
562 NONLINEAR EQUATIONS

have been used in the literature to solve nonlinear equations
(21–33).

This article presents a decomposition technique for solving
nonlinear equations. The original method was first introduced
by Adomain (1). Numerous articles have been written using
this method to solve partial, ordinary and delay differential
equations, nonlinear algebraic equations, and boundary-value
problems (1–17). The scheme assumes an infinite solution

u =
∞∑

n=0

un

where the terms un are recursively determined. A common
feature to note of problems solved by the decomposition
method is that the solution of the underlying equations ob-
tained by this method approximates the exact solution with a
high degree of accuracy using only a few terms of the iterative
scheme. A modified version of the technique will be presented
to handle some of the nonlinear equations we will be dealing
with. Four basic equations that are of importance in mathe-
matical physics and engineering will be considered. In partic-
ular, we will present the well-known H-equation due to Chan-
drasekhar (18) which arises in the study of radiative transfer;
two nonlinear wave equations: the KdV equation, that arises
in the modelling of shallow water waves and the Klein–
Gordon equation which is an important model in quantum
mechanics. Finally, the method will be implemented for solv-
ing a hyperbolic conservative system that models shocks.

In the sections that follow we will present the decomposi-
tion method along with the results on convergence, the H-
equation, the KdV equation, the hyperbolic conservative sys-
tem, as well as the Klein–Gordon equation.

DECOMPOSITION METHOD

Recently, there has been a great deal of interest (1–12) in
applying the Adomian decomposition technique for solving a
wide class of nonlinear equations including algebraic, differ-
ential, partial-differential, differential-delay and integro-dif-
ferential equations. The main thrust of this technique is that
the solution which is expressed as an infinite series converges
very fast to exact solutions. In (19,20) a proof of convergence
of the method has been given by employing fixed point theo-
rems. Most recently, Cherruault et al. (19) presented new
proofs of convergence with less stringent hypotheses that are
more adaptable to dealing with physical problems. A theoreti-
cal analysis for the method has been discussed in (15).

In general, we seek a solution to the following nonlinear
NONLINEAR EQUATIONS equation

In this article a decomposition method is presented for solving u = L(u) + N(u) + g (1)
nonlinear equations arising in the study of radiative transfer
such as the Chandrasekhar H-equation, conservative hyper- where L is a linear operator, N is a nonlinear operator and g
bolic systems and nonlinear waves including the Kor- is a known function in the underlying function space which is
teweg–de Vries (KdV), and the Klein–Gordon equations. An normally a Hilbert space. The decomposition technique con-
essential feature of this numerical technique is its rapid con- sists of representing the solution as an infinite series, namely,
vergence and the high degree of accuracy by which it approxi-
mates a solution using only a few terms of its iterative
scheme. Other techniques including perturbation methods,
finite element, finite difference and Galerkin approximation

u =
∞∑

n=0

un (2)
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where the terms un are to be recursively computed. Also the Adomian polynomials are obtained by a reordering and rear-
nonlinear operator N is decomposed as follows: ranging of the terms given in Eq. (9). Indeed, to determine

the Adomian polynomials, one needs to determine the order
of each term in Eq. (9) which actually depends on both the
subscripts and the exponents of the un’s. For example, u1 is of

N(u) =
∞∑

n=0

An (3)

order 1; u2
1 is of order 2; u3

2 is of order 6; and so on. If a particu-
lar term involves the multiplication of un’s, its order is deter-where An � An(u0, u1, u2, . . ., un) are the so-called Adomian
mined by the sum of the orders of the un’s in the term. Forpolynomials. Substituting Eqs. (2) and (3) into Eq. (1) yields
example, u3

2u2
1 is of order 8 since (3)(2) � (2)(1) � 8. Therefore,

rearranging the terms in the expansion Eq. (9) according to
the order and assuming that N(u) is as given in Eq. (3) will

∞∑
n=0

un =
∞∑

n=0

L(un) +
∞∑

n=0

An(u0, u1, . . ., un) + g (4)

give the An as

Assuming convergence of the series in Eq. (4), both sides of
Eq. (4) will match by setting




A0 = f (u0)

A1 = u1 f (1)(u0)

A2 = u2 f (1)(u0) + 1
2!

u2
1 f (2)(u0)

A3 = u3 f (1)(u0) + u1u2 f (2)(u0) + 1
3!

u3
1 f (3)(u0)

...

(10)

We will now briefly present the general method and refer the




u0 = g
u1 = L(u0) + A0(u0)

u2 = L(u1) + A1(u0, u1)

...
un+1 = L(un) + An(u0, u1, . . ., un)

...

(5)

reader to (15) for a more detailed study. As was pointed out
Thus, from Eq. (5) the uns given in Eq. (2) can be obtained in earlier the Adomian algorithm assumes a series solution for
a recurrent manner and hence u is determined. u given by Eq. (2) and that the nonlinear operator N(u) can

There are important questions to raise now: be decomposed into:

1. How are the Adomian polynomials An determined?
2. Do the series in Eqs. (2) and (3) always converge? If so, N(u) =

∞∑
n=0

An (11)
to which function do they converge?

Before we proceed, we give a heuristic argument for de- The Adomian polynomials An’s are given by the general for-
termining An’s when N(u) � f (u) and f (u) is a scalar function. mula

The Taylor expansion of f (u) around u0 is:

An = 1
n!

dn

dλn

[
N
(∑

λiui

)]
λ=0

n = 0, 1, . . . (12)f (u) = f (u0) + f (1)(u0)(u − u0) + 1
2!

f (2)(u0)(u − u0)2 + . . .

(6)

Once the An are determined by Eq. (12), one can recurrently
If u is given as an infinite sum determine the terms un of the series and hence the solution u

of Eq. (1). The convergence of the series solution has been
established (15,19). The two hypotheses that are necessary
for proving convergence of Adomian technique are given in

u =
∞∑

n=0

un = u0 + u1 + u2 + . . . (7)

(19) by:
then upon substituting the difference u � u0 from Eq. (7) into
Eq. (6), we get

1. The nonlinear functional Eq. (1) has a series solution
��

n�0 un such that ��
n�0(1 � 	)n�un� � � where 	 � 0 may

be very small.

2. The nonlinear operator N(u) is analytic and can be de-

f (u) = f (u0) + f (1)(u0)(u1 + u2 + . . .)

+ 1
2!

f (2)(u0)(u1 + u2 + . . .)2 + . . .
(8)

veloped in series according to u: N(u) � ��
n�0 �nun

and when simplified this results in:

These conditions are generally satisfied in the modeling of
many physical problems.

To illustrate the scheme, let N(u) be a nonlinear function
of u, say f (u), where

u = u0 + λu1 + λ2u2 + . . .

f (u) = f (u0) + f (1)(u0)(u1 + u2 + u3 + . . .)

+ 1
2!

f (2)(u0)(u2
1 + 2u1u2 + 2u1u3 + u2

2 + 2u2u3 + u2
3 + . . .)

+ 1
3!

f (3)(u0)(u3
1 + 3u2

1 + 3u2
1u2 + 3u2

1u3 + 3u1u2
2 + . . .)

+ . . . (9)
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then the first four Adomian’s polynomials An are given by then Eq. (15) can be written as

z(x) = 1 − x
∫ 1

0

�(t)
x + t

1
z(t)

dt (18)

The nonlinear term in Eq. (18) is,

N(z) = f (z) = 1
z

(19)

Thus, upon writing z(x) � ��
n�0 zn(x), and N(z(x)) � 1/z(x) �




A0 = f (u(λ))|λ=0 = f (u0)

A1 = (d f/du)(du/dλ)|λ=0

A2 = 1
2

[(d2g/du2)(du/dλ)2 + (d f/du)(d2u/dλ2)]|λ=0

A3 = 1
6

[(d3 f/du3)(du/dλ)3 + 2(d2 f/du2)(du/dλ)(d2u/dλ2)

+ (d2 f/du2)(d2u/dλ2)(du/dλ) + (d f/du)(d3u/dλ3)]|λ=0

...
(13) ��

n�0 An(z(x)) in terms of the Adomian polynomials, Eq. (18)
becomes,The Ans can finally be written in the following convenient way

An =
n∑

v=1

c(v, n) f (v)(u0) (14)
∞∑

n=0

zn(x) = 1 − x
∞∑

n=0

∫ 1

0

�(t)
x + t

An(t)dt (20)

This results in the polynomials given in Eq. (10). Applying the decomposition method to Eq. (20), the various
In the next sections, this method and a modified version of iterates are given by

it will be used for solving several interesting nonlinear equa-
tions which are of physical importance. We will begin with z0 = 1 (21)
the Chandrasekhar equation (18).

and
CHANDRASEKHAR H-EQUATION

In this section, the decomposition method is applied to the zn+1(x) = −x
∫ 1

0

�(t)
x + t

An(t)dt, n ≥ 1 (22)

Chandrasekhar H-equation given by:

where, upon using Eq. (10), the Adomian polynomials for the
nonlinear operator given in Eq. (19) are:H(x) = 1 + H(x)

∫ 1

0

x
x + t

�(t)H(t)dt (15)

where the H-function, H(x), measures the emergent radiation
and �(t) is referred to as the characteristic function and is a
measure of phase. This equation arises in the formulation of
problems in the theory of radiative transfer in semi-infinite
atmospheres. Radiative transfer is the angular distribution of
the emergent radiations which results from scattering. For
standard problems in isotropic scattering, these angular dis-
tributions of the emergent radiations are directly expressed
in terms of the H-functions.




A0 = 1
z0

A1 = − 1
z2

0

z1

A2 = − 1
z2

0

z2 + 1
z3

0

z2
1

A3 = − 1
z2

0

z3 + 2
z3

0

z1z2 − 1
z4

0

z3
1

...

(23)

In Eq. (15), the function �(t) is usually a nonnegative even
polynomial in t satisfying

Substituting Eq. (21) into Eq. (23) gives:∫ 1

0
�(t)dt ≤ 1

2

It is well known that a positive and continuous solution of Eq.
(15) exists (18).




A0 = 1
A1 = −z1

A2 = z2
1 − z2

A3 = −z3
1 + 2z1z2 − z3

(24)

A case to consider, is when the law of diffuse reflection of
scattering is given in terms of the phase function �0(1 � x cos From Eqs. (24), (21), and (22) the first few iterates are:
�). This can be expressed in terms of the H-equation corre-
sponding to the following particular choice of the characteris-
tic function, �(t) (18)

�(t) = 1
2

�0[1 + x(1 − �0)t2] (16)

where �0 is a constant.
If we set

z(x) = 1
H(x)

(17)




z0(x) = 1

z1(x) = −x
∫ 1

0

�(t)
x + t

dt

z2(x) = x
∫ 1

0

�(t)
x + t

z1(t)dt

z3(x) = −x
∫ 1

0

�(t)
x + t

(z2
1(t) − z2(t))dt

...

(25)
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Evaluating the integrals in Eq. (25) (using the computer alge-
bra system maple) yields



z0(x) = 1

z1(x) = −1
4

x�0[(�0 − 1)(x − 2x2)

− 2(1 + x3 − �0x3)(lnx + 1 − ln x)]

z2(x) = − 1
16

x2�2
0 [2(1 − �0)x2 − (1 − �0)x

− 2(1 + x3 − 2�0x3)(ln x + 1 − ln x)]2

...

(26)

The solution of the H-equation Eq. (15) is therefore

H(x) = 1
z(x)

= 1∑∞
n=0 zn

(27)

where the zns are given in Eq. (26).
The H-functions given by Eq. (27) for various values of �0

are given in Table 1 using the decomposition method. The
values in Table 2 were obtained by Chandrasekhar and Breen
(18) by a process of iteration, where the solution started with
the fourth approximation for H(x) in terms of the Gaussian

Table 2. The H-Functions Defined in Terms of the
Characteristic Function �(x) � ���0[1 � x(1 � �0)t2] As
Obtained by Chandrasekhar and Breen

x �0 � 0.1 �0 � 0.2 �0 � 0.3 �0 � 0.4 �0 � 0.5

0 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0089 1.0183 1.0280 1.0383 1.0492
0.10 1.0145 1.0297 1.0459 1.0632 1.0817
0.15 1.0188 1.0388 1.0602 1.0832 1.1084
0.20 1.0224 1.0463 1.0722 1.1003 1.1311
0.25 1.0254 1.0528 1.0825 1.1151 1.1511
0.30 1.0280 1.0584 1.0916 1.1281 1.1689
0.35 1.0303 1.0634 1.0996 1.1398 1.1850
0.40 1.0324 1.0678 1.1069 1.1504 1.1996
0.45 1.0343 1.0719 1.1135 1.1600 1.2129
0.50 1.0359 1.0755 1.1194 1.1688 1.2252
0.55 1.0375 1.0788 1.1249 1.1769 1.2365
0.60 1.0389 1.0819 1.1300 1.1844 1.2470
0.65 1.0401 1.0847 1.1346 1.1913 1.2568
0.70 1.0413 1.0873 1.1389 1.1978 1.2659
0.75 1.0424 1.0897 1.1429 1.2038 1.2745
0.80 1.0434 1.0919 1.1467 1.2094 1.2825
0.85 1.0444 1.0940 1.1502 1.2047 1.2900
0.90 1.0453 1.0960 1.1535 1.2196 1.2972
0.95 1.0461 1.0978 1.1566 1.2243 1.3039
1.00 1.0469 1.0995 1.1595 1.2287 1.3103

division and characteristic roots. The iterates were evaluated
at some points and the intermediate values were predicted by
interpolating among the differences between the successive numerically, where H(t) is the solution obtained from the de-
iterates. Upon comparing Tables 1 and 2 we note that the composition technique and then comparing it with its exact
decomposition technique with only three iterations yields ap- value (18) which is given by
proximately the same values as those in Table 2, derived by
Chandrasekhar and Breen, with error less than 1%.

Another satisfactory check for the accuracy of the decom-
position method is provided by evaluating the integral

∫ 1

0
�(t)H(t)dt = 1 −

[
1 − 2

∫ 1

0
�(t)dt

]1/2

(29)

For the particular �(t) given in Eq. (16) and upon substitut-
ing it into Eq. (29), we get the exact value of the integral

∫ 1

0
�(t)H(t)dt (28)

∫ 1

0
�(t)H(t)dt = 1 −

[
1 − 1

3
�0(1 + x − �0)

]1/2

(30)

Table 3 shows that for x � 1 and different values of �0,
the error between the exact value in Eq. (30) and the numeri-
cal values of the integral in Eq. (28) is less than 1% with H-
function being approximated using only three terms of the
decomposition method.

KORTEWEG–DE VRIES

In this section a modified decomposition algorithm is pre-
sented for solving the Korteweg–de Vries (KdV) equation that

Table 3. Comparison of the Integrals ��1

0 �(x)H(x) dx, Where
H(x) Is the H-Function Obtained Using Decomposition
Method with Three Iterations, with Their Exact Values
1 � [1 � ���0(2 � �0)1/2]

�0 Decomposition Exact �0 Decomposition Exact

0.10 0.06469 0.06726 0.35 0.23252 0.24226
0.15 0.09742 0.10139 0.40 0.26767 0.27889
0.20 0.13051 0.13590 0.45 0.30351 0.31626
0.25 0.16401 0.17084 0.50 0.34040 0.35450
0.30 0.19798 0.20627 0.55 0.37802 0.39378

Table 1. The H-Functions Defined in Terms of the
Characteristic Function �(x) � ���0[1 � x(1 � �0)t2] Are
Evaluated Using Adomian’s Method with Three Iterations

x �0 � 0.1 �0 � 0.2 �0 � 0.3 �0 � 0.4 �0 � 0.5

0.00 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0078 1.0158 1.0241 1.0326 1.0415
0.10 1.0125 1.0256 1.0393 1.0538 1.0691
0.15 1.0162 1.0334 1.0517 1.0713 1.0923
0.20 1.0193 1.0400 1.0624 1.0866 1.1129
0.25 1.0220 1.0459 1.0719 1.0004 1.1316
0.30 1.0245 1.0512 1.0806 1.1130 1.1490
0.35 1.0267 1.0561 1.0886 1.1248 1.1653
0.40 1.0288 1.0606 1.0961 1.1359 1.1809
0.45 1.0307 1.0649 1.1032 1.1465 1.1957
0.50 1.0326 1.0690 1.1100 1.1566 1.2100
0.55 1.0343 1.0728 1.1165 1.1663 1.2237
0.60 1.0360 1.0765 1.1227 1.1758 1.2372
0.65 1.0376 1.0801 1.1288 1.1850 1.2503
0.70 1.0391 1.0836 1.1347 1.1939 1.2631
0.75 1.0406 1.0870 1.1404 1.2026 1.2758
0.80 1.0421 1.0902 1.1460 1.2113 1.2882
0.85 1.0435 1.0934 1.1515 1.2198 1.3005
0.90 1.0449 1.0966 1.1570 1.2281 1.3126
0.95 1.0462 1.0997 1.1623 1.2364 1.3248
1.00 1.0475 1.1027 1.1676 1.2446 1.3367
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arises in the study of nonlinear waves. Versions of this equa- Expressing N(u) � f (u) in terms of Adomian polynomials
tion have been extensively studied both analytically and nu-
merically (21–26). The general KdV equation is given by f (u) = A0 + A1 + A2 + . . . + An + . . . (43)

then the product f (u)L1u can be expanded, after rearrangingut + f (u)ux + βuxxx = 0 (31)
terms, as follows:

The following choice of the KdV equation which arises in shal-
low water theory is considered:

ut + (α + εu)ux + βuxxx = 0 (32)

f (u)L1u = [A0L1u0] + [A0L1u1 + A1L1u0]

+ [A0L1u2 + A2L1u0 + A1L1u1]

+ [A3L1u0 + A2L1u1 + A1L1u2 + A0L1u3]

+ . . .

(44)

with initial condition

From Eq. (44), the first three modified Adomian polynomialsu(x,0) = g(x) (33)
Bi s for the nonlinear operator f (u)ux � f (u)L1u � ��

n�0 Bn are:

where �, �, and 	 are constants.
Define the linear operators




B0 = A0L1u0

B1 = A0L1u1 + A1L1u0

B2 = A0L1u2 + A2L1u0 + A1L1u1

(45)

Lt = ∂

∂t
, L1 = ∂

∂x
, L2 = ∂3

∂x3 (34)

Substituting Eq. (44) into Eq. (41) and then replacing the
The inverse operators are the indefinite integrals given by An by their values as given in Eq. (10), we obtain the following

first three iterates of the modified Adomian algorithm
L−1

t =
∫ t

0
dt, L−1

1 =
∫ x

0
dx, L−1

2 =
∫ x

0
dx

∫ x

0
dx

∫ x

0
dx (35)

The conditions under which the decomposition algorithm con-
verges imply the existence of L�1

t , L�1
1 and L�1

2 . Equation (32)
can be written in the following operator form:

Ltu = − f (u)L1u − βL2uuu (36)




u1 = −L−1
t [ f (u0)L1u0] − βL−1

t L2u0

u2 = −L−1
t [ f (u0)L1u1 + u1 f ′(u0)L1u0] − βL−1

t L2u1

u3 = −L−1
t

[
f (u0)L1u2 + u1 f ′(u0)L1u1

+
(

u2 f ′(u0) + u2
1

2!
f ′′(u0)

)
L1u0

]
− βL−1

t L2u2

...

(46)

where

Implementing the modified algorithm to Eqs. (32) and (33),
f (u) = α + εu (37)

for the special case where f (u) is linear in u and is given in
Eq. (37), one obtains

Applying the inverse operator L�1
t , to both sides of Eq. (36)

gives u(x, t) = g(x) − L−1
t [(α + εu)L1u] − βL−1

t L2u (47)

L−1
t Ltu = −L−1

t ( f (u)L1u) − βL−1
t L2u (38) It then follows, by using Eqs. (46) and (47), that the iterates

of the KdV equation are given by:
or

u(x, t) = u(x, 0) − L−1
t ( f (u)L1u) − βL−1

t L2u (39)

Following the decomposition method, the term u0 is deter-
mined as

u0(x, t) = u(x,0) (40)




u0 = g(x)

u1 = −L−1
t [(α + εu0)L1u0] − βL−1

t L2u0

u2 = −L−1
t [(α + εu0)L1u1 + εu1L1u0] − βL−1

t L2u1

u3 = −L−1
t [(α + εu0)L1u2 + εu1L1u1

+ (εu2)L1u0] − βL−1
t L2u2

...

(48)

The other iterations are obtained via:
We now pick a special function

un+1 = −L−1
t [ f (un)L1un] − βL−1

t L2un, n ≥ 0 (41)

Consider now the argument f (u)L1u of the first term on the g(t) = A sech2

(√
εA
12β

t

)
right-hand side of Eq. (38). Since

to compare the exact solution of Eqs. (32) and (33) with the
numerical solution obtained by the decomposition method.u =

∞∑
n=0

un

From Eq. (48) the first two iterates are given by

we have

L1u = L1u0 + L1u1 + L1u2 + . . . + L1un + . . . (42)
u0 = A sech2

(√
εA
12β

t

)
(49)
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and to both sides of Eq. (55) yields

u(x, t) = u(x, 0) − L−1
t [ f ′(u)L1u] (57)

from which it follows, upon using the initial condition Eq.
(52),

u1 = 1
9

1

cosh3

(
1
2

√
εA
3β

t

)A(3α + εA)

√
3εA
β

t sinh

(
1
2

√
εA
3β

t

)

(50)
u(x, t) = h(x) − L−1

t [ f ′(u)L1u] (58)
Many other iterates were generated using MAPLE. Table 4
shows the errors obtained upon solving the KdV equation If we set
after normalizing the constants (i.e., we set � � � � A � 1
and 	 � 0.02) and using only five iterations of the decomposi-
tion method. It is to be noted that only five iterates were

N(x) = f (u) =
∞∑

n=0

An and u =
∞∑

n=0

un

needed to obtain an error of less than 10�5%. The overall er-
rors can be made even much smaller by adding new terms of then the term f (u)L1u in Eq. (58) can be expanded in terms
the decomposition. of the modified Adomian polynomials Bn’s, where

CONSERVATIVE HYPERBOLIC SYSTEMS f ′(u)L1u =
∞∑

n=0

Bn

In this section, we will consider the nonlinear partial differen-
Hence, we havetial equation:

ut + ∂

∂x
f (u) = 0 (51) u(x, t) = h(x) − L−1

t

[ ∞∑
n=0

Bn

]
(59)

u(x, 0) = h(x) (52)
To derive the first few Bn’s we have

which arises in the formulation of conservative hyperbolic
systems. A hyperbolic system is one for which the wave speeds
coalesce along certain curves in the state space. Such systems

∞∑
n=0

Bn = f ′(u)L1u =
( ∞∑

n=0

A′
n

)( ∞∑
n=0

L1un

)
(60)

occur, for example, in the modeling of oil recovery problems.
Many studies have dealt with the numerical diffusion, resolu-

and the An are the Adomian polynomials of f (u). Upon collect-tion and shock fronts and spurious oscillations which arise in
ing terms in Eq. (60), the first few Bn’s are:approximating the solution of Eqs. (51) and (52), (27–29).

Following the decomposition analysis, define the linear op-
erators

B0 = A′
0L1u0

B1 = A′
0L1u1 + A′

1L1u0

B1 = A′
0L1u2 + A′

1L1u1 + A′
2L1u0

(61)

Lt = ∂

∂t
(53)

Applying the decomposition algorithm to Eq. (59), the iteratesand
are given by

u0 = h(x) (62)L1 = ∂

∂x
(54)

andConsequently, Eq. (51) can be written in terms of these opera-
tors as

un+1 = −L−1
t [Bn], n ≥ 1 (63)

Ltu + f ′(u)L1u = 0 (55)
where the Bn’s are given in Eq. (61). Consider the following

Applying the inverse operator of Lt, namely L�1
t , defined by two special cases:

Case 1. f (u) � �u2

[L−1
t g](t) :=

∫ t

0
g(y)dy (56)

ut − ∂

∂x
u2 = 0 (64)

with initial condition

u(x, 0) = x (65)

Since, for this case,

f ′(u) = −2u =
∞∑

n=0

A′
n

Table 4. Error Obtained Using Decomposition Method with
Five Iterations for the KdV Equation

x t � 0.2 t � 0.4 t � 0.6 t � 0.8

0.2 3.1 � 10�9 4.85 � 10�8 2.45 � 10�7 7.79 � 10�7

0.4 2.8 � 10�9 4.85 � 10�8 2.46 � 10�7 7.78 � 10�7

0.6 2.9 � 10�9 4.89 � 10�8 2.46 � 10�7 7.76 � 10�7

0.8 3.1 � 10�9 4.86 � 10�8 2.45 � 10�7 7.74 � 10�7
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hence using Eq. (10) the Adomian polynomials An of f (u) are Similarly,
given by

A′
n = −2un, n ≥ 0 (66)

Using Eqs. (61)–(63) and Eq. (66) the first few iterates are:

u0 = x (67)

u3 = L−1
t

[
sin u0L1u2 + u1 cos u0L1u1

+
(

u2 cos u0 − 1
2

u2
1 sin u0

)
L1u0

]

= 1
3

t3
(

sin 3x − 1
2

sin3 x
) (79)

u1 = 2L−1
t [u0L1u0] = 2L−1

t [(x)(1)] = 2xt (68)

Upon summing these iterates we getu2 = 2L−1
t [u0L1u1 + u1L1u0]

= 2L−1
t [(x)(2t) + (2xt)(1)] = 2L−1

t [4xt] = 4xt2
(69)

u = x + sin xt + 1
2

sin 2xt2 + 1
3

(
sin 3x − 1

2
sin3

)
t3 + . . . (80)

Similarly,

KLEIN–GORDON EQUATION
u3 = 2L−1

t [u0L1u2 + u1L1u1 + u2L1u0]

= 2L−1
t [(x)(4t2)+ (2xt)(2t)+ (4xt2)(1)] = 24L−1

t [xt2] = 8xt3

(70) In this section, we will focus on the nonlinear Klein–Gordon
equation given generally by:Summing these iterates yields

u = x + 2xt + 4xt2 + 8xt3 + 16xt4 + . . . (71) ∂2u(x, t)
∂t2 − �u(x, t) + ku(x, t) + f (u(x, t)) = g(x, t) (81)

If ��� � t � ��, then Eq. (71) can be written in closed form as
u(x, 0) = b0(x),

∂u
∂t

(x, 0) = b1(x) (82)

u(x, t) = x
1 − 2t

(72)
with

which is the exact solution of Eqs. (64) and (65).
x = (x1, x2, . . ., xm) ∈ Rm, t ∈ (0,T]Case 2. f (u) � cos u

whereut + ∂

∂x
cos u = 0 (73)

with initial condition � =
m∑

j=0

∂2

∂x2
j

(83)

u(x, 0) = x (74)
and k is real, f is a given nonlinear function, and h is a
known function.For this case

The Klein–Gordon equation is an important mathematical
model in quantum mechanics and also occurs in relativistic
physics as a model of dispersive phenomena [see (25,26,28–

f ′(u) = − sin u =
∞∑

n=0

A′
n

33)].
Following the decomposition scheme, definehence using Eq. (10) the Adomian polynomials An of f (u) are

given by

Lt = ∂2

∂t2 , Lxi
= ∂2

∂x2
i

, i = 1, 2, . . ., m (84)

Consequently, Eq. (81) can be written in the following opera-
tor form

A′
0 = − sin u0

A′
1 = −u1 cos u0

A′
2 = −u2 cos u0 + 1

2!
u2

1 sin u0

(75)

Using Eq. (61), Eq. (63), and (75) gives the following first few
iterates Ltu =

m∑
i=1

Lxi
u − ku − f (u) + g (85)

u0 = x (76)
It was shown in (24) that Eq. (81) with the conditions of Eq.
(82) possesses a unique solution. Thus the inverse operatoru1 = L−1

t [sin u0L1u0] = L−1
t [(sinx)(1)] = t sin x (77)

of Lt, namely L�1
t , exists and is the two-fold indefinite integral,

that is,

[L−1
t h](t) :=

∫ t

0
du

∫ u

0
dvh(v) (86)

u2 = L−1
t [u1 cos u0L1u0 + sin u0L1u1]

= L−1
t [(t sin x)(cos x)(1) + (sinx)(t cos x)]

= L−1
t [2t sin x cos x] = 1

2
t2 sin 2x

(78)
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Applying L�1
t , to both sides of Eq. (84) yields

L−1
t Ltu =

m∑
i=0

L−1
t Lxi

u − kL−1
t u − L−1

t ( f (u)) + L−1
t g (87)

Table 5. Error Obtained Using Decomposition Method with
Three Iterations for the Klein–Gordon Eq. (92)

x t � 0.1 t � 0.3 t � 0.5

0.1 8.1 � 10�9 5.8 � 10�6 1.1 � 10�4

0.3 2.1 � 10�8 1.5 � 10�5 3.1 � 10�4

0.5 2.2 � 10�8 1.6 � 10�5 3.4 � 10�4

and upon using the initial conditions of Eq. (82) it follows that

Equations (89) and (91) imply that the various iterates are
given by:

u(x, t) = b0(x) + b1(x)t +
m∑

i=0

L−1
t Lxi

u − kL−1
t u

− L−1
t ( f (u)) + L−1

t g

(88)

Following the decomposition technique the first term u0 is de-
termined as

u0 = x + L−1
t

(
x3

4
cos

3
2

πt + 3x3

4
cos

π

2
t
)

= x + 1
9π2 x3

(
28 − cos

3
2

πt + 27 cos
1
2

πt
) (94)

u0(x, t) = b0(x) + b1(x)t + L−1
t (g(x, t)) (89)

and
Setting N(u) � f (u) � ��

n�0 An, then the next iterates are de-
termined as

u1 = L−1
t Lxu0 − π2

4
L−1

t u0 − L−1
t u3

0 (95)

un+1 =
m∑

i=0

L−1
t Lxi

un − kL−1
t un − L−1

t An, n ≥ 0 (90)
In a like manner,

Replacing the An in Eq. (90) by their values as given in Eq.
(10), then the first three iterates are given by u2 = L−1

t Lxu1 − π2

4
L−1

t u1 − 3L−1
t u2

0u1 (96)

Table 5 shows the error obtained by comparing the decompo-
sition method with three iterations and the exact solution
which is u � x cos �/2t.

Example 2. Consider the Klein–Gordon equation of the form

utt − uxx + π2u + u2 = x4 cos2 πt − 2 cos πt,

u(x,0) = x2, ut (x, 0) = 0
(97)




u1 =
m∑

i=0

L−1
t Lxi

u0 − kL−1
t u0 − L−1

t ( f (u0))

u2 =
m∑

i=0

L−1
t Lxi

u1 − kL−1
t u1 − L−1

t (u1 f (u0))

u3 =
m∑

i=0

L−1
t Lxi

u2 − kL−1
t u2

− L−1
t

(
u2

d
du0

f (u0) + u2
1

2!
d2

du2
0

f (u0)

)
(91)

Equation (88) implies that
We will show through two examples that the number of terms
required to obtain an accurate computable solution is very
small. The outcome of the decomposition method will be com-
pared with the known solution to the underlying Klein–

u(x, t) = x2 + L−1
t Lxu − π2L−1

t u − L−1
t u2

+ L−1
t (x4 cos2 πt − 2 cos πt)

(98)

Gordon equation. The solutions obtained are generated by us-
ing MAPLE. Equations (89) and (91) imply that the various iterates are

given by:
Example 1. Consider the Klein–Gordon equation of the form

u0 = x2 + L−1
t (x4 cos2 πt − cos πt)

= − 2
π2 + x2 + 1

4π2 (π2x4t2 + 8 cos πt + x4 sin2
πt)

(99)
utt − uxx + π2

4
u + u3 = x3

4
cos

3π

2
t + 3x3

4
cos

π

2
t,

u(x, 0) = x, ut (x, 0) = 0
(92)

and
Equation (88) implies that

u1 = L−1
t Lxu0 − π2L−1

t u0 − L−1
t u2

0 (100)

In a like manner,

u2 = L−1
t Lxu1 − π2L−1

t u1 − 2L−1
t u0u1 (101)

u(x, t) = x + L−1
t Lxu − π2

4
L−1

t u − L−1
t u3

+ L−1
t

(
x3

4
cos

3π

2
t + 3x3

4
cos

π

2
t
) (93)
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