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POLYNOMIALS

Polynomials of one or more variables are likely to be familiar
to most readers. Expressions such as

3t2 − 7t + 2 or x2 + y2 − 1

are easily recalled from high school mathematics. In general,
polynomials involve some number n of variables, call them
x1, . . ., xn, and a set of allowable coefficients usually taken to
lie in particular field or ring. Common fields are the field of
rational numbers �, the field of real numbers �, or the field
of complex numbers �. The ring of ordinary integers � pro-
vides an example of a coefficient ring that is not a field.

A monomial in the variables x1, . . ., xn is a power product
of the form

xα1
1

xα2
2

. . . xαn
n

where the exponents �1, . . ., �n are nonnegative integers.
The total degree of the monomial is the sum �1, � � � � � �n.

Because of the number of variables involved, a shorthand
notation is needed. We let � � (�1, . . ., �n) be an n-tuple of
nonnegative integers, and we define

xα = xα1
1

. . . xαn
n

where x represents (x1, . . ., xn). The total degree is the de-
noted by ��� � �1 � � � � � �n.

A polynomial f (x1, . . ., xn) in the variables x1, . . ., xn with
coefficients in a field K (or ring R) is a finite sum of terms of
the form

f (x1, . . ., xn) =
∑

α

aαxα =
∑

aα1 ,...,αn xα1
1

. . . xαn
n
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where a� � K (or R). The set of all such polynomials is writ- given system to one with fewer variables and/or fewer equa-
tions.ten K[x1, . . ., xn]. We call a� the coefficient of the monomial

x� and call a�x� a term in the polynomial when a� � 0.
The total degree (or just degree) of f (x1, . . ., xn), denoted Input

deg f , is the maximum of the degrees ��� of the monomials
The typical input will be a system of m equations in n vari-that occur in the terms of f , that is, the maximum over the
ables:��� � �1 � � � � � �n such that a� is not zero.

A polynomial is said to be homogeneous of degree d if every
monomial occurring in a term of f has degree equal d. Thus
y3 � x2y � zw2 is homogeneous of degree 3 in four variables,
whereas x3y � 3xwz is of degree 4 in four variables but is

f1(x1, . . ., xn) = 0

...

fm(x1, . . ., xn) = 0

(1)

not homogeneous.
One central problem that frequently arises is the need to Each equation has an associated degree di � 1. Recall that

solve a system of m polynomial equations in n variables: f i(x1, . . ., xn) has degree di if all monomials xe11 xe22 � � � xenn ap-
pearing in f i have �n

i�1 ei � di and at least one monomial has
�n

i�1 ei � di. As an example, f (x1, x2, x3) � 3x2
1x3 � 4x1x2 � x2 �

7x3 � 1 has degree d � 3. The integers m, n, d1, . . ., dm are
important indicators of the specific techniques that will need

f1(x1, . . ., xn) = 0

...

fm(x1, . . ., xn) = 0 to be employed.

where the f i are in K[x1, . . ., xn]. Solutions are sought in Kn

Outputor in some larger field En where K � E. (The example to keep
in mind is finding complex solutions to equations with real There are two essentially different cases.
coefficients.) Kn in this case is just the set of n-tuples of ele-
ments of K, which we call n-space: Case 1: m � n (overdetermined). This is the case where

we have more equations than unknowns and where weK n = {(a1, . . ., an) with ai ∈ K}
generally expect to have no solutions. The resultant will
be a system of equations (one equation when m � n �We say that (a1, . . ., an) � Kn is a solution to the system

above if f i(a1, . . ., an) � 0 for all i � 1, . . ., n. 1) in the symbolic coefficients of the f i that has the fol-
lowing property: when we substitute the specific numer-Naively, we expect that a system of n equations in n vari-

ables will have a finite number of solutions. This, however, ical coefficients of the f i, we will get zero in every equa-
tion in the resultant system if and only if the originalneed not be the case. Consider three equations in three vari-

ables (coefficients in � say): overdetermined system has a solution.
Case 2: m � n (exact and underdetermined). In this case

the number of equations is less than or equal to the
number of variables, and we expect to have solutions.
In fact, if we allow complex solutions and solutions at

f1(x, y, z) = 0

f2(x, y, z) = 0

f3(x, y, z) = 0
infinity, we are guaranteed to have solutions.

Each represents a surface in three-space. If those surfaces
should all contain a common curve, then the set of solutions Of course, only when m � n do we expect a finite number
to the system would be infinite. s of solutions. Bezout’s theorem then provides a count of s �

For example, the system d1d2 � � � dm solutions (counting complex solutions, solutions
at infinity, and counting with appropriate multiplicities). Un-
fortunately, as mentioned, the possibility also exists (even
when m � n) that there will be an infinite number of solu-
tions.

In general, for m � n, the resultant will be one equation

x2 + y2 + z 2 − 1 = 0

x2 + y2 + z 2

4
− 1 = 0

x2 + y2 − 1 = 0
in n � m � 1 of the variables. In effect, the resultant elimi-

has as solutions the unit circle in the (x, y) plane, that is, all nates m � 1 of the variables. For example, if we choose to
points (a, b, 0) where a2 � b2 � 1. eliminate xn�m�2, . . ., xn, then the resultant R will be a poly-

Numerical methods to solve systems of polynomial equa- nomial R(x1, . . ., xn�m�1) in the remaining variables. If (a1,tions (when those systems have isolated point solutions) are . . ., an�m�1) is a solution to R � 0, then there will exist val-
known and discussed elsewhere. Here we take up some per- ues an�m�2, . . ., an such that (a1, an�m�1, an�m�2, . . ., an) is a
haps less well known techniques for dealing with and under- solution to the original system. [One must be a little careful
standing systems of polynomial equations. Later we discuss here. The system should be modified to make it homogeneous
an important use of what are called invariant polynomials in with respect to xn�m�2, . . ., xn by adding appropriate powers
image understanding applications. of a variable w. The values an�m�2, . . ., an should be regarded

as the coordinates of a point (an�m�2 : � � � : an : 1) in projective
(m � 1)-space �m�1. We must allow for the possibility that thisOVERVIEW OF RESULTANTS
point will be at infinity where w � 0. In that case, a solution
to R � 0 would not necessarily give rise to a solution of theResultants are used to solve systems of polynomial equations,

to determine whether or not solutions exist, or to reduce a original system.]
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Rr,s( f,g) = det

�
BBBBBBBBBBBBBBB�

a0 a1 · · · ar 0 · · · 0
0 a0 a1 · · · · · · ar 0 · · · 0
...
0 0 · · · 0 a0 a1 · · · ar

b0 b1 · · · bs−1 bs 0 · · · 0
0 b0 b1 · · · bs · · · 0
...
0 0 · · · 0 b0 b1 · · · bs

�
CCCCCCCCCCCCCCCA

which is the determinant of an r � s by r � s matrix with s
rows involving the a’s and r rows involving the b’s.

Example 1

z

x

y1
2

Figure 1. Resultant as projection. R2,2(a2x2 + a1x + a0, b2x2 + b1x + b0)

= a2
0b2

2 + a0a2b2
1 − a0a1b1b2 + a2

1b0b2

− a1a2b0b1 + a2
2b2

0 − 2a0a2b0b2
For example, looking at Fig. 1, consider the system of m �

2 equations in n � 3 variables: 4xyz � 1 � 0 and y � xz � Note that in this example each monomial in the resultant has
1 � 0. The resultant eliminating z is R(x, y) � x(4y2 � 4y � total degree r � s � 4 and is bihomogeneous of bidegree (s,
1). When x � 0 we will have R � 0, but clearly our system r) � (2, 2) in the a’s and b’s respectively. This is true in
has no solution when x � 0. However, homogenizing with re- general.
spect to z gives the system

Basic Properties of the Resultant Rr,s(f, g)
4xyz − w = 0 and (y − 1)w + xz = 0

1. Relationship to common roots.
Now when we look at the condition x � 0, we find that
(z : w) � (1 : 0) is a solution. This is a point at infinity.

Notice that we also have solutions to R � 0 when x � 0 by
Rr,s( f, g) = as

rb
r
s

∏
i, j

(xi − yj )

taking y � ��. This yields z � 1/2x. Geometrically the solution
where x1, . . ., xr are the roots of f and y1, . . ., ys areset is a hyperbola in the plane y � �� in space. The resultant
the roots of g. (Here we are assuming ar � 0 and bs �‘‘projects’’ that hyperbola to the line y � �� in the (x, y) plane,
0.) Thus Rr,s( f, g) will be zero if and only if f and g haveexcept that (x, y) � (0, ��) is not hit.
a root in common.In this context (the underdetermined case) the resultant

2. Irreducibility. Rr,s( f, g) � �[a0, . . ., ar, b0, . . ., bs] iscan be viewed as a projection of the nominally (n � m)-dimen-
irreducible, that is, the resultant is an irreducible poly-sional locus of solutions in �n to an (n � m)-dimensional locus
nomial with integer (�) coefficients in (r � 1)(s � 1) �(hypersurface) in �n�m�1. Note that in our example n � 3,
rs � s � r � 1 variables.m � 2, and we are projecting the one-dimensional locus of

solutions in �3 to a one-dimensional locus in �2 which is de- 3. Symmetry. Rr,s( f, g) � (�1)rsRr,s(g, f )
scribed by one equation y � �� � 0. 4. Factorization. Rr1�r2,s( f1 f 2, g) � Rr1,s( f1, g)Rr2,s( f2, g).

Discriminants and ResultantsApproach in This Article

The discriminant �( f ) of a polynomial f � ar xr � � � � � a0,We begin with the first major distinction in methods, namely
ar � 0, is essentially the resultant of f and its derivative f �.the one based on the number of variables n. The case n � 1
The exact relationship isof a single variable is discussed first. We then move on to the

multivariate case n � 2. See Table 1 (1).
�( f ) = 1

ar
Rr,r−1( f, f ′ )

which is a homogeneous polynomial of degree 2r � 2 in theRESULTANTS OF POLYNOMIALS IN ONE VARIABLE
r � 1 variables a0, . . ., ar. It provides a test for multiple
roots.The Basic Case: Two Polynomials and the Sylvester Matrix

Just as the discriminant can be defined in terms of the
Given two positive integers r, s � 1 and two polynomials in resultant, the resultant can be defined in terms of the dis-
one variable criminant:

f (x) = ar xr + · · · + a1x + a0 and g(x) = bsxs + · · · + b1x + b0 [Rr,s( f,g)]2 = (−1)rs �( f g)

�( f )�(g)
of degree less than or equal to r and s, respectively, we define
their resultant Rr,s( f, g) by Sylvester’s formula: when ar � 0 and bs � 0.
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Table 1. Table of Resultants

n m Type of Resultant to Use Notes

1 2 Determinant of the Sylvester matrix This is what is most commonly thought of as the resultant.
1 �3 Requires a system of equations See the discussion in van der Waerden (1).
�2 m � n � 1 Macaulay resultant This is computed as the quotient of two determinants. It is a

polynomial in the symbolic coefficients and is zero if and only
if the system has a solution.

�2 m � n � 2 Requires a system of equations See van der Waerden (1).
�2 m � n U resultant or generalized characteristic polynomial This resultant is designed to find the finite set of all solutions to

the system of equations.
�2 m 
 n Macaulay resultant using m � 1 variables, while The result is a single polynomial in the remaining n � m � 1

treating the other n � m � 1 variables as in- variables.
cluded in the coefficients

Note: One can also employ the standard Sylvester resultant in the multivariate case, using it iteratively to successively eliminate variables. For example, with
three equations in three unknowns f (x, y, z) � 0, g(x, y, z) � 0, and h(x, y, z) � 0, we can take the resultant of f and g treating z as the only variable to get
R1(x, y). Likewise we can take the resultant of g and h again treating z as the only variable to get R2(x, y). Finally, the resultant of R1 and R2 with y as the
variable yields R(x), whose roots can then be found using standard root-finding methods.

Finding the Common Roots: Subresultants

Again, suppose we are given two polynomials in a single vari-
able x, say

(1 : α : α2 : · · · : αr) =
�

∂R
∂a0

( f,g) :
∂R
∂α1

( f, g) : · · · :
∂R
∂αr

( f,g)

�

(1 : α : α2 : · · · : αs) =
�

∂R
∂b0

( f, g) :
∂R
∂b1

( f,g) : · · · :
∂R
∂bs

( f,g)

�

f (x) = ar xr + · · · + a1 + a0 and g(x) = bsxs + · · · + b1x + b0
In particular the common root � can be computed as

of degrees r � 1 and s � 1, respectively. (We assume that
ar � 0 and bs � 0.) As we saw previously, the resultant Rr,s( f,
g) of f and g will be zero if and only if f and g have a common
root. Two questions immediately occur.

α =
∂R
∂a1

( f,g)

∂R
∂a0

( f,g)

=
∂R
∂b1

( f,g)

∂R
∂b0

( f,g)

Question 1. Suppose Rr,s( f, g) � 0, so that f and g have at This result also has a geometric interpretation. The space
least one common root. Can we determine how many of all pairs of polynomials ( f, g) where the degree of f is less
roots they have in common? This is the same as asking than or equal to r and the degree of g is less than or equal to
for the degree 1 � d � min(r, s) of the greatest common s can be identified with �r�s�2 having coordinates (ar, . . ., a0,
divisor h(x) of f (x) and g(x). bs, . . ., b0). The symbolic resultant R is a polynomial in these

variables, and the locus R � 0 in �r�s�2 is an irreducible hyp-Question 2. Can we find the common roots?
ersurface (of dimension r � s � 1) consisting of pairs ( f, g)
with a root in common. A point on this hypersurface where atThe answer to Question 2 is more subtle. In general, we
least one of the partial derivatives in Eq. (2) is nonzero is a

cannot expect to be able to express the common roots of f and smooth point. At such points we have exactly one common
g (assuming they have a root or roots in common) as rational root. Moreover, that root can be expressed as a quotient of
expressions in the coefficients ar, . . ., a0, bs, . . ., b0. For ex- polynomial expressions in ar, . . ., a0, bs, . . ., b0. We remind
ample, if f and g have rational coefficients, that is, ar, . . ., the reader that ‘‘most’’ points on the locus R � 0 are smooth
a0, bs, . . ., b0 � �, the field of rational numbers, then any points. Those that are not are called singular points and they
polynomial expression in the coefficients would be a rational occur in dimension r � s or less.
number. But polynomials with rational coefficients can have
common roots that are not rational.

RESULTANT METHODS FOR SYSTEMS OF POLYNOMIAL
EQUATIONS IN SEVERAL VARIABLES

Example 2. f (x) � 3x4 � x3 � 4x2 � x � 1 � (x2 � 1)(3x2 �

x � 1) and g(x) � x2 � 1 � (x2 � 1)(x2 � 1) both have rational Theory
coefficients, but the common roots !i are not rational

The linear algebra techniques discussed next can be used tonumbers.
solve systems of polynomial equations in several variables. IfWe can however answer Question 2 in a special case. If
there are only two equations, then the Sylvester techniqueRr,s( f, g) � 0 and at least one partial derivative of the resul-
(discussed earlier) can be employed by treating all but onetant computed symbolically
variable as part of the coefficients. However, when the num-
ber of equations exceeds two, the Sylvester approach can be
misleading. For example, taking the equations two at a time

∂R
∂a0

, . . .,
∂R
∂ar

,
∂R
∂b0

, . . .,
∂R
∂bs

(2)

using the Sylvester determinant can lead the user to the con-
is nonzero when the coefficients of f and g are substituted, clusion that there is a common solution, when in fact there
then f and g have exactly one common root � and it can be are no common solutions for the system of equations taken as

a whole.found via the proportions:
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What it means to ‘‘solve’’ a given set of polynomial equa- equations:
tions depends upon the number of variables and the number
of equations. Assuming the equations are inhomogeneous, let
n be the number of variables and m be the number of equa-
tions. The expected dimensionality of the set of solutions is

f1 = y − 3x + 5z = 0

f2 = x2 + y2 − 5z2 = 0

f3 = yz2 − x3 + 3x2z − 3xz2 + z3 = 0
n � m when viewed over the complex numbers. For example,
if there are three equations (m � 3) and five variables (n � This is the homogenized version of the original system.
5), then the space of solutions is expected to have dimension
n � m � 5 � 3 � 2. Geometrically, the set of solutions forms Step 2: Degree Determination
a surface. Sometimes, however, components of excess dimen-

Each of the multiresultants being considered involves the co-sion occur in the set of solutions. These are geometric loci of
efficients of various monomials that appear in the equations.higher dimension than the expected dimension. They occur
The variables involved in the monomials are the variablesbecause, in a very loose sense, the equations have certain de-
that appear in the homogeneous form of the polynomial equa-pendencies.
tions. For example, the homogeneous polynomial equationsFinally, a note is given about homogeneous equations. Re-
above have the variables x, y, and z. All the monomials in acall that a set of polynomial equations is considered homoge-
given equation are constrained to have the same degree be-neous if in each equation all the terms have the same degree.
cause we have homogenized. The ‘‘overall degree’’ of the sys-If this is not the case, even for only one of the equations, the
tem is determined from the degrees of the individual homoge-set is regarded as inhomogeneous. For systems of homoge-
neous equations by the following rule:neous equations the number n of variables should be taken as

one less than the actual number of variables when computing
expected dimensions. This is because we want to regard the d = 1 +

m∑
i=1

(di − 1)

solutions as lying in an (n � 1)-dimensional projective space.

where m is the number of equations and di the degree of theThe Macaulay Resultant, the U Resultant, and
ith equation.the Generalized Characteristic Polynomial

For the homogeneous polynomials given previously ( f1, f 2,
The Macaulay resultant is the ratio of two determinants and f 3) the degrees are
formed from the coefficients of the given polynomials in a
manner to be described later in this section. If the number of Equation Degree
equations exceeds the number of variables by one (n � m �

f 1 d1 � 1
�1), then the Macaulay resultant tests whether or not a com-

f 2 d2 � 2mon solution exists. [For systems of homogeneous equations
f 3 d3 � 3in which the number of equations equals the number of vari-

ables, the expected dimension is still �1, and the Macaulay
Therefore,resultant tests for a nontrivial common solution, that is, a

solution other than (0, . . ., 0)] d = 1 + (1 − 1) + (2 − 1) + (3 − 1) = 4
If there are as many inhomogeneous equations as un-

knowns (n � m � 0), then the equations can often be solved
Step 3: Matrix Size Determinationby adding the U equation (explained later in this section) to

the homogenized set and forming the Macaulay resultant. Each of the multiresultants to be discussed involves the ratio
The Macaulay resultant is then called the U resultant. of two determinants. The numerator is the determinant of a

In some cases, however, there will be a component of ex- matrix, the formation of which will be discussed in subse-
cess dimension (�1) which masks some or all of the desired quent sections. The denominator determinant is formed from
solutions. In this case Canny’s generalized characteristic a submatrix of the numerator matrix.
polynomial (GCP) approach is useful (see Ref. 2). The number of variables in the inhomogeneous equations

In order to illustrate the various methods, the following is n. Since one additional variable has to be added to homoge-
system of three polynomial equations will be used: nize the equations, the number of variables in the homoge-

neous equations is n � 1. The size of the numerator matrix
equals the number of monomials in the n � 1 variables that
have overall degree d (discussed in the previous step).

f1 = y − 3x + 5 = 0

f2 = x2 + y2 − 5 = 0

f3 = y − x3 + 3x2 − 3x + 1 = 0

Here we have three inhomogeneous equations in two vari-
Numerator matrix size =

�
n + d

d

�

ables (n � m � 2 � 3 � �1). The multiresultant techniques
For the three polynomial equations ( f1, f 2, f 3) we have al-described below can be used to test for the existence of a so-

ready calculated that d � 4. Since the original set of inhomo-lution.
geneous variables consisted of x and y, we have that n equals
2. Thus for our example,Step 1: Homogenization

The equations must first be homogenized. This is done by
adding a third variable z. Specifically x is replaced by x/z and

Numerator matrix size =
�

2 + 4
4

�
=
�

6
4

�
= 6!

(2!)(4!)
= 15

y is replaced by y/z, and the factors of z are cleared from the
denominators. In the previous example this leads to three that is, it is a 15 � 15 matrix.
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Step 4: Determining ‘‘Big’’ versus ‘‘Small’’ Exponents

A few of the 15 monomials involving the variables x, y, and z 1. Search the monomial labeling that column from left to
with an overall degree of 4 include: right for the first variable with a big exponent. Such a

variable must exist. Call it the marker variable.yz3 and x2y2

2. Form a new polynomial from the polynomial associated
In the next section we will discuss whether certain of these with this marker variable by multiplying the associated
monomials are reduced. This will be determined by whether polynomial by the monomial and dividing by the marker
the exponents are ‘‘big’’ or ‘‘small.’’ In this section we discuss variable raised to the degree of the associated polyno-
how bigness is defined. mial.

Each variable will be associated with a particular equa-
3. The coefficients of the new polynomial are the elementstion. For example, the first variable, x, will be associated with

of the columns. Each coefficient goes in the row labeled
the first equation, f 1. The second variable, y, will be associated

by the monomial it multiples. All the other rows get
with the second equation, f 2, etc. The degrees of the associ-

zeros.
ated equations define bigness for the exponents of that vari-
able. Specifically, since d1 (the degree of f 1) is 1, if the expo-
nent of x is greater than or equal to 1, it is considered big. Example 3. Recall that for the system of equations f 1, f 2, f 3
Since d2 � 2, whenever the exponent of y is greater than or there are 15 monomials of degree 4 that can be formed from
equal to 2, it is considered big. The degree of f 3 is 3, therefore, x, y, and z. Two of these were considered above, namely yz3

whenever the exponent of z is greater than or equal to 3, it is and x2y2.
considered big.

For example, consider the monomial yz3. The exponent of y
is 1. This is less than d2, and is considered small. The expo- • For the column labeled by yz3:
nent of z is 3. This is equal to d3, and is therefore big. On the

1. The first variable with a big exponent is z, so z is the
other hand, consider the monomial x2y2. The exponent of x is

marker variable.
2. This is greater than d1 and is big. The exponent of y is 2.

2. The polynomial associated with z is f 3. Multiply f 3 byThis is equal to d2 and is big.
the monomial yz3, and divide this product by z3.

Step 5: Determining the Reduced Monomials

If for a particular monomial of degree d the exponent of only
one variable is big, the monomial is said to be reduced. In the

f3(yz3)

z3 = (yz2 − x3 + 3x2z − 3xz2 + z3)(yz3)

z3

= y2z2 − x3y + 3x2yz − 3xyz2 + yz3

previous step the monomial yz3 is reduced. For that monomial
only the exponent of z is big, whereas for x2y2, both the expo-

3. The coefficient of y2z2 is �1. Therefore the element ofnent of x and the exponent of y are big. Thus the monomial
the row labeled y2z2 is �1. The coefficient of x3y is �1.x2y2 is not reduced.
Therefore the element of the row labeled x3y is �1.
The coefficient of x2yz is �3. Therefore the element ofStep 6: Creating the A Matrix
the row labeled x2yz is �3. The coefficient of xyz2 is

The Macaulay resultant is the ratio of two determinants. The �3. Therefore the element of the row labeled xyz2 is
numerator is the determinant of a matrix that we will call �3. The coefficient of yz3 is �1. Therefore the element
the A matrix. The denominator is the determinant of a matrix of the row labeled yz3 is �1. All other entries in the
that we will call the M matrix column are zero.

• For the column labeled by x2y2:

1. The first variable with a big exponent is x, so x is the
R = det|A|

det|M|
marker variable.

We have discussed above how the size of the A matrix is
2. The polynomial associated with x is f 1. Multiply f 1 bydetermined. In this section we will show how the matrix en-

the monomial x2y2, and divide this product by x:tries are obtained.
Each row and column of the matrix should be thought of

as being labeled by one of the monomials of degree d. This f1(x2y2)

x
= (y − 3x + 5z)(x2y2)

x
= xy3 − 3x2y2 + 5xy2z

labeling can be done in any desired order. Recall that for f 1,
f 2, and f 3 in our example there were 15 possible monomials
of degree 4 in x, y, z, and therefore the A matrix would be 3. The coefficient of xy3 is �1. Therefore the element of
15 � 15. the row labeled xy3 is �1. The coefficient of x2y2 is �3.

There are three rules for determining the elements of the Therefore the element of the row labeled x2y2 is �3.
A matrix. After presenting the rules, the example involving The coefficient of xy2z is �5. Therefore the element of
f 1, f 2, and f 3, will be used to illustrate the process. The reader the row labeled xy2z is �5.
may find it helpful to read the example simultaneously with
the rules.

Rules for inputting the elements of each column of the A When all the columns are determined, the A matrix in our
example takes the form:matrix:
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x4 x3 x3 x2 x2 x2 x x x x
y y2 y y3 y2 y y4 y3 y2 y

z z z2 z z2 z3 z z2 z3 z4

x4 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3 y 1 −3 0 0 0 0 0 0 0 0 0 0 0 −1 0
x3 z 5 0 −3 0 0 0 0 0 0 0 0 0 0 0 −1
x2 y2 0 1 0 −3 0 0 0 0 0 0 0 1 0 0 0
x2 y z 0 5 1 0 −3 0 0 0 0 0 0 1 0 3 0
x2 z2 0 0 5 0 0 −3 0 0 0 0 0 0 1 0 3
x y3 0 0 0 1 0 0 −3 0 0 0 0 0 0 0 0
x y2 z 0 0 0 5 1 0 0 −3 0 0 0 0 0 0 0
x y z2 0 0 0 0 5 1 0 0 −3 0 0 0 0 −3 0
x z3 0 0 0 0 0 5 0 0 0 −3 0 0 0 0 −3

y4 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
y3 z 0 0 0 0 0 0 5 1 0 0 0 1 0 0 0
y2 z2 0 0 0 0 0 0 0 5 1 0 −5 0 1 1 0
y z3 0 0 0 0 0 0 0 0 5 1 0 −5 0 1 1

z4 0 0 0 0 0 0 0 0 0 5 0 0 −5 0 1

and f 3) confirms that there is a common point at x � 2 andThe determinant of the above A matrix is zero. If the determi-
y � 1 (see Fig. 2).nant of the M matrix is nonzero, this would imply that the

Sometimes both the A matrix and the M matrix have zerosystem has a solution.
determinants. This indeterminacy can often be circumvented
if the polynomials are first written with symbolic coefficients.

Step 7: Creating the M Matrix The determinants of the A and M matrices are obtained, poly-
nomial division is performed, and then at the end, the sym-

The denominator of the Macaulay resultant is the determi- bolic coefficients are replaced by their numerical values to
nant of the M matrix. The M matrix is a submatrix of the A check if the resultant is zero. Since one does not know ahead
matrix. It consists of the elements that have row and column of time whether or not this ‘‘division by zero’’ condition will
monomial labels which are not reduced. Recall that a mono- arise, the symbolic coefficient approach is the best strategy. It
mial is not reduced if it has more than one variable with a is also often sufficient to treat just a subset of the coefficients
big exponent. symbolically—sometimes as few as a single symbolic coeffi-

The size of the M matrix equals the size of the A matrix cient will remove the indeterminacy.
minus D, where

The U Resultant

For problems with as many inhomogeneous equations as vari-
ables, the U resultant can often be used to solve for the point

D =
m∑

i=1

∏
i �= j

d j

solutions. The three polynomial equations f 1, f 2, f 3, do not sat-
isfy these conditions, since there are three equations in two

In our example,

D = d2d3 + d1d3 + d1d2 = (2)(3) + (1)(3) + (1)(2) = 11

so that the size of the M matrix is 15 � 11 � 4. The actual M
matrix for f 1, f 2, and f 3 is

x2y2 xy3 xy2z xz3

x2y2 −3 0 0 0
xy3 1 −3 0 0

xy2z 5 0 −3 0
xz3 0 0 0 −3

The determinant of this M matrix yields a value of 81.
Since the determinant of the A matrix was zero, the Macaulay

x

y

(2,1)

resultant is zero, which implies that there is a solution to our
system. The following plot of the three polynomials ( f1, f 2, Figure 2. Common solution in our example.



546 POLYNOMIALS

inhomogeneous variables, x and y. However, if we take just
the first two equations, namely f 1 and f 2, we would have a
system with as many equations as variables.

The given equations must first be homogenized. This adds
one additional variable. We then add one additional equation
to the system. This equation is called the U equation. If x and
y are the given variables and z is the homogenizing variable,
then the U equation takes the form

x2 xy xz y2 yz z2

x2 a1 0 0 a2 0 0
xy b1 a1 0 0 u1 0
xz c1 0 a1 0 0 u1

y2 0 b1 0 b2 u2 0
yz 0 c1 b1 0 u3 u2

z2 0 0 c1 c2 0 u3

The corresponding M matrix is a single element, namely a1.u1x + u2y + u3z = 0
The determinant of M is divided into the determinant of A

to obtain the U resultant. Finally, the symbolic coefficientsThe Macaulay resultant R is then computed for these m �
are replaced by their numeric equivalents. (This could have1 equations, treating the ui as symbolic coefficients. The re-
been done from the outset, unless a1 had been zero.) The re-sult is called the U resultant. Notice that R will be a polyno-
sult ismial in the ui’s and the coefficients of the original equations.

After R is determined, it is factored into linear factors. For 10(u1 − 2u2 + u3)(2u1 + u2 + u3)
each linear factor there is a point solution of the original sys-
tem of equations. The coordinates of each solution are given This yields two solutions
as ratios of the coefficients of the ui’s. The denominator is al-
ways the coefficient of the ui associated with the homogeniz- Solution 1
ing variable. In our example this is the coefficient of u3. Thus

x = coefficient of u1

coefficient of u3
and y = coefficient of u2

coefficient of u3

x = coefficient of u1

coefficient of u3
= +1

−1
= −1 and

y = coefficient of u2

coefficient of u3
= −2

+1
= −2

For example, if a linear factor turned out to be
Solution 2

u1 − u2 − u3

then the coordinates of the associated solution would be

x = coefficient of u1

coefficient of u3
= +2

+1
= +2 and

y = coefficient of u2

coefficient of u3
= +1

+1
= +1

We remark that the U resultant will be identically zero and
x = +1

−1
= −1 and y = −1

−1
= +1

give no information, if the set of common solutions contains a
component of excess dimension one or more. Moreover, this

Example 4. As mentioned above, the polynomial equation component may be at infinity where the homogenizing vari-
system f 1, f 2, f 3 is overdetermined (n � m � �1). However, able is zero.
we can use the U resultant to solve f 1 and f 2 for x and y (n �

m � 0). In this example, we will also demonstrate the sym- The Generalized Characteristic Polynomial Approach
bolic approach alluded to in the previous section. Recall that

The generalized characteristic polynomial (GCP) approach (2)the homogenized form of f 1 and f 2 is
avoids the problem of components of excess dimension in the
set of solutions. It can be used together with the U resultant,
which was discussed previously. If the U resultant leads to
an indeterminant (0/0) form even when symbolic coefficients

f1 = y − 3x + 5z = 0

f2 = x2 + y2 − 5z2 = 0
are used, an ‘‘excess’’ solution exists. The GCP takes the form

Rewriting these two equations with symbolic coefficients
and including the U equation yields R = det|A − sI|

det|M − sI|

where A and M are the matrices defined earlier, s is a pertur-
bation parameter, and I is the identity matrix.

One way to carry out the above operation is the following:

f1 = a1x + b1y + c1z = 0

f2 = a2x2 + b2y2 + c2z2 = 0

U = u1x + uxy + u3z = 0
1. Set up the A matrix (as described previously). Subtract

s along the diagonal. Evaluate the determinant. Retainwhere a1 � �3, b1 � 1, c1 � 5, a2 � 1, b2 � 1, and c2 � �5.
the coefficient of the lowest surviving power of s.The U resultant is calculated in the same way as the Ma-

2. Repeat step 1 for the M matrix.caulay resultant, that is, with the A matrix and the M matrix,
except now we are using symbolic coefficients. 3. Divide the result of step 1 by the result of step 2.
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All of these multiresultant techniques have one character- Example 5. Consider the area of a triangle formed by three
istic in common. They require that there be one more equa- of our points—say (x1, y1), (x2, y2), and (x3, y3). This area is
tion than variable, n � m � �1. If there are as many equa-
tions as variables n � m � 0, the U equation is added and
the effective situation is again n � m � �1. If there are more
variables than equations (n � m is a positive integer), then
enough of these variables must be regarded as parameters in

1
2

∣∣∣∣∣∣∣det

�
x1 x2 x3

y1 y2 y3

1 1 1

�∣∣∣∣∣∣∣
the coefficients so that effectively n � m � �1. Geometrically
this amounts to projecting the locus of solutions to a hyper-

After applying an affine transformation this area becomessurface in a lower-dimensional space. Finally, if the number
of equations exceeds the number of variables by more than
one (n � m � �2), then some technique other than the multi-
resultant techniques noted earlier (e.g., a system of multire-
sultants) must be employed to determine if a solution exists.

INVARIANT POLYNOMIALS

In this section we will consider polynomials invariant under

1
2

∣∣∣∣∣∣∣det



�

a b ξ1

c d ξ2

0 0 1

��
x1 x2 x3

y1 y2 y3

1 1 1

�


∣∣∣∣∣∣∣
= 1

2
|ad − bc|

∣∣∣∣∣∣∣det

�
x1 x2 x3

y1 y2 y3

1 1 1

�∣∣∣∣∣∣∣
various transformation groups. Such polynomials have impor-
tant applications in computer vision and image understand-

Note that the absolute value signs are not necessary becauseing. We will consider several specific cases rather than de-
we can permute the columns of the matrix to change sign.velop the general theory.
Also note that an affine transformation has a constant Jacob-
ian determinant, namely �ad � bc�, which measures the ‘‘dis-Affine Invariants of Point Sets in the Plane
tortion’’ of areas.

Let Pi � (xi, yi), i � 1, . . ., n, be a set of n points in the plane It is clear that the ratio of the areas of two such triangles,
�2. We will assume that these points are in general position, or the ratio of two such determinants, is an invariant:
which means that no three are collinear. The group of affine
transformations of the plane can be represented by a group of
3 � 3 matrices:

AFF(2,R) =



�

a b ξ1

c d ξ2

0 1 1

�
; ad − bc �= 0; a, b, c, d, ξ1, ξ2 ∈ R




These affine transformations act on the plane by sending the

det

�
xi x j xk

yi y j yk

1 1 1

�

det

�
x� xm xs

y� ym ys

1 1 1

�

point (x, y) to the point (ax � by � �1, cx � dy � �2). In matrix
terms this is We can form

�
n
3

�
�

x
y
1

�
�→

�
a b ξ1

c d ξ2

0 0 1

��
x
y
1

�

AFF(2, �) is a six-dimensional Lie group that is precisely the
such triangles and after dividing by the area of one of them—

group of all transformations of �2 that preserve collinearity,
say the one formed by the first three points or the one ofthat is, transform straight lines to straight lines.
largest area—we can getThe set of all ordered n-tuples of points in �2 is parame-

trized by �2 � � � � � �2 � �2n with coordinates (x1, y1, x2, y2,
. . ., xn, yn). Those ordered n-tuples which are in general posi-
tion form a dense open subset U of �2n.

�
n
3

�
− 1

The group AFF(2, �) acts diagonally on �2n and on U. We
are interested in rational expressions that are invariant un-
der the group action invariants. These, however, are not all independent. For ex-

ample, consider the case of four points P1, P2, P3, P4 in general
position in �2. We can find a unique affine transformation
that takes P1 to (0, 0), P2 to (1, 0), and P3 to (0, 1), detailed

p(x1, y1, x2, y2, . . ., xn, yn)

q(x1, y1, x2, x2, . . ., xn, yn)

later. The fourth point P4 will go to some point not on the
Here p and q are polynomials with real coefficients. The in- triangle of lines:
variant expressions will take the same value if (xi, yi) is re-
placed by (axi � byi � �1, cxi � dyi � �2) for every i � 1, . . .,
n and for every choice of a, b, c, d, �1, and �2 with ad � bc � 0. x = 0, y = 0, x + y = 1
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which carries these two vectors to (1, 0) and (0, 1) respec-
tively. Specifically, we need

a(x2 − x1) + b(y2 − y1) = 1

c(x2 − x1) + d(y2 − y1) = 0

(p,q)(0,1)

(0,0) (1,0)

andFigure 3. Transformed points.

For simplicity assume that P4 goes to (p, q) with p � 0, q �

a(x3 − x1) + b(y3 − y1) = 0

c(x3 − x1) + d(y3 − y1) = 1
0, and p � q � 1 (see Fig. 3). Our

Solving this system of four equations in four unknowns yields�
4
3

�
= 4

triangles have areas 1/2, p/2, q/2, and (p � q � 1)/2. We see
that the

�
4
3

�
− 1 = 3

a = y3 − y1

det

�
x1 x2 x3

y1 y2 y3

1 1 1

� c = −(y2 − y1)

det

�
x1 x2 x3

y1 y2 y3

1 1 1

�

b = −(x3 − x1)

det

�
x1 x2 x3

y1 y2 y3

1 1 1

� d = x2 − x1

det

�
x1 x2 x3

y1 y2 y3

1 1 1

�
ratios p, q, and p � q � 1 are not independent—although any
two of them are.

The compositionThe mathematical interpretation of these invariants is
straightforward, although somewhat abstract. They are func-
tions on the quotient space

U/AFF(2,R)

�
a b 0
c d 0
0 0 1

��
1 0 −x1

0 1 −y1

0 0 1

�
=

�
a b −x1a − y1b
c d −x1c − y1d
0 0 1

�

obtained by identifying those n-tuples of points in general po- is the desired transformation.
sition that can be transformed into each other by an affine A simple calculation shows that this transformation sends
transformation. (x, y) to

We can specifically determine this quotient because on
each orbit there is a unique n-tuple with P1 � (0, 0), P2 � (1,
0), and P3 � (0, 1). This can be seen by noting that there is a
unique affine transformation which carries (x1, y1) to (0, 0),
(x2, y2) to (1, 0) and (x3, y3) to (0, 1). The uniqueness is clear
because the only affine transformation

�BBBBBBBB�
det

�
x1 x x3

y1 y y3

1 1 1

�

det

�
x1 x2 x3

y1 y2 y3

1 1 1

� ,

det

�
x1 x2 x
y1 y2 y
1 1 1

�

det

�
x1 x2 x3

y1 y2 y3

1 1 1

�
�CCCCCCCCA

which makes it obvious that (x1, y1) goes to (0, 0), (x2, y2) goes

�
a b ξ1

c d ξ2

0 0 1

�
to (1, 0), and (x3, y3) goes to (0, 1). Notice also that the re-
maining n � 3 points (x4, y4), . . ., (xn, yn) are sent to pointswhich fixes (0, 0), (1, 0), and (0, 1) is
whose coordinates are invariants. These 2n � 6 invariant val-
ues serve as coordinate functions on the quotient space, which
is clearly isomorphic to an open set W of �2n�6:

�
1 0 0
0 1 0
0 0 1

�
U/AFF(2,R) ∼= W

Existence is also easy. We translate (x1, y1) to (0, 0) by The central theorem is the following.

Theorem. Any affine invariant expression
�

1 0 −x1

0 1 −y1

0 0 1

�
p(x1, y1, . . ., xn, yn)

q(x1, y1, . . ., xn, yn)

This carries (x2, y2) to (x2 � x1, y2 � y1) and (x3, y3) to (x3 � x1, is a rational function of the invariant coordinate functionsy3 � y1). We then construct a 2 � 2 invertible matrix
noted previously.

An equivalent formulation is that every invariant is a
rational function of 2n � 6 ratios of areas of triangles, for

�
a b
c d

�
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example: b1y � c1 � 0 and L2 is given by a2x � b2y � c2 � 0, then

area(Pi, P1, P2)

area(P1, P2, P3)
and

area(Pi, P1, P3)

area(P1, P2, P3)

for i � 4, . . ., n. Note that we do not need to consider the
M =

�
a2 b2 c2

a1 b1 c1

0 0 1

�
ratio

is one such transformation. Having moved L1 and L2 to the x
and y axes, respectively, we can still act by transformations

area(Pi, P2, P3)

area(P1, P2, P3)

of the form:
because, as shown above, for the four points P1, P2, P3, Pi, the
areas of the

N =

�
λ1 0 0
0 λ2 0
0 0 1

�
�

4
3

�
= 4

triangles are linearly related and therefore the three ratios If P1 originally had coordinates (x1, y1), then after applying
are linearly dependent. M, we will have the point (a2x1 � b2y1 � c2, a1x1 � b1y1 � c1).

Our general position assumption implies that neither coordi-
Affine Invariants of Two Points and Two Lines in the Plane

nate is zero. Setting
Consider two lines L1 and L2 and two points P1 and P2 in the
plane in general position. For our purposes general position
means that L1 and L2 are not parallel and that P1 is not on
either L1 or L2. Given another set of two lines L�1 and L�2 and
two points P�1 and P�2, we would like to know if there is an
affine transformation of the plane that carries Li to L�i and Pi

λ1 = 1
a2x1 + b2y1 + c1

λ2 = 1
a1x1 + b1y1 + c2

to P�i for i � 1, 2. As we shall see, this will be true if and only
if the two invariants constructed below have the same value in N will move this point to (1, 1). Putting M and N together
for both of the geometric configurations.

yields an affine transformationThe geometric configurations of interest (an ordered pair
of lines and an ordered pair of points in general position in
the plane) are parametrized by an open subset U of �2

� �
�2

� � �2 � �2. (Recall that lines ax � by � c � 0 in the plane
are parametrized by points (a : b : c) � �2

�, real projective
two-space.) The affine group AFF(2, �) acts on �2 in a way
that preserves lines, and so acts on U. Note that

T = NM

=

�
a2

a2x1 + b2 y1 + c2

b2

a2x1 + b2 y1 + c2

c2

a2x1 + b2 y1 + c2
a1

a1x1 + b1y1 + c1

b1

a1x1 + b1y1 + c1

c1

a1x1 + b1y1 + c1
0 0 1

�

which moves L1 to the x axis, L2 to the y axis, and P1 to (1, 1).
No degrees of freedom remain, so this must be the unique

M =

�
ã b̃ ξ1

c̃ d̃ ξ2

0 0 1

�

such affine transformation.
acts on points by sending Suppose P2 originally had coordinates (x2, y2); then the co-

ordinates of P2 after transformation by T parametrize the
quotient AFF(2, �)"U and are the essential invariants

�
x
y
1

�
to M

�
x
y
1

�
I1 = a2x2 + b2 y2 + c2

a2x1 + b2 y1 + c2
and I2 = a1x2 + b1y2 + c1

a1x1 + b1y1 + c1but it acts on lines by sending

In general an invariant takes the form
�

a
b
c

�
to (MT )−1

�
a
b
c

�
p(a1, b1, c1, a2, b2, c2, x1, y1, x2, y2)

q(a1, b1, c1, a2, b2, c2, x1, y1, x2, y2)
Since dim� U � 8 and dim� AFF(2, �) � 6, we expect a two-
dimensional quotient AFF(2, �)"U. This quotient is, as we

where p and q are polynomials that are homogeneous of theshall see, diffeomorphic to �2.
same degree in a1, b1, c1 and in a2, b2, c2. It can be shown thatLet Q be the point of intersection of L1 and L2. We can find
every such invariant expression is a rational function of thean affine transformation that moves Q to the origin, L1 to the

x axis, and L2 to the y axis. In fact, if L1 is given by a1x � two fundamental invariants I1 and I2.
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Example 6 gives

L1 : x − y + 1 = 0

L2 : 2x − y = 0

P1 : (1,0)

P2 : (0,2)

T =

�
1 −1/2 0

1/2 −1/2 1/2
0 0 1

�

I1 = −1 I2 = −1/2

�BBBBBBBBBBBBBBBBBBBB�

y2 − y3

det

�
x4 x2 x3

y4 y2 y3

1 1 1

� x3 − x2

det

�
x4 x2 x3

y4 y2 y3

1 1 1

� x2 y2 − x3 y2

det

�
x4 x2 x3

y4 y2 y3

1 1 1

�
y3 − y1

det

�
x1 x4 x3

y1 y4 y3

1 1 1

� x1 − x3

det

�
x1 x4 x3

y1 y4 y3

1 1 1

� x3 y1 − y3 x1

det

�
x1 x4 x3

y1 y4 y3

1 1 1

�
y1 − y2

det

�
x1 x2 x4

y1 y2 y4

1 1 1

� x2 − x1

det

�
x1 x2 x4

y1 y2 y2

1 1 1

� x1 y2 − x2 y1

det

�
x1 x2 x4

y1 y2 y4

1 1 1

�

�CCCCCCCCCCCCCCCCCCCCA
Projective Invariants of Five Points in the Plane

Consider an ordered set of five points P1, P2, P3, P4, P5 in the This is the desired projective transformation in the group
plane �2. We regard �2 as an open dense subset of the projec- PGL(3, �) of all projective transformations of the projective
tive plane �2

�. We assume that these points are in general plane (essentially 3 � 3 invertible matrices modulo scalars. It
position, that is, that no three are collinear. Notice that our takes P5 � (x5, y5) to
geometry is parametrized by a 10-dimensional space, while
the group of projective transformations has dimension 8.
Thus we expect a two-dimensional quotient, and therefore
two fundamental invariants.

To determine these invariants, observe that there is a
unique projective transformation taking P1 to (1 : 0 : 0) � �2

�,
P2 to (0 : 1 : 0), P3 to (0 : 0 : 1), and P4 to (1 : 1 : 1). The point P5

�BBBBBBBB�
det

�
x5 x2 x3

y5 y2 y3
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�

det

�
x4 x2 x3

y4 y2 y3
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� :

det

�
x1 x5 x3

y1 y5 y3
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�

det
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� :

det
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x1 x2 x5

y1 y2 y5

1 1 1

�

det

�
x1 x2 x4

y1 y2 y4

1 1 1

�
�CCCCCCCCA

will be sent to some point (a : b : c) under this transformation;
moreover none of a, b, or c will be zero by the general position

This yields the invariantsassumption. The ratios

I1 = a
c

and I2 = b
c

will be the basic invariants. Any other invariant we might
construct will be a rational function of these two.

The matrix

M = 1

det

�
x1 x2 x3

y1 y2 y3

1 1 1

�
�

y2 − y3 x3 − x2 x2 y3 − x3 y2

y3 − y1 x1 − x3 x3 y1 − y3 x1

y1 − y2 x2 − x1 x1 y2 − x2 y1

�

sends P1 to (1 : 0 : 0), P2 to (0 : 1 : 0), and P3 to (0 : 0 : 1). However

I1 =

det
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x5 x2 x3

x5 y2 y3

1 1 1

�
det

�
x1 x2 x4

y1 y2 y4

1 1 1

�

det

�
x4 x2 x3

y4 y2 y3

1 1 1

�
det

�
x1 x2 x5

y1 y2 y5

1 1 1

�

I2 =

det

�
x1 x5 x3

y1 y5 y3

1 1 1

�
det

�
x1 x2 x4

y1 y2 y4

1 1 1

�

det

�
x1 x4 x3

y1 y4 y3

1 1 1

�
det

�
x1 x2 x5

y1 y2 y5

1 1 1

�

it sends P4 � (x4 : y4 : 1) to
Other ratios would also be just as good. Moreover, any invari-
ant will be a rational expression in these.

Notice that the individual determinants are (up to sign
and a factor of ��) the areas of certain triangles. Thus our pro-
jective invariants are ratios of products of areas of certain
pairs of triangles and are affine invariants as they should be.

Affine Invariants of Five Points in Space

Let P1, P2, P3, P4, P5 be an ordered 5-tuple of distinct points in
space �3. Say the coordinates of Pi � (xi, yi, zi). We will assume
that the points are in general position, so that no four are

Q4 =

�BBBBBBBBBBBBBBB�

det

�
x4 x2 x3

y4 y2 y3

1 1 1

�/
det

�
x1 x2 x3

y1 y2 y3

1 1 1

�

det

�
x1 x4 x3

y1 y4 y3

1 1 1

�/
det

�
x1 x2 x3

y1 y2 y3

1 1 1

�

det

�
x1 x2 x4

y1 y2 y4

1 1 1

�/
det

�
x1 x2 x3

y1 y2 y3

1 1 1

�

�CCCCCCCCCCCCCCCA
coplanar (implying no three are collinear).

The fundamental affine invariants for any number of(Note that none of these determinants are zero by the general
position assumption.) Multiplying M by the diagonal matrix points in the space are formed from the ratios of the volumes

of two tetrahedrons in space. If Pi, Pj, Pk, Pl are the vertices,whose entries are the reciprocals of the components of Q4
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det

�
xi x j xk x�

yi y j yk y�

zi z j zk z�

1 1 1 1

�
Texas A & M University

up to a factor of !1/6.
Five points in general position yield

PONTRYAGIN MAXIMUM PRINCIPLE. See OPTIMAL

CONTROL.
PORTABLE COMPUTERS. See LAPTOP COMPUTERS.

�
5
4

�
= 5

tetrahedrons. Under an affine transformation of �3 these five
volumes all scale by the same constant factor. Thus we can
regard the volumes as giving a well-defined point in �4

�. How-
ever, the points we get in �4

�, as we run through all 5-tuples
of points in �3, lie in a hyperplane, that is, they all satisfy a
fixed linear relation. This can be seen by expanding the fol-
lowing determinant

0 = det

�
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

1 1 1 1 1
1 1 1 1 1

�

along the bottom row.
Thus we have only four independent volumes. Normalizing

one of them to one yields three ratios of volumes of tetrahe-
dra, which are the fundamental affine invariants of our five
points. (This squares with the fact that our geometry (5 points
in general position in space) is parametrized by a 15-dimen-
sional space while AFF(3, �) has dimension 12.
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