without blocking because (τs + Uτw) + S max{τs + Uτw, hgUτg + τd}
its western and eastern neighbors have at most the same
number of grains to compute at each arithmetic step. Thus and the latency incurred following process q is expressed by
the latency in the J and RB cases is bounded from above by
LJc and LRBc with P∑

p=q+1

(τs + Uτw + max{τs + Uτw, hpUτg + τd})

Thus the latency in the GS case is bounded from above by
LGSc where

LJc = LRBc = (τd + τs + Uτw )

+ (S − 1) max{τs + Uτw, hqUτg + τd} + hqUτg

= (τd + τs + Uτw ) +
�⌈

MR
U

⌉
− 1

�

max
{
τs + Uτw,

⌈
N
P

⌉
Uτg + τd

}
+

⌈
N
P

⌉
Uτg

If �s � U�w � N/P (U�g � �d), then

LGSc =
P∑

p=1

(τs + Uτw + max{τs + Uτw, hpUτg + τd})

+ (S − 1) max{τs + Uτw,

⌈
N
P

⌉
Uτg + τd}

If �s � U�w � hp U�g for all p, thenLJc = LRBc = (τs + Uτw) +
⌈

MR
U

⌉�
U

⌈
N
P

⌉
τg + τd

�

In the concurrent GS case, dependencies block the execution
of the worst case process q until processes p � 1, 2, . . ., q �
1 have executed their respective first triplet of input commu-

LGSc = P(τd + τs + Uτw ) +
�⌈

MR
U

⌉
− 1

��⌈
N
P

⌉
Uτg + τd

�

+ NUτg

DO IN PARALLEL FOR p � 1, . . ., P
Wout(1)
Wout(2) // Ein(1)
Wout(3) // Win(1)
Wout(4) // Win(2) // Ein(2) // Comp(1)
for s � 2, 3, . . ., S � 3
Wout(s � 3) // Win(s � 1) // Ein(s � 1) // Comp(s) // Eout(s � 1)

end
Win(S � 1) // Ein(S � 1) // Comp(S � 2) // Eout(S � 3)
Win(S) // Ein(S) // Comp(S � 1) // Eout(S � 2)
Comp(S) // Eout(S � 1)
Eout(S)

END Figure 14. Concurrent 1-D Gauss–Seidel algorithm.
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4. H. A. Van der Vorst, High performance preconditioning, SIAM J.Once again, given architectural parameters P, �a, �d, �w, and
Sci. Stat. Comput., 10: 1174–1185, 1989.�s, and problem parameters M, N, and R, the corresponding

5. A. Asenov, D. Reid, and J. R. Barker, Speed-up of scalable itera-latency bound can be plotted as a function of the communica-
tive linear solvers implemented on an array of transputers, Par-tion granularity U, and the optimal U may be obtained from
allel Comput., 20: 375–387, 1994.the plot. For example, in the concurrent GS case with archi-

6. N. H. Naik and J. Van Rosendale, The improved robustness oftectural parameters P � 8, �a �1.34 �s, �d � 120.0 �s, �w �
multigrid elliptic solvers based on multiple semicoarsened grids,9.0 �s, and �s � 12.2 �s, and problem parameters M � N �
SIAM J. Numer. Anal., 30: 215–229, 1993.90 and R � 10, LGSc is plotted as a function of U in Fig. 12.

7. W. H. Press et al., Numerical Recipes in C, Cambridge Univ.One sees that U � 1 yields 269.0 ms for the latency bound
Press, 1992, Chap. 19.and that U � 9 yields 183.5 ms, the minimum latency bound.

8. L. M. Adams and H. F. Jordan, Is SOR color-blind?, J. Sci. Stat.This may be compared to the single processor latency of
Comput., 7: 490–506, 1986.1193.8 ms, and we may conclude that the use of the custom-

9. C.-C. J. Kuo, T. F. Chan, and C. Tong, Two color Fourier analysisary U produces an efficiency of 55% and the use of the optimal
of iterative algorithms for elliptic problems with red/black order-U produces an efficiency of 81%.
ing, SIAM J. Sci. Stat. Comput., 11: 767–794, 1990.

10. C.-C. J. Kuo and B. C. Levy, Discretization and solution of elliptic
PDEs—a digital signal processing approach, Proc. IEEE, 12:CONCLUSIONS
1808–1842, 1990.

11. J. M. Ortega and R. G. Voigt, Solution of partial differential equa-Whenever a W-word message has to be transferred from one
tions on vector and parallel computers, SIAM Rev., 27: 149–processor to another, one incurs a computational cost �d to
240, 1985.initiate and synchronize the message transfer and also a com-

12. R. S. Varga, Matrix Iterative Analysis, Englewood Cliffs, NJ:munication link cost �c(W) � �s � W�w. It follows that longer
Prentice-Hall, 1962.messages result in a smaller average per word computational

13. L. A. Hageman and D. M. Young, Applied Iterative Methods, Newoverhead and a smaller average per word communication
York: Academic Press, 1981.transfer time that reduces overall latency. However, longer

14. E. F. Botta and A. E. P. Veldman, On local relaxation methodsmessages delay computations on processors which depend on
and their application to convection-diffusion equations, J. Com-message data, increasing latency. Using parameterized algo-
put. Phys., 48: 127–149, 1981.rithms in which message size can be adjusted allows balanc-

15. L. W. Ehrlich, An ad hoc SOR method, J. Comput. Phys., 44:ing message overhead against delays due to computational
31–45, 1981.dependencies. Then, expressing latency as a function of com-

16. C.- C. J. Kuo, B. C. Levy, and B. R. Musicus, A local relaxationmunication granularity, which is related to message length,
method for solving elliptic PDEs on mesh-connected arrays,allows the optimally determining the necessary tradeoff. Pa-
SIAM J. Sci. Stat. Comput., 8: 550–573, 1987.

rameterizing algorithms also has the advantage that high ef-
17. R. Biswas, J. E. Flaherty, and M. Benantar, Advances in adaptiveficiencies are more easily maintained when hosted on a multi-

parallel processing for field applications, IEEE Trans. Magn., 27:
plicity of architectures because parameters may be adjusted 3768–3773, 1991.
for each architecture.

18. D. P. O’Leary and P. Whitman, Parallel QR factorization by
In this article, it has been shown that the relationship be- Householder and modified Gram–Schmidt algorithms, Parallel

tween latency and communication granularity U for a family Comput., 16: 99–112, 1990.
of parametrized parallel SOR algorithms is pronounced and 19. G. G. L. Meyer and M. Pascale, A family of Parallel QR Factoriza-
that the reduction in latency with an optimal choice of U is tion Algorithms, High Performance Comput. Symp. ’95, 1995,
significant. The efficiencies of these algorithms are high pp. 95–106.
whenever the corresponding optimal communication granu- 20. M. A. Pirozzi, The fast numerical solution of mildly nonlinear
larity is used, suggesting that architectures which are more elliptic boundary value problems on multiprocessors, Parallel
complicated than the linear array need not be considered. Comput., 19: 1117–1128, 1993.
Given a problem, one can determine or estimate the number
of iterations RJ, RRB, and RGS required to achieve a desired GERARD G. L. MEYER

accuracy for each sweeping order J, RB, and GS, find the opti- Johns Hopkins University
mal U and the corresponding latency for each case, and then MICHAEL V. PASCALE
choose the best SOR algorithm. The GS sweeping order is of Northrop Grumman
the most interest, however, because it has a generally supe-
rior rate of convergence and because of its amenability to the
enhancements mentioned in the introduction.
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