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LINEAR ALGEBRA

This article deals with linear vector spaces, transformations,
quadratic forms, and structural relationships between alge-
braic systems. Matrix theory concepts necessary to compute
functions of matrices involved in system theory are developed.

VECTOR SPACES

Definition

Many different topics, such as matrices, orthogonal polynomi-
als, Fourier series, and integrodifferential equations, can be
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united as a study of linear vector spaces, because they all Their inner product is
satisfy the following definition: A linear vector space v (over a
scalar field R or C) is a set of objects x, y, . . . called vectors,
together with the two operations of addition and scalar multi- (xxx, yyy) =

n∑
i=1

xiyi

plication with the following properties: If vectors 0, x, y, z,
. . . � v and � and � are complex numbers, then The length of x is

1. x � y � v
2. �x � v (xxx, xxx)1/2 =

n∑
i=1

(xixi )
1/2 =

n∑
i=1

|xi| = ‖xxx‖ ≥ 0

3. �(x � y) � �x � �y
The Cauchy–Schwartz inequality states4. (��)x � �(�x)

5. x � y � y � x |(xxx, yyy)| ≤ ‖xxx‖ ‖yyy‖
6. 1x � x
7. 0 � x � x Vectors xi form an orthonormal set if
8. x � (�x) � 0

A metric vector space is associated with a real valued non- (xxxi, xxx j ) = δi j =
{

0, i 
= j
1, i = j

(i, j = 1, 2, . . . )

negative function such that:

1. g(x,y) � g(y,x) The L2(a, b) Space Known as Hilbert Space. The sum of two
functions (vectors) f (t) and g(t) is f (t) � g(t), and their inner2. g(x,y) � 0, if x � y
product is3. g(x,y) � g(x,z) � g(z,y)

A metric vector space is called complete if every ‘‘Cauchy
sequence’’ xn in the metric space converges to some x � v. A

( fff , ggg) =
∫ b

a
fff (t)ggg(t) dt

metric space is normed if for all vectors x and y in v and a
scalar � a norm 	 	 is defined with the following properties: Polynomial Space. Let

1. 	x	 	 0, 	x	 � 0 if and only if x � 0
2. 	�x	 � ���	x	

fff (t) =
n∑

i=1

ait
i

3. 	x � y	 � 	x	 � �	y	
Addition is defined as usual, and for a weighting function
w(t) 	 0 and interval (a, b), the inner product isA normed metric space which is complete is called Banach

space.
Some important metric notions such as length, direction,

and energy can be expressed if the vector space is endowed
( fff , ggg) =

∫ b

a
fff (t)w(t)ggg(t) dt

with the additional inner product (x, y) of x and y which
satisfies

Generalized Fourier Space. Define an orthonormal set of
vectors ek (k � 0, �1, �2, . . .). If x is any arbitrary vector

1. (x, y) � (y, x) in v, then its Fourier expansion is
2. (x, x) � 0
3. (�x, y) � �(x, y)
4. (x, x) � 0 � x � 0

xxx =
∞∑

k=−∞
ckeeek

5. (x, y � z) � (x, y) � (x, z)
with Fourier coefficients

where the overbar stands for complex conjugation.
A Banach space with the inner product defined as above is (eeek, xxx) = ck (k = 0, ±1, ±2, . . . )

known as Hilbert space.
In particular, the Fourier vectors are given by

Different Types of Linear Spaces
eeek = eeek(t) = e jkωt

n-Dimensional Euclidean Space. Two vectors x and y are a
n-tuples complex numbers

on the interval [a, b] 
 [�T, T], � � �/T.
Parseval’s identity is

(xxx, xxx) =
∞∑

k=−∞
|(ek, x)|2 =

∞∑
k=−∞

|ck|2
xxx =




x1

...
xn


 and y =




y1

...
yn



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If we choose n-dimensional orthogonal space, the least- If any vector in v can be expressed as sum of vectors from
subspaces v1, v2, . . ., vk (x � �n

i�1 xi, x � v, xi � vi), then vsquares error approximation of x is defined as
itself is called the sum of the subspaces:

xxx∗ =
n∑

k=−n

ckeeek, (eeek, eee j ) = δk j (k, j = 0, ±1, ±2, . . . )
v =

n∑
i=1

vi

Bessel’s inequality is The direct sum of vector spaces such that vi � vj � 0, i � j is
denoted

(xxx, xxx) =
∞∑

k=−∞
|ck|2 ≥

n∑
k=−n

|ck|2
v = v1 +̇ v2 +̇ · · · =

k·∑
i=1

vi

An orthogonal set is complete if ther is x for which
The set �vi� is called a direct decomposition of v.

The projection theorem states that‖xxx − xxx∗‖ < ε, ε ≥ 0

The Riemann-Lebesgue lemma states that

|(eeek, xxx)| = |ck| → 0

v = w+̇w⊥, xxx ∈ w, and yyy ∈ w⊥ implies (xxx, yyy) = 0

dim(v1 + v2) = dim v1 + dim v2 − dim(v1 ∩ v2)

dim v = dim(w+̇w⊥) = dim w + dim w⊥

as k � �.
Two spaces v and w are dual to each other if the basis

vectors of v are e1, e2, . . ., en, the basis vectors of w are f 1,
Gram–Schmidt Orthogonalization f 2, . . ., fn, and

Given a vector set ei (i � 1, 2, . . ., n) and constants �i (i �
(eeei, fff j ) = δi j (i, j = 1, 2, . . . )

1, 2, . . ., n) not all zero, such that

The set ei (i � 1, . . ., n) from a basis for the space v if
every vector x � v can be expressed as a linear combination
of these vectors. The dimension of the space is the maximal

n∑
i=1

αieeei = 0

number of linearly independent vectors in the space. In an n-
dimensional linear vector space any set of n linearly indepen-the vectors are said to be linearly dependent. Otherwise the
dent vectors qualifies as a basis for the vector space.set is composed of linearly independent vectors.

Given a linearly independent set of vectors e1, e2, . . ., en,
suppose we are required to determine a new orthonormal set EUCLIDIAN SPACE AND MATRIX REPRESENTATION
f 1, f 2, . . ., fn.

Take f 1 � e1/	e1	. Assume f 1, f 2, . . ., f k (k � n) have been Consider two separate spaces Em and En with bases e1, e2,
computed; then . . ., em and f 1, f 2, . . ., fn, respectively, given by

(eeek)l = (lth component of eeek) = δkl (k, l = 1, 2, . . ., m)

( fff j )i = (ith component of fff j ) = δi j (i, j = 1, 2, . . ., n)
fff ′

k+1 = eeek+1 −
k∑

j=1

( fff j, eeek+1) fff j, fff k+1 = fff ′
k+1

‖ fff ′
k+1‖

k = 2, 3, . . ., n
Let the operator A be a transport, or linear mapping, from
Em to En (see Fig. 1):

A vector space v is n-dimensional if it contains only n linearly
independent vectors. Every set of n � 1 vectors is linearly y = Axxx, xxx ∈ Em, yyy ∈ En
dependent. The set of linearly independent vectors spans a
space v if every vector x � v can be expressed as

xxx =
n∑

i=1

αieeei

The ei, i �1, . . ., n, are called a basis of v.

Linear Operators

A linear operator T on a vector space v defines a rule that
computes Tx for x � v such that

m-dimensional space 

Basis vectors

n-dimensional space 

Em

em

e2

e1

x

EnA

y  = Ax

f1

f2

fn

y

T(α1xxx + α2yyy) = α1Txxx + α2Tyyy Figure 1. Matrix representation.



LINEAR ALGEBRA 379

Let In the basis chosen, A can be represented by a quasidiago-
nal form

Aeeei = gggi (i = 1, 2, . . ., m)

Since gi � En, it can be represented as a linear combination
of the f j: A =




A 1

A 2

. . .

A n




gggi =
n∑

j=1

ai j fff j

All other entries besides boxes along the main diagonal are
The operator A determines the numbers aij. We have zeros.

MATRIX ALGEBRAx =
m∑

i=1

xieeei, y =
n∑

j=1

yj fff j (1)

A scalar is a special case of a matrix with one row and one
where xi and yj are the ith and jth components of x and y, column. Following is a review of matrix theory fundamentals:
respectively, and

1. Column matrix (or vector):
y = Ax =

m∑
i=1

xiAei =
m∑

i=1

xigggi

=
m∑

i=1

xi

n∑
j=1

ai j fff j =
n∑

j=1

�
m∑

i=1

ai jxi

�
fff j

(2)

xxx =




x1

...
xn


 (n × 1 matrix)

From (1) and (2),
2. Row matrix (or vector):

xT = [x1, . . ., xn] (1 × n matrix)
yj =

m∑
i=1

ai jxi ( j = 1, 2, . . ., n) (3)

3. Matrix of order n � m:The action of the operator A can be fully computed from
the numbers aij (i � 1, . . ., m; j � 1, . . ., n). These numbers,
when arranged as a table of n rows and m columns, constitute A = (ai j ) (i = 1, . . ., n; j = 1, . . ., m)

an n � m matrix A. Thus Eq. (3) can be written
4. Addition of matrices:

A + B = (ai j + bi j ) (i = 1, . . ., n; j = 1, . . ., m)




y1

...
yn


 =




a11 · · · a1m

...
...

an1 · · · anm







x1

...
xm


 (4)

5. Multiplication: If A is n � p and B is p � m,

or
A B =

p∑
k=1

aikbk j (i = 1, . . ., n; j = 1, . . ., m)
yyy = Axxx

matrix relation

↔ yyy = Axxx
space relation

(5)

6. Adjoint: Let AT be the transpose of A, AT � (aji) (A with
Thus, x, y, A are the matrix representations of the vectors x, rows and columns exchanged). Then the adjoint matrix
y and the operator A with respect to the basis �ei�m

1 in Em and of A is
the basis �f j�n

1 in En. Basis vectors are analogous to coordi-
nates. However, vectors and operators exist indenendently of

AT = A∗
the basis assigned to them.

A vector space whose vectors belong to some larger space
A is a unitary matrix ifis called a subspace. This concept is very useful in developing

the canonical form of a matrix. Let A be a mapping of En onto
itself. A subspace Eni

of En is invariant with respect to A if A−1 = A∗

Ax � Eni
implies x � Eni

. The structure of a invariant mapping
a symmetric matrix if(matrix) can be very usefully exploited by means of its invari-

ant subspaces:
AT = A

and a Hermitian matrix (useful in physics) ifEn =
k·∑

i=1

Eni

�
i = 1, . . ., k;

k∑
j=1

nj = n

�

AT = A = A∗
The basis of Eni

consists of eij (i � 1, . . ., k; j � 1, . . ., nj).
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The commutator of A and B is The vector space v can be decomposed into w and w�,
where

AB − BA = [A, B ]
(Pxxx = yyy) ∈ w and (I − P )xxx = zzz ∈ w⊥, w + w⊥ = v

[A, B] � 0 implies A and B are Hermitian.
7. Inverse matrix: We shall assume knowledge of the de-

RANK OF A MATRIXterminant of a matrix and its elementary properties.
Let �(A) be the determinant of A, where A is an n �

The rank is a very useful concept in the solution of simultane-n square matrix. Let Aij be the ij cofactor of aij, that is,
ous equations. It can be defined in many different (but equiva-the determinant of the matrix A after striking out the
lent) ways. In particular, it is the largest order of a nonvan-ith row and the jth column, multiplied by (�1)i�j. Then
ishing minor, and it is the maximum number of linearly
independent rows (or of linearly independent columns). Thus,
given an n � m matrix A, the rank r � n, m.

n∑
j=1

ai j Ai j = �(A )

Kernel and Range
(the Laplace expansion), and

Let A be a transformation on En from Em. The kernel of A is
the totality of x � Em for which Ax � 0. The range of A is the
totality of vectors Ax � En. These are denoted as Ker A and
rng A. Let dim stand for dimension. Then dim Ker A is also

n∑
j=1

ai j Ak j = �(A )δik

known as the nullity of A. Furthermore, dim rng A is the rank
of A.The inverse matrix A�1 is given by

Sylvester’s law of nullity states that
(A−1

)i j = [�(A )]−1Aji, A−1 = [�(A )]−1(AdjAAA)
dim Ker A + dim rng AAA = dim En

and we have
Systems of Linear Algebraic Equations

Let A be an n � m matrix, x be an m � 1 matrix, and b be
an n � 1 matrix forming a system of equations

AA−1 = A−1A = I (identity)

(AA−1
)i j =

n∑
k=1

aik (A−1
)k j = [�(A )]−1

n∑
k=1

aik Ak j = δi j
Axxx = bbb

8. The determinant of a product of matrices is �(AB) � Let B � [A, b] be the n � (m � 1) augmented matrix.
�(A)�(B). This system has a solution only if A and B have same

rank r. Only r of the m components of x can be uniquely deter-9. A singular matrix A is one such that
mined, and m � r can be assigned at will.

�(A ) = 0
Nonsingular Matrices

10. Sometimes it is useful to represent a n � m matrix as For an n � n matrix A to be nonsingular (invertible), its de-
a collection of n row vectors or m column vectors: terminant �(A) must be nonzero, which implies that its rows

(or columns) are linearly independent. This means the rank
of A is n. For an invertible A, Ax � 0 implies no linearly
independent solutions besides x � 0.

EIGENVALUES AND EIGENVECTORS OF MATRICES

A =




bT
1

bT
2
...

bT
n


 or A = [aaa 1 . . . aaa m]

We shall consider only n � n square matrices.bT
i is a 1 � m row vector, and aj is an n � 1 column

vector (i � 1, . . ., n; j � 1, . . ., m).
Eigenvalue and Eigenvector

11. Minors: Choose any k rows and any k columns from
Suppose Ax � �x. Then the scalar � is known as an eigen-the matrix A and form a matrix. The determinant of
value and x as an eigenvector of A. We havethis matrix, with rows and columns in their natural

order, is called a minor of A of the kth order.
(λI − A)xxx = A(λ)xxx = 0 (6)12. Projection matrices: If P is Hermitian and Pn � P

(n � 2, . . .), then P is called a projection matrix. Any
implyingarbitrary vector x can be decomposed into y and z such

that

Py = y, Pz = 0, x = y + z, z = (I − P ) x

n∑
j=1

(λδi j − ai j )xxx j = 0 (i = 1, . . ., n)
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If the rank of A(�) is r � n, then it has r linearly inde- The vector x is called a generalized eigenvector of A of multi-
plicity k.pendant nontrivial eigenvectors and a maximum of r distinct

If the generalized eigenvector xi of order k belongs to theeigenvalues. For at least one nontrivial solution of (6) we
eigenvalue �i, then the chain of k generalized eigenvector �xi,must have the scalar equation
(�I � A)xi, . . ., (�I � A)k�1xi� are linearly independent and
can be utilized as k linearly independent eigenvectors of A.det A(λ) = �A(λ) = |(λI − A)| = 0 (7)

Observe that:
�A(�) is called the characteristic polynomial in � of degree n,

1. Generalized eigenvectors of a matrix corresponding toand equation (7) is called the characteristic equation. We have different eigenvalues are linearly independent.
2. Eigenvalues of a Hermitian matrix are real, and eigen-

vectors corresponding to different eigenvalues are or-
thogonal. This result plays a important role in physics,
particularly in quantum mechanics.

Norm of a Matrix

�A(λ) = P(λ) =




λ − a11 · · · a1n

...
...

−an1 · · · λ − ann




= λn + a1λ
n−1 + · · · + an

(8)

A norm of a matrix A, denoted by 	A	, corresponding to the
According to the fundamental theorem of algebra (8) has n ‘‘greatest stretching’’ of vectors under its mapping. Three
roots �1, . . ., �n, not necessarily all distinct. These roots �i main useful norms are
are the eigenvalues of A belonging to the corresponding eigen-
vector xi.

Elementary Symmetric Functions

Let

P(λ) = a0λ
n + a1λ

n−1 + a2λ
n−2 + · · · + an =

n∏
i=1

(λ − λi) (9)

Then

‖A‖m = max
i

∑
j

|ai j |,

‖xxx‖m = max
i

|xi| (m − norm) (11a)

‖A‖l = max
j

∑
i

|ai j |,

‖xxx‖l =
∑

j

|x j | (l − norm) (11b)

‖A‖k =
�∑

i, j

|ai j |k
�1/k

,

‖xxx‖k =
[∑

j

|x j |k
]1/k

(k − norm) (11c)

Geometric Series

For any matrix A,

I + A + A2 + · · · =
∞∑

k=1

Ak = (I − A )−1, ‖A‖ < 1

‖(I − A )−1‖ ≤ (1 − ‖A‖)−1

If

a0 = 1

(−1)a1 =
n∑

i=1

λi

(−1)2a2 = 1
2!

n∑
i, j=1

′
λiλ j

...

(−1)m am = 1
m!

n∑
i1 ,i2 ,...im=1

′
λi1

λi2
· · · λim

·

(−1)n an =
n∏

i=1

λi

f (λ) = λn + a1λ
n−1 + · · · + an

where a prime on the summation implies a sum only over then
distinct subscripts.

Two important quantities associated with A, its trace (also f (A) = An + a1 An−1 + · · · + an I
called Spur) and determinant, can then be expressed as

Eigenvalues of a Function of A

If �i is an eigenvalue of A (denoted as A � �i), thenTr A =
n∑

i=1

aii =
n∑

i=1

λi

det A = �A = �A(0) =
n∏

i=1

λi

A−1 −→ λ−1
i ,

AT −→ λi,

Ak −→ λk
i

f (A ) −→ f (λi)

A −→ λi

Generalized Eigenvectors of Multiplicity k Sylvesters Theorem
Let For a quadratic form [xT Ax] to be positive definite it is neces-

sary and sufficient that all the principal minors (along the
main diagonal) of A be positive.(λI − A)kxxx = 0, (λI − A)k−1 
= 0 (k ≤ n) (10)
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DIAGONALIZATION OF MATRICES If the eigenvalues of Ac are distinct, then

An n � n matrix A can be diagonalized if and only if it has n
linearly independent eigenvectors. This is always possible if
all of its n eigenvalues are all distinct. Then

Axxx i = λi xxx i (i = 1, . . ., n)

P = V n =




1 · · · 1
λ1 · · · λn

...
...

λn−1
1 · · · λn−1

n




where xi is the eigenvector belonging to �i; thus
the Vandermonde matrix, is nonsingular, and

A [xxx 1 · · · xxx n ] = [xxx1 · · · xxx n ]




λ1

. . .

λn




det V n =
n∏

i=2

�
i−1∏
j=1

(λi − λ j )

�

Let
4. If a matrix has eigenvalues of multiplicity greater than

one, then for diagonalization these eigenvalues should
induce the same number of linearly independent eigen-
vectors as the multiplicity; otherwise the similarity
transformation produces not the diagonal but the Jor-
dan form. As discussed earlier, we produce a set of gen-

P = [xxx 1 · · · xxx n ] (modal matrix)

��� =




λ1

. . .

λn


 (a diagonal matrix)

eralized eigenvectors for the same eigenvalues, which
are linearly independent and transform a matrix into

Then Jordan canonical form.

AP = P���, A = P−1
���P

In general two matrices A and B are similar if one can find a THE JORDAN CANONICAL FORM
nonsingular matrix P such that

When the characteristic polynomial of a matrix has multiple
A = P−1BP roots, it may not be possible to diagonalize the matrix. Never-

theless, it is possible to transform the matrix into a canonical
Observe that:

form called Jordan canonical form, via similarity transforma-
tions. We shall limit ourself to the procedure for arriving at

1. Similar matrices A and B have the same eigenvalues, this canonical form.
equal determinants, and the same characteristic poly- Let
nomials:

�A(λ) = |(λI − A)| =
r∏

i=1

(λ − λi)
ki ,

r∑
i=1

ki = n
A −→ λi also means B −→ λi

�A = �B

�A(λ) = �B(λ)
The matrix A can be transformed to a matrix J with canon-

ical superboxes Ji (i � 1, . . ., r): J � �̇r
i�1 Ji. These su-

2. Every Hermitian matrix is diagonalizable, and its perboxes Ji are further divided into boxes Jij ( j � 1, . . ., ri;modal matrix P is unitary: ri � ki): Ji � �̇ri
j�1 Jij. Namely,

P∗P = I

3. If Ac is a companion matrix

A c =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1




then

�Ac
(λ) = a0λ

n + a1λ
n−1 + a2λ

n−2 + · · · + an =
n∏

i=1

(λ − λi)

J =




J 1

. . . 0
J i

0
. . .

J r




J i =




J i1

. . .

J i j

. . .

J iri



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The dimension of the box Ji is ki � ki (�r
i�1 ki � n). The dimen- (�iI � A) acts as an elevator matrix. It raises an eigenvector

to the next higher eigenvector until the last vector in thesion of the ijth box within Ji is lij � lij (�ri
j�1 lij � ki).

The following procedure is used to determine chain is reached, and then annihilates it.

CAYLEY–HAMILTON THEOREM

This remarkable theorem states: ‘‘A matrix satisfies its own

λi (i = 1, . . ., r)
ki (i = 1, . . ., r)
li j (i = 1, . . ., r; j = 1, . . ., ri )

characteristic equation’’. Specifically, if

Step 1. Determine the characteristic polynomial �A(�) of �A(λ) = p(λ) = |(λI − A)| = λn + a1λ
n−1 + · · ·

A [with order det(�I � A)] and its roots �i (i � 1, . . .,
r). where A is an n � n matrix, then Ax � En when x � En.

Step 2. Determine the multiplicity indices ki (i � 1, . . ., Then p(A)x � 0, implying
r) such that (� � �i)ki is a factor of �A(�) but (� � �i)ki�1

is not. p(A) ≡ An + a1An−1 + · · · + anI = 0
Step 3. Consider all the minors of order n � j (i � 1, . . .,

r; j � 1, . . ., ri). If the greatest common divisor (gcd) of Proof:
any one of these minors contains a factor (� � �i)ki,j but
not (� � �i)ki,j�1, then lij � ki, j�1 � ki, j (i � 1, . . ., r; j �
1, . . ., ri; ki,0 � ki)

[ A(λ)]−1 = (λI − A)−1 = 1
�A(λ)

A∗
(λ) = 1

p(λ)
B(λ) (12)

where B(�) � A*(�) is a polynomial matrix in � of degreeThe minors of order n � ki � 1 contain no factor � � �i.
(n � 1)each Jordan subbox Jij appears as

B(λ) ≡ B1λ
n−1 + B2λ

n−2 + · · · + Bn =
n−1∑
i=0

Bn−iλ
i (13)

From (12) and (13),

(λI − A)B(λ) = p(λ)I

J i j =




λi 1 0 . . . 0
0 λi 1 . . . 0
0 0 λi . . . 0
...

...
...

. . .
...

0 0 0 · · · λi




, li j × li j

Equating powers of � on both sides,
In practice we use the method of elementary divisors to

arrive at the structure of Jordan canonical form. We trans-
form A into Jordan form J via a similarity transformation P:

A = P J P−1
, Ak = P Jk P−1

The modal matrix P is made up of the chain of generalized

0 − ABn = anI

Bn − ABn−1 = an−1I

...

B 2 − AB1 = a1I

B1 − 0 = I

(14)

eigenvectors
Multiplying these equations by I, A, . . ., An respectively and
adding,xxx i j , (λi I − A xxx i j ), . . ., (λi I − Ari−1

)xxx i j

(i = 1, . . ., r, j = 1, . . ., ri ) 0 ≡ An + a1An−1 + · · · + anI ≡ p(A) (15)

Every square matrix A can be transformed into Jordan form. This theorem is very significant in system theory, for it
The minimal polynomial of J (or A) is Pm(�) � �r(i)

i�1(� � implies that all matrices Ak (k � n) can be expressed as a
�i)li1, where li1 is the size of the largest Jordan subbox associ- linear combination of matrices Aj ( j � n).
ated with �i

Using Dg for block-diagonal matrices, we have
COMPUTATION OF A POLYNOMIAL
FUNCTION OF THE MATRIX A

Let

J = Dg[J 1, J2, . . ., J i, . . ., J n]

J i = Dg[J i1, J i j, . . ., J iri
] (i = 1, . . ., r)

(� � �i)lij are known as elementary divisors of A (i � 1,
. . ., r, j � 1, . . ., ri)

F(A) =
m∑

k=1

ckAk
, m ≥ n (16)



384 LINEAR ALGEBRA

where �i (i � 1, . . ., n) are eigenvalues of A. Then For

F(λ)

�A(λ)
= Q(λ) + R(λ)

�A(λ)
(17)

by long division, where R(�) is polynomial of degree less than

J =




λ1 1
λ1 1

λ1
. . .

. . .




n. Then

We obtain
F(λ) = Q(λ)�A(λ) + R(λ)

F(λi) = R(λi), �A(λi) = 0, i = 1, . . ., n

Compute the coefficients of R(�i) from F(�i). If �i is an ei-
genvalue of multiplicity mi, then not only does �A(�i) � 0, but
the first mi � 1 derivatives of �A(�i) with respect to � com-
puted at � � �i also vanish, resulting in

dk

dλk
F(λ)

∣∣∣∣
λ=λi

= dk

dλk
R(λ)

∣∣∣∣
λ=λi

(k = 0, 1, . . ., mi−1)

For the matrix exponential we have

eAt =
∞∑

k=0

Aktk

k!

(not generally recommended for computing),

eAt =
n−1∑
i=0

αi(t)A
i
, α0(0) = 1, αi(0) = 0 (i = 2, . . . )

and

e ( A+B)ttt = eAteBt if AB = BA

f (J ) =




f (λ1)
f ′(λ1)

1!
f ′′(λ1)

2!
· · ·

f (λ1)
f ′(λ1)

1!
. . .

f (λ1)

. . .




eJt =




eλ1 t teλ1 t t2eλ1 t . . .

eλ1 t teλ1 t

eλ1 t

. . .




��� =




λ1

λ2

. . .

λn




f (���) =




f (λ1)

f (λ2)

. . .

f (λn)




e���t =




eλ1 t

eλ2 t

. . .

eλnt




A = P−1
���P, f (A ) = P−1f(���)P

A = S−1JS, f (J ) = S−1f(J )S
For a series

If an n � n matrix A has minimal polynomial of degree m �
n, then

g(λ) =
∞∑

k=0

gkλ
k

eAt = α0(t)I + α1(t)A · · · αm−1(t)A
m−1

where �j(t) ( j � 0, . . . m � 1) can be computed from theFor a series ��� � r � 1 implies convergence.
eigenvalues, distinct or multiple.

A matrix A is called stable if the real parts of its eigenval-
ues �i (i � 1, . . ., n) are negative.

For the Riccati equation
g(A) =

∞∑
k=0

gkAk
, A with eigenvalues λi

AS + SAT = −Q, S, Q symmetric
��i� � r � 1 (i � 1, 2 . . ., n) implies convergence.

From complex integration
we have the solution

S =
∫ ∞

0
eAtQeATt dtf (AAA) = 1

2π j

∮
c
(λI − A )−1 f (λ) dλ, |λi| ≤ c
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COMPANION MATRICES Write A � (aij) as A � LU, where L is lower triangular
and U is upper triangular:

A companion matrix has the form

L =




l11 0 . . . 0
l21 l22 . . . 0
...

...
. . .

...
ln1 ln2 . . . lnn


 , U =




1 c12 . . . c1n

0 1 . . . c2n

...
...

. . .
...

0 0 . . . 1




lij and uij are computed as

A c =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1




�A c
(λ) = |λI − A c| = λn + a1λ

n−1 + · · · + an = p(λ)

The polynomial �Ac
(�) can be associated with the companion

matrix Ac.
The following special properties are associated with com-

panion matrices:

li1 = ai1, u1 j = a1 j

l11
(i = 1, . . ., n; j = 1, . . ., n)

li j = ai j −
j−1∑
k=1

(likuk j ) (i ≥ j < 1)

ui j = 1
lii

�
ai j −

i−1∑
k=1

likuk j

�
( j > i > 1), uii = 1

1. If �i is an eigenvalue of multiplicity one (distinct), the
Knowing L and U, solve the two sets of equationsassociated eigenvector is

Ux = yyy, Ly = b
pppT

i
= [1 λi λ2

i · · · λn−1
i ]

where A is symmetric. The computation of U is simplified as
2. If �i is an eigenvalue of multiplicity k � n [(� � �i)k is,

factor of �Ac
(�) but (� � �i)k�1 is not], then this eigen-

value has k generalized eigenvectors and one and only
ui j = 1

lii
l ji (i ≤ j)

one Jordan block of size k � k belonging to the eigen-
value �i. This implies that companion matrix is nonde-
rogatory, and we have JACOBI AND GAUSS–SEIDEL METHODS

When all the diagonal elements of A are nonzero, we can de-
compose A as

A = L + D + U

with

pppT
i1 = [1 λ1 λ2

1 . . . λn−1
1 ]

pppT
i1 = [0 1 2λ1 . . . (n − 1)λn−2

1 ]
...

pppT
in =

[
0 0 0 . . .

k−1∏
j=1

(n − j)λn−k
i

]
U upper triangular with zero on the diagonal
L lower triangular with zero on the diagonal3. An nth-order Linear differential equation.
D diagonal

x(n) + a1x(n−1) . . . + an−1ẋ + anx = 0
The iterative schemes for solving Ax � b, with initial guess
x(0), are

can be written as

ẋxx = A c xxx
xxx(i+1) = D−1bbb − D−1

(L + U )xxx(i) (i = 0, 1, 2, 3, . . . ) (Jacobi)

xxx(i+1) = (L + D)−1bbb − (L + D)−1Uxxx(i) (Gauss–Seidel)

where Ac is a companion matrix.

4. A matrix A is similar to the companion matrix Ac [of its LEAST-SQUARES BEST-FIT PROBLEM (ALSO KNOWN
characteristic polynomial �A(�)] if and only if the mini- AS THE PSEUDOINVERSE PROBLEM)
mal and the characteristic polynomial of A are the
same. This implies A is nonderogatory. Given:

Ax � b, subject to the condition Bx � 0
CHOLESKY DECOMPOSITION (ALSO

A n � p, rank A � p;KNOWN AS LU DECOMPOSITION)
B r � p, rank B � r (r � p � n)

This is a convenient scheme for machine computation of
Ax � b, where A is n � n of rank n, and b is n � 1. we are to solve for x.
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Define (ATA)�1AT � A� (pseudoinverse), (ATA)�1BT � B1. If B � x, an n � 1 vector, and A � yT, a 1 � n column
vector, thenThe least-squares solution is

x̂̂x̂x = [A+ − B 1(BB1)−1 BA+]bbb (I + xyxyxyT)−1 = I − 1
β

xyxyxyT, β = (1 + xTy)

(the Sherman–Morrison formula),

HERMITIAN (OR SYMMETRIC REAL) MATRICES
AND DEFINITE FUNCTIONS (A + xyxyxyT)−1 = A−1 − 1

α
A−1xyxyxyTA−1

, α = 1 + Tr(xyxyxyTA−1
)

3. Suppose A � �n
i�1 �ixiyT

i is an n � n real matrix with
1. Let A be Hermitian. If for all x we have distinct eigenvalues �i (i � 1, . . ., n), xi the corre-

sponding eigenvectors of A, and yi the corresponding
eigenvectors of AT. If A is Hermitian, then we havex T Axxx = xxx∗ Axxx > 0
yi � xT

i � x*i .
then A is positive definite. If for all x we have 4. A � xyT implies A is of rank one.

5. Gerschgorin Circles. Given an n � n nonsingular ma-
xxx∗ Axxx ≥ 0 trix A � (aij) with eigenvalues �k (k � 1, . . ., n), then

then A is positive semidefinite. If for some x we have
x*Ax 	 0 and for other x we have x*Ax � 0, then A is
indefinite.

2. Hermitian (or symmetric real) matrices have distinct ei-

|ai j | >
∑
i 
= j

|ai j | (i = 1, . . ., n)

|λk − aii| ≤
∑
i 
= j

(ai j ) for at least one k, i = 1, . . ., n

genvalues, and their eigenvectors are mutually orthogo-
nal. If in addition the matrix is positive definite, then 6. Bordering Matrices. These matrices are useful in se-
all its eigenvalues are necessarily positive. If �1 is the quential filtering problems. Let
largest and �n is the smallest eigenvalue of A, then

λn(xxx∗xxx) ≤ (xxx∗Axxx ) ≤ λ1(xxx∗xxx) Ã =
[

A xxx
yyyT α

]

In fact, any Hermitian (or real symmetric) matrix can
Thenbe diagonalized by a similarity transformation P in

which all the columns are mutually orthonormal (called
a unitary matrix). All the eigenvalues of a Hermitian
(or symmetric real) positive definite matrix are strictly
positive. The coefficients of the characteristic polyno-
mial �(�I � A)� of a positive definite matrix alternate in

Ã
−1 =



�

A − 1
α

xyxyxyT
�−1

− 1
β

A−1xxx

− 1
β

yyyTA−1 − 1
β


 , β = α − yyyTA−1xxx

sign, yielding a necessary and sufficient condition for
positive definiteness. The principal diagonal minors of If A is Hermitian (diagonalizable, A � P�P*, P uni-
the determinant of a positive definite Hermitian matrix

tary) and y � x, then the eigenvalues �̃ of Ã are com-
must be strictly positive. If two Hermitian matrices

puted from
commute, then they can be simultaneously diagonal-
ized.

xxx∗P(λ̃I − ���)−1P∗xxx = λ̃ − α (Ã is also Hermitian)
3. For the simultaneous diagonalization of two real matri-

ces R 	 0 and Q � 0, choose a nonsingular W, the
If A 	 0 and � 	 yTA�1x, y � x, then Ã 	 0.square-root matrix of R, such that R � WTW. Choose an

7. Kronecker Product. For m � n A and p � q B,orthogonal matrix O such that OTWTQWO � D (D � 0
is a diagonal matrix).

4. Liapunov Stability Theorem. Given an n � n real ma-
trix A with eigenvalues �i, if there exists a matrix S �
0 such that ATS � SA � 0, then Re �i � 0 (i � 1, . . .,

A ⊗ B =




a11B . . . a1nB
...

...
am1B . . . amnB




n).

is an mp � nq matrix called the Kronecker product.
There are mn blocks of this matrix, and the ijth blockSOME USEFUL FACTS AND IDENTITIES
is aijB. We have

1. (A�1 � B�1)�1 � A � CA, where C � (A � B)�1.

2. (I � AB)�1 � I � A(I � BA)�1B, BA nonsingular
(Woodbury’s form).

(A ⊗ B )(C ⊗ D ) = (AC ⊗ BC )

provided AC and BD exist
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Furthermore, written as A � U�V. The solution to the linear
equation Ax � b is

(A ⊗ B )T = (AT ⊗ BT
), (A ⊗ B )−1 = (A−1 ⊗ B−1

)

Finally, we can express the Liapunov matrix equation

AS + AT = Q (18)

xxx = xxx a + xxx b, x a =
r∑

i=1

(eeeT
i bbb)σ −1

i fff
i
,

xxxb =
m∑

i=r+1

ci fff i (ci arbitrary)

(all matrices are n � n) in Kronecker product form. S
xb represents the auxiliary part of x, which canand Q are symmetric. We leave A alone and express
be taken as zero.Q and S as direct sums of n vectors each, yielding

13. Schur–Cohen Criteria. In order that the roots of a
polynomial

p(λ) = a0λ
n + a1λ

n−1 + · · · + an

lie within the unit circle, it is necessary and sufficient
that the following conditions be satisfied:

Q = [qqq
1
| · · · |qqq n ], S = [sss 1| . . . |sssn]

q =




qqq 1

...
qqqn


 , s =




sss 1

...
sss n




The matrix equation (18) takes the form

(I ⊗ A + A ⊗ I )s = q

8. Hadamard Product. If A and B are n � n, their Hada-
mard product is defined as

H = A ∗ B, H = (hi j ) = (ai jbi j ) (i, j = 1, . . ., n)

9. Tridiagonal Form. If an n � n matrix A is symmetric,
it can be transformed via similarity transformation
into a tridiagonal form having nonzero entries only on,
directly below, or directly above the main diagonal.

10. Binet–Cauchy Theorem. A very useful theorem in elec-
trical network theory states the algorithm for comput-

(−1)n p(−1) > 0
p(1) > 0

det(X i + Y i) > 0
det(X i − Y i) > 0

X i =




a0 a1 . . . ai−1

a0 . . . ai−2

0
. . .

...
a0




Y i =




an

0 an an−1

. .
. ...

an . . . an−i+1




ing the determinant of the product AB where A is m
� n and B is n � m, m � n. Define the major of A (or 14. Hankel, Toeplitz, and Circulant Matrices. A matrix H
of B) as the determinant of the submatrix of maximum is Hankel if its (i, j)th entry depends only on the value
order (in this case m). Then according to Binet–Cauchy of i � j. Similiarly, a matrix T is Toeplitz if its (i, j)th
theorem, entry depends only on the value of i � j. A circulant

matrix C is defined by (C)ij � cj�1�i, where subscripts
are mod n. Thus 4 � 4 matrices of those kinds are of
the form

det(AB ) =
∑

all majors

(products of corresponding

majors of A and B )

11. Lancaster’s Formula. One has

p(xxx ) = e− f (xxx ), f (xxx ) = 1
2

xxxTR−1xxx > 0∫ ∞

−∞
p(xxx ) dxxx = (2π)−n/2�R

12. Singular-Value Decomposition. Suppose A is an n �
m real matrix with n 	 m, with rank r � m. Form

S � AAT, an n � n matrix with orthogonal eigenvec-
tor e1, . . ., en

R � ATA, an m � m matrix with orthogonal eigen-
vector f 1, . . ., fm

H =




h1 h2 h3 h4

h2 h3 h4 h5

h3 h4 h5 h6

h4 h5 h6 h7




T =




t0 t−1 t−2 t−3

t1 t0 t−1 t−2

t2 t1 t0 t−1

t3 t2 t1 t0




C =




c1 c2 c3 c4

c4 c1 c2 c3

c3 c4 c1 c2

c2 c3 c4 c1




U � [e1� � � � �en], V � [f 1� � � � �fm]
Such matrices play an important role in system theory

� � Dg[�1, �2, . . ., �r, 0, 0], �1 	 �2 	 . . . 	 �r involving state-space realizations.
nonnegative

� Dg[square roots of eigenvalues of ATA] Nehari’s Theorem. Hankel matrices can be used to compute
an important bound on a function f (t). Given f (t), compute itsThen the singular–value decomposition of A is
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Fourier coefficients ci (i � �n, . . ., �1, 0, 1, . . . n) and the
associated complex symmetric (n � 1) � (n � 1) Hankel ma-
trix H such that (H)ij � (ci�j) (i � �n, �n �1, . . ., 0; j � 0,
1, . . ., n). A very useful result due to Nehari states that

|xxx∗Hxxx | ≤ kxxx∗xxx

where k is the bound of the function f (t).
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