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GREEN’S FUNCTION METHODS

The Green’s function method is a powerful technique for solv-
ing boundary-value problems. Green’s function was named
after George Green (1793–1841), who developed a general
method to obtain solutions of Poisson’s equation in potential
theory. This method was described in an essay by Green enti-
tled ‘‘On the application of mathematical analysis to the theo-
ries of electricity and magnetism,’’ published in 1828.

To illustrate the Green’s function method, consider the
electric potential produced by a point electric charge q1 placed
at r1 in an unbounded homogeneous free space. It is well
known from the elementary theory of electricity (1) that this
potential at r is given by

φ1(r) = q1

4πε|r − r1|
(1)

where �r � r1� denotes the distance between the points r and
r1 and � is a constant called the permittivity. If there is an-
other point charge q2 placed at r2, the potential produced by
this charge is

φ2(r) = q2

4πε|r − r2|
(2)

The total potential produced by q1 and q2 is then the linear
superposition of �1 and �2:

φ(r) = φ1(r) + φ2(r) = q1

4πε|r − r1|
+ q2

4πε|r − r2|
(3)

If there are N point charges in the space, the total potential
is given by

φ(r) =
N∑

i=1

φi(r) =
N∑

i=1

qi

4πε|r − ri|
(4)

where � denotes the summation over all point charges and
�i denotes the potential due to the ith point charge placed at
ri. The procedure described above is known as the principle of
linear superposition.

Next, consider the electric potential produced by a volume
electric charge whose charge density is denoted by �(r). To
find the potential, we divide the volume of the charge into
many small cubes. The charge within each small cube is then
given by

qi ≈ ρ(ri)�Vi (5)

where ri denotes the center of the ith cube and �Vi denotes
the volume of the cube. Since each cube is very small, it can
be approximated as a point charge, whose potential is given
by

φi(r) ≈ qi

4πε|r − ri|
≈ ρ(ri)�Vi

4πε|r − ri|
(6)
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According to the principle of linear superposition, the total representation of the nine scalar Green’s functions. The first
use of dyadic Green’s function was made by Julian Schwinger.potential is then given by
The subject was also covered by Morse and Feshbach (2) in
their well-known treatise on the methods of theoretical phys-
ics. A more comprehensive treatment of the dyadic Green’sφ(r) =

N∑
i=1

φi(r) ≈
N∑

i=1

ρ(ri)�Vi

4πε|r − ri|
(7)

functions in electromagnetic theory was presented by Tai (3),
who has done much original work on this topic. In his well-Clearly, the approximation improves as the volume is divided
known book, Tai derived dyadic Green’s functions for a vari-into smaller cubes. In the limit when �Vi � 0, Eq. (7) becomes
ety of electromagnetic problems of practical importance. Dis-exact. Hence, one obtains
cussions on dyadic Green’s functions can also be found in Col-
lin (4), Kong (5), and Chew (6).

As shall be shown later, the Green’s function method notφ(r) = lim
�Vi→0

∞∑
i=1

ρ(ri)�Vi

4πε|r − ri|
(8)

only provides a solution to many boundary-value problems in-
volving canonical geometries, but it also leads to integralwhich can be written in the integral form as
equations for problems involving more complex geometries.
These integral equations form the basis for a numerical solu-
tion of complex boundary-value problems.φ(r) =

∫
V

ρ(r′) dV ′

4πε|r − r′| (9)

where V denotes the volume of the electric charge. SCALAR GREEN’S FUNCTIONS
The potential produced by a point source of unit strength is

called the Green’s function. In the example above, the Green’s When both the source and response are scalar functions, the
function is corresponding Green’s function is also scalar and, hence, the

name scalar Green’s function.
G(r, r′) = 1

4πε|r − r′| (10)
The Delta Function

and the total potential can then be written as Since the Green’s function method is based on the representa-
tion of an arbitrary source by the superposition of point
sources, the mathematical representation of a point source
will first be described. Consider an electric charge of unit

φ(r) =
∫

V
ρ(r′)G(r,r′) dV ′ (11)

strength located at point r�. When the volume of the charge
It is clear that the Green’s function method treats an arbi- approaches zero, the charge density can be described by a

trary source for the potential as a linear superposition of function
weighted point sources. It then finds the potential as the cor-
responding linear superposition of the potentials produced by
the point sources. δ(r − r′) =

{
∞ for r = r′

0 for r �= r′ (12)
Obviously, once the Green’s function corresponding to the

potential due to a point source is found, the potential pro-
Since the total charge remains at unity,duced by an arbitrary distribution of sources can be obtained

easily. Therefore, for a specific boundary-value problem, in-
stead of finding the potential for each new source encountered
by solving Poisson’s equation repeatedly, one can find the

∫
V

δ(r − r′) dV =
{

1 for r′ in V

0 for r′ not in V
(13)

Green’s function for that problem only once and obtain solu-
tions to any sources by the principle of linear superposition. The function defined in Eqs. (12) and (13) is known as the
The procedure of finding the Green’s function is usually much Dirac delta function, named after P. A. M. Dirac. Clearly,
simpler than finding the solution to an arbitrary source. To a given an arbitrary function f (r), which is continuous at r �
large extent, a Green’s function plays the same role as an r�,
impulse response of a linear circuit system. The system re-
sponse to any input function can be determined by convolving
the input function with the impulse response of the system.

∫
V

f (r)δ(r − r′) dV =
{

f (r′) for r′ in V

0 for r′ not in V
(14)

The Green’s function method has since been expanded to deal
with a large number of different partial differential equa-

This expression represents a volume source f (r�) as a lin-tions.
ear superposition of an infinite number of point sourcesIn electrodynamics, both the source (electric current den-
�(r � r�).sity) and the response (electric or magnetic field) are vectors,

In one dimension, the delta function can be considered aseach of which has three components. Since each component of
the limit of a function,an electric current density can produce all three components

of the electric or magnetic field, one has nine Green’s func-
tions that relate the response to the source. This unwieldiness δ(x − x′) = lim

ε→0
uε (x − x′) (15)

can be alleviated by introducing the concept of the dyadic
Green’s function. A dyadic Green’s function, which can be ex- where u�(x � x�) is called a delta family. It can be a rectangu-

lar function of width � and height 1/�, or a triangular functionpressed as a 3 � 3 matrix, can be considered as a compact
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of width 2� and height 1/�, or a Gaussian function of the transmission line per unit length. Eliminating I(x) in
Eqs. (22) and (23), one obtains the differential equation fore�(x�x�)2/2�

2
/��2�, all centered at x � x�. The important feature

of the delta function is not its shape, but the fact that its the voltage as
effective width approaches zero, while its area remains at
unity, that is, d2V (x)

dx2 − γ 2V (x) = −( jωL + R)K(x) (24)

where �2 � ( j�L � R)( j�C � G). Since the line is infinitely

∫ b

a
δ(x − x′) dx =

{
1 for x′ in (a,b)

0 for x′ not in (a,b)
(16)

long, there is no reflected wave; hence, V(x) satisfies the
boundary conditionssuch that

dV (x)

dx
+ γV (x) = 0 for x → ∞ (25)

∫ b

a
f (x)δ(x − x′) dx =

{
f (x′) for x′ in (a,b)

0 for x′ not in (a,b)
(17)

dV (x)

dx
− γV (x) = 0 for x → −∞ (26)

The delta function so defined is not a function in the classical
sense. For this reason, it is called a symbolic or generalized

Since these boundary conditions are imposed when �x� � �,function (7).
they are also called radiation conditions.Clearly, the delta function is a symmetric function

Instead of solving for V(x) directly from Eqs. (24)–(26), one
can consider the solution of the following differential equationδ(x − x′ ) = δ(x′ − x) (18)

The three-dimensional delta function in the rectangular, cy- d2g0(x, x′ )
dx2 − γ 2g0(x, x′) = −δ(x − x′) (27)

lindrical, and spherical coordinate systems is related to the
one-dimensional delta function by

where g0(x) satisfies the same radiation conditions as V(x).
Since g0(x, x�) is a point source response and V(x) in Eq. (24)δ(r − r′) = δ(x − x′ )δ(y − y′ )δ(z − z′) (19)
is due to the source ( j�L � R)K(x), according to the principle
of linear superposition, V(x) can be expressed as a convolutionδ(r − r′) = δ(ρ − ρ ′)δ(φ − φ ′)δ(z − z′)

ρ
(20)

of g0(x, x�) with ( j�L � R)K(x):

δ(r − r′) = δ(r − r′)δ(θ − θ ′ )δ(φ − φ ′)
r2 sin θ

(21)
V (x) =

∫ ∞

−∞
( jωL + R)K(x′ )g0(x, x′) dx′ (28)

All of the above satisfy Eq. (13).
It is evident that once we obtain g0(x, x�), the voltage on the

One-Dimensional Green’s Function transmission line can be evaluated via a simple integration
using Eq. (28).To introduce the concept of Green’s function in one dimension,

To find g0(x, x�), note that sinceconsider an infinitely long transmission line with a distrib-
uted current source K(x) (3), as illustrated in Fig. 1. Using
Kirchhoff ’s voltage and current laws, one finds the relations

d2g0(x, x′)
dx2 − γ 2g0(x, x′) = 0 for x > x′ or x < x′ (29)

between the voltage and current as

one hasdV (x)

dx
+ ( jωL + R)I(x) = 0 (22)

g0(x, x′) = Ae−γ x for x > x′ (30)

g0(x, x′ ) = Beγ x for x < x′ (31)
dI(x)

dx
+ ( jωC + G)V (x) = K(x) (23)

where the radiation conditions in Eqs. (25) and (26) were usedwhere � denotes the angular frequency and L, C, R, and G
to determine the sign in front of �. To determine the unknownare the inductance, capacitance, resistance, and conductance
coefficients A and B, consider Eq. (27). First, note that g0(x,
x�) must be continuous at x � x�, that is,

g0(x, x′ )|x=x′+0 = g0(x, x′ )|x=x′−0 (32)

where x � x� � 0 stands for the right-hand side of x� and x �
x� � 0 stands for the left-hand side of x� since a discontinuity
in g0(x, x�) at x � x� would result in a derivative on �(x � x�)
on the left-hand side of Eq. (27). Next, integrate Eq. (27) over
the region from x� � � to x� � � and in the limit when � � 0,

V(x) K(x)

I(x)

Figure 1. An infinitely long transmission line excited by a distrib-
uted current source.

dg0(x, x′)
dx

∣∣∣∣
x=x′+0

− dg0(x, x′)
dx

∣∣∣∣
x=x′−0

= −1 (33)
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Applying these two conditions to Eqs. (30) and (31), one finds where r represents the radial variable in spherical coordi-
nates. Instead of solving for �(r) directly from Eqs. (45) and
(46) for each f (r), one first finds its Green’s function, which is
the solution of the following partial differential equation

g0(x, x′ ) = 1
2γ

e−γ (x−x′ ) for x > x′ (34)

∇2G0(r,r′) + k2G0(r, r′) = −δ(r − r′) (47)g0(x, x′) = 1
2γ

eγ (x−x′ ) for x < x′ (35)

subject to the radiation condition in Eq. (46). If G0 can be
or, more compactly, found, using the principle of linear superposition, one obtains

g0(x, x′ ) = 1
2γ

e−γ |x−x′ | (36) φ(r) =
∫

V
G0(r,r′) f (r′) dV ′ (48)

This is the Green’s function for the infinitely long transmis- where V is the support of f (r), which is the volume having
sion line. nonzero f (r).

To find G0, we introduce a new coordinate system with its
Two- and Three-Dimensional Green’s Functions origin located at r�. Thus, the problem has a spherical symme-

try with respect to this point. Equation (47) then becomesConsider the electric and magnetic fields produced by a time
harmonic electric source whose current density is denoted by
J(r) and charge density is denoted by �(r). These fields satisfy
Maxwell’s equations given by (1)

1
r2

1

d
dr1

[
r2

1
dG0(r1, 0)

dr1

]
+ k2G0(r1, 0) = −δ(r1) (49)

where r1 � r � r�. When r1 � 0, Eq. (49) can be written as∇ × E(r) = − jωB(r) (37)

∇ × H(r) = jωD(r) + J(r) (38)

∇ · D(r) = ρ(r) (39)
d2[r1G0(r1, 0)]

dr2
1

+ k2r1G0(r1, 0) = 0 (50)

∇ · B(r) = 0 (40) which has a well-known solution

and the constitutive relations given by B � �H and D � �E,
where � is the magnetic permeability and � is the electric r1G0(r1, 0) = Ae− jkr1 or G0(r1, 0) = A

e− jkr1

r1
(51)

permittivity. Again, assume that the space is homogeneous.
Taking the curl of Eq. (37), one has The sign in the exponent is chosen such that Eq. (51) satisfies

the radiation condition in Eq. (46). To determine the unknown∇ × ∇ × E(r) = − jωµ∇ × H(r) (41)
coefficient A, substitute Eq. (51) into Eq. (49) and integrate
over a small sphere centered at r1 � 0 with its radius � � 0.Using Eq. (38) in Eq. (41), one obtains
The result is A � (4�)�1. Therefore,

∇ × ∇ × E(r) − k2E(r) = − jωµJ(r) (42)

where k2 � �2��. Since � � � � E � �(� 
 E) � �2E, Eq. (42)
G0(r1, 0) = e− jkr1

4πr1
(52)

can be written as
and in the original coordinates, it becomes

∇2E(r) + k2E(r) = jωµJ(r) + 1
ε
∇ρ(r) (43)

G0(r,r′) = e− jk|r−r′ |

4π |r − r′| (53)
where Eq. (39) has been applied. Similarly, one obtains the
equation for H as Following the same procedure, one can obtain the two-di-

mensional Green’s function for the Helmholtz equation as∇2H(r) + k2H(r) = −∇ × J(r) (44)

Equations (43) and (44) are called inhomogeneous Helmholtz G0(ρρρ,ρρρ ′ ) = 1
4 j

H(2)

0 (k|ρρρ − ρρρ ′|) (54)
wave equations.

If one uses � to represent each component of E or H in a where � � xx̂ � yŷ and H(2)
0 (k�� � ���) is the zeroth-order Han-

Cartesian coordinate system, then � satisfies the inhomoge- kel function of the second kind.
neous Helmholtz equation When one deals with the static electric field, Maxwell’s

equations for E(r) reduce to∇2φ(r) + k2φ(r) = − f (r) (45)

When �(r) propagates in an infinite unbounded space, there ∇ × E(r) = 0 and ∇ · E(r) = ρ(r)

ε
(55)

is no reflected wave. Hence, �(r) satisfies the radiation condi-
tion These two equations can be solved conveniently by introduc-

ing the electric potential �(r), which is defined as

E(r) = −∇φ(r) (56)
r
(

∂φ

∂r
+ jkφ

)
= 0 for r → ∞ (46)



466 GREEN’S FUNCTION METHODS

The first equation in Eq. (55) is automatically satisfied be- is given by
cause of the identity � � ��(r) � 0. Substituting Eq. (56) into
the second equation in Eq. (55), one obtains G2(r,r′) = G0(r, r′) + G0(r, r′

i) = 1
4π |r − r′| + 1

4π |r − r′
i|
(63)

∇2φ(r) = −ρ(r)

ε
(57)

where r�i is the same as the one in Eq. (61). It satisfies the
Neumann boundary condition in the z � 0 plane.

This equation is known as Poisson’s equation, which can be The Green’s function of the third kind is defined for prob-
considered as a special case of Eq. (45) with k � 0. lems involving two or more media. It can be denoted as

Using the procedure described in this section, one obtains G(ij)(r, r�), where i indicates the medium where the field point
the three-dimensional Green’s function for Poisson’s equation r is located and j indicates the medium where the source
as point r� is located. Consider, for example, a potential problem

involving two half spaces. The upper half space (medium 1)
above z � 0 has a permittivity of �1, and the lower half space
(medium 2) has a permittivityof �2. The Green’s function for

G0(r,r′) = 1
4π |r − r′| (58)

Poisson’s equation is given by (8)
and the two-dimensional Green’s function as

G0(ρρρ,ρρρ ′) = − 1
2π

ln |ρρρ − ρρρ ′| (59)

G(11)(r,r′) = G0(r,r′) − ε2 − ε1

ε2 + ε1
G0(r,r′

i)

= 1
4π |r − r′| − ε2 − ε1

ε2 + ε1

1
4π |r − r′

i|
(64)

Classification of Green’s Functions and
The Green’s functions derived above are for the infinite un-
bounded space where no other objects are present. They are G(21)(r,r′) = 2ε2

ε2 + ε1
G0(r,r′) = 2ε2

ε2 + ε1

1
4π |r − r′| (65)

called the free-space Green’s functions and are denoted by the
subscript ‘‘0.’’ When the region of interest is bounded, one

Exchanging �1 and �2 in G(11) and G(21), one obtains the expres-then has to consider boundary conditions for the Green’s func-
sions for G(22) and G(12), respectively. This method of obtainingtion. Different boundary conditions lead to different Green’s
the Green’s functions of the third kind works only for Pois-functions. For this reason, Green’s functions are classified
son’s equation, but not for the Helmholtz equation becauseinto three categories: Green’s function of the first, second, and
the standard image method is not applicable to the Helmholtzthird kind (3).
equation in this case.The Green’s function of the first kind, denoted by G1, satis-

fies the Dirichlet boundary condition, that is,
Eigenfunction Expansion

In addition to the conventional method described earlier, an-G1(r,r′) = 0 for r on S (60)
other general method for deriving Green’s functions is called
the method of Ohm-Rayleigh or the method of eigenfunctionwhere S denotes the boundary of the problem. For a half
expansion (3). In this section, one rederives the Green’s func-space with an infinite ground plane coincident with the z � 0
tions in Eq. (36) and Eq. (53) to illustrate the process of theplane, the Green’s function of the first kind for Poisson’s equa-
Ohm-Rayleigh method.tion is given by

Consider first the solution of Eq. (27). Expand g0(x, x�) in
terms of a Fourier integral

G1(r,r′) = G0(r, r′) − G0(r, r′
i) = 1

4π |r − r′| − 1
4π |r − r′

i|
(61) g0(x, x′) =

∫ ∞

−∞
A(h)e jhx dh (66)

where r�i � r� � 2z�ẑ � x�x̂ � y�ŷ � z�ẑ. This result can be The ejhx, which is the solution of the homogeneous differential
derived conveniently using the method of images. It is easy equation d2�(x)/dx2 � h2�(x) � 0, is called the eigenfunction
to see that the Dirichlet boundary condition is satisfied by and h2 is the corresponding eigenvalue. Therefore, Eq. (66)
G1(r, r�) in the z � 0 plane. can be considered as the eigenfunction expansion of g0(x, x�).

The Green’s function of the second kind, denoted by G2, To determine A(h), substitute Eqs. (66) into Eq. (27) and note
satisfies the Neumann boundary condition, that is, that

∂G2(r,r′)
∂n

= 0 for r on S (62) δ(x − x′ ) = 1
2π

∫ ∞

−∞
e jh(x−x′ ) dh (67)

This yieldswhere S denotes the boundary of the problem and �/�n de-
notes the normal derivative. For a half space with an infinite
magnetic (symmetry) plane coincident with the z � 0 plane,
the Green’s function of the second kind for Poisson’s equation

A(h) = e− jhx′

2π(h2 + γ 2)
(68)
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This is the spectral representation of the three-dimensional
Green’s function. To evaluate the spectral integral, let

hx = h sin θ cos ϕ, hy = h sin θ sinϕ, hz = h cos θ (75)

so that

dh = h2 sin θdhdθdϕ (76)

Furthermore, because of the spherical symmetry of G0 with
respect to the point r�, the value of G0 is independent of the
direction of r � r�. Therefore, one can choose an arbitrary
r � r� for the evaluation of G0. If one chooses the direction of

for  x > x′

for  x < x′

jγ jαβ= – +

jγ jαβ=– –

[Re(h)]

[Im(h)]

r � r� to coincide with the z-direction, Eq. (74) may be written
asFigure 2. Locations of the two poles in the complex plane and the

closed contours for integration.

Hence,

g0(x, x′) = 1
2π

∫ ∞

−∞

e jh(x−x′ )

h2 + γ 2 dh (69)

G0(r,r′) = 1
(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

e jh cos θ |r−r′ |

h2 − k2 h2 sin θdhdθdϕ

= j
(2π)2|r − r′|

∫ ∞

0
[e− jh|r−r′ | − e jh|r−r′ |]

hdh
h2 − k2

= j
(2π)2|r − r′|

∫ ∞

−∞

he− jh|r−r′ |

h2 − k2 dh (77)

This is known as the spectral representation of g0(x, x�). The
This integral can now be evaluated using Cauchy’s residueintegral in this equation can be evaluated using Cauchy’s res-
theorem. The integrand has two poles: one at h � k and theidue theorem (9). For this, one needs to form a closed contour
other at h � �k. Although the problem considered here isfor the integral in Eq. (69). In order to satisfy the boundary
lossless, treat it as a limiting case of a lossy problem for whichconditions in Eqs. (25) and (26), for x � x� � 0 the infinite
k has a small negative imaginary part. Consequently, the poleintegration path must be closed in the upper half-plane and
at h � k is on the lower side of the real axis and the pole atfor x � x� � 0 the infinite path must be closed in the lower
h � �k is on the upper side of the real axis. In order to satisfyhalf-plane, as shown in Fig. 2. The application of Cauchy’s
the radiation condition in Eq. (46), the infinite integrationresidue theorem yields
path must be closed in the lower half-plane, as shown in Fig.
3. Applying Cauchy’s residue theorem, one obtains

g0(x, x′) = 1
2γ

{
e−γ (x−x′ ) for x > x′

eγ (x−x′ ) for x < x′ (70)

G0(r,r′) = e− jk|r−r′ |

4π |r − r′| (78)
which is the same as Eqs. (34) and (35).

Next, consider the solution of Eq. (47). First expand G0(r, which is the same as Eq. (53).
r�) in terms of Fourier integrals Finally, note that, although the process of the Ohm-Ray-

leigh method is more involved than the conventional method,
it is more general and can be used to find Green’s functionsG0(r, r′) =

∫ ∞

−∞
A(h)e jh·r dh (71)

in many problems.

where h � hxx̂ � hyŷ � hzẑ. The ejh � r, which is the solution of Green’s Functions in a Bounded Region
the homogeneous partial differential equation �2�(r) �

As can be seen in the preceding section, the spectrum (eigen-h2�(r) � 0, is called the eigenfunction and h2 � �h�2 is the
value) for infinite-space problems is continuous and, as a re-corresponding eigenvalue. Again, Eq. (71) can be considered

as the eigenfunction expansion of G0(r, r�). Substituting Eq.
(71) into Eq. (47), and noting that

δ(r − r′) = 1
(2π)3

∫ ∞

−∞
e jh·(r−r′ ) dh (72)

one finds

A(h) = e− jh·r′

(2π)3(h2 − k2)
(73)

Therefore,

k jα–

k jα+–

[Re(h)]

[Im(h)]

0α

Figure 3. Locations of the two poles in the complex plane and the
closed contour for integration.

G0(r, r′) = 1
(2π)3

∫ ∞

−∞

e jh·(r−r′ )

h2 − k2 dh (74)
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The triple summation can be reduced to a double summation
using the formula (4)

∞∑
p=1

1
h2 sin

pπz
d

sin
pπz′

d

= d
2kc sinh kcd

sinh kcz< sinh kc(d − z>) (86)

where kc � �(m�/a)2 � (n�/b)2, z� � z when z � z�, and z� �
z� when z� � z, and z� � z when z � z�, and z� � z� when
z� � z. As a result, Eq. (85) becomes

(x)

(z)

(y)

a

d

b

Figure 4. A grounded rectangular cavity.

sult, the spectral representation of the Green’s function in-
volves spectral integrals. When the region of interest is finite,

G1(r,r′) =
∞∑

m=1

∞∑
n=1

4
ab

sin
mπx

a
sin

mπx′

a
sin

nπy
b

sin
sinh kcz< sinh kc(d − z>)

kc sinhkcd
(87)

the spectrum will be discrete. To demonstrate this fact, con-
sider a grounded rectangular cavity of dimension a � b � d, Next, consider the problem of a parallel-plate waveguide,
depicted in Fig. 4. The Green’s function for Poisson’s equation which is finite in the y direction and infinite in the x and z
satisfies the partial differential equation directions, as shown in Fig. 5. Assuming that the source is

uniform in the z direction, the Green’s function of the first
kind for the Helmholtz equation satisfies the partial differen-∇2G1(r,r′) = −δ(r − r′) (79)

tial equation
and the Dirichlet boundary condition

∇2G1(ρρρ,ρρρ ′) + k2G1(ρρρ,ρρρ ′) = −δ(ρρρ − ρρρ ′) (88)
G1(r,r′) = 0 for r on cavity’s walls (80)

and the boundary conditionsThis Green’s function can be derived in a number of different
ways, such as the conventional method, the method of images,

G1(ρρρ,ρρρ ′) = 0 for y = 0, b (89)and the Ohm-Rayleigh method. Here, the Ohm-Rayleigh
method is employed. First, consider the solution of

and the radiation conditions
∇2ψ + h2ψ = 0 (81)

subject to the condition in Eq. (80). Using the method of sepa-
∂G1(ρρρ,ρρρ ′)

∂x
+ jkG1(ρρρ,ρρρ ′) = 0 for x → ∞ (90)

ration of variables, one finds ∂G1(ρρρ,ρρρ ′)
∂x

− jkG1(ρρρ,ρρρ ′) = 0 for x → −∞ (91)

ψmnp = sin
mπx

a
sin

nπy
b

sin
pπz
d

(82)
The eigenfunction for this problem is found as

which is the eigenfunction of Eq. (81) with eigenvalue h2 �
(m�/a)2 � (n�/b)2 � (p�/d)2. This can be used to expand G1: ψn(hx) = e jhx x sin

nπy
b

(92)

from which G1 can be expanded asG1(r, r′) =
∞∑

m=1

∞∑
n=1

∞∑
p=1

Amnp sin
mπx

a
sin

nπy
b

sin
pπz
d

(83)

Substituting this expression into Eq. (79), one has G1(ρρρ,ρρρ ′) =
∫ ∞

−∞

∞∑
n=1

An(hx)e jhx x sin
nπy

b
dhx (93)

∞∑
m=1

∞∑
n=1

∞∑
p=1

Amnph2 sin
mπx

a
sin

nπy
b

sin
pπz
d

= δ(x − x′ )δ(y − y′ )δ(z − z′) (84)

The coefficient Amnp can be determined by multiplying both
sides by sin(m��x/a) sin(n��y/b), sin(p��z/d) and integrating
over x, y, and z. The result is

( y)

(x)

y = b

Figure 5. A parallel-plate waveguide.

G1(r,r′) =
∞∑

m=1

∞∑
n=1

∞∑
p=1

8
abdh2

sin
mπx

a
sin

mπx′

a
sin

nπy
b

sin
nπy′

b
sin

pπz
d

sin
pπz′

d
(85)
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where V� denotes the infinite space exterior to the object and
Vs denotes the support of f (r). Applying the second scalar
Green’s theorem (1)

So

Vo

V

n

∞

∫
V

(a∇2b − b∇2a) dV =
∫

S

(
a

∂b
∂n

− b
∂a
∂n

)
dS (98)

Figure 6. An object occupying volume Vo.

where S denotes the surface enclosing V, one obtains

Substituting this expression into Eq. (88), one obtains∫ ∞

−∞

∞∑
n=1

An(hx)

[
k2 − h2

x −
(nπ

b

)2
]

e jhx x sin
nπy

b
dhx

= −δ(x − x′ )δ(y − y′ ) (94)

The coefficient An(hx) can be determined by multiplying both

∫
So+S∞

[
G0(r,r′)

∂φ(r)

∂n
− φ(r)

∂G0(r, r′)
∂n

]
dS

−
∫

V∞
φ(r)δ(r − r′) dV

= −
∫

Vs

G0(r,r′) f (r) dV (99)

sides by ejh�
xx sin(n��y/b) and integrating over x and y. The re-

sult is where So denotes the surface of the object and S� denotes a
spherical surface with a radius approaching infinity. Since
both G0 and � satisfy Eq. (46), the surface integral over S�

vanishes. Consequently, one has
G1(ρρρ,ρρρ ′) = 1

πb

∫ ∞

−∞

∞∑
n=1

[
h2

x +
(nπ

b

)2
− k2

]−1

e jhx (x−x′ )

sin
nπy

b
sin

nπy′

b
dhx (95)

Using Cauchy’s residue theorem, one can evaluate the spec-
tral integral in a similar manner to that for the transmission

∫
So

[
G0(r,r′)

∂φ(r)

∂n
− φ(r)

∂G0(r,r′)
∂n

]
dS−

∫
V∞

φ(r)δ(r−r′) dV

= −
∫

Vs

G0(r, r′) f (r) dV (100)

line case, yielding
where the normal unit vector on So points toward the interior
of the object. Using Eq. (14), one obtainsG1(ρρρ,ρρρ ′) = 1

b

∞∑
n=1

1
γx

e−γx |x−x′ | sin
nπy

b
sin

nπy′

b
(96)

where �x � �(n�/b)2 � k2.

Scalar Integral Equations

∫
So

[
G0(r,r′)

∂φ(r)

∂n
− φ(r)

∂G0(r,r′)
∂n

]
dS +

∫
Vs

G0(r, r′) f (r) dV

=
{

φ(r′) for r′ in V∞
0 for r′ in Vo

(101)

Originally, Green’s function methods were developed for find-
ing the general solution of a boundary-value problem whose

where Vo denotes the volume of the object. Exchanging r and
Green’s function can be derived. For many practical problems, r� and using the symmetry property of G0 [i.e., G0(r�, r) �
the Green’s function cannot be derived. As a result, one must

G0(r, r�)], one has
resort to a numerical method for the solution of the problem.
One such numerical method is based on an integral equation
derived using the Green’s function method.

To demonstrate the formulation of integral equations, con-
sider the problem of a scalar wave produced by a source f (r)
in the presence of an arbitrarily shaped object immersed in

∫
So

[
G0(r,r′)

∂φ(r′)
∂n′ − φ(r)

∂G0(r, r′)
∂n′

]
dS′

+
∫

Vs

G0(r,r′) f (r′) dV ′ =
{

φ(r) for r in V∞
0 for r in Vo

(102)

an infinite medium, as illustrated in Fig. 6. Exterior to the
object, the wave function �(r) satisfies the inhomogeneous Equation (102) is an important result, which has several
Helmholtz equation in Eq. (45) and the radiation boundary implications. First, notice that when the object is absent, the
condition in Eq. (46). Since the object has an arbitrary shape, surface integral vanishes. Hence,
no closed-form Green’s function can be found for this problem.
However, one can establish an integral equation for this prob-
lem using the free-space Green’s function given in Eq. (53), φ(r) =

∫
Vs

G0(r,r′) f (r′) dV ′ (103)

which is the solution of Eq. (47) under the condition in Eq.
(46). which is the same as Eq. (48). This may be called the incident

First, multiply Eq. (45) with G0, Eq. (47) with �, and inte- field impinging on the object and be denoted as �inc(r). Second,
grate the difference of the resultant equations over the entire when there is no source in V�, Eq. (102) becomes
exterior volume, yielding

φ(r) =
∫

So

[
G0(r, r′)

∂φ(r′)
∂n′ − φ(r′)

∂G0(r,r′)
∂n′

]
dS′ (104)

for r in V�. Since there is no source in V�, the field on So must
be produced by the source inside So. This equation indicates

∫
V∞

[G0(r, r′)∇2φ(r) − φ(r)∇2G0(r,r′)] dV

= −
∫

Vs

G0(r, r′) f (r)dV +
∫

V∞
φ(r)δ(r − r′) dV (97)
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that the field in a source-free region can be calculated based equation
on the knowledge of the potential and its normal derivative
on the surface enclosing the region. This is the mathematical ∇2φ(r) + k̃2φ(r) = 0 (112)
representation of the well-known Huygens’ principle for a sca-
lar wave. where k̃ characterizes the property of the object. Multiplying

Equation (102) also provides the foundation to establish an this equation by the Green’s function for unbounded space
integral equation for � and ��/�n on the surface of the object. filled with material characterized by k̃:
If the object is impenetrable with a hard surface where � sat-
isfies the boundary condition

G̃0(r,r′) = e− jk̃|r−r′ |

4π |r − r′| (113)
φ(r) = 0 for r on So (105)

and applying a similar derivation as before, one hasEq. (102) becomes

φinc(r) +
∫

So

G0(r,r′)
∂φ(r′)

∂n′ dS′ =
{

φ(r) for r in V∞

0 for r in Vo

(106)

Applying this equation on So, one obtains

−
∫

So

[
G̃0(r, r′)

∂φ(r′)
∂n′ − φ(r′)

∂G̃0(r,r′)
∂n′

]
dS′

=
{

0 for r in V∞

φ(r) for r in Vo
(114)

When this is applied on So, one obtains the second integral
equation

∫
So

G0(r, r′)
∂φ(r′)

∂n′ dS′ = −φinc(r) for r on So (107)

which is the integral equation for ��/�n on So.
If the object is impenetrable with a soft surface where �

satisfies the boundary condition

1
2

φ(r) +
∫

So

[
G̃0(r,r′)

∂φ(r′)
∂n′ − φ(r′)

∂G̃0(r, r′)
∂n′

]
dS′ = 0

for r on So (115)

which can be used together with Eq. (111) for a numerical
∂φ(r)

∂n
= 0 for r on So (108)

solution of � and ��/�n on So.
If the object is penetrable and inhomogeneous, the waveEq. (102) becomes

function still satisfies Eq. (112); however, k̃ now is a function
of r. In this case, one can write Eqs. (45) and (112) in one
equationφinc(r) −

∫
So

φ(r′)
∂G0(r, r′)

∂n′ dS′ =
{

φ(r) for r in V∞

0 for r in Vo

(109) ∇2φ(r) + k2φ(r) = − f (r) − [k̃2(r) − k2]φ(r) (116)

Applying this equation on So, one obtains
Multiplying this equation by G0 and integrating over the in-
finite volume, one obtains1

2
φ(r) +

∫
So

φ(r′)
∂G0(r, r′)

∂n′ dS′ = φinc(r) for r on So

(110)

where � denotes the integral excluding the contribution from

φ(r) −
∫

Vo

[k̃2(r′) − k2]G0(r, r′)φ(r′) dV ′ =
∫

Vs

G0(r,r′) f (r′) dV ′

(117)
the singular point which is known as the principal value inte-

This is the integral equation that can be used to solve for �gral. This result is obtained as follows: The integral over So

in Vo. Unlike the previous integral equations, this equationin Eq. (109) is divided into an integral over a small circular
involves the volume integral. For this reason, it is often re-disk with center at r plus the remaining integral which is
ferred to as the volume integral equation, whereas the previ-represented as a principal value integral � in the limit as the
ous ones are often referred to as the surface integral equa-area of the isolated disk approaches zero. If r approaches So

tions. Integral equations for more complicated objects mayfrom the outside, the integral over the vanishingly small disk
involve both volume and surface integrals (10).can be evaluated to give ��(r)/2. If r approaches So from the

inside, the integral gives �(r)/2. In either case, one obtains
Eq. (110), which is the integral equation for � on So. DYADIC GREEN’S FUNCTIONS

If the object is penetrable and homogeneous, apply Eq.
(102) on So to obtain When both the source and response are vector functions, the

corresponding Green’s function is a dyad, and hence, the
name dyadic Green’s function.

1
2

φ(r) −
∫

So

[
G0(r,r′)

∂φ(r′)
∂n′ − φ(r′)

∂G0(r, r′)
∂n′

]
dS′

= φinc(r) for r on So (111) Definition of Dyad

A dyad, denoted by D, is formed by two vectorsTo solve for � and ��/�n on So, another equation is needed,
which can be derived by considering the interior of the object.

D = AB (118)The wave function inside the object satisfies the Helmholtz
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This entity by itself does not have any physical interpretation Just as in the scalar case, one can derive a dyadic Green’s
function Ge0, whose end result is to relate E(r) and J(r) byas a vector. However, when it acts upon another vector, the

result becomes meaningful. The major role of a dyad is that
its scalar product with a vector produces another vector of
different magnitude and direction. For example, its anterior

E(r) = − jωµ

∫
V

Ge0(r,r′) · J(r′) dV ′ (128)

scalar product with vector C yields
where V is the support of the current J(r). Using Eq. (128) in
Eq. (127), one obtainsC · D = (C · A)B (119)

which is a vector. Its posterior scalar product with vector C
yields

D · C = A(B · C) (120)

which is also a vector. Apparently, the resulting vectors in

− jωµ

∫
V

∇ × ∇ × Ge0(r,r′) · J(r′) dV ′

+ jωµk2
∫

V
Ge0(r,r′) · J(r′) dV ′

= − jωµJ(r) = − jωµ

∫
V

Iδ(r − r′) · J(r′) dV ′ (129)
Eqs. (119) and (120) are different. In addition to the two sca-
lar products, there are two vector products. The anterior vec- For arbitrary J(r), the above could be satisfied only if
tor product is defined as

∇ × ∇ × Ge0(r,r′) − k2Ge0(r, r′) = Iδ(r − r′) (130)C × D = (C × A)B (121)

The Ge0(r, r�) is called the dyadic Green’s function of the elec-and the posterior vector product is defined as
tric type that relates vector field E to vector current J.

Taking the curl of Eq. (128) and using Maxwell’s equa-D × C = A(B × C) (122)
tions, one obtains

Clearly, these products are dyads.
The dyad defined in Eq. (118) is a special entity, since it

contains only six independent components, three in each of
H(r) =

∫
V

∇ × Ge0(r, r′) · J(r′) dV ′ =
∫

V
Gm0(r, r′) · J(r′) dV ′

(131)the two vectors. A more general dyad, also called a tensor, is
defined as where Gm0(r, r�) � � � Ge0(r, r�) is called the dyadic Green’s

function of the magnetic type. It satisfies the equationD = Dxx̂ + Dyŷ + Dzẑ (123)

∇ × ∇ × Gm0(r, r′) − k2Gm0(r, r′) = ∇ × [Iδ(r − r′)] (132)
where Dx, Dy, and Dz are vectors. Therefore, Eq. (123) can be
expressed as

Therefore, the task of finding the dyadic Green’s function
of the electric type is reduced to the task of solving Eq. (130).
Equation (130) can be made less difficult by taking the poste-
rior scalar product with an arbitrary vector a, yielding

D = Dxxx̂x̂ + Dyxŷx̂ + Dzxẑx̂ + Dxyx̂ŷ + Dyyŷŷ + Dzyẑŷ

+ Dxzx̂ẑ + Dyzŷẑ + Dzzẑẑ
(124)

which contains nine independent components. ∇ × ∇ × Ge0(r,r′) · a − k2Ge0(r, r′) · a = aδ(r − r′) (133)
A special dyad is called the unit dyad or identity dyad,

defined as Recognizing that Ge0(r, r�) 
 a represents a vector, one may use
the vector identity � � � � A � �(� 
 A) � �2A to find

I = x̂x̂ + ŷŷ + ẑẑ (125)

It is evident that
− ∇2Ge0(r, r′) · a − k2Ge0(r,r′) · a

= aδ(r − r′) − ∇[∇ · Ge0(r, r′) · a] (134)
C · I = I · C = C (126)

Taking the divergence of Eq. (133) and making use of the fact
that � 
 (� � A) � 0, it can be seen thatFree-Space Dyadic Green’s Functions

Consider the electric and magnetic fields produced by an elec-
tric current source J(r) in an unbounded space. Maxwell’s

∇ · Ge0(r, r′) · a = − 1
k2

∇ · [aδ(r − r′)] (135)

equations for this problem are given in Eqs. (37)–(40), which
Using this in Eq. (134), one obtainslead to Eq. (42), reproduced here as

∇ × ∇ × E(r) − k2E(r) = − jωµJ(r) (127)

The above is the vector wave equation, which is the analog of

∇2Ge0(r, r′) · a + k2Ge0(r,r′) · a = −
(

1 + ∇∇·
k2

)
[aδ(r − r′)]

(136)
the scalar Helmholtz wave equation. It describes electromag-

By making use of the fact thatnetic wave phenomena that are very pervasive in modern
technologies, such as in communications, microwave, com-
puter chips, and so forth. ∇2G0(r,r′) + k2G0(r, r′) = −δ(r − r′) (137)
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and the fact that 1 � �� 
 /k2 is a linear operator that com- defined by
mutes with �2, it can be deduced that

L(r) = ∇ψ(r) (146)

M(r) = ∇ × [cψ(r)] (147)Ge0(r, r′) · a =
(

1 + ∇∇·
k2

)
[aG0(r, r′)] (138)

N(r) = 1
κ

∇ × M(r) (148)
Writing the above as

where c is a vector called the pilot vector and � satisfies the
homogeneous Helmholtz wave equationGe0(r,r′) · a =

(
I + ∇∇

k2

)
G0(r,r′) · a (139)

∇2ψ(r) + κ2ψ(r) = 0 (149)and since a is an arbitrary vector, one deduces that

It can be shown that L, M, and N satisfy the vector equations
Ge0(r, r′) =

(
I + ∇∇

k2

)
G0(r,r′) (140)

∇2L(r) + κ2L(r) = 0 (150)

The free-space dyadic Green’s function of the magnetic ∇ × ∇ × M(r) − κ2M(r) = 0 (151)
type can be derived as ∇ × ∇ × N(r) − κ2N(r) = 0 (152)

and M can be expressed in terms of N as
Gm0(r,r′) = ∇ × Ge0(r,r′) = ∇ × [IG0(r, r′)] = ∇G0(r,r′) × I

(141)

The above is the explicit representation of the dyadic M(r) = 1
κ

∇ × N(r) (153)
Green’s function in terms of the scalar Green’s function G0(r,
r�). It is to be noted that the aforementioned relationship be- Since � � L(r) � � � ��(r) � 0, L is known as the irrota-
tween the dyadic Green’s function and the scalar Green’s tional vector wave function. Since � 
 M(r) � 0 and � 
 N(r) �
function G0(r, r�) is only valid for a homogeneous unbounded 0, M and N are known as the solenoidal vector wave func-
space such as a free space. Such a relation does not hold true tions.
in a cavity, waveguide, or half-space. For example, the dyadic For a rectangular waveguide illustrated in Fig. 7, � is
Green’s functions for a half-space (above z � 0) are given given by
by (3)

ψe
o mn(h,r) =

{
cos kxx cos kyy
sin kxx sin kyy

}
e− jhz (154)Ge1(r, r′) =

(
I − ∇∇′

k2

)
[G0(r, r′) − G0(r, r′

i)] + 2ẑẑG0(r,r′
i )

(142)
where kx � m�/a and ky � n�/b. The vector wave functions

and L, M, and N are given by

Gm2(r,r′) = ∇G0(r, r′) × I + ∇G0(r,r′
i ) × Ii (143) Le

o mn(h,r) = ∇ψe
o mn(h,r) (155)

Me
o mn(h, r) = ∇ × [ẑψe

omn(h, r)] (156)where r�i � x�x̂ � y�ŷ � z�ẑ and Ii � �I � 2ẑẑ. It can be verified
that Ge1(r, r�) and Gm2(r, r�) satisfy the boundary conditions

Ne
o mn(h,r) = 1

κ
∇ × ∇ × [ẑψe

o mn(h,r)] (157)

ẑ × Ge1(r,r′) = 0 for z = 0 (144)
where the pilot vector is c � ẑ. This causes M to be transverse

and to ẑ.
The vector wave functions are always orthogonal to each

other. For those in a rectangular waveguide, it can be shownẑ × ∇ × Gm2(r, r′) = 0 for z = 0 (145)

respectively. For this reason, Ge1(r, r�) is called the electric-
type dyadic Green’s function of the first kind and Gm2(r, r�) is
called the magnetic-type dyadic Green’s function of the second
kind. The classification of dyadic Green’s functions is similar
to that of scalar Green’s functions.

Eigenfunction Expansion

As in the scalar case, the Ohm–Rayleigh method or the
method of eigenfunction expansion is a general method to de-
rive dyadic Green’s functions (3). For vector problems, the

(x)

(z)
a

b

( y)

eigenfunctions are vector functions, known as vector wave
functions. There are three kinds of vector wave functions (1), Figure 7. A rectangular waveguide.
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that

∫
V

Ue
o mn(h,r) · Ve

o m′ n′ (−h′, r) dV = 0 (158)

where U, V � L, M, N, except when Ue
omn(h, r) � Ve

omn(h, r).
They form a complete set and, therefore, can be employed to
expand any vector functions.

The electric-type dyadic Green’s function of the first kind
satisfies the equation

∇ × ∇ × Ge1(r,r′) − k2Ge1(r, r′) = Iδ(r − r′) (159)

and the boundary condition

n̂ × Ge1(r, r′) = 0 on the waveguide walls (160)

It is clear that only Lomn, Memn, and Nomn satisfy Eq. (160) and,
therefore, can be used to expand Ge1:

Table 1. Problems with Available Dyadic Green’s Functions

Geometry of Problem References

Parallel-plate waveguide (3)
Rectangular waveguide (3), (11)
Rectangular waveguide with two dielectrics (3), (12)
Cylindrical waveguide (3), (13), (14)
Coaxial waveguide (3), (15)
Rectangular cavity (3), (16)
Cylindrical cavity (3), (13), (17)
Spherical cavity (3), (18)
Circular conducting cylinder (3)
Circular dielectric cylinder (3)
Circular coated cylinder (3)
Elliptical conducting cylinder (3)
Conducting wedge and half-sheet (3)
Conducting sphere and cone (3)
Homogeneous and inhomogeneous spheres (3)
Planar layered medium (3), (5), (6)
Planar anisotropic layered medium (19)
Conductor-backed layered medium (20), (21), (22)
Cylindrically layered medium (6), (23)
Spherically layered medium (3), (6), (24)
Moving medium (3), (25), (26)

(166) as

Ge1(r,r′) =
∫ ∞

−∞

∑
m,n

[Lomn(h,r)Aomn(h) + Memn(h,r)Bemn(h)

+ Nomn(h, r)Comn(h)] dh (161)

Substituting this expansion into Eq. (159), one obtains Ge1(r, r′) = − 1
k2 ẑẑδ(r − r′) − j

ab

∑
m,n

2 − δ0

k2
cmnkgmn

[Memn(±kgmn, r)Memn(±kgmn, r)Memn(∓kgmn, r′)

+ Nomn(±kgmn, r)Nomn(∓kgmn, r′)] z � z′

(167)

∫ ∞

−∞

∑
m,n

{−k2Lomn(h,r)Aomn(h) + (κ2 − κ2)[Memn(h,r)Bemn(h)

+Nomn(h,r)Comn(h)]
}

dh = Iδ(r − r′) (162)

where kgmn � �k2 � k2
cmn.

In addition to the method described above, Tai (3) proposedTaking the anterior scalar product of Eq. (162) with Lom�n�

the method of Gm, in which Gm is derived first and Ge is then(�h�, r), Mem�n�(�h�, r), and Nom�n�(�h�, r), respectively, in-
derived from � � Gm � I�(r � r�) � k2Ge. Since Gm is com-tegrating over the entire volume of the waveguide, and
pletely solenoidal, its expansion requires only M and N and,applying the orthogonal relation in Eq. (158), one can find
therefore, the derivation becomes simpler.

The Ohm–Rayleigh method can be used to derive a variety
of dyadic Green’s functions. Table 1 lists the problems forAomn(h) = −k2

cmn

k2κ2 CmnLomn(−h,r′) (163)
which the dyadic Green’s functions have been derived.

Vector Integral EquationsBemn(h) = 1
κ2 − k2

CmnMemn(−h, r′) (164)

Consider the problem of the electric and magnetic fields pro-
duced by an electric current source J(r) in the presence of anCemn(h) = 1

κ2 − k2
CmnNomn(−h,r′) (165)

arbitrarily shaped object immersed in an infinite homoge-
neous medium (see Fig. 6). Exterior to the object, the electricwhere k2

cmn � k2
x � k2

y and Cmn � (2 � �0)/(�abk2
cmn) with �0 � 1

field satisfies the vector wave equation in Eq. (127) and thewhen m � 0 or n � 0 and �0 � 0, where both m and n are
radiation condition at infinity is given bynonzero. Therefore,

r[∇ × E(r) + jkr̂ × E(r)] = 0 for r → ∞ (168)

Multiplying Eq. (127) by Ge0(r, r�), Eq. (130) by E(r), and inte-
grating the difference of the resultant equations over the ex-
terior region, one obtains

Ge1(r,r′) =
∫ ∞

−∞

∑
m,n

Cmn

{
−k2

cmn

k2κ2 Lomn(h,r)Lomn(−h, r′)

+ 1
κ2 − k2 [Memn(h, r)Memn(−h,r′)

+Nomn(h,r)Nomn(−h,r′)]
}

dh

(166)

Through some mathematical manipulations and the applica-
tion of Cauchy’s residue theorem (3), one can simplify Eq.

∫
V∞

{
[∇ × ∇ × E(r)] · Ge0(r,r′) − E(r) · [∇ × ∇ × Ge0(r, r′)]

}
dV

= − jωµ

∫
Vs

J(r) · Ge0(r,r′) dV −
∫

V∞
E(r) · Iδ(r − r′) dV

(169)
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where V� denotes the infinite space exterior to the object and Equation (173) also provides the foundation to establish an
integral equation for n̂ � E and n̂ � H on the surface of theVs denotes the support of J(r). Applying the vector-dyadic

Green’s second identity (27) object. If the object is a perfect conductor, n̂ � E(r) � 0 for r
on So. Consequently, Eq. (173) becomes

E(r) = Einc(r) + jωµ

∫
So

Ge0(r,r′) · [n̂′ × H(r′)] dS′ (176)

∫
V

[
(∇ × ∇ × A) · D − A · (∇ × ∇ × D)

]
dV

=
∫

S

[
(n̂ × A) · (∇ × D) + (n̂ × ∇ × A) · D

]
dS (170)

for r in V�. Substituting this into n̂ � E(r) � 0 for r on So, we
where V is a volume enclosed by S, one has obtain an integral equation, which can be solved for n̂ �

H(r).
If the object is a homogeneous body, one can derive another

integral representation for the field inside So using the un-
bounded-space dyadic Green’s function for the interior me-
dium. When this and Eq. (173) are applied at So, one obtains

∫
So+S∞

{
[n̂×E(r)]·[∇×Ge0(r, r′)]+n̂×∇×E(r)]·Ge0(r, r′)

}
dS

= − jωµ

∫
Vs

J(r) · Ge0(r, r′) dV −
∫

V∞
E(r)δ(r − r′) dV (171)

two integral equations, which can be solved for n̂ � E(r) and
n̂ � H(r).where So denotes the surface of the object, S� denotes a large

If the object is an inhomogeneous dielectric body, the elec-spherical surface whose radius approaches infinity, and n̂ is
tric field satisfies the vector wave equationthe normal unit vector pointing away from V�. Since both

E(r) and Ge0(r, r�) satisfy the radiation condition, the surface
integral over S� vanishes. As a result, ∇ × ∇ × E(r) − k̃2(r)E(r) = − jωµJ(r) (177)

This can be written as

∇ × ∇ × E(r) − k2E(r) = − jωµJ(r) + [k̃2(r) − k2]E(r) (178)

Multiplying Eq. (177) by Ge0(r, r�) and integrating the resul-

−
∫

So

{
[n̂×E(r)] · [∇ ×Ge0(r, r′)]+ [n̂×∇ ×E(r)] ·Ge0(r, r′)

}
dS

− jωµ

∫
Vs

J(r) · Ge0(r, r′) dV =
{

E(r′) for r′ in V∞

0 for r′ in Vo

(172)
tant equation over the entire space, one obtains

which can also be written as
E(r) = Einc(r) +

∫
Vo

Ge0(r, r′) · [k̃2(r′) − k2]E(r′) dV ′ (179)

This is the mathematical representation of the volume equiv-
alence principle. It provides a volume integral equation which
can be solved for E(r).

We note that the formulation described in this section can

−
∫

So

{
[∇×Ge0(r, r′)]·[n̂′×E(r′)]− jωµGe0(r, r′)·[n̂′×H(r′)]

}
dS′

− jωµ

∫
Vs

Ge0(r,r′) · J(r′) dV ′ =
{

E(r) for r in V∞

0 for r in Vo

(173)
be repeated for the magnetic field in a similar manner. As a

where Vo denotes the volume of the object. result, different integral equations exist for the same prob-
Similar to Eq. (102) in the scalar case, Eq. (173) is an im- lem, which provide different approaches to the solution of

portant result, which has several implications. First, notice the problem.
that when the object is absent, the surface integral vanishes.
Hence, Singularity of the Dyadic Green’s Function

As shown in Eq. (128), the electric field produced by the cur-
rent J in an unbounded space can be written as

E(r) = − jωµ

∫
Vs

Ge0(r,r′) · J(r′) dV ′ (174)

which is the same as Eq. (128). The above can be regarded as
the incident field and denoted as Einc(r). Second, when there

E(r) = − jωµ

∫
V

Ge0(r,r′) · J(r′) dV ′ (180)

is no source in V�, Eq. (173) becomes
where Ge0(r, r�) is defined by Eq. (140). Many electromagnet-
icists have tried to fathom the meaning of Eq. (180). Strictly
speaking, the integral does not converge because of the
1/�r � r�� singularity in G0(r, r�). After being operated upon
by the double � operator in Eq. (140), Ge0(r, r�) contains terms

E(r) = −
∫

So

{
[∇ × Ge0(r,r′)] · [n̂′ × E(r′)] − jωµGe0(r, r′)

· [n̂′ × H(r′)]
}

dS′

(175)
of the form 1/�r � r��3, rendering the integral in Eq. (180) ill-
defined. A remedy to this is to rewrite Eq. (180) asfor r in V�. Since there is no source in V�, the field on So must

be produced by the source inside So. This equation indicates
that the field in a source-free region can be calculated based
on the knowledge of the tangential electric and magnetic

E(r) = − jωµ

(
I + ∇∇

k2

)
·
∫

V
G0(r, r′)J(r′) dV ′ (181)

fields on the surface enclosing the region. This is the mathe-
matical representation of the well-known Huygens’ principle This equation is well-defined for all r and r�, but lacks the

compactness of Eq. (180).for a vector field.
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Equation (180) can be made meaningful in a generalized (188). The first integral on the right-hand side of Eq. (188)
vanishes since if J(r�) is regular, �� 
 J(r�) � �(r�)/j� is alsofunction sense. To this end, one defines Ge0(r, r�) as a general-

ized function regular and the integral is finally proportional to V�. In the
second integral, S� is the surface bounding V�. Hence, n̂� 

J(r�) is the surface charge on S� due to the sudden truncation
of J(r�) within the volume V�. This integral gives the potentialGe0(r,r′) = PVGe0(r, r′) − Lδ(r − r′)

k2
(182)

observed within V� due to this surface charge, and it is non-
zero even when V� � 0. The gradient (outside the brackets)where PV implies the invokement of a principal volume inte-
in turn yields the field generated by this surface charge. Ingral whose value depends on the shape of the principal vol-
other words, surface charges of opposite polarities on the wallume chosen. For the sake of uniqueness, L also depends on
of an infinitesimally small volume always generate a finitethe shape of the principal volume. A principal volume integral
field within the small volume. This fact is also intimately re-is defined as
lated to the scale invariant nature of the Laplace equation
which is Maxwell’s equations at low frequency.
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