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FOURIER ANALYSIS

Fourier analysis is a collection of related techniques for repre-
senting general functions as linear combinations of simple
functions or functions with certain special properties. In the
classical theory, these simple functions (called basis functions)
are sinusoids (sine or cosine functions). The modern theory
uses many other functions as the basis functions. Every basis
function carries certain characteristics that can be used to
describe the functions of interest; it plays the role of a build-
ing block for the complicated structures of the functions we
want to study. The choice of a particular set of basis functions
reflects how much we know and what we want to find out
about the functions we want to analyze. In this article, we
will restrict our discussion (except for the last section about
wavelets) to the classical theory of Fourier analysis. For a
broader point of view, see FOURIER TRANSFORM.

In applications, Fourier analysis is used either simply as
an efficient computational algorithm or as a tool for analyzing
the properties of the signals, functions of time, or space vari-
ables at hand. (In this article, we will use the terms signal
and function interchangeably.)

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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A very important component of modern technology is the noulli (1700–1782), and Joseph Louis Lagrange (1736–1813).
processing of signals of various forms in order to extract the An enormous and important step was made by Jean Baptiste
most significant characteristics carried in the signals. In prac- Joseph Fourier (1768–1830) when he took up the study of
tice, most of the signals in their raw format, are given as func- heat conduction. He used sines and cosines in his study of the
tions of the time or space variables, so we also call the domain flow of heat. He submitted a basic paper on heat conduction
of the signal the time (or space) domain. This time- or space- to the Academy of Sciences of Paris in 1807 in which he an-
domain representation of a signal is not always the best for nounced his belief in the possibility of representing every
most applications. In many cases, the most distinguished in- function f (x) on the interval (a, b) by a trigonometric series of
formation is hidden in the frequency content or frequency spec- the form (with P � b � a)
trum of a signal. Fourier analysis is used to accomplish the
representation of signals in the frequency domain.

Fourier analysis allows us to calculate the ‘‘weights’’ (am-
1
2

A0 +
∞∑

n=1

�
An cos

2πnx
P

+ Bn sin
2πnx

P

�
(1)

plitudes) of the different frequency sinusoids which make up
the signal. Given a signal, we can view the process of analyz-

whereing the signal by Fourier analysis as one of transforming the
original signal into another form that reveals its properties
(in the frequency domain) that cannot be directly seen in the
original form of the signal. An = 2

P

∫ b

a
f (x) cos

2πnx
P

dx (n = 0, 1, 2, . . . ) (2)

The most useful tools in Fourier analysis are the following
three types of transforms: Fourier series, discrete Fourier
transform, and (continuous) Fourier transform. With each Bn = 2

P

∫ b

a
f (x) sin

2πnx
P

dx (n = 1, 2, 3, . . . ) (3)

transform there is associated an inverse transform that recov-
ers (in a sense to be discussed later) the original signal from Because of its lack of rigor, the paper was rejected by a com-
the transformed one. The process of calculating a transform mittee consisting of Lagrange, Laplace, and Legendre. Fou-
is also referred to as Fourier spectral analysis; the process of rier then revised the paper and resubmitted it in 1811. The
recovering the original function from its transform by using paper was judged again by the three aforementioned mathe-
the inverse transform is called Fourier synthesis. maticians as well as others. Showing great insight, Academy

The wide use of Fourier analysis in engineering must be
awarded Fourier the Grand Prize of the Academy despite the

credited to the existence of the fast Fourier transform (FFT),
defects in his reasoning. This 1811 paper was not publisheda fast computer implementation of the discrete Fourier trans-
in its original form in the Mémoires of the Academy untilform. Areas where Fourier analysis (via FFT) has been suc-
1824 when Fourier became the secretary of the Academy. (Itcessfully applied, include applied mechanics, biomedical engi-
is worthwhile to point out that there were good reasons thatneering, computer vision,numerical methods, signal and
Fourier’s theorem was criticized by his contemporaries: Atimage processing, and sonics and accoustics.
that time, the modern concepts of function and limit wereFourier analysis is closely related to the sampling of sig-
not available.)nals. In order to analyze signals using a computer, a continu-

As a result of Fourier’s work, the sequences �An��
n�0 andous time signal must be sampled (at either equally or un-

�Bn��
n�0 defined by Eqs. (2) and (3) are now universally knownequally spaced time intervals). Instead, they are given by a

as the (real) Fourier coefficients of f (x) (though these formulaeset of sample values. The resulting discrete-time signal is
were known to Euler and Lagrange before Fourier). Thecalled the sampled version of the original continuous-time sig-
term, A1 cos(2� � /P) � �1 sin(2� � /P), is called the principalnal. There are two types of sampling: uniform sampling and
(spectral) component of the expansion; and the number �0 �nonuniform sampling. We only discuss the uniform sampling
1/P is called the principal (or fundamental) frequency.in this article. How often must a signal be sampled in order

Since Fourier coefficients are defined by integrals, thethat all the frequencies present should be detected? This is
function f must be integrable. In searching for a more generaldiscussed with sampling theorems.
concept of integration (so as to include more functions in Fou-Recently, a new set of tools under the generic name wave-
rier analysis), Bernhardt Riemann (1826–1866) introducedlets analysis has found various applications. Wavelets analy-
the definition of integral now associated with his name, thesis can be view as an enhancement of the classical Fourier
Riemann integral. Later, Henri Lebesgue (1875–1941) con-analysis. In wavelets analysis, the basis functions are not si-
structed an even more general integral, the Lebesgue in-nusoids but functions with zero average and other additional
tegral.properties. These basis functions are localized in both time

Because changing the values of a function at finitely manyand frequency domains.
points will not change the value of its integral, we will not
distinguish two functions if they are the same except at fi-

FOURIER SERIES nitely many points.

History
The Complex Form of Fourier Series

The history of Fourier analysis can be dated back at least to
Given a function f (x) on (a, b), to calculate its Fourier seriesthe year 1747 when Jean Le Rond d’Alembert (1717–1783)
of the form shown in Eq. (1) we have to use two equationsderived the ‘‘wave equation’’ which governs the vibration of a
[Eqs. (2) and (3)] to obtain the coefficients An and Bn. This isstring. Other mathematicians involved in the study of Fourier

analysis include Leonard Euler (1707–1783), Daniel Ber- why we sometimes want to use an alternative form of Fourier
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series, the complex form. To rewrite Eq. (1), we use Euler’s valued trigonometric series. We will illustrate this in our ex-
amples.identity (as usual, with j � ��1)

Examples of Fourier Seriese jφ = cos φ + j sinφ

Example 1. Find the Fourier series of f (x) � � � x on inter-Then the trigonometric series in Eq. (1) can be put in a for-
val (0, 2�).mally equivalent form,

SOLUTION. We use Eq. (5) to find the complex Fourier coef-
ficients first. For n � 0, we have c0 � (1/2�) �2�

0 (� � x) dx �0.

∞∑
n=−∞

cne j2πnx/P (4)

For n � 0, using integration by parts, we have

in which, on writing B0 � 0, we have

cn = 1
2

(An + Bn), c−n = 1
2

(An − Bn), n = 0, 1, 2, . . .

From Eqs. (2) and (3), we can derive

cn = 1
2π

∫ 2π

0
(π − x)e− jnx dx

= 1
2π

{
− 1

jn
e− jnx(π − x)

∣∣∣∣
2π

0
− 1

jn

∫ 2π

0
e− jnx dx

}

= 1
2π

{
2π

jn
+ 1

( jn)2 e− jnx
∣∣∣∣
2π

0

}
= − j

ncn = 1
P

∫ b

a
f (x)e− j2πnx/P dx, n = 0, ±1, ±2, . . . (5)

Hence, the complex Fourier series of f (x) on (0, 2�) is given
The numbers �cn��

n��� are called the ‘‘complex’’ Fourier coeffi- by
cients of f (x). The two series in Eqs. (1) and (4) are referred
to as the real and complex Fourier series of f (x), respectively. ∞∑

n=−∞

′
− j

n
e jnx (10)

The Orthogonality Relations

Before we explore Fourier series further, it is important to where the prime on the sum is used to indicate that the n �
point out the facts that provided the heuristic basis for the 0 term is omitted.
formulae in Eqs. (2), (3), and (5) for the Fourier coefficients.
These facts, which can be proved by simple and straightfor-
ward calculations, are expressed in the following orthogonal-
ity relations. In the real form, we have

1
P

∫ b

a
cos

2πmx
P

cos
2πnx

P
dx =




0 for m �= n
1
2

for m = n �= 0

1 for m = n = 0

(6)

1
P

∫ b

a
sin

2πmx
P

sin
2πnx

P
dx =




0 for m �= n
1
2

for m = n �= 0

1 for m = n = 0

(7)

1
P

∫ b

a
sin

2πmx
P

cos
2πnx

P
dx = 0 (8)

and in the complex form, we have

1
P

∫ b

a
e j2πmx/P e− j2πnx/P dx =

{
0 for m �= n

1 for m = n
(9)

where m and n are integers, and the interval of integration
[a, b] can be replaced by any other interval of length P.

Note that to express the orthogonality among trigonomet-
ric functions, we need three identities, namely, Eqs. (6), (7),
and (8); but to do the same among exponential functions, we
need only one identity, Eq. (9). In general, it is more conve-
nient to compute the complex Fourier series first and then
change it to the ‘‘real’’ form in sine and cosine functions. From
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the definition, we can easily verify that if f (x) is real-valued,
then its complex Fourier series can always be put into a real- Figure 1. S1(x), S2(x), S4(x), and S8(x).
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Example 2. Find the Fourier series of f (x) defined by

f (x) =




0, −1 < x < 0
1
2

, x = 0

1, 0 < x < 1

on the interval (�1, 1).

SOLUTION. The complex Fourier series of f (x) is given by

1
2

+
∞∑

n=−∞

′ j
2πn

[(−1)n − 1]e jπnx (11)

We can write Eq. (11) in the following real form:

3

2

1

0

–1

–2

–3

1 2 3 4 5 6
x

1
2

+
∞∑

n=1

1
πn

[1 − (−1)n] sin πnx

= 1
2

+
∞∑

n=1

2
π(2n − 1)

sinπ(2n − 1)x

Figure 2. f (x) � � � x and S8(x) on (0, 2�).
Let

Grouping �( j/n)ejnx and �( j/�n)e�jnx, we obtain (2/n) sin
nx, so we can write Eq. (10) in the real form:

Sm(x) = 1
2

+
m∑

n=1

2
π(2n − 1)

sinπ(2n − 1)x

denote the partial sum. In Fig. 4, we show the graphs of
Sm(x) for m � 12, 24, and 36, along with the graph of f (x) and

∞∑
n=1

2
n

sin nx

S36(x).
In Fig. 1, we show the graphs of the partial sums:

Convergence

Does the Fourier series of a function f (x) converge to f (x)?
Sm(x) =

m∑
n=1

2
n

sin nx

Fourier’s assertion that the answer is yes was initially
greeted with a great amount of disbelief as we mentioned ear-for m � 1, 2, 4, and 8. In Fig. 2, we show both f (x) �� � x
lier. In fact, the answer depends on what sense of convergenceand S8(x) on the interval (0, 2�).
is understood. Fourier was right, and the answer is alwaysNotice that the graph of S8(x) is a wavy approximation to
yes provided that things are interpreted suitably. Pointwisethe original function f (x) � � � x on (0, 2�). Outside of the
convergence is one of the many choices; it is also the first oneinterval, the graph of S8(x) is approximating the periodic ex-
considered in the study of Fourier series. Because of this,tension (with period 2�) f p(x) of f (x) (see Fig. 3).
there is a lot of pointwise convergence theorems, although
most of them are sufficient conditions. Dirichlet was the first
mathematician who carefully studied the validity of pointwise
convergence of the Fourier series. We will state two such re-
sults that more or less cover most application problems from
physics and engineering.

We say that the function f (x) is piecewise continuous on
(a, b) if (1) f is continuous on (a, b) except perhaps at finitely
many exceptional points and (2) at each x* of the exceptional
points, both one-sided limits

lim
x→x−∗

f (x) =: f (x∗−) and lim
x→x+∗

f (x) =: f (x∗+)

exist. [At the endpoints, a and b, we assume both limx�a�

f (x) �: f (a�) and limx�b� f (x) �: f (b�) exist.]
Next, we say that function f (x) is piecewise smooth on (a,
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b) if both f (x) and its first derivative f �(x) are piecewise contin-
uous on (a, b).Figure 3. f (x) and S8(x) on (�2�, 4�), f p(x) and S8(x) on (�2�, 4�).
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Dirichlet–Jordan Theorem. If f (x) is of bounded variation
on interval (a, b), and if Sm(x) denotes the mth partial sum of
its Fourier series, then

lim
m→∞ Sm(x) =

{
1
2 [ f (x−) + f (x+)], for a < x < b
1
2 [ f (a+) + f (b−)], for x = a or b

It is not hard to show that a piecewise smooth function can
be represented as the difference of two increasing functions;
so a piecewise smooth function is of bounded variation. There-
fore, the Dirichlet–Jordan Theorem is more general than the
Dirichlet Theorem.

Limitations of Pointwise Convergence

Although it is undeniably of great intrinsic interest to know
that a certain function admits a pointwise representation by
its Fourier series, it must be pointed out without delay that,
in many situations, simple pointwise convergence is not the
appropriate thing to look at.

It has been known since 1876 that the Fourier series of a
continuous function may diverge at infinitely many points,
and the Fourier series of a integrable function may diverge at
all points. For almost a century, whether the Fourier series
of a general continuous function is guaranteed to converge at
least at some points remained in doubt. An affirmative an-
swer was obtained by L. Carleson in 1966 with a deep theo-
rem asserting that the Fourier series of every square-integ-
rable function must converge to the function at ‘‘almost every’’
point. See the article by Hunt in Ref. 2. Therefore, we have to
restrict functions to certain special types in order to achieve
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xx the pointwise convergence. Although the theorems presented
above are sufficient for many purposes, they do not give theFigure 4. S12(x), S24(x), S36(x), and f (x) and S36(x).
whole picture. See Zygmund’s book (1) for more details.

Other Types of Convergence. Here we briefly mention some
Dirichlet Theorem. If f (x) is piecewise smooth on (a, b), other types of convergence that may be used when studying
and Sm(x) denotes the mth partial sums of the Fourier series the Fourier series. First, there is uniform convergence, which
of f (x), then is stronger than pointwise convergence. Next, there is pth

power mean convergence, according to which the series ��
n���

cnej2�nx/P converges to f (x) on the interval (a, b) (with P � b �
a) iflim

m→∞Sm(x) =
{

1
2 [ f (x−) + f (x+)], for a < x < b
1
2 [ f (a+) + f (b−)], for x = a or b

In particular, limm��Sm(x) � f (x) for every x � (a, b) at which
f is continuous.

lim
m→∞

∫ b

a

∣∣∣∣∣ f (x) −
m∑

n=−m
cne j2πnx/P

∣∣∣∣∣
p

dx = 0

The case when p � 2 is especially simple and useful. Finally,The functions in Examples 1 and 2 are both piecewise
there is distributional convergence which is defined as follows:smooth functions. For example, in Example 1 the Fourier se-
The series ��

n��� cnej2�nx/P is said to distributionally convergeries converges to f (x) at every point in (0, 2�) and to 0 at the
to f (x) on the interval (a, b) (P � b � a) ifendpoints 0 and 2�.

Dirichlet’s Theorem can be extended to more functions. We
say that the function f (x) is of bounded variation on (a, b) if
the sums of the form

lim
m→∞

∫ b

a
u(x)

m∑
n=−m

cne j2πnx/P dx =
∫ b

z
u(x) f (x) dx

for every infinitely differentiable periodic function u(x) with| f (x1) − f (a)| + | f (x2) − f (x1)| + · · · + | f (b) − f (xk )|
period P.

are bounded for all k and for all choices of (a�)x1 � x2 � � � �
Fourier Sine Series and Fourier Cosine Series

� xk(�b).
It is known that a function is of bounded variation if and A function f (x) on (�L, L) is said to be an even function if

f (�x) � f (x) for x � (�L, L); it is said to be an odd functiononly if it can be written as the difference of two monotonic
(either increasing or decreasing) functions (see Ref. 1). if f (�x) � �f (x) for x � (�L, L). The graph of an even function
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is symmetric with respect to the y axis in the xy plane, while The last two integrals are equal since f (x) cos(�nx/L) is even.
So the formula for the real Fourier coefficient An can be sim-the graph of an odd function is symmetric with respect to the

origin. Note that cos(�nx/L) is an even function in x (n � 0, plified to
1, 2,. . .), and sin(�nx/L) is an odd function in x (n � 1,2,3,
. . .). By exploring the symmetry, we can show that if f (x) is
an even function on (�L, L), then its real Fourier series on

An = 2
L

∫ L

0
f (x) cos

πnx
L

dx (13)

(�L, L) contains no sine terms; and if f (x) is an odd function,
then its real Fourier series is a series of sines only. Of course, Notice that this formula uses only the function f (x) on its orig-
a trigonometric series containing no sines must be even, if the inal domain (0, L). This motivates the following definition of
series ever converges. Similarly, a trigonometric series con- Fourier cosine series.
taining only sines must be odd.

When a function f (x) is defined on (0, L), we can extend it Definition. Let f (x) be a function defined on (0, L). Then its
to a larger interval (�L, L). Among the infinitely many possi- Fourier cosine series on (0, L) is given by Eq. (12), where An

ble extensions, we consider the following two. The first one is are defined by Eq. (13) for n � 0, 1, 2, . . ..
to extend the function so that it is an even function on (�L,
L) (we still use f (x) to denote the extension): Similarly, we can define the Fourier sine series by using

the odd extension of a function defined on (0, L).

Definition. Let f (x) be a function defined on (0, L). Then its
f (x) =

{
f (x), 0 < x < L

f (−x), −L < x < 0
Fourier sine series on (0, L) is given by

The other way is to extend it as an odd function on (�L, L): ∞∑
n=1

Bn sin
πnx

L
dx

f (x) =
{

f (x), 0 < x < L

− f (−x), −L < x < 0
where Bn’s are defined by

Note that in the above definitions of the extensions of f (x) we
did not give any definition for the extension at x � 0. Because
of an earlier remark, changing one value of a function will not Bn = 2

L

∫ L

0
f (x) sin

πnx
L

dx

change its Fourier series; so at x � 0 we can define f (x) in any
way we want. For example, in view of the convergence theo- for n � 0, 1, 2, . . ..
rems, we may define f (0) � f (0�) in the even extension, and
f (0) � 0 in the odd extension. In Fig. 5, we show the graph of function f (x) � � � x on (0,

Now we can form the Fourier series of f (x) on the larger �), the even extension of f (x) on (��, �), and the odd extension
interval (�L, L) after the extension. When we use the even of f (x) on (��, �); in Fig. 6, we sketch some partial sums of
extension, the Fourier series of f (x) on (�L, L) is given by the Fourier cosine and Fourier sines series of the even and

the odd extensions, respectively. It is clear from graphs that
on the interval (0, �), the Fourier cosine series provides much

1
2

A0 +
∞∑

n=1

An cos
πnx

L
(12)

better approximation to f (x) than the Fourier sine series. This
is because the even extension is continuous while the odd ex-with
tension has a jump at x � 0.

Gibb’s Phenomenon

In Fig. 4, notice the sharp peaks near 0, the point of disconti-
nuity of f (x). That this is not an isolated case was first ex-
plained in 1899 (in a letter to Nature) by Josiah Gibbs in re-

An = 1
L

∫ L

−L
f (x) cos

πnx
L

dx

= 1
L

[∫ 0

−L
f (x) cos

πnx
L

dx +
∫ L

0
f (x) cos

πnx
L

dx

]

Figure 5. Graphs of f (x) on (0, �), and its
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P/N. We have to approximate the integral in Eq. (14). To do
this, we use a left-endpoint Riemann sum:

cn ≈ 1
P

N−1∑
k=0

f (xk )e− j2πna/P e− j2πnkδ/P P
N

= 1
Ne j2πna/P

N−1∑
k=0

f (xk)e− j2πnk/N

(15)

The final summation in Eq. (15) motivates the following defi-
nition.

Definition. Let �hk�N�1
k�0 be a set of complex numbers. The dis-

crete Fourier transform of �hk�N�1
k�0 is denoted by �Hn� and is
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given by
Figure 6. The even extension of f (x) and the Fourier cosine series on
(��, �); the odd extension and the Fourier sine series on (��, �).

Hn =
N−1∑
k=0

hke− j2πnk/N

sponse to a question of the American physicist Albert for n � 0, �1, �2, . . ..
Michelson, who observed such a phenomenon in his experi-
ments on superposition of harmonics. It can be proved that Although Hn is defined for all integers n, there are only at
Gibbs’s phenomenon occurs at x* whenever it is a discontinu- most N distinct values since Hn�N � Hn. So, we can just use
ous point of a piecewise smooth function f (x). In Fig. 7, we �Hn�N�1

n�0 . Therefore, the discrete Fourier transform maps a set
show a close-up of what is happening near the right side of 0 of N numbers (�hk�N�1

k�0 ) into a set of N numbers (�Hn�N�1
n�0 ).

for the function f (x) in Example 2, together with the partial Using the terminology of the discrete Fourier transform,
sums of its Fourier series S12, S24, and S36. Note that the we can say that Eq. (15) gives ck, the kth complex Fourier
amount of overshot is almost unchanged. coefficient of the function f (x), as approximately

(Nej2�na/P)�1Fk, with �Fk� being the discrete Fourier transform
of �f (xk)�N�1

k�0 . Of course, in order to get satisfactory approxima-The Discrete Fourier Transform
tion of ck, we have to choose a large value for N. Based on

As a motivation for the definition of the discrete Fourier numerical observations (see, for example, Ref. 3), it seems
transform, let us consider the computation of the complex that we need to make N 	 8�k� to ensure some degree of good
Fourier coefficients, approximation of ck.

As in the case of Fourier series, the orthogonality property
plays a very important role in the discrete Fourier transform.
We now have

cn = 1
P

∫ b

a
f (x)e− j2πnx/P dx (14)

when we only know the values of f (x) at evenly spaced points
in (a, b), say xk � a � k� for k � 0, 1, . . ., N � 1 with � �

N−1∑
k=0

e j2πmk/N e− j2πnk/N =
{

0, if m �= n

N, if m = n

With the orthogonality property, we derive the following in-
version formula for the discrete Fourier transform: If �Hn�N�1

n�0

is the discrete Fourier transform of �hk�N�1
k�0 , then

hk = 1
N

N−1∑
n=0

Hne j2πnk/N , k = 0, 1, . . ., N − 1 (16)

Equation (16) defines the discrete inverse Fourier transform
of �Hn�N�1

n�0 . Note that there are only two differences in the
definitions of the discrete Fourier transform and the discrete
inverse Fourier transform: (1) opposite signs in the exponen-
tial and (2) presence or absence of a factor 1/N. This means
that an algorithm for calculating the discrete Fourier trans-
forms can also calculate the discrete inverse Fourier trans-
forms with minor changes.

In the literature of Fourier analysis, there are alternative
ways to define the discrete Fourier transforms. One variation
is in the factor 1/N; some authors use it in the definition of0.140.120.10.080.060.040.020

y
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1

0.95
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0.85

the discrete Fourier transforms instead of putting it in the
discrete inverse Fourier transforms like we do here. AnotherFigure 7. Gibbs’ phenomenon.
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difference is the ranges of the indices; there are good reasons F(
) is in L1. The following result shows the magic when we
know that F(x) is in L1.in favor of (or against) the use of indices running either be-

tween 0 and N � 1 or from �N/2 to N/2. With little modifica-
tion, anything that can be done for one version of discrete The Inversion Theorem. Let f (x) be in L1 and let F(
) de-
Fourier transform can also be done for other versions. For note its Fourier transform. Assume that F(
) is in L1. Then
this reason, we now state an alternate definition.

Discrete Fourier Transform (Alternate Version). (1) Let f (x) =
∫ ∞

−∞
F(ξ )e j2πξx dξ, (18)

N be an even positive integer and let �hk�N/2
k��N/2�1 be a set of

complex numbers. Then its discrete Fourier transform is
for almost every x in (��, �).given by

This theorem tells us that under the suitable conditions,
we can recover a function from its Fourier transform. This isHn =

N/2∑
k=−N/2+1

hke− j2πnk/N , k = −N
2

+ 1, . . .,
N
2

why the integral in Eq. (18) is called the inverse Fourier trans-
form of F(
). Notice the positive sign in the exponential.

(2) If N is an odd positive integer and �hk�N/2
k��N/2�1 is a set of N When we treat Fourier transforms as operations on func-

complex numbers, then its discrete Fourier transform is given tions, it is more convenient to use the following notation to
by indicate that F(
) is the Fourier transform of f (x):

F ( f ) = F or f (x)
F−→ F(ξ )Hn =

(N−1)/2∑
k=−(N−1)/2

hke− j2πnk/N , k = −N − 1
2

, . . .,
N − 1

2

Similarly, the Fourier inverse transform is denoted by F �1.
Continuous Fourier Transform

ExamplesNow, we briefly discuss the last of the three types of trans-
forms in Fourier analysis: the continuous Fourier transform. Given a function, it is not always easy to find its Fourier trans-
It is also referred to simply as the Fourier transform. It ap- form explicitly. For simple functions, tables of Fourier trans-
plies to functions of a continuous variable that runs on the form formulas are available in most books on Fourier
whole real line (��, �). Given a signal f (x), the Fourier trans- transforms. Symbolic mathematical packages all have Fourier
form F(
) of f (x) is defined by transform routines. Here we look at two important cases

where it is possible to find the Fourier transform explicitly.
F(ξ ) =

∫ ∞

−∞
f (x)e− j2πξx dx, −∞ < ξ < ∞

Example 1 We verify that F(
) � sin �
/(�
) when

where 
 is usually called the frequency variable. Due to the
presence of the complex exponential e�j2�
x in the integrand of
the above integral, the values of F(
) may be complex. So, to

f (x) =
{

1, for |x| ≤ 1/2

0, for |x| > 1/2
specify F(
), it is necessary to display both the magnitude and
the angle of F(
). From the definition, like the Fourier coeffi- Indeed, for 
 � 0, we have
cients, Fourier transform of a function f (x) is defined only if
the above integral makes sense. A function f (x) is said to be
absolutely integrable if

∫ ∞

−∞
| f (x)| dx < ∞ (17)

Let L1 denote the set of all absolutely integrable functions.
[That is, L1 denotes the set of all Lebesgue integrable func-
tions defined on (��, �).] It is a well-known fact in the theory
of Lebesgue integration that if �f (x)� is Riemann integrable on

F(ξ ) =
∫ ∞

−∞
f (x)e− jzπξx dx

=
∫ 1/2

−1/2
e− jzπξx dx

= −e− jzπξx

jzπξ

∣∣∣∣
x=1/2

x=−1/2

= sinπξ

πξ

(��, �), then f (x) is in L1. For the readers not familiar with
Example 2. Let f (x) � e��x2

. Thenthe Lebesgue integration, it is safe to interpret all integrals
as Riemann integrals since most signals in practice are Rie-
mann integrable.

Equation (17) guarantees that the Fourier transform F(
)
F(ξ ) =

∫ ∞

−∞
e−πx2

e− j2πξx dx =
∫ ∞

−∞
e−(

√
πx)2−2(

√
πx)( j

√
πξ ) dx

of f (x) is well-defined. Actually, in this case, F(
) is a (uni-
formly) continuous function of 
 in (��, �). But, a continuous
function on (��, �) is not necessarily in L1. For example, the

The integrand is equal toconstant function f (x) � 1, �� � x � �, has infinite area
under its graph over (��, �). Thus, even if f (x) is in L1 so
that F(
) is uniformly continuous, still we cannot assert that e−(

√
πx+ j

√
πξ )2−πξ 2
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By using Cauchy’s Theorem to shift the path of integration Since the integral of the absolute-value squared of a func-
tion can be interpreted as its energy, the following identity,from the real axis to the horizontal line Im(z) � ��
 [with

fixed 
 in (��, �)], one can derive that Parseval’s identity, expresses the fact that a signal’s energy
is equal to its frequency energy.

F(ξ ) = e−πξ 2

Parseval’s Identity. Let f (x) be a function in L1 � L2, and
Notice that in this example both the function and its Fourier let F(
) be its Fourier transform. Then
transform are given by the same formula.

Some Important Results
∫ ∞

−∞
| f (x)|2 dx =

∫ ∞

−∞
|F(x)|2 dx

We now discuss some most important results in Fourier
transforms. Among them, the most significant one is related
to a very useful operation in Fourier analysis, the convolution

SIGNAL SAMPLINGof two functions. If f (x) and g(x) are two functions on (��, �),
their convolution is the function f � g(x) defined by

When we analyze signals using a computer, we are no longer
working with continuous time signals, but rather with dis-
crete time functions. This requires the sampling of the contin-f ∗ g(x) =

∫ ∞

−∞
f (y)g(x − y) dy

uous signals. Let f (x) be a signal. Let us assume that we sam-
ple at equally spaced time intervals, �, so that the sequenceprovided that the integral exists. Note that if f � g is well-
of sampled signal of f (x) isdefined, then so is g � f , and f � g(x) � g � f (x). There are

various assumptions on f (x) and g(x) to ensure that the convo-
lution f � g(x) is defined for all x in (��, �). For example: fn = f (n�), n = 0, ±1, ±2, . . .

1. Assume that f (x) is in L1 and g(x) is bounded (say �g(x)� We call the number 1/� the sampling rate; it is the number
� C for all x). Then f � g(x) is defined for all x since of samples recorded per second, if time is measured in sec-

onds. Half of the sampling rate is a critical value called the
Nyquist critical frequency, denoted by f c; that is, f c � 1/(2�).

∫ ∞

−∞
| f (y)g(x − y)| dy ≤ C

∫ ∞

−∞
| f (x)| < ∞

The importance of the Nyquist critical frequency can be seen
in the following result.2. Assume that �f (x)�2 and �g(x)�2 are in L1. Then, using the

Cauchy–Schwarz inequality, we have
Sampling Theorem. Suppose f (x) is a continuous function
in L1 and F(
) � 0 for all �
� � f c. Then f (x) is completely
determined by its values fn at n�, n � 0, � 1, � 2, . . .. In
fact,

∫ ∞

−∞
| f (y)g(x − y)| dy

≤
�∫ ∞

−∞
| f (y)|2 dy

�∫ ∞

−∞
|g(x − y)|2 dy < ∞

We will use L2 to denote the set of all functions f (x) such
f (x) = �

∞∑
n=−∞

fn
sin[2π fc(x − n�)]

π(x − n�)

that �f (x)�2 is in L1.
3. Assume that both f (x) and g(x) are in L1. Then it can be A function f (x) whose Fourier transform F(
) vanishes out-

shown that f � g(x) exists for ‘‘almost every’’ x, and f � side of a finite interval is said to be bandwidth-limited. There-
g(x) is itself in L1 (see Ref. 4, Sec. 8.1). fore, a bandwidth-limited signal whose frequencies are

bounded in [�f c, f c] can be fully recovered from its sampled
The most important property of the Fourier transform is values at n�, n � 0, �1, �2, . . . if the sampling rate is twice

the following result. its Nyquist critical frequency f c, that is, 1/� � 2f c.

Convolution Theorem. Suppose that f (x) and g(x) are in
L1, and F(
) and G(
) are their Fourier transforms, respec- NUMERICAL COMPUTATION
tively. Then the Fourier transform of f � g(x) is given by
F(
)G(
); that is, Fast Fourier Transform

The fast Fourier transform (FFT) is a family of methods forF ( f ∗ g)(ξ ) = F(ξ )G(ξ ) or f ∗ g(x)
F−→ F(ξ )G(ξ )

computing the discrete Fourier transform of a function with
The next result is closely related to sampling theory. minimum computational effort. The FFT became well known

after the publication of the article by Cooley and Tukey in
Poisson Summation. Let f (x) be a continuous function in 1965, although it had been used in various forms by others
L1 and F � F ( f). If ��

n���f (x � 2nL) defines a continuous func- before this. Various forms of FFT are available as subroutines
tion on (�L, L), and if ��

���F(n/2L))� converges, then in almost every mathematical software package, such as Mat-
lab, Mathematica, and Maple, to name a few. In this section,
we provide some basics of the FFT so that the reader will be
able to make the best use of it.

∞∑
−∞

f (x − 2nL) =
∞∑

−∞

1
2L

F
� n

2L

�
e jnπx/L
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Recall that the discrete Fourier transform of N numbers
[hk]N�1

k�0 is given by
H0

n

H1
n

Hn

Hn + N/2Hn =
N−1∑
k=0

hke− j2πnk/N , n = 0, 1, . . ., N − 1

Figure 8. The butterfly diagram.

Let WN � e�j2�/N. Then WN is an Nth root of the unity; that is,

WN
N = 1 for n � 1, 2, . . ., N/2 � 1. This pair of calculations is called

combined formulae or butterfly relations since it can be visual-
Notice that if we compute the transformed points [Hn]N�1

n�0 di- ized in the so-called butterfly diagram (see Fig. 8).
rectly by their definitions, we need to use N multiplications The splitting of �Hn� into two half length (i.e., N/2) discrete
for each Hn. So, the N numbers Hn, n � 0, 1, . . ., N � 1, Fourier transforms �H0

n� and �H1
n� can be applied now on a

would require N2 multiplications. This can result in a great smaller scale. In other words, we define H00
n and H01

n to be the
deal of computation when N is large. It turns out that the discrete Fourier transforms of the even and odd components
discrete Fourier transform of a data set of length N can be of �h2k�N/2�1

k�0 and define H10
n and H11

n to be the discrete Fourier
computed by using the FFT algorithm, which requires only transforms of the even and odd components of �h2k�1�N/2�1

k�0 , re-
(N log2 N)/2 multiplications. This is a significant decrease in spectively. We then get
the N2 multiplications required in the direct evaluation of the
transform. For example, if N � 1024, the direct evaluation H0

n = H00
n + Wn

N/2H01
n H0

n+N/4 = H00
n − Wn

N/2H01
nrequires N2 � 1,048,576 multiplications. In contrast, the FFT

algorithm requires (1024log2 1024)/2 � 5120 multiplications.
andSuppose N � 2M, where M is a positive integer. Let us split

the sum for each n into even and odd parts:
H1

n = H10
n + Wn

N/2H11
n H1

n+N/4 = H10
n − Wn

N/2H11
n

for n � 0, 1, . . ., N/4 � 1.
If we continue with this process of halving the length of

the discrete Fourier transforms, then after M � log2 N steps
we reach the point where we are performing the transforms
on data of length 1, which is trivial since the discrete Fourier
transform of a data set of length 1 is the identity transform.

Hn =
N−1∑
k=0

hkW
nk
N

=
N/2−1∑

k=0

h2kW
n(2k)

N +
N/2−1∑

k=0

h2k+1W
n(2k+1)

N

=
N/2−1∑

k=0

h2kW
nk
N/2 + Wn

N

N/2−1∑
k=0

h2k+1W
nk
N/2

For each of the M steps, there are N/2 multiplications, and so
there are about MN � (N log2 N)/2 multiplications needed for

Let us write the FFT as we claimed at the beginning of this section.
Another important step in FFT is that the repeated pro-

Hn = H0
n + Wn

NH1
n (19) cesses of splitting the data set into the even and odd subsets

of half length can be realized by bits reversal. That is, we
with order �hk� so that hk is put at the k�th place, where k� �

apap�1 . . . a1 (base 2) if k � a1a2 . . . ap (base 2). After the
reordering of �hk�, we start to use the butterfly relations to
combine the adjacent pairs to get 2-point transforms, then

H0
n =

N/2−1∑
k=0

h2kW
nk
N/2

combine the 2-point transforms to get the 4-point transforms,
and so on, until the final transform �Hn� is formed from twoand
N/2-point transforms. So, there are two major steps in the
FFT algorithm: The first step sorts the data into bit-reversed
order. This can be done without additional storage and in-H1

n =
N/2−1∑

k=0

h2k+1W
nk
N/2

volves at most N/2 swaps of the elements of a data set of
length N. The second step calculates, in turn, transforms of

Note that [H0
n]N/2�1

n�0 and [H1
n]N/2�1

n�0 are, respectively, the discrete length 2, 4, . . ., N. Figure 9 shows steps in the FFT algo-
Fourier transforms of the even components [h2k]N/2�1

k�0 and the rithm for N � 8.
odd components [h2k�1]N/2�1

k�0 . Note also that [H0
n]N/2�1

n�0 and We have only discussed the case when N is a power of 2,
[H1

n]N/2�1
n�0 are of length N/2. So, we have the so-called radix 2 case. The algorithm first reorders the

input data in bit-reversed order, then builds up the transform
in log2 N steps. This is referred to as the decimation-in-timeH0

n+N/2 = H0
n and H1

n+N/2 = H1
n , n = 0, 1, . . .,

N
2

− 1
FFT. It is also possible to go through the log2 N steps of trans-
forms and then rearrange the output into the bit-reversed or-

This, together with the fact that Wn�N/2
N � �Wn

N (n � 1, 2, . . ., der. This is the decimation-in-time FFT.
N/2 �1), allows us to write the equation in Eq. (19) as There are higher-dimensional generalizations of the FFT

for transforming complex functions defined over a two- or
higher-dimensional grid (see Ref. 5).Hn = H0

n + Wn
NH1

n and Hn+N/2 = H0
n − Wn

NH1
n (20)
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fast sine transform and fast cosine transform. These algo-
rithms are usually implemented by using the FFT routine
(see Refs. 3 and 5).

WAVELETS APPROACH

In Fourier analysis, every function is expanded into a series
or an integral of sines and cosines which are themselves ana-
lytic functions. When approximating a function with a point
of discontinuity, the partial sums of its Fourier series do not
converge uniformly in any neighborhood of the point of dis-
countinuity; they do a very poor job in approximating sharp
spikes. (Recall that near an isolated point of discontinuity of
a function of bounded variation, the Gibbs’ phenomenon oc-
curs.) For many years, scientists have searched for more ap-
propriate functions than sines and cosines to represent func-
tions with discontinuities. With the construction of smooth,

H000

H001

Bit reversal

h0

h4

h0

h1

H0
00

H 1
00

H0
0

H0
1

H0

H1

H010h2h2 H0
01 H 2

0 H2

H011h6h3 H1
01 H3

0 H3

H100h1h4 H0
10 H0

1 H4

H101h5h5 H1
10 H1

1 H5

H110h3h6 H0
11 H2

1 H6

H111h7h7 H1
11 H3

1 H7 compactly supported, orthogonal wavelet basis functions (now
referred to as the Daubechies wavelets) by Ingrid DaubechiesFigure 9. The decimation-in-time (radix 2) FFT for a data set of
in 1988, wavelet analysis emerged as a powerful toolbox lead-length N � 8.
ing to new and varied applications in, for example, data com-
pression, signal and image processing, nuclear engineering,
geology, and such pure mathematics as solving differentialFast Sine and Cosine Transform
equations.

Discrete sine and cosine transforms can be derived from the A (mother) wavelet (x) is a function in L1 that has zero
Fourier sine and cosine series discussed earlier. average:

Discrete sine and cosine transforms. For a real sequence
�hk�N�1

k�1 the discrete sine transform (DST), �HS
n�N�1

n�1 , is given by ∫ ∞

−∞
�(x) dx = 0

HS
n =

N−1∑
k=1

hk sin
πnk
N

, n = 1, 2, . . ., N − 1
Useful wavelets satisfy further conditions that we will not
specify in this article since a more detailed discussion on

For a real sequence �hk�N�1
k�0 the discrete cosine transform wavelets is given in WAVELET TRANSFORMS. Here, we just try

(DCT), �HC
n�N�1

n�0 , is given by to give a very brief introduction of the wavelet theory and
compare it with the classical Fourier analysis discussed in
this article. In Fig. 10, we show two typical mother wavelets:
Haar wavelet and Daubechies wavelet (DAUB6).

HC
n =

N−1∑
k=0

hk cos
πnk
N

, n = 1, 2, . . . , N − 1

The form of DCT given above is only one of several com-
The Discrete Wavelet Transform

monly used DCTs. DSTs and DCTs are related to odd/even
symmetry of DFTs, as with Fourier sine and cosine series. Unlike Fourier analysis, in which we represent functions by

series of sines and cosines, in wavelet analysis we representSee Ref. 6. To compute the DSTs and DCTs, there exist the
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Figure 10. Haar wavelet and Daubechies wavelet (DAUB6).
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functions by series of dilations and translations of a single in the discovery of its applications in every discipline of engi-
neering. See FREQUENCY DOMAIN CIRCUIT ANALYSIS, WAVELETfunction called the mother wavelet (x):
TRANSFORMS.

�s,l (x) = 2−s/2�(2−sx − l), s, l = 0, ±1, ±2, . . .
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Wavelet Analysis Versus Fourier Analysis
FOURIER SERIES. See POWER SYSTEM HARMONICS.

We start with the similarities between these two. The discrete
Fourier transform and discrete wavelet transform are both
linear operations that can be carried out in ‘‘almost linear’’
time; that is, about n log2 n or n operations (addition, multi-
plication) are needed to transform a sample vector of size n.
Another similarity is that both basis functions, sines and co-
sines in Fourier analysis, and dilations and translations of a
mother wavelet in wavelet analysis are localized in frequency,
making spectral analysis possible. When used to represent
smooth or stationary signals, both Fourier and wavelet meth-
ods perform almost equally well.

The most striking difference between these two kinds of
transforms is that wavelet functions are localized in time (or
space) domain, while Fourier sines and cosines are not. When
analyzing nonstationary signals, it is often desirable to be
able to acquire a correlation between the time and frequency
domains of a signal. The Fourier analysis provides informa-
tion about the frequency domain, but time localized informa-
tion is essentially lost in the process. In contrast to the Fou-
rier analysis, the wavelet transforms allow exceptional
localization in time domain via translations of the mother
wavelet, as well as in frequency (scale) domain via dilations.

CONCLUSIONS

Given a signal, Fourier analysis decomposes it into its fre-
quency components. This decomposition can be used to repre-
sent the original signal if it is smooth (or piecewise smooth)
and time-invariant (stationary). When a signal has lots of
jumps (points of discontinuity), at each jump Gibbs’ phenome-
non may occur. In the case of analyzing transient or nonsta-
tionary signals, wavelet transforms provide much desired
tools. The mathematical theory of wavelets has been more or
less established in the last decade. The future of wavelets lies


