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GAUSSIAN FILTERED REPRESENTATIONS
OF IMAGES

Gaussian filtered representations of images have been used
to address several important visual tasks. In early work Marr
and Hildreth used them to attenuate noise and detect edges
(1). Specific operators such as the Laplacian of Gaussians and
the difference of Gaussians have been used for multiresolu-
tion analysis of images (2,3). More recently, several research-
ers (4,5,6,7,8) have shown that Gaussian derivatives may be
used to robustly represent the local image structure at multi-
ple scales. In this article, the Gaussian derivative filter and
its spatial- and frequency-domain properties are examined,
and it is used to create a description of the local intensity
surface. Motivated by its multiscale properties, Gaussian fil-
tered representations are constructed to address two specific
problems.

The first problem considered is of matching images that
are affine deformed versions of each other. Solutions to this
problem form an important component for several applica-
tions such as video mosaicking, registration, object recogni-
tion, structure from motion, and shape from texture. In par-
ticular, consider an example where successive views of a
scene are observed in a video. These views will be deformed
versions of each other and under certain circumstances may
be approximated using an affine transformation. Gaussians
and their derivatives are used to recover affine deformations.
Consider two patches related by an affine transform. If the
patches are filtered using Gaussian filters, the outputs are
equal provided the Gaussian is affine-transformed in the
same manner as the function. Thus, one can construct a solu-
tion that minimizes the error with respect to the affine pa-
rameters, where the error is defined between corresponding
Gaussian derivative filter outputs. The affine matching prob-
lem is discussed in detail in the section after next.

The second focus of this article is in addressing the prob-
lem of image retrieval. Advances in computational power and
the rapid increase in performance-to-cost ratio of most compu-
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tational devices has led to the acquisition and storage of picto- Gaussian filter in providing a robust representation of the in-
tensity surface is discussed. The section ends with a discus-rial information on digital media. One of the important chal-

lenges that this trend presents is the development of sion of how to implement discrete versions of Gaussians and
their derivatives.algorithms for managing digitally stored pictorial informa-

tion. While machine-stored text can be searched using any of
several text search engines, there are as yet no good tools The Gaussian Filter: Preliminaries
available to search and manage image collections.

The Gaussian and Its Derivatives. The isotropic normalizedThe reason that image retrieval has proven to be hard is
Gaussian in two dimensions is a C� smooth function, definedthat users expect the system to find relevant images based on
assome personal or cultural semantics. Representing semantics

is hard and requires solutions to problem such as automatic
feature detection, segmentation, and recognition. These prob- G( ppp, σ ) = 1

2πσ 2
e−pppT ppp/2σ 2

(1)
lems are as yet unsolved. However, in certain cases, many
image attributes such as color, texture, shape, and ‘‘appear- where p � �x, y� � R2, and � � R is referred to as the scale.
ance’’ are often directly correlated with the semantics of the The derivatives of the normalized Gaussian are defined to ar-
problem. For example, logos or product packages (e.g., a box bitrary order. The nth derivative of the Gaussian (in two di-
of Tide) have the same color wherever they are found. The mensions) is written in tensor form as
coat of a leopard has a unique texture, and Abraham Lincoln’s
appearance is distinctive. These image attributes can often be
used to index and retrieve images. Gi1 ...in

(·, σ ) = δnG(·, σ )

δi1 · · · δin
(2)

One such approach is to exploit the structure of the image
intensity surface. In recent work Ravela and Manmatha (9) where the free variables i1, . . ., in cycle through all the de-
have shown that representations of the intensity surface may grees of freedom (x, y). Thus the first derivative is written as
be used to retrieve objects that appear visually similar. Argu- Gi1

, which in the Cartesian frame is Gx and Gy.ably an object’s visual appearance in an image is closely re-
lated to several factors, including, among others, its three-

Filtering. In the spatial domain, the discrete two-dimen-dimensional shape, albedo, and surface texture and the image
sional (2D) image Z(p) filtered with the Gaussian is expressedviewpoint. It is nontrivial to separate the different factors
as the discrete convolution, I(p, �) � (Z � G)(p, �) theconstituting an object’s appearance. For example, the face of
Gaussian has infinite extent. Since discrete images are typi-a person has a unique appearance that cannot just be charac-
cally of finite extent, the truncation of the Gaussian extentterized by the geometric shape of the ‘‘component parts.’’
is considered the subsection ‘‘Implementation.’’ In the case ofWe argue that Gaussian filtered representation of images
Gaussian derivatives, since differentiation commutes withcan be used for retrieval by appearance. A paradigm for re-
convolution, the following expression may be written:trieval that is used widely, and is adopted here, is that images

in the database are processed and described by a set of fea-
ture vectors. These vectors are indexed ahead of time. During
run time, a query is provided in the form of an example im-

Ii1 ...in
(xxx, σ ) = (Z � G)i1 ...in

(xxx, σ )

= (Zi1 ...in
� G)(xxx, σ ) = (Z � Gi1 ...in

)(xxx, σ )
(3)

age, and its features are compared with those stored. Images
are then retrieved in the order indicated by the comparison Frequency-Domain Interpretation. The Fourier transform of
operator. In this work, feature vectors are constructed using the 2-D Gaussian defined in Eq. (1) is written as
responses to Gaussian derivatives filters at multiple scales.
Using this approach, it is shown that whole images or parts

G (uuu, σ ) = e−σ 2uuuTuuu/2 (4)
thereof can be retrieved. This flexibility is important because
a user interacting with an image retrieval system might be

where u � �ux, uy� � R2 is the 2D frequency variable. Simi-interested in the image as a whole, such as a trademark, or
larly, the Fourier transform of the nth derivative of thein only a part of the image, such as a face within a scene. In
Gaussian defined in Eq. (2) is defined asthe former case the representation must capture the appear-

ance of the whole image, and the similarity is global. In the
latter case, the representation must allow for local similarity.

G (i1 ...in )(uuu, σ ) = jn(ui1
. . . uin

)G (uuu, σ ) (5)

The remainder of this article is organized as follows. The
Here, i1, . . ., in are free variables that can be identified withnext section provides a review of the Gaussian filter, some
any of the Cartesian degrees of freedom, and j � ��1. Forkey properties and derives the features that will be used sub-
example, the Fourier transform of the second mixed deriva-sequently to address the affine image matching and retrieval
tive Gxy is G (i1i2)(u, �) � �uxuyG (u, �), where the substitutiontasks. In the subsequent section matching of images under an
i1 � x and i2 � y is made. In a Cartesian coordinate systemaffine deformation is considered, and in the last section image
the Fourier transform of the nth Gaussian derivative may beretrieval by appearance is discussed.
written as

THE GAUSSIAN FILTERED REPRESENTATION OF IMAGES G (i1 ...in )(uuu, σ ) = G (xp yq )(uuu, σ ) = jp+q(up
z uq

y )G (uuu, σ ) (6)

This section begins by examining the spatial and frequency for some integers p, q � 0, p � q � n, and then p free vari-
ables are instantiated to x and q to y.characteristics of the Gaussian filter. Then, the role of the



GAUSSIAN FILTERED REPRESENTATIONS OF IMAGES 291

From the above two definitions, using composition, one After some manipulation the solution to this relation can be
may immediately observe the following properties: shown to be the following:

Cartesian Separability. The Fourier transform of the nth
Gaussian derivative may be expressed as the composi- W = W (n, σ ) = enπ

4σnn

i=n∏
i=1

(i − 1
2 ), n ≥ 1 (11)

tion of one-dimensional (1-D) filters:

W (0, σ ) =
√

π

σ
(12)

j p+q(up
x uq

y )G (uuu, σ ) = j pup
x e−σ 2u2

x /2 · jquq
xe−σ 2u2

y /2

= H (p)
x (ux, σ ) · H (q)

y (uy, σ )
(7)

The above expressions show that the center frequency and
bandwidth of the Gaussian and its derivatives are related toSince composition implies convolution in the spatial do-
the order and scale of the derivative in the spatial domain.main, one can implement the nth Gaussian derivative
The Gaussian is a low-pass filter, filter while its derivativesusing separable 1-D convolutions.
are band-pass filters.

Cascade Property. The cascade property of Gaussian deriv-
atives may be observed from the composition of two fil-

Noise Attenuation. Since the Gaussian derivatives areters in the frequency domain:
band-pass filters, they may be used to attenuate noise. In par-
ticular, consider a 1D function Z(x) � P(x) � � sin (�1x). The
Fourier transform of z(x) is

G (xp yq )(uuu, σ1) · G (xm yn )(uuu, σ2) = G (xp+m yq+n )(uuu,
√

σ 2
1 + σ 2

2 )

(8)

Thus, filtering a signal successively with several Z (u) = P (u) + N(u)

Gaussian filters of scales �1, . . ., �n is equivalent to
filtering the signal with a single Gaussian filter of scale where
� � ��2

1 � � � � � �2
n.

N(u) = jπ[δ(u + w1) − δ(u − w1)]
Center Frequency and Bandwidth. The Gaussian filter is a

low-pass filter, and the derivatives are bandpass filters. In Consider the application of the nth derivative of a 1D
what follows, the center frequency and bandwidth of the nth Gaussian to Z(x) using the right-hand side (RHS) of Eq. (3),
derivative of the (spatial) Gaussian are derived. For the sake that is, In(x, �) � Z(x) � Gn(x, �). The Fourier transform of
of simplicity 1-D Gaussians are considered. In(x, �) is

The Fourier transform of the nth derivative of a 1D
Gaussian Gxn is written as

G (xn )(u, σ ) = jnune−σ 2u2/2

I (n)(u, σ ) = G (n)(u, σ )P (u) + G (n)(u, σ )N(u)

= · · · + j nune−σ 2u2/2N(u)
(13)

Differentiating with respect to u and computing the extre- where G (n) is the Fourier transform of the nth Gaussian deriv-
mum, one obtains the center frequency u0: ative. The second term on the RHS of Eq. (13) can be made

arbitrarily small by choosing an appropriate �, eliminating
the noise in the function Z. However, this also implies that
the signal P (u) will be band-limited. Higher frequencies will
get attenuated.

dG (xn )(u, σ )

du
= (n − u2σ 2) jnun−1e−σ 2u2/2 = 0

u0 = ±
√

n
σ

(9)

Representation of the Intensity SurfaceIt should be noted that the 1D function G (xn) is unimodal in
either half plane and has a Gaussian envelope. It is odd and The local spatial structure of the intensity surface can be ap-
imaginary for odd-order spatial derivatives, and even and real proximated using the local spatial derivatives of the surface.
for even-order spatial derivatives. This equation states that This can be seen from the Taylor series expansion of the in-
the center frequency is coupled both to the bandwidth and tensity surface. The Taylor expansion in the neighborhood of
to the order of the derivative. As the order of the derivative a point in the image will fully describe the local intensity sur-
increases, so does its center frequency, and therefore, higher face up to the order to which the series is constructed. Con-
derivatives enhance higher levels of spatial detail. sider an image I at point p � �x, y�. The value at a location

There are several ways to define the bandwidth of the fil- p � �p can be estimated using the Taylor series expansion
ter. Here we adopt the equivalent-rectangular-bandwidth for- (written in tensor form):
mulation (10). This formulation equates the area under the
power spectrum of the filter with that of an equivalent ideal
filter of width W and height equal to the peak instantaneous
power of the filter. Therefore, one may write

I( ppp + �ppp) ≈
N∑

n=0

1
n!

�
�pppi1

· · ·�pppin

δnI( ppp)

δi1 · · · δin

�

Each term ij ( j � 1, . . ., n) is substituted for all the degrees
of freedom, which in the case of a 2D image is two. Up to

W × |( ju0)ne−σ 2u2
0/2|2 =

∫ ∞

0
|( ju)ne−σ 2u2/2|2 du (10)
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order two, the expansion becomes the derivatives locally approximate the regularized intensity
surface. As a practical example consider the local 2-jet of an
image I(p), p � �x, y� � R2, at scale � (Iyx � Ixy and is therefore
dropped):

J 2[I]( ppp, σ ) = {I, Ix, Iy, Ixx, Ixy, Iyy}( ppp, σ )

The image I is filtered with the first two Gaussian derivatives
(and the Gaussian itself) in both x and y directions. Point p
is therefore associated with a derivative feature vector of re-
sponses at scale �.

Multiscale Representation and Scale Space. The derivative

I( ppp + �ppp) =
2∑

n=0

1
n!

�
�pppi1

· · ·�pppin

δnI( ppp)

δi1 · · · δin

�

= I( ppp) + �pppi1

∂I( ppp)

∂i1
+ 1

2!

�
�pppi1

�pppi2

δ2I( ppp)

δi1δi2

�

= I( ppp) + �pppx
δI( ppp)

δx

+ 1
2!

�
�ppp2

x
δ2I( ppp)

δx2 + �pppx �pppy
δ2I( ppp)

δxδy

�

+ �pppy
δI(ppp)

δh
+ 1

2!

�
�pppy �pppx

δ2I(ppp)

δyδx
+ �ppp2

y
δ2I( ppp)

δy2

�
feature vector is computed at a single scale, and therefore
constitutes observations of the intensity surface at a fixed

Rearranging the terms, we get the more familiar Cartesian bandwidth. Equivalently, in the spatial domain, the intensity
form of the Taylor series (again up to order two): surface is observed at a fixed window size. In effect, the deriv-

ative feature vector constitutes observations, not of the origi-
nal image, but of a smoothed version of it. Therefore, comput-
ing derivatives at a single scale is not likely to be a robust
representation of local structure. Fundamentally, this is be-
cause the local structure of the image depends on the scale at
which it is observed. An image will appear different at differ-
ent scales. For example, at a small scale the texture of an

I( ppp + �ppp) = I( ppp) + �pppx
∂I( ppp)

δx
+ �pppy

∂I( ppp)

δy

+ 1
2!

�
�ppp2

x
δ2I( ppp)

δx2
+ 2 �pppx �pppy

δ2I( ppp)

δx δy

+�ppp2
y
δ2I( ppp)

δy2

�
ape’s coat will be visible. At a large enough scale, the coat
will appear homogeneous.

The above equation states that in order to estimate the inten- A better characterization of local structure is obtained by
sity in the neighborhood of a point p the derivatives at p must computing derivatives at several scales of observation. In the
be known. Therefore, it can be argued that spatial derivatives frequency domain this amounts to sampling the frequency
may be used to approximate the local intensity surface. spectrum of the original image using several bandwidths

In the case of digital images, which are 2-D discrete func- (scales) around multiple center frequencies (derivatives). In
tions of finite range, derivatives may be approximated using the spatial domain, it may be viewed as computing local de-
finite-difference operators. However, while finite differences rivatives at several neighborhoods around a point.
can be computed, their outputs must be meaningful, or well The Gaussian forms a very attractive choice for a
conditioned, in the presence of noise. In the preceeding sub- multiscale operator, for several reasons. First, it is naturally
section it is shown that adding a high-frequency, low-ampli- defined with respect to a continuous scale parameter. Second,
tude noise may make the derivatives unstable. In discrete im- under certain conditions (4) it uniquely generates the linear
ages this will result in noisy measurements. scale space of an image.

A solution to the problem lies in the fact that the deriva- The term scale space was introduced by Witkin (11) to de-
tives of a possibly discontinuous function become well condi- scribe the evolution of image structure over multiple scales.
tioned if it is first convolved with the derivative of a smooth Starting from an original image, successively smoothed im-
(C�) test function (8). The Gaussian is a smooth test func- ages are generated along a scale dimension. In this regard
tion, and therefore the derivatives of the smoothed image several researchers (4,6–8) have shown that the Gaussian
I(x, �) � (Z � G)(x, �), x � R2, are well conditioned for some uniquely generates the linear scale space of the image when
value of �. Another way of observing this is from the noise it is required that structures present at a coarser scale must
attenuation property presented in the preceding subsection. already be present at a finer scale. That is, no new structures

The operational scheme for computing local structure at a must be introduced by the operator used to generate the scale
given scale of observation � is as follows. Each image is fil- space. Typically, these structures are the zero crossings or
tered with Gaussian derivatives (at a certain scale) to the or- local maxima of the image intensity. This is a very significant
der to which the local structure is desired to be approximated. result, because it provides a formal mechanism to represent
Therefore, each pixel is associated with a set of derivatives multiscale information using a well-defined operator.
that completely define the Taylor expansion to the desired or- More formally, the scale space of an image Z(p), p � �x,
der. Koenderink and van Doorn (5) have advocated the use of y� � R2, may be written as the one-parameter family of de-
this representation and call it the local N-jet. The local N-jet rived images obtained using the Gaussian operator G:
of I(x) at scale � and order N is defined as the set

I( ppp, σ ) = Z( ppp) � G( ppp, σ )
J N [I](xxx, σ ) = {Ii1 ...in ,σ |n = 0, . . ., N} (14)

The linear scale-space representation models an important
physical observation. As an object moves away from a cameraObserve that limN�� JN[I](x, �) bundles all the derivatives re-

quired to fully reconstruct the surface I� in a locality around (in depth), its image appears less structured and finer con-
trasts get blurred. The change in intensity in a localityx at a particular scale. This is the primary observation that

is used to characterize local structure. That is, up to any order around a pixel that occurs with changing distance is accu-
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rately represented in the scale-space trajectory of that pixel. point p0 is being compared with a point p1 in images I0 and
I1, where I1 is twice the size of I0, then for the responses to beA detailed analysis deriving the Gaussian as the unique lin-

ear scale-space operator is beyond the scope of this article. equal, the filter used to compute the response at p1 must be
at twice the scale of that applied at p0. This property has beenFor an in-depth study the reader is pointed to Florack’s dis-

sertation (8). exploited for matching affine deformed images (see the next
section), object recognition, (14) and image retrieval (15).From a practical perspective, the Gaussian allows local

structure to be computed at several scales of observation that
are related in a precise manner. Local structure as repre- Steerability. The Gaussian derivatives may be combined
sented by the spatial derivatives may be computed directly under rotations to synthesize filters in an arbitrary orienta-
across scales without explicitly computing the scale space. tion. This has been called the steering property (16). This
This may be seen from Eq. (3). In fact, Lindeberg (6) shows property is interesting for two reasons. First, images may be
that the scale space is well defined for the Gaussian deriva- filtered using Gaussian derivatives tuned to any arbitrary ori-
tives as well. Therefore, the Gaussian filtered representation entation without actually rotating the filters. The tuned fil-
is useful in at least two ways. First, it allows for the stable ters may be expressed as a combination of filters in a normal
and efficient computation of local structure. Second, it is the coordinate frame. Therefore, responses to any steered direc-
only way to generate the linear scale space. tion may be computed as a simple rotation of the responses.

An argument is therefore made for a multiscale feature vec- Thus, separable implementations are feasible even for rotated
tor that describes the intensity surface locally at several filters. Second, it may be used as a basis for generating fea-
scales. From an implementation standpoint a multiscale fea- ture vectors that are invariant to 2-D rotations as discussed
ture vector at a point p in an image I is simply the vector in the next section. The results for the first two orders are

now derived.
Consider a 2-D rotated version of the Cartesian coordinate

frame p � �x, y� written as q � �x2, y2� such that q � RTp,
J N

(σ1 ...σk )[I] = {J N [I]( ppp, σ1), J N [I]( ppp, σ2), . . ., J N [I]( ppp, σk)}
(15)

where p and q are the respective coordinates and R is the
for some order N and a set of scales �1, . . ., �k. rotation matrix. Assume for simplicity that all coordinates are

A natural question that arises in building representations right handed.
for various applications is the parametrization required for
the multiscale feature vector—that is, the number of scales Isotropy. It is straightforward to show that G(q, �) �
to be used, their spacing, and the number of orders to be con- G(RTp, �) � G(p, �). That is, the Gaussian is isotropic.
sidered. In the applications described in this paper, the scales First Derivatives. Consider the first derivatives of the 2-
are placed half an octave (�2) apart and typically three to D Gaussian. The following relationship holds from the
five scales are used. In all cases, only the first two orders are circular symmetry of the Gaussian.
used and higher orders are ignored.

Behavior Under Coordinate Deformations

There are several additional properties that make the
Gaussian a suitable operator for analysis of images. In this
section we examine the behavior of the Gaussian and its de-
rivatives with respect to coordinate deformations of the im-
age. In particular, behavior with respect to size changes and
2-D rotations of the coordinate frame are considered.

[
Gx2

(qqq, σ )

Gy2
(qqq, σ )

]
= − 1

σ 2
qqqG(qqq, σ )

= − 1
σ 2 (RRRTppp)G(RRRTppp, σ )

= RRRT
�

− 1
σ 2 ( ppp)G( ppp, σ )

�

= RRRT

[
Gx( ppp, σ )

Gy(ppp, σ )

]
(17)

Scaling Theorems. Gaussian derivatives may be used to
compare image patches that are scaled versions of each other

Second Derivatives. Similarly, the second derivative mayin a straightforward manner. Consider two images I0 and I1 also be steered:that are scaled versions of each other (but otherwise identi-
cal). Assume that the scaling is centered at the origin. That
is, I0(p) � I1(sp) Then the following relations hold (12,13):

I0( ppp) � G(·, σ ) = I1(sppp) � G(·, sσ )

I0( ppp) � G(k)(·, σ ) = I1(sppp) � G(k)(·, sσ )
(16)

where

G(k)(·, t) = tkGi1 ...ik
(·, t)

We call these the scale-shifting theorems or simply scaling the-
orems. These equations state that if the image Is is a scaled
version of I0 by a factor s, then in order to compare any two
corresponding points in these images the filters must also be
stretched (i.e. scaled) by the same factor. For example, if a

[
Gx2y2

(qqq, σ ) Gx2y2
(qqq, σ )

Gy2x2
(qqq, σ ) Gy2y2

(qqq, σ )

]

= 1
σ 2

�
1
σ 2

[
x2

2 x2y2

x2y2 y2
2

]
− III2

�
G(qqq, σ )

= 1
σ 2

� 1
σ 2

qqqqqqT − III2

�
G(qqq, σ )

= 1
σ 2

� 1
σ 2 RRRTppppppTRRR − III2

�
G(RRRppp, σ )

= RRRT 1
σ 2

� 1
σ 2 ppppppT − III2

�
G(ppp, σ )RRR

= RRRT

[
Gxx( ppp, σ ) Gxy( ppp, σ )

Gyz( ppp, σ ) Gyy( ppp, σ )

]
RRR

(18)
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where ants up to order two of an image I are

III2 =
[

1 0
0 1

]

Several authors have exploited the steerability property of

d0 = I (intensity)
d1 = I 2

x + I 2
y (magnitude)

d2 = Izz + Iyy (Laplacian)
d3 = IxxIxIx + 2IxyIxIy + IyyIyIy

d4 = I 2
xx + 2I 2

xy + I 2
yyGaussian derivatives.

Rao and Ballard (14) steered multiscale derivative vectors
The reason these are termed irreducible is that other invari-so as to represent the orientation with the best local re-
ants (up to that order) may be expressed as combinations ofsponses, and Ravela et al. (17) exploited steerability to track
them. Thus, the multiscale derivative vectors may be trans-image patches. In the next section this property is used in
formed so that they are invariant to 2-D rotations in the im-conjunction with differential invariants to construct
age plane. In the retrieval by appearance application we usemultiscale invariant vectors that are derivatives expressed in
the vector (minus the intensity term) �� � �d1, . . . d4��, com-the local coordinate frame and are invariant to 2-D rotations.
puted at three different scales. This representation to a
higher order has also been used by Schmid and Mohr (18) forRotational Invariants. Gaussian derivatives may be steered
object recognition.to any given orientation. Therefore, the image derivatives can

be stably computed along any orientation using Gaussian de-
Implementationrivatives tuned to that orientation. This property allows the

creation of features that are invariant to 2-D rotations of the Filtering may be carried out either in the spatial domain us-
image plane. ing convolution or in the frequency domain using composition.

It is well known (6) that if some property of the local inten- In the latter case the Fourier transform and the inverse Fou-
sity surface is used to define a local coordinate frame that rier transform will need to be computed before and after the
is a rotation of the image coordinate frame, then derivatives composition operation.
computed in the local frame will be invariant to rotations of The choice of the domain for filtering is dependent on the
the intensity surface. For example, assume that a new coordi- size of the kernel. For an image of size N and filter of size w,
nate frame is defined by the local gradient direction in the the complexity of spatial domain filtering using separable fil-
image I. In the above-mentioned framework let the axis y2 ters is O(wN), while that using frequency domain filtering is
represent a direction parallel to the local gradient, and let x2 O(N log N � N2/�2). Thus, when the image and kernel sizes
be orthogonal to it in a right-hand coordinate sense. Then one are small, spatial-domain filtering may be preferred, while for
may define an orthonormal matrix R such that large images frequency-domain filtering may be advanta-

geous. In addition, if several operations need to be performed,
such as filtering with multiple derivatives, then frequency-
domain filtering may be preferred.

RRR = 1√
I 2

x + I 2
y

[
Iy Ix

−Ix Iy

]
(19)

In either domain, the issue of discretization has to be
faced. The derivation in the previous section relied on contin-Note that the matrix R is defined locally at every point. The
uous functions, whereas practical implementations requirenew coordinate frame �x2, y2� will likely change from pixel to
discrete versions of these filters. In addition, in the spatialpixel, but is automatically determined. Thus, an image fil-
domain, truncation effects need to be considered as well—tered with the first Gaussian derivative steered to the �x2, y2�
that is, the effects of truncating the Gaussian to a finite ex-coordinate frame can be equivalently expressed in the image
tent. In this subsection the effects of discretizing and truncat-coordinate frame �x, y� in the following manner:
ing the filter in the spatial domain will be discussed.

Discretizing Gaussians and Gaussian Derivatives. The deriva-
tions of the algorithms in the previous sections have assumed
that the Gaussians and Gaussian derivatives were continuous
functions. To apply them, they first need to be discretized.

[
Ix2

Iy2

]
= Z �

[
Gx2

Gy2

]
= Z � RRRT

[
Gx

Gy

]

= RRRT

[
Z � Gx

Z � Gy

]
=

[
0√

I 2
x + I 2

y

] (20)

The discretization needs to be performed carefully, since er-
rors can arise from it (6,19). A number of different proceduresThe interpretation of this result is rather simple. The gradi-
have been suggested in the literature. These include:ent magnitude is the directional derivative parallel to the di-

rection of the gradient. It is also invariant to rotations since
1. Block Averaging. The continuous kernel is averagedthe gradient response at any pixel transforms to exactly the

over each pixel, that is, the filter value is integratedabove defined vector (20). The second derivative may simi-
over each pixel and then sampled (19). Let the discretelarly be expressed. There are several ways in which one may
filter be defined over the values �w to w (that is, itsconstruct the rotation matrix R. Further, given a multiscale
width is 2w � 1). Then the value of the discretederivative feature vector to any order, an infinite number of
Gaussian kernel at a point i is given byrotational invariants may be constructed.

However, Florack (8) has shown that given the derivatives
of an image I up to a certain order, only a finite number of
irreducible differential invariants exist, and they may be com-
puted in a systematic manner. The irreducible set of invari-

g[i] = ∫ i+1/2
i−1/2 G(x, σ ) dx = erf

� i + 1/2
σ

�
− erf

� i − 1/2
σ

�

(21)
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where er f(x) � �x

0 exp(�t2/2) dt is the error function. sider, for example, the 1-D case, and assume that the image
needs to be filtered with derivatives up to order 2. Let theThe first derivatives may be computed similarly. For ex-
kernel width for the discrete versions of the Gaussian, firstample, the first derivative of the Gaussian in the x di-
derivative, and second derivative be 2w � 1. Then to filter therection is given by
image with Gaussian derivatives up to order 2 requires time
proportional to 3(2w � 1) � 6w � 3. This time may be re-
duced by using discrete derivatives to compute Gaussian de-

gx[i] = ∫ i+1/2
i−1/2 Gx(x, σ ) dx = G(i + 1/2, σ ) − G(1− 1/2, σ )

(22) rivatives. First, the image is filtered with a sampled
Gaussian. The output of this image is filtered with the ker-2. Discrete Derivative. The Gaussian is first sampled. The
nels D and D2, and this is equivalent to filtering the imageimage is then convolved with the sampled Gaussian,
with the first and second derivatives of the Gaussian. Theand the output convolved with a discrete version of the
time taken to filter, however, is only 2w � 7. Since w mayderivative. This approach is widely used. The discrete often be large, Gaussian derivative filtering accomplished us-

Gaussian kernel at a point i is given by ing discrete derivatives is cheaper to compute than using
sampled Gaussian derivatives. The tradeoff is that the resultsg[i] = G(i, σ ) (23)
obtained using discrete derivatives are not as accurate. That
is, sampled Gaussian derivatives are a better approximationA discrete version of the first derivative is given by the
to block averages than discrete Gaussian derivatives (seekernel D � [�1, 0, 1]. Then, a discrete version of the
Ref. 20).first Gaussian derivative in the x direction is given by

Truncation of Gaussian Derivatives. Gaussians and Gaussian
gx = D ∗ g[i] (24) derivatives are infinite in extent. However, most of their ener-

gies reside in a small region around the origin. Thus, for all
Since convolution is associative, the image may first be practical purposes they may be truncated. Truncation also re-
filtered with the discrete Gaussian and the result may duces the time taken to filter the images, since the resulting
then be filtered with the first derivative kernel D. Sec- kernel sizes are smaller. There has been some discussion
ond derivatives may be computed using the second-de- about where Gaussians and Laplacians of Gaussians should
rivative kernel D2 � [�1, 2, �1]. be truncated (21,19), but a general discussion of how

Gaussian derivatives should be truncated seems to be absent3. Sampled Gaussian Derivatives. The continuous version
in the literature (but see Ref. 20).of the Gaussian or Gaussian derivative is sampled di-

Figure 1 shows the truncation errors for different valuesrectly at each pixel, and the sample values used for the
of the truncation radius. The truncation error is computed asdiscrete version of the filter. The sampled Gaussian de-
follows:rivative is given by

gxn [i] = Gxn (i, σ ) (25)

4. Discrete Scale Space. The values of the discrete

truncation error =
∫ ∞

−∞ |Gxi (x, σ )| dx − ∫ kσ

−kσ
|Gxi (x, σ )| dx∫ ∞

−∞ |Gxi (x, σ )| dx
(26)

Gaussian are computed using a discrete scale space.
The image is filtered with the discrete Gaussian and
then filtered with a discrete version of the derivative.
See Ref. 6 for how to compute the discrete Gaussian.

The question arises as to which technique is appropriate.
It may be argued that block averaging takes account of the
imaging process and may therefore be assumed to be the best
discretization (19,6). For example, when a scene is imaged by
a charge coupled device (CCD) camera, the output of each
pixel is proportional to the total light falling over the entire
area of each pixel (that is, the integral of the brightness over
that pixel). The area is actually better approximated as a
weighted integral—the weight being a Gaussian (6).

The results obtained using sampled Gaussian derivatives
approximate those due to block averaging provided the scales
(�) used are large. As the scale is reduced, the errors due to
using a sampled Gaussian derivative increase. Typically, be-
low � � 0.5 sampled Gaussian derivatives should not be used.
In practice, most scales used are larger and hence sampling
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Gaussian derivatives are usually a good method of computing
Figure 1. Truncation errors as a function of the truncation radius

discrete Gaussian derivatives. for Gaussians and Gaussian derivative filters. G denotes the
Assume that a large number of Gaussian derivatives need Gaussian, and Gx, Gxx, Gxxx, and Gxxxx denote the first, second, third,

to be computed. Then for each order of a Gaussian derivative, and fourth Gaussian derivatives respectively. The truncation errors
the Gaussian needs to be sampled and the image filtered with are taken as a proportion of the total integral of the absolute value

of filter.the appropriate discrete kernel. This can be expensive. Con-
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where Gxi(x, �) is the ith-order Gaussian derivative (with G addition there is a physiological motivation for using
Gaussian filtered representations. For example, Young (23)denoting the Gaussian) and k is the truncation radius. In the

above equation, the difference between the integrals of the shows that visual receptive fields in the primate eye are bet-
ter modeled by Gaussian derivatives.absolute values of the truncated function and the untruncated

function is first computed. Then this difference is divided by Several researchers have used multiscale derivatives as a
representation. In particular Ref. 14 uses multiscale vectorsthe integral of the absolute values of the untruncated filter to

give the truncation error as a proportion of the integral of the and the steerability property to recognize objects. In earlier
work (15) derivatives were combined with the scaling theo-untruncated filter. Note that the truncation error is indepen-

dent of �. The truncation errors in Figure 1 were computed rems to retrieve visually similar objects at different sizes. The
next section is also a good example of using multiscale deriva-by summing over discrete versions of the filter using large �’s

instead of computing the integrals analytically (the difference tives. There they are used to recover the affine transform be-
tween deformed images.should be insignificant).

As Figure 1 shows, for a given truncation radius, the error
increases with the order of the derivative. Many researchers

MATCHING AFFINE DEFORMED IMAGESassume that it suffices to truncate Gaussians so that the trun-
cation radius is �2�, that is, the filter width is 4�. For a trun-

In this section we will discuss how Gaussian and Gaussian-cation radius of 2�, 96% of the energy of the Gaussian is con-
derivative filters may be used to match images under affinetained within the filter width (i.e., the truncation error is
transforms. The ability to match two images or parts of im-0.04). But for the same truncation radius, Gaussian deriva-
ages is required for many visual tasks. For example, recov-tives have a much larger truncation error. For example, the
ering the structure of a scene requires matching two or morefirst derivative of the Gaussian has an error of about 12% if
image patches arising from a scene viewed from differentit is truncated to within �2�, while higher derivatives have
viewpoints. Other applications that require matching imagea much larger error. Figure 1 shows that the truncation error
patches include the registration of video sequences (24) andis less than 0.01 for the first four Gaussian derivatives if the
image mosaicking (25). Successive images of a scene whentruncation radius is greater than or equal to �4�. It may also
taken from different viewpoints are deformed with respect tobe shown that the qualitative errors produced are large if the
each other. To first order, the transformation between imagestruncation radius is less than �4� for derivatives up to order
caused by viewpoint change may be modeled using an affine4 (see Ref. (20).
transform. The affine transform interprets the image motion
in terms of an image translation and a deformation. In 2-D,Suggested Reading
the affine transformation may be described by the six param-

Multiresolution representations are related to multiscale rep- eters (t, A) where
resentations. A classical multiresolution representation, the
Laplacian pyramid (2) may be generated as follows: r ′ = t + AAAr (27)

r� and r are the image coordinates related by an affine trans-
form, t is a 2-by-1 vector representing the translation, and A

I (n) = F[I (n−1)]

I (0) = Zxx + Zyy

the 2-by-2 affine deformation matrix. The affine transform is
where Z is the original image and I(n) is a representation at a useful because the image projections of a small planar patch
coarser resolution. The operator F consists of two operations: from different viewpoints are well approximated by it.
the first one is a smoothing step, and the second is a subsam- In general, affine transforms between image patches have
pling step. The smoothing step is required to reduce aliasing been recovered in a number of different ways (for more details
effects due to subsampling and may be implemented using a see Ref. 13):
Gaussian. A subsampling factor of 2 is typically used, so that
a coarser image is a quarter the size of its immediate prede- 1. Matching image intensities by searching through the
cessor. Multiresolution representations may be used to com- space of all affine parameters. This approach adopts a
press images, detect features in a coarse-to-fine manner, and brute force search strategy which is slow (26).
match features between images efficiently.

2. Linearizing the image intensities with respect to the af-Multiresolution representations are related to, but some-
fine parameters. This may be done at each pixel to givewhat different from, multiscale representations. Multiscale
one equation per pixel. By assuming that the same af-representations do not change the resolution of the original
fine transformation is valid over some region, an over-image, but rather vary the size of the operator. It is trivial
constrained system of equations is obtained. Lineariza-to build a multiresolution representation from a multiscale
tion limits these algorithms to cases when the affinerepresentation, but the reverse is not true.
transforms are small (27–29).Although this section presents enough detail to motivate

3. Filtering the image with Gaussians and linearizing thethe use of Gaussian filtered representations, there are several
filter outputs (30). The results are poor for general af-aspects that are not covered. In particular, the study of scale
fine transforms because only the filter outputs from aspace is abbreviated, and the user is referred to Refs. 11, 4, 6
single pixel are used.for further review. Similarly, an in-depth study of rotational

invariants is available in Ref. 8. For some additional proper- 4. Line-based methods that match the closed boundaries
of corresponding regions (31,32). However, they are lim-ties of the Gaussian filter, such as optimality with respect to

the uncertainty principle, the reader is referred to Ref. 22. In ited to homogeneous regions with closed boundaries.
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5. Matching patches deformed under similarity trans- Consider first the case where Z1 is a scaled version of Z2, that
is,forms using the Mellin–Fourier transform (33). Al-

though possible, recovery of the affine transform has
not been demonstrated. The main drawback to these Z2(srrr) = Z1(rrr) (29)
techniques is that they are inherently global and they

Thenare not applicable to general affine transforms. ∫
Z1(rrr)G(rrr, σ ) drrr = ∫

Z2(srrr)G(rrr, σ ) drrr (30)
The difficulty with measuring affine transforms is indi-

cated in Fig. 2, where the image on the right is scaled to 1.4 = ∫
Z2(srrr)G(srrr, sσ ) d(srrr) (31)

times the image on the left. Even if the centroids of the two
images are matched accurately, measuring the affine trans- That is, the output of Z1 filtered with a Gaussian is equal to
form is difficult, since the sizes of every portion of the two the output of Z2 filtered with a scaled Gaussian. Note that
images differ. This problem arises because traditional match- this equation is also true for similarity transforms, that is,
ing uses fixed correlation windows or filters. The correct way A � sR.
to approach this problem is to deform the correlation window Define a generalized Gaussian by
or filter according to the image deformation.

Here, we present a computational scheme where Gaussian
and derivative-of-Gaussian filters are used and the filters de-

G(rrr,MMM ) = 1
(2π)n/2det (MMM )1/2

exp
�

−rrrTMMM−1rrr
2

�
(32)

formed according to the affine transformation. First, it is
shown that if an image is filtered with a Gaussian (or where M is a symmetric positive semidefinite matrix. Then,
Gaussian derivative), then the affine transformed version of if Z1 and Z2 are related by an affine deformation, the output
the image needs to be filtered with a deformed Gaussian (or of Z1 filtered with a Gaussian is equal to the output of Z2

Gaussian derivative) if the two filter outputs are to be equal; filtered with a Gaussian deformed by the affine transform
the deformation is equal to the affine transform. Thus, the (see Refs. 20 and 34 for a derivation).
problem of recovering the affine transform may be recast into
the problem of finding the deformation parameters of the

∫
Z1(rrr)G(rrr, σ 2III) drrr = ∫

Z2(AAArrr)G(AAArrr,RRR


RRRT) d(AAArrr) (33)
Gaussian (or Gaussian derivative). For example let Z1 and Z2

be two images that differ by a scale change s. Then the output where the integrals are taken from �� to �. R is a rotation
of Z1 filtered with a Gaussian of � will be equal to the output matrix and � a diagonal matrix with entries (s1�)2, (s2�)2,
of Z2 filtered with a Gaussian of s�. . . ., (sn�)2, (si � 0), and R�RT � �2AAT (this follows from the

The resulting equations are solved by linearizing with re- fact that AAT is a symmetric, positive semidefinite matrix).
spect to the affine parameters. Unlike the technique used in Intuitively, Eq. (33) expresses the notion that the
Ref. 30, the filter outputs from a number of points in a region Gaussian-weighted-average brightnesses must be equal, pro-
are pooled together. This substantially improves the accuracy vided the Gaussian is affine transformed in the same manner
of the technique. For example, using Werkhoven and Koende- as the function. The problem of recovering the affine parame-
rink’s algorithm (30) on the images in Fig. 2 returns a scale ters has been reduced to finding the deformation of a known
factor of 1.16, while the algorithm here matches correctly and function, the Gaussian, rather than the unknown brightness
therefore returns a scale factor of 1.41. functions.

The level contours of the generalized Gaussian are ellipses
rather than circles. The tilt of the ellipse is given by the rota-Deformation of Filters
tion matrix, while its eccentricity is given by the matrix �,

The initial discussion will assume zero image translation; which is actually a function of the scales along each dimen-
translation can be recovered as suggested in the subsection sion. The equation clearly shows that to recover affine trans-
‘‘Finding the Image Translation’’ below. It is also assumed forms by filtering, one must deform the filter appropri-
that shading and illumination effects may be ignored. ately—a point ignored in previous work (26–28). The

Consider two Riemann-integrable functions Z1 and Z2 re- equation is local because the Gaussians rapidly decay.
lated by an affine transform: The integral may be interpreted as the result of convolving

the function with a Gaussian at the origin. It may also be
interpreted as the result of a filtering operation with aZ2(AAArrr) = Z1(rrr) (28)
Gaussian. To emphasize these similarities, it may be written
as

Z1 ∗ G(rrr, σ 2III) = Z2 ∗ G(rrr1,RRR


RRRT) (34)

where r1 � Ar.
Similar equations may be written using derivative-of-

Gaussian filters (for details see Refs. 20, 34).

Solution for the Case of Similarity Transforms

To solve Eq. (33) requires finding a Gaussian of the appro-
priate scale s� given �. A brute force search through the spaceFigure 2. Dollar bill scaled 1.4 times.
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of scale changes is not desirable. Instead a more elegant solu- tion using multiple scales is obtained and solved for the un-
known parameters. Large scales are handled as before.tion is to linearize the Gaussians with respect to �. This gives

an equation linear in the unknown �: t0 is obtained either by a local search or from a coarser
level in a pyramid scheme, while 	t is estimated from the
equation.

Solving for the General Affine Transformation

There are two factors that need to be taken into account in

Z1 ∗ G(·, (σ )2) = Z2 ∗ G(·, (sσ )2)

≈ Z2 ∗ G(·, σ 2) + ασZ2 ∗ ∂G(·, σ 2)

∂σ

= Z2 ∗ G(·, σ 2) + ασ 2∇2Z2 ∗ G(·, σ 2)

(35)

the general case. First note that in the similarity case all the
filtering was done at one point (the origin). The results maywhere s � 1 � �. The last equality follows from the diffusion
be further improved by filtering at many points rather thanequation �G/�� � ��2G.
just one point. However, the rotation invariance will then beEquation (35) is not very stable if solved at a single scale.
lost. In the general affine case, because of the larger numberBy using Gaussians of several different scales �i the following
of parameters that have to be recovered, the filtering must belinear least-squares problem is obtained:
done at many points. The deformation must also be allowed
for, and this can be done by linearizing the generalized
Gaussian with respect to the affine parameters.

∑
i

‖Z1 ∗ G(·, σ 2
i ) − Z2 ∗ G(·, σ 2

i ) + ασ 2
i Z2 ∗ ∇2G(·, σ 2

i )‖2 (36)

Filtering at a point li modifies the generalized Gaussian
Eq. (33) as follows: Given a point with coordinates li,It is solved using singular value decomposition (SVD).

It is not necessary to use every possible scale for �i. It
turns out that the information at closely spaced scales is

∫
Z1(rrr)G(rrr − llli, σ

2III) drrr = ∫
Z2(AAArrr)G(AAA(rrr − llli)),RRR


RRRT) d(AAArrr)

(39)
highly correlated and it usually suffices to use �i spaced apart
by half an octave (a factor of about 1.4). For example, a possi- Thus if the image is filtered at point li in the first image
ble set of scales would be (1.25, 1.7677, 2.5, 3.5355, 5.0). patch, it must be filtered at point Ali in the second image

patch.
Choosing a Different Operating Point

For large scale changes (say �1.2) the recovered scale tends
to be poor. This is because the Taylor series approximation is
good only for small values of �. The advantage of linearizing
the Gaussian equations with respect to � is that the lineariza-

Z1 ∗ G(rrr − llli, σ ) ≈ Z2 ∗ G(rrr1 − llli, σ ) − BBBllli )
TZ2 ∗ G′(rrr1 − llli, σ )

+ σ 2[b11Z2 ∗ Gxx(rrr1 − llli, σ )

+ b22Z2 ∗ Gyy(rrr1 − llli, σ )

+ (b12 + b21)Z2 ∗ Gxy(rrr1 − llli, σ )]

(40)

tion point can be shifted, that is, the right-hand side of Eq.
(33) may be linearized with respect to a � different from the where the bij are elements of B � A � I and I is the identity
one on the left-hand side to give the following equation: matrix. Note that this is linear in the affine parameters bij. A

number of methods incorporate the idea of filtering at many
points (27–29). However, none of these compensate for theZ1 ∗ G(·, σ 2

i ) ≈ Z2 ∗ G(·, σ 2
j ) + α′σ 2

j Z2 ∗ ∇2G(·, σ 2
j ) (37)

deformation terms (in essence, the difference between the tra-
where s � �j/�i(1 � ��). The strategy therefore is to pick dif- ditional linearization methods and the technique presented
ferent values of �j and solve Eq. (37) (or actually an overcons- here is the additional second-derivative terms).
trained version of it). Each of these �j will result in a value of Translation may be incorporated by noticing that the effect
��. The correct value of �� is that which is most consistent of translation is similar to that of Ii. Thus, with translation
with the equations. By choosing the �j appropriately, it can included, the above equation may be rewritten as
be ensured that no new convolutions are required.

In principle, arbitrary scale changes can be recovered us-
ing this technique. In practice, only a range of scales need to
be recovered, and therefore a small set of operating points
will suffice.

Finding the Image Translation

Z1 ∗ G(rrr − llli, σ ) ≈ Z2 ∗ G(rrr1 − llli, σ ) − (BBBllli)
TZ2 ∗ G′(rrr1 − llli, σ )

+ σ 2[b11Z2 ∗ Gxx(rrr1 − llli, σ )

+ b22Z2 ∗ Gyy(rrr1 − llli, σ )

+ (b12 + b21)Z2 ∗ Gxy(rrr1 − llli, σ )]

− tttTZ2 ∗ G′(rrr1 − llli, σ )

(41)

Image translation (optic flow) can be recovered in the follow-
The equation may be turned into an overconstrained linearing manner. Let Z1 and Z2 be similarity-transformed versions
system by choosing a number of scales �i and a number ofof each other (i.e., they differ by a scale change, a rotation,
points Ii. Two or three scales are chosen as before. The pointsand a translation). Assume that an estimate of the transla-
Ii are picked as follows: either every point in the region istion t0 is available. Linearizing with respect to r and � gives
used, or a regularly spaced subset of the points are used. The
resulting overconstrained system may be solved using least
mean squares and minimizing with respect to the affine pa-
rameters. One way of writing the solution to this least-mean-

Z1(rrr + t0) ∗ G(rrr, σ 2) − δtttT Z1(rrr + ttt0) ∗ G(rrr, σ 2)

≈ Z2 ∗ G(·, σ 2) + ασ 2Z2 ∗ ∇2G(·, σ 2) (38)
squares system is

which is again linear in both the scale and the residual trans-
lation 	t. As before, an overconstrained version of this equa- bbb = MMM−1zzz (42)
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where b � [a11 � 1, a12, a21, a22 � 1, tx, ty] are the required pearance. Database images were filtered with the Gaussian
affine parameters, and the ith row of the n-by-6 matrix M is derivatives up to the second order, at several scales. A query
given by image (or parts of it) was also filtered, but at a single scale.

Then, using the scaling theorems given earlier in this article,
the query feature vectors were correlated across scales with
each database image’s feature vectors. The results indicated
that visually similar objects can be retrieved within about 25�

[σ 2Z2 ∗ Gxx − xiZ2 ∗ Gx, σ
2Z2 ∗ Gxy − yiZ2 ∗ Gx

σ 2Z2 ∗Gxy −xiZ2 ∗Gy, σ
2Z2 ∗Gyy −yiZ2 ∗Gy,−Z2 ∗Gx, −Z2 ∗Gy]

(43)
of rotation. Similar results were shown by Rao and Ballard
(14) in object recognition experiments.where the Gaussian derivatives are taken at point r1 � li.

However, correlation is slow. Further, it does not allow theThe ith element of the vector z is equal to Z1 � G(r � l1, �) �
feature vectors to be indexed. Thus, one cannot expect to de-Z2 � G(r1 � l1, �).
velop a system of reasonable speed even for moderately sizedThe solution is done iteratively. At each step, the affine
databases using this method. Here, we present two progres-transformation is solved for. The image is then warped ac-
sively faster and indexable methods to retrieve images. Thecording to the transformation and the residual affine transfor-
first method may be used to find parts of images, and themation solved for. The convergence is very rapid. A good solu-
second for finding whole images. Finding parts of images re-tion is obtained using two scales 1.25, 1.77 spaced half an
quires similarities of local image features to be computed.octave apart and with a window of size 13 by 13 (that is,
This implies an explicit representation of local features. Onpoints from a region of size 13 by 13 are selected) (20). The
the other hand, whole-image matching. In the next two sec-technique allows fairly large affine transforms to be recovered
tions the local and global similarity retrieval algorithms are(scaling of as much as 40%).
elaborated.The technique has some limitations. For large transla-

tions, a good initial estimate of the translation is required.
This may be obtained in a number of ways. A coarse-to-fine Local-Similarity Retrieval
technique may be used to estimate the translation. Alterna-

Local-similarity retrieval is carried out as follows. Databasetively, the method used to find similar points in the next sec-
images are uniformly sampled. At each sampled location, thetion may be used to provide an estimate of the translation.
multiscale invariant feature vector �� defined in the sub-
section ‘‘Rotational Invariants’’ above is computed at three

IMAGE RETRIEVAL different scales. Then, vectors computed for all the images in
the database are indexed using a binary tree structure. Dur-

In this section Gaussian filtered representations of images ing run time, the user picks an example image and designs a
are applied to the task of retrieval by image appearance. The query. Since an image is described spatially (uniform sam-
paradigm used for retrieval is that a collection of images are pling), parts of images or (imaged objects) can be selected. For
represented using feature vectors constructed from Gaussian example, consider Fig. 3(a). Here the user wants to retrieve
derivatives. During run time, a user presents an example im- white-wheeled cars and therefore selects the white wheel. The
age or parts thereof as a query to the system. The query’s feature vectors that lie within this region are submitted to
feature vectors are compared with those in the database, and the system. Database images with feature vectors that match
the images in the database are ranked and displayed to the the set of query vectors both in feature space (L2 norm of the
user. vector) and coordinate space (matched image locations spa-

There are several objectives that govern the design of a tially consistent with query points) are returned as retrievals.
retrieval system. Primary among those are speed and the The approach for local-similarity retrieval is divided into
ability to find visually similar objects within a reasonable two parts. During the off-line phase, images are sampled and
space of deformations. There is a third objective that can pro- multiscale derivatives are computed. These are transformed
vide considerable flexibility to a user: the ability of a system into rotational invariants and indexed. During the on-line
to query parts of images if required. This is because a user phase, the user designs a query by selecting regions within
may be interested in a part of an image such as a face in a an image. Feature vectors within the query are matched with
crowd rather than a whole image such as a trademark. The those in the database, both in feature space and in coordinate
interesting aspect of the algorithms presented here is that space. The off-line and on-line phases are discussed next.
both these types of retrieval can be achieved without a system
automatically trying to compute salient features or regions,

Off-Line Operations: Invariant Vectors and Indexingwhich can be extremely challenging. All the system does in
Computing Features. A multiscale invariant vector is com-either case is compare signals (feature vectors). When the

puted at sampled locations within the image. The vector, ��user has a notion of what is important in an image, it is ex-
� �d1, . . . d4�� (see ‘‘Rotational Invariants’’ above), is com-ploited to find other vectors similar to it.
puted at three different scales. The element d0 is not used,However, the desired flexibility imposes different con-
since it is sensitive to gray-level shifts. The resultingstraints on the retrieval algorithms. Finding parts of images
multiscale invariant vector has at most twelve elements.requires measurement of local similarity, and the representa-
Computationally, each image in the database is filtered withtion must be local. Therefore, individual feature vectors might
the first five partial derivatives of the Gaussian (i.e. to orderbe used. On the other hand, finding whole images implies
2) at three different scales at uniformly sampled locations.global similarity, and distributions of features can be used.
Then the multiscale invariant vector D � (��1, ��2, ��3) isIn previous work (15) derivative feature vectors in conjunc-

tion with the scaling theorems were used for retrieval by ap- computed at those locations.
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Figure 3. A query and its retrieval: (a) car query; (b) ranked retrieval.

Indexing. A location across the entire database may be is found within M and the corresponding generalized coordi-
nate is returned. Inverted files (or tables) based on each fieldidentified by the generalized coordinates, defined as, c � (i,

x, y), where i is the image number and (x, y) a coordinate of the invariant vector are first generated for M. To index the
database by fields of the invariant vector, the table M is splitwithin this image. The computation described above gener-

ates an association between generalized coordinates and in- into k smaller tables M�1, . . ., M�k, one for each of the k fields
of the invariant vector. Each of the smaller tables M�p, p � 1,variant vectors. This association may be viewed as a table

M : (i, x, y, D) with 3 � k columns (k is the number of fields in . . ., k, contains the four columns [D(p), i, x, y]. At this stage
any given row across all the smaller tables contains the samean invariant vector) and a number of rows, R, equal to the

total number of locations (across all images) where invariant generalized coordinate entries as in M. Then, each M�p is
sorted and a binary tree is used to represent the sorted keys.vectors are computed. To retrieve images, a find-by-value

functionality is needed, with which a query invariant vector As a result, the entire database is indexed. A given invariant
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value can therefore be located in log R time (R � number query entries m and n only if the distance between these two
points is the same as the distance between the query entriesof rows).
that they match. Using this as a basis, a binary fitness mea-

On-Line Operation. Run-time computation begins with the sure may be defined as
user selecting regions in an example image. At sampled loca-
tions within these regions, invariant vectors are computed
and submitted as a query. The success of a retrieval in part
depends on well-designed queries. More importantly, letting
the user design queries eliminates the need for automatically

Fm,n(u) =




1 if ∃ j∃k : |δm,n − δcm j ,cnk
| ≤ T

im j
= ink

= u, m = n

0 otherwise
detecting the salient portions of an object, and the retrieval
may be customized so as to remove unwanted portions of the where 	m,n is the Euclidean distance between the query points
image. Based on the feedback provided by the results of a m and n, and 	cmj,cnk

is the Euclidean distance between the gen-
query, the user can quickly adapt and modify the query to eralized coordinates cmj and cnk. That is, if the distance be-
improve performance. tween two matched points in an image is close to the distance

The search for matching images is performed in two between the query points that they are associated with, then
stages. In the first stage each query invariant is supplied to these points are spatially coherent (with the query). Using
the find-by-value algorithm and a list of matching generalized this fitness measure, a match score for each image can be
coordinates is obtained. In the second stage a spatial check is determined. This match score is simply the maximum number
performed on a per-image basis, so as to verify that the of points that together are spatially coherent (with the query).
matched locations in an image are in spatial coherence with Define the match score by score(u) � maxm �f

n�1 F (u)m,n. The
the corresponding query points. In this sub-subsection the computation of score(u) is at worst quadratic in the total
find-by-value and spatial checking components are discussed. number of query points. The array of scores for all images is

Finding by Invariant Value. The multiscale invariant vectors sorted, and the images are displayed in the order of their
at sampled locations within regions of a query image may be score. T used in F is a threshold and is typically 25% of 	m,n.
treated as a list. The nth element in this list contains the Note that this measure not only will admit points that are
information Qn � (Dn, xn, yn), that is, the invariant vector and rotated, but will also tolerate other deformations as permitted
the corresponding coordinates. In order to find by invariant by the threshold. It is placed to reflect the rationale that simi-
value, for any query entry Qn, the database must contain vec- lar images will have similar responses but not necessarily un-
tors that are within a threshold t � (t1, . . ., tk) � 0. The der a rigid deformation of the query points.
coordinates of these matching vectors are then returned. This
may be represented as follows. Let p be any normalized in- Experiments. The database used for the local similarity re-
variant vector stored in the database. Then p matches the trieval has digitized images of cars, steam locomotives, diesel
normalized query invariant entry Dn only if Dn � t � p � Dn locomotives, apes, faces, people embedded in different back-
� t. To implement the comparison operation two searches can grounds, and a small number of other miscellaneous objects
be performed on each field. The first is a search for the lower such as houses. 1561 images were obtained from the Internet
bound, that is, the smallest entry larger than Dn( j) � t( j), and the Corel photograph—CD collection to construct this da-
and the second is a search for the upper bound, that is the tabase. These photographs were taken with several different
largest entry smaller than Dn( j) � t( j). The block of entries cameras of unknown parameters, and under varying uncon-
between these two bounds are those that match the field j. In trolled lighting and viewing geometry.
the inverted file, the generalized coordinates are stored along Prior to describing the experiments, it is important to clar-
with the individual field values, and the block of matching ify what a correct retrieval means. A retrieval system is ex-
generalized coordinates are copied from disk. Then an inter- pected to answer queries such as ‘‘find all cars similar in view
section of all the returned block of generalized coordinates is and shape to this car’’ or ‘‘find all faces similar in appearance
performed. The generalized coordinates common to all the k to this one.’’ In the examples presented here the following
fields are the ones that match query entry Qn. The find-by- method of evaluation is applied. First, the objective of the
value routine is executed for each Qn, and as a result each query is stated, and then retrieval instances are gauged
query entry is associated with a list of generalized coordinates against the stated objective. In general, objectives of the form
that it matches. ‘‘extract images similar in appearance to the query’’ will be

Spatial Fitting. The association between a query entry Qn posed to the retrieval algorithm.
and the list of f generalized coordinates that match it by A measure of the performance of the retrieval engine may
value may be written as be obtained by examining the recall–precision table for sev-

eral queries. Briefly, recall is the proportion of the relevant
material actually retrieved, and precision is the proportion of
retrieved material that is relevant (35). Consider as an exam-

AAAn = 〈xn, yn, cn1, cn2, . . ., cn f 〉
= 〈xn, yn, (in1, xn1, yn2), . . ., (in f , xn f , yn f )〉

ple the query described in Fig. 3(a). Here the user wishes to
retrieve white-wheeled cars similar to the one outlined andHere xn, yn are the coordinates of the query entry Qn and cn1,

. . ., cnf are the f matching generalized coordinates. The nota- submits the query. The top 25 results, ranked in textbook
fashion, are shown in Fig. 3(b). Note that although there aretion cnf implies that the generalized coordinate c matches n

and is the fth entry in the list. Once these associations are several valid matches as far as the algorithm is concerned
(for example, image 12 is a train with a wheel), they are notavailable, a spatial fit on a per-image basis can be performed.

Any image u that contains two points (locations) that match considered valid retrievals as stated by the user and are not
used in measuring the recall and precision. This yields ansome query entry m and n respectively are coherent with the
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source of error is in the matching itself. It is possible that
locally the intensity surface may have very close values.
Many of these false matches are eliminated in the spatial
checking phase. Errors may also occur in the spatial checking
phase because it admits much more than a rotational trans-
formation of points with respect to the query configuration.
Overall, the performance to date has been very satisfactory,
and we believe that by experimentally evaluating each phase
the system can be further improved. The time it takes to re-
trieve images depends linearly on the number of query points.
On a Pentium Pro 200 MHz Linux machine, typical queries
execute in between 1 and 6 min.

The primary limitations of the local matching technique
are that it is relatively slow and that it requires considerable
disk space. Further, as presented the system cannot search

Table 1. Queries Submitted to the System and
Expected Retrieval

Precision (%)
Given
(User Input) Find 3 pixels 5 pixels

Face All faces 74.7 61.5
Face Same person’s face 61.7 75.5
Ape’s coat Dark-textured apes [Fig. 6(b)] 57.5 57

[Fig. 6(a)]
Both wheels White-wheeled cars 57.0 63.7
Coca-Cola logo All Coca-Cola logos 49.3 74.9
Wheel [Fig. 3(a)] White-wheeled cars [Fig. 3(b)] 48.6 a 54.4
Patas monkey All vislble patas monkey faces 44.5 47.1

face

a See text.

for images in their entirely. That is, it does not address
global similarity.

inherently conservative estimate of the performance of the
system. The average precision (over recall intervals of 10) is Global-Similarity Retrieval
48.6%. [The quantity n (� 10) is simply the number of retriev-

The same Gaussian derivative model may be used to effi-als up to recall n.]
ciently retrieve by global similarity of appearance. Since theOne of the important parameters in constructing indices is
task is to find similarity of whole images, significant improve-the sample rate. Recall that indices are generated by comput-
ments in space as well as speed may be achieved by repre-ing multiscale invariant feature vectors at uniformly sampled
senting images using distributions of feature vectors as op-locations within the image. The performance of the system is
posed to the vectors themselves. One of the simplest ways ofevaluated under sample rates of 3 pixels and 5 pixels. The
representing a nonparametric distribution is a histogram.case where every pixel is used could not be implemented due
Thus, a histogram of features may be used.to prohibitive disk requirements and lack of resources to do

There are several features that may be exploited. Here theso. Six other queries that were also submitted are depicted in
task is to robustly characterize the 3-D intensity surface. A 3-Table 1. The recall–precision table over all seven queries is
D surface is uniquely determined if the local curvatures ev-in Table 2. The second column of the table shows the average
erywhere are known. Thus, it is appropriate that one of theprecision for each query with a database sampling of 5 pixels,
features be local curvature. The principal curvatures of thewhile the third column displays the average precision for a
intensity surface are differential invariants. Further, they aresampling of 3 pixels. This compares well with text retrieval,
invariant to monotonic intensity variations, and their ratioswhere some of the best systems have an average precision of
are in principle insensitive to scale variations of the entire50% (according to personal communication with Bruce Croft).
image. However, spatial orientation information is lost whenThe average precision over the same seven queries is 56.2%
constructing histograms of curvature (or ratios thereof) alone.for the 5 pixel case and 61.7% for the 3 pixel case. However,
Therefore we augment the local curvature with local phase,while the increase in sampling improves the precision, it re-
and the representation uses histograms of local curvaturesults in an increased storage requirement.
and phase.Unsatisfactory retrieval occurs for several reasons. First,

it is possible that the query is poorly designed. In this case
the user can design a new query and resubmit. A second Computing the Global Similarity. Three steps are involved

in computing global similarity. First, local derivatives are
computed at several scales. Second, derivative responses are
combined to generate local features, namely, the principal
curvatures and phases, and their histograms are generated.
Third, the 1-D curvature and phase histograms generated at
several scales are matched. These steps are described next.

Computing Local Derivatives. Derivatives are computed sta-
bly using the formulation shown in Eq. (3). The first and sec-
ond derivatives are computed at several scales by filtering the
database images with Gaussian derivatives.

Feature Histogram. The normal and tangential curvatures
of a 3D surface (X, Y, intensity) are defined by (8)

N( ppp, σ ) = I 2
xIyy + I 2

yIxx − 2IxIyIxy

(I 2
x + I 2

y )3/2 ( ppp, σ )

T( ppp, σ ) = (I 2
x − I 2

y )Ixy + (Ixx − Iyy)IxIy

(I 2
x + I 2

y )3/2
( ppp, σ )

Table 2. Precision at Standard Recall Points for
Seven Queries

Precision (%)

Recall 5 pixels 3 pixels

0 100 100
10 95.8 100
20 90.3 90.4
30 80.1 80.9
40 67.3 75.7
50 48.9 55.9
60 39.9 49.4
70 34.2 47.6
80 31.1 40.6
90 18.2 20.7

100 12.4 17.1

Average 56.2 61.7
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Figure 4. Image retrieval using curva-
ture and phase.

where Ix(p, �) and Iy(p, �) are the local derivatives of the im- Matching Feature Histograms. Two feature vectors are com-
pared using the normalized cross-covariance defined asage I around point p using Gaussian derivatives at scale �.

Similarly, Ixx( � , � ), Ixy( � , � ), and Iyy( � , � ) are the correspond-
ing second derivatives. The normal curvature N and tangen-
tial curvature T are then combined (36) to generate a shape dij =

VVV (m)

i
·VVV (m)

j

‖V (m)

i
‖ ‖V (m)

j
‖

index as follows:

where V(m)
i � Vi � mean(Vi).

Retrieval is carried out as follows. A query image is se-C( ppp, σ ) = arctan
�N + T

N − T

�
( ppp, σ )

lected, and the query histogram vector Vj is correlated with
the database histogram vectors Vi using the above formula.

The index value C is �/2 when N � T, and is undefined and Then the images are ranked by their correlation score and
therefore not computed when N and T are both zero. This is displayed to the user. In this implementation, and for evalua-
interesting because very flat portions of an image (or ones tion purposes, the ranks are computed in advance, since every
with constant ramp) are eliminated. For example in Fig. 4 query image is also a database image.
(second row), the background in most of these face images
does not contribute to the curvature histogram. The curvature Experiments. The curvature–phase method was tested us-
index or shape index is rescaled and shifted to the range [0, ing two databases. The first is a trademark database of 2048
1], as is done in Ref. 37. A histogram is then computed of the images obtained from the US Patent and Trademark Office
valid index values over an entire image. (PTO). The images obtained from the PTO are large and bi-

The second feature used is phase. The phase is simply de- nary, and were converted to gray level and reduced for the
fined as P(p, �) � arctan 2[Iy(p, �)/Ix(p, �)]. Note that P is experiments. The second database is the collection of 1561
defined only at those locations where C is defined, and ig- assorted gray-level images used for the local-similarity case.
nored elsewhere. As with the curvature index, P is rescaled In the following experiments an image is selected and sub-
and shifted to lie in the interval [0, 1]. mitted as a query. The objective of this query is stated and

Although the curvature and phase histograms are in prin- the relevant images are decided in advance. Then the re-
ciple insensitive to variations in scale, in early experiments trieval instances are gauged against the stated objective. In
we found that computing histograms at multiple scales dra- general, objectives of the form ‘‘extract images similar in ap-
matically improved the results. An explanation for this is that pearance to the query’’ will be posed to the retrieval algo-
at different scales different local structures are observed, and rithm. The measure of the performance of the retrieval engine
therefore multiscale histograms are a more robust represen- is obtained by examining the recall–precision table for sev-
tation. Consequently, a feature vector is defined for an image eral queries.
I as the vector Vi � �Hc(�1), . . ., Hc(�n), Hp(�1), . . ., Hp(�n)�, Queries were submitted to each of the collections (trade-
where Hp and Hc are the curvature and phase histograms re- mark and assorted image collection) separately for the pur-
spectively. We found that using five scales gives good results, pose of computing recall and precision. The judgment of rele-

vance is qualitative. For each query in both databases theand the scales used were from 1 to 4 in steps of half an octave.
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background are never considered, because the principal cur-
vatures are very close to zero and therefore do not contribute
to the final score. Thus, for example, the flat background in
Fig. 4 (second row) is not used. Notice that visually similar
images are retrieved even when there is some change in the
background (first row). This is because the dominant object
contributes most to the histograms. On using a single scale,
poorer results are achieved and background affects the re-
sults more significantly.

The results of these and other examples are discussed be-
low, with the average precision over all recall points depicted
in parentheses:

1. Find Similar Cars (65%). Pictures of cars (Fig. 3)
viewed from similar orientations appear in the top

Table 3. Precision at Standard Recall Points for Six Queries

Precision (%)

Recall Trademark Assorted

0 100 100
10 93.2 92.7
20 93.2 90.0
30 85.2 88.3
40 76.3 87.0
50 74.5 86.8
60 59.5 83.8
70 45.5 65.9
80 27.2 21.3
90 9.0 12.0

100 9.0 1.4

Average 61.1 66.3
ranks because of the contribution of the phase histo-
gram. This result also shows that some background
variation can be tolerated. The eight retrieval, although

relevant images were decided in advance. These were re- a car, is a mismatch and is not considered a valid re-
stricted to 48. The top 48 ranks were then examined to check trieval for the purpose of computing recall and preci-
the proportion of retrieved images that were relevant. All im- sion.
ages not retrieved within 48 were assigned a rank equal to

2. Find Same Face (87.4%) and Find Similar Faces. In thethe size of the database. That is, they are not considered re-
face query (Fig. 4, second row) the objective is to findtrieved. These ranks were used to interpolate and extrapolate
the same face. In experiments with a University of Bernthe precision at all recall points. In the case of assorted im-
face database of 300 faces with 10 relevant faces each,ages, relevance is easier to determine and more similar for
the average precision over all recall points for all 300different users. However, in the trademark case it may be
queries was 78%. It should be noted that the systemquite difficult to determine relevance, and therefore the recall
presented here works well for faces with the same rep-and precision may be subject to some error. The recall–
resentation and parameters used for all the other data-precision results are summarized in Table 3, and both data-
bases. There is no specific ‘‘tuning’’ or learning involvedbases are individually discussed below.
to retrieve faces. The query ‘‘find similar faces’’ resultedFigure 5 shows the performance of the algorithm on the
in a 100% precision at 48 ranks because there are fartrademark images. Each strip depicts the top eight retrievals,
more faces than 48. Therefore it was not used in thegiven the leftmost image as the query. Most of the shapes
final precision computation.have roughly the same structure as the query. Six queries

3. Find Dark-Textured Apes (64.2%). The ape query (Fig.were submitted for the purpose of computing recall and preci-
6) results in several light-textured apes and countrysion depicted in Table 3.
scenes with similar texture. Although these are not mis-Experiments were also carried out with assorted gray-level
matches, they are not consistent with the intent of theimages. Six queries submitted for recall and precision are
query, which was to find dark-textured apes.shown in Fig. 4. The leftmost image in each row is the query

and is also the first retrieved. The rest, from left to right, are 4. Find Other Patas Monkeys (47.1%). Here there are 16
Patas monkeys in all and 9 within a small view varia-seven retrievals depicted in rank order. Flat portions of the

Figure 5. Trademark retrieval using cur-
vature and phase.
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Figure 6. A query and its retrieval: (a) ape query; (b) ranked retrieval.

tion. However, here the whole image is being matched, but those are deemed irrelevant with respect to the
query.so the number of relevant Patas monkeys is 16. The pre-

cision is low because the method cannot distinguish be- 5. Given a Wall with a Coca-Cola Logo, Find Other Coca-
tween light and dark textures, leading to irrelevant im- Cola Images (63.8%). This query (Fig. 4, last row)

clearly depicts the limitation of global matching. Al-ages. Note that it finds other apes (dark-textured ones),
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though all three database images that had a certain tex- query regions and relies on corners as features. The algorithm
used to spatially compare the query vectors with those of ature of the wall (and also had Coca-Cola logos) were re-

trieved (100% precision), two other very dissimilar database image (spatial consistency) is also different. The mo-
tivation behind the algorithm presented here is that algo-images with Coca-Cola logos were not.
rithms such as feature detection or segmentation, which are6. Scenes with Bill Clinton (72.8%). The retrieval in this
used to determine salient parts of an image, cannot be deter-case (Fig. 4, fifth row) results in several mismatches.
mined a priori in a general retrieval system, because it is notHowever, three of the four are retrieved in succession
possible to define in advance the needs of a user. Thus insteadat the top, and the scenes appear visually similar.
of establishing an a priori bias towards any feature, images
are uniformly sampled. The selection of salient portions of anWhile the queries presented here are not optimal with re-
image is obtained in the form of the user-defined query. Inspect to the design constraints of global similarity retrieval,
addition we find that using the lowest two orders rather thanthey are realistic queries that can be posed to the system.
three orders gives better results in locating similar features.Mismatches can and do occur. The first is the case where the

With regard to the global retrieval algorithm, Schiele andglobal appearance is very different. The Coca-Cola retrieval
Crowley (44) used a technique based on histograms for recog-is a good example of this. Second, mismatches may occur at
nizing objects in gray-level images. Their technique used thethe algorithmic level. Histograms represent spatial informa-
outputs of Gaussian derivatives as local features. Several fea-tion coarsely and therefore will admit images with nontrivial
ture combinations were evaluated. In each case, a multidi-deformations. The recall and precision presented here com-
mensional histogram of these local features is then computed.pare well with text retrieval. The time per retrieval is of the
Two images are considered to be of the same object if theyorder of milliseconds. In ongoing work we are experimenting
had similar histograms. The difference between our approachwith a database of 63,000 images, and the amount of time
and the one presented by Schiele and Crowley is that heretaken to retrieve is still less than a second. The space re-
we use ID (as opposed to multidimensional) histograms andquired is also a small fraction of the database. These are the
further use the principal curvatures (which they do not use)primary advantages of global-similarity retrieval: to provide
as the primary feature.low-storage, high-speed retrieval with good recall and pre-

Texture-based image retrieval is also related to the ap-cision.
pearance-based work presented in this article. Using Wold
modeling, Liu and Picard (45) try to classify the entire Bro-Suggested Reading
datz texture, and Gorkani and Pickard (46) attempt to clas-

Image retrieval has attracted the attention of several re- sify scenes, such as city and country. Of particular interest is
searchers in recent years, and several retrieval systems have work by Ma and Manjunath (47), who use Gabor filters to
been proposed. The earliest general image retrieval systems retrieve similar-texture images, without user interaction to
were designed by Flickner et al. (38) and Pentland et al. (39). determine region saliency.
In Ref. 38 the shape queries require prior manual segmenta-
tion of the database, which is undesirable and not practical
for most applications. ACKNOWLEDGMENT
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GAUSSIAN WHITE NOISE. See KALMAN FILTERS AND OB-

SERVERS.
GENERALIZATION. See ARTIFICIAL INTELLIGENCE, GENER-

ALIZATION.
GENERATING SET. See DIESEL-ELECTRIC POWER STA-

TIONS.
GENERATION OF NOISE. See NOISE GENERATORS.
GENERATOR (OSCILLATOR), PUMP. See MICROWAVE

PARAMETRIC AMPLIFIERS.
GENERATOR, RAMP. See RAMP GENERATOR.
GENERATORS, AC. See TURBOGENERATORS.
GENERATORS, DC. See DC MACHINES.
GENERATORS, DIESEL-ELECTRIC. See DIESEL-ELEC-

TRIC GENERATORS.
GENERATORS, TURBINE. See TURBOGENERATORS.


