
HADAMARD TRANSFORMS j, not involving the all �1’s (or �1’s) row, there must be N/4
columns, where elements of rows i and j are both �1’s, both

Arithmetic operations in GF(2) [GF(2) is the Galois or finite �1’s, �1’s and �1’s, and �1’s and �1’s. Therefore a Hada-
mard matrix cannot exist for N � 2 which is not a multiplefield with two elements: 0 and 1] are computationally simpler

than in the real domain. This is one of the salient features of of 4.
the Hadamard transform. The entries of the Hadamard ma-
trices are �1, which are related to the (0, 1) field elements in Theorem 1. The order of any Hadamard matrix greater than
GF(2) by a simple linear transformation. The computational 2 must be divisible by 4.
simplicity makes the Hadamard transform suitable for such
applications as error correction coding, image compression Proof: Suppose HN is a normalized Hadamard matrix of order
and processing, signal representation, and others. N, N � 3, and consider the first 3 rows of this matrix. Rows

We begin with a discussion of the properties of the Hada- 2 through N must have an equal number of �1’s and �1’s.
mard transform and the construction of the associated Hada- Permute the columns of HN so that the first N/2 elements of
mard matrices. The key to applying the Hadamard transform the second row are �1’s and the remaining N/2 elements are
to practical problems is the identification of the basis func- �1’s. Suppose there are � elements of �1 in the first N/2
tions and algorithms that perform fast implementations. This elements of the third row. Permute the columns so that the
article discusses the ramifications of fast implementation al- first � elements of the third row are �1’s and the elements in
gorithms and their application in error correction coding, im- the third row in column N/2 � 1 to N/2 � (N � �/2)/2 are
age compression and processing, and signal representation. �1’s. For the second and third rows to be orthogonal, it re-

quires that

HADAMARD TRANSFORMS

The first work on the Hadamard transform was done by Syl-
2

[
α −

(
N
2

− α

)]
= 0

vester, (1), who in 1867 proposed a recursive method for the
which implies that N � 4�. It follows that the order of anyconstruction of Hadamard matrices of order N � 2k, for k �
Hadamard matrix of order greater than 2 is divisible by 4.0, 1, 2, . . . . Later, in 1898, Scarpis proved the existence of

Hadamard matrices of order p � 1 for p � 3 (mod 4) and p �
3 for p � 1 (mod 4). In 1893, Hadamard proved that the bound It remains an open question as to a whether Hadamard
on the determinant of matrices of order N (MNNN/2, where matrix of order 4N, N any positive number, exists. There is
A � [ai, j] and �ai, j� � M for all 1 � i, j � N) which is met only no method for constructing Hadamard matrices of order 4N
for Hadamard matrices (2,3,4,5). for all integer N. In the next subsection we present several

methods for the construction of Hadamard matrices with the
order of special sequences.The Hadamard Matrix

For any real square, N � N, nonsingular matrix A � [aij], the
Construction of the Hadamard MatrixHadamard inequality states that
There are a number of approaches to constructing Hadamard
matrices. These can be divided into two general categories:
those which are based on the construction of S matrices anddet A ≤

[
N∏

i=1

(
N∑

j=1

a2
i j

)]1/2

those which are constructed directly.
The Hadamard matrix, HN, is said to be in a normal form

A matrix H that satisfies the bound with equality is called a if the first row and column of the matrix contain only �1’s.
Hadamard matrix. Multiplying a row or a column by �1 does Aside from the trivial cases of N � 1, 2, these conditions can
not destroy the Hadamard property. Similarly, permuting be satisfied only if N � 2 is an integer multiple of 4.
rows and columns does not destroy this property. A matrix H
in which the elements of the first row and column are all �1’s

Construction Methods Using S Matricesis called a normalized Hadamard matrix.
Definition 2. An S matrix of order N � 1 is derived from a
Hadamard matrix of order N by deleting the first row andDefinition 1. The Hadamard matrix, HN � [hij]N�N, of order
column of the Hadamard matrix (row and column with onlyN is defined as an N � N square matrix in which (1) all ele-
�1 elements) and replacing �1’s by 0’s and �1’s by 1’s. An Sments are �1, and (2) �k hikhjk � 0, i � j, that is, any two
matrix is called cyclic if each row is obtained by cyclicallydistinct rows are orthogonal. This condition requires that the
shifting the previous row one place to the left.order N be at least even for a Hadamard matrix to exist.

Existence of the Hadamard Matrix. Except for the all �1’s The Quadratic Residue Construction Method. Let a1, a2, . . .,
aN�1 be the remainders of the numbers 1, 4, 9, . . ., ((N �row (or all �1’s row), any row of an N-dimensional Hadamard

matrix must have exactly N/2 �1’s and N/2 �1’s. Moreover, 1)/2)2, N odd and �2, divided by N. The ai’s are called qua-
dratic residues modulo N. Then the first row of the S matrixorthogonality requires that, for any two distinct rows, i and
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576 HADAMARD TRANSFORMS

is constructed as If HN1
and HN2

are Hadamard matrices of orders N1 and
N2 respectively, then the Kronecker product HN1

� HN2
is eas-

ily shown to be a Hadamard matrix of order N1N2.
s0, s1, . . ., sN−1

where Definition 3. The Kronecker product of two matrices Am�n

and Bp�q is defined as the matrix Cmp�nq � Am�n � Bp�q, and iss0, sα1
, sα2

, . . ., sα
(N−1 )/2

are 1′s
given by

and all other sj’s are 0’s. All other rows of S are constructed
by cyclically shifting the previous row by one place to the left.
This construction produces S matrices of order N � 4m � 3,
where m � 0, 1, 2, 3, . . . .

Maximal Length Shift Register Construction Method. In this
construction the first row of the S matrix is selected to be a

C =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
am1B am2B · · · amnB


 (3)

maximal length shift register sequence of length N � 2m � 1,
where m � 1, 2, 3, . . . . Construction of maximal length The Kronecker product is also referred to as the direct prod-
sequences up to degree m � 20 can be found in Refs. 6 and 7. uct or tensor product of matrices.

The Twin Prime Construction Method. Let p and q � p � 2
be two prime numbers. Define two functions f (i) and g(i) as Since the permutation of the rows and columns of a Hada-

mard matrix does not affect the definition in Eq. (2), the Ha-
damard matrices H1 and H2 are said to be equivalent if

H2 = PT
r H1Pc (4)

f (i) =




+1 if the remainder of i/p is a quadratic
residue modulo p

0 if p divides i

−1 otherwise
where Pr and Pc are permutation matrices for rows and col-
umns, respectively.and

It can be shown that the Sylvester-type Hadamard matri-
ces are equivalent to the Hadamard matrices obtained from
S matrices through maximal length shift register sequences.
The (i, j)th element of the Sylvester-type Hadamard matrix
can be obtained as (�1)i.j, where i.j is the number of 1’s that
the binary representation of i and j have in common.

g(i) =




+1 if the remainder of i/q is a quadratic
residue modulo q

0 if q divides i

−1 otherwise

There are k � (p � 1)(q � 1)/2 numbers ai, i � 1, . . ., k and Basis Functions
1 � ai � pq � 1 for which f (i) � g(i). Also, let

The application of an orthogonal transformation depends on
the basis functions and the algorithms for implementing theak+ j = ( j − 1)q for 1 < j < p
transformation. For example, the discrete Fourier transform
is used for frequency domain analysis and filtering operationThen the first row of the SN matrix would be
(8), the discrete cosine transform for data compression (9), the
slant transformation for image coding (10), and the Hada-s0, s1, s2, . . ., spq−1

mard and Haar transform for dyadic-invariant signal pro-
where cessing (11,12). The inner product of the input signal with

the basis functions of the transform represents a measure of
similarity between the input signal and its corresponding ba-sai

= 0 for 1 ≤ i ≤ k + p

sis function. Figure 1 shows the basis function of the Hada-
and mard transform of length N � 16.

s j = 1 for other values of j
Walsh Functions

Walsh functions are rectangular waveforms orthonormal onSylvester-Hadamard Matrix. The Sylvester-type Hadamard
the interval [0, 1). They form a complete orthonormal set overmatrices are constructed recursively as
this interval and can be expressed as products of Rademacher
functions (13). Figure 2 shows the orthogonal waveforms of aH1 = [1]
Walsh function of order N � 8. Uniform sampling of the

and Walsh functions results in the Hadamard (or Walsh–Hada-
mard) matrices of corresponding order (14).

Higher-Dimensional Hadamard Matrices
H2n =

[
Hn Hn

Hn −Hn

]
(1)

Reference 15 proposes a method for construction of higher-= H2 ⊗ H2n−1 (2)
dimensional Hadamard matrices. An N-dimensional Hada-
mard matrix [hijk. . .n] is a matrix with elements �1 such thatwhere � is the Kronecker product of matrices.
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where HN is the Hadamard matrix of order N � 2n. Since
HNHT

N � NI, where I is an N � N identify matrix,

H−1
N = 1

N
HT

N = HN

where the superscript T denotes the matrix transpose. From
definition, the determinant �HN� of the Hadamard matrix is
�HN� � �NN/2. By rearranging the rows of the Hadamard ma-
trix, we can obtain the Walsh (or sequency ordered) matrix,
the Hadamard (or naturally ordered) matrix, and the Paley
(or dyadically ordered) matrix. In the Walsh matrix, the rows
of the Hadamard matrix are ordered according to their se-
quencies. The kth row of the Hadamard matrix is the jth row
of the Walsh matrix, where j is the Gray code to binary con-
version of k after it has been bit reversed. By premultiplying
the naturally ordered Hadamard matrix with the bit-reversed
order matrix, we obtain the Paley (or dyadically ordered)
transform matrix.

Two-Dimensional Hadamard Transform. The 2-dimensional
Hadamard transform (HT) of an array [X(m, n)] of size N �
N is defined as

[Y (u,v)] = [HN (u, v)][X (m,n)][HN (u,v)] (5)
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Figure 1. Hadamard basis functions (N � 16).

∑
p

∑
q

∑
r

. . .
∑

y

hpqr...yahpqr...yb = m(N−1)δab

where m is the order of the matrix. A 3-dimensional Hada-
mard matrix is one in which all parallel 2-dimensional layers
in all normal axes are orthogonal. An N-dimensional Hada-
mard matrix is called proper if any 2-dimensional layer of the
matrix is a 2-dimensional Hadamard matrix. These higher di-
mensional Hadamard matrices may find applications in error
correction codes where their hierarchy of orthogonalities per-
mit a variety of checking procedures. They might also be used
in security codes based on their similarity to random binary
matrices.

There is no general theory for the construction of high-
dimensional Hadamard matrices of any order as there is for
2-dimensional Hadamard matrices. But 3-dimensional matri-
ces of order 2t can be generated from t � 1 successive direct
(Kronecker) products of 3-dimensional Hadamard matrices of
order 2.

Hadamard Transformation

Consider an N-dimensional source column vector X. The Ha-
damard transform (HT) Y is given by
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Figure 2. Walsh functions used to construct Hadamard basis
(N � 8).YYY = HNXXX
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where HN � [HN(u, v)] is a Hadamard transform of order Hadamard transformation (20). In general it can easily be
shown that the number of 2-point Hadamard transforms re-N � 2n. Pre- and postmultiplying the transformed array

[Y(u, v)] by the Hadamard matrix [HN(u, v)] gives quired to implement an N-point Hadamard transform is N/2
log2 N, which is equivalent to N log2 N multiply/add opera-
tions. By writing[X (m, n)] = 1

N2
[HN (u,v)][Y (u,v)][HN (u, v)]

The coefficients of the 2-dimensional Hadamard transform of
HN = H2 ⊗ HN/2 = H2 ⊗ H2 ⊗ HN/4

= H4 ⊗ HN/4a matrix can be considered as the orthogonal projection of the
matrix onto a set of 2-dimensional basis functions. Each

an algorithm to compute an H4 with only seven multiply/addtransformed coefficient represents a measure of similarity be-
operations was described in (20). The number of multiply/addtween the input matrix and the corresponding basis function.
operations for computing an N-point Hadamard transformThe 2-dimensional basis functions of the Hadamard trans-
can be reduced to ��N log2 N, when N is an even power of 2,form are shown in Fig. 3.
and ��N log2 N � N/8, when N is an odd power of 2.

In Ref. 21 a fast algorithm was developed for the sequency-Fast Algorithms and Implementation
ordered form of the Hadamard transform. The machine archi-

In Ref. 16 an efficient method is proposed to calculate the tecture obtained for this algorithm is similar to the one de-
discrete Fourier transform (DFT) and Walsh–Hadamard rived for the machine-oriented algorithm of the fast Fourier
transform (WHT) of a vector, one from the other, using a transform (FFT) by Corinthios (22), except that the multipli-
transformation matrix T between Fourier and Hadamard ers are deleted, the add/subtract operator sequencing varies
transformations. The method is based on the factorization of from one iteration to another, and the ideal shuffling is per-
the transform matrix T into sparse matrices. formed before each iteration. The algorithms for the Hada-

The Least Mean Square (LMS) algorithm for calculation of mard transform in its natural order and dyadic order were
the forward and inverse orthogonal transformations is de- also derived. It was shown that all three algorithms can be
scribed in Ref. 17. Although this method requires twice as performed with a single machine structure by including a
much computation as simply using the transform matrix di- simple binary controller.
rectly, it is useful for parallel computation applications and The 2-dimensional Hadamard transform, together with a
for VLSI implementations (18). selected set of basis functions and fast computational algo-

Reference 19 proposes an algorithm of a simple systolic rithms, may be used to encode 2-dimensional images. As
array processor for the Hadamard transform. It is based on shown later, the Hadamard matrix with �1 entries lacks dy-
the Hadamard Coefficient Generator (HCG). The HCG makes namic range for good image representation at the decoder.
the signs of the Hadamard matrix elements required to exe- On the other hand, the discrete cosine transform (DCT) with
cute the matrix multiplication. cosinusoidal entries provides greater dynamic range and

By using the recursive structure of the Sylvester-type Ha- hence better image representation at the decoder. However,
damard matrices, efficient algorithms can be developed for the computational complexity of the DCT is very high com-

pared to the Hadamard transform. Nevertheless, the salient
features of the HT and DCT may be combined to yield an
acceptable performance-complexity tradeoff, as described in
the next section.

THE MODIFIED HADAMARD-STRUCTURED DCT (MHDCT)

The salient features of a good image scheme are: (1) good re-
production quality, (2) high compression ratio, and (3) fast
computation. The DCT, which forms an integral part of the
JPEG and MPEG standards, satisfies the first two features,
but is computationally complex. The entries of the DCT ma-
trix are cosine functions, so that all arithmetic operations,
such as multiplications and additions, have to be performed
in the real domain. On the other hand, the entries of the Ha-
damard matrix are �1, so that arithmetic operations are
much simpler. The excellent performance of DCT is attribut-
able to the fact that the transform coefficients are uncorre-
lated in DCT, but not in HT. Thus, the use of HT for image
coding does not yield sufficiently good representation quality.
As a performance-complexity tradeoff, it may be feasible to
combine the good features of DCT and HT. This was the ap-
proach taken in Ref. 23 in the construction of the Hadamard-
structured DCT (HDCT). The effectiveness of HDCT as an im-
age coding scheme depends to a large degree on the choice of
basis functions.Figure 3. Two-dimensional Hadamard basis functions (N � 8).
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where

ηn =




1√
N

, n = 0√
2
N

, n �= 0

Thus the MHDCT matrix has a mixture of �1 and cosine en-
tries as opposed to all cosine entries in DCT.

The sequency of a basis vector is defined as the number of
sign changes. Figures 4 and 5 show the basis vectors of DCT
and MHDCT, respectively. It is observed that the basis func-
tions of MHDCT take all possible sequencies from 0 to 15.
Like the DCT, the MHDCT is an orthogonal transformation,
that is, T�1

N � Tt
N. Hence we have the transform pair between

a source vector X and the transform vector Y:

YYY = TNXXX (8)

and

XXX = Tt
NYYY (9)

The MHDCT has the property that the lower order trans-
formation matrix can be obtained from the higher order ones
using the following theorem.
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Figure 4. DCT basis vectors (N � 16).

Kou and Mark (23) have proposed an HDCT for speech
coding. The basis functions used in Ref. 23 lack symmetry to
be efficient for image coding. The modified HDCT (MHDCT)
presented in Ref. 24 has basis vectors with symmetric and
antisymmetric properties suitable for image coding. Examples
of the basis vectors for N � 16 for DCT and MHDCT are
shown in Figs. 4 and 5, respectively. It is noted that the basis
vectors of DCT and MHDCT exhibit even and odd symmetry.

The MHDCT transformation matrix of order N is defined
by the following recursive structure:

T1 = [1]

T2 = 1√
2

[
1 1
1 −1

]

and

T
2k = 1√

2

[
T2k−1 T2k−1

C2k−1 −C2k−1

]
for k = 2, 3,4, . . . (6)

where C2k is 2k � 2k normalized DCT matrix with mnth entry
given by
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Figure 5. MHDCT basis vectors (N � 16).
cmn = ηn cos

(2m + 1) nπ

2N
for m, n = 0, 1, . . ., N − 1 (7)
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Theorem 2. For k � 3, T2k can be expressed as As we continue this iterative procedure and recognize that
T2 � C2, Theorem 2 follows.

Fast MHDCT Algorithm

Theorem 2 also offers a way to implement the MHDCT. In

T2k = 1√
2k

[
C2 ⊕

k−1∑
i=1

◦ C2i

][
k−1∏
i=1

((
H2 ⊗ I2k−i

) ⊕ I2k−2k−i+1

)]

(10)
this algorithm, the input signal is hierarchically Hadamard

where � is a Kronecker product operation and �� or � is a transformed and then the result is DCT transformed using
direct sum operation. different sizes. The structure of this algorithm for N � 8 is

given in Fig. 6. It consists of a 2-stage Hadamard structuredProof. Let H2 be a 2 � 2 Hadamard matrix. From the defini-
transform followed by a windowed discrete-cosine transform.tion of MHDCT and the recursion, Eq. (6), for k � 2 we have

Complexity of the MHDCT

As with the transform methods, the complexity of the
MHDCT is defined as the number of multiplications and addi-
tions (or subtraction) required to implement the transforma-
tion. Let ADCT(2i) and MDCT(2i) denote the number of additions
and multiplications of a 2i-point DCT transform, respectively.
Then by using Theorem 2, the number of additions and multi-

T
2k = 1√

2

[
T2k−1 T2k−1

C2k−1 −C2k−1

]

= 1√
2

[
T

2k−1 0
0 C2k−1

]
·
[

I
2k−1 I

2k−1

I2k−1 −I2k−1

]

= 1√
2

[
T2k−1 ⊕ C2k−1

] [
H2 ⊗ I2k−1

]
(11)

plications for a 2k-dimensional fast MHDCT, AMHDCT(2k) and
MMHDCT(2k), will beT2k�1 in the first term on the right-hand side of Eq. (11) can

further be expanded as
AMHDCT (2k) =

k−1∑
i=1

2 × 2k−1 + ADCT (2) +
k−1∑
j=1

ADCT (2 j ) (19)
T

2k−1 = 1√
2

[(
T

2k−2 ⊕ C
2k−2

)(
H2 ⊗ I

2k−2

)]
(12)

and
Substituting Eq. (12) in Eq. (11) yields

MMHDCT (2k) = MDCT (2) +
k−1∑
j=1

MDCT (2 j ) (20)T
2k = 1√

2

[(
T

2k−2 ⊕ C
2k−2

)(
H2 ⊗ I

2k−2

) ⊕ C
2k−1

] [
H2 ⊗ I

2k−1

]
(13)

The total number of multiplications and additions depends
on the DCT algorithm used in the MHDCT implementation.By using the matrix operation (25),
Tables 1 and 2 compare the complexity of MHDCT with DCT

AD ⊕ B = (A ⊕ B)(D ⊕ I) (14) using the algorithms of Chen et al. (26) and Lee (27).
The results in Tables 1 and 2 show clearly the computa-

in Eq. (13), we get tional saving of the MHDCT over the DCT. The number of
additions and multiplications required to implement MHDCT
are remarkably less than those required for DCT. However,
this computational saving is only one factor, and we shall
compare the performance of MHDCT with those of other

T
2k = 1√

22

[
T

2k−2 ⊕ C
2k−2 ⊕ C

2k−1

] [
H2 ⊗ I

2k−2 ⊕ I
2k−2k−1

]
·
[
H2 ⊗ I

2k−1

]
(15)

transformations.
As in Eq. (12), we can expand T2k�2 as

T
2k−2 = 1√

2

[
T

2k−3 ⊕ C
2k−3

] [
H2 ⊗ I

2k−3

]
(16)

Substituting T2k�2 from Eq. (16) into Eq. (15) yields

T
2k = 1√

23

[(
T

2k−3 ⊕ C
2k−3

)(
H2 ⊗ I

2k−3

) ⊕ C
2k−2 ⊕ C

2k−1

]
[
H2 ⊗ I

2k−2 ⊕ I
2k−2k−1

]
·
[
H2 ⊗ I

2k−1

]
(17)

Again by using the matrix operation Eq. (14) and Eq. (17) we
get
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Figure 6. A block diagram for fast computation of MHDCT for
N � 8.

T
2k = 1√

23

[
T

2k−3 ⊕ C
2k−3 ⊕ C

2k−2 ⊕ C
2k−1

]
·
[
H2 ⊗ I

2k−3 ⊕ I
2k−2k−2

)] [
H2 ⊗ I

2k−2 ⊕ I
2k−2k−1

]
·
[
H2 ⊗ I2k−1

] (18)
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Table 1. Comparison of Complexity Between DCT and
MHDCT (Using Chen’s Algorithm)

Additions Multiplications

N DCT MHDCT DCT MHDCT

8 26 24 16 10
16 74 66 44 26
32 194 172 116 70
64 482 430 292 186

128 1154 1040 708 478
256 2690 2450 1668 1186
512 6146 5652 3844 2854

1024 13826 12822 8708 6698

In the following subsections, different measures are used Correlation coefficient
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to evaluate the performance of different transformations and
Figure 7. Comparison of the decorrelation efficiency of the HT,use them to compare the performance of MHDCT with HT
MHDCT, and DCT (N � 16).and DCT.

Decorrelation Efficiency and Coding Performance

In the previous section we showed that the MHDCT is compu- The decorrelation efficiency is defined as
tationally simpler than the DCT. Now we will compare the
performance of MHDCT with those of HT and DCT in terms
of decorrelation efficiency and transformation gain. The de- ηc = 1 − λy

λx
(21)

correlation efficiency provides a basis for comparing different
orthogonal transforms against each other. With regard to For completely decorrelated spectral coefficients, 	y � 0 and
transformation gain, pulse code modulation (PCM) is used as


c � 1.
a benchmark for comparing the performance of different cod- Figures 7 and 8 show the decorrelation efficiency, 
c, of
ing techniques. different transforms as a function of the correlation coefficient

of the source process, with the transform size as a parameter.
Decorrelation Efficiency. This section presents simulation It is observed that the performance of MHDCT is between

results of the decorrelation efficiency 
c of the DCT, HT, and that of HT and DCT, and by increasing the transformation
MHDCT transforms. size, the performance of MHDCT approaches that of DCT.

Let RX and RY be the correlation matrix of the source and
transformed processes, respectively. Let

Transformation Gain. The transformation gain GTC of a
transform coding (TC) system is defined as the ratio of the
measured reconstruction error of PCM to that of the trans-
form coding at the same information bit rate. On the assump-

λx =
N−1∑
i=0

N−1∑
j=1
i �= j

|RX (i, j)|

and

λy =
N−1∑
i=0

N−1∑
j=1
i �= j

|RY (i, j)|
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Figure 8. Comparison of the decorrelation efficiency of the HT,
MHDCT, and DCT (N � 64).

Table 2. Comparison of Complexity Between DCT and
MHDCT (Using Lee’s Algorithm)

Additions Multiplications

N DCT MHDCT DCT MHDCT

8 29 25 12 8
16 81 70 32 20
32 209 183 80 52
64 513 456 192 132

128 1217 1097 448 324
256 2817 2570 1024 772
512 6401 5899 2304 1796

1024 14337 13324 5120 4100



582 HADAMARD TRANSFORMS

against the errors that occur during transmission or storage.
In this section a special group of error correcting codes, called
Hadamard codes, are discussed. A Hadamard code of rate
N/k, where k � log2(2N) has a minimum distance of N/2. This
code is capable of correcting dmin/2 � N/4 random errors.

Hadamard Codes. An error correcting code with 2N code-
words can be constructed from a Hadamard matrix of order
N as follows:

1. Change all �1’s to 0’s and all �1’s to 1’s.
2. Select each row and its complement of the Hadamard

matrix as a codeword.
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Figure 9. Comparison of the transformation gain of different trans-
forms (N � 16).

H2 =
[

0 0
0 1

]

H4 =
[

H2 H2

H2 −H2

]
=




0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0




The complement of H4 istion that the error processes have zero mean, GTC is given by

GTC = σ 2
e (PCM)

σ 2
e (TC)

=
1
N

∑N−1
j=0 σ 2

j(∏N−1
j=0 σ 2

j

)1/N (22) H4 =




1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1




Figures 9 and 10 present the transformation gain of DCT,
The rows of H4 and H4 form a linear binary code of blockMHDCT, and HT transform codes as a function of the correla-
length N � 4 having 2N � 8 codewords. The code is alsotion coefficient, for two different transformation size N.
called a first order Reed-Muller error correcting code, an im-It is observed that the transformation gain of the MHDCT
plementation of which is shown in Fig. 11. The minimum dis-is quite close to that of DCT, and it increases as the transfor-

mation size or the correlation coefficient increases.

APPLICATIONS OF HADAMARD MATRICES

Error Correction Coding

Due to the unwanted effects of noise, distortion, and interfer-
ence, the output of a storage medium or a digital communica-
tion channel differs from its input. The theory of error correc-
tion coding is concerned with the protection of digital signals
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Figure 11. The encoder and decoder of a first-order Reed–MullerFigure 10. Comparison of the transformation gain of different trans-
forms (N � 64). code.
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tance of the code is MHDCT transform [Y(u, v)] of the block image [X(m, n)] is
defined as

dmin = N/2 = 2

[Y (u,v)] = [TN (u,m)][X (m, n)][TN (v, n)]t (23)
In general a Hadamard code of size 2N codewords is obtained
by selecting the N rows and their complement. By selecting where TN is the one-dimensional MHDCT transform defined
M � 2k � 2N of these codewords, we obtain a Hadamard code by Eq. (6). By the orthogonality property of the MHDCT, the
H(N, k), where each codeword conveys k information bits. The inverse transform can be derived as
resulting code has constant weight equal to N/2 and mini-
mum distance dmin � N/2.

[X (m, n)] = [TN (u, m)]t[Y (u,v)][TN (v, n)] (24)Using the above procedure, one can construct a Hadamard
error correcting code (n, k, d) with codeword length N � 2m,

The 2-dimensional transformation of the images can beinput block length k � log2 2N � m � 1, and Hamming dis-
considered as an orthogonal projection of the image onto thetance d � N/2 � 2m�1, where m is a positive integer.
set of basis pictures. The input image can be reconstructed byThe Hadamard error correcting codes with N � 2m are
a linear combination of the basis pictures, with coefficientscalled linear. The nonlinear Hadamard codes are those with
being the 2-dimensional transform coefficients. The basis pic-order n � p � 1 for a multiple of 4, and any order n � pm �
tures of MHDCT and DCT for N � 8 are shown in Figs. 121 if the quadratic residues in GF(pm) are used. They are also
and 13, respectively. The efficiency of a transformation forcalled Paley-type Hadamard codes.
encoding a particular image depends on the shape of both the
image and the basis pictures. The basis pictures should beDecoding of Hadamard Codes. Hadamard codes are decoded
able to represent different patterns of pixel intensities withinusing the following procedure:
the image.

For a 2-dimensional image, the N2 values of X(m, m) are1. First, in a transform matrix of order N change all 0’s to
the elements of a subimage of size N � N. In image coding,�1’s and all 1’s to �1’s.
the typical arrays used are of sizes N � 4, 8, 16, or 32. This2. Premultiply this transform matrix by the received vec-
partitioning into subimages is particularly efficient in casestor and locate the largest magnitude coefficient of the
where the correlations are localized to the neighboring pixels,transformed vector. Assume it is the jth coefficient.
and where the structural details tend to cluster. Partitioning

3. If the largest coefficient is positive, decide on the jth of an image into subimages reduces the complexity of the
codeword; otherwise decide on the ( j � N)th codeword. transformation. The coding method in Ref. 24 uses 8 � 8

blocks. This block size yields a good tradeoff between com-
Logical Hadamard Transform and Nonlinear Block Codes. The plexity and performance of the transformation. By using the

logical Hadamard transform proposed by Searle (28) is a mod- Kolmogorov-Smirnov (KS) test (31), the distribution of the ac
ification of the arithmetic Hadamard transform for binary in- coefficients of the MHDCT was found to be Laplacian.
puts. In the logical Hadamard transform, both input and out-
put blocks are binary. The procedure for obtaining the logical
Hadamard transform is to take the output of an arithmetic
Hadamard transform and threshold each element at zero. The
only condition for recovering the input signal is that the first
element of the input vector should be 1. Banta (29) has used
the logical Hadamard transform to obtain a nonlinear block
code with block length N � 2n � 1, data length K � 2r � 1,
r � n � 1, error correction t � 2n�r � 1, and rate R � K/N �
1/t.

A series of explicit low-rate binary linear block codes which
have relatively low covering radius and can be rapidly re-
coded is described in Ref. 30. These codes can be derived from
higher dimensional analogues of the Gale–Berlekamp switch-
ing game.

MHDCT as an Image Coding Scheme

The MHDCT can be used to transform 2-dimensional image
signals. The image array is divided into blocks of size N �
N. Each block is then transformed using the MHDCT and the
transform coefficients are adaptively quantized and sent to
the receiver (24).

Two-Dimensional MHDCT Transform. Let TN be the one-di-
mensional MHDCT transformation matrix that operates inde-
pendently on the rows and the columns of the 2-dimensional
N � N image block [X(m, n)]. Then the 2-dimensional Figure 12. Two-dimensional MHDCT basis pictures (N � 8).
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classification map, bit allocation matrices, and the MHDCT
coefficients are transmitted to the receiver through the com-
munication channel. In the receiver, image reconstruction is
accomplished by inverting the compression operation. Figure
14 shows a block diagram of the adaptive MHDCT coder.

In practice, it is necessary to make two passes on the im-
age data. The first pass generates the subblock classification
map and also assigns the bit allocation matrices to different
classes. The second pass quantizes the subblock transform co-
efficients using the bit allocation matrices. We have used the
optimal Lloyd-Max (33,34) quantizers designed for Laplacian
sources in our coding system. The quantizer can also be de-
signed using the Lloyd-Max algorithm for a suitable training
data.

Bit Allocation. A crucial part of transform coding is an effi-
cient bit allocation algorithm that provides the possibility of
quantizing some transform coefficients more finely than oth-
ers. Minimization of the mean-squared reconstruction error
can be used as the criterion to derive an optimum bit alloca-
tion algorithm. In our case, the bit allocation matrix for each
block is constructed after determining the variances of the
transform coefficients, as given by

Figure 13. Two-dimensional DCT basis pictures (N � 8). NBk
(u,v) = 1

2
log2[σ 2

k (u,v)] − log2[D]

∀(u,v) �= (0,0)

(25)

Adaptive MHDCT Transform Coding of Images. The trans-
where �2

k(u, v) is the variance of the transform sample and Dform coefficients of 8 � 8 blocks of the images are quantized
is a parameter. The value of D is first initialized and thenand transmitted to the receiver through the communication
recursively calculated to meet the desired total number ofchannel. To make efficient use of the available bandwidth
bits.with minimum distortion, an adaptive method as in Ref. 32

can be used. The blocks of the image in the transform domain Experimental Results for Adaptive Encoding of Images. We
are classified according to their ac energy level. To demon- have used the adaptive MHDCT coding method to compress
strate the effectiveness of the coding scheme, choose four the 512 � 512 Lena image with intensity value uniformly
classes of blocks, and choose the decision boundaries for the quantized to 256 levels (8 bits per pixel). The results of our
classification such that the number of blocks in each class is experiments are summarized in Table 3. The peak signal-to-
the same. The coding of the image is performed on a block- noise ratio defined in Eq. (26) is used for objective comparison
by-block basis. Then the process is made adaptive by as- of images.
signing more bits to the higher energy blocks. Also, within a
block a larger number of bits is allocated to the coefficients in
the block with higher variance. The sum of the squared val-
ues of ac coefficients in each block of the image in the trans-
form domain is defined as the energy level of the block. The

SNR = 10 log10

(
2552

1
N2

∑m=N−1
m=0

∑n=N−1
n=0 [X (m, n) − X̂ (m, n)]2

)

(26)

Figure 14. Adaptive MHDCT coding system.
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Table 3. Comparison of SNR for Lena Image Using
Different Transforms

Bit Rate Hadamard MHDCT DCT Compression
(bpp) SNR SNR SNR Ratio

0.25 28.29 29.08 30.91 32.0
0.50 29.67 30.44 31.77 16.0
0.75 30.81 32.05 32.75 10.6
1 31.91 33.41 33.68 8.0

where the image size is N � N and X(m, n) and X̂(m, n) are
the original and the reconstructed images, respectively.

It is shown that the performance of MHDCT is better than
HT and close to that of DCT with less complexity. Figures 15
and 16 provide a visual comparison between the perfor-
mances of DCT and MHDCT in adaptive coding of the Lena
image. The difference in quality of the two pictures is not no-
ticeable. From this figure it is observed that the performance
of MHDCT is quite close to the performance of DCT and that
the difference in the SNR is very small. No entropy coding

Figure 16. DCT coding of Lena image, compression ratio � 8.10.has been used in our experiments and using a lossless en-
tropy code will significantly improve the performance of the
coding system. having 2N � 8 codewords. The minimum distance is dmin �

N/2 � 2. The selected row can be sent as a rectangular pulse
Signal Representation train of duration
The Hadamard matrix may be used to design orthogonal and

Ts = Tb log2 M = 3Tb (M = 8)biorthogonal M-ary sequences. To form the signal set, we
might use the Hadamard matrix construction. The Hadamard

where Tb is the bit duration.matrix of order 4 is
The Hadamard matrix of order 8 is constructed as

H4 =
[

H2 H2

H2 −H2

]
=




+ 1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1




These four rows plus their complements form an 8-ary bi-
orthogonal set of linear binary code of block length N � 4

H8 =
[

H4 H4

H4 −H4

]
=




+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 −1 −1 +1 −1 +1 +1 −1




The eight rows can be used as the signal patterns for the
8-ary orthogonal set. The minimum distance of the code is
dmin � N/2. The first element of each row is a �1, which
means that this signal element yields no distinguishing
feature to the signal set. Therefore this signal element can be
dropped with no loss in performance to lower the entropy per
bit to �� of the former value, while maintaining dmin fixed and
thus achieving the same error probability. Although the rows
of the Hadamard matrices are mutually orthogonal, for
spectral purposes, these are not good for random binary
sequences.

Feature Extractions and Pattern Recognition. Features such
as shape, motion, pressure details and timing, and transfor-
mation methods such as Fourier and Hadamard have been
used in handwritten signature recognition with various de-
grees of success. In Ref. 35 a fast Fourier transform is used to
transform normalized signatures into the frequency domain.
Fifteen harmonics having the largest magnitude normalized
by their corresponding variances were selected and used in a
stepwise discriminant analysis.Figure 15. MHDCT coding of Lena image, compression ratio � 8.10.
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An approach to the problem of signature verification is de- relation when they are time synchronized. But in some appli-
cations, like multipath fading environments, multiple delaysscribed in Ref. 36. This paper considers the signature as a 2-

dimensional image and uses the Hadamard transformation as introduce nonzero cross correlation between the otherwise or-
thogonal signals. One solution to this can be concatenation ofa means of data reduction and feature extraction. The signa-

ture image is a 2-dimensional array of 1’s and 0’s correspond- a (pseudo-noise) PN sequence with the orthogonal coding to
increase the randomness of the orthogonal sequences.ing to light and dark areas on the original image. This method

achieves 91% of correct recognition, 11% valid signature rejec- Orthogonal coding was used to spread the information sig-
nal in Ref. 41. Each signal is coded with the same orthogonaltion, and 41% forgery acceptance.

For handwriter identification, feature extraction was per- or biorthogonal code, followed by a modulo-2 addition of a
unique signature sequence. With block orthogonal coding,formed by decomposition of the quantized pressure pattern

into a set of orthogonal functions. In view of the rectangular log2 N information bits are encoded into an N-bit codeword.
An N-bit signature sequence is then modulo-2 added to thenature of the time domain waveforms, Hadamard transform

is a logical natural choice (37). codeword before transmission. Thus, orthogonal coding pro-
vides the spreading of the information signal, not the signa-In Ref. 38 the Hadamard transform was used to design a

vector classifier for a Predictive Classified Vector Quantizer ture sequence. From the coding point of view, each signal is
assigned a code set, or coset, which is formed by modulo-2(PCVQ). The performance of Hadamard transform vector clas-

sifier was compared to a spatial vector classifier. The good adding the signature sequence to each of N (orthogonal) or
2N (bi-orthogonal) codes. Thus the system employs a su-performance of the Hadamard transform classifier is the

unique property of the Hadamard transform, which groups percode consisting of codes of orthogonal codes.
A wideband, direct-sequence, code-division multiple accessthe frequency components within the image vector into dis-

tinct coefficients. (CDMA) was proposed in Ref. 42. The wideband CDMA sys-
tem uses PN and Walsh–Hadamard codes for spreading theThe Hadamard transform is used in Ref. 39 to represent

image signals in the transformed domain. Compared to the signal in order to achieve the minimal interference between
traffic and control (pilot, sync, and paging) channels. TheFourier transform, the Hadamard transform offers an order

of magnitude speed increase. Transmitting the Hadamard spreading is done by a combination code, which is generated
by PN and orthogonal codes from Walsh–Hadamard se-transform coefficients of an image instead of the spatial repre-

sentation of the image provides a potential tolerance to chan- quences to minimize mutual interference between traffic and
control signals.nel errors and the possibility of reduced bandwidth require-

ment. Linear and Gaussian-optimized quantizers are used to Reference 43 proposes an optimal set of signature se-
quences for use in a CDMA system where orthogonal or bi-quantize the Hadamard transform coefficients. Results with

the linear quantizer are poor because of the large quantiza- orthogonal Walsh—Hadamard coding is used to spread the
signal. This paper shows that in the special case of a synchro-tion errors at high sequences (equivalent to frequencies in

Fourier transform). nous system with no multipath echoes and use of WH code
as the spreading sequence, the product of any two differentThe coding efficiency of the differential PCM (DPCM) with

a 2-dimensional predictor is compared to that of a 2-dimen- signature sequences should be a bent sequence of length N �
2n. A sequence with a constant magnitude WH transform issional Hadamard transform code (HTC) in intrafield coding of

the NTSC composite signal in Ref. 40. It is shown that the called a bent sequence.
coding efficiency of the HTC is far lower than that of the
DPCM in the case of a signal having high-power level carrier Filter Design in the Hadamard Transform Domain. Adaptive

filters have many applications in interference cancellation,chrominance signal, such as a color-bar signal. In general it
was shown that linear prediction, spectral estimation, system modeling, and

channel equalization in communication systems. The filter
parameters can be computed in the time or transform do-1. For signals with large values of horizontal and vertical
main. Because of some computational efficiencies observed incorrelation ratios (close to 1), DPCM outperforms HTC,
the transform domain (44), this subsection discusses the ap-while for smaller values of correlation ratio, the perfor-
plication of Hadamard transform for filter design.mance of HTC is much better.

Reference 45 proposes a fast implementation of the LMS2. In the case of high compression ratio (2 bit/pel), HTC
error adaptive transversal filter. The fast Walsh–Hadamardshows higher coding efficiency than DPCM.
transform (FWHT) technique is adopted in this implementa-
tion. The error vector is obtained by subtracting the WH

Special Purpose HT Applications
transform of the desired output and the filter output. The in-
put vector is also WH transformed before entering the filter.Spread Spectrum. The basic idea in spread spectrum is to

distribute a relatively low-dimensional data signal into a Finally, the output of the filter is inverse WH transformed to
obtain the representation in the time domain. This filter pro-higher dimensional signal. A jammer with finite energy has

to either distribute its energy on all dimensions, thereby in- vides a significant reduction in computation over both the
conventional time domain and the frequency domain adaptiveducing a small interference on each dimension or put its total

energy on a small subspace leaving the remainder of the filters. For data blocks of size of N, the proposed filter only
requires 2N adaptations compared to those of 2N2 and 2N �space interference free. In the time domain, the distribution

of the signal is achieved by multiplying the data signal by a 3N/2 log2 N for time domain and FFT filters, respectively.
A block implementation of 2-dimensional finite-impulse re-member of an orthogonal set.

Orthogonal sequences can be used as spreading signals in sponse (FIR) digital filters using the matrix decomposition ap-
proach is described in Ref. 46. The coefficient matrix of thespread-spectrum multiple-access systems. They have zero cor-
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block realization is decomposed via the Walsh–Hadamard when the reference detector is removed. The best mask for
minimizing the measurement error is the Hadamard mask fortransform without involving any intermediate calculations.

The application of the recursive Walsh–Hadamard trans- the first configuration and the S-matrix mask for the second
one (50).formation to FIR and infinite impulse response (IIR) filtering

was investigated in Ref. 47. It was shown that by using a
common recursive transform, the usual frequency domain Encryption. Hadamard transform was used in Ref. 51 to
FIR filtering problem was converted into a Walsh sequence- encrypt analog speech signals. In the analog speech en-
domain filtering problem. A hardware implementation of the cryption, speech samples are first converted into a transform
filter was also proposed. domain like DCT, DFT, or discrete Hadamard transform

(DHT). The encryption is achieved by permuting the trans-
Equalizers. Equalizers are used to mitigate the effect of in- form coefficients. The encrypted transform samples are then

tersymbol interference (ISI) in transmission of digital signals converted back into the time domain and transmitted. The
through band-limited communication channels. Different al- application of the analog speech encryption is in both nar-
gorithms in the time domain, including the symbol rate linear rowband and wideband systems (speech transmission over a
transversal filter equalizer and the fractionally spaced equi- bandlimited telephone channel and speech storage and re-
lizer (FSE), are proposed for equalizer design. To achieve trieval). As a comparison for using different transforms, the
rapid convergence of the equalizer coefficients, the equalizers DCT, DFT, and (Discrete Prolate Spherical transform) DPST
are designed in the frequency domain. can be used in narrowband systems. The KLT (Karhunen–

Reference 48 considers adaptive equalization for digital Loeve transform) and DHT are more suitable for wideband
data transmitted over discrete linear channels exhibiting in- systems. Based on subjective and objective measures (such as
tersymbol interference in addition to additive noise. LMS LPC, cepstral, SNR distance measures), DCT turned out to
equalization is developed in the discrete sequence (Walsh or be the best transform with respect to both residual intelligi-
Hadamard) domain using a gradient projection method. An bility of the encrypted speech and the recovered speech qual-
adaptive LMS adaptation algorithm in the Hadamard domain ity. The DFT produced results that are inferior to the DCT.
is developed, in which the input data sequence is divided into The DCT implementation would also offer speed advantages
blocks. Each block is Hadamard transformed, passed through over FFT.
an LMS equalizer, and then converted into the time domain
again. The performance of time domain and Hadamard trans-
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