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PROBABILISTIC LOGIC

A deductive argument is a claim of the form: If P1, P2, . . ., and Pn are true, then C is true.
The statements P1, P2, . . ., Pn are the premises of the argument; C is the conclusion. It is the logical

structure of the collection of premises and of the conclusion that determines whether the argument is valid
(i.e., whether the claim it makes is the case) or invalid.

For example, the argument with premises
P1: If it is raining, then the ground is wet.
P2: It is raining.
and conclusion
C: The ground is wet.
is valid. The argument may be expressed symbolically as
P1: R → G
P2: R
C: G
For every consistent assignment of truth values to the propositional variables R and G under which the

premises evaluate to true, the conclusion also evaluates to true; the implication with the conjunction of the
premises as antecedent and the conclusion as consequent is a tautology, as the following truth table indicates.
The argument

P1: The barometric pressure is 28.09
P2: The relative humidity is 98%
P3: The temperature is 81◦F
C: It is raining is not valid. It is (logically) possible for the premises to be true and the conclusion to be

false simultaneously.
The term “probabilistic logic” is typically used to refer to systems of logic that permit the attachment of

probabilities to the premises and the conclusion of an argument. Deduction assumes full belief in the truth of
the premises of an argument. However, unless the premises are tautologies (and therefore without empirical
content), one cannot be absolutely certain of their truth. Although, for practical purposes, we may accept the
truth of the statement “If it is raining, then the ground is wet,” we may be wrong. Without our knowing it,
someone may have pitched a tent over the piece of ground we are referring to, or put a tarp over it, etc.

R G (R→G & R) → G
T T T T T T T
T F F F T T F
F T T F F T T
F F T F F T F
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Systems of probabilistic logic vary with respect to how the uncertainty associated with the premises of an
argument is propagated to the conclusion. We will first discuss the version presented by Nilsson (1).

Suppose that we assign probabilities to the premises of the “ground is wet” argument:

Note that the probabilities of the premises need not sum to 1. (They are not necessarily mutually exclusive and
exhaustive.) However, for consistency, it is required that

because R → G is logically equivalent to ∼R v G,

and

From the probabilities associated with the premises, a range of probabilities can be determined for the conclu-
sion “The ground is wet” (G). The probabilities of the premises are constraints on the probabilities of consistent
assignments of truth values to the sentences R → G, R and G. Each consistent assignment of truth values
corresponds to a set of possible worlds: the worlds in which R is true, G is true, and R → G is true; those in
which R is true, G is false, and R → G is false; etc. For these sentences, there are four sets of possible worlds.
The worlds in a given set are equivalent with respect to the truth values of the three sentences. The sets of
possible worlds are mutually exclusive and exhaustive. (They partition the set of all possible worlds.) Therefore,
their probabilities sum to 1. The probabilities of the premises are (linear) constraints on the probabilities of
the sets of possible worlds.

Nilsson’s method for identifying the sets of possible worlds involves constructing a semantic tree. Each
node in the (binary) tree corresponds to an assignment of truth values to some subset (empty, in the case of the
root) of the premises and conclusion. The level of the root node is 0. If a node is at level k, then its children are
at level k + 1. The sentences are ordered arbitrarily. Label them

(for an argument with n premises). We can associate the set of all possible worlds with the root node. The left
child of the root corresponds to the set of possible worlds in which S1 is true. The right child is the set of worlds
in which S1 is false. In general, for a node X at level k, its left (resp., right) child represents the intersection
of the set of worlds in which Sk+1 is true (resp., false) with the set of worlds associated with X. A terminal
node, therefore, represents a simultaneous assignment of truth values to the premises and conclusion of the
argument.

Without pruning, the semantic tree will have 2n+1 terminal nodes (each corresponding to a truth assign-
ment over all of the sentences of the argument) and 2n+2 − 1 nodes altogether. However, not all the (full or
partial) truth assignments are consistent. Each (partial) truth assignment can be checked for consistency. If the
assignment is inconsistent (i.e., would require that a propositional variable simultaneously had the values false
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and true), the children of the node corresponding to it are not generated. For example, the partial assignment

is not consistent. There is no assignment of truth values to the propositional variables R and G under which
both sentences evaluate to false.

In the worst case, when the sentences are logically independent, no pruning will be possible. However,
the sentences in real arguments are unlikely to be independent. (Despite this, for arguments of realistic size,
the method is intractable. We will later discuss refinements that use more effectively the dependencies among
the sentences and that take into account the decision-making context in which the probabilistic inference is
being made.)

For the “ground is wet” argument, there are four consistent truth assignments (out of eight combinatorially
possible assignments). These four assignments correspond to four sets of possible worlds (W1, . . ., W4):

W1 T T T
R → G W2 F T F
R W3 T F T
G W4 T F F

Recall that

and

We would like to infer the probability of G, “the ground is wet.” (We might use the inferred probability to decide
whether or not to put on boots before going outside. Modifications to the method that take into account the use
that is to be made of the probability of the conclusion will be discussed later.) Although we do not know the
probability of G, we know that its probability is the sum of the probabilities of the sets of worlds in which it is
true:

Similarly,

and
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Let pj abbreviate p(Wj). The set of solutions to the system of linear equations below is the set of probability
functions compatible with the probabilities associated with the premises of our argument:

Upper and lower bounds on p(G) are determined via two applications of a linear programming algorithm,
minimizing and maximizing the objective function p1 + p3:

In general, as this example illustrates, the probabilities of the premises underdetermine the probability distri-
bution over the partition of possible worlds; thus, there is a range of probability values for the conclusion each
of which (due to the linearity of the constraints and the objective function) is compatible with the probabilities
of the premises.

The method may be further generalized to allow probability ranges for the premises. Suppose

and

Then the constraints are in the form of a system of linear inequalities:

The probability interval is now

The method reduces to ordinary deduction when the conclusion is logically implied by the premises; the
probability interval calculated in such cases is [1, 1]. However, when the conclusion is not deductively entailed
by the premises, the method does not necessarily return the interval [0, 1]. The probabilities of the premises
may arbitrarily strongly constrain the probability of the conclusion. For example, the argument with the single
premise A → B and conclusion B → A is not valid. However, using Nilsson’s methods it can be determined that
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In addition, the method may be applied to arguments in first-order logic if the sentences are first Skolemized
(2). However, for some arguments in first-order logic, it will not be possible to enumerate all of the sets of
possible worlds.

Suppose that we are concerned with the probability of the ground being wet because we are trying to
decide whether or not to put on boots. (Analogous decision problems could be devised for some autonomous
system.) Suppose that the wetness of the ground is the only factor we wish to consider. There are four different
relevant outcomes: we put on boots and the ground is wet, we put on boots and the ground is not wet, etc. On
the standard approach (3), an agent is assumed to have a preference ranking over the outcomes. Furthermore,
the relative desirability of the outcomes can be quantified, on a scale from 0 to 1, where 1 is the utility of the
most preferred outcome and 0 is the utility of the least preferred outcome. There are techniques for eliciting
from a human decision maker his or her utilities for the remaining outcomes, which involve consideration of
hypothetical lotteries (4). Suppose that for our decision maker, the utilities are as follows:

Our task is to pick the action whose expected utility is maximized. Suppose that a is one of the actions under
consideration and that {c1, . . ., cm} is a mutually exclusive and exhaustive set of conditions. The possible
outcomes of action a are the pairs (a, cj). On the assumption of independence of the conditions and the actions,
the expected utility of action a is

Simple algebra is sufficient to show that the action “put on boots” has higher expected utility than the action
“do not put on boots” whenever the probability of “the ground is wet” exceeds .25. Therefore, either of the two
probability intervals calculated here for p(G) is sufficient to determine the appropriate action.

For decision support systems that cannot accommodate interval or other set-valued probability represen-
tations, there are alternatives to the calculation of a probability interval for the conclusion of the argument.
One possibility is to select the maximum entropy solution to the system of linear constraints. The maximum
entropy solution can be calculated using standard optimization techniques (5). The entailed probability is then
the sum of the components of the maximum entropy distribution corresponding to the possible worlds in which
the conclusion is true. This approach and related alternatives are discussed by Kane (6) and Deutsch-McLeish
(7).

Snow (8) explores reductions in the size of the semantic tree that can be achieved by exploiting redundancy
in common inference patterns, for example, modus ponens with a conjunctive antecedent:

P1: A1
P2: A2
Pn − 1: An − 1
Pn: (A1 & ··· & An − 1) → B
C: B
The semantic tree method yields 2n possible worlds for n − 1 antecedents. Snow uses “don’t care” values to

reduce the number of worlds to n + 2. Similar efficiencies are possible for other patterns of inference. However,
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in the worst case, there are no exploitable redundancies, and the number of nodes in the semantic tree (number
of unknowns in the linear program) is exponential in the number of premises.

Frisch and Haddawy (9) have developed a deductive system for propositional probabilistic logic with an
“anytime” property. The terms “anytime” and “flexible” have been used in the computing literature to refer
to algorithms that provide useful output even when interrupted and whose output improves, in some sense,
as increasing amounts of resources (computing time or space) are allocated to them. In their system, the
probabilities associated with the premises of an argument are intervals. The probabilities are conditional
probabilities; however, unconditional probabilities can be represented by conditioning on a tautology. The
conclusion or “target sentence” initially is given the probability interval [0, 1]. With each inference step
(application of an inference rule), the conclusion’s probability interval is narrowed.

This system has the advantage of providing a usable interval that may be narrow enough for the purpose
at hand relatively quickly. To illustrate, we now discuss a simple example that uses several of Frisch and
Haddawy’s inference rules.

Consider a decision the outcome of which is contingent on the truth or falsity of a single probabilistically
entailed sentence: “It will rain this afternoon.” Suppose that the actions under consideration are “Go to the
beach” and “Do not go to the beach.” Utilities of the four possible outcomes are

The agent’s knowledge is represented in part by the propositions and associated probability intervals:

(1) p(Temperature > 85) ∈ [.95, 1]
(2) p(Temperature > 85 → Rain) ∈ [.4, .6]
(3) p((Barom. pressure < 30 & Humidity > 80) → Rain) ∈ [.65, .95]
(4) p(Barom. pressure < 30) ∈ [.95, 1]
(5) p(Humidity > 80) ∈ [.95, 1]
(6) p(August → Rain) ∈ [.2, 1]
(7) p(August) ∈ [1, 1]

“Go” maximizes expected utility when p(Rain) ≤ 0.5; “Do not go” does so for p(Rain) ≥ .5. Neither can be
ruled out at this point. However, Frisch and Haddawy’s probabilistic inference rules may be applied individually
to narrow the interval for p(Rain) until a single admissible action emerges or until it is no longer economical to
continue refining (e.g., the last train to the beach is about to leave) and a choice among the admissible actions
must be made using some other criterion (e.g., use maximin—pick the action whose minimum utility over the
various conditions is greatest, maximize expected utility relative to the midpoint of the probability interval,
etc.).

Initially, we can deduce

(1) p(Rain) ∈ [0, 1]

from the “Trivial derivation” rule: �p(α|δ) ∈ [0, 1].
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We may next apply “Forward implication propagation,”

to statements 1 and 2, yielding

(1) p(Rain) ∈ [.35, .6]

Although it does not have any effect at this stage, the multiple derivation rule should be applied to
maintain the tightest interval for the target sentence:

Because .5 ∈ [.35, .6], both actions remain admissible. Next, “Conjunction introduction”,

is applied to statements 4 and 5, yielding

(1) p(Barom. pressure < 30 & Humidity > 80) ∈ [.9, 1].

Applying forward implication propagation to statements 3 and 10 gives

(1) p(Rain) ∈ [.55, .95]

Although combining statement 11 with statement 9 via the multiple derivation rule will further narrow
the target interval, there is no need to do so; nor is there any need to consider statements 6 and 7. “Do not go”
has emerged as uniquely admissible.

Nilsson’s methods may themselves be modified to yield an anytime procedure for decision making (10).
Rather than construct the linear system corresponding to the full set of sentences, increasingly larger systems
may be constructed by adding sentences to the subset currently in use until a single admissible action emerges
or it is necessary to choose among the currently admissible actions.

This may be illustrated with the preceding sentences and decision problem. Suppose that sentences 3
and 5 are chosen for the first iteration. Using Nilsson’s semantic tree method, five sets of possible worlds are
identified. Both actions are admissible. “Go” is admissible because feasible solutions to the following system of
linear inequalities exist. Where pi is the probability of set Wi of possible worlds; “Rain” is true in sets W3 and
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W5, “Humidity > 80” is true in sets W1, W4 and W5, etc.:

“Do not go” is also admissible because the system resulting from reversing the direction of the final inequality
also has feasible solutions.

Now add sentence 4. The resulting eight sets of possible worlds may be determined by expanding only the
“live” terminal nodes of the semantic tree constructed at the first iteration. (To eliminate the need for a row
interchange, the root of the initial tree should represent the target sentence. One may proceed in this way as
long as is necessary.) “Do not go” is now identified as uniquely admissible; feasible solutions to the following
system exist but do not exist for the corresponding system for “Go”:

Frisch and Haddawy’s system is applicable to decision problems with an arbitrary number m of mutually
exclusive conditions. The [ 1

2 m(m − 1) + 1] statements

must be included to express the mutual exclusivity of the conditions cj. Intervals must be maintained for each
of the conditions. The soundness of Frisch and Haddawy’s inference rules guarantees that, at any time, the
interval [lj, uj] associated with any cj is a superset of the tightest interval entailed (algebraically) by the full
collection of sentences. Thus, the sharpest intervals available at any time yield a linear system from which
it can be determined whether an action would not be admissible relative to the sharper probability bounds
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computable at any later time; action ai is (ultimately) admissible only if there exist feasible solutions to

where lj and uj are the current bounds on p(cj) and there are k actions.
Nilsson’s semantic tree method can be adapted to take into account the mutual exclusivity and exhaus-

tiveness of multiple (i.e., more than two) conditions in a decision problem. The first m levels of the tree will
correspond to the m conditions. (This facilitates the anytime adaptation of Nilsson’s methods discussed pre-
viously.) At level m, there will be m live nodes, one for each of the assignments in which exactly one of the
conditions is true. The remaining levels of the tree are constructed as usual.

For example, with conditions c1, c2, and c3, an arbitrary number k ≥ 2 of actions ai, and data p(B → c1) ∈
[0.9, 1] and p(B) ∈ [0.8, 1], there are six sets of possible worlds, corresponding to the matrix

Action ai is E-admissible iff there exist feasible solutions to the system of linear inequalities:
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Although they are not the concern of this article, it should be mentioned that there also exist logics for reasoning
about probability (11,12). In these systems, it is possible to infer a probability statement; for example,

from a given collection of probability statements. However, the inferred probability statement must also be
given; it is not generated by the rules of inference.

Other systems for reasoning with and about probability include Bundy’s Incidence Calculus (13) and
Quinlan’s Inferno (14). The Incidence Calculus, although developed independently, is quite similar to Nilsson’s
probabilistic logic. This similarity, unfortunately, includes intractability, in the form of a “legal assignment
finder” step. The Inferno system calculates probability intervals by constraint propagation over a network
whose nodes are statements and whose links are relations among (not necessarily pairs of) statements. In
this respect, the Inferno system resembles systems for constructing and reasoning with Bayesian and Markov
networks (15).
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