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HILBERT SPACES

Hilbert spaces are an essential tool for formulating and proving theories in many fields of science and engineer-
ing. For example, in quantum mechanics corresponding to each observable (a quantity that can be measured,
such as position, momentum, or energy) is a self-adjoint operator in an appropriate Hilbert space. In wave
scattering theory the convergence of various computational (finite difference or finite element) methods can
be validated in suitable Hilbert spaces, which can guide one to choose the most suitable (efficient, accurate,
robust) computational methods for a particular simulation.

A Hilbert space is a vector space equipped with an inner product, also called a scalar product, together
with the requirement that a sequence {un} of vectors has a limit within the space whenever it has the property
that the distance between two members of the sequence un and um can be made arbitrarily small when the
indices n and m are large. One familiar example is the Euclidean plane, where the vectors can be represented
by ordered pairs (x, y) of real numbers. In this case the inner product between (x1, y1) and (x2, y2) is just x1x2 +
y1y2. The plane is an example of a finite dimensional Hilbert space. In applications of Hilbert space theory to
differential equations, one uses infinite dimensional Hilbert spaces in which the “vectors” are functions defined
on some fixed set. The inner product in a Hilbert space enables one to define the distance and angle between
vectors, which, in turn, leads to the expansion of vectors in terms of special sets of vectors called orthonormal
bases. When applied to Hilbert spaces of functions, this includes expansions of functions in terms of Fourier
series and other well-known orthogonal sets of functions, such as wavelets.

In a Hilbert space setting an operator is a mapping that takes an input from a Hilbert space and maps it
to an output in the same or another Hilbert space. Operators are generalizations of functions that map complex
numbers to complex numbers. In finite dimensions each matrix defines an operator by multiplication. In Hilbert
spaces of functions one is interested in differential and integral operators, such as the Laplace operator and
Fourier transform. Many of the boundary value problems in classical field theory can be formulated as operator
equations in a Hilbert space. For example, Poisson’s equation [see Eq. (11)] can be considered as an operator
equation in a Hilbert space of functions. Similarly, partial differential equations such as the wave equation
[Eq. (18)] can be viewed as an ordinary differential equation in which the value of the unknown at each time
is an element of a Hilbert space of functions.

An important class of operators are linear operators, which preserve vector addition and multiplication
by complex numbers. They can be measured in magnitude via their norms, which are analogous to the absolute
value of a complex number. Furthermore, certain problems involving linear operators can be solved via their
spectra, which are a generalization of the set of eigenvalues of a matrix. In particular, this enables one to form
functions of an operator. When applied to quantum mechanics, this allows one to find the operator corresponding
to a function of an observable and to prove that an observable can assume values only in the spectrum of its
corresponding operator.
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2 HILBERT SPACES

The Geometry of Hilbert Space

The following is an overview of some important concepts and results in Hilbert space theory; for more details
the reader can consult standard references in this area such as Blank, Exner, and Havlicek (1), Dunford and
Schwartz (2), Kato (3), Naylor and Sell (4), Riesz and Sz.-Nagy (5), Schechter (6), von Neumann (7), and Yosida
(8).

A Hilbert space H is a vector space equipped with an inner product such that H is complete in the sense
defined in this section. An inner product is a function that assigns a complex number (u, v) to each pair of
elements u, v in H so that the following algebraic laws are satisfied:

H is called a real Hilbert space if “complex numbers” in the definition is replaced by “real numbers.” A
well-known example of a Hilbert space is the set of all n-tuples x = (x1, . . ., xn) of complex numbers xi with the
inner product (x, y) = x1y∗

1 + ··· + xny∗
n. This space is often denoted by Cn, and by Rn if the xi are restricted

to be real numbers. An infinite dimensional analog of this is l2, which denotes the Hilbert space of all infinite
sequences x = {xn} of complex numbers such that �n |xn|2 < ∞. The inner product is given by (x, y) = �n xny∗

n.
The L2 spaces are continuous analogs of l2 and are useful in problems where the independent variable is
continuous instead of discrete, such as in differential equations and quantum mechanics. If T is a positive
number, then the Hilbert space L2(0, T) consists of all square integrable functions f (t) defined on the interval 0
< t < T; that is, the f (t) that satisfy

∫
T

0 |f (t)|2 dt < ∞. The inner product, defined by (f , g) = ∫
T

0 f (t)g(t)∗ dt, is
often associated with energy in many physical situations. For example, let v(t) be the voltage dropped between
the two ports of a circuit element and let i(t) be the current through the element. Then

∫
T

0 v(t)i(t) dt = (v, i)
is the energy lost in the element during the time interval 0 < t < T. The space L2(a, b) is defined in a similar
manner for any interval a < t < b in the real line. More generally, if E is a set in Rn, then L2(E) is the space of
all functions u(x) defined for x = (x1, . . . xn) in E such that

∫
E |u(x)|2 dx < ∞, where dx = dx1 . . ., dxn, and the

integral is a multiple integral over E. Throughout the following E will denote an open set in Rn and B is the
boundary of E. (E being open means that B is not included in E.) We shall just write L2 for L2(E) when the set
E is clear from the context.

A real Hilbert space H can naturally be extended to a complex Hilbert space consisting of all objects of the
form u + iv, where u and v are in H. On the other hand, a complex Hilbert space can also be regarded as a real
Hilbert space by introducing the real-valued inner product defined by Re(u, v), where Re denotes the operation
of taking the real part of a complex number. In the following H can be either a real or complex Hilbert space
except where noted otherwise. In the case of a real Hilbert space one may omit the complex operations such as
∗ and Re in the formulas.

An inner product provides a vector space with all the geometric structure of two- and three-dimensional
Euclidean space. The length or norm ‖u‖ of a vector u in H is defined by ‖u‖ =

√
(u,u), while ‖u − v‖ is the

distance between two vectors u and v. (Note, that the length |x| = (|x1|2 + ··· + |xn|2)1/2 of a vector in Cn will be
denoted by |x| instead of ‖x‖.) This length satisfies a number of the familiar properties of the length of two- and
three-dimensional vectors, including the triangle inequality and parallelogram law. The triangle inequality,
‖u + v‖ ≤ ‖u‖ + ‖v‖, says that the length of any side of a triangle is less than the sum of the lengths of the
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other two sides. The parallelogram law,

expresses the fact that the sum of the squares of the lengths of the diagonals of a parallelogram is equal to the
sum of the squares of the lengths of the sides. The parallelogram law is an easy consequence of the definition
of length in terms of the inner product and the properties of the inner product. The triangle inequality follows
from the easy-to-verify identity ‖u + v‖2 = ‖u‖2 + ‖v‖2 + 2 Re(u, v) and the Schwarz inequality

which says that the absolute value of the inner product of two elements is no bigger than the product of the
lengths of the elements. See Ref. 8 (p. 40) for a proof of the Schwarz inequality.

An important technique in Hilbert space theory is the construction of solutions of various equations as
the limit of a sequence or series. In a general Hilbert space there are two ways in which a vector u can be the
limit of a sequence of vectors {un}. One says {un} converges to u (or converges strongly to u) if the distance
from un to u approaches 0 as n → ∞ (i.e., ‖un − u‖ → 0 as n → ∞; one often writes un → u when this holds).
One says {un} converges weakly to u if for each v in H the sequence of complex numbers (un, v) converges to (u,
v). One writes un ⇀ u in this case. For a sequence of vectors in Cm both methods of convergence are the same;
that is, {xn}= {(xn1, . . ., xnm)} converges both strongly and weakly to x = (x1, . . ., xm) if for each j the sequence
of complex numbers {xnj} converges to xj. However, in infinite dimensions these two methods of convergence
differ. It follows from the Schwarz inequality that if {un} converges strongly to u, then it converges weakly
to u. However, a sequence can converge weakly but not strongly. Consider, for example, H = L2(0, T). Here a
sequence of functions {f n(t)} converges strongly to a function f (t) if

∫
T

0 |f n(t) − f (t)|2 dt → 0 as n → ∞. This
is also called convergence in the L2 sense. On the other hand, {f n(t)} converges weakly to f (t) if for each g(t)
in L2(0, T) one has

∫
T

0 f n(t)g(t) dt → ∫
T

0 f (t)g(t) dt as n → ∞. For example, let f n(t) = 1 for n < t < n + 1 and
f n(t) = 0 for all other t. Then, using Lebesque’s convergence theorem (Ref. 9, p. 88), one can show that {f n(t)}
converges weakly to 0 in L2(0, ∞) but not strongly to 0. A series �∞

n = 1 un converges to u if the sequence of
partial sums {�N

n = 1 un} converges to u as N → ∞.
A sequence {un} is said to be a Cauchy sequence if the distance between different elements of the sequence

approaches 0 as the indices get large (i.e., ‖un − um‖ → 0 as n, m → ∞). A sequence that converges is a Cauchy
sequence since ‖un − um‖ ≤ ‖un − u‖ + ‖um − u‖ by the triangle inequality. However, the opposite is not
necessarily true (i.e., there are vector spaces equipped with inner products in which a vector space with some
Cauchy sequences do not converge). The case in which a vector space with an inner product has the property
that every Cauchy sequence converges is important for establishing the existence of solutions to various types
of equations. A vector space H is said to be complete if every Cauchy sequence converges. It turns out that every
vector space equipped with an inner product can be extended to a Hilbert space, which is called the completion
of the original vector space; see Ref. 5, p. 331. In what follows many of the definitions and concepts are valid
in any vector space with an inner product, while the theorems that show the existence of a solution to certain
types of equations are usually valid only for a Hilbert space. The proof of the completeness of the L2 spaces
involves the theory of Lebesgue integration; see Ref. 9, p. 117.

In the L2 spaces two functions f (t) and g(t) are considered to be the same if they are equal for almost all
t (i.e., if they are equal except on a set of measure zero). A set S of real numbers has measure zero if for each
positive number ε there is a sequence of intervals such that the total length of the intervals is less than ε and
each point of S is contained in one of the intervals; see Ref. 9, p. 54. For example, the set S consisting of all the
integers has measure zero.
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A subset S of H is closed if, whenever a sequence {un} of elements of S converges to an element u of H, u
is in S. In other words, S is closed if it contains the limit of any convergent sequence in S. For example, let S be
the set of functions u(t) in L2(−∞, ∞) such that u(−t) = u(t) for almost all t (i.e. the set of even functions). Then
S is closed. On the other hand, let S1 be the set of functions that are equal almost everywhere to a function
that is continuous. S1 is not closed since there are sequences of continuous functions that converge in L2 to
functions that are not continuous.

The closure of a subset S of H is the set of elements u in H such that there exists a sequence {un} in S
which converges to u. A subset S of H is called dense if its closure is all of H. For example, let C∞

0(E) be the
set of all functions u(x) that have continuous partial derivatives of all orders and for which there is a closed,
bounded subset K of E such that u(x) = 0 outside K. Then C∞

0(E) is a dense subset of L2(E); see Ref. 1, p. 1641.
This fact can be used to show that most differential operators are defined on dense subsets of L2(E).

If a linear subspace M of a Hilbert space is closed, then it is a Hilbert space in its own right. If M is not
closed, then it is not complete with the inner product of H, so it is an example of a vector space with an inner
product that is not a Hilbert space. For example, the set S1 mentioned previously is an example of a vector
space with an inner product that is not complete.

The Schwarz inequality allows one to define the angle θ between two vectors via the formula Re(u, v) = ‖u‖
‖v‖ cos θ, which is familiar in two and three dimensions. Two elements u and v are said to be orthogonal if (u,
v) = 0. In the case that H is a real Hilbert space, this says that the angle between u and v is π/2. We say that
u is orthogonal to a subset M of H if u is orthogonal to every v in M. The orthogonal complement of a set M is
the set of all elements in H that are orthogonal to M.

Many interesting least squares problems can be viewed as finding the shortest distance from a vector to
a subspace. More precisely, suppose M is a linear subspace of H and u is a vector in H and one wants to find v
in M such that the distance from v to u is less than the distance from w to u for all other w in M. It is not hard
to see (see Ref. 8, p. 82) that this occurs precisely if v − u is orthogonal to M. This v is called the orthogonal
projection of u onto M, and the function P that maps u to v is called the projection operator of H onto M. The
following projection theorem establishes that there is precisely one such v if M is closed:

Theorem 1. (projection theorem) Let M be a closed linear subspace of a Hilbert space H. For any u in H there
is a unique v in H such that ‖u − v‖ ≤ ‖u − w‖ for all w in M. This v is characterized by (v − u, w) = 0 for all w
in M. Thus u can be uniquely written as u = v + z, where v is in M and z is in the orthogonal complement of M.

The basic idea of the proof is quite simple. Let d be the greatest lower bound of the distances of elements
of M to u. Take a sequence {vn} of vectors in M such that the distance from vn to u approaches d. Then one can
use the parallelogram law to show that this is a Cauchy sequence and hence converges to an element v of M.
It is then quite easy to show that the distance from v to u is d, and hence v is the desired element; see Ref. 8,
p. 82 for details.

It is well known that in finite dimensions an orthogonal coordinate system can be defined by a finite
orthonormal set of vectors. This is still useful in an arbitrary Hilbert space, but one has to allow infinite
orthonormal sets. For simplicity we restrict our attention to countably infinite sets. A finite or infinite sequence
{un} of elements is called an orthonormal set if each un has length one and un is orthogonal to um for different
n and m. The set is called complete if there is no other vector in H orthogonal to all the un. A complete
orthonormal set is also called an orthonormal basis. A classic example of a complete orthonormal set is the
sequence of trigonometric functions
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considered as elements of L2(−π, π). Showing that these are orthonormal is simply a matter of integration,
but showing that they are complete requires more advanced tools; see Courant and Hilbert (10), p. 65. There
are many more examples of complete orthonormal sets, including the well-known orthogonal polynomials such
as the Legendre polynomials in L2(−1, 1) and the spherical harmonics in L2(S), where S is the unit sphere in
three dimensions; see Ref. 10, chap. II. Orthonormal bases are important because one can expand an arbitrary
vector as a superposition of the basis elements, as in the next theorem. This, in turn, leads to formulas for the
solution of differential equations for which the basis elements are particularly suited.

Theorem 2. Let {un} be an orthonormal set and {an} be a sequence of complex numbers. Then �∞
n = 1 anun

converges if and only if �∞
n = 1 |an|2 < ∞. In this case one has ‖�∞

n = 1 anun‖2 = �∞
n = 1 |an|2, a generalization of

the Pythagorean theorem. If u is in H, then �∞
n = 1 (u, un)un is the orthogonal projection of u on the subspace

M, which is the closure of the set of all superpositions of the un, and Bessel’s inequality �∞
n = 1 |(u, un)|2 ≤

‖u‖2 holds. If the set is complete, then Bessel’s inequality becomes an equality, called Parseval’s formula, and
u = �∞

n = 1 (u, un)un.

The scalars (u, un) are called the (generalized) Fourier coefficients of u with respect to un. When this
theorem is applied to the trigonometric sequence of Eq. (3), one obtains the classical Fourier series expansion

Other examples include the expansions of functions in terms of other well-known orthogonal sets of functions,
such as the Legendre polynomials and spherical harmonics; see Ref. 10, chap. II.

Linear Operators

A linear operator A is a function that maps vectors u in one vector space, called the domain of A and denoted
by DA, to vectors Au in another vector space, which satisfies A(αu + βv) = αAu + βAv for all u and v in DA and
complex numbers α and β. Here we shall be interested in the case where DA is a subset of a Hilbert space H and
A maps DA into H, or possibly a different Hilbert space. In the case where H is Rn or Cn, a linear operator can
be defined by an n × n matrix {aik} by letting Ax = y, where yi = �n

k = 1 aikxk. The identity operator I defined
by Iu = u is a linear operator in any Hilbert space. Multiplication by a fixed function a(x) is a linear operator
in L2(E). More precisely, let H = L2(E) with a(x) a fixed scalar valued function defined for x in E. DA is the set
of all functions u(x) in H such that the function a(x)u(x) is also in H, and one sets

for u(x) in DA. If a(x) is bounded, then DA = H.
Perhaps the most important class of operators are differential operators, such as the ordinary differential

operator
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where p(t), q(t), and r(t) are given functions defined for t in an interval a < t < b. When working with differential
operators, another group of Hilbert spaces called the Sobolev spaces are very useful; see Ref. 8, p. 55. The Sobolev
space H1(a, b) consists of all functions f (t) in L2(a, b) whose derivatives f ′(t) = df /dt are also in L2. The inner
product and norm are given by (f , g)1 = ∫

b
a [f (t)g(t)∗ + f ′(t)g′(t)∗] dt and ‖f‖2

1 = ∫
b

a (|f (t)|2 + |f ′(t)|2) dt. H2(a,
b) is defined in an analogous manner by requiring that the second derivative of f (t) lie in L2 as well. If p(t),
q(t), and r(t) are all bounded and u(t) is in H2(a, b), then Lu in L2(a, b). If one is solving an initial or boundary
value problem associated with L, then one can incorporate the initial or boundary conditions into the domain
of L. For example, if the problem requires the solution to be zero at t = a and t = b, then one can restrict the
domain of L to functions u in H2(a, b) such that u(a) = u(b) = 0. See Ref. 3, p. 146 for a more detailed discussion
of these operators.

An important partial differential operator is the Laplacian �u = ∂2u/∂x2
1 + ··· + ∂2u/∂x2

n. As with ordi-
nary differential operators, the Sobolev spaces are an invaluable tool when working with partial differential
operators. If E is an open set in Rn, then H1(E) is the set of all functions u(x) in L2(E) with the property that
all of its first partial derivatives also lie in L2(E). The inner product (,)1 in this space is given by (u, v)1 = (u,
v) + �n

i = 1 (∂u/∂xi, ∂v/∂xi), where (,) is the inner product in L2(E). H2(E) is defined in a similar manner. In
this context one can use the following generalization of the classical notion of partial derivatives: One says
that ∂u/∂xi = v in E if there is a sequence of functions {um(x)} in L2(E) such that each um has continuous first
partial derivatives that lie in L2(E) and such that um → u and ∂um/∂xi → v in L2(E) as m → ∞; see Ref. 8,
pp. 46–59 for more discussion of generalized derivatives or weak derivatives. Just as with ordinary differential
operators, one often includes boundary conditions in the domain of the operator. Suppose one has a boundary
value problem involving the Laplace operator on a subset E of Rn with zero Dirichlet boundary conditions.
Then the corresponding operator, �d, would have a domain, D�d, consisting of all functions in H2(E) that are
0 on B and

See Ref. 3, pp. 297–305 for more details and examples.
The solution of many differential equations can be expressed in terms of integral operators of the form

where the kernel k(x, y) is a given function of x and y in an open set E of Rn. (For a boundary value problem,
the kernel is often called the Green’s function.) For example, the solution of d2u/dt2 = f (t) for 0 < t < 1 with
boundary conditions u(0) = u(1) = 0 is u(t) = ∫

1
0 k(t, s)f (s) ds with k(t, s) = (t − 1)s for s < t and k(t, s) = (s − 1)t

for t < s; see Ref. 10, pp. 351, 371.
One possible domain for the integral operator of Eq. (7) is the set of all functions u in H = L2(E) such that

the integral of Eq. (7) exists for almost all x and the resulting function Ku is also in H. However, it often turns
out that K has a natural extension to a larger domain; this is discussed further later in this article.

Convolution operators are integral operators of the form Gu = g∗u, where

with g(x) a function of x in Rn. These operators arise in the solution of constant coefficient differential equations,
in filtering problems, and in other translation invariant problems. For example, a solution of Poisson’s equation,
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�u = f (x), in three dimensions is u = g∗f , where g(x) = 1/(4π|x|); see Ref. 10, p. 368. The Hilbert transform
Hu(x) = ∫ ∞ −∞ u(y)/(x − y) dy is a convolution operator with kernel 1/x.

An important integral operator is the Fourier transform F , which maps the function f (t) to the function
F(ω) = 1/

∫ ∞ − ∞ e− jωtf (t) dt, where j = . Thus F = F f . This integral exists for all ω if
∫ ∞ − ∞ |f (t)| dt

< ∞. Even though not every function f (t) in L2(−∞, ∞) meets this requirement, it turns out that the operator
F has a natural extension to all f (t) in L2(−∞, ∞) so that F = F f also lies in L2(−∞, ∞). In fact, F , as well
as differentiation and convolution, can be extended to the class of tempered distributions, which includes not
only functions in L2(−∞, ∞) but also distributions like the Dirac delta function; see Ref. 8, p. 146. A function
f (t) can be recovered from its Fourier transform F(ω) via the inverse Fourier transform F

− 1, which is given by
f (t) = 1/

∫ ∞ −∞ ejωtF(ω) dω; see Ref. 8, p. 147. This can be written as F
− 1

F f = f . Thus F
− 1

F = I.
This last formula is stated in terms of the product (or composition) of operators. If A and B are linear

operators, then the product AB denotes the linear operator defined by (AB)u = A(Bu); the domain of AB is the
set of all u in the domain of B such that Bu is in the domain of A. If A and B are operators defined by n × n
matrices, then the matrix of AB is the usual matrix product of the matrices of A and B. The Fourier transform
extends to functions u(x) of n variables x = (x1, . . ., xn) by the formula

where (ξ, x) = ξ1x1 + ··· + ξnxn. The Fourier transform converts differentiation and convolution to multiplication;
that is,

See Ref. 8, p. 160. Thus taking Fourier transforms converts any constant coefficient differential operator on Rn

into a multiplication operator. For example, applying Eq. (7) twice gives F (�u) = −|ξ|2 F (u).
A linear operator A is bounded if there exists a constant M such that ‖Au‖ ≤ M‖u‖ for all u in DA, and the

smallest constant M is defined to be the norm of operator A, denoted by ‖A‖. A being bounded is equivalent to
A being continuous (i.e., if {un} is a sequence in DA that converges to u, which is also in DA, then Aun → Au).
For example, a multiplication operator (5) is bounded if and only if a(x) is a bounded function; that is, there
is a constant C such that |a(x)| ≤ C for almost all x. In this case ‖A‖ ≤ C. Showing that a particular integral
operator of the form of Eq. (7) is bounded can require some sophisticated work with inequalities. For example,
suppose

∫
E |k(x, y)| dy ≤ M for all x, and

∫
E |k(x, y)| dx ≤ M for all y. Then it can be shown that K is defined on

all of L2(E) and is bounded from L2(E) into L2(E) with ‖K‖ ≤ M; see Ref. 3, p. 144. In particular, a convolution
operator is bounded if

∫
Rn |g(x)| dx < ∞. The Hilbert transform does not meet this condition, but it can also

be shown to be bounded in L2(−∞, ∞); see Ref. 1, pp. 1041–1073.
A linear operator T is an isometry if the domain of T is all of H and it preserves inner products; that is,

(Tu, Tv) = (u, v) for all u and v in H. This implies T also preserves lengths and distances ‖Tu‖ = ‖u‖ for all u.
In particular, an isometry is bounded and ‖T‖ = 1. If, in addition, the equation Tu = f has a solution u for each
f in H, then T is said to be unitary. The Fourier transform and its inverse are examples of unitary operators;
see Ref. 8, p. 154.

Most differential operators are not bounded when regarded as an operator from L2 to itself. For exam-
ple, consider Lu = d2u/dt2 as an operator from L2(0, 2π) to itself. Then L(sin(nt)) = −n2 sin(nt) for any n. So
‖L(sin(nt))‖/‖sin(nt)‖= n2, which can be arbitrarily large. On the other hand, many of these same operators
are bounded when regarded as operators from a Sobolev space to L2. For example, the operator L given by Eq.
(5) is a bounded operator from H2 to L2 if p(t), q(t), and r(t) are bounded.
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A linear operator A is closed if whenever {un} is a sequence in DA, and both un → u and Aun → f , then
u is in DA and Au = f ; that is, the set of ordered pairs (u, Au), where u varies over DA, is a closed set in the
product space H × H of all ordered pairs (u, v), where u and v are in H. A bounded operator is closed if and
only if DA is a closed subset of H. If an operator is not closed, it may be possible to extend it to a closed operator
Ac, by defining Acu = f if {un} is a sequence in DA, and both un → u and Aun → f . This gives a unique f for
the value of Acu if A satisfies the condition that if whenever {un} is a sequence in DA, and un → 0 and Aun →
f , then f = 0; such an operator is called closable. For example, any bounded operator is closable and the closure
is also bounded with the same norm as is defined on the closure of DA. In particular, it is possible to extend
the Fourier transform and its inverse in this way to all of L2(Rn). For simplicity, we will denote the extended
operators by F and F

− 1.

The Equation Au = f

Many problems in the classical theory of fields can be thought of as operator equations of the form Au = f
in H = L2(E), where E, a subset of Rn, is the domain of the independent variables. In the operator equation
Au = f , the problem is to find u given A and f . Consider, for example, the boundary value problem consisting
of Poisson’s equation in E with zero Dirichlet boundary conditions on B, the boundary of E. Given f (x) defined
in E, one wants to find u(x) such that

This can be written as �du = f , where �d is the Laplace operator defined by Eq. (6).
The problem Au = f is well posed if there is one and only one solution u for any f and u depends

continuously on f . Given an operator A, its range, denoted by RA, is the set of elements f for which the equation
Au = f has a solution u in DA. Thus the equation Au = f has a solution for each f in H if and only if the range
of A is H. The operator A is said to be invertible if there is only one solution to the equation Au = f for any
f in the range of A. If A is linear, this is equivalent to Au = 0 only if u = 0. If A is invertible, then one can
define the inverse operator of A, denoted by A− 1, by setting A− 1f = u if Au = f . Often the term A− 1 is used as
a synonym for A being invertible. The domain of A− 1 is the range of A, and one has A− 1A = I and AA− 1 = I,
where the identity operator is restricted to DA in the first case and DA

− 1 in the second. If A is the operator
corresponding to an n × n matrix, then A is invertible if and only if the determinant of the matrix is not zero
and the matrix of A− 1 is the usual matrix inverse of A. A multiplication operator of the form of Eq. (4) is
invertible if a(x) �= 0 for almost all x, in which case A− 1 is the multiplication operator by 1/a(x). In this case
A− 1 will be bounded with domain L2(E) if 1/a(x) is bounded uniformly almost everywhere. Since the Fourier
transform converts differentiation into multiplication [see Eq. (10)], it follows that the Laplace operator on
all of Rn is invertible and its inverse is the convolution operator with kernel equal to F

− 1(−(2π)− n/2|ξ|− 2). To
summarize, the problem Au = f is well posed if and only if A is invertible and A− 1 is a bounded operator with
domain equal to H.

Showing that an operator A is invertible and that A− 1 is bounded is equivalent to showing that ‖Au‖ ≥
c‖u‖ for some positive constant c. To obtain this inequality, it suffices to show an inequality such as |(Au, u)|
≥ c‖u‖2 for some positive constant c. Then one can use the Schwarz inequality of Eq. (2) to conclude that ‖Au‖
‖u‖ ≥ c‖u‖2, which gives ‖Au‖ ≥ c‖u‖. Consider, for example, the Laplace operator �d with Dirichlet boundary
values defined by Eq. (6). For simplicity, suppose that E is a bounded domain with smooth boundary B. Then
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by Green’s integral formula (see Ref. 11, p. 441) one has

if v = 0 on B. Here (,) is the inner product in L2(E). Applying this formula, one obtains (�du, u) = −�n
k = 1

‖∂u/∂xk‖2 for u in D�d, where ‖ ‖ is the norm in L2(E). An inequality of Poincaré (see Ref. 12, p. 169) says that
for a bounded domain E there is a constant C such that ‖u‖2 ≤ C �n

k = 1 ‖∂u/∂xk‖2 for all u in H1(E) that are 0
on B. Thus

where ‖ ‖1 is the norm in H1(E) and c is a positive constant. Thus �d has a bounded inverse. Showing that the
range of �d is all of L2(E) requires some more work; see the Lax–Milgram theorem later in this article.

A functional on a vector space V is a mapping from V to the complex numbers; a linear functional is one
that is linear. The conjugate (or dual) space of H, denoted by H∗, consists of all bounded linear functionals F
on H such that DF = H. A simple example is F(f ) = 1/2π

∫
2π

0 f (t) dt, which is the functional that assigns to each
function f in H = L2(0, 2π) its average value. This is a special case of the following general way to obtain linear
functionals. Let v be a fixed element of H and let Fv(u) = (u, v). Then this linear functional that is bounded
by the Schwarz inequality. In fact, ‖Fv‖ = ‖v‖. The Riesz representation theorem says that any bounded linear
functional on H can be obtained from an element v of H in this way.

Theorem 3. (Riesz) Let F be a bounded linear functional defined everywhere on a Hilbert space H. Then there
exists a unique element v in H such that ‖v‖ = ‖F‖ and F(u) = (u, v) for all u in H.

The proof is quite easy. Let M be the set of all u such that F(u) = 0. M is a closed linear subspace of H.
By the projection theorem there is a v in H that is orthogonal to M and has length 1. By multiplying F by a
constant, we may reduce to the case where F(v) = 1. Now let u be any element of H. Note that u − F(u)v is in
M. Thus (u, v) = (u − F(u)v, v) + (F(u)v, v) = F(u).

The Riesz representation theorem can be used to prove the Lax-Milgram theorem, which, in turn, is useful
for proving the existence of solutions to many elliptic boundary value problems. This theorem is often stated
in terms of bilinear forms that are closely related to linear operators. A sesquilinear form B associates a scalar
B(u, v) to each pair of elements u and v in a vector space DB, called the domain of B, such that B(u, v) is linear
in u for each fixed v and conjugate linear in v for each fixed u; that is, B(u, αv1 + βv2) = α∗B(u, v1) + β∗B(u,
v2). An example is the Dirichlet form

where (,) is the inner product in L2(E). The domain is the set of functions in H1(E) that are 0 on B, the boundary
of E. A bilinear form B(u, v) is said to be bounded if there is a constant C such that |B(u, v)| ≤ C‖u‖ ‖v‖ for all
u and v in DB. For example, the Dirichlet form is bounded with respect to the norm in H1(E) but not L2(E).

Given a sesquilinear form B with dense domain, there is a linear operator A associated with B. Its domain
is the set of all u such that there is an f such that B(u, v) = (f , v) for all v in DB. This f is uniquely determined
since DB is assumed to be dense. Consider the Dirichlet form defined by Eq. (14). Since (−�du, v) = D(u, v) for
u and v in D�d, it follows that the operator associated with the Dirichlet form is either equal to or an extension
of −�d. In fact, the two operators are equal; this is an important theorem of Friedrichs; see Ref. 1, p. 1789.
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The importance of sesquilinear forms is that they are a useful tool for proving the existence of solutions to the
equation Au = f when A is the associated operator. This is the content of the following theorem.

Theorem 4. (Lax–Milgram) Let H1 be a Hilbert space with norm ‖ ‖1 and B(u, v) a bounded bilinear form on
H1. Assume that B is coercive on H1—that is, there exists a constant c > 0 such that |B(u, u)| ≥ c‖u‖2

1 for all
u in H1. Then for any bounded linear functional F on H1 there exists a unique element w in H1 such that B(u,
w) = F(u) for all u in H1. Suppose H is another Hilbert space with norm ‖ ‖ such that H1 is a dense subset of
H and there exists a constant C such that ‖u‖ ≤ C‖u‖1 for all u in H1. Let A be the operator in H associated
with B. Then A is invertible, the range of A is all of H, and A− 1 is a bounded linear operator on H.

For a proof, see Ref. 8, p. 92. According to Eq. (13), the Dirichlet form defined by Eq. (14) satisfies the
hypotheses of the Lax–Milgram theorem with H1 being the subspace of H1(E) consisting of functions in H1(E)
that are 0 on B. If one takes H = L2(E), then we have noted that the operator in H associated with the Dirichlet
form is �d. Thus the Lax–Milgram theorem establishes the existence of a solution to Poisson’s equation [Eq.
(11)].

A linear operator defined by a matrix mapping Cn to itself has the property that its range is all of Cn if
and only if it is invertible. This is not true for a general operator in infinite dimensions, but there are some
important special cases in which this is true. One of these involves compact operators. A linear operator on
a Hilbert space is said to be compact if it maps any bounded sequence into a sequence with a convergent
subsequence. In particular, a compact operator is bounded. It can also be shown that the identity mapping is a
compact operator from H1(E) to L2(E) if E is a bounded set; see Ref. 1, p. 1691. This can be used to show that
�− 1

D is a compact operator in L2(E) if E is bounded. The following theorem, called the Fredholm alternative
theorem, extends the aforementioned result of matrices in finite dimensions; for a proof see Ref. 8, sec. X.5.

Theorem 5. (Fredholm) Let A = C − λI, where C is compact and λ �= 0 is a complex number. Then A is invertible
if and only if the range of A is all of H.

Let H be a Hilbert space and A an operator on it with DA is dense in H. The function B(u, v) = (u, Av)
is a sesquilinear form. The associated operator A∗ is called the adjoint of A; that is, (u, Av) = (A∗u, v) for u in
DA∗ and v in DA. For example, if A is an n × n matrix {aik}, then the matrix {bik} of A∗ is just the conjugate
of the transpose of A (i.e., bik = a∗

ki). If A is the multiplication operator of Eq. (4), then A∗ is the multiplication
operator by a(x)∗. If K is an integral operator of the form of Eq. (7), then K∗ is equal to or an extension of the
integral operator with kernel p(x, y) given by p(x, y) = k(y, x)∗. For a unitary operator T one has T∗ = T − 1.

An operator A is said to be Hermitian if (Au, v) = (u, Av) for all u and v in DA. If A is Hermitian, then A∗
is equal to or an extension of A. For example, it follows from Eq. (12) that �d is Hermitian. If A is invertible,
then A is Hermitian if and only if A− 1 is Hermitian. If A∗ = A, then A is said to be self-adjoint. For example, if
A is an n × n matrix {aik}, then A is self-adjoint if aik = a∗

ki for all i and k. The multiplication operator of Eq. (4)
is self-adjoint if a(x) is real for all x. If A is a Hermitian operator with domain equal to H, then A is self-adjoint.
If A is invertible, then A is self-adjoint if and only if A− 1 is self-adjoint. If A is Hermitian and invertible and
A− 1 has domain equal to H, then A is self-adjoint. For example, �d is self-adjoint. An operator A is normal if
AA∗= A∗A. Any self-adjoint or unitary operator is normal. If A is normal, then αA is normal for any complex
number α. Any multiplication operator given by Eq. (4) is normal. Normal operators are important because of
their spectral properties, which are considered next.
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Spectral Theory and Evolution Equations

A number of initial boundary value problems of classical field theory can be cast in the form of an ordinary
differential equation of one of the following two forms:

In these equations A is a linear operator in a Hilbert space H and the unknown u(t) is a function of t ≥ 0 whose
value at each t is an element of H. The solution u(t) should satisfy the differential equation for t > 0 and the
initial conditions for t = 0. For example, the initial boundary value for the heat (or diffusion) equation

can be viewed as an equation of the form of Eq. (15) with A = �d defined by Eq. (6). Similarly, the corresponding
problem for the wave equation

has the form of Eq. (16) with the same A. Equations (15) and (16) are examples of simple evolution equations;
for more general evolution equations, see Ref. 8, chap. XIV. In many cases the solution of these equations can
be obtained in terms of the eigenvalues λn and eigenvectors un of the operator A (i.e., Aun = λnun). Eigenvalues
are part of the spectrum σ(A) of A, which consists of all complex numbers that are not in the resolvent set of
A. The resolvent set, ρ(A), of A consists of all complex numbers λ such that A − λI is invertible and (A − λI)− 1

is bounded and with domain H; the operator valued function R(λ; A) = (A − λI)− 1 defined for λ in the resolvent
set is called the resolvent of A. A number λ can be in the spectrum for one of three reasons:

(1) A − λI does not have an inverse (i.e., there exists u �= 0 satisfying Au = λu). We say λ is an eigenvalue of A
(or λ belongs to the point spectrum of A) and that u is an eigenvector corresponding to λ.

(2) A − λI is invertible, but the domain of (A − λI)− 1 is not dense in H. In this case one says that λ is in the
residual spectrum of A.

(3) A − λI is invertible, and (A − λI)− 1 has a dense domain, but it is unbounded. In this case one says that λ is
in the continuous spectrum of A.
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Note that cases 2 and 3 are impossible if H is infinite dimensional. In the case where A is an operator
in a Hilbert space of functions like L2(E), it is common to use the term eigenfunction for an eigenvector. For
an operator A given by a matrix {aik}, a number λ is an eigenvalue if det{aik − λδik}= 0; otherwise λ is in the
resolvent. Here det is the determinant and δik is 1 if i = k and 0 otherwise.

For the multiplication operator of Eq. (4) a number λ is in the resolvent if a(x) �= λ for almost all x and
the function 1/(a(x) − λ) is bounded and R(λ, A) is the multiplication operator by 1/(a(x) − λ). If a(x) �= λ for
almost all x, but the function 1/(a(x) − λ) is not bounded, then λ is in the continuous spectrum. A number λ is
an eigenvalue for this operator if the set S of x where a(x) = λ has positive measure. In this case any function
that is 0 outside S is a corresponding eigenfunction.

Suppose two operators A and B are related by A = T − 1BT, where T is an invertible operator, and both
T and T − 1 are bounded and defined on all of H. Then A and B have the same spectrum and points in the
spectrum have the same type. For example, Consider the Laplacian � as an operator in L2(Rn). It follows from
Eq. (10) that � = F

− 1MF , where M is the multiplication operator by −|ξ|2; that is, Mv(ξ) = −|ξ|2v(ξ). Hence
the spectrum of � is the negative real axis together with the number 0 and the spectrum consists entirely of
continuous spectra.

It can be shown that for an operator the spectrum is a closed set; see Ref. 3, p. 174. Furthermore, the
spectrum of a self-adjoint operator lies on the real axis. The eigenvectors of a normal operator corresponding
to distinct eigenvalues are orthogonal; see Ref. 3, pp. 271, 274. In the case where the eigenvectors of A form a
complete orthonormal set {un} and there exists a constant C such that the real part of each eigenvalue does
not exceed C, then the solution to Eq. (15) is

If, in addition, the eigenvalues are all real, then the solution to Eq. (16) is

See Ref. 12, pp. 149–150. Thus it is important to know when a normal operator has the property that its
eigenvectors form a complete orthonormal set. One case where this occurs is when the operator is compact.

Theorem 6. (Riesz–Schauder and Hilbert–Schmidt) If C is a compact operator, then the spectrum of C consists
of a finite or infinite sequence {λn} of eigenvalues and possibly the number 0 (which can also be an eigenvalue,
but need not be). Any nonzero eigenvalue λ has finite multiplicity (i.e., the collection of eigenvectors correspond-
ing to λ is a subspace of finite dimension). If, in addition, C is normal, then there is a complete orthonormal
set consisting of eigenvectors of C. If A is an operator such that (A − λI)− 1 is compact for some λ, then the
spectrum of A consists of a finite or infinite sequence of eigenvalues. In the infinite case the eigenvalues have
no finite accumulation point. Every eigenvalue is of finite multiplicity. If, in addition, A is normal, then there
is a complete orthonormal set consisting of eigenvectors of A.

See Ref. 3, pp. 185–188, 280 for a proof of this theorem. According to this theorem, it follows that if E is
a bounded set, then the eigenvalues of �d form a sequence having no finite limit point, every eigenvalue is of
finite multiplicity, and any complex number that is not an eigenvalue is in the resolvent. Furthermore, there
is a complete orthonormal set consisting of eigenvectors of �d. In the case of one dimension, where E is the
interval 0 < x < π and �du = d2u/dx2 and functions u in the domain �d are 0 at x = 0 and x = π, the eigenvalues
are the positive integers and the eigenfunctions are the functions sin(nx).



HILBERT SPACES 13

Not every self-adjoint operator has a complete orthonormal set of eigenvectors. The spectral theorem
(Theorem 7) is the generalization of the Hilbert–Schmidt theorem to arbitrary self-adjoint operators. It requires
a generalization of the notion of a complete orthonormal set called a spectral family. A projection P is a self-
adjoint operator satisfying P2 = P and ‖P‖ = 1 if P �= 0. It can be shown that every projection is given by the
orthogonal projection of H on some closed linear subspace, as in Theorem 1. A family of projections {E(r)}, −∞
< r < ∞ is called a spectral family if (1) E(r)E(s) = E(s)E(r) = E(r) for r < s, (2) E(r) → E(s)u as r → s−, (3) E(r)
has a limit as r → s, (4) E(r)u → 0 as r → −∞, and (5) E(r)u → u as r → ∞. Given a complete orthonormal set
that is the eigenvectors of an operator A, the associated spectral family is defined by E(r)u = �λn≤r (u, un)un.
Using a spectral family a series of the form �∞

n = 1 f (λn)(u, un)un like the ones in Eqs. (19) and (20) can be
generalized to an integral. If f (r) is a complex-valued function defined for real r, then the operator

∫ ∞ −∞ f (r)
dE(r) is defined via the formula (

∫ ∞ − ∞ f (r) dE(r)u, v) = ∫ ∞ −∞ f (r) d(E(r)u, v); see Ref. 3, p. 357.

Theorem 7. (Spectral Theorem) To every self-adjoint operator A in a Hilbert space H there corresponds a
unique spectral family, called the spectral family of A, such that any bounded linear operator that commutes
with A commutes with each E(r) and A = ∫ ∞ − ∞ r dE(r).

See Ref. 3, p. 360 for a proof. For any complex-valued function f (r) defined for real r, let f (A) = ∫ ∞ −∞ f (r)
dE(r). Using the spectral theorem, the formulas of Eq. (19) for the solution to Eq. (15) can be generalized to
u(t) = etAφ provided that A is a self-adjoint operator whose spectrum lies entirely to the right of some number
C. The formula of Eq. (20) for the solution of Eq. (25) can be generalized to u(t) = cos( t)φ + (−A)− 1/2

sin( t)ψ for the same type of operator A.

Applications to Quantum Mechanics

To formulate the quantum mechanical description of a physical system, it is first necessary to have a description
of the system in terms of classical Hamiltonian mechanics, so we begin with a brief review of this; for more
details see Ref. 13. A physical system is described by position coordinates q = (q1, . . ., qn) and their time
derivatives q̇= (q̇1, . . ., q̇n) = dq/dt, and the time evolution of the system is described by a system of differential
equations. For example, the Cartesian coordinates q = (q1, q2, q3) of a single particle of mass m in three
dimensions acted on by a force F satisfy Newton’s equations: m dq̇/dt = F. For conservative systems the equations
of motion can be put in the form of Lagrange’s equations:

where the Lagrangian L = T − U is the difference between the kinetic energy T and potential energy U. In the
preceding example of a particle in three dimensions, suppose F = −∇U, where U = U(q) depends only on q.
Then L(q, q̇) = (m|q̇|2/2) − U(q) and Eq. (21) is equivalent to m dq̇/dt = F. Quantities that are constant in time
are called integrals of motion. For example, the energy function h(q, q̇) =�i q̇i ∂L/∂q̇i − L is an integral of motion
since Eq. (21) implies that dh/dt = 0. If enough integrals of motion can be found so that the relation between q
and t can be expressed in terms of known functions, then the system is said to be completely integrable or to be
a classical integrable system.

To obtain Hamilton’s equations of motion, one introduces the conjugate momenta p = (p1, . . ., pn) by
pi = ∂L/∂q̇i. The Hamiltonian H(q, p) is the result of replacing q̇ by p in h(q, q̇). One can show that Eq. (21) is
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equivalent to Hamilton’s equations:

For details see Ref. 13, pp. 340–342, and Ref. 14, p. 174. In the preceding example of a single particle, one has
H(q, p) = (|p|2/2m) + U(q). If F = F(q, p) is some physical quantity, then it follows from Eq. (22) that

where

is the Poisson bracket of F and H. Thus F is conserved if {F, H}= 0. For simplicity, we assume that L and H
are independent of t; the preceding equations can be generalized to the case where L and H depend on t. See
Ref. 13, pp. 397, 405, and Ref. 14, p. 174 for details.

Quantization is the process of transforming a classical mechanical description of a system into a quantum
mechanical one. In quantum mechanics observables such as coordinates, momenta, and energy are represented
by self-adjoint operators acting on a Hilbert space H, and the state of the system is described by a vector u in
H having length 1. Observables are usually not subject to precise measurement. Rather there is a probability
of measuring a certain value for an observable if the system is in a particular state. The following fundamental
principle of quantum mechanics makes this more precise.

Principle 1 (P1). If u is the state of the system and A is the operator corresponding to an observable, then the
inner product (u, Au) represents the average of a series of measurements of the observable over an ensemble
of systems that are all described by the state u.

As we shall see, the only case when a measurement can be precise is when the state is an eigenvector of
A, in which case the value of the observable is the corresponding eigenvalue. This is of particular importance
for the energy operator H whose eigenvalues En and eigenvectors un satisfy

The un are called stationary states because, as we shall see, they are time invariant. When the system is in a
stationary state un, a measurement of the energy results in the corresponding eigenvalue En. The correspon-
dence between the classical mechanical variables and corresponding quantum mechanical operators should
satisfy the next two fundamental principles.

Principle 2 (P2). If F(q, p) and G(q, p) are two functions of coordinates and momentum, with corresponding
operators A and B, then the operator corresponding to the Poisson bracket {F, G} of F and G should be [A, B]/j.

Principle 3 (P3). If v1, . . ., vn are classical variables with corresponding operators A1, . . ., An that commute
and f (v1, . . ., vn) is any function of v1, . . ., vn, then f (A1, . . ., An) should be the operator corresponding to f (v1,
. . ., vn).

Here = h/(2π) and h is Planck’s constant and [A, B] = AB − BA is the commutator of the operators A and
B. The observables are said to commute if [A, B] = 0. Also, a function of commuting self-adjoint operators can
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be defined in a manner similar to the case of one operator, as in the spectral theorem; see Ref. 15, p. 270. One
implication of this is the following. Suppose v is an observable with operator A and let f (v) be the function that
is 1 in an interval I and 0 outside the interval. Then (u, f (A)u) coincides with the probability of the value of
v being in the interval I if the state is u. However, by the spectral theorem this is equal to

∫ ∞ −∞ f (λ) d(u,
E(λ)u) = ∫

I d(u, E(λ)u), where {E(λ)} is the spectral family associated with A. Thus d(u, E(λ)u) corresponds
to the probability distribution of observing a particular value of the observable when the state is u; see Ref.
7, p. 201. Furthermore, E(A) = E(A, u) = ∫ ∞ −∞ λ d(u, E(λ)u) = (u, Au) is the mean of this distribution. The
usual measure of the uncertainty in observations of the values of A is the standard deviation σ(A) given by
σ(A) = σ(A, u) = [

∫ ∞ −∞ (λ− E(A))2 d(u, E(λ)u)]1/2 = |(A − E(A)I)u|. If I = [λ, λ] = {λ} consists of a single number,
then the probability of measuring the value λ is (E(λ) − E(λ− ))u. This will be 0 unless λ is an eigenvalue. If
λ is an eigenvalue, then this becomes |P(λ)u|2, where P(λ) = E(λ) − E(λ− ) is the projection on the eigenspace
corresponding to λ. In particular, if u is an eigenvector corresponding to λ, then the probability of observing the
value λ for u is 1. Hence, as noted earlier, the only possible result of a precise measurement of an observable
is one of the eigenvalues of the corresponding operator.

One of the fundamental principles of quantum mechanics, Heisenberg’s uncertainty principle, is closely
related to this. It says that for two observables A and B that do not commute it is not possible to find a state
where the uncertainty of measuring each of these observables is arbitrarily small. More precisely, for any state
u one has 2σ(A)σ(B) ≥ |E(AB − BA)|; for a proof see Ref. 7, pp. 230–247.

One implication of property (P2) is the following: Let Q1, . . ., Qn and P1, . . ., Pn denote the operators
corresponding to coordinates and momenta. Since {qi, qk}= {pi, pk}= 0 and {qi, pk}= δik, then

where δik = 1 if i = k and δik = 0 if i �= k. It follows from the uncertainty principle that for any state u one has
σ(Qi)σ(Pi) ≥ /2 (i.e., the product of the uncertainties in the measurements of any position and corresponding
momentum is at least �/2).

There are two formulations of quantum mechanics. One of these, developed by Schrödinger, is called wave
mechanics and is the most widely used, and a discussion of it is given first. The other, developed by Heisenberg,
is called matrix mechanics and a discussion of it follows. In wave mechanics the operators are time independent
and the state variable describing the system varies with time. For a system described by Hamiltonian H(q, p)
the state propagates according to Schrödinger’s equation:

where H = H(Q, P) is the energy operator corresponding to H(q, p). This is an equation of the form of Eq. (15)
with A = −jH /. Using the spectral theorem, one can construct the solution to this differential equation as

where u(0) is the state when t = 0 and {E(λ)} is the spectral family for H . If the eigenvectors of H form a
complete orthonormal set, then Eq. (27) takes the form similar to Eq. (18); that is,
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In the Schrödinger formulation the standard choice of the Hilbert space is H = L2(Rn) with

which satisfy Eq. (25). In this case one can show that E(λ, Qi) is given by E(λ, Qi)u(x) = u(x) for xi ≤ λ and
E(λ, Qi)u(x) = 0 for xi > λ; see Ref. 7, p. 131. From this it follows that |u(x)|2 is the probability density function
of finding the particle at position x if the state is u. In fact, many authors take this result as one of the basic
assumptions of quantum mechanics; see Ref. 7, p. 198, and Ref. 14, p. 25. To get the spectral family for Pi
one can use the fact that the Fourier transform transforms constant coefficient differential operators into
multiplication [see Eq. (10)] so that Pi/ = F

− 1QiF . Since F is a unitary operator, E(λ, Pi/) = F
− 1E(λ, Qi)F .

Consequently, if u is the state of the system, then |F u(ξ)|2 is the probability density of observing a value of ξ

for p/.
When the Qi and Pi are given by Eq. (29), Schrödinger’s equation becomes

In the case of a single particle in Cartesian coordinates acted on by a potential U(q), this becomes

To make the formula of Eq. (27) for the solution more explicit, it is necessary to determine E(λ, H ) more
precisely. For example, in the case of a free particle where U(q) ≡ 0, one has H = F

− 1MF , where M is the
multiplication operator by 2|ξ|2/2m. It follows that e− jHt/ = F

− 1NF , where N is the multiplication operator by
exp(−j|ξ|2t/2m).

For nonzero potentials U(q) it is sometimes possible to find the eigenvalues and eigenfunctions of H in
terms of familiar functions. If this is possible, one says that the system is a quantum integrable system. One
important system that falls into this category is the one-dimensional harmonic oscillator where U(q) = Kq2/2.
In this case it can be shown (see Ref. 14, p. 66) that the eigenvalues are En = (n + 1/2)�ω for n = 0, 1, 2, . . .

and ω = (K/m)1/2 and the eigenfunctions are given as un(x) = NnHn(αx) exp(−α2x2), where Nn = (α/π1/22nn!)1/2,
α= (mK/�2)1/4, and Hn(x) is the nth Hermite polynomial. These eigenfunctions are a complete orthonormal set.
It is not always possible to find a complete orthonormal set consisting of eigenvectors of a given self-adjoint
operator. However, often when this is not the case it is still possible to find generalized eigenfunctions and an
integral representation that plays a similar role.

In Heisenberg’s formulation of quantum mechanics the state vector u describing a system is time inde-
pendent, and the operators associated with observables vary with time according to the equation

which is just the quantum mechanical analog of Eq. (23) under the correspondence (P2). It can be shown that
this is equivalent to Schrodinger’s equation; see Ref. 14, pp. 170–171.
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Other Methods

In the preceding discussion the solution to the differential equation du/dt = Au for a self-adjoint operator A in
a Hilbert space was given as u(t) = etAu(0) = ∫ ∞ − ∞ etr dE(r)u(0). This construction involving a spectral integral
requires A to be self-adjoint. In 1948 E. Hille and K. Yosida constructed the solution to this equation under
weaker assumptions, which allow application to a broader class of differential equations. They assumed Re(Au,
u) ≤ M‖u‖2 for some constant M independent of u, and the equation Au − λu = f has a solution u for all f in H
if λ > M. (See Ref. 3, chap. 9; Ref. 8, chap. IX; and Ref. 16, chap. XII for details.) Their work has been extended
to more general equations of evolution of the form du/dt = A(t)u(t) + f (t), where the operators A(t) may vary
with t; see Ref. 8, chap. XIV.

The length of a vector ‖u‖ = (u, u)1/2 expressed in terms of an inner product is only one example of a norm
that gives a measure of the length or size of a vector. There are other useful norms in vector spaces that, when
applied to linear operators, yield interesting results concerning the solution of differential equations. This
forms the basis of the theory of Banach spaces and locally convex linear topological spaces that generalizes the
theory of Hilbert spaces (2,3,4,8).

The preceding discussion has been concerned with the theory of linear operators and applies to linear
partial differential equations. There is a corresponding theory of nonlinear operators in Hilbert and Banach
spaces that applies to nonlinear partial differential equations. See Ref. 8, chap. XIV, and Ref. 16 for information
on this.
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