J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering
Copyright © 1999 John Wiley & Sons, Inc.

HORN CLAUSES

This article introduces Horn clause logic, a subset, yet expressive, form of first-order logic. The syntax of Horn
clauses along with the semantics and the related inference rule are presented. Background on how Horn clause
logic is related to general first-order logic is covered. The subject matter is informally introduced through an
example, which is then followed by a more rigorous description with additional examples. Horn clauses, named
after Alfred Horn, constitute a language subset of first-order clauses, which represents a canonical, normal
form for expressing first-order predicate calculus formulas. Although Horn clauses are syntactically restricted
clauses, they provide sufficient expressiveness and semantics that are easier to implement on several computing
platforms and are central to the study of logic programming languages and knowledge-based systems. In the
early 1970s, through research and experiments with various formulations of problem-solving tasks, Horn
clauses were found to be very useful and expressive (1). Lloyd (2) shows that all computable functions can
be expressed in terms of a formal deduction system, the inference rule of which is SLD resolution and the
language syntax of which consists of definite program clauses, a subset of Horn clauses. SLD resolution stands
for a restricted resolution inference rule with a Selection function restricted to Linear resolution and Definite
clauses. The history of the naming and definition of this inference rule is discussed in detail in this article.

Horn Clause Syntax and Terminology

Before proceeding with an introductory Horn clause example, some essential definitions are informally given.
A clause is often written in the form

VgV A vA, v vA, «— By aBy A A By,

where m > 0,n > 0, Vv is logical-OR, A is logical-AND, < is logical-IMPLIES, the A;’s and B)’s are atoms, x1, .. .,
x, are all the variables that occur in A;’s and B)’s, and V represents universal quantification (for all). An atom
has the form of P(¢1, to, ..., t,), where P is a predicate symbol and ¢;’s are terms. A term is a constant, variable,
or a function f applied to terms, ¢;, notated as f(¢1, t, .. ., £;). Terms with no variables are called ground terms.
Similarly, atoms with only ground terms are called ground atoms.

The above clause is read as: “A; or Ay or ... or A,, is/are true if B; and By and ... B,, is/are true.” Note
that a clause may be empty, that is, m =0 and n = 0; the truth assignment for an empty clause is always false
and is considered to represent logic contradiction. The empty clause is denoted as (1.

When formally describing semantics for clauses it is convenient to write them using alternative syntax,
but logically equivalent forms. One form is

Wiy eV Ay Ay Ve v Ay v aBy v By vee v By,

1

2 HORN CLAUSES

The /represents logical-NOT. Both negated atoms and nonnegated atoms are called negative and positive
literals, respectively. The notation |L| represents the atom in a literal with the possible negation symbol
removed.

For the purpose of defining resolution and other related concepts, it is convenient to represent a clause as
a set of literals with universal quantification of variables assumed:

[A,, Ay, ..., Ay, =By, =By, ..., —B,}

A Horn clause has at most one atom to the left of the implication arrow or, equivalently, at most one
positive literal; that is, 0 <m < 1. If m =1, a Horn clause has the form

A« B, AByn---rBy

The above is read as: “A is true if By and Bg and ... and B,, is/are true.” This type of Horn clause is called a
definite program clause in logic programming contexts. A is called the head of the clause and the B;’s collectively
are called the body of the clause. If n =0, the clause represents a statement that atom A is unconditionally
true, that is, a fact. A fact is also called a unit clause, a special kind of definite program clause. Unit clauses are
often written with the implication arrow omitted. A Horn program is a collection of definite program clauses. If
m =0 and n > 1, the clause is called a definite goal clause, a query, or, simply a goal clause in logic programming
contexts.

In the following examples, strings composed of lowercase letters and Arabic digits represent constants
and upper case letters represent variables. Also, the logical-AND operator (A) is replaced by a comma (,). Truth
values are represented as TRUE and FALSE. (Note that when clauses are represented in set notation, the
comma delimits the literals and no longer represents logical-AND.)

Relationship Horn Program Example. The following example illustrates the use of Horn clauses for
expressing the relationships of father to child. The atom Father(F, C) represents the statement that F is a
father of child C and Parent(F, C) represents the statement “F is a parent of C.”

Father(F, C) < Parent(F, C), Male(F)

Parent(joe, dave)

Parent(joe, john)

Parent(mary, john)

Male(joe)

Male(john)

Male(dave)

Male(mark)

Female(mary)

Informal Horn Clause Semantics

Informal Model-Theoretic Semantics of Relationship Example. The first clause is read as: “F is
a father of C if F is a parent of C and F is male.” The remaining clauses are facts, each assumed to be true
assertions. For example, Parent(joe, dave) asserts that “joe is a parent of dave.” Informally, the Parent predicate
symbol is intended to represent a parent relation over a set of people, called the universe of discourse. The
universe of discourse might represent the set of people in a particular country, state, organization, etc.

The assignment of terms to elements in the universe of discourse and the assignment of relations to
predicate symbols is an interpretation. The set of names {joe, dave, john, mark, mary} is intended to represent
particular people in a universe of discourse; the representation is an interpretation. The binary relation {(joe,

HORN CLAUSES 3

dave), (joe, john), (mary, john)} is assigned to predicate symbol Parent. The set {joe, john, dave, mark} is a
unary relation assigned to predicate symbol Male. The set {mary} is assigned to predicate symbol Female.
These predicate symbol assignments complete the interpretation.

By substituting the variables with all possible name values chosen from a universe of names, one is able
to “compute” the relation Father by noting which names satisfy or make the rule TRUE according to the usual
semantics associated with logical-AND and logical-IMPLIES semantics. For example, given the substitutions
that replace F with joe and C with john, the rule is TRUE; so the tuple (joe, john) is in the relation assigned
to Father. However, when any name other than joe is assigned to variable F, the rule is not necessarily TRUE
since either the name is not a left-hand member of the Parent relation or is not in the Male unary relation, as
assigned in the interpretation. Choosing the universe of names, assigning the relations to all predicate symbols
(even those occurring only in the head of a Horn clause), and evaluating the truth values of each clause is one
approach to giving a semantics to sets of clauses and Horn clauses in general. Each universe and assignment
comprises an interpretation. The interpretations that satisfy or make all clauses true for all substitutions of
variables are models.

Informal Procedural Semantics of Relationship Example. Procedural semantics are based on a
formal deduction system, which comprises a language (Horn clauses in this case), a set of proper axioms (the
set of clauses), and an inference rule. The procedural semantics describe how to construct proofs. Constructing
a proof involves applying an inference rule to a set of clausal axioms to deduce more clauses, which, in turn,
are added to the set of axioms. A sequence of inferences starting with a set of axioms is a proof of the last clause
in the sequence.

Logicians are interested in inference rules that are sound and complete. An inference rule is characterized
as being sound if and only if it yields only clauses that are satisfied by the model-theoretic semantics, that
is, they are TRUE in every model of the theory. An inference rule is complete if and only if a proof can be
constructed for any clause satisfied by the model-theoretic semantics.

Resolution is a sound and complete inference rule for general clauses. Readers interested in further details
should consult the original work on resolution by Robinson (3) or textbooks such as those by Chang and Lee (4)
or Loveland (5). Resolution and related concepts are briefly introduced later in this article for the purpose of
providing a context for SLD resolution, which is a more restricted resolution inference rule for Horn clauses.

Informally, resolution involves two general steps. The first step involves unification of two atoms, each
belonging to two distinct clauses. One of the atoms appears negated in a clause and the other occurs as a positive
literal in the other clause. Unification is a substitution or an assignment of variables to (not necessarily ground)
terms that make the atoms syntactically match. A substitution of a variable X with a term ¢ is often denoted
X/t. A unifier is denoted as a set of these variable assignments.

The second step involves applying the substitution for all variables in each clause and canceling these
matching atoms and leaving the remaining atoms. The remaining atoms form a new clause, called the resolvent,
that is added to the set of clauses that potentially could be used in a resolution step.

A proof in a resolution-based deduction system is one based on reaching a contradiction—a proof by
contradiction. In a system composed only of Horn clauses, one begins with the goal or query clause and,
through resolution at each step, attempts to arrive at a contradiction, which is represented by the empty
clause, (. The sequence of steps that begins with a goal clause and that arrives at a contradiction is called a
refutation. Because there may be several choices in clauses to use in a resolution step, the construction of a
refutation is tantamount to a search problem.

The preceding description to finding a refutation is called a top-down procedure. In contrast there is a
bottom-up approach that starts with the unit (fact) clauses and works “up” to the goal clause. For this example,
we utilize the top-down procedure to illustrate a refutation. We give a more formal description later. For now,
we give an overview.

4 HORN CLAUSES

Suppose that we attempt to prove that “joe is a father of dave.” Toward a contradiction, one negates the
ground atom Father(joe, dave) and expresses it as a goal clause:

—Father(joe, dave)

This unifies with the head of the Father rule with unifier {F/joe, C/dave}. Applying this unifier to the
other literals in the Father rule, we are left with the resolvent:

—Farent(joe,dave) v —~-Male(joe)

This clause is now added to the collection of clauses. In general resolution-based deduction systems,
there are many choices of clauses to use in each resolution step and, moreover, there may be more than one
choice in the literals that unifies. The choices implemented in such a reasoning system define the operational
or procedural semantics. In Horn clause—based deduction systems, the computational model or operational
semantics requires that one of the clauses to be used in each resolution step be the most recently added goal
clause. This strategy is one component of SLD resolution, a restricted resolution rule used for Horn clause—
based systems. Using this strategy, we continue with the proof example.

Although we require that one of the clauses be a goal clause, we need to select a literal in a goal clause.
Defining a rule or function that selects a literal in a clause is the other component of SLD resolution.

In this example, we choose the leftmost literal Parent(joe, dave) instead of Male(joe). The choice is arbitrary
here. This unifies with the unit clause Parent(joe, dave) with the empty unifier, which requires no variable
substitutions. We are left with the (goal clause) resolvent:

—Male(joe)

Finally, Male(joe) unifies with the unit clause Male(joe) with the empty unifier. The resolvent is the empty
clause, which represents contradiction. With this, we have shown a proof that Father(joe, dave) is TRUE.
That is, we negated what we were trying to prove and, through a sequence of resolution steps, arrived at a
contradiction. This sequence is a refutation.

Note that since one and only one of the clauses used in SLD resolution must be a goal clause, and a
goal clause contains only negative literals, the negative literal used in a unification step must unify with the
head of a definite clause. We do not need to look at the clause bodies when we apply the unification step. In
general, there may be more than one clause head to unify with. Choosing which goal clause literal and then
which definite clause head is specified in the computational model used to construct refutations. If at any step
there is no match between the selected literal and any definite clause head, backtracking to the previous goal
clause and a different program clause is chosen at that step. This process continues until a contradiction is
reached or backtracking goes back to the original goal clause and we do not have more choices. In that case
the operational semantics are defined to give an answer: no. Notice that there is no need to backtrack over the
goal literal selected, since in order to obtain the empty clause all literals in the goal must be resolved away. If
a refutation exists we will find one independently of the literal selected.

When variables are present in the original goal clause, the unifiers used at each resolution step are
composed and the substitutions for the original goal clause are called the computed answer substitutions.
Because there may be more than one clause to resolve with the goal clause at each step of a refutation, there
is potentially more than one computed answer. How this is efficiently implemented is another issue in Horn
clause—based logic programming systems, which is beyond the scope of this article.

For example, if the goal clause Father(X, dave) is given, the computed answer would be {X/joe}. This
would similarly follow the steps given in the previously shown refutation. If the goal clause Father(X, Y) were
given, two computed answers would be given:

HORN CLAUSES 5

(1) {X/joe, Y/dave}
(2) {X/joe, Y/john}.

In this second query, two refutations are constructed via SLD resolution and backtracking. The procedure
of computing all possible answers, starting with the query, terminates when no more refutations can be
constructed with SLD resolution.

A More Formal Semantics

The study of logic, including syntactic and semantic aspects, can be broadly viewed as one approach to reasoning
about abstract and concrete entities and the relationships between these entities; that is, it is one approach to
a knowledge representation scheme or paradigm.

One may classify a logic according to various attributes that reflect some assumptions made regarding
the relationships between these entities within a universe of discourse that the logic represents. For example,
one taxonomy of logic may be based upon the nature of the range of the variables, if any, of the logic language.
Within a zero-order (propositional) logic language, there are no variables; the propositional symbols represent
statements (propositions) about particular entities. Higher-order logics introduce variables that range not only
over these universe entities, but also the relationships between the entities (second-order) the relationships
among relationships between entities (third-order), etc. For each of the orders, each class of variables may be
quantified. Horn clauses are a syntactically restricted form of first-order logic, the language of which includes
variables that range over the fundamental entities or elements of the universe of discourse.

There is a multitude of other attributes that can be used to classify a logic. We state just a few here
to indicate our assumptions. For example, one may utilize different underlying (possibly partially ordered)
sets of truth values. Related to this is the classification of a logic based upon the assumption made about the
“law of the excluded middle,” which informally means that all statements in a logic are either true or false.
Another classification can be based upon whether a logic is monotonic or not. Within a nonmonotonic logic the
assignment of a truth value of one statement may alter the truth value of another; within a monotonic logic
truth values are not altered. Only two-valued, monotonic logic and the law of the excluded middle are utilized
within Horn clause logic.

There are two primary approaches to assigning semantics or meaning to sets of clauses and Horn clauses.
These are model-theoretic and procedural semantics. Each of these are considered using the relationship
program example as a means for discussion and presentation.

Model-Theoretic Semantics. The model-theoretic semantics of first-order logic defines an assignment
of the truth values of TRUE or FALSE to every formula in the logic. This assignment is done in several steps.
First, every constant in the logic is identified with an element in a particular domain, for example, the rational
numbers. Then every function symbol in the logic is identified with a function over the same domain. Then
the interpretation is extended to the predicate symbols by assigning to each predicate a relation, again using
the same domain. Finally, based on these assignments, the truth value of formulas is defined inductively by
first assigning truth values to atomic formulas and then to more complex formulas. In the case of Horn clauses
this process can be highly simplified. Interpretations are restricted to a very special class called Herbrand
interpretations. A Herbrand interpretation is simply a set of ground atomic formulas, that is, atomic formulas
with no variables. The meaning that these interpretations assign to formulas is as follows. The truth value of
any ground atomic formula in the set is TRUE, and for any other ground formula its truth value assignment
if FALSE. Before we say how clauses are interpreted let us see an example.

From our family relationship program, a Herbrand interpretation could be the set {Father(mary, john),
Parent(joe, david), Male(david), Father(mark, mary)}. Note that this interpretation is not a good interpretation

6 HORN CLAUSES

since the program does not seem to imply that mary is the father of john. Good interpretations are called
Herbrand models, or simple models, and are defined as follows.

Let Ground(®) be the ground instances of all the clauses in a program ®. That is, take any clause C in ®
and replace all the variables in C with ground terms; the resulting clause must be in Ground(®). A Herbrand
interpretation M is said to be the intended model of the program ¢ if (1) for every clause in Ground(®) whose
atoms in the body are in M, its head is also in M and (2) there is no proper subset of M with property (1).

Continuing with our family example, the set {Parent(joe, dave), Parent(joe, john), Parent(mary, john),
Male(joe), Male(john), Male(dave), Male(mark), Female(mary), Father(joe, dave), Father(joe, john)} is the in-
tended model of our program, and coincides with our intuition about the meaning of the program.

It can be shown that for any Horn program this model always exists and is unique. Let us look at another
example.

arc(a, b)

arc(b, ¢)

arc(b, d)

path(X,Y) < arcX,Y)

path(X,Y) < path(X, Z), path(Z,Y)

The program is intended to represent the arcs in a graph and paths between nodes in the graph. The
meaning of the first three clauses is obvious. The last two clauses are more interesting. The fourth clause says
that there is a path from X to Y if there is an arc from X to Y. The last rule says that there can also be a path
from X to Y if there is a path from X to an intermediate point Z and then a path from Z to Y. With a careful
analysis the reader can notice that the intended model for this program is

[arc(a, b),arc(b,c), arc(b,d), pathia, b), path(a, c),
pathia,d), path(b,c), path(b,d)}

With the definition of the intended model of a Horn program we can define the answers to a goal. Recall that
a goal clause is a clause of the form B, v --- v B, also written as < By, ..., B,. Answers are defined using
substitutions. Formally, a substitution 0 is an assignment of terms to variable names. A substitution is denoted
as follows: 6 ={X1/t1, ..., X,/t,}. The notation E6 indicates the application of a substitution 6 to E, where E
represents a term, atom, literal, clause, or set of clauses. E6 represents E with all variables replaced with the
terms. For example, if E = {p(X,Y), p(X,Z2)} and 0 {X/a, Y/Z}, then E6 = {p(a, Z), ¢(a, Z)}. An answer for a goal
clause G in a Horn program @ is a substitution 6 such that any ground instance of an atom in G6 is a member of
the intended model of ®. From our last example the goal <—path(a,X) has three answers, 601 = {X/b}, 0o = {X/c},
and 05 = {X/d}.

There are many properties connected Herbrand models and answers to first-order logic. Details can be
found in Refs. 2 and 6.

Procedural Semantics. The following subsections present a general procedure to compute answers.
First, unification and general resolution is presented to provide the context for a restricted resolution-based
procedure, called the SLD resolution, which is central to the procedural semantics of Horn clauses.

Unification. A key component in the procedure to compute answers is called unification. Unification is
the process of finding a substitution that makes two terms or atoms syntactically identical by applying the
substitution to the terms or atoms.

There may be more than one unifier. There are some unifiers that have less term-to-variable assignments
than others; the unifiers with less are referred to as the most general. Since any of them could be used as a
general unifier, one is chosen as a representative and called the most general unifier (mgu).

HORN CLAUSES 7

Table 1. Unification Examples

Expression 1 Expression 2

(E1) (E2) (an) mgu(El, E2)
(1) fX, a) flgi¥), Z) X g(Y), Zia}
(2) flX, a) flg(¥), b) fail
3 p(fX),X,gb) p(fiY), Z gX) IX/b, Yib, Z/b)
(4) p(fiX), X, gbl p(fY), Z, g(X,) XY, ZiY, Xk
(5) piX, X) piY, F(Z)) XIFZ), YIFZ)
(6) pX,X) plY, fI¥) fail

Given that E; and Es are both terms or atoms, hereafter called expressions, the notation mgu(E;, E5)
represents an mgu of expressions E; and E;. Shown in Table 1 are examples of applying the mgu function to
expressions.

Properties about unification and an algorithm to compute most general unifiers can be found in Ref. 7.

Binary Resolution. The second component of the procedure to compute answers is binary resolution.
The general resolution introduced by Robinson (8) is an inference rule that deals with general clauses and has
two steps: binary resolution and factoring. Factoring is presented to be complete in the discussion; however, it
is not necessary when using SLD resolution and Horn clauses.

Before describing binary resolution, some convenient terminology is introduced. Two clauses C; and Cs
are renamed apart when variables in the clauses are renamed so that the set of variables that appear in C; is
disjoint from those appearing in Cs. If at least one variable is renamed in a clause C and the resultant clause
is C', then C’ is also called a variant of C.

Binary resolution can be defined as follows. Let C; and Cs be two clauses renamed apart. A clause C is a
resolvent of C1 and Cy if and only if

(1) there exists a literal L; € C; and a literal Iy € Cq such that |Li]| and |Lg| are unifiable with mgu(|L4],
|Lo|) =6, and
2 Cc=C0- {L19} U Cy8 — {Lz@}.

We say C; and Cs are parent clauses of resolvent C. We also say that L; and Lo are the literals resolved
upon. An example of resolvents is as follows. Let

Ci={pXy),~q(f¥1))} and C,={-pla),q(Xy) r(gX;))}
C’ and C” are two possible resolvents of parents C; and Cs:

(1) Resolving upon literals p(X;) and p(a) from clauses C; and Cq, respectively, we have
mgu(piX;), pla)) = {X;/a} and
C' ={—q(f(¥1)),qX,), r(g(X,))}
(2) Resolving upon literals g(f(Y1)) and g(X3) from clause C; and C,, respectively, we have

mgu(qif Y1), gX)) ={X/f¥;)} and
C"' ={pXy),pla), rig(fi¥)}

8 HORN CLAUSES

A refutation system that has only the binary resolution inference rule is not refutation complete. We
consider the following classic example (see Ref. 8). Let

C, ={pX), pi¥)} and C; = [—piX,), "p¥,)}

Clearly, the set I'={Cj, Cy} is unsatisfiable; that is, it has no models. However, one needs more than just the
binary resolution inference rule to refute I'. All the resolvents of C; and Cy are variants of the clause {p(X),

()}

Let C={L4, ..., L,} be a clause for which there exists two (same sign) literals L; and L; (i =) that are
unifiable with a unifier 6. A factor of C is the clause C6.

In the following, the most general unifier will be used in factoring. We give three examples of factoring:

(1) Factoring C; and Cs as given above, we get, respectively,

{pX)} and [—p(X)}

Clearly, the resolvent of these two clauses is (. Thus, through factoring and then the resolving of those
factors, we have a refutation for ' = {Cy, Cs}.

(2) C"={pX1), pla), rg(f(Y1)))} as shown above in the resolvent example can be factored as
[pla), rig(f(¥1))}

C' ={¢f(Y1), ¢X»), r(gXs))} as shown above in the resolvent example cannot be factored.
(3) Suppose clause C = {p(X), ¢(X), q(f(Y))}. A factor of C is {p(f(Y)), ¢(f(Y))}.

Let I' be a set of clauses. A resolution deduction (or resolution derivation) of clause C from I' is a deduction
Cy, Cy, ..., C, such that C is exactly C,, and each C; (1 <i <n) is a clause for which

(1) C; eT,
(2) C;is a factor of a clause C; (j <1i), or
(3) C; is a resolvent of preceding clauses C1, Co, ..., C;_1.

The resolution derivation is denoted: I' - C.

A resolution refutation of a set of clauses I' is a resolution deduction of (] from I" and is denoted I" - .

Resolution with Horn Clauses. Since searching for refutations in a general resolution system can
be quite expensive in time and space, naturally one investigates useful subclasses of clauses and restricted
resolution inference rules. Kowalski and Kuehner (9) indicate that an inference system should satisfy the
following criteria:

(1) “It should admit few redundant derivations and limit those which are irrelevant to the proof.”
(2) “It should admit simple proofs.”
(3) “It should determine a search space which is amenable to a variety of methods of heuristic searches.”

It has been shown that SLD resolution meets the above criteria. The refutation procedure based upon
SLD resolution was first described by Kowalski (10). As stated by Lloyd (2) along with Apt and van Emden

HORN CLAUSES 9

(11), the “SLD” in SLD resolution is an abbreviation for “linear resolution with a selection function for definite
clauses.” We note that there are other assumptions made about what “SLD” represents. In Ref. 12 Ringwood
gives a brief history of the confusion about the SLD abbreviation; we leave it to the interested reader to consult
that article for details.

SLD resolution is a further restriction to other restricted forms of resolution, namely linear-input resolu-
tion. Linear and input resolutions are briefly described as follows; a more detailed description can be found in
Ref. 4.

e Linear resolution requires that both parents of a resolvent must be a previous resolvent; the first resolvent’s
parents, of course, must be the input clauses (which are the proper axioms).

e Input resolution requires that one of the two parents be an input clause. (The input clauses can be thought
of as proper axioms.)

e Linear-input resolution naturally combines the previous two restrictions. It can be shown that linear-input
resolution is only refutation complete for Horn clauses (12).

To describe SLD resolution, several definitions are presented first.
Let G be a goal clause <Ay, ..., A;, ..., A,. Let C be a definite clause, A < By, ..., B,. A goal clause G/,
also called a resolvent, is derived from G and C using mgu 6 if the following constraints hold:

(1) A; is an atom from G called the selected atom.
(2) 0is the mgu of A; and A, the head atom of clause C.
(8) G” is the resolvent goal clause («<-A4, ..., A; _1,B1,...,B,,Ai11, ... Ay)6.

An SLD derivation is a restricted resolution derivation as follows. Let ® be a Horn program and G, a goal
clause. An SLD derivation of ® U {Gy} is a (not necessarily finite) sequence of

(1) Goals Gy, G, ...
(2) Definite clauses from @, Cq, Co, ...
(3) mgus 64, 6, ...

such that G;, is derived from G; and a (renamed apart from G;) clause C;,; using 6;,1.

It should be noted that the variables in each C;;; may need to be renamed so that there are no common
names with the corresponding goal G;. Such a renamed clause is also referred to as a variant of a clause. Each
clause variant C; is called an input clause of the derivation.

Let @ be a definite program and Gy a goal clause. A finite SLD derivation of ® U {G,}, whose goal sequence
is Gy, G1, ..., G, =0, is called an SLD refutation of ® U {Gy} of length n.

An SLD derivation, like all general resolution-based deductions, can be finite or infinite. For finite SLD
derivations, they are partitioned into successful or failed ones. A successful SLD derivation is simply another
name for an SLD refutation.

A failed SLD derivation is one in which the last clause in the derivation contains a selected atom that
does not unify with any program clause head. It is also shown that SLD resolution is sound and complete with
respect to Horn clause logic (2). The success set of a definite program & is the set of all ground atoms A such
that ® U {«<A} has an SLD refutation. It can be shown that the success set of a program & is exactly the
intended Herbrand model of .

Let ® be a Horn program and G a goal clause. A computed answer substitution 6 for & U {G} is the
resultant substitution of restricting the composition of 6 ... 6, to the variables in the goal G, where 6; ... 0, is
the sequence of mgu’s used in an SLD refutation of ® U {G}

10 HORN CLAUSES

Table 2. SLD Refutation with Ground Goal Clause Example

Goal Clmme Definite Clause mgua

(3 « Father(joe, dave)

1] Fatbar(¥, C) « Parenu ¥, C), MaleiF) ty = | Fjos, Cldave;
(# « Parent(joe, dave), Male(joe)

/] Parenl! jos, dave) g=1{)
th +— Mule(joe)

1] Malel joe) g=1{)
Gy O

Examples of Refutations with the Relationship Horn Program. Let ® be set of definite clauses that
represent a family of people as given earlier.

Father(F, C) < Parent(F, C), Male(F)

Parent(joe, dave)

Parent(joe, john)

Parent(mary, john)

Male(joe)

Male(john)

Male(dave)

Male(mark)

Female(mary)

We show an SLD refutation and illustrate how a computed answer is constructed. Suppose we wish to
prove that “joe is a father of dave.” One negates the ground atom Father(joe, dave) and expresses it as a goal
clause:

Gy = —Father(joe, dave)

A refutation for ® U {Go} is shown in Table 2. By constructing an SLD refutation, we have shown that
“joe is a father of dave.”

When implementing SLD resolution, one must commit to a selection function. This requires a well-defined
procedure for selecting one and only one of the literals in the goal clause at each step in an SLD derivation
(or refutation). In the above example, at step 1, the leftmost literal, Parent(joe, dave) was chosen; however,
Male(joe) could have been chosen. It can be shown that if a refutation exists, it may be found, independent of
the literal selected.

Another aspect of implementing SLD resolution involves the order of potential clause heads tried when
attempting to unify the selected literal. This is where backtracking is employed. The reader should consult Ref.
2 for details and a starting point for investigating other sources that present machine implementation details.

Suppose one wants to compute the answers to “Who is the father of whom?” We illustrate this using the
same set of definite clauses that represent a family of people. An example of computing one of the answers
is shown in Table 3. Note that the definite clauses from ® have to be renamed apart from the goal at some
steps. The computed answer is {F/joe, C/dave}. That is, “joe is a father of dave” as shown earlier. This answer
is constructed by composing the mgu’s used at each step as follows:

[F/joe, Cidave} = 8,88, = {F/F,,C/C,H{F,/joe, C; /dave}|}

HORN CLAUSES 11

Table 3. SLI) Refulation and Computed Answer Example
Goal Clause Definite Clause mgu

o FatheriF, C)
L Falher(M;, C1) « Parenl(F;, Cy), Male(F;) = FiFy, CICy!
o« ParentiFy, Cy), Male(F;)
L Parent(jos, dave) = Fyfjoe, Ci/dave;
e Maled joe)
L Made(joe) =}
(m]

e e 8

Table 4. Alternate SLD Refutation to Table 3 Example
Goal Clause Definite Clause mgu

« Father(F, C)

U Father(Fy, Cy) +— Parent Ny, Cy), MalelF)) vy = FIFEy, CIC,!

«— Parent(Fy, Cy), Male{F,)
]

Parent(joe, john) vy = P ljoe, Cfpohn
+«— Malel joo)

u Male(joe) =1}

[m]

F & P

Yet another SLD refutation for the same program and goal clause is given in Table 4. This computed
answer shows that “joe is a father of john.” At step 1 the leftmost literal is chosen again, as given previously,
but a different clause is used. If a different selection function were used, one may chose the rightmost literal
at step 1. Careful analysis reveals that the same answers would be computed as the two preceding examples
illustrate.

Data Structures in Horn Programs. In this section we will show how function symbols are used in
Horn programs to build data structures. The following examples all implement different operations over lists
of terms. A list of terms is a finite sequence of zero or more terms. Three examples of lists are: (a, joe, b), (f(a),
g(a, a), a), and (b, b, b, b). We will use the following terms to represent lists:

(1) The special constant nil is a list, representing the empty list.
(2) If t is a term and L is a list then [list(¢, L) is also a list.

The following program will test or define lists:

Isalist(nil)
IsaList(list(E, L)) «— IsaList(L)

The definition of first and last element of list is

First(list(F, L), F) «— IsaList(L)
Last(list(L,nil), L)
Lastilist(E,Y), L) «— Last(L,Y)

12 HORN CLAUSES

Tuable 5. Representing Data Btructures

Goal Clause Definite Clause mgu
o Last({listia, hstic, nil))), X)

L Last(lisufy, Ly), Xy e LasliL,, Xy) ny = By, Lylistib, listlc, nil)), XX
o« Lastilistdd, listle, nil)), X)

L Last(listiEs, Lq), X3 «— LastiLg, X3) g = |Eafb, La/listlc, nil), Xo/X |

«— Lol listic, ml), X)

L Last(list(Xy, nil), X)) ng= |Xy/e, Xie!

Suppose one wants to compute the last element of the list (a, b, ¢). This is translated into the goal clause
<Last(list(a, list(b, list(c, nil))), X). The refutation for this goal is shown in Table 5. The computed answer is
{X/c}. Our last example shows the definition of member:

MemberiE, list (E,L)) — IsaList(L)
MemberiE,list(X,L)) — Member(E,L)

In this program if one asks the query < Member(E, list(a, list(b, list(c, nil)))), there will be, as expected, three
computed answer substitutions: {E/a}, {E/b}, and {E/c}.

Summary

The discovery of Horn clauses has made programming in logic a reality. Perhaps the most evident contribution
to computer science is the logic programming language Prolog (1,13). Logic programming has matured into a
field in its own right and has found applications in such diverse fields as program verification, computational
biology, and databases. Deductive databases are a direct descendent of Horn logic and have had a major impact
on database technology. There are two major conferences dedicated to the presentation of research work in
the area: the North American Conference on Logic Programming and the International Conference of Logic
Programming. There is also a journal, the Journal of Logic Programming, which recently celebrated its 25th
anniversary. One can also regularly find papers in the major journals of databases, programming languages,
and artificial intelligence founded in logic programming concepts.

Logic programs are not restricted to Horn clauses and most logic programming environments include
full clausal syntax and many variations of semantics (14). Some of the variations include allowing negation of
atoms in the body of a clause, allowing a disjunction of atoms in a rule head, adding constraints to clauses,
and allowing concurrency to play an integral part of the implementation of constructing computed answers.
We invite the reader to browse over the conference proceedings of the logic programming conferences to find
more about the recent direction of the field or to visit the Association of Logic Programming web site at
http://www.cwi.nl/projects/alp/.

BIBLIOGRAPHY

1. J. Cohen, A view of the origins and development of Prolog, Commun. ACM, 31 (1): 26-36, 1988.
2. J. W. Lloyd, Foundations of Logic Programming, 2nd ed., New York: Springer-Verlag, 1987.
3. J. A. Robinson, A machine-oriented logic based on the resolution rule, J. ACM, 12 (1): 23-41, 1965.

S O

11.
12.
13.
14.

HORN CLAUSES 13

. C.-L. Chang, R. C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving, New York: Academic Press, 1973.
. D. Loveland, Automated Theorem Proving: A Logical Basis, New York: North-Holland, 1978.
. K. R. Apt, Logic programming, in J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, New York: North-

Holland, 1990, Vol. B, pp. 493-574.

. J.-L. Lassez, M. J. Maher, K. Marriott, Unification Revisited, in J. Minker (ed.), Foundations of Deductive Databases

and Logic Programming, San Mateo, CA: Morgan Kaufmann, 1988, pp. 587—626.

. L. Wos, et al., Automated Reasoning: Introduction and Applications, Englewood Cliffs, NJ: Prentice-Hall, 1984.
. R. Kowalski, D. Kuehner, Linear resolution with selection function, Ar¢if Intell., 2: 227-260, 1971.
. R. Kowalski, Predicate Logic as a Programming Language, in Proc. Inf. Proc. ’74, Stockholm: North-Holland, 1974, pp.

569-574.

K. R. Apt, M. H. van Emden, Contributions to the theory of logic programming, J ACM, 29 (3): 841-862, 1982.

G. A. Ringwood, SLD: A folk acronym?, ACM Sigplan Notices, 24 (5): 71-75, 1989.

L. S. Sterling, E. Y. Shapiro, The Art of Prolog, Cambridge, MA: MIT Press, 1986.

d. Lobo, J. Minker, A. Rajasekar, Foundations of Disjunctive Logic Programming, Cambridge, MA: MIT Press, 1990.

JOHN M. JEFFREY

JORGE LOBO

Elmhurst College

TADAO MURATA

University of Illinois at Chicago

