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INTEGRAL EQUATIONS

Mathematics play a very important role in all the areas of
electrical engineering. Whenever we are asked to develop a
system or address a problem, the first thing we need to do is
to develop a simple model. Many a times, this simple model
turns out to be a mathematical model. The mathematical
model lets us study many important aspects of the problem
thoroughly and in an inexpensive manner.

In this article, we deal with an area of mathematics known
as integral equations. We define an equation as an integral
equation when the unknown quantity, i.e., the quantity to be
determined, is under an integral sign. Integral equations are
usually formulated when it is required to obtain the driving
mechanism (input) of a physical system, given the description
of the system along with the response function (output). For
electrical engineers, the physical system may be an electrical
circuit, an electrical machine, or, sometimes, a complex struc-
ture such as a fighter aircraft whose electromagnetic signa-
ture is the quantity of interest. Similarly, in many situations
in electrical engineering, the response function may, simply,
be the voltage at some given terminals or the current flowing
in a wire.

There are several methods to solve integral equations (1)
using complex mathematics. However, in many practical situ-
ations, these methods are inadequate and, quite often, we
need to resort to numerical methods to solve these equations.
In the following section, we formally introduce integral equa-
tions using simple mathematical language. We also introduce
standard terminology to describe such equations and describe
various types of integral equations. In the second section, we
describe a general numerical method, known as method of
moments, to solve these equations. In the third section, we
present a new technique which makes the method of moments
technique computationally more efficient along with a set of
numerical results. Note that, although the topic of integral
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equations is really a mathematical subject, we develop the METHOD OF MOMENTS SOLUTION
subject by using examples from electrical engineering and in
fact, from electromagnetic theory. It must be clearly under- The method of moments (MoM) solution procedure was first

applied to electromagnetic scattering problems by Harringtonstood that this way of treatment of the subject does not neces-
sarily preclude the application of the techniques discussed in (5). Consider a linear operator equation given by
this article into other areas of engineering.

AX = Y (4)

where A represents the integral operator, Y is the known exci-INTEGRAL EQUATIONS
tation function, and X is the unknown response function to
be determined. Now, let X be represented by a set of knownMathematically speaking, an equation involving the integral
functions, termed as basis functions or expansion functions,of an unknown function of one or more variables is known as
(p1, p2, p3, . . .,) in the domain of A as a linear combination:integral equation. One of the most common integral equations

encountered in electrical engineering is the convolution inte-
gral given by X =

N∑
i=1

αi pi (5)

where �i values are scalars to be determined. Substituting Eq.

∫
X (τ )H(t, τ )dτ = Y (t) (1)

(5) into Eq. (4), and using the linearity of A, we have

In Eq. (1), we note that the response function Y(t) and the
system function H(t, �) is known and we need to determine
the input X(�). Of course, if X(�) and H(t, �) are known and

N∑
i=1

αiApi = Y (6)

we need to determine Y(t), then Eq. (1) simply represents an
where the equality is usually approximate. Let (q1, q2, q3,integral relationship which can be performed in a straightfor-
. . .) define a set of testing functions in the range of A. Now,ward manner. We further note that H(t, �) is also commonly
multiplying Eq. (6) with each qj and using the linearity prop-known as impulse response if Eq. (1) represents the system
erty of the inner product, we obtainresponse of a linear system. In general, in mathematics and

in engineering literature, H(t, �) is known as Green’s function
or kernel function. We also acknowledge that, for some other
physical systems, Y(t) and X(t) may represent the driving

N∑
i=1

αi〈qj, Api〉 = 〈qj ,Y 〉 (7)

force and response functions, respectively.
Next, we note that Eq. (1) is known as integral equation of for j � 1, 2, . . ., N. The set of linear equations represented

first kind. We also have another type of integral equation by Eq. (7) may be solved using simple matrix methods to ob-
given by tain the unknown coefficients �i.

The simplicity of the method lies in choosing the proper
set of expansion and testing functions to solve the problem at
hand. Further, the method provides a most accurate result if

C1X (t) + C2

∫
X (τ )H(t, τ )dτ = Y (t) (2)

properly applied. However, for the integral equation opera-
tors, the method generates a dense matrix which may be ex-where C1 and C2 are constants.
pensive in terms of computer storage requirements whenIn Eq. (2), we note that the unknown function X(t) appears
complex systems are involved. In the following subsections,both inside and outside the integral sign. Such equation is
we discuss the application of the method of moments to someknown as the integral equation of second kind. Further, we
commonly used integral equations in engineering and science.also see in electrical engineering yet another type of integral

equation given by
Integral Equations without Derivatives

In this section, we develop simple numerical methods to solveC1

∫
X (τ )H(t, τ )dτ + C2X (t) + C3

dX (t)
dt

= Y (t) (3)
integral equations (both first and second kind) applying the
method of moments. Further, we restrict our treatment to in-

which is known as integro-differential equation. tegral equations with single independent variable (one-di-
It may be noted that for a limited number of kernel and mension) only. The extension to multiple variables is straight-

response functions, in Eqs. (1–3), it is possible to obtain the forward and hence is not considered here. The numerical
solution using analytical methods. Several textbooks have methods are general methods, and thus applicable to a vari-
been written to discuss the mathematical aspects of the inte- ety of practical problems.
gral equations from an analytical point of view (2–4). How- Consider an integral equation given by
ever, for a majority of practical problems, these equations can
be solved using numerical methods only. Fortunately, in this
day and age, we can obtain very accurate numerical solutions

∫ w

x′=−w
u(x′)g(x, x′ )dx′ = f (x) x ∈ (−w, w) (8)

owing to the availability of fast digital computers. In the fol-
lowing section, we discuss a general numerical technique, in which u(x) is the unknown function to be determined. For

the method of moments analysis of such problems, we developpopularly known as method of moments, to solve the integral
Eqs. (1–3). a numerical scheme known as collocation method, subdomain
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First, we shall consider the testing procedure. Here, we
multiply the Eq. (8) by the testing function qj and integrate
over the whole interval to obtain a set of equations given by

–W Wx11 x2         x3 x4 

∆

Figure 1. Match points for the integral equation. ∫ w

x′=−w
u(x′)g(xj, x′)dx′ = f (xj ) j = 1, 2, . . . N (12)

method, or point matching method. For this procedure, we
first divide the interval �w to w into N equal segments of Observe that, while evaluating Eq. (12), we made use of the
width � as shown in Fig. 1. well-known properties of the delta distribution (function).

The segment center points are given by Also note that Eq. (12) is actually a set of N equations for
each j, and xj represents the value of the independent variablexi = −w + 0.5(i − 1)� i = 1, 2, . . ., N (9)
at the center of the jth subdomain. Further, observe that we
are matching the left and right hand sides of Eq. (12) atNote that while defining Eq. (9), we have divided the interval
points xj for j � 1, 2, . . ., N. Thus, these points are known�w to w into equal segments, although this need not be the
also as match points.case in general.

Next we consider the expansion procedure. By using theThe next step in the method of moments solution proce-
basis functions defined in Eq. (10), the unknown quantitydure is to define a suitable set of basis and testing functions.
u(x) may be written asOur research shows that, for this type of problem, i.e., the

integral equations with no derivatives, the most convenient
and simple set of functions are pulse functions with unit am-
plitude as basis functions and Dirac delta distributions (func- u(x) =

N∑
i=1

αi pi (13)
tions) as testing functions. In the following, we formally de-
fine these functions, as shown in Fig. 2, given by

where �’s represent the unknown scalar coefficients. Substi-
tuting Eq. (13) into Eq. (12), we havepi(x) =


1 xi − �

2
≤ x ≤ xi + �

2
0 Otherwise

(10)

and

N∑
i=1

αi

∫ xi+�/2

x′=xi−�/2
g(xj, x′ )dx′ = f (xj ) j = 1,2, . . . N (14)

qj (x) = δ(x − xj ) (11)

Note that, Eq. (14) may be written as a matrix equation,
Here, we emphasize that Eqs. (10) and (11) are by no means given by
the only set of functions used in practice. It is quite possible
to define a completely different set of functions as long as

[Z][I] = [V ] (15)these functions satisfy a certain set of conditions (6–8). Fur-
ther, it is also possible to carry-out an entirely different
scheme in which the expansion and testing functions are de- where
fined over the whole interval without ever dividing the solu-
tion region into subsections. Such numerical schemes are
known as entire domain methods. Entire domain methods are
known to be mathematically unstable (5), which may be over- Zji =

∫ xi+�/2

x′=xi−�/2
g(xj, x′)dx′ (16)

come by a suitable choice of testing and basis functions or a
combination of subdomain/entire domain functions (9). How- Vj = f (xj ) (17)
ever, we will not present the numerical treatment with entire
domain functions in this work since the subject is still in re-

and the column vector [I] contains unknown coefficients �’s.search stage.
Except for certain special cases, the matrix [Z] is a well-condi-
tioned matrix and hence the solution of Eq. (15) is straightfor-
ward. Also, the integrations involved in Eq. (16) may be either
performed analytically or numerically depending on the exact
nature of the kernel function.

Lastly, the numerical method described so far is also
known as pulse expansion and point matching method. In the
following, we present an example problem based on the proce-
dure described so far.

xi

xj Example. Consider an infinitely long conducting strip of
width of 0.1 m located symmetrically at the origin as shownFigure 2. Pulse function and delta function.
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Figure 3. Infinite strip raised to 1 V potential.

in Fig. 3. The strip is raised to a potential of 1 V. Note that
the reference point (i.e., V � 0) is at x � 1 m. Calculate the
charge distribution on the strip.

SOLUTION. Following the basic principles of electrostatics,
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an integral equation may be developed, given by
Figure 4. Charge density distribution on the infinite strip.

First Order Integrodifferential Equation. Consider a first-or-

∫ 0.05

x′=−0.05
qs(x′) ln |x − x′ |dx′ = 2πε0 x ∈ (−0.05,0.05) (18)

der integrodifferential equation given by

where �0 � 8.854e � 12 is the permittivity of the surrounding
medium. Following the numerical procedures described so far,

∂

∂x

∫ w

x′=−w
u(x′)g(x, x′ )dx′ = f (x) x ∈ (−w, w) (21)

we obtain the elements of the [Z]-matrix given by
subject to ∫ w

x=−w
u(x)dx = 0 (22)

The Eq. (22) is also known as a constraining equation. In a
variety of situations, constraining equations can be implicitly
enforced by a proper choice of basis or testing functions. This

Zji =
∫ xi +�/2

x′=xi−�/2
ln |xj − x′ |dx′

= � − �

2
ln |(xj − xi)

2 − (�/2)2|

− (xj − xi ) ln
|xj − xi + �/2|
|xj − xi − �/2|

(19)

necessitates a more elaborate construction of basis/testing
functions which, although it seems to be complicated, results

and the elements of [V]-matrix are in an efficient numerical solution. It is quite easy to see that
a straightforward application of the method discussed in the
previous section, i.e., pulse-expansion and point matchingVj = 2πε0 (20)
method, results in N � N matrix. However, the application of
the constraint equation adds one more column to the [Z]-ma-In Fig. 4, we present the charge distribution for N equal to
trix, thus making the problem over-determined system. Fur-10, 50, and 100 obtained by solving the integral Eq. (18).
ther, other numerical problems, such as stability and non-
uniqueness, set in when MoM is applied blindly. Thus, we

Integral Equations with Derivatives develop the following numerical procedure for this case.
As before, the interval (�w, w) is divided into N equal seg-In this section, we develop simple numerical methods to solve

ments. But for this case, the match points are labled in theintegrodifferential equations, i.e., integral equations with de-
following way for mathematical convenience as shown inrivative operators, applying the method of moments. As be-
Fig. 5.fore, we restrict our treatment to integral equations with a

single independent varaible (one-dimension) only. The exten- xi = −w + i × � i = 1,2, . . ., N − 1 (23)
sion to multiple variables is straightforward and hence is not
considered here. The numerical methods are general meth-
ods, and thus applicable to a variety of practical problems.

We consider two cases in this section: the first-order inte-
grodifferential equation, and the second-order integrodiffer-

–W Wx1 x2 x3

∆

ential equation. Obviously, higher order derivatives may be
handled in a similar manner. Figure 5. Match points for integrodifferential equation.
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The first term in Eq. (30) can be set to zero if qj � 0 at the
ends of the subdomain.

Keeping this procedure in mind, we select the testing func-
tions in such a way that when the derivative is transformed
onto the testing function the result must be a delta distribu-
tion (function). A unit pulse function, as shown in Fig. 7, has
this property whose derivative happens to be two delta distri-

xi–1 xi xi+1

butions on either end of the pulse.
Figure 6. Pulse-doublet function. Thus, for first-order integrodifferential equations, we

choose the testing function qj as

In order to enforce the constraining Eq. (22), we let the basis
function to overlap over two subdomains with positive unit
height in the first subdomain and negative unit pulse in the qj (x) =


1 xj − �

2
≤ x ≤ xj + �

2
0 Otherwise

(31)

second subdomain, as shown in Fig. 6.
Thus, mathematically, we define the basis function as

The numerical procedure may be best illustrated by the fol-
lowing example.

Example. Consider that an infinitely long conducting strip
of width 1 m, as shown in Fig. 3, is immersed in an electro-

pi(x) =




1 xi−1 ≤ x ≤ xi

−1 xi ≤ x ≤ xi+1

0 Otherwise
(24)

static field. Calculate the charge distribution on the strip.
and express the unknown quantity u(x) as

SOLUTION. Following the basic principles of electrostat-
ics, and applying the electric field boundary condition on per-
fect conducting bodies, an integral equation may be devel-

u(x) =
N−1∑
i=1

αi pi (25)

oped, given by
Notice that, by defining basis functions as in Eq. (24), Eq. (22)
is automatically satisfied, which can be proved as ∂

∂x

∫ w

x′=−w
qs(x′) ln |x − x′ |dx′ = 2πεaaax · EEEi x ∈ (−w, w) (32)

subject to ∫ w

x=−w
qs(x) dx = 0 (33)

∫ w

x=−w
u(x)dx =

N∑
i=1

αi

∫
pidx

=
N∑

i=1

αi

[∫ xi

xi−1

dx −
∫ xi+1

xi

dx

]

= 0

(26)

where Ei, qs, and ax are the impressed electric field, charge
The functions defined by Eq. (24) are known as pulse doublet density, and the x-directed unit vector, respectively. For the
functions. numerical solution, we divide the interval (�w, w) into N sub-

Next, we define the testing procedure for this case. Notice domains of width � and label the match points as shown in
that we have one derivative on the integral sign. By simple Fig. 5. Notice that when the interval is divided into N divi-
mathematical manipulation, we transform the derivative op- sions, we actually have N � 1 match points.
erator onto the testing function qj. By using a compact nota-

Defining the testing functions by Eq. (31), and carrying outtion
the mathematical steps outlined in Eq. (30), we get

〈 f, g〉 =
∫

fgdx (27)

we can write the integrodifferential Eq. (21) as〈
∂v
∂x

, qj

〉
= 〈 f (x), qj〉 (28)

∫ w

x′=−w
qs(x′) ln

∣∣∣∣xj + �

2
− x′

∣∣∣∣ dx′

−
∫ w

x′=−w
qs(x′) ln

∣∣∣∣xj − �

2
− x′

∣∣∣∣ dx′

= 2πε�aaax · EEEi(xj ) (34)

where for j � 1, 2, . . ., N � 1.
Next, we apply the expansion procedure. By selecting the

basis functions as described in Eq. (25), the constraining Eq.v(x) =
∫ w

x′=−w
u(x′)g(x, x′)dx′ (29)

Then, we have

xj

Figure 7. Pulse testing function.

〈
∂v
∂x

, qj

〉
=

∫
∂v
∂x

qjdx

= [qjv] −
∫

∂qj

∂x
vdx

(30)
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These types of integral equations usually appear in electro-
magnetic and acoustic scattering problems, the most common
being the dipole antenna problem in antenna engineering.
Further, the treatment of second-order integrodifferential
equation, coupled with the treatment of first-order deriva-
tives, provides a solution procedure for handling higher or-
der derivatives.

We begin our analysis by rewriting the integrodifferential
Eq. (37) in the following form:

∂

∂x

∫ w

x′=−w
u(x′)

∂g(x, x′)
∂x

dx′ = f (x) x ∈ (−w, w) (38)

For almost all mathematical problems in engineering, there
exists a definite relationship between �g/�x and �g/�x. In
fact, for electromagnetic (EM) and acoustic scattering prob-
lems, we have �g/�x � ��g/�x. Using this relationship, we
can write Eq. (38), at least for EM and acoustic problems, as

∂

∂x

∫ w

x′=−w

∂u(x′)
∂x′ g(x, x′) dx′ = f (x) x ∈ (−w, w) (39)

Now, we have an integrodifferential equation of first order
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which we already know how to handle. At first, we divide the
interval (�w, w) into N segments and label N � 1 matchFigure 8. Charge density distribution on the infinite strip immersed
points as shown in Fig. 5. The definition of testing functionsin electric field Ei � ax.
and the testing procedure is identical to the case of first-order
integrodifferential equation and hence need not be repeated
again. However, we need to look more closely at the basis(33) is automatically enforced. Thus, applying the method of
functions.moments procedure, we obtain [Z][I] � [V], where

Note that, for the case of first-order integrodifferential
equations, we defined the pulse doublet as the expansion
function and obtained the solution for the unknown function.
In the present case we can do the same thing, if we define
the antiderivative of pulse doublet as the expansion function.
Following this logic, we define the basis functions for the solu-
tions of second-order integrodifferential equation as

Zji =
∫ xi

xi−1

ln
∣∣∣∣xj + �

2
− x′

∣∣∣∣ dx′

−
∫ xi+1

xi

ln
∣∣∣∣xj + �

2
− x′

∣∣∣∣ dx′

−
∫ xi

xi−1

ln
∣∣∣∣xj − �

2
− x′

∣∣∣∣ dx′

+
∫ xi+1

xi

ln
∣∣∣∣xj − �

2
− x′

∣∣∣∣ dx′

(35)

pi(x) =




1 − xi − x
�

xi−1 ≤ x ≤ xi

1 + xi − x
�

xi ≤ x ≤ xi+1

0 Otherwise

(40)

and
The functions described in Eq. (40), and shown in Fig. 9, are
popularly known as Triangle functions, which are linearVj = 2πε�aaax · EEEi(xj ) (36)

piece-wise.
In Fig. 8, we present the charge distribution for N equal to Thus, for the solution of second-order integrodifferential
10, 50, and 100 obtained by solving the integrodifferential Eq. equations, we employ triangle function expansion and pulse
(32). Notice that, in this procedure, the dimension of the sys- function testing. We describe the numerical procedure using
tem matrix is N � 1. the following example.

Example. Consider a finite-length straight wire, radius a �Second-Order Integrodifferential Equation. In this section,
0.001�, and length 2h � 0.5� illuminated by an electromag-we consider techniques for solving the integrodifferential

equation

∂2

∂x2

∫ w

x′=−w
u(x′)g(x, x′) dx′ = f (x) x ∈ (−w, w) (37)

where the unknown function u(x) must satisfy the boundary
conditions

xi–1 xi+1xi

u(w) = u(−w) = 0 Figure 9. Triangle basis function.
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for j � 1, 2, . . ., N � 1. Notice that, in Eq. (45), the integra-
tions on the second term and the right hand side of the Eq.
(41) are approximated by a simple one-point rule.

Substituting the expansion Eq. (44) into Eq. (45), we ob-
tain the matrix equation [(1/�)[Za] 	 (k2�)[Zb]] [I] � [V] where
the matrix elements are:

–h

h

Y

Z
Ei

X

Figure 10. Straight wire illuminated by a plane wave.

netic plane wave (wave length �) as shown in Fig. 10. Calcu-

Za
ji =

∫ zi

zi−1

G
(

z j + �

2
− z′

)
dz′

−
∫ zi+1

zi

G
(

z j + �

2
− z′

)
dz′

−
∫ zi

zi−1

G
(

z j − �

2
− z′

)
dz′

+
∫ zi+1

zi

G
(

z j − �

2
− z′

)
dz′

(46)

late the current induced on the wire.

SOLUTION. Since the radius a is very small compared to
� and h we can use the thin-wire theory (10) to formulate
the integrodifferential equation. Following the mathematical
procedures described in (11), we derive the following integral

Zb
ji =

∫ zi

zi−1

{
1 − zi − z

�

}
G(z j − z′)dz′

+
∫ zi+1

zi

{
1 + zi − z

�

}
G(z j − z′)dz′

(47)

equation, given by
and

vj = − j
4πk�

η
Ei

z(z j ) (48)

∂

∂z

∫ h

z′=−h

∂I(z′)
∂z′ G(z − z′) dz′ + k2

∫ h

z′=−h
I(z′)G(z − z′)dz′

= − j
4πk
η

Ei
z(z) z ∈ (−h,h) (41)

The integrations involved in Eqs. (46) and (47) may be carried
where out using the methods discussed in (12).

In Fig. 11, we present the current induced on a half-wave
dipole wire scatterer due to a unit-amplitude, normally inci-G(z − z′) = e−jkR

R
(42)

dent plane wave for N equal to 20 and 50 divisions obtained
and by using Eqs. (46–48).

R =
√

(z − z′)2 + a2 (43)

In Eqs. (41–43), I is the unknown current induced on the
wire, Ei

z(z) is the z-component of the incident plane wave, k �
2
/� is the wave number, and � is the wave impedance of the
surrounding medium.

First of all, divide the wire region (�h, h) into N equal
segments labeling N � 1 match points as shown in Fig. 5.
Next, for this problem, we choose the expansion functions pi

defined in Eq. (40) to express the unknown current I and the
testing functions qj defined in Eq. (31).

Thus, we have

I =
N−1∑
i=1

αi pi (44)

Next, we consider the testing procedure. By following the
same procedures of the previous section on first-order integro-
differential equations, the testing procedure yields,
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Figure 11. Current induced on the wire scatterer.

∫ h

z′=−h

∂I(z′)
∂z′ G

(
z j + �

2
− z′

)
dz′

−
∫ h

z′=−h

∂I(z′)
∂z′ G

(
z j − �

2
− z′

)
dz′

+ �k2
∫ h

z′=−h
I(z′)G(z j − z′)dz′ = − j

4πk�

η
Ei

z(z j ) (45)
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Integral Equations with More Variables ever, there is a certain degree of arbitrariness in this scheme
and it seems to work for simple problems only.

In the previous subsection, we discussed numerical methods
Recently a new method, known as generalized sparse ma-

applying the method of moments to handle integral and inte-
trix reduction scheme (GSMR), is proposed, which seems to

grodifferential equations with one independent variable. Ex-
improve on the IML method.

tension to multivariable case is straightforward and follows
The basic concept utilized in the GSMR technique may be

the same numerical procedures discussed so far. For example,
qualitatively illustrated as follows. Following similar proce-

for two-variable case, i.e. x � y plane, the solution region may
dures of the MoM, a moment matrix is also generated in the

be divided into square or rectangular cells and one can con-
GSMR method. However, in contrast to the conventional mo-

struct the basis and testing functions using the methods dis-
ment method where interaction is computed from each and

cussed in the previous section (13). For a more general situa-
every cell on other cells, only the interaction from the self-cell

tion, the solution region can be divided into triangular
and few neighboring cells is computed in the GSMR tech-

subdomains along with suitable basis and testing functions
nique. In fact, for single variable problems (wire scatterer and

(14,15). Efficient solutions have been obtained for very com-
two-dimensional, infinite cylinders) only the self-term and

plex problems using these methods in electromagnetics and
two neighboring terms on either side of the self-cell are gener-

acoustics (16–19) and it is quite possible that these methods
ated in this technique. This implies that the moment matrix

found applications in other areas of engineering. Lastly, we
for the GSMR technique is essentially sparse. Further, the

mostly discussed only boundary-value problems in this work effect of nonself terms is taken into account by defining a set
but solutions have also been obtained for initial value prob- of linearly independent functions over the entire structure.
lems (20–28) using the same methods. An extensive applica- In the mathematical terms the procedure, for single variable
tion of method of moments to electromagnetic scattering prob- problems, may be described as follows:
lems may be obtained in (29). Let [Z] represent the moment matrix for a given problem

generated by using appropriate basis and weighting func-
tions. Note that, for well-defined problems with proper choice

SPARSE MATRIX METHODS of basis and testing functions, the moment matrix is well-con-
ditioned and diagonally strong. The jth row of the moment

One major problem with MoM is the generation of a dense matrix may be written as
matrix and for complex problems, the dimension of this ma-
trix can be prohibitively large. Usually, for electromagnetic
and acoustic scattering problems, it is necessary to divide the

N∑
i=1

Zj,iIi = Vj (49)
solution region into small enough subdomains in order to ob-
tain accurate results. By ‘‘small enough,’’ we mean about 200

where all the matrix elements Zj,i are nonzero. In the newto 300 subdomains per square wavelength. In usual practice,
GSMR technique, the jth row is modified aswe may typically solve for several thousand unknowns for

large, complex problems. Quickly, this requirement becomes
expensive in terms of computational resources and may even
become impossible to handle. Hence, we look for alternate

j+1∑
i= j−1

α j,iZ j,iIi = � jVj (50)

schemes to reduce the computational resources by generating
where �j, j�1, �j, j, �j, j	1, and �j are the unknown coefficients anda sparse matrix instead of a full matrix.
the rest of terms in the row are set to zero. Further, dividingThe generation of a sparse matrix in the method of mo-
by Zj, j, Eq. (50) may be rewritten asment solution procedure may be achieved in two ways: (a) by

defining a special set of basis functions to represent the un-
known quantity or (b) by handling the influence of the kernel
function in a novel way. The usage of well-known, wavelet-

j+1∑
i= j−1

β j,iIi = γ jVj (51)

type basis functions to provide the required sparsity belongs
to the former category (30) and the application of fast which may be written, using the matrix notation, as
multipole method (FMM) belongs to the latter category (31).
So far, the wavelet-type basis functions have been applied to [βββ][I] = [V ] (52)
integral equations with one variable only, and it remains to
be seen how these functions can be utilized for two or more where [�] is a sparse matrix with, at most, three nonzero ele-
variable cases. In contrast, in the FMM scheme, the matrix- ments per row.
vector product is carried out in a novel way and seems to Upon a close examination of Eq. (52), it is obvious that one
work well for more complex problems. Unfortunately, the needs to reconstruct the [�]-matrix. This task may be accom-
FMM is a complicated scheme and any reasonable summary plished by first setting �j � 1 for j � 1, . . ., N in Eq. (51).
of the method is beyond the scope of the present article. Next, define three linearly independent functions, I(1), I(2),

There is yet another scheme, known as impedance matrix and I(3), over the entire domain of the problem. These func-
localization (IML), which achieves modest sparsity for simple tions may be thought of as source distributions. For the exam-
problems (32). Notice that the kernel function is, in general, ples we discuss below, these functions are assumed to be a
a decaying function with respect to the distance between the constant, cos(kl) and sin(kl) where k � 2
/� is the wave num-
source and observation points. Thus, with increasing dis- ber and l is the parameter measured along the length of the
tances, the influence of a given source becomes negligible at independent variable in the integral equation.
a sufficiently distant observation point and may be actually The next step in the GSMR technique is to compute the

corresponding response functions, V(1), V(2), and V(3). This taskset to zero. The IML scheme cleverly exploits this fact. How-
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may be easily accomplished by using the assumed source dis-
tributions I(1), I(2), and I(3), and utilizing the Green’s function
for the problem.

Once we have I(1), I(2), I(3), V(1), V(2), and V(3), the [�]-matrix
may be constructed as follows:

• For any j, sample I(1), I(2), and I(3) at locations j � 1, j, and
j 	 1, and sample V(1), V(2), and V(3) at location j, and write
the following system of equations:

β j, j−1I(1)

j−1 + β j, j I
(1)

j + β j, j+1I(1)

j+1 = V (1)

j

β j, j−1I(2)

j−1 + β j, j I
(2)

j + β j, j+1I(2)

j+1 = V (2)

j

β j, j−1I(3)

j−1 + β j, j I
(3)

j + β j, j+1I(3)

j+1 = V (3)

j

(53)

• Solve Eq. (53) to obtain �j, j�1, �j, j, and �j, j	1 and store in
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the jth row of the [�]-matrix.
Figure 13. Current induced on the circular loop.• Repeat the previous two steps for all values of j.

Further, note that for j � 1 and j � N, we select �1,N, �1,1, and
�1,2, and, �N,N�1, �N,N, and �N,1, respectively. Example. Consider the case of a circular loop located in the

Once all the coefficients for each row are computed, we z � 0 plane with center at the origin. The loop is illuminated
have successfully generated the new matrix representation by an x-polarized plane wave traveling along the z-axis. Fig-
for the integral equation. Finally, Eq. (52) may be solved effi- ure 13 shows the results for ka � 150 where k and a are the
ciently using iterative methods such as the conjugate gradient wave number and the radius of the loop, respectively. The
method (32) or the GMRES method (33) since we are dealing matrix size for the MoM and the GSMR technique 1800 is �
with sparse matrices. 1800 and 1800 � 3, respectively. It is evident from the figure

that the results compare very well with each other. This
Example. Consider a 10� straight wire, 0.001� radius, illu- example clearly illustrates the applicability of the GSMR
minated by a normally incident plane wave. The matrix size method for truly large bodies.
for the MoM and GSMR method is 149 � 149 and 149 � 3,
respectively. The results are shown in Fig. 12 and the com- Example. Lastly, we present the case of an infinitely long,
parison is excellent. conducting strip illuminated by a transverse magnetic (TM)

incident electromagnetic plane wave. The derivation of the
governing integral equation for this problem may be found in
(5). Figure 14 shows the current density induced on a 150�
bent strip obtained by applying MoM and GSMR techniques.
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