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HARTLEY TRANSFORMS

Transform methods are used to determine the characteristics
and to analyze the properties of a function describing a signal
or a system that conveys information about or energy of a
physical process. It is to be noted that transformation in-
volves some sort of mathematical operation on the signal from
one domain (time, space, or frequency) to another. Of all
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known transform methods, the most popular and widely used ferent transform pair from the original Hartley transform
is the Fourier transform used in scientific and engineering pair is used in most literature and can be described for a func-
applications. However, the Fourier transform is generally a tion h(t) as
complex function. Along with the Fourier transform, many re-
searchers have proposed many Fourier-like transform meth-
ods such as the cosine transform, the sine transform, the Hil- H( f ) =

∫ ∞

−∞
h(t)cas(2π f t) dt (4)

bert transform, and the Hartley transform, all of which
provide some alternative methods of analyzing signals and

andcan lead to an efficient implementation in some specific appli-
cations.

The key advantage of the Hartley transform is that it is
real for any real signal. It works very much like the Fourier h(t) =

∫ ∞

−∞
H( f )cas(2π f t) df (5)

transform. In fact, there exists a very simple relationship be-
tween the Fourier transform and the Hartley transform. As a

where the angular frequency � and the radian frequency fresult, wherever the Fourier transform is being used, the
are related by � � 2�f . Notice that the inverse integral func-Hartley transform can be used as well. Because the Hartley
tion is the same as the direct integral function. It is evidenttransform is a real function, in some cases, it offers consider-
from Eqs. (4) and (5) that the definition of the Hartley trans-able advantages over the Fourier transform. For this reason,
form and the definition of the inverse Hartley transform arethe Hartley transform has attracted the attention of many
essentially the same. For our forthcoming discussions, we willresearchers, who have found many applications for it in sci-

ence and engineering. refer to the second definition of the Hartley transform.
For digital signal processing (DSP), the discrete version of As is the case with the Fourier transform, the Hartley

the Hartley transform exists. It has spurred research on fast transform does not exist for all functions. In fact, the exis-
algorithms on the discrete Hartley transform, which are also tence of the Hartley transform of a function is governed by
called the fast Hartley transforms (FHT). To some extent, the the Dirichlet’s conditions, which can be described for a func-
discrete Hartley transform requires less time and memory or tion h(t) as follows:
hardware compared to the discrete Fourier transform.

1. The function h(t) must be absolutely integrable, that isDEFINITIONS

In 1942, Hartley introduced a Fourier-like transform (later
known as the Hartley transform), which can be described for

∫ ∞

−∞
|h(t)| dt < ∞ (6)

a function h(t) as

must hold.

2. The function h(t) must have a finite number of maxima
H(ω) = 1√

2π

∫ ∞

−∞
h(t)cas(ωt) dt (1)

and minima and also must have a finite number of dis-
and the corresponding inverse transform can be described as continuities in any interval.

Some useful signals, classified as power signals, do not satisfy
h(t) = 1√

2π

∫ ∞

−∞
H(ω)cas(ωt) dω (2)

the Dirichlet’s conditions. However, their Hartley transforms
where the integral kernel function cas(�t) is defined as can be expressed in terms of a special function called the

Dirac delta function or the impulse function, which is usedcas(ωt) = cos(ωt) + sin(ωt) (3)
extensively for signal representation and analysis.

Some useful properties of the integral function, cas, are
shown in Table 1. For the sake of convenience, a slightly dif-

HARTLEY TRANSFORMS OF ENERGY SIGNALS

Signals h(t) for which ��

� h2(t) dt � � are classified as energy
signals. Evidently, energy signals satisfy the Dirichlet’s con-
ditions. Here, we discuss the Hartley transform for some sim-
ple energy signals.

Rectangular Pulse

A rectangular pulse shown in Fig. 1, also called a gate func-
tion, is given by

�(t/T ) =
{

1, |t| < T/2

0, otherwise

where T is the width of the pulse.

Table 1. Properties of the cas Function

1. cas(�) � cos(�) � sin(�)
2. cas(0) � 1
3. � cas(�) � �cas(��)

4.
d

d�
cas(�) � cas(��)

5. cas2(�) � cas2(��) � 2
6. cos(�) � ��[cas(�) � cas(��)]
7. sin(�) � ��[cas(�) � cas(��)]
8. cas(�1 � �2) � cos(�1) cas(�2) � sin(�1) cas(��2)
9. cas(2�) � cas(�2�) � cas2(�) � cas2(��)

10. cas(2�) � cas2(�) � cas(�) � cas(��) � 1

11. cas(�) �
1 � j

2
e j� �

1 � j
2

e�j�

12. e j� �
1 � j

2
cas(�) �

1 � j
2

cas(��)
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Figure 1. Rectangular pulse (T � 1). Figure 3. Exponential pulse (a � 5).

From the definition of the Hartley transform as stated in One-Sided Exponential Pulse
Eq. (4), the Hartley transform of �(t/T) is given by

The analytic expression of a one-sided exponential pulse,
shown in Fig. 3, is given by

h(t) = e−atu(t)

where u(t) is the unit step function and a is a constant that
represents the rate of decay of the exponential pulse. The
Hartley transform of h(t) is H( f) given by

G( f ) =
∫ ∞

−∞
�(t/T )cas(2πft) dt

=
∫ T/2

−T/2
cas(2πft) dt

= 1
2π f

[sin(2πft) − cos(2πft)]T/2
T/2

= sin(π fT )

π f
= Tsinc( fT )

Note that the sinc function is defined as sinc(x) �
sin(�x)/(�x). The plot of G( f) is shown in Fig. 2. Notice that
the Hartley transform of the gate function is the same as its
Fourier transform. This is indeed true for all even functions.
Notice from Fig. 2 that the first zero crossing of G( f) occurs
at frequency f � 1/T and that as the pulse width T increases

H( f ) =
∫ ∞

−∞
h(t)cas(2πft) dt

=
∫ ∞

−∞
e−atu(t)cas(2πft) dt

=
∫ ∞

0
e−at cos(2πft dt +

∫ ∞

0
e−at sin(2πft) dt

= a + 2π f
a2 + 4π2 f 2

or decreases, the first zero crossing moves toward or away
from the origin. In general, the shorter the duration of a sig-
nal, the wider its spectrum, and vice versa. The plot of H( f) is shown in Fig. 4.
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Figure 2. Hartley transform spectrum of a rectangular pulse
Figure 4. Hartley transform spectrum of an exponential pulse(T � 1).
(a � 5).
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Figure 5. Triangular pulse (T � 1).

Table 2. Hartley Transforms of Energy Signals

Function, h(t) Hartley transform, H( f )

1. e�at u(t)
a � 2�f

a2 � 4�2f 2

2. te�at u(t)
a2 � 4�af � 4�2f 2

(a2 � 4�2f 2)2

T sinc( fT )3. � (t/T ) � �t �
T
2�� u �t �

T
2�

4. �(t/T ) � 1 �
�t�
T

, �t� � T T sinc2( fT )

5. e�a� t � 2a
a2 � 4�2f 2

6. cos(2�f0 t)�(t/T )
T
2

[sinc(T( f � f0)) � sinc(T( f � f0))]

7. e�a� t � cos(2�f0 t)
a

a2 � 4�2( f � f0)2 �
a

a2 � 4�2( f � f0)2

8. e�at2 	�
a

e
��

2f 2

a

9.
1

a2 � t2

�
a

e�2�a� f �

Triangular Pulse

The triangular pulse shown in Fig. 5 can be described as
Table 2 lists the Hartley transforms of some frequently

used energy signals including the rectangular pulse, the one-
sided exponential pulse, and the triangular pulse. Hartley�(t/T ) =

{
1 − |t|/T, |t| < T

0, otherwise transforms of other energy signals can be obtained in the
same way as discussed for the rectangular pulse, the one-
sided exponential pulse, and the triangular pulse.where T represents the half of the width of the triangular

pulse. The Hartley transform of the triangular pulse is

RELATIONSHIP BETWEEN THE HARTLEY
AND THE FOURIER TRANSFORMS

Perhaps the most important property of the Hartley trans-
form is its simple relationship with the Fourier transform.

T( f ) =
∫ ∞

−∞
�(t/T )cas(2πft) dt

=
∫ 0

−T
(t/T + 1)cas(2πft) dt +

∫ T

0
(−t/T + 1)cas(2πft) dt

Note that the Fourier transform of a function h(t) is defined
by

After performing the integrations and simplifying, this ex-
pression yields the transform as

F( f ) =
∫ ∞

−∞
h(t)e− j2π ft dt (7)

T( f ) = Tsinc2
( fT )

and the inverse Fourier transform is defined by

Figure 6 shows the plot of T( f).
h(t) =

∫ ∞

−∞
F( f )e j2π ft df (8)

From the Euler’s relation that ej� � cos(�) � j sin(�) and from
the relations of the sine and cosine functions with the cas
function as listed in Table 1, the Fourier transform F( f) can
be expressed as

F( f ) =
∫ ∞

−∞
h(t) cos(2πft) dt − j

∫ ∞

−∞
h(t) sin(2πft) dt

=
∫ ∞

−∞
h(t)

cas(2πft) + cas(−2πft)
2

dt

− j
∫ ∞

∞
h(t)

cas(2πft) − cas(−2πft)
2

dt

= H( f ) + H(− f )

2
− j

H( f ) − H(− f )

2

(9)
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where H( f) is the Hartley transform of the function h(t). It is
obvious from Eq. (9) that if the Hartley transform of a func-Figure 6. Hartley transform spectrum of a triangular pulse (T � 1).
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tion is known, the Fourier transform of the function can from the definition of the Hartley transform and/or from the
relationship between the Hartley transform and the Fourierreadily be obtained. In fact, there are some situations in

which knowing the amplitude and the phase characteristics transform. Proofs for some important properties follow.
of a function separately is important. In those situations, the

Delay. If h(t) } H( f) represents the Hartley transform pairFourier transform of the function can be obtained quickly
thenfrom the Hartley transform in order to determine the ampli-

tude and the phase spectrums of the function.
In the same way, using the Euler’s relation, the Hartley h(t − t0) ↔ cos(2πft0)H( f ) + sin(2πft0)H(− f )

transform H( f ) of the function h(t) can be expressed as
Proof. From the definition, the Hartley transform of h(t � t0)
is

h(t − t0) ↔
∫ ∞

−∞
h(t − t0)[cos(2πft) + sin(2πft)] dt

After substituting t� � t � t0, dt� � dt, and t � t0 � t� and
simplifying, we can obtain

H( f ) =
∫ ∞

−∞
h(t)[cos(2πft) + sin(2πft)] dt

=
∫ ∞

−∞
h(t)

e j2π ft + e− j2π ft

2
dt +

∫ ∞

−∞
h(t)

e j2π ft − e− j2π ft

2 j
dt

= 1 + j
2

∫ ∞

−∞
h(t)e− j2π ft dt + 1 − j

2

∫ ∞

−∞
h(t)e j2π ft dt

= 1 + j
2

F( f ) + 1 − j
2

F(− f )

(10)
h(t − t0) ↔

∫ ∞

−∞
h(t ′)[cos(2π f (t ′ + t0)) + sin(2π f (t ′ + t0))] dt ′

= cos(2πft0)H( f ) + sin(2πft0)H(− f )
Thus, the Hartley transform of a function can readily be ob-
tained by using the relation in Eq. (10) if the Fourier trans- Convolution. If h1(t) } H1( f) and h2(t) } H2( f) are two Har-
form of the function is known. Fortunately, for many func- tley transform pairs, then the Hartley transform of the convo-
tions, the Fourier transforms are known. lution of h1(t) and h2(t) is

PROPERTIES OF THE HARTLEY TRANSFORM

The Hartley transform provides an alternative representation
of a function h(t) from one domain to another. Obtaining the
Hartley transform of the inverse Hartley transform from the

h1(t) ⊗ h2(t) =
∫ ∞

−∞
h1(τ )h2(t − τ ) dτ

↔ 1
2

[H1( f )H2( f ) + H1(− f )H2( f )

+ H1( f )H2(− f ) − H1(− f )H2(− f )]
definition is a straightforward task. Note that the information

Proof. From the definitioncontent in the Hartley transform of h(t) and the information
content in the function h(t) itself are the same. But, one form
or the other provides a better insight into the physical aspects
of the signal or the system associated with it. Certain useful
manipulations or operations such as scaling, shifting, and in-
tegration on the function cause distinctive changes in its cor-

h1(t) ⊗ h2(t) ↔
∫ ∞

−∞

[∫ ∞

−∞
h1(τ )h2(t − τ ) dτ

]
cas(2πft) dt

=
∫ ∞

−∞
h1(τ )

[∫ ∞

−∞
h2(t − τ )cas(2πft) dt

]
dτ

responding Hartley transform, and vice versa. Some useful
properties of the Hartley transform related to such operations Using the delay property and the relations between the cosine
are summarized in Table 3. These properties can be obtained and the sine functions with the cas function as listed in Ta-

ble 1,

h1(t) ⊗ h2(t)

↔
∫ ∞

−∞
h1(τ )[cos(2π f τ )H2( f ) + sin(2π f τ )H2(− f )] dτ

= H2( f )

∫ ∞

−∞
h1(τ )

cas(2π f τ ) + cas(−2π f τ )

2
dτ

+ H2(− f )

∫ ∞

−∞
h1(τ )

cas(2π f τ ) − cas(−2π f τ )

2
dτ

= 1
2

[H1( f )H2( f ) + H1(− f )H2( f ) + H1( f )H2(− f )

− H1(− f )H2(− f )]

For some special cases, a simplified transform expression for
the convolution of h1(t) and h2(t) can be obtained.

Case 1: If h1(t) or h2(t) is even or both are even, then

h1(t) ⊗ h2(t) ↔ H1( f )H2( f )

Table 3. Properties of the Hartley Transform

1. Transformation h(t) �� H( f )
2. Linearity a1 h1(t) � a2 h2(t) �� a1 H1( f ) � a2 H2( f )
3. Symmetry H(t) �� h( f )
4. Scaling h(t/a) �� �a�H(af )
5. Delay h(t � t0) �� cos(2�ft0)H( f )

� sin(2�ft0)H(�f )
6. Modulation cos(2�f0 t)h(t) �� ��[H( f � f0) � H( f � f0)]
7. Convolution h1(t) � h2(t) �� ��[H1( f )H2( f )

� H1(�f )H2( f ) � H1( f )H2(�f )
� H1(�f )H2(�f )]

8. Time differentiation d
dt

h(t) �� �2�fH(�f )

9. Time integration 
t

��
h(�) d� ��

H(�f )
2�f

�
H(0)�( f )

2
10. Reversal h(�t) �� H(�f )
11. Autocorrelation h(t) � h(t) �� ��[H 2( f ) � H 2(�f )]
12. Multiplication h1(t)h2(t) �� ��[H1( f ) � H2( f ) � H1(�f )

� H2( f ) � H1( f ) � H2(�f ) � H1(�f )
� H2(�f )]
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Case 2. If h1(t) is odd, then Impulse Function

The Hartley transform of the impulse function �(t) ish1(t) ⊗ h2(t) ↔ H1( f )H2(− f )

Case 3. If h2(t) is odd, then H( f ) =
∫ ∞

−∞
δ(t)cas(2πft) dt = 1

h1(t) ⊗ h2(t) ↔ H1(− f )H2( f ) Thus, we have the transform pair �(t) } 1. Because of the
symmetry in the Hartley and inverse Hartley transforms, we

Case 4. If both h1(t) and h2(t) are odd, then also have

h1(t) ⊗ h2(t) ↔ −H1( f )H2( f ) 1 ↔ δ( f )

Note that a function h(t) is even if h(t) � h(�t) or odd if Thus the Hartley transform of unity is an impulse at the ori-
h(t) � �h(�t). Thus for the above-mentioned cases, the Hart- gin. Figure 7 shows the constant function and the correspond-
ley transform of the convolution of two functions can be ob- ing Hartley transform.
tained by a single multiplication from their transforms.

The Signum Function
Power Spectrum. The power spectrum P( f) of a function The signum function is defined as
h(t) is

P( f ) = 1
2

[H2( f ) + H2(− f )] sgn(t) =




−1, t < 0
0, t = 0
1, t > 0

where H( f) is the Hartley transform of h(t).
Notice that if h(t) } H( f), then from the time differentiation
property (see Table 3),Proof. If F( f) is the fourier transform of h(t), then

h(1)(t) ↔ −2π fH(− f )P( f ) = F( f )F∗( f )

By differentiating the signum function, we obtainwhere F*( f) is the complex conjugate of F( f). Hence, using
relation in Eq. (9) between the Hartley and the Fourier trans-
forms and simplifying, we can easily obtain

d
dt

sgn(t) = 2δ(t)

If H( f) denotes the Hartley transform of sgn(t), then from theP( f ) = 1
2

[H2( f ) + H2(− f )]
differentiation property listed in Table 3, we obtain

Thus, finding the power spectrum of a signal from the Hartley (−2π f )H(− f ) = 2
transform is considerably easier than finding it from its Fou-
rier transform becuse the process involves only real arithme- which yields
tic and only two multiplications.

H(− f ) = 1
−π f

HARTLEY TRANSFORM OF POWER SIGNALS

Hence by replacing �f by f , we obtain
So far we have considered only energy signals for the Hartley
transform. These energy signals possess finite energy over the
interval (��, �). Therefore, they are abolutely integrable and H( f ) = 1

π f
so satisfy the Dirichlet’s conditions for the existence of H( f).
However, there is a class of signals, called power signals that
are very useful but are not absolutely integrable. More rigor-
ously, a power signal f (t) has infinite energy but finite power
such as the sine wave or the unit step function. This means
that f (t) does not satisfy the condition, ��

�� f 2(t) dt � �, but

P = lim
T→∞

1
T

∫ T/2

−T/2
f 2(t) dt < ∞

holds. It is possible to obtain the Hartley transform of these

2
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power signals if we allow impulse functions as part of the
Hartley transform. Figure 7. Constant function and its Hartley transform.
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for k � 0, 1, 2, . . ., N � 1. The corresponding inverse discrete
Hartley transform is described as

h(n) = 1√
N

N−1∑
k=0

H(k)cas(2πnk/N) (12)

The direct implementation of the discrete Hartley transform
is computationally intensive when N is very large. Many fast
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Hartley transform algorithms can be found in Ref. 3 and are
Figure 8. Signum function and its Hartley transform. mostly based on the assumption that the number of data sam-

ples N is a power of 2. Most of the algorithms require either
that data samples in the input sequence be sorted in bit-re-
versed order before processing or that the items in the trans-Figure 8 shows the plots of the signum function and its Har-
form sequence need to be sorted in bit-reversed order aftertley transform.
processing.

The term bit-reversed ordering refers to finding the new
The Unit Step Function index of an item by reversing the bits of the binary represen-

tation of the index of an element in given sequence and thenThe unit step function can be expressed in terms of the sig-
placing the item in the new index position of the resultingnum function as
sequence. For example, notice that three binary digits are re-
quired to index the data samples of a sequence h(n) � �h(0),
h(1), h(2), h(3), h(4), h(5), h(6), h(7)� where N � 8. If (n2, n1,

u(t) = 1
2

+ 1
2

sgn(t)

n0) represents the index of an item in h(n), then the item
should be copied in index position (n0, n1, n2) in the bit-re-Thus, the transform pair for u(t) is
versed sequence. Thus, after bit-reversed ordering, the re-
sulting sequence will contain items in the order h(0), h(4),
h(2), h(6), h(1), h(5), h(3), h(7).u(t) ↔ 1

2
δ( f ) + 1

2π f
Based on the Hou’s fast Hartley transform algorithm de-

scribed in Ref. 8, and algorithm for the fast computation ofThe Hartley transform of the useful power signals are sum-
the Hartley transform is described here for the case when themarized in Table 4 and can be derived independently as dem-
transform size N is a power of two:onstrated previously or from their known Fourier transforms.

The foregoing discussions on the Hartley transform were
1. Perform permutation of data samples in sequence x(n),based on the integral definition or the continuous-time defi-

n � 0, 1, . . ., N � 1 so that samples are in bit-reversednition of the Hartley transform. The integral definition allows
order.us to study many analytical properties as well as to develop

2. Perform the following for i � 2, 4, 8, 16, . . ., N and fortheory and explore properties for the discrete version of the
j � 0, 2i, 3i, . . ., N � i:Hartley transform. The discrete Hartley transform has found

popularity in many real-time DSP applications. a. Copy x( j), x( j � 1), . . ., x( j � i � 1) to g(0), g(1),
. . ., g(i � 1), respectively.

b. Perform the following for k � 0, 1, . . ., i/2 � 1:
DISCRETE HARTLEY TRANSFORM

The discrete version of the Hartley transform (DHT) of a data
sequence x(n), n � 0, 1, 2, . . ., N � 1, is described as

y(k) = g(k) + g(k + i/2) cos(2πk/i)

+ g(i − k) sin(2πk/i)

y(k + i/2) = g(k) − g(k + i/2) cos(2πk/i)

− g(i − k) sin(2πk/i)H(k) = 1√
N

N−1∑
n=0

h(n)cas(2πnk/N) (11)

c. Copy y(0), y(1), . . ., y(i � 1) to x( j), x( j � 1, . . .,
x( j � i � 1), respectively.

3. Divide each item of x(n) by the square root of N to get
the Hartley transform sequence. The resulting se-
quence x(n) where n � 0, 1, . . ., N � 1 holds the
transform.

A complete C�� source code corresponding to this algorithm
is given in Fig. 9. The source code is general enough to handle
any case for N � 2m, where m is a positive integer.

Compared to the discrete Fourier transform, the discrete
Hartley transform involves only real arithmetic and provides
a real transform sequence. As a result, it requires less arith-
metic and memory or storage space for computational pur-

Table 4. Hartley Transforms of Power Signals

h(t) H( f )

1. �(t) 1
2. 1 �( f )

3. u(t)
1
2

�( f ) �
1

2�f

4. sgn(t)
1

�f
5. cos w0 t ��[�( f � f0) � �( f � f0)]
6. sin w0 t ��[�( f � f0) � �( f � f0)]
7. ��

k��� �(t � kT ) ����
k��� �( f � k/T )
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// This C++ implementation of the fast Hartley
void bit–reverse(double [], double [], const int);

// transform is based on the algorithm
void RHT(double [], double [], const int);

// proposed by H.S. Hou, IEEE Transactions on Computers,
// Vol. C-36, No. 2, pp. 147-156, February 1987. bit–reverse(y, x, N);

// The input data file ‘‘INPUT.DAT’’ must contain the sample for (i � 2; i �= N; i = i * 2)
// size, N, as the first data in the file. Then, the data �
// sequence, with items separated by whitespaces, must for (j � 0; j � N; j = j + i)
// follow in the file. �
// The sample size, N, must be an integer power of 2. for (m = j; m � j + i; ++m) // copy i data items
// The transform sequence along with the sample size is g[m�j] = x[m]; // of x in g
// saved in the output file ‘‘OUTPUT.DAT’’.

RHT(y, g, i); // perform computation
#include <fstream.h>

for (m = j; m � j + i; ++m) // copy i calculated#include <math.h>
// itemsconst double pi = 3.1415927;

x[m] = y[m�j]; // of y in x
void main() �
� �
int N; �
double sqn;

// Recursive computation stepdouble *x, *y, *g;
void RHT(double y[], double g[], const in M)int n;
�

ifstream infile; int k;
ofstream outfile; int L;

double cfk, sfk;
void FHT(double [], double [], double [], const int);

L = M �� 1; // Divide M by 2 (L = M/2)
// Read Data from file INPUT.DAT
infile.open(‘‘INPUT.DAT’’); // open file input file y[0] = g[0] + g[L];
infile �� N; // read size, N y[L] = g[0] � g[L];
x = new double[N]; // setup input data array

for (k = 1; k � L; ++ k)// with N items
�

for (n = 0; n � N; ++ n) // read data sequence
cfk = cos (2*pi*k/M);infile �� x[n];
sfk = sin (2*pi*k/M);infile.close(); // close input file

y[k] = g[k] + g[k + L] * cfk + g[M�k] * sfk;// Setup auxiliary arrays
y[k + L] = g[k] � g[k + L] * cfk � g[M�k] * sfk;y = new double[N];

�g = new double[N];
�

// Perform fast Hartley transform
void bit–reverse(double y[], double x[], const int N)FHT(y, g, x, N);
�

// Release auxliary arrays int i, incr, j;
delete [] y; void arrange(double [], double [], int, int);
delete [] g;

// Bit reverse
// Scan transform sequence for (i = 1; i � N/2; i = i * 2)
sgn = sqrt(N); �
for (n = 0; n � N; ++ n) incr = N/i;
x[n] = x[n] / sqn; for (j = 0; j � N; j = j + incr)

arrange(y, x, i, j + incr);
// Save transform sequence

�
outfile.open(‘‘OUTPUT.DAT’’);

�
outfile �� N �� endl; // save size
for (n = 0; n � N; ++ n) void arrange(double y[], double x[], int first, int last)

outfile �� ‘‘ ’’ �� x[n] �� endl; // save transform �
// sequence int mid, i, j;

outfile.close(); // close output mid = (first + last)/2;
// file for (i = first, j = first; i � mid; ++ i, j = j + 2)

y[i] = x[j];
// Release the data array
delete [] x; for (i = mid, j = first + 1; i � last; ++ i, j = j + 2)

� y[i] = x[j];

void FHT (double y[], double g[], double x[], const int N) for (i = first; i � last; ++ i)
� x[i] = y[i];
int i, j, m; �

Figure 9. A C�� program for fast Hartley transform.
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poses. Also, for speed-critical, real-time applications, the Obviously, F(u, v) is separable. Hence the one-dimensional
hardware implementation of the discrete Hartley transform fast transform algorithm can be used to compute F(u, v),
requires less hardware and is more efficient. These inherent F(�u, v), F(u, v), and F(�u, �v), and afterwards H(u, v) can
advantages and the availability of the fast algorithms are the be obtained through simple addition and subtraction.
reasons why the Hartley transform is finding applications in As stated earlier, the Hartley transform has many advan-
many areas of science and engineering such as power engi- tages over the Fourier transform, mainly because the Hartley
neering, data compression, speech coding, speech processing, transform is real for a real function or a real data sequence.
image coding, image processing, optics, digital filtering, and It is computationally more efficient with respect to time and
biomedical engineering. storage space. Additionally, for hardware implementation,

the Hartley transform requires less hardware or VLSI area
on the chip than the Fourier transform. An application thatMULTIDIMENSIONAL HARTLEY TRANSFORM
uses the Fourier transform can use the Hartley transform in-
stead with some possible advantages.The one-dimensional definition of the Hartley transform can

Although the transform was introduced in 1942 by Har-easily be extended for multidimensional cases. Particularly,
tley, it is R. N. Bracewell’s 1983 work (2) and his other subse-the two-dimensional Hartley transform for a function h(x, y)
quent works that have brought attention to and popularizedcan be described as
the Hartley transform. It has been found that the Hartley
transform is very suitable for optical implementation because
the transform representing the optical intensity is real for a

H(α, β) =
∫ ∞

−∞

∫ ∞

−∞
h(x, y)cas[2π(αx + βy)] dx dy (13)

real image (2). The Hartley transform has found many appli-
and the corresponding two-dimensional inverse Hartley cations in science and engineering. The trend shows that the
transform can be described as interest in the Hartley transform will continue in the future.

The interest is evident from increasing number of publica-
tions on its theoretical development as well as on its applica-h(x, y) =

∫ ∞

−∞

∫ ∞

−∞
H(α, β)cas[2π(αx + βy)] dα dβ (14)

tions every year.

Properties of the two-dimensional Hartley transform can be
obtained in the same way as for the one-dimensional case.
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HAZARDS, ELECTROLYTIC CELLS. See ELECTROLYTIC

CELL SAFETY.
HDTV TRANSMITTERS. See TRANSMITTERS FOR DIGITAL

TELEVISION.
HEALTH CARE BY TELEVISION. See TELEMEDICINE.
HEALTH CARE ENGINEERING. See CLINICAL ENGI-

NEERING.
HEALTHCARE INFORMATION SYSTEMS. See MEDI-

CAL INFORMATION SYSTEMS.


