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LEAST-SQUARES APPROXIMATIONS

The method of least squares dates back about two hundred years. The main stimulus for its invention and
development was provided by studies in astronomy. The first to publish on the method was the French mathe-
matician Adrien-Marie Legendre, who studied the orbits of comets. It seems, however, that the first to invent
the least-squares approximation method was the German mathematician Karl Friedrich Gauss, who used it in
1795 (Legendre discovered the method independently). Ever since, the method has been one of the basic tools
for data analysis by scientists and engineers, and in its class it is the most popular.

In practice, data measured for studying physical phenomena are often erroneous due to the lack of abso-
lutely accurate measurement devices. For example, when Legendre and Gauss studied the motion of planets, it
was important to estimate their orbits accurately from imperfect observations. In general, mathematical mod-
els are built for observed phenomena, which are represented by functions with unknown parameters. These
models have to approximate observed data as closely as possible, so the objective is to fit the model to the
data in the best possible way. A criterion for goodness of fit for this purpose is often the total sum of squared
residuals. The smaller the sum, the better the model. Clearly, then, for a given model it is important to esti-
mate its parameters that yield the smallest sum of squared residuals; therefore we want to apply least-squares
estimation methods.

In this article we discuss selected topics in the field of least-squares approximation. We start with prelim-
inaries related to quantifying the approximations and definitions of the concept of norms. Then we introduce
the notions of linear independence and inner product, and describe some basic linear-algebra concepts. The
least-squares method is first explained with a couple of simple examples of curve fitting. It is followed by
presentation of the general least-squares problem and approaches for solving it. Many important practical
cases of linear least-squares involve polynomial fitting and spline interpolation; thus, we present some basic
information for their use. Next, the focus of our attention shifts to nonlinear least-squares methods, and we ad-
dress methods with reduced complexity as well as iterative techniques. The next topic, sequential least-squares
estimation, involves implementation of the least-squares method recursively in time. The last two sections are
on predictive least squares and the bootstrap method. The former is important for choosing the correct model
from a set of candidates, and the latter, for assessing the accuracy of the least-squares estimates.

Preliminaries

In general, three main components are needed to specify every approximation problem: (1) the function y(t),
which is to be approximated over a given closed interval [a,b], (2) the class � of approximating functions ψ(t),
and (3) the norm ‖·‖ that gives some measure of magnitude of functions. The goal of best approximation is to
find a function such that
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2 LEAST-SQUARES APPROXIMATIONS

If the above is satisfied, the function is the best approximation to y(t) from the class � with respect to
the norm ‖·‖.

The class � is called a real linear space if for any two functions ψ1(t),ψ2(t) ∈ �, it also contains θ1ψ1(t) +
θ2ψ2(t) for any real θ1 and θ2. A linear space �p of finite dimension p can be defined given a set of (constituent)
basis functions hi(t) ∈ �, i = 1,2,. . ., p. Any function ψ(t) ∈ �p can be represented as a linear combination of the
basis functions hi(t):

for any real θi.
A typical example for a linear space is the set of polynomials of finite degree. They are very convenient

for approximating functions over bounded-support domains. Any continuous function defined over a bounded
support (or closed interval, in the single-variable case) can be approximated to any level of accuracy with a
polynomial of sufficiently large degree (Weierstrass’s theorem).

As mentioned previously, the norm is the third important component needed for specifying an approxima-
tion problem. It is the criterion that determines the goodness of each approximating function. A function that
is a good approximant in one norm may turn out to be a bad approximant under a different norm. The following
are some possible norms for a function ε(t), defined over the finite closed interval [a,b] (in the subsequent sec-
tions the function ε(t) denotes the approximation error, and w(t) is some nonnegative “weight function” defined
on [a,b]):
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The discrete versions of the above equations correspond to the situations involving a set of N distinct
points t1, t2, . . . , tN and a set of N nonnegative weight factors w1, w2, . . . , wN :

In our presentation, we study continuous- and discrete-variable functions. We discriminate them in the
notation by using ξ(t) for the continuous case, and ξ[tn], or simply ξ[n], for the discrete case, where t ∈ [a,b] ⊂
� and n = {1,2,. . ., N}. In the continuous case, the given (approximated) function y(t) and the approximating
functions ψ(t) of the class � must be defined on the interval [a,b], so that the chosen norm ‖y − ψ‖ is also
defined on the same interval. Similarly, in the discrete case, y[tn], ψ[tn], and ‖y − ψ‖ must be defined at the
N distinct support points. If the best approximant in the discrete case satisfies ‖y − ‖ = 0, then [tn] =
y[tn] for n = 1,2,. . ., N, in which case it is said that interpolates y at the points tn. This sort of approximation
problem is called an interpolation problem.

More Basic Concepts

Linear Independence. The set of functions hi (t) is said to be linearly independent on a given support
St if

As an example, the set of functions hi (t) = ti − 1, i = 1,2,. . . , p, is linearly independent on the support St =
[a,b] where a and b are real and a < b. If, however, the support is St = {t1, t2, . . . , tN}, then the set is linearly
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independent if and ony if N ≥ p, because otherwise the sum of squared approximation errors could be made
equal to zero at the N support points without necessarily implying that the coefficients θi are zero.

Inner Product. An inner product of two (real) functions h1 (t) and h2 (t) whose L2 norms are finite is
defined as

In the discrete case associated with the set of points {t1, t2, . . ., tN} the inner product will be defined as

Note that the least-squares (L2) norm (squared) of a given function is simply its inner product with itself,
i.e., ‖ε‖2

2 = 〈ε, ε〉.
Two functions h1(t) and h2(t) are said to be orthogonal if 〈h1,h2〉 = 0. An orthogonal system is defined as a

set of functions {hi (t)}, i = 1, 2, . . ., p, that satisfy

It can be shown that every orthogonal system is linearly independent on the support St. An orthogonal
system is called orthonormal if 〈hi,hi〉 = 1, i = 1, 2, . . ., p.

Basic Linear-Algebra Concepts

Every function can be represented by a vector of some sort. In the discrete case, this can be a vector of samples of
the function taken at distinct values of t. A polynomial function can be represented by a vector of its polynomial
coefficients. A periodic function can be represented by its Fourier series coefficients. The field of linear algebra
covers the concepts associated with vectors and vector spaces. In this section we will cover a few basic notions.
Almost regularly, the vector–matrix (discrete-valued) concepts have their equivalents in concepts associated
with functions. These equivalencies can usually be established by simply substituting the word “vector” for
“function.” For instance, a set of vectors hi, i = 1, 2, . . ., p, is said to be linearly independent if

holds only with θ1 = θ2 = ··· = θp = 0.
The set of all N-dimensional vectors is an N-dimensional vector space. Equivalently to the concept of

linear (function) spaces described previously, if h1 and h2 are members of this vector space, then so are h1
+ h2 and θ h1. (Note that there is no need for using “linear” in the case of vector spaces.) We call these two
conditions closure under vector addition and scalar–vector multiplication. If a subset P of a vector space Q
is closed under vector addition and scalar–vector multiplication, then P is called a subspace. The maximal
number of linearly independent vectors in P is called the dimension of the subset P. A maximal-size set of
linearly independent vectors in a subspace P is a basis for P. Given a p-dimensional subspace P and a set
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of k < p linearly independent member vectors, there are always p − k additional vectors in P such that the
concatenated set of p vectors represents a basis for P. If a set of vectors hi, i = 1,2,. . . , p, constitutes a basis for

the subspace P, then any vector u ∈ P can be represented as u = θihi. The concepts of vector norms, vector
inner products, and orthogonal (and orthonormal) vectors, can be defined analogously to the same concepts
described previously in the case of functions.

The subspace formed by the set of all linear combinations of the vectors hi, i = 1, 2, . . ., k, is called the
span of this vector set. The dimension of this subspace is less than or equal to k. Given an N × p matrix H, the
subspace spanned by its column vectors is called the range or the column space, and the subspace spanned by
its row vectors is called the row space. For any matrix, the dimension of the row space is equal to the dimension
of the column space, and this number is called the rank of the matrix. An N × p matrix H is of full rank if rank
(H) = min(N, p), and it is rank-deficient if rank (H) < min(N, p). A square N × N matrix is singular if rank
(H) < N, and nonsingular if rank (H) = N. A square matrix Q is orthogonal if QTQ = I, where I is the identity
matrix. Matrices with this property have extensive use in many approaches to solving least-squares problems.
Lawson and Hanson (1) give a succinct and clear description of more linear-algebra concepts pertaining to the
least-squares problem and its solution.

Least-Squares Curve Fitting

We continue our discussion of the least-squares problem by introducing some of its simplest and clearest
manifestations as applied to the curve-fitting problem.

Straight-Line Fitting. Experiments in science and engineering produce data points that are subse-
quently used to derive relationships between variables in the observed models. In particular, a set of distinct
data points (t1, y[1]), (t2, y[2]),. . . , (tN , y[N]) needs to be fitted with a function f (t) that relates these two
variables. Depending on our confidence in the exactness of the measured data points, we may approach this
problem in two main ways. If the data points are known to be highly accurate (i.e., the measuring devices
add little or no errors that are not accounted for in the model, or the level of external noise in the system is
insignificant), then interpolation is the best way to go.

Interpolation will attempt to fit a curve that goes straight through all of the data points. If, however,
the data points are known to be insufficiently accurate, interpolation will almost regularly give unsatisfactory
results. Intuitively, attempting to fit a curve through data points that are likely to be randomly positioned
around their “accurate” positions is bound to produce overly complex approximating functions that poorly
describe the real underlying phenomenon. In these cases, the true value of f (tn) satisfies f (tn) = y[n] + ε[n],
where ε[n] denotes the measurement error ε[n] = f (tn) − y[n], which is also called the residual. Each of the
norms listed previously under the discrete case can be associated with this residual to serve as a quality
measure for the fit. Least-squares methods exploit the L2 norm.

First, we cover the simplest case of linear approximation. How do we find a best approximation of form
f (t) = θ1t + θ2 that goes near a set of data points (t1, y[1]), (t2, y[2]),. . . , (tN , y[N]) scattered in the (t, y) two-
dimensional space? Our goal is to position this line “as close as possible” to all data points contained in the set.
For convenience, our measuring stick for goodness will be the square of the L2 norm of the residual,

The best linear approximation (i.e., the best straight line) is the one whose parameter pair (θ1, θ2) mini-
mizes the error function J(θ1, θ2); it is denoted by ( 1, 2). Hence, the approximation problem is transformed
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into a minimization problem in the parameter space spanned by the parameters θ1 and θ2. At the point that
minimizes the value of J(θ1,θ2), the partial derivatives ∂J/∂θ1 and ∂J/∂θ2 are both zero:

The above equations can be arranged into a system of two equations with two unknowns, which—in the
context of least-squares approximations—are referred to as the normal equations:

The solution to this system is given by

where for simplicity �(·) denotes .
Nonlinear Fitting Functions. The same least-squares method used to fit a straight line through a set

of data points can be extended to nonlinear cases as well. For instance, consider the function f (t) = θtc, where
c is some known constant. Given a set of N data points and following the same least-squares method, we need
to find a value of the parameter θ that minimizes the function
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Here we need to solve ∂J/∂θ = 2 (θt2c
n − tc

ny[tn]) = 0, which yields the solution

One familiar example (c = 2) covered by this power fit is finding the acceleration of gravity from a set of
time and distance measurements.

The General Linear Least-Squares Problem

As a generalization of the above curve-fitting discussions, the linear least-squares problem can be presented
as follows. We need to model a function y(t) over a given interval with an optimal (best in the least-squares
sense) linear combination of p known basis functions hi(t), i = 1, 2, . . ., p:

where ε(t) is the modeling (fitting) error and θi are the unknown modeling coefficients. In the straight-line fitting
discussion, we used two basis functions (a linear and a constant function), while in the nonlinear curve-fitting
discussion we used a single (nonlinear) basis function. Regardless of whether the basis functions themselves
are linear or nonlinear, the linearity of the least-squares procedure stems from the fact that the basis functions
are elements of a linear space, i.e., the model function in Eq. (24) is linear in the unknown coefficients θi.

In the discrete case where the functions are only known at N distinct points, the linear least-squares
problem is as follows:

that is, y[n] = �p
i = 1 θihi[n] + ε[n] for n = 1, 2, . . ., N. In matrix form this can be written as
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or

where H is an N × p matrix and the compositions of the vectors and matrices involved are obvious from the
above. This data-modeling problem corresponds to selecting the basis coefficients so that the data model best
represents the measured data in a least-squares sense.

We seek the vector θ that minimizes the square of the L2 norm of the criterion (modeling error)

In nonmatrix form, the function to be minimized is

After taking the partial derivatives ∂J(θ)/∂θi, i = 1, 2, . . ., p, and setting them equal to zero, we get the
following system of equations:

Notice the introduction of a new index l, which is not to be confused with the index i. After interchanging
the order of summations, we get p (linear) normal equations with p unknown coefficients θi:

Equivalently, the matrix form of the normal equations can be presented as (HT H)θ = HTy, where HT

denotes the transpose of the matrix H. The solution for the unknown coefficient vector θ is

which is referred to as a least-squares solution. Without going into derivations, it should be noted here that in
the case of complex data modeling (where we allow for complex-valued elements of θ, H, and/or y), the above
formula becomes

where H∗ denotes the complex conjugate transpose of H.
Note that the solutions yielded by Eqs. (32) and (33) are by no means unique. (They are unique if and only

if H is of full rank.) It is possible that there exists a whole set of least-squares solutions that are associated
with the same (and unique) minimal (least-squares) value.
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Solving the Linear Least-Squares Problem

Orthogonal Decomposition. The solutions presented in Eqs. (32) and (33) are oftentimes computa-
tionally costly (because of high-order matrix inversions) and/or very sensitive to small perturbations in the
observed model. There are several ways to reach a least-squares solution more efficiently. Some of them are
direct, and some of them are iterative. Most of them take advantage of the important property of orthogonal
matrices that they preserve the L2 norm under multiplication. In other words, given an N × N orthogonal
matrix Q and the N-vector ε,

Using this property, we can present the least-squares problem in a modified form. Following Lawson and
Hanson (1), we first assume that the N × p matrix H (N ≥ p) is of rank k and that it can be decomposed as

where A is an orthogonal N × N matrix, B is an orthogonal p × p matrix, and R is of the form

where R11 is a k × k matrix of rank k. Next, we introduce the new N-vector

and the new p-vector

We define 1 to be the unique solution of

Then:

(1) All solutions to the least-squares problem of minimizing ‖y − Hθ‖ can be presented as
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(2) Any so defined is associated with the same residual (error) vector

(3) The norm of ε satisfies

(4) The unique solution of minimum length is

The proofs of the above four statements can be found in Lawson and Hanson (1). The decomposition H =
ARBT is called an orthogonal decomposition of H, and it is by no means unique. Some of the most widely known
and applied orthogonal decompositions are the QR decomposition and the singular value decomposition (SVD).
The discrete Fourier transform can also be applied. In general, regardless of the orthogonal decomposition
employed, every least-squares problem has a unique solution of minimum length, a unique set of all solutions,
and a unique minimum residual value. In the special case when rank (H) ≡ k = p, the solution to the least-
squares problem is itself unique.

Weighted Least Squares

Oftentimes, in practice, it is desirable to attach separate weights to each of the terms in the norm summation
for the modeling error. In the continuous case, a given continuous weighting function may be associated with
the norm formula. Cases where this is needed are the ones where each data point is known to be associated with
a different level of certainty, accuracy, or reliability. Intuitively, we would like the members of the error-norm
sum stemming from more reliable data to make larger contributions to the total. This is where weighted least
squares comes into play. In the more general complex data-modeling case, the error function to be minimized
is

where the N × N weighting matrix W is positive definite and Hermitian (i.e., W∗ = W). If W is equal to the
identity matrix, the model reduces to the classical (unweighted) least-squares case. Most often, W is diagonal
with the weighting coefficients populating the main diagonal. Skipping the rather straightforward derivation
(which is readily found in numerical analysis and optimization-related textbooks) the solution to the weighted
least-squares problem is
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Polynomial Fitting and Spline Interpolation

After analyzing the general least-squares problem and discussing some solution approaches, we return to some
more complex manifestations of the curve-fitting problem such as polynomial fitting and spline interpolation.

One convenient way of modeling empirical data is by fitting a polynomial of degree p through N data
points (tn,y[tn]), n = 1, 2, . . ., N. We have already presented a special case when we addressed the fitting of
a quadratic function through a set of data points. The linear least-squares approach described above can be
implemented towards the solution of the generalized polynomial fitting problem by using the basis functions
hi(t) = ti, i = 0, 1, . . ., p. The approximating function is

Note that there are p + 1 unknown coefficients. Of course, all the previous discussion for the general
least-squares problem and its solution applies to this special case.

If the number of data points, N, is less than or equal to the number of unknown polynomial coefficients,
p + 1, there will always exist a polynomial curve (of degree p) that can bring the modeling error down to zero
(i.e., it will manage to go straight through the data points). This special subcase of polynomial fitting is called
polynomial interpolation.

There are difficulties associated with polynomial fitting, and much attention needs to be paid to the nature
of the modeled phenomenon and the empirical data. Unless we are sure that the data points actually lie on
the polynomial curve (polynomial interpolation problem) and unless a priori knowledge is available for the
polynomial degree of the phenomenon, polynomial fitting can often lead to unsatisfactory solutions. Note that
a polynomial of degree p can have p − 1 local extrema. This means that the least-squares polynomial will have
more oscillations as p increases. The modeling errors (measured at the data points) may still be zero or very
small (or, at least, be minimal in a least-squares sense), but that fact itself will not guarantee “nice” behavior
of the polynomial curve in the space between the data points.

Example: As an illustration of the above discussion, Fig. 1 shows a polynomial fitting (p + 1 < N) example,
while Fig. 2 shows a polynomial interpolation (p + 1 ≥ N) example. All polynomial curves shown are least-
squares solutions for a specific case where the number of data points is N = 5. The data points are {(tn, y[tn])} =
{(1,1), (2,3), (3,2), (4,5), (5,7)}. Figure 1 shows the 1 ≤ p ≤ 3 (fitting) cases, and Fig. 2 the 4 ≤ p ≤ 6 (interpolation)
cases, where p is the degree of the polynomial. Note how the magnitude of the oscillations increases with p. A
remedy for this so-called polynomial wiggle phenomenon can be found in spline interpolation.

The spline interpolation approach tries to piece together lower-degree polynomial curves ψk(t), each of
which interpolates the data over predetermined abscissa segments. The combined curve ψ(t), defined over the
whole relevant abscissa range, is called a spline. The connection points between the segments are called knots.
The simplest and most trivial spline interpolation case is when the polynomials are linear (i.e., of degree 1).
This amounts to simply connecting adjacent data points with straight lines. Most widely used, especially in
the computer graphics industry, are the cubic splines. They are smooth interpolating curves without excessive
oscillations. Intuitively, they are a good choice because they are the lowest-degree polynomials with nonzero
first and second derivatives. A low polynomial degree minimizes unwanted oscillations (wiggles) while the
(existing, hence controllable) first and second derivatives enforce the desirable behavior around the knots.
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Fig. 1. Polynomial fitting example (p + 1 < N). The N = 5 data points are {(tk, yk)} = {(1,1), (2,3), (3,2), (4,5), (5,7)}. Full
line (p = 1) represents y(t) = 1.4000t − 0.6000. Dashed line (p = 2) represents y(t) = 0.2857t2 − 0.3143t + 1.4000. Dotted
line (p = 3) represents y(t) = 0.1667t3 − 1.2143t2 + 3.6190t + 1.4000.

Consider N + 1 knots (t0, y[t0]), (t1, y[t1]),. . ., (tN , y[tN]) such that t0 < t1 ··· < tN . Also consider N cubic
polynomials

for t ∈ [tn, tn+1] and n = 0, 1, . . ., N − 1. A cubic spline ψ(t) will be formed if the following four properties are
satisfied:
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Fig. 2. Polynomial interpolation example (p + 1 ≥ N). The data points are the same as in Fig. 1. Full line (p = 4) represents
y(t) = −0.5000t4 + 6.1667t3 − 26.0000t2 + 44.3333t − 23.0000. Dashed line (p = 5) represents y(t) = −0.1618t5 + 1.9270t4 −
7.5864t3 + 10.4051t2 − 3.5839. Dotted line (p = 6) represents y(t) = −0.0625t6 + 0.7458t5 − 2.9375t4 + 3.9375t3 − 0.6833t.

The property (48) ensures that the spline passes through the knots (data points). The property (49)
ensures that the spline is a continuous function. The property (50) guarantees that the spline is smooth around
the knots. The property (51) further limits the curvature of the spline around the knots.

The goal of the spline interpolation procedure is to find the set of cubic polynomials that satisfy the
above properties. Each of the N cubic polynomials ψn(t) has four coefficients, which results in a total of 4N
unknowns. The property (48) provides N + 1 equations. Each of the properties (49), (50), and (51) provides N −
1 conditions, bringing the total to N + 1 + 3(N − 1) = 4N − 2 equations. Two more conditions can be added to
control the spline’s derivatives at the endpoints (t0, y[t0]) and (tN , y[tN]), thus bringing the number of equations
to 4N, which equals the number of unknown coefficients. Obviously, different endpoint conditions will produce
correspondingly different end-segment polynomials. For an in-depth coverage of splines see Dierckx (2) and
the bibliography therein.

Nonlinear Least Squares

In many problems the data y are modeled as a nonlinear function of unknown parameters θ:

where y is an N × 1 vector of observed samples, g(·) is a nonlinear function in the parameters θ, and ε is an N
× 1 vector of errors. The parameter vector belongs to the parameter space � ⊂ �p; that is θ is a p-dimensional
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vector. The expression in Eq. (52) can also be written as

and the least-squares estimate of θ, , is obtained by minimizing the error sum of squares

or

over θ ∈ �, i.e.,

As opposed to the linear least-squares problem, the estimation of θ when g(·) is a nonlinear function may
be very difficult. The general methods for finding are based on iterative numerical techniques, of which the
best known are the Gauss–Newton method and the Newton–Raphson algorithm. Before we proceed with their
description, it is important to comment on approaches that reduce the complexity of the problem and allow for
easier implementation of the least-squares estimation.

Methods with Reduced Complexity. In some situations it is possible to transform the original non-
linear problem to a linear one by using a one-to-one transformation. In that case, the original parameters θ are
transformed to α via

where q(·) is the transformation, so that

Then one can apply first the linear least-squares approach to estimate and follow it with the transfor-
mation

to obtain the desired estimates. Unfortunately, it is usually difficult to find a function q(·) that converts the
nonlinear problem to a linear one. To demonstrate the method, we provide an example that is of interest in
many signal-processing applications, as presented in Kay (3).

Example: Let the data y[n] be modeled as a sinusoid with known frequency f and unknown amplitude A and
phase ϕ:
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and let the objective be to find the least-squares estimates of A and ϕ. Obviously, one of the parameters, ϕ, is
nonlinear, which means that the straightforward approach would be to apply a nonlinear least-squares method.
The alternative is to transform A and ϕ to a new set of parameters B1 and B2, which appear in the model of the
data as linear parameters. The transformation is given by

and the model becomes

The parameters B1 and B2 can now easily be estimated, and once they are obtained, the original parameters A
and ϕ are found from

Another approach that may reduce the complexity of the problem is based on the concept of separability,
as described by Seber and Wild (4). Namely, in some problems the parameters θ can be partitioned, θ = [β, γ], so
that the minimization of the criterion J (β, γ) with respect to β is easy. The idea of the approach is to estimate
β first and then proceed with estimating γ by minimizing J ( , γ). For instance, when the dimension of θ is p
and the dimensions of β and γ are pβ and pγ , respectively, it is clear that the dimension of the parameter space
over which a nonlinear least-squares procedure has to be applied is reduced from p to pγ .

Example: The data represent a sinusoid as in Eq. (63). Let the unknowns be the amplitudes of the quadrature
components B1 and B2 as well as the frequency f . The goal is to estimate the unknown parameters from the
data y. It is not difficult to see that Eq. (63) can be rewritten in vector–matrix form as

where y and ε are N × 1 vectors, H (f ) is an N × 2 matrix whose n-th row hT
n = [sin(2πfn) cos(2πfn)], and βT =

[B1 B2]. The unknown parameters θT = [B1 B2 f ] are thus split to β and γ = [f ]. For given f , the parameters
β can easily be estimated from
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If this result is plugged into the minimization of J, the estimate of f is obtained from

which, after simple algebra, can be rewritten as

Thus, the estimation of the unknowns is implemented as follows: first the least-squares estimate of f̂ is obtained
from Eq. (69), and then the estimate of β according to

A rigorous treatment of problems where separability is possible can be found in Golub and Pereira (5).
Numerical methods. When the above methods fail, one usually resorts to numerical iterative tech-

niques. There are two general iterative approaches; one is known as the Gauss–Newton, and the other, as the
Newton–Raphson method. Suppose that the process of estimating θ is iterative and that at iteration k, θ(k) is
the estimate of θ. If θ(k) is close enough to θ, one can expand g(θ) around θ(k) using linear Taylor expansion. The
result is

where G(k) is an N × p matrix whose elements are

and where θ is substituted by θ(k) to evaluate the partials, and gi and θj denote the ith and jth elements of g
and θ, respectively. Recall now that the least-squares estimate is the value of θ that minimizes J = εTε. If in

we substitute the approximated g(θ) in Eq. (71), and with it we form the approximation of the criterion J,
its minimization with respect to θ becomes easy, because then θ appears as a set of linear parameters. This
estimate of θ is denoted as θ(k+1) and is given by

Once θ(k+1) is evaluated, it is used to compute G(k+1), and the equation (74) is applied to determine θ(k+1).
The iterations continue until a predefined criterion of convergence is satisfied. This algorithm is known as
the Gauss–Newton algorithm, and as k → ∞, under fairly general assumptions on g, it converges to the
least-squares estimate [Seber and Wild (4)]. In summary, the Gauss–Newton method is obtained by using a
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first-order Taylor expansion of ε in Eq. (73) around the most recent value θ(k), substituting the approximated ε

in J(θ) = εTε, and estimating θ(k+1) as the value which minimizes the approximated J(θ).
The Newton–Raphson method is also obtained by using an approximation of J (θ). This time J (θ) is

expanded directly using a quadratic Taylor expansion around the most recent estimate θ(k). If the gradient
vector of J (θ) is denoted by

and the Hessian matrix of J(θ) is written as

the quadrature approximation of J(θ) around θ(k) can be expressed by

The minimization of the approximated J (θ) is again a linear problem and thus is easily obtained. If the solution
is θ(k+1), we can write

In summary, the Newton–Raphson method starts with an initial guess θ(0) and proceeds by applying Eq.
(78), where Eqs. (75) and (76) define the gradient q(θ) and the Hessian H(θ).

The Gauss–Newton and Newton–Raphson method must be applied with great care because they are
iterative approaches and convergence to the least-squares estimate is a critical issue. Many adaptations and
protective strategies have been developed to improve their reliability. For details, consult for example Seber
and Wild (4). Convergence is assessed usually by criteria of the following forms:

or

where τ and η are some small predefined positive numbers. It should be kept in mind that these criteria do not
guarantee convergence; they should, rather, be considered termination criteria.
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Sequential Least Squares

In many applications the observed data are received sequentially in time. Quite often in such cases it is
preferable to find and update the least-squares estimates of the unknowns as the data keep arriving. Procedures
developed for processing the data in this fashion are known as sequential (or recursive) least-squares methods,
as opposed to batch methods that use all the data at once. The concept is best described when the unknowns,
which have to be estimated, are linear parameters.

Let the N × 1 vector y be as in Eqs. (26) and (27), i.e.,

where H is an N × p matrix with known elements, and θ is a p × 1 vector of unknown parameters. Suppose
that the last sample that has been received is y[n], that is, y[k] has been observed for k = 1,2, . . . , n, where

Here, the p × 1 vector hT [k] is the kth row of the matrix H in Eq. (81). If we denote the observed vector
up to sample n by y [n], then

where yT [n] = [y[1] y[2] ··· y[n] ], εT [n] = [ε[1] ε[2] ··· ε[n] ], and H[n] is an n × p matix identical to the first n
rows of H (it is assumed that n ≥ p, and that H[n] is a full-rank matrix). Then the least-squares estimate of θ

based on the first n samples, denoted by [n], is

Now, a new sample is received, y[n + 1], and the objective is to modify [n] so that the new information
in y[n + 1] is included in the estimate of θ. Of course, a straightforward way of accomplishing it would be to
estimate [n + 1] by an analogous expression to Eq. (84). However, there is a better way of getting [n + 1],
and it saves a great deal of computation. We rewrite Eq. (83) with the new sample y[n + 1] as follows:

The usual minimization yields

where
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The expression on the right-hand side of Eq. (87) can be rewritten by using the matrix inversion lemma

and this allows us, after a few lines of derivation, to write

where the p × 1 vector κ[n + 1] is given by

with P[n] being defined according to

From Eq. (89), it is important to note that the estimate of [n + 1] is given as a function of the previous
estimate [n]. The term hT[n + 1] [n] can be interpreted as the predicted value of y[n + 1] based on the past
samples and the adopted linear model, and

as the prediction error of the model. The vector κ[n + 1] is known as a gain vector, and thus, Eq. (89) has the
predictor–corrector form. The updated estimate [n + 1] in Eq. (89) can also be written as

which suggests a different interpretation of the updated estimate—it is a weighted sum of the previous estimate
and the information provided by y[n + 1], where the gain κ[n + 1] is determined to allocate the weights optimally.

It seems that the computation of κ[n + 1] is rather demanding because of the need to compute P[n], which
is obtained by inverting the p × p matrix HT[n]H[n]. In fact, this is not needed, because it can be shown that
P[n] may be obtained from P[n − 1] by

where, evidently, there is no inversion involved in the computation. In summary, given the most recent estimate
[n], gain κ[n], and matrix P[n], upon receiving a new sample, y[n + 1], the sequential least-squares method

updates them by applying Eqs. (90), (89), and (94).
It is important to stress that all sequential algorithms require initializations of θ, κ, and P. This can be

done in two ways: one is to use a priori knowledge and quantify it by assigning initial values to them; the other
is to obtain the initial values by applying a batch method to a small portion of the data.

There is abundant literature on sequential least squares in many journals and books. What is described
here is only the standard recursive least-squares algorithm. It has limitations in numerical robustness and
(its recursive nature notwithstanding) excessive computational complexity. Some alternatives to the standard
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recursive least-squares algorithm include the square-root recursive least-squares method, which is based
on QR decomposition of matrices, and the fast recursive least-squares method, which is based on special
implementations of linear least-squares prediction in both the forward and backward directions. For more
information, refer to Haykin (6) and the references therein.

Predictive Least Squares

In many situations, observed data may have more than one possible model for their description. A typical
example is when we want to fit the data with a polynomial and we do not know its degree. As was mentioned
in the section on polynomial fitting and spline interpolation, a too high degree can easily overfit the data,
whereas a too low degree may also be unsatisfactory. In most practical situations, the degree is unknown and
some statistics must be used to determine it. In the case when we want to use the least-squares approach for
estimation of unknown parameters, which precludes probabilistic assumptions about the observed data, there
are not many reliable criteria available for selecting the right model for the data. An additional difficulty is
that for different problems the roles of the models may be quite distinct, and the differences are then strongly
reflected in the criteria for choosing the best model. The implication is clear—there can be no universal criterion
for model selection.

One approach for selecting a model, which has been shown to work very well and is generally applicable,
is known as the predictive least-squares method [Rissanen (7)]. It is very simple to use, and is based on the
principle that good models predict the future from the past better than poor models. It is well known that a
polynomial of high degree fits data better than a polynomial of low degree; in fact, if the degree is high enough,
the fitting can be perfect. It should be noted that in usual situations, the criterion for measuring the goodness
of fit is given by the total sum of squared residuals. It is very important to observe that the same data are used
for estimation of the unknown polynomial coefficients and the computation of the residual. In many cases, this
is not good philosophy: it goes against the principle of parsimony in science and engineering, which states that
use of unnecessary parameters in modeling should be avoided. Here, we present the predictive least-squares
method in the context of choosing the best degree of a polynomial.

Suppose that the observed data y can be modeled by a polynomial whose degree m comes from the set {0,
1, 2, . . ., p}. The idea is to compare all the polynomials by using the same yardstick, which is the accumulated
prediction error of each polynomial. The estimation of the polynomial coefficients is carried out in the usual
way by applying one of the sequential least-squares algorithms. However, the validation of the polynomials is
implemented by data that have not been used for parameter estimation. For example, if the next sample is y[n
+ 1], once it is received, it is compared with the predicted value of y[n + 1] given by

and the prediction error e[n + 1] computed as in Eq. (92). The squared value of the error is added to the
accumulated sum of the previous prediction errors. Next, the parameter estimates are updated according to
Eq. (86), and [n + 1] is used for prediction of y[n + 2]. The degree of the polynomial is then selected as the
one that minimizes the accumulated prediction error, that is,

where [n] is the sample of y[n] predicted by the polynomial with degree m.
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In summary, the best polynomial is the one that minimizes the accumulated prediction errors as given by
Eq. (96). The coefficients of every polynomial are estimated sequentially as presented in the previous section.
As the unknown parameters of each polynomial are updated, the corresponding squared prediction errors are
accumulated. Once all the data are processed and all the polynomials are examined, the polynomial whose
total sum of squared prediction errors is minimal is the winner.

The Bootstrap Method

Least-squares estimation is used in problems where probabilistic assumptions about the data are not made.
It seems then that it would be difficult to make claims about the accuracy of the obtained estimates, unless
ubiquitous normal assumptions are made or large-sample theory invoked. Indeed, take the simple case of linear
least-squares estimation where unknown parameters θ are estimated according to Eq. (32). Can we say anything
about the accuracy of the estimates θ without making suppositions about the error vectors ε? The answer is
yes, and a powerful statistical procedure for providing such assessments is known as the bootstrap method.
Although the bootstrap method can be applied to various tasks, including confidence-interval estimation and
hypothesis testing, the underlying principle in all the applications is the same.

The bootstrap method imitates a situation that a practitioner would like to have in order to assess the
quality of estimates. In the case of the linear least-squares estimation, it would be nice to have many sets of
data yi, i = 1, 2, . . ., M, for which we could write

where the εi’s have the same statistical distribution. In that case, one would normally estimate the unknown
parameters from each data set to obtain i, from which statistics can be constructed that provide information
about the accuracy of the estimates. Clearly, in most practical situations, multiple data sets are simply not
available. In the late seventies, Efron proposed the bootstrap method to generate such data sets by repeatedly
drawing random samples from the original data sets. To illustrate the procedure we proceed by way of example.

Suppose that the data set y is modeled as in Eq. (32) and the least-squares estimate of is obtained in
the usual way. Then we compute the residual data by

The bootstrap is now applied by sampling randomly (with substitution) from the samples [n], n = 1, 2,
. . ., N, and constructing new data sets of the form

where i stands for the ith data set, and

When sampling from , some of the samples may not appear in ε∗
i, at all, and some may show up more

than once. With the so constructed data sets, we proceed as if they were observed. Each y∗
i is processed to find
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the least-squares estimate i, and from all the estimates i, i = 1,2,. . . , M, various statistics for assessing the
accuracy of can easily be constructed.

This procedure can also be applied to any nonlinear least-squares method with practically no modifica-
tions. For further details about the bootstrap method, see Efron and Tibshirani (8).

In conclusion, the bootstrap is a simple method for statistical inference, especially in cases where a few
statistical assumptions are made about the observed data, as in problems where least-squares estimation is
employed. The drawback of the method is that it is computationally rather intensive.
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