
PROBABILITY

Probability theory is a branch of mathematics that deals
with randomness and laws of chance. Probability theory
is concerned with determining the likelihood of random
events, and with characterizing their average or expected
behavior. The most fundamental concept of probability the-
ory is the likelihood, or probability, of an event. The prob-
ability of an event is a number between zero and one, in-
clusive. Probabilities near one indicate that an event is
common or very likely to occur. Probabilities near zero in-
dicate that an event is rare or not very likely to occur. A
probability of .5 indicates that it is equally likely for an
event to occur or not. Probabilities are often described in
percentages (i.e., if an event has a 70% chance of occurring,
its probability is .7).

The mathematical foundations of probability theory
were developed in the 17th century during a correspon-
dence between Pierre de Fermat and Blaise Pascal about
games of chance. This work was expanded in 1713 by
Jacques Bernoulli, who derived many early results in com-
binatorics and games involving Bernoulli trials (many rep-
etitions of a procedure with two possible results, such as
tossing a coin). In the 18th century, DeMoivre, Laplace,
and Gauss developed the normal (or Gaussian) bell-shaped
probability distribution to model various physical phenom-
ena. From that time, probability theory was incorporated
into many fields at a rapid rate. Today, probability theory
has widespread applicability in science and engineering,
medicine, social sciences, economics, and actuarial science,
as well as many aspects of our everyday lives.

This article begins with an introduction to basic prob-
ability principles using games of chance as examples. In
games of chance, the results do not depend on the skills
of the players but rather on random events such as toss-
ing coins or dice and drawing balls out of a box containing
many colored balls. These games are easy to understand
and also serve as models for many real-world phenomena.
For example, repeated coin tosses model the bits in a bi-
nary sequence stored on a disk or transmitted on a digital
communications channel.

Modeling more complex phenomena requires the con-
cepts of random variables and probability distributions as
well as mathematical techniques from calculus. The re-
mainder of this article covers probability theory at this
level. Topics include discrete and continuous random vari-
ables, probability distributions, expectation, sums of inde-
pendent random variables, and limit theorems. There are
numerous textbooks devoted to this material. Some repre-
sentative texts are Refs. 1–6.

Probability theory is the basis for the theory of ran-
dom, or stochastic, processes. The theory of stochastic pro-
cesses is fundamental to many fields of electrical engineer-
ing dealing with signals, including communication the-
ory, signal processing, and control theory. Many textbooks
on stochastic processes also include introductory chapters
on probability theory geared toward electrical engineers.
Some examples are Refs. 7-13. More complex phenomena
require advanced treatments of probability and the use of
advanced mathematics including linear algebra, real and

complex analysis, and measure theory. Some textbooks at
this level include Refs. 14–19. Historical details about the
development of probability theory can be found in many
of the previously referenced texts, especially Ref. 1, and in
textbooks on the history of mathematics including Refs. 20
and 21.

BASIC PROBABILITY

This section on basic probability introduces the concepts
of random experiments, sample spaces, and events. This
framework allows us to describe mathematically our intu-
itive notions of probability and to develop the concepts of
conditional probability, independence, and expectation.

Sample Spaces and Events

The set of all possible results, or outcomes, in a game, or
random experiment, is called the sample space and denoted
by S. An event is a subset of the sample space that contains
the desired outcomes. If an experiment has n equally likely
outcomes, and f of them are desired, then the probability
of the event of interest is f/n. For example, suppose that a
random experiment consists of tossing a die. The sample
space S contains n = 6 equally likely outcomes or sample
points,

Let A denote the event that an even number appears

and B denote the event that the result is at least three

The event A has 3 sample points; therefore, the probability
of A, denoted by P(A), is 3

6 . The event B has four sample
points and probability P(B) = 4

6 .
Additional events can be defined in terms of the events

A and B using set operations. The complement of an event,
denoted by Ac consists of all the points in the sample space
that are not in the event A. In this example, the comple-
ment of A is the set of odd outcomes

The union of A and B, denoted by A ∪ B, is the event C,
which contains all the sample points in either A or B,

The intersection of A and B, denoted by A ∩ B, is the event
D, which contains the sample points that are in both A and
B,

The Venn diagrams in Fig. 1 illustrate these relationships.

Two events are mutually exclusive if they have no sam-
ple points in common (i.e., their intersection is the null set
∅). In this example, the events D and Ac are mutually ex-
clusive, but A and B are not. The Venn diagram in Fig. 2(a)
depicts two mutually exclusive events. A partition of an
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2 Probability

Figure 1. Venn diagrams illustrating set relationships. Shaded
regions indicate the event of interest: (a) the event A, (b) the com-
plement of A, (c) the union of A and B, and (d) the intersection of
A and B.

Figure 2. Venn diagrams diagrams illustrating (a) mutually ex-
clusive events and (b) partitioning of A.

event is illustrated in Fig. 2(b). The partition of the event
A consists of n smaller events, A1, A2, . . . , An , which are
mutually exclusive and whose union is A (i.e., A =A1 ∪ A2 ∪
··· ∪ An ). For example, the events A1 = {1}, A2 = {3}, A3 = {5}
partition A = {1, 3, 5}.

Probability Axioms

The basic principles of probability theory can be stated
mathematically in terms of sample spaces and events.

These are referred to as probability axioms.

A1. P(S) = 1.
A2. For any event A, 0 ≤ P(A) ≤ 1.
A3. For two mutually exclusive events A1 and A2, P(A1

∪ A2) = P(A1) + P(A2).

The first two axioms define probabilities to be numbers be-
tween zero and one, with one being the total probability of
all the possible outcomes. The third axiom says that if two
events cannot occur simultaneously, the probability that
either occurs is the sum of their individual probabilities.

Based on these axioms, we can derive additional useful
probability rules, such as:

R1. P(Ac) = 1 − P(A).
R2. P(∅) = 0.
R3. For any two events A and B, P(A ∪ B) = P(A) +

P(B) − P(A ∩ B).

The first rule says that if an event has a certain portion
of the total probability, its complement has the remaining
portion. For example P(Ac) = 1 − P(A) = ½. The second rule
says that the empty set has no probability. The last rule
defines the probability of the union of two events that are
not mutually exclusive. It is easily verified from the Venn
diagrams in Fig. 1. If A and B are not mutually exclusive,
then the outcomes common to A and B are counted twice
in P(A) + P(B). The probability of A ∩ B must be subtracted
from P(A) + P(B) to get P(A ∪ B). For example P(A) = 3

6 ,
P(B) = 4

6 , P(A ∩ B) = 2
6 , and P(A ∪ B) = 5⁄6 = 3

6 + 4
6 − 2

6 .

Counting Techniques

In more complicated games involving multiple coins and
dice or colored balls in a box, listing all the possible out-
comes can be difficult. For example, suppose four balls are
drawn from a box containing seven balls colored red (R),
orange (O), yellow (Y), green (G), blue (B), purple (P), and
white (W). The balls are drawn one at a time and not put
back. The outcome of the four draws is the sequence of col-
ors (e.g., RWYO or GYBW). We wish to determine the prob-
ability that the sequence begins with a red ball followed by
a blue ball and contains two additional balls of any color.
Listing all the desired outcomes, as well as the possible
outcomes in S will be very tedious. Instead, combinatorial
analysis can be used to determine the number of outcomes
in each set without having to list them. The basic princi-
ple is that the total number of outcomes of an experiment
consisting of several sequential steps is the product of the
number of outcomes at each step. This is known as the
multiplication rule. In this case, there are seven possible
outcomes on the first draw. On the second draw there are
only six possibilities because one ball has been removed,
on the third draw there are five possibilities, and so on.
Thus there are (7)(6)(5)(4) = 840 sequences in S. This is an
example of a permutation, or ordered arrangement, of four
objects taken from a group of seven. In general, the num-
ber of permutations of r objects taken from a group of n is
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For sequences beginning with a red and blue ball, there is
only one desired outcome on the first draw (R) and one de-
sired outcome on the second draw (B). On the third draw
there are five balls in the box; therefore, there are five pos-
sible outcomes, and on the fourth draw there are four pos-
sible outcomes. Thus there are a total of (1)(1)(5)(4) = 20
desired outcomes. The probability is then 20/840 = 1

41 .
In other problems, the order of objects is not important.

The number of distinct unordered sets, or combinations, of
r items taken from a group of n is given by

Consider tossing a coin five times. On each toss, there
are two possibilities, H or T. The outcome of five tosses is
the sequence of heads and tails (e.g., HTHHT). We wish
to determine the probability of obtaining exactly three
heads. The total number of outcomes in the sample space is
(2)(2)(2)(2)(2) = 32. We are not concerned with the order of
the heads and tails; therefore, the number of sequences
containing exactly r = 3 heads out of the n = 5 tosses is
5!/(2!3!) = 120/[(2)(6)] = 10, and the probability of getting ex-
actly three heads in five tosses is 10

32 .

Conditional Probability

Consider the experiment in which a die is tossed two times.
The outcome of the two tosses is a pair of numbers [e.g.,
(1,2) or (3,6)]. There are six possible outcomes on each toss;
therefore, the sample space consists of (6)(6) = 36 equally
likely outcomes. Suppose that a one is obtained on the first
toss and that we wish to determine the probability that the
sum of the two tosses will be less than or equal to five. This
is an example of a conditional probability.

Let P(B|A) denote the conditional probability of the
event B given that the event A has occurred. The condi-
tional probability is found from

provided P(A) > 0.
In this example, we wish to determine the probability

that the sum is less than or equal to five given that the first
toss is a one; therefore, A is the event that there is a one in
the first position,

and B is the event that the sum is less than or equal to five

Examining the sample points in A, the sum is less than or
equal to five for the first four sample points, which are the
intersection of A and B,

therefore P(B|A) must be 4
6 . We can verify this using the

definition in Eq. (1). The required probabilities are P(A ∩
B) = 4

36 and P(A) = 6
36 . As expected, P(B|A) = (4/36)/(6/36) =

4
6 .

We can also reverse the events and find the probability
of event A given that event B has occurred from

provided P(B) > 0. In this problem P(B) = 10
36 ; therefore, the

probability that the first number is a one given that the
sum is less than or equal to five is P(A|B) = (4/36)/(10/36) =
4
10 .

The conditional probability formulas in Eqs. (1) and (2)
can be rearranged to obtain the multiplication rules for
conditional probability

These relationships are useful in determining probabilities
in experiments in which the outcome of a sequence of pro-
cedures depends on the previous outcomes. For example,
suppose that three boxes contain red and blue balls. Box
1 has two red and two blue balls, Box 2 has one red and
two blue balls, and Box 3 has four red and one blue ball.
A box is selected at random, and a ball is drawn from the
box. What is the probability that a blue ball will be drawn
from Box 1? Let A denote selecting Box 1 and B denote
drawing a blue ball. Selecting a blue ball from Box 1 is the
intersection of events A and B. The probability of select-
ing Box 1 is P(A) = 1⁄3, and the probability of drawing a blue
ball given that Box 1 was chosen is P(B|A) = 2

4 ; therefore,
the probability of selecting a blue ball from Box 1 is P(A ∩
B) = (1⁄3)( 2

4 ) = 1⁄6.
Suppose that we are also interested in finding the prob-

ability of drawing a blue ball from any box. We can find this
probability by combining the multiplication rule in Eq. (3)
with Axiom 3. Let A1, A2, and A3 denote selecting Boxes
1, 2, and 3, respectively. The events A1 ∩ B, A2 ∩ B, and
A3 ∩ B represent drawing a blue ball from each of the three
boxes. They are mutually exclusive events that partition B.
From Axiom 3, the probability of drawing a blue ball is the
sum of the probabilities of drawing a blue ball from each
of the boxes

The probability P(A1 ∩ B) = P(A1)P(B|A1) has already been
found to be 1⁄6. Similarly, P(A2 ∩ B) = P(A2)P(B|A2) = (1⁄3)(2⁄3)
= 2

9 , and P(A3 ∩ B) = P(A3)P(B|A3) = (1⁄3)(1⁄5) = 1
15 . The total

probability of drawing a blue ball is P(B) = 1⁄6 + 2
9 + 1

15 =
41
90 . This is an example of the rule of total probability. In
general, if A1,A2, . . . ,An are mutually exclusive events that
partition the sample space S, then for any event B,
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Now suppose that we are told that a blue ball has been
drawn and wish to determine the probability that it came
from the Box 1 [i.e., P(A1|B)]. Using the definition of condi-
tional probability in Eq. (2), the multiplication rule in Eq.
(3), and the rule of total probability in Eq. (5), we have the
following result, which is known as Bayes Rule:

For this example,

Independence

In some experiments, knowledge about one event tells us
nothing about the probability of another event. For exam-
ple, if a coin is tossed twice, the probability of obtaining a
six on the second toss is 1⁄6, regardless of the outcome of the
first toss. The outcomes on the two tosses are said to be in-
dependent. In general, two events A and B are independent
if and only if

For this example, let A denote obtaining a one on the
first toss and B denote obtaining a six on the second toss.
P(A) = 1⁄6, P(B) = 1⁄6, and P(A ∩ B) = 1

36 . We see that Eq. (6) is
satisfied. Now let C denote the event that the sum is less
than or equal to five. From our previous example, P(C) =
10
36 , and P(A ∩ C) = 4

36 . In this case, P(A ∩ C) �= P(A)P(C);
therefore, A and C are not independent events.

Expectation

Probability theory also deals with expected or long-term
average behavior of a random experiment. For example,
suppose that a person plays a game in which he or she pays
$1.00 to toss a die. The player wins $3.00 if a 6 is thrown,
$1.50 if a 5 is thrown, and nothing if a 1, 2, 3, or 4 is thrown.
On the average, how much can the player expect to win or
lose? Subtracting the cost to play, net winnings are $2.00
when a 6 is thrown, $0.50 when a 5 is thrown, and −$1.00
when a 1, 2, 3, or 4 is thrown. On each toss, the player will
win $2.00 with probability 1⁄6, $0.50 with probability 1⁄6, and
−$1.00 with probability 4

6 . The average winnings are 2(1⁄6) +
0.5(1⁄6) − 1( 4

6 ) = −1.5(1⁄6) = −0.25. The expected loss per game
is 25 cents. Although the player cannot actually lose 25
cents on a given game, this means that if the game is played
many times, the player will lose about 25 cents per game
on the average.

Summary

These basic concepts form the foundation of probability
theory. The examples were based on random experiments
in which the sample spaces consisted of a finite number
of equally likely events. These experiments serve as mod-
els for a many phenomena arising in a variety of applica-
tions; however, there are many more phenomena for which

these techniques are inadequate. To develop more sophisti-
cated tools for solving more complex problems, we need the
concepts of random variables and probability distributions
and mathematical techniques from calculus.

DISCRETE RANDOM VARIABLES AND DISTRIBUTIONS

A random variable is a function that maps the sample
points of an experiment onto the real line. For example,
suppose that an experiment consists of tossing a coin three
times. The sample space contains eight equally likely out-
comes

If we let X denote the number of heads, then X is a ran-
dom variable that maps the eight sample points into the
numbers 0, 1, 2, and 3. In this case, X is a discrete random
variable because it can only have one of a discrete set of
values.

Probability Mass Function

For discrete random variables, the probability mass func-
tion (pmf) describes how probability is distributed among
the possible values of the random variable. The pmf of X is
denoted by p(x) and is defined as

Probability mass functions have two properties that follow
from the probability axioms:

1. 0 ≤ p(x) ≤ 1
2. �x p(x) = 1.

Because the pmf is a collection of probabilities, its values
must be between zero and one, inclusive. Furthermore, the
pmf assigns probability to all the possible values X; there-
fore, it must sum to one.

In the coin toss problem, the pmf of X is

It is easy to verify that the properties are satisfied.

Cumulative Distribution Function

The cumulative distribution function (CDF) also character-
izes the probability distribution. The CDF of X is defined
for all real numbers a by

Some properties of the CDF follow:

1. limα→−∞ F(a) = 0.
2. limα→−∞ F(a) = 1.
3. F(a) is nondecreasing [i.e., if a < b, then F(a) ≤ F(b)].
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Figure 3. The probability mass function p(x) and cumulative dis-
tribution function F(a) of the discrete random variable X.

The CDF for X in the coin toss example is

For discrete random variables, F(a) has discontinuities
or jumps located at the discrete values of the random vari-
able, and the size of a jump is equal to the probability that X
is equal to that value. Thus, given the CDF, the pmf can be
obtained by subtracting the value of the CDF at the right
side of the discontinuity from the value at the left side of
the discontinuity. The pmf and CDF for the coin-tossing
experiment are shown in Fig. 3.

Probability associated with X can be found from both
the pmf and the CDF as follows:

For example, the probability that the number of heads is
one or two is P(0 < X ≤ 2) = p(1) + p(2) = 3⁄8 + 3⁄8 = 6

8 , or P(0
< X ≤ 2) = F(2) − F(0) = 7⁄8 − 1⁄8 = 6

8 .

Joint Distribution Functions

The joint distribution of two discrete random variables is
characterized by the joint pmf and joint CDF. The joint pmf,
denoted by p(x, y) assigns probability to all possible joint
outcomes

Similar to the single random variable, or univariate, pmf,
the joint, or bivariate, pmf has the following properties:

1. 0 ≤ p(x, y) ≤ 1.
2. �x,y p(x, y) = 1.

The joint CDF is defined for all real numbers a and b by

For example, suppose that items produced by an assem-
bly line are tested for defects. Past experience indicates
that 70% of the parts have no defects, 20% have minor de-
fects that can be corrected, and 10% have major defects
and must be discarded. Suppose that two items are tested.
Let X denote the number of items with minor defects and
Y denote the number of items with major defects. Then X ∈
{0, 1, 2} and Y ∈ {0, 1, 2}. The joint pmf can be found using
combinatorial techniques and is summarized in Table 1.
Entries for impossible events, such as (X =2 ∩ Y = 2), have
zero probability. The probability that X and Y are in some
subset A of the possible values can be found from the joint
pmf using

The probability of at least one minor defect and no ma-
jor defects is, therefore, P(X ≥ 1, Y =0) = p(1, 0) + p(2,
0) = .28 + .04 = .32, and the probability of one major defect
is P(Y = 1) = p(0, 1) + p(1, 1) + p(2, 1) = .14 + .04 + 0 = .18.

Marginal Distributions

The marginal pmfs for X alone and Y alone are found from

The marginal pmfs are also shown in Table 1.

Conditional Distributions

The conditional pmf of X given Y = y is defined as
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In this example, the pmf of X given Y = 1 is

The conditional pmf of Y given X = x is defined similarly,

Independence

Two discrete random variables are said to be independent
if and only if

In this example, p(0, 0) = .49 �=
pX (0)pY (0) = (.64)(.81) = .5184; therefore, X and Y are
not independent.

Transformations

Suppose now that we are interested in the total number of
defective items. We can define a new random variable Z = X
+ Y. Then Z ∈ {0, 1, 2}. The pmf for Z can be determined
as follows

This is an example of a transformation of two random vari-
ables into a new random variable.

CONTINUOUS RANDOM VARIABLES AND
DISTRIBUTIONS

Consider an experiment that consists of monitoring the
length of time it takes to serve a customer in a check-out
line. The sample space consists of all positive real numbers

Let Y denote the length of time it takes to check out a cus-
tomer. Here Y is a continuous random variable because it
can have any value on a continuous range, in this case the
interval (0, ∞).

Probability Density Function

For continuous random variables, the probability density
function (pdf) denoted by f(y) characterizes the distribution
of probability. The probability that Y has a value in the
interval [a, b] is found from

Thus the probability that Y is in some interval is the area
under the pdf over that interval. Note that if b = a, then

The probability that Y will assume a particular value is
zero; however, this does not mean that it is impossible. For
continuous random variables, probability can be assigned
only to intervals, not to points. This means that

The pdf has the following properties:

1. f(y) ≥ 0.
2.

∫ ∞
−∞ f (y)dy = 1.

The area under the pdf over any interval on the real line
is a probability; therefore, the pdf cannot be negative, but
it does not necessarily have to be less than one. The pdf
integrates to one because the probability that Y is on the
real line is one.

A possible pdf for the check-out time Y is

The probability that the check-out time is more than 3 min-
utes is found from

Cumulative Distribution Function

The cumulative distribution function for continuous ran-
dom variables has the same definition as for discrete ran-
dom variables and is found from

The properties of the CDF are the same as in the discrete
case; the probability that Y is in some interval can again
be found from

For example, the CDF for the check-out time Y is

The pdf and CDF for check-out times are shown in Fig.
4. Using the CDF, we can find P(Y > 3) = P(3 < Y <

∞) = F(∞) − F(3) = 1 − 1 + e−3 = .0498, as expected.
F(a) is a continuous function for continuous random

variables, and the pdf f(y) can be obtained from the CDF
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Figure 4. The probability density function f(y) and cumulative
distribution function F(a) of the discrete random variable Y.

F(a) by differentiating with respect to a and substituting y
for a

Joint Distribution Functions

The joint distribution of two continuous random variables
is characterized by the joint pdf and joint CDF. The joint
pdf, denoted by f(x, y) assigns probability to regions in the
xy plane,

The probability that X and Y are within region A is the
volume under the pdf over the region A. The joint pdf has
the following properties:

1. f(x, y) ≥ 0.
2.

∫ ∞
−∞

∫ ∞
−∞ f (x, y)dx dy = 1.

The joint CDF for continuous random variables is de-
fined for all real numbers a and b by

and the joint pdf can be found from the joint CDF from

For example, suppose that check-out times for two check-
out lines have the following joint pdf:

The joint CDF is

The probability that both times are less than 2 minutes is

Marginal Distributions

Analogous to the discrete case, the marginal pdfs for X
alone and Y alone are found from

The marginal pdfs for our example are

Conditional Distributions

The conditional pdfs of X given Y = y and Y given X = x are
defined as

In this example, the conditional pdfs are

In this case, the conditional pdfs are the same as the
marginal pdfs.

Independence

Two continuous random variables are said to be indepen-
dent if and only if

In this example, f(x, y) = fX (x)fY (y) = 2e−(x+2y) for x > 0 and
y > 0; therefore, X and Y are independent.
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Transformations

Suppose that it costs the store $5.00 to process each cus-
tomer plus $2.00 for each minute spent at check-out. Let Z
be the cost to check out through the second line (i.e., Z = 5
+ 2X). This is an example of a transformation of a continu-
ous random variable. In general, if Z = g(X) and g(X) is an
invertible function, then X = g−1(Z) and the pdf of Z is given
by

In our example Z = g(X) = 5 + 2X; therefore,
X = g−1(Z) = (Z − 5)/2 and

This result can be generalized to transformations of mul-
tiple random variables.

EXPECTATION

Expected Values

The statistical average or expected value of a random vari-
able is denoted by E[X] or µ. For discrete random variables,
it is defined as

The expected value of X is a weighted average of the pos-
sible values of the random variable, with the weighting
determined by the probability of each value. In the coin
tossing example, E[X] = 0(1⁄8) + 1(3⁄8) + 2(3⁄8) + 3(1⁄8) = 1.5.

For continuous random variables, the expected value of
X is defined as

In the check-out time example,

The expected value of X is also called the mean and has the
interpretation as the center of mass of the pmf or pdf.

The expected value of a function of X, say g(X), is given
by

In particular, if g(X) = Xk , the expected value is known as
the kth moment of X. Thus the mean is the first moment. If
g(X) = (X − µ)k , this is called the kth central moment of X.
When n = 2, the second central moment is called the vari-
ance and denoted by σ2. The variance is related to the first
and second moments by

The square root of the variance (σ) is called the standard
deviation. The variance and standard deviation are mea-
sures of the spread of the distribution from the mean. A dis-
tribution concentrated close to the mean will have a small
standard deviation, and a widely spread distribution will
have a large standard deviation. Chebychev’s Inequality,
which is discussed at the end of the article, provides the
general rule of thumb that most of the probability is found
within two to three standard deviations from the mean.

In the coin tossing example, E[X2] = 0(1⁄8) + 1(3⁄8) + 4(3⁄8)
+ 9(1⁄8) = 3, σ2 = 3 − (1.5)2 = .75 and σ = √

.75 = .8660. In the
check-out time example, σ2 = 2 − (1)2 = 1 and σ = √

1 = 1.

Moment Generating Function

The moment generating function (MGF) of the random vari-
able X is defined as

The kth moment of X can be obtained from M(t) by differ-
entiating k times with respect to t and setting t = 0,

In finding the first two moments, we use the notation

therefore, E[X] = M
′
X (0) and E[X2] = M ′′

X(0).
In the coin-tossing example, MX (t) = 1⁄8 + (3⁄8)et + (3⁄8)e2t

+ (1⁄8)e3t , M
′
X (t) = (3⁄8)et + ( 6

8 )e2t + (3⁄8)e3t , and M
′′

X (t) = (3⁄8)et

+ ( 12
8 )e2t + ( 9

8 )e3t . Therefore, M
′
X (0) = 1.5 = E[X] and

M
′′

X (0) = 3 = E[X2]. In the check-out time example,
MY (t) = (1 − t)−1, M

′
Y (t) = (1 − t)−2, and M

′′
Y (t) = 2(1 − t)−3.

Therefore, M
′
Y (0) =1 = E[Y] and M

′′
Y (0) =2 = E[Y2].

Joint Expectation

Expected values for jointly distributed random variables
are defined as

Joint moments are obtained when g(X, Y) = XkYm ,
and joint central moments are obtained when g(X,
Y) = (X − µX )k (Y − µY )m . When k = m = 1, the joint central
moment is called the covariance of X and Y. It is related to
the joint and marginal moments by
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Properties

Let Z = aX + bY + c, then

If the random variables X and Y are independent, then

This means that E[X, Y] = E[X]E[Y] = µXµY and COV(X,
Y) = 0. (The converse is not necessarily true, i.e., if COV(X,
Y) = 0, X and Y are not necessarily independent.) Then the
variance of Z reduces to

Another consequence of Eq. (47) is that the moment gener-
ating function of Z is

SUMS OF INDEPENDENT RANDOM VARIABLES

A random sample of size n is a sequence of random vari-
ables X1, X2, . . . , Xn , which are independent and identically
distributed (i.i.d.). Their multivariate joint pmf or pdf has
the form

As a consequence, COV(XiXj ) = 0 for i �= j.
We are often interested in sums of i.i.d. random vari-

ables. Let Z = X1 + X2 + ··· + Xn . We have the following
results:

Another case of interest is X̄ = (1/n)(X1 + X2 + ··· + Xn ).
This is known as the sample mean. The mean, variance,
and MGF of X̄ are

SPECIAL DISCRETE DISTRIBUTIONS

Certain discrete random variables arise frequently in mod-
eling physical phenomena. Some special discrete random
variables are described below and summarized in Table 2.

Bernoulli (p)

A Bernoulli random variable X is a discrete random vari-
able which has two possible outcomes, 1 and 0, with prob-
abilities p and 1 − p. An experiment whose outcome is a
Bernoulli random variable is called a Bernoulli trial. The
Bernoulli random variable is named after Swiss mathe-
matician Jacques (Jakob, James) Bernoulli, who studied
games involving many repetitions of a procedure with two
possible outcomes. He derived many early results in combi-
natorics including the formulas for permutations and com-
binations as well as the binomial expansion. His work in
this area was published in 1713, eight years after his death.

The Bernoulli random variable models things like data
bits, operational status of equipment (on or off), test results
(pass or fail), quality of manufactured items (defective or
good), and so on. The result X = 1 is usually called a success,
and the result X = 0 is called a failure. The pmf of X is

The first two moments of X are

Therefore, the mean and variance are

The MGF of X is

Taking derivatives

therefore, E[X] = M ′
X(0) = p and E[X2] = M ′′

X(0) = p, as
expected. The Bernoulli random variable is the basic build-
ing block for the Binomial, Geometric, and Negative Bino-
mial random variables, which characterize different obser-
vations of repeated Bernoulli trials.

Binomial (n, p)

A Binomial random variable X is the number of successes
obtained in n i.i.d. Bernoulli trials. The possible values for
X are 0, 1, . . . , n. The probability that X = 0 is the prob-
ability of n failures, which is (1 − p)n , because the trials
are independent and the probabilities multiply. The prob-
ability that X = 1 is the probability of n − 1 failures and 1
success, multiplied by the number of combinations of r = 1
successes out of n trials,

In general, the probability that X = x is the probability of
x successes and n − x failures multiplied by the number of
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combinations of x successes in n trials. Therefore,

The factor

is called a binomial coefficient because it appears in the
binomial expansion of the sum of two numbers raised to
the power n:

The binomial expansion can be used to show that

It is often convenient to express X as the sum of n i.i.d.
Bernoulli random variables, X1, . . . , Xn . Therefore when
n = 1, a Binomial (1, p) random variable is the same as
a Bernoulli (p) random variable. Using the properties of
sums of independent random variables, the mean and vari-
ance of X are µ = np and σ2 = np(1 − p), and the MGF of X
is M(t) = (1 − p + pet )n .

Geometric (p)

A Geometric random variable X is the number of Bernoulli
trials until the first success is obtained. The possible values
for X are 1, 2, . . . . The probability that X = 1 is the proba-
bility that a success is obtained on the first trial, which is
p. The probability that X = 2 is the probability of a failure
on the first trial and a success on the second trial, which is
(1 − p)p. In general, the probability that X = x is the proba-
bility of x − 1 failures and a success on the xth trial. There-
fore,

The mean and variance of X are µ = 1/p and σ2 = 1/p2, and
the MGF of X is M(t) = pet /[1 − (1 − p)et ].

These can be derived using the geometric series

Negative Binomial (k, p)

A Negative Binomial random variable X is the number of
Bernoulli trials until the kth success is obtained. The pos-
sible values for X are k, k + 1, . . . . The probability that X = k
is the probability that k successes are obtained on the first
k trials, which is pk . The probability that X = k + 1 is the
probability of k − 1 successes and one failure on the first
k trials, and a success on the (k + 1)th trial, multiplied by
the number of combinations of k − 1 successes in k trials.
In general, the probability that X = x is the probability of
k − 1 successes and x − k failures on the first x − 1 trials
and a success on the xth trial, multiplied by the number of
combinations of k − 1 successes in x − 1 trials. Therefore,

X can be expressed as the sum of n i.i.d. Geometric ran-
dom variables, X1, . . . , Xn . Using the properties of sums
of independent random variables, the mean and vari-
ance of X are µ = k/p and σ2 = k/p2, and the MGF of X is
M(t) = {pet /[1 − (1 − p)et ]}k . The Negative Binomial distri-
bution gets its name because proving that the distribu-
tion sums to one requires use of the binomial expansion of
[1 − (1 − p)] raised to a negative power (−k). It is also called
the Pascal distribution after French mathematician Blaise
Pascal.

Poisson (µ)

A Poisson random variable X is the number of successes
observed in an interval of length µ = λt, where λ is the av-
erage rate of successes and t is an interval of observation.
The interval may correspond to time, length, etc. The pos-
sible values for X are 0, 1, . . . , and the pdf is

The mean and variance of X are µ = µ and σ2 = µ, and the
MGF of X is M(t) = eµ(et−1). These can be derived using the
series expansion of the exponential function,

The Poisson distribution gets its name from French mathe-
matician Simeon-Denis Poisson who introduced it in 1837
as a limiting form of a binomial distribution when n be-
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comes large and p becomes small while np remains con-
stant.

SPECIAL CONTINUOUS DISTRIBUTIONS

Some special continuous random variables are described
below and summarized in Table 3.

Uniform (a, b)

A uniform random variable X is a continuous random vari-
able whose pdf is constant, or uniform, over the interval [a,
b]. To ensure that the area under the pdf is one, the height
of the pdf must be the inverse of the length of the interval
1/(b − a)

The mean and variance are µ = (a + b)/2 and σ2 = (b − a)2/12,
and the MGF of X is M(t) = (etb − eta )/[t(b − a)]. At t = 0, the
MGF has the form 0

0 ; however, it is easy to verify that the
limit as t → 0 exists and is equal to one. The derivatives
of the MGF also have the form 0

0 , but the limits as t → 0
exist and are equal to the moments.

Normal (µ, σ2)

A normal random variable X has the pdf

The mean and variance are µ and σ2, and the MGF is
MX(t) = eµt+σ2t2/2. The standard normal distribution has
µ = 0 and σ2 = 1. This distribution was first introduced
by French–English mathematician Abraham DeMoivre in
1733 as an approximation to the binomial distribution.
He called it the exponential bell-shaped curve. The nor-
mal distribution is also called the Gaussian distribution
after German mathematician and scientist Karl Friedrich
Gauss, who used it to model errors in scientific experiments
in 1809. It was referred to as the normal distribution by
British statistician Karl Pearson in the late 19th century,
who observed that it was “normal” for data sets to have
this distribution. These observations are consequences of
the Central Limit Theorem, which is discussed at the end
of the article. It states that the distribution of a sum of a
large number of independent random variables is approx-
imately normal. Because of this result, the normal distri-
bution models many phenomena.

Gamma (α, β)

The gamma random variable has pdf

where �(α) is the gamma function, defined as

For α > 1, the gamma function has the property

When α is a positive integer (i.e., α = n), �(n) = (n − 1)!. The
mean and variance are of X are µ = αβ and σ2 = αβ2, and
the MGF is M(t) = (1 − βt)−α. Some special cases of the
Gamma distribution include the Exponential, Erlang, and
Chi-Square distributions.

Exponential (λ)

The Exponential distribution is obtained when α = 1 and
β = 1/λ. The pdf is

The mean and variance are 1/λ and 1/λ2, and the MGF is
M(t) = [1 − (t/λ)]−1. The exponential distribution models the
time between successes when the number of successes has
a Poisson distribution with µ = λt. The parameter λ is the
average rate of success in both distributions.

Erlang (n, λ)

The Erlang distribution is obtained when α = n and β = 1/λ.
The pdf is

The mean and variance are n/λ and n/λ2, and the MGF
is M(t) = [1 − (t/λ)]−n . The Erlang distribution models the
time until n successes occur when the number of successes
has a Poisson distribution with µ = λt. An Erlang random
variable is the sum of n i.i.d. Exponential random vari-
ables. It is named after Danish engineer and mathemati-
cian A. K. Erlang, who studied call traffic in telephone sys-
tems.

Chi-Square (n)

The Chi-Square distribution is obtained when α = n/2 and
β = 2. The pdf is

The mean and variance are n and 2n, and the MGF is
M(t) = (1 − 2t)−n/2. The Chi-Square distribution is obtained
from the sum of the squares of n standard normal random
variables.

Rayleigh (σ2
r )

The pdf of the Rayleigh distribution is

The mean and variance are µ = σr

√
π/2 and

σ2 = σ2
r (2 − π/2), and the MGF is
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where the error function is defined as

The Rayleigh distribution is obtained from the square root
of sum of the squares of two normal (0, σ2

r ) random vari-
ables.

LIMIT THEOREMS

Two of the most important theorems in probability theory
are the Law of Large Numbers and the Central Limit The-
orem. Another important result is Chebychev’s Inequality,
upon which the Weak Law of Large Numbers is based. Here
we state these theorems without giving proofs.

Chebychev’s Inequality

If X is a random variable with mean µ and variance σ2,
then for any k > 0,

For example, let k = 2.This inequality says that the prob-
ability that X has a value more than two standard devia-
tions from its mean is less than .25. The probability that
X is more than three standard deviations from its mean is
less than .10.This theorem has many important theoretical
implications, but it also has practical ones. A good rule of
thumb for both discrete and continuous random variables
is that most of the probability is within a few standard
deviations of the mean.

Weak Law of Large Numbers

Let X1, X2, . . . , Xn be i.i.d. random variables with mean µ

and variance σ2. Then for any ε > 0

From Eqs. (52) and (53), the mean and variance of X̄

are µ and σ2/n. Using Chebychev’s Inequality with ε = kσ/
n and k2 = ε2n/σ2,

As n → ∞, this probability goes to zero. The Law of Large
Numbers ensures that the average of a set of i.i.d. random
variables converges to their mean as the number of sam-
ples increases.

Central Limit Theorem

Let X1, X2, . . . , Xn be i.i.d. random variables with mean µ

and variance σ2. The distribution of

tends to the standard normal distribution as n → ∞.
Applying the properties of sums of independent random

variables, the mean of Z is zero and its variance is one.
The Central Limit Theorem says that the distribution of
Z approaches the standard normal distribution for large
n, regardless of the distribution of the sample. This theo-
rem proves what is often observed in practice, namely that
the sum of a large number of i.i.d. random variables has a
distribution which is approximately normal.

SUMMARY

The concepts of random experiments, sample spaces, and
events provide the framework to mathematically describe
the principles of probability and to develop the concepts
of conditional probability, independence, and expectation.
Random variables and probability distributions provide
the additional tools necessary to analyze a wide range of
random phenomena. In this article, we have provided an
introduction to discrete and continuous random variables,
probability distributions, and expectation; developed prop-
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erties for sums of independent random variables; and in-
troduced two important probability theorems, the Law of
Large Numbers and the Central Limit Theorem. We also
summarized some important discrete and continuous prob-
ability distributions.
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