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INTEGRO-DIFFERENTIAL EQUATIONS

This article will focus on methods of solution. The aim is to
show how a student or engineer can manipulate an integro-
differential problem into a form that is simple to calculate.
Few of these equations yield analytical solutions. The direct
numerical approach of using finite differences for derivatives
and sums for integrals relies on the capability of the computer
and on the stability of the numerical algorithm. The methods
described in this article aim to improve the stability of the
eventual calculation by removing derivatives, and to mini-
mize repetitive calculations (nested loops). These techniques
make it possible to solve realistic problems with modest per-
sonal computers.

An integro-differential equation describes the influence of
an accumulation of points upon the value and dynamics of
each individual member of the collection. These equations are
a balance between a quantity, its derivatives, and its inte-
grals. The most significant applications of integro-differential
equations are in modeling the impact of heredity and the dy-
namics of systems out of equilibrium. Heredity problems in
engineering include analyzing fluid and heat flow, mechanical
stress, and the accumulation of residual charge for materials
with memory. The study of nonequilibrium systems is based
on kinetic theory, where the properties of a gas are calculated
as the average of individual molecular collisions. Integro-dif-
ferential equations are applied in biology and economics as
well as in physics and engineering.

A differential equation describes the dynamics of a quan-
tity. It is a balance between the values of the quantity and its
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various rates of change at a given moment. One such balance possible with an approximate equation developed from the
nonlinear integral. This approximation recognizes the effectis between the acceleration of a particle and the action of ex-

ternal forces, classical Newtonian mechanics. Basic examples of the hereditary integral and casts the problem as a type of
recursion formula �x(t) � f [x(t � �t), t]�, eliminating the needare the one-dimensional mass-spring-damper equation and its

electrical analog, the resistor–inductor–capacitor (RLC) cir- for any iteration. A discussion of physical applications of inte-
gro-differential equations concludes the article.cuit equation. These specific differential models each conserve

a global quantity; for the mechanical example it is momen-
tum, for the electrical example it is current. The implicit as-

A SAMPLE ANALYSISsumption in the differential description is that the future
state of a system does not depend on its history. Erosion, fa-

Consider the following linear, first-order, homogeneous inte-tigue, wear, failure, experience, heredity, evolution, karma—
gro-differential equation for unknown function y(x):all these words express some observation about the impact of

past dynamics on future dynamics. One example is the failure
of mechanical components subjected to repetitive stress. Engi-
neers routinely calculate the amount of twist of a metal bar

dy(x)

dx
= −

∫ x+β

x−α

p(ξ )

a(x)
y(ξ ) dξ (1)

subjected to a specific torque. If we assume this phenomenon
to be purely differential, then the same amount of torque will We will use this equation to demonstrate how a solution may
always produce the same amount of twist. In reality, metal be attempted. Both � and � are positive constants. This par-
subjected to repeated strain experiences fatigue. Eventually ticular equation has a separable kernel
the application of the same torque produces a different twist,
perhaps a catastrophic event. The metal inherits a degrada- K(ξ, x) = p(ξ )/a(x) (2)
tion of its elasticity, an integral of the history of deflections.
This effect caused the breakup of two de Havilland Comet jet

and we suppose that a(x) is not zero in the domain of interest.airliners during flight in 1954. The engineers of the day were
Can Eq. (1) be cast as a purely differential, or purely integralunaware that the aluminum fuselage would experience metal
equation? If so, it may be possible to transform it to a stan-fatigue as a result of the frequent cycles of cabin pressur-
dard form and solve it by established techniques. In this sec-ization.
tion we will look first at the effect of differentiating Eq. (1),An integral equation describes the influence of all points
then we will seek an approximate solution directly from thein a field upon the value of any particular point. Integral
integro-differential form, then we will transform Eq. (1) intoequations express an equilibrium. The points can be spatial
a purely integral form, and finally we will show specific ex-for a field of stress in a surface or rod, or they can be instants
amples.of time in an orbital trajectory, or they can be individual mol-

Differentiating Eq. (1) results inecules in a gas in which the field is a statistical distribution
of molecular velocities. When external conditions change sud-
denly so that the system is out of balance, energy or informa- a(x)y′′(x) + a′(x)y′(x) = p(x − α)y(x − α) − p(x + β)y(x + β)

(3)tion must flow within the system to rearrange it into a new
equilibrium. Describing this nonequilibrium process requires

where primes refer to differentiation with respect to x. In Eq.differential terms in addition to the original integral equa-
(3) derivatives of y at x depend on values of y at positions totion. Instantaneous equilibration is often assumed in engi-
either side of x. This form is a differential-difference equation.neering applications, for instance in thermodynamics, and in-
References 1 and 2 describe this type of equation. From Eq.tegro-differential equations are avoided. However, the
(3), y(x � �) can be cast as depending on itself at higher xsharpening of technology into much smaller space and time

scales has required more exacting physical models that ac-
count for nonequilibrium dynamics. This technological trend
drives the continuing interest in solving integro-differential

y(x − α) = a(x)y′′(x) + a′(x)y′(x) + p(x + β)y(x + β)

p(x − α)
(4)

equations.
A method is described for transforming integro-differential This form of the equation is the basis of a numerical solution

in cases where it is known that y(x) decays exponentially withequations with linear derivatives into purely integral forms,
which are then solved by iteration. Knowledge of an approxi- respect to positive x. Above a given coordinate, say x2, y is

assumed to be small and its derivatives are assumed to bemate solution speeds the convergence of iteration. One
method of developing such approximate solutions is described zero. A solution is constructed for x 	 x2 using Eq. (4). In a

range x 	 x1, where x1 	 x2, the function y(x) is exponentiallyin the section that follows. By the very nature of approxima-
tion, such methods depend on the specifics of the particular larger than the starting value assumed, and y(x) is considered

an accurate solution. Care must be taken in the numericalintegro-differential equation. It is best to view the develop-
ment of the approximate solutions in the sample analysis as treatment of the derivatives, and this is most directly accom-

plished by using closely spaced points and higher-order differ-an example of the attitude and reasoning that may prove use-
ful in other problems. After the discussion of linear equations ences. If the kernel is not separable, then differentiation will

not remove the integral. It will now contain the derivative ofa nonlinear system with hereditary effects is described. This
nonlinear system describes the conflict between populations the kernel with respect to x, K
(�, x).

Let us assume that y(x) is a positive function that decaysof predators and prey. This system is reduced to a single non-
linear integral equation for which an iterated solution is exponentially with respect to positive x. In this case both

a(x) and p(x) are positive over the range of interest, x0 � x 	found. However, a much easier calculation of the solution is
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�. Let us seek a solution in the form B0(x)� � 1, then B0(x) is the root of a transcendental equation,

B0(x) =
√

p(x)

a(x)
eαB0 (x) (8c)y(x) = exp

[
−

∫ x

x0

B(η) dη

]
(5)

where x0 is a reference coordinate where y � 1, an initial con- If none of Eqs. (8a)–(8c) are applicable, then B0(x) must be
dition. Notice that �y
/y � B. Divide Eq. (1) by y(x) and use found as a root of Eq. (8). The corresponding initial iterant
Eq. (5), y0(x) for Eq. (1) is given by using the appropriate result from

Eqs. (8) or (8a)–(8c) in definition (5). The example shown be-
low uses the simplest case, Eq. (8a),a(x)B(x) =

∫ x+β

x−α

p(ξ )exp

[
−

∫ ξ

x
B(η) dη

]
dξ (6)

Notice that in Eq. (6) it is the ratio y(�)/y(x) that appears in y0(x) = exp

[
−(α + β)

∫ x

x0

p(η)

a(η)
dη

]
(9)

the integral with p(�), and this ratio is given by the exponen-
tial involving B(
). Given an estimate of function B, call it

It is very important to capture the functional nature ofB0, Eq. (6) can be used to find a possibly more accurate esti-
p(x) within the integral of Eq. (7). In the preceding, p(x) wasmate B1 by the method of successive approximations. This
assumed to be very weakly dependent on x over the intervalmethod, also known as the method of Picard, uses a prior iter-
(x � �, x � �) in a manner similar to a constant or log(x). Ifant within the integral (B0) to find a next iterant (B1) from
instead, p(x) � p0(x)x, where p0(x) is a weak function of x asthe equation. References 3 and 4 describe the validity and use
used here, then the results in place of Eq. (8) are as follows:of this method.

If the method of successive approximations converges to a
solution, then the exact nature of the initial iterant B0 is un-
important. However, the more accurately B0 portrays the ac-
tual solution B(x), the fewer iterants need to be calculated.

B0(x) = 1
3

√√√√√ p0(x)

a(x)
eαB0 (x){1 + B0(x)(x − α)

− [1 + B0(x)(x + β)]e−(α+β )B0(x)}
(10)

We now seek an initial iterant from Eq. (6) by making what-
ever assumptions simplify this problem, while at the same

The case of small B0(x) corresponding to Eq. (8a) is nowtime being mindful to avoid a trivial result by being too hasty.
For the moment we will assume that p(x) is weakly dependent
on x within any band (x � �, x � �), and that B(�) remains of
the same order of magnitude for (x � � � � � x � �). The B0(x) = p0(x)

a(x)
(α + β)

(
x + β2 − α2

(α + β)

)
(10a)

following approximations cascade from Eq. (6) by using these
assumptions:

Note the additional linear factor in comparison to Eq. (8a).
It is essential to retain that factor of p(x) with significant vari-
ation within the integral of Eq. (7). We will only use the sim-
plest B0 and y0, derived as Eqs. (8a) and (9), respectively, to
illustrate a first iterant with Eq. (11):

a(x)B0(x) ≈
∫ x+β

x−α

p(ξ )e−B0(x)(ξ−x) dξ ≈ p(x)

∫ x+β

x−α

e−B0 (x)(ξ−x) dξ

≈ p(x)

−B0(x)

∫ x+β

x−α

e−B0 (x)(ξ−x)[−B0(x)] dξ

≈ p(x)

B0(x)
[eαB0 (x) − e−βB0(x)]

(7)

a(x)B1(x) =
∫ x+β

x−α

p(ξ )exp

[
−(α + β)

∫ ξ

x

p(η)

a(η)
dη

]
dξ (11)

and a y1(x) can be constructed from the B1(x) of Eq. (11). A
B0(x) =

√
p(x)

a(x)
eαB0 (x)[1 − e−(α+β )B0(x)] (8)

y1(x) can also be written explicitly from the integral of Eq. (1)
For a small B0(x) such that both B0(x)(� � �) 	 1 and by using y0(x)
B0(x)� 	 1, then

y1(x) = y(x0) −
∫ x

x0

∫ ξ+β

ξ−α

p(η)

a(ξ )
y0(η) dη dξ (12)

B0(x) = p(x)

a(x)
(α + β) (8a)

which is found by expanding the exponentials in Eq. (8). No- Recall that y(x0) � 1 in this particular case. Whether the first
tice that to be consistent, p(x)/a(x) must be less than (� � iterant sought is B1 from Eq. (11) or y1 from Eq. (12), a double
�)�2. For B0(x) such that B0(x)(� � �) � 1 while B0(x)� 	 1, integration is required after the zeroth iterants B0 and y0 are
which implies � � �, then calculated. It would be very discouraging to do all this work

and then find that our iteration was diverging. An effort to
reduce repetitive integration follows.

Equation (12) is a purely integral form of Eq. (1) when the
B0(x) =

√
p(x)

a(x)
(8b)

subscripts on y are removed and y(x0) is arbitrary. By re-
versing the order of integration it is possible to reformulateThis case is consistent with 1/(� � �) 	 �p(x)/a(x) 	 1/�.

Finally, for B0(x) such that both B0(x)(� � �) � 1 and this equation as a single integration over the unknown y(
)
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with a new kernel

y(x) − y(x0) = −
∫ x

x0

∫ ξ+β

ξ−α

p(η)

a(ξ )
y(η) dη dξ

= −
∫ x+β

x0−α

p(η)M(η,x)y(η) dη

(13)

The new kernel factor M(
, x) is given below for this exam-
ple. The method of reversing the order of integration and gen-
erating kernels of this type will be described in the section
titled Linear Equations:

a0 = 1

p0 = 8

   = 0α

= 1.45β

30.8 1 1.2 1.4 1.6 1.8 2
x

2.2 2.4 2.6 2.8

y(
x)

1

0.1

0.01

0.001

y1

y0

y2

Figure 1. Three iterants for the y(x) of Eq. (1) when a(x) � x,
p(x) � 8x, � � 0, and � � 1.45. The zeroth iterant y0(x) is found by
an approximation to its logarithmic derivative B0 � ��dln[y0(x)]/dx�
that is given by Eq. (10). The iteration is applied to Eq. (13), which
is a single integral form of Eq. (1) with a new kernel p(
)M(
, x) that
is described by Eq. (14). Convergence is rapid. This function decays
by two orders of magnitude for 1 � x � 3. The relative error is compa-
rable to y(x) at low amplitude. This error diminishes as more points

M(η, x) =
{∫ η+α

x0

dξ

a(ξ )
; [x0 − α] ≤ η

< [min(x0 + β, min(x0 + α + β, x) − α)]
}

+
{∫ x

x0

dξ

a(ξ )
; min[x0 + β, min(x0 + α + β, x) − α]

≤ η < [x0 + β]
}

+
{∫ min(η+α,x)

η−β

dξ

a(ξ )
; [x0 + β] ≤ η ≤ [x + β]

}
(14)

are used (point locations shown for y2).

The function min(a, b, . . .), used in M(
 x), selects the mini-
mum of its arguments. M(
 x) is the sum of three terms, each
defined over a different range of 
, and these ranges are func- LINEAR EQUATIONS
tions of x. The new kernel K(
, x) � p(
)M(
, x) can be calcu-

Casting a linear, first-order integro-differential equation intolated once from known functions a(x) and p(x), and by the
a simple integral form is very useful because then it can beexplicit operations of Eq. (14). The derivation of Eqs. (13) and
solved by the method of successive approximations. This(14) proceeds directly from Eq. (1), without requiring any spe-
transformation involves switching the order of integration ofcialized assumptions, as were used in the development of B0.
a double integral, an operation mentioned without explana-Now the original integro-differential equation has been trans-
tion in the section titled A Sample Analysis. This transforma-formed into a purely integral form, a Volterra equation (vari-

able upper limit) of the second kind [inhomogeneous if y(x0) �
0]. The method of successive approximations applied to Eq.
(13) proceeds more quickly because each iterant of y(x) is now
the result of a single integration.

Two specific numerical examples follow. In both cases
a(x) � a0x, and p(x) � p0x, where a0 and p0 are constants.
Solutions are sought in the range [(x0 � 1) � x � (x1 � 3)],
though calculations must consider the wider range (1 � �,
3 � �). In these cases y(1) � 1. B0(x) is found as the root of
Eq. (10), and a y0(x) is calculated from Eq. (5). The kernel
K(
, x) � p(
)M(
, x) is calculated on the basis of Eq. (14).
Two iterants, y1 and y2, are then found by the method of suc-
cessive approximations from Eq. (13). Figure 1 shows y0, y1,
and y2 for a0 � 1, p0 � 8, � � 0, and � � 1.45. Iterants y0 and
y1 are quite smooth; with y2 the point-to-point numerical noise
becomes noticeable (point locations are shown for y2). This
noise diminishes as more closely spaced points are used. In
this case y(x) has a rapid exponential decay. A second case
has a0 � 1, p0 � 0.08, � � 0.55, and � � 1.45. Figure 2 shows
the three iterants of y, which decay gently with x. In both

p0 = 0.08

   = 0.55α

= 1.45β

30.8 1 1.2 1.4 1.6 1.8 2
x

2.2 2.4 2.6 2.8

y(
x)

1
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0.8

0.7

0.75

0.65

y2

y1

y0

a0 = 1

cases y0 and y1 bracket y2. Figures 3 and 4 show the kernel Figure 2. Three iterants for the y(x) of Eq. (1) when a(x) � x,
K(
, x) for the first case (both appear similar). Two views are p(x) � 0.08x, � � 0.55, and � � 1.45. Another case similar to that of
given to help visualize this surface over the full range of the Fig. 1. Here the function decays very gently, and the relative error

is small.calculation.
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x1
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Figure 3. A surface plot of K(
, x) � p(
)M(
, x), the kernel used in
Figure 5. The area where double integration with the K1 kernel is

the example of Fig. 1. The kernel for the second example has the
reversed. Horizontal arrows show the original direction of integration

same shape but is of different magnitude. This view extends over the
across the area. Reversed integration is shown by vertical hatching.

full area of the calculation in the (
, x) plane. The problem has been
As x moves up the � axis from x0 to x1, the horizontal arrow from 
 �

converted to an integral equation with single integration and a
x � � to 
 � x � � moves vertically through the integration area.

known kernel.
Reversed integration is done below this rising arrow. Here vertical
integration proceeds in sections as 
 moves from limits x0 � � to x1 �

� (the new outer integral). � is integrated successively from: x0 to the

 � � boundary line, x0 to x, the 
 � � boundary line to the 
 � �tion will be illustrated for the following equation:
boundary line, and the 
 � � boundary line to x (the new inner inte-
gral). The limits are conditional statements because the transitions
between vertical sections depend on the slant and width of the area.

dy(x)

dx
+ b(x)y(x) + c(x) =

∫ x+β

x−α

K1(ξ,x)y(ξ ) dξ

+
∫ x

x0

K2(ξ,x)y(ξ ) dξ

(15)

We assume that over the domain of interest, x0 � x � x1, none
of b, c, K1 and K2 become infinite. Also, � and � are positive
constants. The labels V1(x) and V2(x) will be used to represent
the integrals over K1 and K2, respectively. Now Eq. (15) is
seen as a linear, first-order differential equation with an inho-

y(x) = y(x0)e
− ∫ x

x0
b(γ ) dγ −

∫ x

x0

c(ξ )e− ∫ x
ξ b(γ ) dγ dξ

+
∫ x

x0

∫ ξ+β

ξ−α

e− ∫ x
ξ b(γ ) dγ K1(η, ξ )y(η) dη dξ

+
∫ x

x0

∫ ξ

x0

e− ∫ x
ξ b(γ ) dγ K2(η, ξ )y(η) dη dξ

(17)

mogeneous term V1(x) � V2(x) � c(x). This is formally inte-
The order of double integration will now be reversed. Thisgrated to

is done to achieve single integral forms �M(
, x)y(
)d
 with
kernels M(
, x) that are integrals of known functions. The K1

and K2 integrations of Eq. (17) occur over specific areas of the
(
, �) plane determined by the limits. Figure 5 is a schematic
of the area of integration for K1. Figure 6 is a similar sche-

y(x) = e
− ∫ x

x0
b(γ ) dγ

{
y(x0) +

∫ x

x0

[V1(ξ ) + V2(ξ ) − c(ξ )]e
∫ ξ
x0

b(γ ) dγ
dξ

}
(16)

x, axis, axisη

17.374

–16.961

K(  , x)η

�
�
�
�

ξ

η

ξ = η

x1

x

x0

x0 x1x
Figure 4. A surface plot of K(
, x) � p(
)M(
, x) seen from a different
orientation. This view shows features of the surface that are hidden Figure 6. The area where double integration with the K2 kernel is

reversed. The original integration of x0 � � � x and x0 � 
 � � isin Fig. 3. This example shows that integral equations can have
smooth solutions even with discontinuous kernels. reversed to x0 � 
 � x and 
 � � � x.
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matic for K2. In Figs. 5 and 6 these integrations would be grated from x0 to x yielding y(x) � y(x0)
visualized as progressing horizontally through the respective
areas (see arrows). To reverse the order of integration is to
progress vertically through the integral areas (see vertical
hatching). The original double integrals could each become
sums of several ‘‘reversed’’ terms. Each of the new, reversed
double integrals would account for a portion of the original
(
, �) area. The limits of the reversed integrals could be condi-
tional statements that depend on the shape of the area
boundary. The result here is shown as Eqs. (18) through (22):

y(x) = y(x0) + p(x0)

∫ x

x0

e
− ∫ x

x0
b(γ ) dγ

dξ

−
∫ x

x0

∫ ξ

x0

d(η)e− ∫ ξ
η b(γ ) dγ dη dξ

+
∫ x

x0

∫ ξ

x0

[V1(η) + V2(η) − c(η)y(η)]e− ∫ ξ
η b(γ ) dγ dη dξ

(24)

The first three terms after the equal sign in Eq. (24) are all
known, the fourth term contains y(x) within double and triple
integrals. Let f (x, x0) represent the sum of the three known

y(x) = y(x0)e
− ∫ x

x0
b(γ ) dγ −

∫ x

x0

c(ξ )e− ∫ x
ξ b(γ ) dγ dξ + I1(x) + I2(x)

(18)
terms in Eq. (24) and H(x, 
) represent the integral factor

H(x, η) =
∫ x

η

e− ∫ ξ
η b(γ ) dγ dξ (25)

Using these definitions, and Eq. (21) for x*, the form of Eq.

I1(x) =
∫ min[x∗−α,x0+β ]

x0−α

∫ η+α

x0

. . . dξ dη

+
∫ x0+β

min[x∗−α,x0+β ]

∫ x

x0

. . .dξ dη +
∫ x+β

x0+β

∫ min[η+α,x]

η−β

. . .dξ dη

(19) (24) with only single integrals is

where the integrands are

e− ∫ x∗
ξ b(γ ) dγ K1(η, ξ )y(η)

for the first term of I1, and

e− ∫ x
ξ b(γ ) dγ K1(η, ξ )y(η) (20)

for the last two terms of I1. The function x* is defined as

x∗ = min[x, (x0 + α + β)] (21)

Finally, for I2,

y(x) = f (x, x0) +
∫ min[(x∗−α),(x0+β )]

x0−α

y(ζ )

{∫ ζ+α

x0

H(x∗, η)K1(ζ , η) dη

}
dζ

+
∫ x0+β

min[(x∗−α),(x0+β )]
y(ζ )

{∫ x

x0

H(x, η)K1(ζ , η) dη

}
dζ

+
∫ x+β

x0+β

y(ζ )

{∫ min[(ζ+α),x]

ζ−β

H(x, η)K1(ζ , η) dη

}
dζ

+
∫ x

x0

y(ζ )

{∫ x

ζ

H(x, η)K2(ζ , η) dη

}
dζ

−
∫ x

x0

y(ζ )c(ζ )H(x, ζ ) dζ (26)

The five integrals shown for Eq. (26) can be combined into a
I2(x) =

∫ x

x0

y(η)

{∫ x

η

e− ∫ x
ξ b(γ ) dγ K2(η, ξ ) dξ

}
dη (22)

single integration from (x0 � �) to (x � �) by multiplying each
kernel with a difference of Heaviside unit step functions to

The original equation is now in a purely integral form with define limits. This was done to calculate examples from Eq.
single integrations. New kernels, M1(
, x) (three terms) and (14) in the sample analysis.
M2(
, x), are defined as integrals of the products of an inte- The linear equations discussed in the preceding have all
grating factor and original kernels K1(
, �) and K2(
, �), re- described initial value problems. If boundary values are
spectively. The sample analysis describes solving a particular placed on y(x) or its first derivative at two points (x0, x1), then
equation from this point. the solution of a second-order equation is based on the charac-

Linear integro-differential equations with second-order de- teristic functions, or eigenfunctions, of the differential part
rivatives can be transformed into a Volterra form in a manner of the equation. A solution of the form y(x) � C0y0(x) �
similar to first-order equations. Consider the following sec- C1y1(x) � C2y2(x) � . . . is assumed, where the yi are eigen-
ond-order equation with the same integrals V1 and V2 as in functions corresponding to the eigenvalues �i. The coeffi-
Eq. (16): cients Ci are found in exactly the same way as in boundary

value problems involving nonhomogeneous differential equa-
tions. The three steps to the solution are: substitute thed2y(x)

dx2 + b(x)
dy(x)

dx
+ c(x)y(x) + d(x) = V1(x) + V2(x) (23)

eigenfunction expansion into Eq. (23), multiply by a particu-
lar eigenfunction yi to solve for its coefficient Ci, and integrate

Define the function p(x) � dy(x)/dx. Now Eq. (23) becomes a over the interval (x0, x1). In purely differential problems the
linear, first-order equation for p(x) with inhomogeneous term result is a series of equations, one for each of the coefficients
V1(x) � V2(x) � d(x) � c(x)y(x). This is integrated once for Ci. For integro-differential equations the result is a series of
p(x) by using an integrating factor exp[�b(x)dx], and speci- equations linking each coefficient to a weighted sum of coeffi-

cients, Ci � �wnCn. The weights wn result from integrationfying an initial condition p(x0). The result for p(x) is inte-
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and may be difficult to calculate. This matrix relationship
among the coefficients reflects the nature of the original equa-
tion. The magnitude Ci of each mode yi(x) is linked to the mag-
nitudes of the other modes in solution y(x) by the integrals
involving K1 and K2.

VOLTERRA ANIMALS

Volterra introduced the following system of coupled, nonlin-
ear, first-order, integro-differential equations to describe the
dynamics of survival for a population of predators y(t) and a
population of prey x(t):
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Figure 8. Phase diagram for the Volterra model example of Fig. 7.
If heredity coefficients Kx and Ky are zero, then this curve is a closed

[
1

x(t)

]
dx(t)

dt
= a(t) − b(t)y(t) −

∫ t

c
Ky(t, s)y(s) ds

[
1

y(t)

]
dy(t)

dt
= −α(t) + β(t) x(t) +

∫ t

c
Kx(t, s) x(s) ds

(27)

noncircular path called a vortex cycle. The initial point and the direc-
tion of time’s arrow are shown. Heredity causes a drift in the cyclic
action.These equations show rates of population growth that are de-

pendent on three factors: herd size or predator density, en-
counters between species, and hereditary influences. Prey �0.05, and initial conditions x(0) � 1 and y(0) � 2. Figure 8
x(t) are adversely affected by encounters with predators, is a phase diagram for this case where the initial conditions

and the direction of time’s arrow are indicated. Without he-�b(t)x(t)y(t), and by evolutionary improvements in these
reditary influences (Kx � Ky � 0), the nonlinear, purely differ-predators, �x(t)�Ky(t, s)y(s) ds. Predators are adversely af-
ential system has a periodic trajectory that is a noncircularfected by too high a population of their own kind, ��(t)y(t).
closed path on the xy phase plane (a ‘‘vortex cycle’’). In gen-Reference 4 discusses this system in detail. The hereditary
eral, neither x(t) nor y(t) can be expressed in terms of elemen-integral is described for heredity coefficients (Kx and Ky) of the
tary functions. The effect of the hereditary integrals is toform K(t � s) under various names: it is the ‘‘renewal equa-
cause a ‘‘drift’’ in the solutions, seen as a rising trend for thistion’’ in Ref. 2, ‘‘convolution’’ in Ref. 3, the ‘‘superposition in-
example. Additional long-term effects for this case are a di-tegral’’ in Ref. 5, and an integral with a ‘‘displacement kernel’’
minishing impact of predators (y) on prey (x) and a shorteningin Ref. 6. We will describe an approximate method of solution
of the time between cycles. Converging or diverging popula-for Eq. (27) that makes few assumptions about the coeffi-
tions that either grow or diminish can clearly be simulated by

cients a, b, �, and �, or the kernels Kx and Ky. changing the magnitudes and the signs of the coefficients and
Figure 7 is a particular example of Eqs. (27) for 0 � t � kernels. More interesting effects arise when these factors are

20, c � 0 (‘‘the creation’’), a � b � 2, � � � � 1, Kx � Ky � time dependent.
Equations (27) are integrated once

ln
[

x(t)
xc

]
=

∫ t

c
a(s) ds

−
∫ t

c
b(s)y(s)ds −

∫ t

c

∫ s

c
Ky(s, u)y(u) du ds

ln
[

y(t)
yc

]
= −

∫ t

c
α(s)ds +

∫ t

c
β(s)x(s) ds

+
∫ t

c

∫ s

c
Kx(s, u)x(u)du ds

(28)

The order of double integration is reversed, and then the fol-
lowing functions are defined:y
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Figure 7. Population histories of predators y(t) and prey x(t) from
the Volterra model of Eq. (27) with a � b � 2, � � � � 1, Kx � Ky �

�0.05, c � 0, y(c) � 2, and x(c) � 1. In this example heredity causes
the populations to increase, diverge, and cycle more often.

A(t) =
∫ t

c
a(s)ds

�(t) =
∫ t

c
α(s)ds

Mx(t, u) =
∫ t

u
Kx(s, u) ds

My(t, u) =
∫ t

u
Ky(s, u) ds

(29)
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Now the equations are tions would be speedier. A solution of this type is achieved by
assuming that x(t) � x(t � �t) for �t sufficiently small. The
integral in Eq. (31) is split into two terms, the first with limits
c � u � t � �t, and the second with limits t � �t � u � t.
The second integral is now approximated by a two-point trap-
ezoid rule [2 � integral/�t � integrand(t) � integrand(t �

ln
[

x(t)
xc

]
= A(t) −

∫ t

c
[b(u) + My(t, u)]y(u)du

ln
[

y(t)
yc

]
= −�(t) +

∫ t

c
[β(u) + Mx(t, u)]x(u)du

(30)

�t)]. The trapezoid rule integrand at t has the form

The equation for y(t) is substituted into the equation for x(t),
Ly(t, t)e−�(t)+∫ t

c Lx (t,w)x(w) dw (32)yielding

where Ly(t, u) � b(u) � My(t, u) and Lx(t, u) � �(u) � Mx(t,
u). The two-point trapezoid approximation is used again for
the integral in Eq. (32), which now has the form

ln
[

x(t)
xc

]

= A(t)− yc

∫ t

c
[b(u)+ My(t, u)]e−�(u)+∫ u

c [β(w)+Mx (u,w)]x(w) dw du

(31)

This nonlinear equation for x(t) would appear to be an excel-

{Ly(t, t)e−�(t)+∫ t−�t
c Lx (t,w)x(w) dw}e

∫ t
t−�t Lx (t,w)x(w) dw

≈ {. . .}e(�t/2)[Lx (t,t)x(t)+Lx (t,t−�t)x(t−�t)]

≈ {. . .}e(�t/2)[Lx (t,t)+Lx (t,t−�t)]x(t−�t) (33)lent form on which to apply the method of successive approxi-
mations. Figure 9 is a display of twenty-three successive ap-

The resulting approximation in place of Eq. (31) isproximations to Eq. (31) for the specific example described in
Figs. 7 and 8. Forty-one points are used in this calculation,
and the range is restricted to 0 � t � 10. The zeroth iterant
is xc � 1 for the entire range, and calculated values of x(t)
larger than 6xc are reset to xc. The solution is seen to chip its
way into the unknown like a pickax repeatedly driven into
concrete. This is because the derivative of the solution at its
leading edge depends on the integral of its history, so each
iterant only advances the solution a small amount in time. It

ln
[

x(t)
xc

]
= A(t) − yc

∫ t−�t

c
Ly(t,u)e−�(u)+∫ u

c Lx (u,w)x(w) dw du

− yc�t
2

Ly(t, t − �t)e−�(t−�t)+∫ t−�t
c Lx (t−�t,w)x(w) dw

−
{

yc�t
2

Ly(t, t)e−�(t)+∫ t−�t
c Lx (t,w)x(w) dw

}
e(�t/2)[Lx (t,t)+Lx (t,t−�t)]x(t−�t) (34)

would be more efficient to calculate a solution by advancing
forward in time rather than iterating over the entire time do- Notice that for �t � 0 we recover the original equation. Here
main. The calculation of x(t) requires iteration because x(t) the calculation is an explicit operation moving forward in
appears on both sides of Eq. (31). If x(t) could be shown to time. This result makes it much easier to calculate the exam-
depend only on its history, and not also on its present value, ple shown in Figs. 7 and 8 than by iteration (161 points span
then the solution would be a recursion formula and calcula- the range 0 � t � 20).

APPLICATIONS

Equation (1) in the sample analysis section is a form of the
Boltzmann equation for the drift of a cloud of electrons along
a constant electric field through a uniform molecular gas.
Physical quantities are as follows: x is electron kinetic energy
in units of eV, y(x) is the distribution function of electron ki-
netic energy in units of eV�3/2, a(x) � a0x � (1/3)(E/N)2(x/Q),
E is the electric field in V/cm, N is the particle density of the
gas in cm�3, Q is the electron-molecule elastic collision cross
section in cm2, p(x) � p0x � Sx, S is the electron–molecule
inelastic collision cross section in cm2, � � 0, B0(x) is an ap-
proximation for the logarithmic derivative of y(x), � is large
so �B0(x) � 1, and xB0(x) � 1 (this model of electron kinetics
is for energies x above the range of thermal motion, x � 0.03
eV). Both Q and S are assumed to be only mildly dependent

Time (t)

Iterants

Unknown

5.9

x(t)

2.5 ⋅ 10–25

Solved

on x. B0(x) is given by Eq. (10) and then y0(x) isFigure 9. A sequence of successive approximations to Eq. (31) for
the case shown in Figs. 7 and 8. Equation (31) is a nonlinear integral
form of the Volterra predator and prey model. Each iterant builds up
the solution sequentially, even though iteration occurs over the full

y0(x) = exp

{
−

∫ x

0

√
3Q(ξ )S(ξ )

E/N
dξ

}
(35)

time interval (0 � t � 10 in these calculations of 23 iterants). This is
because the derivative of the solution at the present moment depends

Typical parameters in experiments might be Q � 10�15, S �on the integral of its history. The iteration had an upper limit of six
3 � 10�16, E � 1000, and N � 1018. Good approximations fortimes the initial condition; any point calculated above this limit was
distribution functions of electron energy in nitrogen mixturesreset to the initial condition. A better method of calculation is based

only on prior events. have been calculated from this result by using cross section
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data. Literature on the Boltzmann equation is vast. The per- erra had shown that kernels of the type K(t � s) produce peri-
odic solutions (see Refs. 4, 16, and 17). In general we can ex-vasive approximation is that the system is never far from

thermal equilibrium f 0(x) (‘‘Maxwellian’’ distribution), so that pect heredity to alter the frequency of oscillations, to
introduce a damping, and to shift the mean position, all dur-the nonequilibrium solution f (x) is a perturbation given by an

expansion f (x) � f 0(x)(1 � �1(x) � �2(x) � . . .), where suc- ing the course of time.
An integro-differential equation for heat transfer occursceeding terms are of smaller magnitude. The full development

of this Chapman–Enskog method is quite involved (see Ref. when the constitutive relation between heat flux and temper-
ature gradient in the material is a hereditary integral. In a7). The electron energy distribution may be far from thermal

equilibrium with the gas molecules in an electric discharge similar way, an integro-differential equation describes the
evolution of an electric field in the vicinity of a nonconductingbecause of the high electric fields. A Chapman–Enskog

expansion for electrons might require the calculation of many material dielectric with a memory of its charging history (a
‘‘Maxwell–Hopkinson dielectric’’). These and other applica-terms. The alternative is to expand the electron distribution

function in a series of spherical harmonics defined by an axis tions are described in Ref. 18, a mathematician’s treatise on
integro-differential equations.aligned with the electric field. This creates a sequence of

linked equations. Once the zeroth-order equation is solved for The technological application of mechanics with heredity
and of nonequilibrium kinetics is likely to drive future effortsthe leading term of the expansion, then the first-order term

can be solved, and so on. The zeroth term describes the aver- to improve the solution of integro-differential problems. These
problems arise in the development of nonequilibrium pro-age energy of an isotropic cloud of electrons, and the first

term describes the drift of this cloud along the field, a current. cesses, such as plasma-chemical reactors for modifying mate-
rial surfaces, and in the development of synthetic materialsThe result given by Eq. (35) is an approximation to the iso-

tropic part of the electron distribution. References 8, 9, and with engineered physical properties. Another thrust to solv-
ing these equations is the desire to improve our understand-10 describe kinetic theory and the mathematics of the Boltz-

mann equation. References 11, 12, and 13 describe the theory ing of natural phenomena and materials. It is not hard to
imagine that natural flows like lava or glaciers, and naturalfor electrons in a gas.

The mechanical constitutive equation of a material relates cycles like climate and weather, can have a hereditary factor.
It would be interesting to have a method for easily estimatingthe stress tensor to the deformation tensor for a solid, and to

the rate of strain tensor for a fluid. Many engineering materi- a distant cycle-time average of a quantity influenced by he-
redity, be it metal fatigue or species extinction.als are characterized by linear isotropic constitutive relations:

the generalized Hooke’s law for solids; and the Newtonian
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