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�m�i � 1, 2, . . ., N� and a corresponding set of N real num-
bers: �di � �n�i � 1, 2, . . ., N� find a function F:

F : 
m → 
n|F (xi) = di, i = 1, 2, . . ., N (1)

where m and n are integers. The interpolation surface is con-
strained to pass through all the data points. The interpolation
function can take the form:

F(x) =
N∑

i=1

wiφ(x, xi) (2)

where ��(x, xi)�i � 1, 2, . . ., N� is a set of N arbitrary func-
tions known as the radial basis functions. Inserting the inter-
polation conditions, we obtain the following set of simultane-
ous linear equations for the unknown coefficients (weights) of
the expansion wi:




φ11 φ12 · · φ1 N

φ21 φ22 · · φ2 N

· · · · ·
· · · · ·

φN1 φN2 · · φNN



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d2

d3

·
·

dN




(3)

where

φ ji = φ(x, xi ), j, i = 1, 2, ..N (4)

Let the N � 1 vectors d and W defined as

ddd = [d1, d2, . . ., dN] t (5)

WWW = [w1, w2, . . ., wN ] t (6)

represent the desired response vector and the linear weight
vector, respectively. Let

� = {φi, j , i, j ∈ [1, N ]} (7)

denote the N � N interpolation matrix. Hence, Eq. (3) can be
rewritten as

�WWW = ddd (8)

Provided that the data points are all distinct, the interpola-
tion matrix � is positive definite (1). Therefore, the weight
vector W can be obtained by

FUNCTION APPROXIMATION
WWW = �−1ddd (9)

This article presents a survey of techniques used for function
approximation and free form surface reconstruction. A com- where ��1 is the inverse of the interpolation matrix �. Theo-

retically speaking, a solution to the system in Eq. (9) alwaysparative study is performed between classical interpolation
methods and two methods based on neural networks. We exits. Practically speaking, however, the matrix � can be sin-

gular. In such cases, regularization theory can be used; whereshow that the neural networks approach provides good ap-
proximation and provides better results than classical tech- the matrix � is perturbed to � � �I to assure positive defi-

niteness (1).niques when used for reconstructing smoothly varying sur-
faces. Based on the interpolation matrix �, different interpola-

tion techniques are available (2–5). Some of these techniquesThe interpolation problem, in its strict sense, may be
stated as follows (1): Given a set of N different points: �xi � will be reviewed in next section.
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CLASSICAL INTERPOLATION TECHNIQUES where the basis functions are given by

Shepard’s Interpolation βi(x, y) = r 2
i ln(ri) (15)

Shepard formulated an explicit function for interpolating The modeling surface function S(x, y) has the form derived in
scattered data (16). The value of the modeling function is cal- Harder and Desmairis (11)
culated as a weighted average of data values according to
their distance from the point at which the function is to be
evaluated. Shepard’s expression for globally modeling a sur- S(x, y) = a0 + a1x + a2 y +

n∑
i=1

cir
2
i ln(ri) (16)

face is

The coefficients are determined by substituting the discrete
data set into and solving the resulting set of linear equations:S(x, y) =




∑n
i=1 Zi/r2

i∑n
i=1 1/r2

i

ri �= 0

zi ri = 0
(10)

n∑
i=1

ci = 0 (17)

where ri is the standard distance metric:

ri = [(x − xi)
2 + (y − yi)

2]1/2 (11)

n∑
i=1

xici = 0 (18)

The above algorithm is global; local Shepard methods can be
formed by evaluating S(x, y) from the weighted data values

n∑
i=1

yici = 0 (19)

within a disk of radius R from (x, y). A function �(r) is defined
that ensures the local behavior of the interpolating method f (xi, yi ) = a0 + a1 x + a2 y +

n∑
i=1

cir
2
i ln(ri) (20)

by calculating a surface model for any r �� R, and which also
weights the points at r �� R/3 more heavily, as follows:

Hardy’s Multiquadric Interpolation. Hardy (5) proposed a
method for interpolating scattered data that employs the
summation of equations of quadratic surfaces that have un-
known coefficients. The multiquadric basis functions are the


(r) =




1/r 0 < r < R/3
27(r/R − 1)2/4R R/3 < r ≤ R
0 R < r

(12)

hyperbolic quadrics

Therefore, for points that are within R distance of (x, y), the φi = (r 2
i + b2)1/2 (21)

surface is given by

where b is a constant and ri is the standard Euclidean dis-
tance metric. The summation of a series of hyperbolic quad-
rics have been found to perform best compared with the other
members of the multiquadrics family. The modeling surface

S(x, y) =



∑n
i=1 ziψ(ri)

2∑n
i=1 ψ(ri)

2
ri �= 0

zi ri = 0
(13)

is given by
A usable number of points must fall within the local region of
radius R for this method to be applicable. Shepard’s method
is simple to implement and can be localized, which is advan-

S(x, y) =
n∑

i=1

ciφi =
n∑

i=1

ci[(x − xi )
2 + (y − yi)

2 + b2]1/2 (22)

tageous for the large cloud data sets (3).
The cloud data set is substituted into Eq. (22), giving set of
linear equationsThin Plate Splines

The method of thin plate splines proposed by Shepard (2) and
the multiquadric method proposed by Hardy (5) can both be zi =

n∑
i=1

ci[(xj − xi )
2 + (yj − yi )

2 + b2]1/2 j = 1, . . ., n (23)
classified as interpolating functions composed of a sum of ra-
dial basis functions. The basis functions are radially symmet-
ric about the points at which the interpolating function is NEURAL NETWORK AS UNIVERSAL APPROXIMATOR
evaluated. Conceptually, the method is simple to understand
in terms of a thin, deformable plate passing through the data Although classification is a very important form of neural
points collected off the surface of the object. The thin plate computation, neural networks could be used to find an ap-
spline radial basis functions are obtained from the solution of proximation of a multivariable function F(x) (6). This could be
minimizing the energy of the thin plate constrained to pass approached through a supervised training of an input-output
through loads positioned at the cloud data set. The modeling mapping from a data set. The learning proceeds as a sequence
surface is constructed from the radial basis functions �i(x, y) of iterative weight adjustments until a weight vector is found
by expanding them in a series of (n � 3) terms with ci coeffi- that satisfies certain criterion.
cients: In a more formal approach, multilayer networks can be

used to map �n into � by using P examples of the function
F(x) to be approximated by performing nonlinear mapping
with continuous neurons in the first layer, and then comput-

S(x, y) =
n∑

i=1

ciβi(x, y) (14)
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ing the linear combination by the single node of the output The size J of the hidden layer is one of the most important
considerations when solving actual problems using multilayerlayer as follows:
feedforward networks. The problem of the size choice is under

y = �[VX ] (24) intensive study, with no conclusive answers available thus far
for many tasks. The exact analysis of the issue is rather diffi-O = W ty (25)
cult because of the complexity of the network mapping and
the nondeterministic nature of many successfully completedwhere V and W are the weight matrices for hidden and output
training procedures (6). Here, we tested the network usinglayer respectively, and �[ � ] is a diagonal operator matrix con-
different number of hidden neurons. The degree of accuracysisting of nonlinear squashing functions �( � )
reflected by mean square error was chosen to be 0.05. Results
are provided later in this paper.

Approximation Using Functional Link Networks

Instead of carrying out a multistage transformation, as in

� =




φ(·) 0 0 · 0
0 φ(·) 0 · 0
· · · · ·
0 · · · φ(·)


 (26)

multilayer networks, input/output mapping can also be
A function �( � ) : � � [0, 1] is a squashing function if (1) it achieved through an artificially augmented single-layer net-

is nondecreasing, (2) lim��
 �(�) � 1, (3) lim���
 �(�) � 0. work. The concept of training an augmented and expanded
Here we have used a bipolar squashing function of the form network leads to the so-called functional link network as in-

troduced by Pao (1989) (10). Functional link networks are sin-
gle-layer neural networks that can handle linearly nonsepa-φ(x) = 2

1 + e−λx
− 1 (27)

rable tasks by using appropriately enhanced representation.
This enhanced representation is obtained by augmenting the

The studies of Funanashi (8), Hornik, Stinchcombe and White input by higher order terms that are generally nonlinear
(7) prove that multilayer feedforward networks perform as a functions of the input.
class of universal approximators. Although the concept of The functional link network was used to approximate the
nonlinear mapping, followed by linear mapping, pervasively surfaces by enhancing the 2-component input pattern (x, y)
demonstrates the approximating potential of neural net- by 26 orthogonal components such as xy, sin(n�x), cos(n�y),
works, the majority of the reported studies have dealt with etc. for n � 1, 2, . . ., m. The output of the network can be
second layer also providing the nonlinear mapping (6,7). The expressed as follows:
general network architecture performing the nested nonlinear
scheme consists of a single hidden layer and a single output
O such that

O = �(W�[VX ]) (28)

This standard class of neural networks architecture can ap-
proximate virtually any multivariable function of interest

F(x, y) = xwx + ywy + xywxy

+
m∑

i=1

sin(iπx)wxi + cos(iπx)wxi

+
m∑

i=1

sin(iπy)wyi + cos(iπy)wyi

(32)

provided that sufficiently many hidden neurons are available.
The basic mathematical theory indicates that the func-

Approximation Using Multilayer Networks tional expansion model should converge to a flat-net solution
if a large enough number of additional independent termsA 2-layer network was used for surface approximation. The x
are used.and y coordinates of the data points were the input to the

network, while the function value F(x, y) was the desired re-
sponse d. HYPERSURFACE RECONSTRUCTION

The learning algorithm applied was the error back-propa- AS AN ILL-POSED PROBLEM
gation learning technique. This technique calculates an error
signal at the output layer and uses the signal to adjust net- For the following reason, the strict interpolation procedure
work weights in the direction of the negative gradient descent described here may be a poor strategy for training of function
of the network error E so that, for a network with I neurons approximators (for certain classes) because of poor new data
in the input layer, J neurons in the hidden layer, and K neu- generalization: When the number of data points in the train-
rons the output layer, the weight adjustment is as follows: ing set is much larger than the number of degrees of freedom

of the underlying physical process, and we are constrained to
have as many basis functions as data points, the problem is
overdetermined. Consequently, the algorithm may end up


wk j = −η
∂E

∂wk j
, k = 1, 2, . . ., K j = 1, 2, . . . J (29)

fitting misleading variations because of noise in the input
data, and thereby result in a degraded generalization perfor-
vji = −η

∂E
∂vji

, j = 1, 2, . . ., J i = 1, 2, . . . I (30)
mance (1).

The approximation problem belongs to a generic class of
where problems called inverse problems. An inverse problem may be

well posed or ill posed. The term well posed has been used in
applied mathematics since the time of Hadamard in the early
1900s. To explain what we mean by this term, assume that

E = 1
2

K∑
k=1

(dk − Ok)2 (31)
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we have a domain X and a range Y taken to be metric spaces, the sense that it stabilizes the solution F, making it
smooth and therefore continuous.and that they are related by a fixed but unknown mapping

F. The problem of reconstructing the mapping F is said to be
The analytical approach used for the situation described herewell posed if three conditions are satisfied (1):
draws a strong analogy between linear differential operators
and matrices, thereby placing both types of models in the1. Existence. For every input vector x � X, there does ex-
same conceptual framework. Thus the symbol �.� denotes aist an output y � F(x), where y � Y.
norm imposed on the function space to which PF belongs. By2. Uniqueness. For any pair of input vectors x, t � X, we
a function space we mean a normed vector space of functions.have F(x) � F(t) if, and only if, x � t.
Ordinarily, the function space used here is the L2 space that

3. Continuity. The mapping is continuous, that is for any consists of all real-valued functions f (x), x � R p, for which
� � 0 there exists � � �(�) such that the condition dX(x, � f (x)�2 is Lebesgue integrable. The function f (x) denotes the
t) � � implies that dY(F(x), F(t)) � �, where d( � , � ) is actual function that defines the underlying physical process
the distance between two arguments in their respec- responsible for the generation of the input-output pair.
tive spaces. Strictly speaking, we require the function f (x) to be a member

of a reproducing kernel Hilbert space (RKHS) with a repro-
If these conditions are not satisfied, the inverse problem is ducing kernel in the form of the Dirac delta distribution (14).
said to be ill posed. Function approximation is an ill posed The simplest RKHS that satisfies the previously mentioned
inverse problem for the following reasons. First there is not conditions is the space of rapidly decreasing, infinitely contin-
as much information in the training data as we really need uous differentiable functions, that is, the classical space S of
to reconstruct the input-output mapping uniquely, hence the rapidly decreasing test functions for the Shawrz theory of dis-
uniqueness criterion is violated. Second, the presence of noise tributions, with finite P-induced norm
or imprecision in the input data adds uncertainty to the re-
constructed input-output mapping in such a way that an out- Hp = { f ∈ S : ‖P f‖ < ∞} (35)
put may be produced outside the range for a giving input in-
side the domain, in other words, when the continuity where the norm of Pf is taken with respect to the range of
condition is violated. P, assumed to be another Hilbert space. The principal of regu-

larization may now be stated as follows: Find the function
Regularization Theory F(x) that minimizes the cost functional E (F) defined by

Tikhonov (12) proposed a method called regularization for
solving ill-posed problems. In the context of approximation
problems, the basic idea of regularization is to stabilize the

E (F ) = Es(F) + λEc(F )

=
∑
i=1

N[di − F(xi)]
2 + λ‖PF‖2 (36)

solution by means of some auxiliary nonnegative functional
that embeds prior information, for example, smoothness con-

where � is a positive real number called regularization pa-
straints on the input-output mapping (that is, a solution to

rameter.
the approximation problem), and thereby make an ill-posed
problem into a well-posed one (1,11). Regularization Networks

According to Tikhonov’s regularization theory, the function
Poggio et al., (13) suggested some form of prior informationF is determined by minimizing a cost functional E (F), so
about the input-output mapping that would make the learn-called because it maps functions (in some suitable function
ing problem well posed so that the generalization to new dataspace) to the real line. It involves two terms:
is feasible. They also suggested a network structure that they
called regularization network. It consists of three layers. The1. Standard Error Term. This first term, denoted by
first layer is composed of input (source) nodes whose numberE s(F), measures the standard error between the desired
is equal to the dimension p of the input vector x. The secondresponse di and the actual response yi for training ex-
layer is a hidden layer, composed of nonlinear units that areample i � 1, 2, . . ., N. Specifically,
connected directly to all the nodes in the input layer. There
is one hidden unit for each data point xi, i � 1, 2, . . ., N,
where N is the number of training examples. The activation
of the individual hidden units are defined by Green’s function
G(x, xi) given by (20)

Es(F) =
∑
i=1

N(di − yi )
2

=
∑
i=1

N[di − F(x i)]
2

(33)

2. Regularization Term. This second term, denoted by
E c(F), depends on the geometric properties of the ap- G(x, xi ) = exp

[
− 1

2σ 2
i

p∑
k=1

(xk − xi,k )2

]
(37)

proximating function F(x). Specifically, we write

This Green’s function is recognized to be a multivariate
Ec(F) = ‖PF ‖2 (34) Gaussian function. Correspondingly, the regularized solution

takes on the following special form:
where P is a linear differential operator. Prior informa-
tion about the form of the solution is embedded in the
operator P, which naturally makes the selection of P
problem dependent. P is referred to as a stabilizer in

F(x) =
N∑

i=1

wi exp

[
− 1

2σ 2
i

p∑
k=1

(xk − xi,k )2

]
(38)
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which consists of a linear superposition of multivariate 5. Surface 5:
Gaussian basis functions with center xi (located at the data
points) and widths �i (1). z = Rectangular Box (44)

The output layer consists of a single linear unit, and is
6. Surface 6:fully connected to the hidden layer. The weights of the output

layer are the unknown coefficients of the expansion, defined
in terms of the Green’s functions G(x; xi) and the regulariza- z = Pyramid (45)
tion parameter � by

The first two surfaces are bivariate sinusoidal functions, with
Surface 2 having twice the spatial frequency of Surface 1.w = (G + λI)−1d (39)
Many consumer items are composed of smoothly varying free-
form patches similar to Surface 1, while Surface 2 is less com-This regularization network assumes that the Green’s func-
mon. Surface 3 has a peaked form, and Surface 4 is smoothtion G(x; xi) is positive definite for all i. Provided that this
with a sharp ridge diagonally across it. Surfaces 5 and 6 havecondition is satisfied, which it is in the case of the G(x; xi)

having the Gaussian form, for example, then the solution pro-
duced by this network will be an optimal interpolant in the
sense that it minimizes the functional E (F). Moreover, from
the viewpoint of approximation theory, the regularization net-
work has three desirable properties (17):

1. The regularization network is a universal approximator
in that it can approximate arbitrarily well any multi-
variate continuous function on a compact subset R p,
given a sufficiently large number of hidden units.

2. Since the approximation scheme derived from regular-
ization theory is linear in the unknown coefficients, it
follows that the regularization network has the best ap-
proximation property. This means that given an un-
known nonlinear function f , there always exists a choice
of coefficients that approximates f better than all other
possible choices.

3. The solution computed by the regularization network is
optimal. Optimality here means that the regularization
minimizes a functional that measures how much the so-
lution deviates from its true value as represented by the
training data.

RESULTS

We now quantitatively compare the performance of the classic
techniques shown in Section 1 with the neural network ap-
proaches using synthetic range data for four typical free-form
surface patches suggested by Bradley and Vickers (3), and
two surfaces suggested in this paper. The six test surfaces
are:

1. Surface 1:

z = sin(0.5x) + cos(0.5y) (40)

2. Surface 2:

z = sin(x) + cos(y) (41)

3. Surface 3:
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Figure 1. Comparison of reconstruction of Surface 1 using all meth-
4. Surface 4: ods: (a) original surface; (b) Shepard Interpolation; (c) Thin Plate B-

spline; (d) Hardy’s Multiquadric Interpolation; (e) MultiLayer Neural
Network; and (f) Functional link Neural Network.z = tanh(x + y − 11) (43)
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of the three methods for the sharp edge surfaces. The recon-
structed surfaces, using all interpolation techniques, are
shown in Figs. 1–6.

The interpolations using the neural networks perform ex-
ceptionally well on the first four surfaces, but because of the
sharp edges in Surfaces 5 and 6, their performance was not
as good. The networks seem to have difficulty with sharp
transitions and discontinuities. A method for dealing with
this difficulty could be to use a block training technique in
which the neural network learns the surfaces in smaller
patches. This should decrease learning time and make the
training cycles less complicated, although it creates the need
for local regions. During training, the weights are updated
for each training point; the error for that training point and
corresponding weight set is then calculated. When using a
large number of training pairs, the weights are significantly
changed from the beginning to the end of the training cycle.
Therefore, the calculated error is not equivalent to the true
error, which is based on this final weight set. This is because
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Figure 2. Comparison of reconstruction of Surface 2 using all meth-
ods: (a) original surface; (b) Shepard Interpolation; (c) Thin Plate B-
spline; (d) Hardy’s Multiquadric Interpolation; (e) MultiLayer Neural
Network; and (f) Functional link Neural Network.

sharp edges and were included to test the modeling tech-
niques on discontinuous surfaces. Data sets were generated,
using the six surfaces, with each set consisting of 2500 points
contained in a rectangular patch and with x and y varying
from 0.0 to 10.0. Testing of these surface fitting methods has
been done by local interpolation over 8 � 8 overlapping
square regions. All methods were applied to a data set mesh
of 900 points contained in the same rectangular patch as the
original data set (9).
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From the results, we can deduce that the Hardy’s Multi- Figure 3. Comparison of reconstruction of Surface 3 using all meth-
quadratic Interpolation provides a large improvement over ods: (a) original surface; (b) Shepard Interpolation; (c) Thin Plate B-
the Shepard’s Interpolation and the Thin Plate Splines spline; (d) Hardy’s Multiquadric Interpolation; (e) MultiLayer Neural

Network; and (f) Functional link Neural Network.method for the first four surfaces, while performing the worst
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into smoothly varying portions and areas of sharp transitions.
The neural network could then be used to approximate these
smoothly varying areas, while a classical technique like Har-
dy’s Multiquadric Interpolation could be used on the areas of
sharp transition.

APPLICATIONS

Recently, laser range finders (also known as 3-D laser scan-
ners) have been employed to scan multiple views of an object.
The scanner output is usually an unformatted file of large
size (known as the ‘‘cloud of data’’) (3,31). In order to use the
cloud of data for surface reconstruction, a registration tech-
nique is implemented that makes correspondence with the ac-
tual surface. Laser scanners are convenient in applications
where the object is irregular but in general smooth. The corre-
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Figure 4. Comparison of reconstruction of Surface 4 using all meth-
ods: (a) original surface; (b) Shepard Interpolation; (c) Thin Plate B-
spline; (d) Hardy’s Multiquadric Interpolation; (e) MultiLayer Neural
Network; and (f) Functional link Neural Network.

each error calculation has been made with a different weight
set. A correction for this can be done by simply recalculating
the true error using the final weight set at the end of each
training cycle.

It is clear that the neural networks method produces
smooth surfaces as compared with those produced by Hardy’s
Multiquadratic Interpolation without the need of constructing
local regions. In general, the neural networks approach is far
superior in terms of the ease of implementation. The results
also show the potential of Functional Link Neural Network
as an approximator; it is easier to implement than the
MultiLayer Neural Network and faster to converge (9). How-
ever, neither of the two networks performed well on Surface
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6, possibly because of the presence of two discontinuities. Figure 5. Comparison of reconstruction of Surface 5 using all meth-
A new approach for free-form surface modeling is to com- ods: (a) original surface; (b) Shepard Interpolation; (c) Thin Plate B-

bine neural networks with classical techniques to create a spline; (d) Hardy’s Multiquadric Interpolation; (e) MultiLayer Neural
Network; and (f) Functional link Neural Network.new hybrid interpolation method. The surface can be divided
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able existence of reasonably large planar regions within a
free-form shape.

There are a number of studies dealing with global shape
matching or registration of free-form surfaces on limited
classes of shapes. For example, there have been a number of
studies on point sets with known correspondence (31–35).
Bajcsy (34) is an example of studies on polyhedral models and
piecewise models.

As we indicated previously, the output of the laser scanner
(the cloud of data) is in the form of a sparse, unformatted file.
The goal is to build a model of the physical surface using this
data. Two issues need to be examined: (1) how to fit a surface
using the data from a single view; and (2) how to merge the
data from multiple views to build an overall 3-D model for the
object. Bradley and Vickers (3), surveyed a number of algo-
rithms for surface reconstruction using the cloud of data of
one viewpoint. Results were shown on basic surfaces like si-
nusoids and exponentials. They also suggested an algorithm
for surface modeling based on the following steps: (1) divide
the cloud of data into meshes of smaller sizes; (2) fit a surface
using a subset of data points on each mesh; and (3) merge the
surfaces of the meshes together. This approach has been
shown to be convenient for simple surfaces with little or no oc-
clusion.
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