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in the optimization problem. Penalty factor techniques and
fuzzy-logic-based methods have been shown to be effective for
modeling such soft constraints (4,5).

Operators can perform only a limited number of control
actions in time-critical situations. Hence, the solutions of opti-
mization methods need to be such that a small number of
actions with different priorities are suggested. Again, tradi-MINIMIZATION
tional optimization techniques are not completely suitable.
While postprocessing of solutions using technologies such asThis article discusses optimization problems involved in real-
expert systems is feasible, this will likely compromise the op-time control of systems with a human operator in the loop.
timality of the solutions. It is preferable to start from a modelSuch real-time systems involve multiple objective functions,
that incorporates such filtering and prioritization.and there are multiple optimal solutions. Often these objec-

Discrete control actions are often more effective than theirtives are conflicting; an example is planning for contingencies
continuous counterparts when quick changes are needed.as well as the ‘‘base case’’ (current operating point). The solu-
However, such actions are typically avoided in many optimi-tion to such multiobjective problems is typically a trade-off
zation models because they result in mixed-integer nonlinearsurface (known as a Pareto surface) whose axes are the vari-
programming (MINLP) models that are often very difficult toous objective functions. The Pareto surface is to be presented
solve. This is unfortunate since the results of enhanced mod-to the human operator who will make the final decisions re-
els can lead to more efficient operations. Operators may begarding control actions. Also, ideally the operator will be able
forced to use such actions without the aid of optimizationto modify the parameters of the optimization process inter-
models. What is needed is a fresh look at integration of dis-actively to obtain desired results.
crete actions in continuous models without necessarily lead-Mathematical optimization techniques such as nonlinear
ing to rigorous MINLP problems. Techniques such as fuzzyprogramming (NLP) have been used historically as the build-
logic can provide help in this respect.ing blocks of real-time control systems. However, their inade-

Discrete actions can introduce multiple minima that reflectquacies have been felt most acutely in the modeling of realis-
practical solution alternatives. Finding the global minimumtic control actions that do not fit well in the traditional
can be a daunting task and is the subject of an entire field ofoptimization frameworks. The deficiencies are particularly
the relatively new field of global optimization. However, thisnotable in the following areas:
possibility needs to be carefully considered since it can result
in significantly better solutions.1. Modeling uncertainties in input data pertaining to sys-

Planning for contingencies constitutes an important aspecttem operation.
of control and operation of complex real-time systems. How-2. Modeling of ‘‘soft constraints.’’
ever, contingency planning has been difficult to tackle

3. Filtering and ranking control actions that the operator through traditional optimization models because of the inabil-
is expected to perform. ity of these models to account for the subjective ‘‘risk prefer-

4. Modeling discrete control actions. ences’’ of the operators. Risk assessment and management is
a fundamental component of contingency planning. The5. Modeling the ‘‘level of risk’’ that the operator is willing
trade-off is between economics and ‘‘security’’ against contin-to take while planning for contingencies.
gencies.

The first two deficiencies have been addressed in the gen-Let us consider these deficiencies in turn. Uncertainties in
input data result from many sources. Chief among them are eral fuzzy logic literature, and fuzzy techniques have been

proposed for system operation with uncertain data and softuncertainties introduced by inaccurate and/or imprecise sen-
sory data. Such uncertainties are particularly evident in con- constraints. The last three deficiencies have not received as

much attention, and they are still unresolved problems. Introl systems designed for geographically distributed physical
networks such as electric power grids and air-traffic control. this article, we concentrate on the modeling issues pertaining

to the last deficiency. We refer the reader to Ref. 6 for anTraditionally, such uncertainties have been handled through
the use of probabilistic techniques, resulting in stochastic op- elaborate discussion on the other two deficiencies (i.e., the

third and the fourth deficiency).timization models. Recently, fuzzy logic has emerged as a fea-
sible alternative for modeling data uncertainties in optimiza-
tion of physical systems (1).

PROBLEM FORMULATIONSeveral decades ago, March and Simon (2) argued that hu-
man decision-makers usually ‘‘satisfice’’ rather than ‘‘opti-

The conventional optimization problem for a control systemmize.’’ Traditional optimization models treat most problem
can be formulated as:constraints as rigid constraints whose violations are imper-

missible. This is not satisfactory for two reasons. First, the
uncertainties in the parameters of the underlying physical

Min
Z
f (Z) s.t. G(Z) = 0, H(Z) ≤ 0 (1)

system naturally lead to situations where violations are toler-
whereated for gains in the objective. Second, one of the popular

ways of modeling multiple conflicting objectives is the ‘‘con-
U is the vector of control variablesstraint method’’ which converts secondary objectives to con-

straints (with specified tolerances that are to be minimized) X is the vector of state variables
Z � [u, X]T is the vector of all the decision variables(3). Thus, such ‘‘soft constraints’’ need to be modeled explicitly
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G is the set of system equations the following mathematical formulation for this (linear) mem-
bership function:H is the set of operation limits

f (Z) is the objective function (usually the cost) which
is to be minimized

To account for the contingencies that can occur in the system
(i.e., for contingency constrained optimization), the problem
can be formulated as the following decomposed multiobjec-
tive problem.

µc( f (Z0)) =




1 if f (Z0) ≤ C0

(C0 + δc − f (Z0))

δc
if C0 < f (Z0) < C0 + δc

0 if f (Z0) ≥ C0 + δc

(4)

Let �k represent either of the functions �U*0 � Uk�2 or �U*k �Base-Case Subproblem
U0�2. Let � be the vector of the ramp limits (the increase or
decrease rate) for the control variables. Then the fuzzy ramp-
ing constraints can be formulated as �k � ���2 � ��, where ��

is a parameter that specifies the tolerance on the violation of
this constraint. The corresponding fuzzy goal is to keep �k ‘‘as
close to’’ ����2 as possible but no greater than ���2 � ��. We

Min
Z0

f (Z0)

Min
Z0

‖U0 − U∗
k ‖2, k = 1, 2, . . ., N

s.t. G0(Z0) = 0, H0(Z0) ≤ 0

(2)

can define a linear membership function ��(�k), as follows:

where

Z0 � [U0, X0]T is the base-case decision vector
U*k is the latest value of the kth subproblem con-

trol variables
G0 is the set of system equations for the base case

µ�(ηk) =




1 if ηk ≤ ‖�‖2

(‖�‖2 + δ� − ηk)

δc
if ‖�‖2 < ηk < ‖�‖2 + δ�

0 if ηk ≥ ‖�‖2 + δ�

(5)H0 is the set of operating limits for the base case
N is the number of contingencies

Both the membership functions are displayed in Fig. 1.
Let �k(U0) represent �U*k � U0�2, and let �k(Uk) represent

N Contingency Subproblems �U*0 � Uk�. Our fuzzy formulation of the decomposition pre-
sented in the previous section is the following:

Min
Zk

‖U∗
0 − Uk‖2 s.t. Gk(Zk) = 0, Hk(Zk) ≤ 0 (3)

Base-Case Subproblem

where

U*0 is the latest value of the base case control vari-

Max
Z0

Min{µc( f (Z0)), µ�(ηk(U0)), k = 1, . . ., N}

s.t. G0(Z0) = 0, H0(Z0) ≤ 0
(6)

ables
Zk � [Uk, Xk]T is the decision vector for the kth subproblem

In Eq. (6), the Min operator is used to represent the intersec-
Gk is the set of system equations for the kth sub-

tion of the N � 1 fuzzy sets corresponding to the two member-
problem

ship functions. The resulting Max–Min formulation aims to
Hk is the set of operating limits for the kth sub-

find an operating point that maximizes the degree of satisfac-
problem

tion of the least satisfied fuzzy relation, for a given set of N
postcontingency operating points. This is one way to seek a
compromise between the N � 1 fuzzy relations.

A FUZZY MODEL

N Contingency SubproblemsLet f (Z0) � C0 � �c represent an imprecise upper bound on
the maximum permissible operating cost, where C0 is the op-
timal cost obtained by solving the general constrained optimi-
zation problem without contingency constraints, and �c is the

Max
Zk

µ�(ηk(U0))

s.t. Gk(Zk) = 0, Hk(Zk) ≤ 0
(7)

‘‘tolerance’’ parameter that is a measure of the fuzziness in
this constraint. So the fuzzy goal is to keep f (Z0) ‘‘as close to’’
C0 as possible, but no greater than C0 � �c. In solving each contingency subproblem, we seek to find

a postcontingency operating point that is ‘‘closest’’ (per theLet �c be the membership function that represents the ex-
tent to which a given f (Z0) satisfies the fuzzy goal. Such a Euclidean norm) to the given base case, in control space. This

is tantamount to maximizing the degree of satisfaction of themembership function can take any value in [0, 1]. The higher
its value, the greater the degree of satisfaction of the fuzzy corresponding membership function.

To solve this fuzzy model using standard optimizationgoal by the given f (Z0). If we assume that the operator’s satis-
faction decreases linearly with deviation from C0, we can use methods, we need to convert Eq. (4) to an equivalent ‘‘crisp’’
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Figure 1. Membership functions for our
fuzzy goals.
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formulation. To do this, we introduce N � 1 (one for each If a linear function is not found to be appropriate, it can be
replaced by one of the other functions reported in the fuzzysubproblem) membership variables, �k, as follows:
logic literature such as hyperbolic or exponential (7). Once the
bounds are known, this is relatively easy to do.Base-Case Subproblem

THE ALGORITHM

Let ��k represent the change in �k between two successive
iterations. Let � represent a ‘‘termination’’ parameter. Then
the algorithm for our fuzzy approach is as follows:

Max
Z0 ,β0

β0

s.t. f (Z0) + δcβ0 ≤ C0 + δc

ηk(U0) + δ�β0 ≤ ‖�‖2 + δ�, k = 1, . . ., N

G0(Z0) = 0, H0(Z0) ≤ 0, 0 ≤ β0 ≤ 1

(8)

Step 1. Given ���2, use the above procedure to get �c, ��,N Contingency Subproblems
and U*0 corresponding to C0.

Step 2. Given U*k , solve the base-case subproblem in Eq.
(8) to obtain Z*0 and �0.

Step 3. Given U*0 , solve the N contingency subproblems in
Eq. (9) to obtain Z*k and �k for k � 1, . . ., N.

Max
Zk ,βk

βk

s.t. ηk(Uk) + δ�βk ≤ ‖�‖2 + δ�‖2 + δ�, k = 1, . . ., N

Gk(Zk) = 0, Hk(Zk) ≤ 0, 0 ≤ βk ≤ 1

(9)

Step 4. If ���i� � �, for all i � 0, . . ., N, stop; else go to
step 2.

OBTAINING FUZZY TOLERANCE PARAMETERS

The use of the above algorithm for a real-world example (an
In this section, we describe a procedure for obtaining the pa- electric power system control problem) is described in Ref. 8.
rameters, �c and ��, used in the model presented above. This
procedure is based on the work of Zimmermann (1).

CONCLUSION

1. Solve the base case in Eq. (2) for the first objective (ig-
This article discusses a method for real-time optimizationnoring the second one) to get U*0 and f (U*0 ). C0 � f (U*0 ).
problems. The models described here have been applied to

2. For each contingency k, using U*0 obtained from 1: control of electric power networks and are discussed in detail
i. Solve Eq. (3) to get U*k . in Refs. 8–10. We believe that modeling deficiencies in many

ii. Solve the second objective in Eq. (2) subject to the such optimization problems can be fruitfully addressed using
constraints to get U*0k. fuzzy logic.

iii. Calculate f (U*0k).

BIBLIOGRAPHY
Then, C0 � �c � Max�f (U*0k), k � 1, . . ., N� and ���2 � �� �
Max��U*k � U*0 �2, k � 1, . . ., N�. 1. H. J. Zimmermann, Fuzzy Set Theory and Its Applications,

The idea is to set the upper bound on the base-case cost Hingham, MA: Kluwer-Nijhoff, 1985.
equal to the maximum deviation from the optimal cost that is 2. J. G. March and H. A. Simon, Organizations, New York: Wiley,
necessary to minimize the correction time of any of the contin- 1958.
gencies. Similarly, the upper bound on the correction time is 3. M. Zeleny, Multiple Criteria Decision Making, New York:
equal to the maximum of the correction times of any of the McGraw-Hill, 1982.
contingencies, corresponding to the least-cost base-case point. 4. V. C. Ramesh and S. N. Talukdar, A parallel asynchronous de-
� is determined from the maximum correction times specified composition for on-line contingency planning, Proc. PICA, 1995,
by the operator. pp. 243–248.

We would also expect to query the operator regarding our 5. S. N. Talukdar and V. C. Ramesh, A multi-agent technique for
choice of a linear function to reflect the rate of decrease in the contingency constrained optimal power flows, IEEE Trans. Power
degrees of satisfaction. This can be done by picking a couple Syst., 9 (2): 855–861, 1994.
of points within the bounds and asking the operator for the 6. V. C. Ramesh and X. Li, Strategies for improved contingency

planning, Inf. Syst. Eng., 2 (3–4): 183–193, 1996.change in the satisfaction compared with one of the bounds.



MINIMUM SHIFT KEYING 279

7. M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimiza-
tion, New York: Plenum Press, 1993.

8. V. C. Ramesh and X. Li, A fuzzy multiobjective approach to con-
tingency constrained OPF, IEEE Trans. Power Syst., 12: 1348–
1354, 1997.

9. V. C. Ramesh and Xuan Li, Optimal power flow with fuzzy emis-
sion constraints, Elec. Mach. Power Syst., 25 (8): 897–906, 1997.

10. V. C. Ramesh and X. Li, Towards intelligent optimization models
for operator assistance, Eng. Intell. Syst., 4 (4): 227–233, 1996.

V. C. RAMESH

Illinois Institute of Technology


