
448 GRAPH THEORY

GRAPH THEORY

GRAPH THEORY FUNDAMENTALS

A graph G(V, E) consists of a set V of vertices (or nodes) and
a set E of pairs of vertices from V, referred to as edges. An
edge may have associated with it a direction, in which case
the graph is called directed (as opposed to undirected), or a
weight, in which case the graph is called weighted. Two verti-
ces u, v � V for which an edge e � (u, v) exists in E are said
to be adjacent and edge e is said to be incident on them. The
degree of a vertex is the number of edges adjacent to it. A
(simple) path is a sequence of distinct vertices (a0, a1, . . .,
ak) of V such that every two vertices in the sequence are adja-
cent. A (simple) cycle is a sequence of vertices (a0, a1, . . .,
ak, a0) such that (a0, a1, . . ., ak) is a path and ak, a0 are adja-
cent. A graph is connected if there is a path between every
pair of vertices. A graph G�(V�, E�) is a subgraph of graph

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

GRAPH THEORY 449

G(V, E) if V� � V and E� � E. A spanning tree of a connected A permutation graph is a special case of a cycle graph. It is
graph G(V, E) is a subgraph of G that comprises all vertices based on the notion of a permutation diagram. A permutation
of G and has no cycles. Given a subset V� � V, the induced diagram is simply a sequence of N integers in the range from
subgraph of G(V, E) by V� is a subgraph G�(V�, E�), where E� 1 to N (but not necessarily ordered). Given an ordering, there
comprises all edges (u, v) in E with u, v � V�. is a vertex for every integer in the diagram, and there is an

In a directed graph, each edge (sometimes referred to as edge (u, v) if and only if the integers u, v are not in the correct
arc) is an ordered pair of vertices and the graph is denoted order in the permutation diagram. A permutation diagram
by G(V, A). For an edge (u, v) � A, v is called the head and u can be used to represent a special case of a permutable chan-
the tail of the edge. The number of edges for which u is a tail nel in VLSI, where all nets have two terminals that belong to
is called the out-degree of u and the number of edges for which opposite channel sides. The problem of finding the maximum
u is a head is called the in-degree of u. A (simple) directed number of nets in the permutable channel that can be routed
path is a sequence of distinct vertices (a0, a1, . . ., ak) of V on the plane amounts to finding a maximum independent set
such that (ai, ai�1), �i, 0 	 i 	 k � 1, is an edge of the graph. in the respective permutation graph. This, in turn, amounts
A (simple) directed cycle is a sequence of vertices (a0, a1, . . ., to finding the maximum increasing (or decreasing) subse-
ak, a0) such that (a0, a1, . . ., ak) is a directed path and (ak, quence of integers in the permutation diagram.
a0) � A. A directed graph is strongly connected if there is a
directed path between every pair of vertices. A directed graph
is weakly connected if there is an undirected path between ALGORITHMS AND TIME COMPLEXITY
every pair of vertices.

Graphs are a very important modeling tool that can be An algorithm is an unambiguous description of a finite set
used to model a great variety of problems in areas such as of operations for solving a computational problem in a finite
operations research [e.g., see (1,2,3)], very large scale integra- amount of time. The set of allowable operations corresponds
tion (VLSI) computer-aided design (CAD) for digital circuits to the operations supported by a specific computing machine
[e.g., see (4)], computer and communications networks [e.g., (computer) or to a model of that machine.
see (5)]. For example, in operations research a graph can be A computational problem comprises a set of parameters
used to model the assignment of workers to tasks, the distri- that have to satisfy a set of well-defined mathematical con-
bution of goods from warehouses to customers, etc. In VLSI straints. A specific assignment of values to these parameters
CAD a graph can be used to represent a digital circuit at any constitutes an instance of the problem. For some computa-
abstract level of representation (gate level, module level, etc.). tional problems there is no algorithm as defined above to find
Each vertex in this case corresponds to a gate or module and a solution. For example, the problem of determining whether
each edge corresponds to a circuit line that connects the re- an arbitrary computer program terminates in a finite amount
spective components. In computer and communications net- of time given a set of input data cannot be solved (it is ‘‘unde-
works, a graph can be used to represent any given intercon- cidable’’) (6). For the computational problems for which there
nection, with vertices representing host computers or routers

does exist an algorithm, the point of concern is how ‘‘efficient’’and edges representing communication links.
that algorithm is. The efficiency of an algorithm is primarilyThere are many special cases of graphs. Some of the most
defined in terms of how much time the algorithm takes tocommon ones are listed below. A tree is a connected graph
terminate. (Sometimes, other considerations such as thethat contains no cycles. A bipartite graph is a graph with the
space requirement in terms of the physical information stor-property that its vertex set V can be partitioned into two dis-
age capacity of the computing machine are also taken intojoint subsets V1 and V2, V1 � V2 � v, such that every edge in
account, but in this exposition we concentrate exclusively onE comprises one vertex from V1 and one vertex from V2. A
time.)directed acyclic graph is a directed graph that contains no

In order to formally define the efficiency of an algorithm,directed cycles. Directed acyclic graphs can be used to repre-
the following notions are introduced:sent combinational circuits in VLSI CAD. A transitive graph

The size of an instance of a problem is defined as the totalis a directed graph with the property that for any vertices u,
number of symbols for the complete specification of the in-v, w � V for which there exist edges (u, v), (v, w) � A, edge
stance under a finite set of symbols and a ‘‘succinct’’ encoding(u, w) also belongs to A. A planar graph is a graph with the
scheme. A ‘‘succinct’’ encoding scheme is considered to be aproperty that its edges can be drawn on the plane so as not
logarithmic encoding scheme, in contrast to a unary encodingto cross each other. A typical application of planar graphs is
scheme. The time requirement (time complexity) of an algo-in VLSI, where the requirement is for all the circuit lines to
rithm is expressed then as a function f (n) of the size n of anbe routed on a single layer.
instance of the problem and gives the total number of ‘‘basic’’A cycle graph is a graph that is obtained by a cycle with
steps that the algorithm needs to go through to solve thatchords as follows: For every chord (a, b) of the cycle, there is
instance. Most of the time, the number of steps is taken witha vertex v(a,b) in the cycle graph. There is an edge (v(a,b), v(c,d))
regard to the worst case, although alternative measures likein the cycle graph if and only if the respective chords (a, b)
the average number of steps can also be considered. Whatand (c, d) intersect. Cycle graphs find application in VLSI
constitutes a ‘‘basic’’ step is purposely left unspecified, pro-CAD as a channel with two terminal nets, or a switchbox with
vided that the time the basic step takes to be completed istwo terminal nets can be represented as a cycle graph. Then
bounded from above by a constant, that is, a value not depen-the problem of finding the maximum number of nets in the
dent on the instance. This hides implementation details andchannel (or switchbox) that can be routed on the plane
machine-dependent timings and provides the required degreeamounts to finding a maximum independent set in the respec-

tive cycle graph. of general applicability.

450 GRAPH THEORY

An algorithm with time complexity f (n) is said to be of the defined objective function Q(), over a set of feasible solutions.
Interestingly, every optimization problem has a ‘‘decision’’order of g(n) [denoted as O(g(n))], where g(n) is another func-

tion, if there is a constant c such that f (n) 	 c
 g(n) for all version in which the goal of minimizing (or maximizing) the
objective function Q() in the optimization problem corre-n � 0. For example, an algorithm for finding the minimum

element of a list of size n takes time O(n), an algorithm for sponds to the question of whether there exists a solution with
Q() 	 k (or Q() � k) in the decision problem, where k is nowfinding a given element in a sorted list takes time O(log n),

algorithms for sorting a list of elements can take time O(n2), an additional input parameter to the decision problem. For
example, the decision version of the Traveling Salesman prob-O(n log n), or O(n) (the latter when additional information

about the range of the elements is known). If moreover there lem is, given a graph and an integer K, to find a simple cycle
that passes through every vertex and whose sum of edgeare constants cL and cH such that cL
 g(n) 	 f (n) 	 cH
 g(n) for

all n � 0, then f (n) is said to be �(g(n)). weights is no more than K.
All decision problems that can be solved in polynomialThe smaller the ‘‘order-of ’’ function, the more efficient an

algorithm is generally taken to be, but in the analysis of algo- time comprise the so-called class P (for polynomial). Another
established class of decision problems is the NP class whichrithms, the term ‘‘efficient’’ is applied liberally to any algo-

rithm whose ‘‘order-of ’’ function is a polynomial p(n). The lat- consists of all decision problems for which a polynomial-time
algorithm can verify if a candidate solution (which has polyno-ter includes time complexities like O(n log n) or O(n�n),

which are clearly bounded by a polynomial. Any algorithm mial size with respect to the original instance) yields a yes or
no answer. The initials NP stand for nondeterministic polyno-with a nonpolynomial time complexity is not considered to be

efficient. All nonpolynomial-time algorithms are referred to mial, in that if a yes answer exists for an instance of an NP
problem, that answer can be obtained nondeterministically (inas exponential and include algorithms with such time com-

plexities as O(2n), O(n!), O(nn), O(nlog n) (the latter is sometimes effect, guessed) and then verified in polynomial time. (The re-
quirement for polynomial-time verification is readily met forreferred to as subexponential). Of course, in practice, for an

algorithm of polynomial time complexity O(p(n)) to be actu- most of the common problems, but there are problems, like
the minimum equivalent expression (see below), for whichally efficient, the degree of polynomial p(n) as well as the con-

stant of proportionality in the expression O(p(n)) should this seems not to be the case.) Every problem in class P be-
longs clearly to NP, but the question of whether class NPrather be small. In addition, because of the worst-case nature

of the O() formulation, an ‘‘exponential’’ algorithm might ex- strictly contains P or not is a famous unresolved problem. It
is conjectured that NP � P, but there is no actual proof up tohibit exponential behavior in practice only in rare cases (the

latter seems to be the case with the simplex method for linear now. Notice that in order to simulate the nondeterministic
guess in the statement above, an obvious deterministic algo-programming). However, the fact on the one hand that most

of the polynomial-time algorithms for the problems that occur rithm would have to enumerate all possible cases, which is
an exponential-time task. It is in fact the question of whetherin practice tend indeed to have small polynomial degrees and

small constants of proportionality, and on the other that most such an ‘‘obvious’’ algorithm is actually the best one can do
that has not been resolved.nonpolynomial algorithms for the problems that occur in

practice eventually resort to the trivial approach of exhaus- Showing that an NP decision problem actually belongs to
P is equivalent to establishing a polynomial-time algorithmtively searching (enumerating) all candidate solutions, justi-

fies the use of the term ‘‘efficient’’ for only the polynomial- to solve that problem. In the investigation of the relations
between problems in P and in NP, the notion of polynomialtime algorithms.

Given a new computational problem to be solved, it is of reducibility plays a fundamental role. A problem R is said to
be polynomially reducible to another problem S if the exis-course desirable to find a polynomial-time algorithm to solve

it. The determination of whether such a polynomial-time algo- tence of a polynomial-time algorithm for S implies the exis-
tence of a polynomial-time algorithm for R. That is, in morerithm actually exists for that problem is a subject of primary

importance. To this end, a whole discipline dealing with the practical terms, if the assumed polynomial-time algorithm for
problem S is viewed as a subroutine, then an algorithm thatclassification of the computational problems and their interre-

lations has been developed. solves R by making a polynomially bounded number of calls
to that subroutine and taking a polynomial amount of time
for some extra work would constitute a polynomial-time algo-P, NP, and NP-Complete Problems
rithm for R.

The classification starts technically with a special class of There is a special class of NP problems with the property
computational problems known as decision problems. A com- that if and only if any one of those problems could be solved
putational problem is a decision problem if its solution can polynomially, then so would all of the NP problems (i.e., NP
actually take the form of a yes or no answer. For example, would be equal to P). These NP problems are known as NP-
the problem of determining whether a given graph contains a complete. An NP-complete problem is an NP problem to which
simple cycle that passes through every vertex is a decision every other NP problem reduces polynomially. The first prob-
problem (known as the Hamiltonian Cycle problem). In con- lem to be shown NP-complete was the Satisfiability problem
trast, if the graph has weights on the edges and the goal is to (6). This problem concerns the existence of a truth assignment
find a simple cycle that passes through every vertex and has to a given set of boolean variables so that the conjunction of
minimum sum of edge weights is not a decision problem, but a given set of disjunctive clauses formed from these variables
an optimization problem (the latter problem is known as the and their complements becomes true. The proof (given by Ste-
Traveling Salesman problem). An optimization problem phen Cook in 1971) was done by showing that every NP prob-
(sometimes referred to also as combinatorial optimization lem reduces polynomially to the Satisfiability problem. After

the establishment of the first NP-complete case, an extensiveproblem) seeks to find the best solution, in terms of a well-

GRAPH THEORY 451

and on-going list of NP-complete problems has been estab- • Longest Path. Given a graph G(V, E) and an integer K
	 �V�, is there a simple path in G with at least K edges?lished [see (6)]. The interest in showing that a particular

problem R is NP-complete lies exactly in the fact that if it • Vertex Cover. Given a graph G(V, E) and an integer K 	
finally turns out that NP strictly contains P, then R cannot �V�, is there a subset V� � V such that �V�� 	 K and for
be solved polynomially (or, from another point of view, if a each edge (u, v) � E, at least one of u, v belongs to V�?
polynomial-time algorithm happens to be discovered for R, • Independent Set. Given a graph G(V, E) and an integer
then NP � P). The process of showing that a decision problem K 	 �V�, is there a subset V� � V such that �V�� � K and
is NP-complete involves showing that the problem belongs to no two vertices in V� are joined by an edge in E?
NP and that some known NP-complete problem reduces poly-

• Feedback Vertex Set. Given a directed graph G(V, A) andnomially to it. The difficulty of this task lies in the choice of
an integer K 	 �V�, is there a subset V� � V such thatan appropriate NP-complete problem to reduce from as well
�V�� 	 K and every directed cycle in G has at least oneas in the mechanics of the polynomial reduction. An example
vertex in V�?of an NP-complete proof is given below.

• Graph Colorability. Given a graph G(V, E) and an inte-We consider a problem that occurs in the testing of digital
ger K 	 �V�, is there a ‘‘coloring’’ function f : V � 1, 2,circuits (7): We are given a collection C of subsets of a set U
. . ., K such that for every edge (u, v) � E, f (u) � f (v)?with maximum subset size w, and an integer bound k 	 w.

We want to determine whether there exists a mapping f : U • Graph Bandwidth. Given a graph G(V, E) and an integer
K 	 �V�, is there a one-to-one function f : V � 1, 2, . . .,� [1 . . �U�], so that for each set s in C, the corresponding set

sf � �f (a) mod k : a � s� has size min(�s�, k). This problem (re- �V� such that for every edge (u, v) � E, �f (u) � f (v)� 	 K?
ferred to as the SETMOD problem) is NP-complete and this • Graph Isomorphism. Given two graphs G(V1, E1) and
is established as follows (8): G(V2, E2), is there a one-to-one function f : V1 � V2 such

that (u, v) � E1 if and only if (f(u), f (v)) � E2?
Theorem 1 The SETMOD problem is NP-complete.

• Induced Bipartite Subgraph. Given a graph G(V, E) and
an integer K 	 �V�, is there a subset V� � V such that

Proof. The problem belongs clearly to NP, since once a satis- �V�� � K and the subgraph induced by V� is bipartite?
fying mapping f has been guessed, the verification can be

• Planar Subgraph. Given a graph G(V, E) and an integerdone in polynomial (actually linear) time. We make the reduc-
K 	 �E�, is there a subset E� � E such that �E�� � K andtion from a known NP-complete problem that is called Not-
the subgraph G�(V, E�) is planar?All-Equal-3SAT (NAE) (6). The latter problem is a special

• Steiner Tree. Given a weighted graph G(V, E), a subsetcase of the Satisfiability problem in which each disjunctive
V� � V, and a positive integer bound B, is there a sub-clause comprises exactly three literals and the goal is to find
graph of G that is a tree, comprises at least all verticesa truth assignment so that each clause has at least one true
in V�, and has a total sum of weights no more than B?and at least one false literal. Let be a NAE instance with n

variables x1, . . ., xn and m clauses C1, . . ., Cm. For each vari- • Graph Partitioning. Given a graph G(V, E) and two posi-
able xi, we consider the set �xi, xi�, and for each clause Cj � tive integers K and J, is there a partition of V into dis-
xj1 ∨ xj2 ∨ xj3, we consider the set �xj1, xj2, xj3� (each element in joint subsets V1, V2, . . ., Vm such that each subset con-
each clause is actually identical with some variable or its tains no more than K vertices and the total number of
complement.) Set U is the set of all literals, that is, �U� � 2n. edges that are incident on vertices in two different sub-

Let k � 2. Suppose first that is satisfiable. For variable sets is no more than J?
xi, 1 	 i 	 n, we assign f (xi) � 2i � 1, f (xi) � 2i if the variable • Traveling Salesman. Given a set of cities, a distance be-
is true and f (xi) � 2i, f (xi) � 2i � 1 if the variable is false. tween every pair of cities, and a bound K, is there a tour
Since each clause has at least one true and one false literal, that visits each city exactly once and has total distance
we have that each set s has at least one element with remain- no more than K?
der 0 and at least one element with remainder 1 modulo k �

• Bin Packing. Given a finite set S of positive integers, and
2, namely �sf� � k � min(�s�, k). Conversely, suppose that there two positive integers B and K, is there a partition of S
is a solution for an instance of the problem in question that into K disjoint subsets S1, S2, . . ., SK such that the sum
consists of the above collection of sets and k � 2. Then, since of the elements in each Si is no more than B?
the three elements in each clause set cannot all be labeled

• Subset Sum. Given a finite set S of positive integers andodd or even, and also the two elements in each literal set can-
a positive integer B, is there a subset S� � S whose sumnot both be labeled odd or even, we have a satisfying assign-
of elements is exactly B?ment for the NAE instance.

• Knapsack. Given a finite set S of items, each with an
integer size and an integer value, and two integer boundsSome representative NP-complete problems that occur in
B and P, is there a subset S� � S whose total sum ofvarious areas in operations research, digital design automa-
sizes is at most B, and the total sum of values is at leasttion, and computer networks are listed below.
P?

• 3-Satisfiability. Given a set of boolean variables and a • One-Processor Scheduling with Release Times and Dead-
set of disjunctive clauses over the variables, each one lines. Given a set T of tasks, each task t � T having a
comprising exactly three literals, is there a satisfying as- duration l(t) � Z�, a release time r(t) � Z�

0 , and a dead-
signment for the conjunction of all the clauses? line d(t) � Z�, is there a function q : T � Z�

0 such that
for all t � T, q(t) � r(t), q(t) � l(t) 	 d(t), and for any• Hamiltonian Cycle. Given a graph G(V, E), does G con-

tain a simple cycle that includes all the vertices of G? pair t, t� with q(t) � q(t�), q(t) � q(t�) � l(t�)?

452 GRAPH THEORY

• Multiprocessor Scheduling. Given a set T of tasks, each Algorithms for NP-Hard Problems
task t � T having a duration l(t) � Z�, and two positive

Once a new problem for which an algorithm is sought is
integers m and D, is there a function q : T � Z�

0 such that
proved to be NP-complete or NP-hard, the search for a polyno-

the number of tasks that have overlapping intervals
mial-time algorithm is abandoned (unless one seeks to prove

[q(t), q(t) � l(t)] is no more than m and maxt�T �(q(t) �
that NP � P), and the following basic four approaches remain

l(t))� 	 D?
to be followed:

• Integer Linear Programming. Given K integer vectors xi

and K integers bi, 1 	 i 	 K, as well as an integer vector 1. Try to improve as much as possible over the straightfor-
c and an integer B, is there an integer vector y such that ward exhaustive (exponential) search by using tech-
xi
 y 	 bi, 1 	 i 	 K, and c
 y � B? niques like branch-and-bound, dynamic programming,

cutting plane methods, or Lagrangian techniques.
NP-Hard Problems 2. For optimization problems, try to obtain a polynomial-

time algorithm that finds a solution that is probablyA generalization of the NP-complete class is the NP-hard
close to the optimal. Such an algorithm is known as ap-class. The NP-hard class is extended to comprise optimization
proximation algorithm and is generally the next bestproblems, as well as decision problems that do not seem to
thing one can hope for to solve the problem.belong to NP. All that is required for a problem to be NP-hard

3. For problems that involve numerical bounds, try to ob-is that some NP-complete problem reduce polynomially to it.
tain an algorithm that is polynomial in terms of the in-For example, the optimization version of the Traveling Sales-
stance size and the size of the maximum number oc-man problem is an NP-hard problem, since if it were polyno-
curing in the encoding of the instance. Such anmially solvable, the decision version of the problem (which is
algorithm is known as pseudopolynomial-time algorithmNP-complete) would be trivially solved polynomially. An ex-
and becomes practical if the numbers involved in a par-ample of a decision problem that is NP-hard but not known
ticular instance are not too large. An NP-complete prob-to be NP-complete is the Kth Heaviest Subset problem: Given
lem for which a pseudopolynomial-time algorithm existsa finite set S of integers and two integers K and B, are there
is referred to as weakly NP-complete (as opposed toK distinct subsets S1, S2, . . ., SK � S, each of which has a
strongly NP-complete).sum of elements at least B? This problem has been shown to

be NP-hard by a reduction from the Partition problem (6), but 4. Use a polynomial-time algorithm to find a ‘‘good’’ solu-
it is not known to be in NP since the obvious candidate solu- tion based on rules of thumb and insight. Such an algo-
tion to be verified (i.e., the list of the K subsets) does not have rithm is known as a heuristic. No proof is provided
polynomial size with respect to the original instance (as K can about how good the solution is, but well-justified argu-
be as large as 2�S�). Another problem that is NP-hard but not ments and empirical studies justify the use of these al-
known to belong to NP is the Minimum Equivalent Expres- gorithms in practice.
sion problem: Given a well-formed boolean expression E in-
volving a set of variables, the constants ‘‘true’’ and ‘‘false,’’ In addition, before any of these approaches is examined,
and the logical connectives ‘‘and,’’ ‘‘or,’’ ‘‘not,’’ and ‘‘implies,’’ one should check whether the problem of concern is actually
and a positive integer K, is there another expression E� that a special case of an NP-complete or an NP-hard problem,
is equivalent to E and contains no more than K literals? Mini- since many special cases can be solved polynomially or pseu-
mum Equivalent Expression is NP-hard since the Satisfiabil- dopolynomially. Examples include polynomial algorithms for
ity problem reduces polynomially to it. But it is not known to finding a longest path in a directed acyclic graph, finding a
be in NP because, although a candidate solution E� can be maximum independent set in a transitive graph, finding a
described polynomially with respect to the original instance schedule in the One-Processor Scheduling with Release Times
size, the obvious verification of that solution involves the use and Deadlines problem when all tasks have unit length; pseu-
of an algorithm for the Satisfiability of Boolean Expressions dopolynomial-time algorithms for solving the Bin Packing
problem, which is itself NP-complete (as a generalization of problem when the number K of bins is fixed, finding a sched-
the Satisfiability problem). ule in the One-Processor Scheduling with Release Times and

If the decision version of an optimization problem is NP- Deadlines problem when the release times and deadlines are
complete, then the optimization problem is NP-hard, since the bounded by a constant, and so on.
yes or no answer sought in the decision version can readily In the next section we give some more information about
be given in polynomial time once the optimum solution in the approximation and pseudopolynomial-time algorithms.
optimization version has been obtained. But it is also the case
that for most NP-hard optimization problems, a reverse rela-

POLYNOMIAL-TIME ALGORITHMS
tion holds: That is, these NP-hard optimization problems can
reduce polynomially to their NP-complete decision versions.

Graph Representations and Traversals
The strategy is to use a binary search procedure that estab-
lishes the optimal value after a logarithmically bounded num- There are two basic schemes for representing graphs in a

computer program. Without loss of generality, we assumeber of calls to the decision version subroutine. Such NP-hard
problems are sometimes referred to as NP-equivalent. The lat- that the graph is directed [represented by G(V, A)]. Undi-

rected graphs can always be considered as bi-directed. In theter fact is another motivation for the study of NP-complete
problems: a polynomial-time algorithm for any NP-complete first scheme, known as the adjacency matrix representation,

a �V� � �V� matrix M is used, where every row and column of(decision) problem would provide actually a polynomial-time
algorithm for all such NP-equivalent optimization problems. the matrix corresponds to a vertex of the graph, and entry

GRAPH THEORY 453

M(a, b) is 1 if and only if (a, b) � A. This simple representa- ing edges have been explored. The approach can also be im-
plemented to run in O(�E�) time.tion requires O(�V�2) time and space.

In the second scheme, known as the adjacency list repre-
Design Techniques for Polynomial-Time Algorithmssentation, an array L[1 . . . �V�] of linked lists is used. The

linked list starting at entry L[i] contains the set of all vertices There are three frameworks that can be used to obtain poly-
that are the heads of all edges with tail vertex i. The time nomial-time algorithms for combinatorial optimization (or de-
and space complexity of this scheme is (�V� � �E�). cision) problems: (1) greedy algorithms, (2) divide-and-con-

Both schemes are widely used as part of polynomial-time quer algorithms, and (3) dynamic programming algorithms.
algorithms for working with graphs [e.g., see (9)]. The adja-
cency list representation is more economical to construct, but Greedy Algorithms. These are algorithms that use a greedy
locating an edge using the adjacency matrix representation is (straightforward) approach to solve a combinatorial optimiza-
very fast (takes O(1) time compared to the O(�V�) time re- tion problem. Consider the following problem, known as the
quired using the adjacency list representation). The choice be- Program Storage problem. The instance consists of a set of n
tween the two depends on the way the algorithm needs to programs that are to be stored on a tape of length L. Every
access the information on the graph. program has an integer length li, 1 	 i 	 n. When a program

A basic operation on graphs is the graph traversal, where is to be retrieved, the tape is positioned at the start. Thus, if
the goal is to visit systematically all the vertices of the graph. the order of the programs in the tape is p1, p2, . . ., pn, the
There are three graph traversal methods: Depth-first search time to retrieve program pm � �m

k�1 lpk
. The goal is to find the

(DFS), breadth-first search (BFS), and topological search. The best possible way of storing the programs on the tape so that
last applies only to directed acyclic graphs. Assume that all the total program retrieval time �n

j�1 �m
k�1 lpk

is minimized.
vertices are marked initially as unvisited, and that the graph The greedy algorithm for this problem is to store the pro-
is represented using an adjacency list L. grams on the tape in increasing order of their lengths. The

Depth-first search traverses a graph following the deepest time complexity of this algorithm is O(n log n) and is deter-
(forward) direction possible. The algorithm starts by selecting mined by the procedure that sorts the programs according to
the lowest numbered vertex v and marking it as visited. DFS their lengths. We refer the reader to Ref. (9) for sorting algo-
selects an edge (v, u), where u is still unvisited, marks u as rithms.
visited, and starts a new search from vertex u. After complet- This greedy algorithm is very simple, and we avoid a more
ing the search along all paths starting at u, DFS returns to formal description. This is normally the case for all greedy
v. The process is continued until all vertices reachable from v algorithms. Despite the simplicity in their description, the
have been marked as visited. If there are still unvisited verti- proof of the optimality of a greedy solution is not a trivial
ces, the next unvisited vertex w is selected and the same pro- task. In general, the proof is based on a systematic sequence
cess is repeated until all vertices of the graph are visited. of contradiction arguments. The following theorem proves

The following is a recursive implementation of subroutine that the greedy algorithm for the program storage problem is
of DFS(v) that determines all the vertices reachable from a optimal (10). Similar methodology to the one in the proof of
selected vertex v. L[v] represents the list of all vertices that the theorem can be used to show the optimality of greedy al-
are the heads of edges with tail v, and array M[u] contains gorithms.
the visited or unvisited status of every vertex u.

Theorem 2 If l1 	 l2 	 . . . 	 ln, the ordering ij � j, 1 	 j 	Procedure DFS(v)
n minimizes �n

k�1 �k
j�1 lij

over all ordering permutations.M[v] := visited;
FOR each vertex u � L[v] DO

Proof. Let I � i1, i2, . . . in be the optimal permutation of the
IF M[u] � unvisited THEN Call DFS(u);

index set �1, 2, . . ., n�. Then the retrieval time R(I) � �n
k�1END DFS �k

j�1 lij
is equal to �n

k�1(n � k � 1)lik
.

Assume that the opposite holds and that in the optimalThe time complexity of DFS(v) is O(�Vv� � �Ev�) where �Vv�,
�Ev� are all the number of vertices and edges that have been ordering there exist programs a, b such that a � b and lia

�
lib

(here a and b denote the relative positions of the programsvisited by DFS(v). The total time for traversing the graph us-
ing DFS is O(�E� � �V�) � O(�E�). in the permutation). In particular, let a and b be the two left-

most programs for which the above condition holds. If this isBreadth-first search visits all vertices at distance k from
the lowest numbered vertex v before visiting any vertices at the case, interchanging the order of ia and ib results in a per-

mutation I� for which it is shown that the total program re-distance k � 1. Breadth-first search constructs a breadth-first
search tree, initially containing only the lowest numbered trieval time R(I�) is less than R(I). This is enough to show

that this greedy algorithm is optimal, and for any two pro-vertex. Whenever an unvisited vertex w is visited in the
course of scanning the adjacency list of an already visited ver- grams a and b (from left to right in the current program per-

mutation) for which lia
� lib

, the same argument can be ap-tex u, vertex w and edge (u, w) are added to the tree. The
traversal terminates when all vertices have been visited. The plied to reduce the retrieval cost R(). That is, the cost of the

greedy permutation is no more than the cost of the optimalapproach can be implemented using queues so that it termi-
nates in O(�E�) time. permutation I, and thus it is optimal.

The fact that the total program retrieval time R(I�) is lessThe final graph traversal method is the topological search
which applies only to directed acyclic graphs. In directed acy- than R(I) is shown as follows: Observe that R(I�) � �k,�a,b((n

� k � 1)lik
) � (n � a � 1)lib

� (n � b � 1)lia
. Then R(I�) �clic graphs there are vertices that have no incoming edges

and vertices that have no outgoing edges. Topological search R(I) � (n � a � 1)(lia
� lib

) � (n � b � 1)(lib
� lia

) � (b �
a)(lia

� lib
) � 0.visits a vertex only if it has no incoming edges or all its incom-

454 GRAPH THEORY

Divide-and-Conquer Algorithms. This methodology is based in table where it has been stored. Dynamic programming is
applicable only to problems which obey the principle of opti-on a systematic partition of the input instance in a top-down

manner into smaller instances until small enough instances mality. This principle holds whenever in an optimal sequence
of choices, each subsequence is also optimal. The difficulty inare obtained for which the problem degenerates to trivial

computations. The overall optimal solution, which is the opti- this approach is to come up with a decomposition of the prob-
lem into a sequence of subproblems for which the principle ofmal solution on the input instance, is then calculated by ap-

propriately working on the already calculated results on the optimality holds and can be applied in polynomial time.
We illustrate the approach by finding the maximum inde-subinstances. The recursive nature of the methodology neces-

sitates the solution of one or more recurrence relations for pendent set in a cycle graph in O(n2) time, where n is the
number of chordal endpoints in the cycle [see (4)]. Note thatdetermining the execution time.

As an example, we show how divide-and-conquer can be the maximum independent set is NP-hard on general graphs.
Let G(V, E) be a cycle graph, and that vab � V correspondsapplied to find the maximum and the minimum integer in an

array A[1 . . n]. More explicitly, the goal is to assign to vari- to a chord in the cycle. We assume that no two of the n chords
share an end point, and that the end points are labeled fromables max and min the largest and smallest integers in the

array. This problem is central in many areas of computer sci- 0 to 2n � 1 clockwise around the cycle. Let Gij be the sub-
graph induced by the set of vertices vab � V such that i 	 a,ence, computer engineering, and operations research, among

others. b 	 j.
Let M(i, j) denote a maximum independent set of Gi, j. M(i,The idea is to recursively find the maximum and the mini-

mum element in subarrays A[i . . j] that have at least two j) is computed for every pair of chords, but M(i, a) must be
computed before M(i, b) if a � b. Observe that if i � j, M(i, j)elements by first locating the midpoint m, and recursively

solve the problem in the two smaller arrays A[i . . m] and � 0 because Gi, j has no chords. In general, in order to com-
pute M(i, j), the end point k of the chord with end point j mustA[m � 1 . . j]. Once the maximum and minimum on the latter

two arrays are computed, we take the maximum of the two be found. If k is not in the range [i, j � 1], then M(i, j) �
M(i, j � 1) because graph Gi, j is identical to graph Gi, j�1. Oth-calculated maxima and the minimum of the two calculated

minima and we assign them as the maximum and the mini- erwise, we consider two cases: First, if vkj � M(i, j), then M(i,
mum of A[i . . j], respectively. j) does not have any vertex vab where a � [i, k � 1] and b �

[k � 1, j]. In this case M(i, j) � M(i, k � 1) � M(K � 1, j � 1)
Procedure MaxMin(i, j)

� vkj; second, if vkj � M(i, j), then M(i, j) � M(i, j � 1). Either
IF i � j THEN rmax � A[i]; rmin � A[i];

of these two cases may apply, but the largest of the two maxi-
ELSE IF i � j � 1 THEN IF A[i] � A[j] THEN

mum independent sets will be allocated to M(i, j). The flow-
rmax � A[j]; rmin � A[i];

chart of the algorithm is given below:
ELSE rmax � A[i]; rmin � A[j];

ELSE Procedure MIS(V)
m � (i � j)/2; FOR j � 0 TO 2N � 1 DO
(m1, m2) :� MaxMin(i, m); (m3, m4) :� Let (j, k) be the chord whose one end point
MaxMin(m � 1, j); is j;

rmax � max(m1,m3); rmin � min(m2,m4); FOR i � 0 TO j � 1 DO
Return(rmax, rmin); IF i 	 k 	 j � 1 AND �M(i, k � 1)� � 1
END MaxMin � �M(k � 1, j � 1)� � �M(i, j � 1)� THEN

M(i, j) � M(i, k � 1) � vkj � M(k � 1,We analyze the time complexity of the approach by count-
j � 1);ing element comparisons. Let T(n) be this number. The re-

ELSE M(i, j) � M(i, j � 1);cursive nature of the MaxMin procedure allows us to express
END MIST(n) by the following recurrence relation:

Three Basic Graph Problems
T(n) = T

�⌊
n
2

⌋�
+ T

�⌈
n
2

⌉�
+ 2 when n > 2

T(n) = 1 when n = 2, T(n) = 0 when n = 1 In this section we define formally and present polynomial
time algorithms for three problems that are widely used in

When n is a power of 2, exactly 3n/2 � 2 number of com- operations research, networking, and VLSI CAD, in the sense
parisons are needed in the average, worst, and best case. In that many problems are reduced to solving these basic graph
general, the worst case on the number of comparisons is problems. They are the shortest path problem, the flow prob-
O(n). lem, and the matching problem.

Dynamic Programming Algorithms. In dynamic program-
Shortest Paths. The instance consists of a graph G(V, E)ming the optimal solution is calculated by starting from the

with lengths l(u, v) on its edges (u, v), a given source s � Vsimplest subinstances and combining the solutions of the
and a target t � V. We assume without loss of generality thatsmaller subinstances to solve larger subinstances, in a bot-
the graph is directed. The goal is to find a shortest lengthtom-up manner. In order to guarantee a polynomial-time al-
path from s to t. The weights can be positive or negative num-gorithm, the total number of subinstances that have to be
bers but there is no cycle for which the sum of the weights onsolved must be polynomially bounded. Once a subinstance has
its edges is negative. (If negative length cycles are allowedbeen solved, any larger subinstance that needs that subins-

tance’s solution, does not recompute it, but rather looks it up the problem is NP-hard.) Variations of the problem include

GRAPH THEORY 455

the all-pair of vertices shortest paths, and the m shortest path A flow F that satisfies Eqs. (1) and (3) is called feasible. In
calculation in a graph. the max flow problem the goal is to find a feasible flow F for

We present here a dynamic programming algorithm for the which v is maximized. Such a flow is called a maximum flow.
shortest path problem which is known as the Bellman-Ford There is a problem variation, called the minimum flow prob-
algorithm. The algorithm has O(n3) time complexity, but lem, where condition (1) is substituted by f (i, j) � c(i, j) and
faster algorithms exist when all the weights are positive [e.g., the goal is to find a flow F for which v is minimized. The
the Dijkstra algorithm with complexity O(n
 min�log �E�, minimum flow problem can be solved by modifying algorithms
�V�)�] or when the graph is acyclic (based on topological search that compute the maximum flow in a graph.
and with linear time complexity). All existing algorithms for Finally, another flow problem formulation is the minimum
the shortest path problem are based on dynamic program- cost flow problem. Here each edge has, in addition to its capac-
ming. The Bellman–Ford algorithm works as follows: ity c(i, j), a cost p(i, j). If f (i, j) is the flow through the edge,

Let l(i, k) be the length of edge (i, j) if directed edge (i, j) then the cost of the flow through the edge is p(i, j)
 f (i, j) and
exists and � otherwise. Let s(j) denote the length of the the overall cost C for a flow F of a value v is �i, j p(i, j)
 f (i, j).
shortest path from the source s to vertex j. Assume that the The problem is to find a minimum cost flow F for a given
source has label 1 and that the target has label n � �V�. We value v.
have that s(1) � 0. We also know that in a shortest path to Many problems in operations research, networking, sched-
any vertex j there must exist a vertex k, k � j, such that s(j) uling, and VLSI CAD can be modeled or reduced to one of
� s(k) � l(k, j). Therefore these three flow problem variations. All three problems can

be solved in polynomial time using as subroutines shortest
path calculations. Here we describe an O(�V 3�) algorithm for

s(j) = min
k �= j

{s(k) + l(k, j)}, j ≥ 2

the maximum flow problem. However, faster algorithms exist
Bellman–Ford’s algorithm, which eventually computes all in the literature. We first give some definitions and theorems.

s(j), 1 	 j 	 n, calculates optimally the quantity s(j)m�1 de- Let P be an undirected path from s to t, i.e., the direction
fined as the length of the shortest path to vertex j subject to of the edges is ignored. An edge (i, j) � P is said to be a
the condition that the path does not contain more than m � forward edge if it is directed from s to t and backward other-
1 edges, 0 	 m 	 �V� � 2. In order to be able to calculate wise. P is said to be an augmenting path with respect to a
quantity s(j)m�1 for some value m � 1, the s(j)m values for all given flow F if f (i, j) � c(i, j) for each forward edge, and f (i,
vertices j have to be calculated. j) � 0 for each backward edge in P.

Given the initialization s(1)1 � 0, s(j)1 � l(1, j), j � 1, the Observe that if the flow in each forward edge of the aug-
computation of s(j)m�1 for any values of j and m can be recur- menting path is increased by one unit and the flow in each
sively computed using the formula backward edge is decreased by one unit, the flow is feasible

and its value has been increased by one unit. We will shows(j)m+1 = min{s(j)m}, min{s(k)m + l(k, j)}
that a flow has maximum value if and only if there is no aug-
menting path in the graph. Then the maximum flow algo-The computation terminates when m � �V� � 1, because no
rithm is simply a series of calls to a subroutine that findsshortest path has more than �V� � 1 edges.
an augmenting path and increments the value of the flow as
described earlier.Flows. All flow problem formulations consider a directed or

Let S � V be a subset of the vertices. The pair (S, T) isundirected graph G � (V, E), a designated source s, a desig-
called a cutset if T � V � S. If s � S and t � T, the (S, T) isnated target t, and a nonnegative integer capacity c(i, j) on

every edge (i, j). Such a graph is sometimes referred to as a called an (s, t) cutset. The capacity of the cutset (S, T) is defined
network. We assume that the graph is directed. A flow from s as c(S, T) � �i�S �j�Tc(i, j), which is the sum of the capacities
to t is an assignment F of numbers f (i, j) on the edges, called of all edges from S to T. We note that many problems in net-
the amount of flow through edge (i, j), subject to the following working, operations research, scheduling, and VLSI CAD
conditions: (physical design, synthesis, and testing) are formulated as

minimum capacity (s, t) cutset problems. We show below that
0 ≤ f (i, j) ≤ c(i, j) (1) the minimum capacity (s, t) problem can be solved with a

maximum flow algorithm.Besides s and t, any vertex i must satisfy the conservation of
flow. That is,

Lemma 3.1 The value of any (s, t) flow cannot exceed the
capacity of any (s, t) cutset.

∑
j

f (j, i) −
∑

j

f (i, j) = 0 (2)

Proof. Let F be an (s, t) flow with value v. Let (S, T) be anLet v � �j f (s, j). Then clearly �j f (s, j) � v � �j f (j, t). v
(s, t) cutset. From Eq. (3) the value of the flow v is also v �is called the value of the flow. From Eq. (2) we have
�i�S(�j f (i, j) � �j f (j, i)) � �i�S �j�S(f(i, j) � f (j, i)) � �i�S

�j�T(f(i, j) � f (j, i)) � �i�S �j�T(f(i, j) � f (j, i)), since �i�S

�j�S(f(i, j) � f (j, i)) is 0. But f (i, j) 	 c(i, j) and f (j, i) � 0.
Therefore v 	 �i�S �j�S c(i, j) � c(S, T).

Theorem 3 A flow F has maximum value v if and only if
there is no augmenting path from s to t.

∑
j

f (j, i) −
∑

j

f (i, j) = −v if i = 2

∑
j

f (i, j) = 0 if i �= s, t

∑
j

f (i, j) = v if i = t

(3)

456 GRAPH THEORY

Proof. If there is an augmenting path then we can modify the tioning the vertices of a graph into sets of size at most two so
that the sum of the weights on all edges with end points inflow to get a larger value flow. This contradicts the assump-

tion that the original flow has a maximum value. different sets is minimized. It is easy to see that this parti-
tioning problem reduces to the maximum weighted matchingSuppose, on the other hand, that F is a flow such that

there is no augmenting path from s to t. We want to show problem.
Matching problems often occur on bipartite G(V1 � V2, E)that F has the maximum flow value. Let S be the set of all

the vertices j (including s) for which there is an augmenting graphs. The maximum cardinality matching problem
amounts to the maximum assignment of elements in V1path from s to j. By the assumption that there is an aug-

menting path from s to t, we must have that t � S. Let T � (‘‘workers’’) on to the elements of V2 (‘‘tasks’’) so that no
worker in V1 is assigned more than one task. This finds vari-V � S (recall that t � T). From the definition of S and T, it

follows that f (i, j) � c(i, j) and f (j, i) � 0, �i � S, j � T. ous applications in operations research.
The maximum cardinality matching problem on a bipartiteNow v � �i�S(�j f (i, j) � �j f (j, i)) � �i�S �j�S(f(i, j) � f (j,

i)) � �i�S �j�T(f(i, j) � f (j, i)) � �i�S �j�T(f(i, j) � f (j, i)) � graph G(V1 � V2, E) can be solved by a maximum flow formu-
lation. Simply, each vertex v � V1 is connected to a new ver-�i�S �j�S c(i, j), since c(i, j) � f (i, j) and f (j, i) � 0, �i, j. By

Lemma 3.1 the flow has the maximum value. tex s by an edge (s, v) and each vertex u � V2 to a new vertex
t by an edge (u, t). In the resulting graph, every edge is as-
signed unit capacity. The maximum flow value v correspondsNext we state two theorems whose proof is rather straight-

forward. to the cardinality of the maximum matching in the original
bipartite graph G.

Although the matching problem variations on bipartiteTheorem 4 If all the capacities are integers, then there ex-
ists a maximum flow F, where all f (i, j) are integers. graphs are amenable to easily described polynomial-time al-

gorithms, such as the one given above, the existing polyno-
mial-time algorithms for matchings on general graphs areTheorem 5 The maximum value of an (s, t) flow is equal to

the minimum capacity of an (s, t) cutset. more complex [see (1)].

Finding an augmenting path in a graph can be done by a Approximation and Pseudopolynomial Algorithms
systematic graph traversal in linear time. Thus a straightfor-

Approximation and pseudopolynomial-time algorithms con-ward implementation of the maximum flow algorithm repeat-
cern mainly the solution of problems that are proved to beedly finds an augmenting path and increments the amount of
NP-hard (although they can sometimes be used on problemsthe (s, t) flow. This is a pseudopolynomial-time algorithm (see
that are solvable in polynomial time) but for which the corre-the next section), whose worst-case time complexity is
sponding polynomial-time algorithm involves large constants.O(v
 �E�). In many cases such an algorithm may turn out to

An �-approximation algorithm A for an optimization prob-be very efficient. For example, when all capacities are uni-
lem R is a polynomial-time algorithm such that for any in-form, then the overall complexity becomes O(�E�2).
stance I of R, �SA(I) � SOPT(I)�/SOPT(I) 	 � � c, where SOPT(I) isIn general, the approach needs to be modified using the
the cost of the optimal solution for instance I, SA(I) is the costEdmonds–Karp modification (1) so that each flow augmen-
of the solution found by algorithm A, and c is a constant.tation is made along an augmenting path with a minimum

Two examples of approximation algorithms are given be-number of edges. With this modification, it has been proven
low: For the optimization version of the Bin Packing problem,that a maximum flow is obtained after no more than
an approximation algorithm is the following: Sort the items�E�
 �V�/2 augmentations, and the approach becomes fully
into decreasing order of sizes. Assign each item in this orderpolynomial. Faster algorithms for maximum flow computation
into the first bin that has room for it. If no such bin exists,rely on capacity scaling techniques and are described in (9,3),
introduce a new bin. This simple algorithm has been shownamong others.
(6) to always give a solution that is no more than 11/9 times
the optimal plus 4, namely �SA(I) � SOPT(I)�/SOPT(I) 	 2/9 � c.Matchings. Matching problems are defined on undirected

The second example concerns a special but practical ver-graphs G(V, E). A matching in a graph is a set M � E such
sion of the Traveling Salesman problem that obeys the trian-that no two edges in M are incident to the same vertex.
gular inequality for all city distances. Given a weightedThe maximum cardinality matching problem is the most
graph G(V, E) of the cities, the algorithm first finds a mini-common version of the matching problem. Here the goal is to
mum spanning tree T of G (i.e., a spanning tree that has min-obtain a matching so that the size (cardinality) of M is max-
imum sum of edge weights). Then it finds a minimum weightimized.
matching M among all vertices that have odd degree in T.In the maximum weighted matching version, each edge (i,
Lastly, it forms the subgraph G�(V, E�), where E� is the set ofj) � V has a nonnegative integer weight, and the goal is to
all edges in T and M and finds a path that starts from andfind a matching M so that �e�M w(e) is maximized.
terminates to the same vertex and passes through every edgeIn the min-max matching problem the goal is to find a max-
exactly once (such a path is known as Eulerian tour). Everyimum cardinality matching M where the minimum weight on
step in this algorithm takes polynomial time. It has beenan edge in M is maximized. The max-min matching problem
shown that �SA(I) � SOPT(I)�/SOPT(I) 	 1/2.is defined in an analogous manner.

Unfortunately, obtaining a polynomial-time approximationAll the above matching variations are solvable in polyno-
algorithm for an NP-hard optimization problem can be verymial time and find important applications. For example, a
difficult. In fact it has been shown for some cases that thisvariation of the min-cut graph partitioning problem that is

central in physical design automation for VLSI asks for parti- may be impossible. For example, it has been shown that un-

GRAVIMETERS 457

less NP � P there is no �-approximation algorithm for the A representative case of probabilistic algorithms is testing
whether a given very large integer is prime (this has applica-general Traveling Salesman problem for any � � 0.

A pseudopolynomial-time algorithm for a problem R is an tions to cryptography).
There is also a class of algorithms that resemble the proba-algorithm with time complexity O(p(n, m)), where p() is a

polynomial of two variables, n is the size of the instance, and bilistic in that they use a pseudorandom number generator,
but the solution they give is always correct. Such algorithmsm is the magnitude of the largest number occuring in the in-

stance. Only problems involving numbers that are not make certain choices that are not determined by the input
instance in order to obtain the solution faster (the solutionbounded by a polynomial on the size of the instance are appli-

cable for solution by a pseudopolynomial-time algorithm. In itself does not depend on these choices). These algorithms are
known as randomized. A typical example is the Quicksort al-principle, a pseudopolynomial-time algorithm is exponential

given that the magnitude of a number is exponential to the gorithm, which takes O(n2) time in the worst case for sorting
a list of n elements, but O(n log n) time on average if thesize of its logarithmic encoding in the problem instance, but

in practice, such an algorithm may be useful in cases where order of the elements in the list is randomized by the algo-
rithm (the latter average time complexity is not conditionedthe numbers involved are not large.

NP-complete problems for which a pseudopolynomial-time on any distribution for the elements of the list).
algorithm exists are referred to as weakly NP-complete,
whereas NP-complete problems for which no pseudopolyno-

BIBLIOGRAPHYmial-time algorithm exists (unless NP � P) are referred to as
strongly NP-complete. Examples of weakly NP-complete prob-

1. E. L. Lawler, Combinatorial Optimization: Algorithms andlems are the Knapsack and Subset Sum problems. A pseudo-
Matroids, New York: Holt, Rinehart and Winston, 1976.

polynomial-time algorithm for the latter is the following:
2. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimiza-Given a set of positive integers S � �s1, s2, . . ., sn� and an

tion: Algorithms and Complexity, Englewood Cliffs, NJ: Prentice-integer B, let T[i, j], 1 	 i 	 n, 1 	 j 	 B, be 1 whenever it is Hall, 1982.
true that there is a subset of the first i integers s1, s2, . . ., si 3. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows,with sum exactly B (otherwise, T[i, j] � 0). The entries of Englewood Cliffs, NJ: Prentice-Hall, 1993.
matrix T are systematically assigned as: T[1, j] � 1 if j � 0

4. N. A. Sherwani, Algorithms for VLSI Physical Design Automation,or j � s1; and, for 2 	 i 	 n, 1 	 j 	 B, T[i, j] � 1 if T[i � 1, Norwell, MA: Kluwer, 1993.
j] � 1, or si 	 j and T[i � 1, j � si] � 1. This algorithm (a

5. D. Bertsekas and R. Gallagher, Data Networks, Upper Saddlecase of dynamic programming) takes time O(nB), and the an-
River, NJ: Prentice-Hall, 1992.

swer to the Subset Sum problem is given by the value of
6. M. R. Garey and D. S. Johnson, Computers and Intractability—AT[n, B].

Guide to the Theory of NP-Completeness, San Francisco, CA:
Examples of problems that are strongly NP-complete are W. H. Freeman, 1979.

the Traveling Salesman and the Bin Packing problems.
7. M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Sys-

tems Testing and Testable Design, Rockville, MD: Computer Sci-
ence Press, 1990.Probabilistic Algorithms

8. D. Kagaris and S. Tragoudas, Avoiding linear dependencies in
Probabilistic algorithms are a class of algorithms that do not LFSR test pattern generators, J. Electron. Test. Theor. Appl., 6:
depend exclusively on their input to carry out the computa- 229–241, 1995.
tion. Instead, at one or more points in the course of the algo- 9. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
rithm where a choice has to be made, they use a pseudoran- Algorithms, Cambridge, MA: MIT Press, 1990.
dom number generator to select ‘‘randomly’’ one out of a finite 10. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms,
set of alternatives for arriving at a solution. Probabilistic al- Rockville, MD: Computer Science Press, 1984.
gorithms are fully programmable (i.e., they are not like the
nondeterministic algorithms), but in contrast with the deter- DIMITRIOS KAGARIS
ministic algorithms, they may give different results each time Southern Illinois University
for the same input instance (assuming that the initial state of SPYROS TRAGOUDAS
the pseudorandom number generator is different each time). The University of Arizona

Probabilistic algorithms trade off the certainty of a correct
solution with a reduction in the computation time. As a sim-
ple example, in order to find a number in a list of n numbers

GRAPH THEORY. See GEOMETRY.that is greater than or equal to the median, n/2 elements
have to be examined. However, assuming that the numbers
are equally distributed, by examining only k numbers and
keeping the maximum, the probability that the number is
greater than or equal to the median is 1 � (��)k, which is very
practical if, for example, k � 20 while n � 1,000,000. Two
major classes of probabilistic algorithms are the Monte Carlo
type and the Las Vegas type. In the former, the algorithm
guarantees that the solution it gives has a high probability of
being correct for every instance. In the latter, the algorithm
guarantees that any solution it reports is correct with cer-
tainty, but occasionally it may terminate by reporting failure.

