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PROCESS ALGEBRA

The term process algebra encompasses a collection of theories that support mathematically rigorous
(in)equational reasoning about systems consisting of concurrent, interacting processes. The field grew out
of a seminal book of Milner (1) in 1980 and has been an active area of research since then. Over the past
decade and a half researchers have developed a number of different process-algebraic theories in order to
capture different aspects of system behavior; however, each such formalism generally includes the following
characteristics.

(1) A language, or algebra, is defined for describing systems.
(2) A behavioral equivalence is introduced that is intended to relate systems whose behavior is indistinguish-

able to an external observer.
(3) Equational rules, or axioms, are developed that permit proofs of equivalences between systems to be

conducted in a syntax-driven manner.

Some formalisms include a refinement ordering in lieu of an equivalence; in this case, the theories allow
one to determine if a system is “greater than or equal to” (i.e., refines) another. The literature typically refers
to each theory as a process algebra; so the field of process algebra contains many process algebras.

Process algebras derive their motivation from the fact that a system design often consists of several
different descriptions of the system involving different levels of detail. The behavioral equivalence or refinement
relation provided by a process algebra may be used to determine whether these different descriptions conform
to one another. More specifically, higher-level descriptions of system behavior may be related to lower-level ones
using the equivalence or refinement ordering supplied by the algebra. These relations are typically substitutive,
meaning that related systems may be used interchangeably inside larger system descriptions; this facilitates
compositional system verification, since low-level designs of system components may be checked in isolation
against their high-level designs.

This article surveys some of the main features of process algebra, and it develops along the following lines.
The next section introduces CCS, the process algebra that we use throught the article to illustrate the principles
we cover. The section following then introduces behavioral equivalences based on the notion of bisimulation,
a fundamental concept due to Milner and Park. We then show how two of these equivalences may be given
equational axiomatizations. The section following that introduces the failures/testing refinement relations and
provides inequational axiomatizations for them for CCS. The next section shows how these relations may be
computed for finite-state systems. The penultimate section surveys related work, and the final one summarizes
the contents of the article.
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2 PROCESS ALGEBRA

A Calculus of Communicating Systems

This section introduces the syntax and semantics of the process algebra A Calculus of Communicating Systems
(CCS). CCS will serve as a vehicle for illustrating the different ingredients that make up a process algebra
throughout the remainder of this article. Other process algebras are briefly discussed in the next to last section.

The Syntactic Form of CCS Processes. CCS provides a small set of operators that may be used to
construct system descriptions from definitions of subsystems. The basic building blocks of these descriptions,
and indeed of system definitions in all existing process algebras, are actions. Intuitively, actions represent
atomic, uninterruptible execution steps; some actions denote internal execution, and others represent potential
interactions with the environment that the system may engage in.

Actions in CCS. A binary, synchronous model of process communication underlies CCS, and the structure
of the set of actions reflects this design decision. Actions represent either inputs/outputs on ports or internal
computation steps. The former are sometimes called external, as they require interaction from the environment
in order to take place.

To formalize these intuitions, let � represent a countably infinite set of labels, or ports, not containing
the distinguished symbol τ. Then an action in CCS has one of the following three forms.

• α, where α ∈ �, represents the act of receiving a signal on port α.
• ᾱ, where α ∈ �, represents the act of emitting a signal on port α.
• τ represents an internal computation step.

In what follows we use ACCS to stand for the set of all CCS actions; that is,

We also abuse notation by defining ᾱ = α; note that τ̄ is not a valid action. We refer to the actions α and ᾱ,
where α ∈ �, as complementary, as they represent the input and output action on the same channel. The set
ACCS − {τ} then contains the set of external, or visible, actions; the only internal action is τ.

CCS Operators. Having defined the set ACCS of CCS actions, we now introduce the operators the process
algebra provides for assembling actions into systems. In what follows, we assume that p, p1, and p2 denote
CCS system descriptions that have previously been constructed, and we also assume a countably infinite set C
of process variables. CCS then includes six different mechanisms for building systems.

• nil represent the terminated process that has finished execution.
• Given a ∈ ACCS, the prefixing operator a. allows an action to be “prepended” onto an existing system

description. Intuitively, a.p is capable first of an a and then behaves like p.
• + represents a choice construct. The system p1 + p2 has the potential of behaving like either p1 or p2,

depending on the interactions offered by the environment.
• | denotes parallel composition. The system p1|p2 interleaves the execution of p1 and p2 while also permitting

complementary actions of p1 and p2 to synchronize; in this case, the resulting composite action is a τ.
• If L ⊆ ACCS − {τ} then the restriction operator \L permits actions to be localized within a system. Intu-

itively, p\L behaves like p except that it is disallowed from interacting with its environment using actions
mentioned in L. Note that τ can never be restricted.
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• The operator [f ] allows actions in a process to be renamed. Here f is a function from ACCS to ACCS that is
required to satisfy the following two restrictions:

When this is the case, f is called a renaming. The system p[f ] behaves exactly like p except that f is applied
to each action that p wishes to engage in.

• If C ∈ C, then C represents a valid system provided that a defining equation of the form C � p has been
given. Intuitively, C represents an “invocation” that behaves like p. This construct allows systems to be
defined recursively.

In process-algebraic parlance, system descriptions built using the above operators are often referred to as
terms or processes. We use PCCS to represent the set of all CCS processes. As examples, consider the following,
where we assume that � contains send, recv, msg, ack, get, put, get ack and put ack.

• The term send. .nil represents a system that engages in a sequence of two actions: an “input” on the
send channel, followed by an “output” on the recv channel.

• Consider the definition
M � put. .M + put ack.M
This defines a system M that may be thought of as a one-place communication buffer: given a “message”
on its put channel, it delivers it on its get channel, and similarly for acknowledgments. This example
illustrates how, although the version of CCS considered here does not explicitly support value passing, a
limited form of data exchange can be implemented by encoding values in port names. Here M can handle
two kinds of “data”: messages and acknowledgments.

• Now consider the following definitions, where M is as defined previously.
S � send. .ack.S
R � msg. . .R
P � (S[put/msg,get ack/ack]|M|R[get/
msg,put ack/ack])
\{get,put,get ack,put ack}
Prepresents the CCS term for a simple communications protocol consisting of a sender S, a receiver R,
and a medium M, a graphical depiction of which may be found in Fig. 1. The sender repeatedly accepts
“messages” on its send channel, outputs them on its msg channel, and then awaits an acknowledgment on
its ack channel. The receiver behaves similarly: it awaits a message on its msg channel, delivers it on its
recv channel, and then sends an acknowledgment via its ack channel. The relabeling operators are given in
the form a/b, c/d, . . .; intuitively, such a relabeling changes b (and its inverse) to a, d to c, and so on. Actions
not mentioned are unaffected. In this example the relabelings effect the “wiring” given in the figure. The
restriction operator ensures that only the sender and receive may interact directly with the medium.

The Operational Semantics of CCS Terms. In the account so far we have relied on the reader’s
intuition to understand the meaning of the CCS operators. To make these meanings precise, CCS and other
process algebras usually include an operational semantics that is intended precisely to define the “execution
steps” that processes may engage in. This semantics is usually specified in the form of a ternary relation,
→; intuitively, p

a→ p′ holds if system p is capable of engaging in action a and then behaving like p′. Process
algebras such as CCS typically define → inductively using a collection of inference rules for each operator.
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Fig. 1. The architecture of a sample communications protocol.

These rules have the following form.

A rule states that, if one has established the premises, and the side condition holds, then one may infer the
conclusion. This presentation style for operational semantics is often called SOS, for structural operational
semantics, and was devised by Plotkin (2).

The remainder of this section covers the SOS rules for CCS and shows how they may be used rigorously
to characterize the behavior of CCS system descriptions. We group the rules on the basis of the CCS operators
to which they apply.

nil. The CCS process nil has no rules; consequently, it is incapable of any transitions.
Prefixing. The prefixing operator contains one rule:

This rule has no premises, and the conclusion states that processes of the form a.p may engage in a and
thereafter behave like p. Note that the side condition is omitted; in such cases it is assumed to be “true”.

Choice. The choice operator has two symmetric rules:

These rules in essence state that a system of the form p + q “inherits” the transitions of its subsystems p
and q.

Parallel Composition. The parallel composition operator has three rules, the first two of which are symmetric:
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These rules indicate that | interleaves the transitions of its subsystems. The next rule allows processes
connected by | to interact:

According to this rule, subsystems may synchronize on complementary actions (i.e. inputs and outputs
on the same port). Note that the action produced as the result of the synchronization is a τ; since τ̄ is
undefined, this ensures that synchronizations involve only two partners.

Restriction. The restriction operator has one rule:

This rule, which includes a side condition, only allows actions not mentioned in L (or whose complements
are not in L) to be performed by p\L. Restriction in effect “localizes” actions in L, since the operator forbids
the system’s environment to interact with the system using them.

Relabeling. The relabeling operation has one rule:

As the intuitive account above suggests, p[f ] engages in the same transitions as p, the difference being
that the actions are relabeled via f .

Process Variables. The behavior of process variables is given by one rule:

This rule states that a system C behaves like its “body,” p, provided that C has been provided with a
definition of the form C � p.

Example: As stated above, the SOS rules for CCS define the single-step transitions that CCS processes may
engage in. As one example, consider the system M defined above. Using the prefixing rule, one may infer the
transition

put. .M
put→ .M

Using this fact and one of the rules for +, one may therefore infer that

put. .M + put ack. .M
put→ .M

This observation and the rule for constants then permit the following transition to be inferred: M
put→ .M

Using similar lines of reasoning, one may also deduce that

P
send→ (( .ack.S)[put/msg,get ack/ack]|M|R[get/msg,put ack/ack] \{get,get ack,put,put ack}
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Note that this is the only transition available to P, since the transitions of M and R all involve actions in the
restriction set.

CCS, Processes, and Labeled Transition Systems. The definition of → just given allows CCS
processes to be viewed as state machines of a certain type. To begin with, we show how CCS may be viewed as a
structure called a labeled transition system consisting of a collection of possible system states and transitions.

Definition 1. A labeled transition system (LTS) is a triple 〈Q, A, →〉, where Q is a set of states, A is a set of
actions, and → ⊆ Q × A × Q is a transition relation.

Some definitions of LTS also designate a start state. We refer to labeled transitions of this form (i.e.
quadruples of the form 〈Q, A, →, qS〉 where qS ∈ Q is the start state) as rooted labeled transition systems.

Perhaps surprisingly, the definitions of this chapter show that CCS may be viewed as single LTS. Recall
that PCCS represents the (infinite) set of syntactically valid CCS system definitions, and let →CCS be the
transition relation defined in the previous subsection. Then 〈PCCS, ACCS, →CCS〉 satisfies the definition of LTS.
This observation also holds for other process algebras and has two consequences. The first is that certain
definitions, such as those for behavioral equivalences and refinement orderings, may be given in a language-
independent manner by defining them with respect to LTSs. The second consequence is that that individual
system descriptions may be “converted” into rooted LTSs. Mathematically, for any CCS system p the quadruple
〈PCCS, ACCS, →CCS, p〉 constitutes a rooted LTS. As PCCS is infinite this observation is only of theoretical interest
until one observes that not every state in PCCS is “reachable” from p via →CCS. Consequently, we may instead
define another LTS, Mp, consisting only of CCS terms reachable from p via sequences of transitions. If Mp
contains only finitely many states, then it may be analyzed using algorithms for manipulating finite-state
machines. As an example, Fig. 2 contains the finite-state rooted LTS corresponding to the communication
protocol P described above.

Behavioral Congruences for CCS

Process algebras usually use a notion of behavioral congruence as a basis for system analysis. A congruence
for an algebra is an equivalence relation (i.e. a relation that is reflexive, symmetric, and transitive) that also
has the substitution property: equivalent systems may be used interchangeably inside any larger system.
Formally, define a context C[ ] to be a system description with a “hole,” [ ]; given a system description p, then,
C[p] represents the system obtained by “filling” the hole with p. Then an equivalence ≈ is a congruence for a
language if, whenever p ≈ q, then C[p] ≈ C[q] for any context C[ ] built using operators in the language. It
should be noted that relations that are congruences for some languages are not congruences for others.

In this section we study congruences for CCS with a view toward defining a relation that relates systems
with respect to their “observable” behavior. In each case we first define an equivalence relation on states in an
arbitrary LTS; since CCS may be viewed as an LTS, these relations may then be used to relate CCS system
descriptions. We then consider the suitability of the equivalence from the standpoint of the observable behavior
to which it is sensitive and study whether or not the relation is a congruence for CCS. In the first part of the
section we make no special allowance for the “unobservability” of the action τ, deferring its treatment to later.

The Inadequacy of Trace Equivalence. State machines have a well-studied equivalence, language
equivalence, that stipulates that two machines are equivalent if they accept the same sequences of symbols.
Rooted labeled transition systems do not contain “accepting states” per se, and consequently the notion of
language equivalence from finite-state machine theory cannot be directly applied. However, if we identify
every state in a rooted LTS as being accepting, then the “language” of the machine contains the execution
sequences, or traces, that a machine may engage in. Consequently, a reasonable first attempt at defining a
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Fig. 2. The state machine for P.

behavioral equivalence for CCS and other process algebras might be to relate two system descriptions (i.e.
states in the LTS 〈Q, A, →〉) exactly when the machines for them have exactly the same traces.

Before formalizing these notions, we first review some concepts from the theory of finite sequences. If A
is a set, then A∗ consists of the set of (possibly empty) finite sequences of elements of A. We use ε to represent
the empty sequence. One may now define traces, and trace equivalence, as follows.

Definition 2. Let 〈Q, A, →〉 be a labeled transition system.

(1) Let s = a1 . . . an ∈ A∗ be a sequence of actions. Then q
s→ q′ if there are states q0, . . ., qn such that q = q0, qi

ai+1→ qi+1, and q′ = qn.

(2) s is a strong trace of q if there exists q′ such that q
s→ q′. We use S(q) to represent the set of all strong traces

of q.
(3) p ≈S q exactly when S(p) = S(q).

We use the term strong traces because the definition given above does not distinguish between internal
and external actions; all may appear in a strong trace. In contrast, the traditional definition of traces treats τ

actions in a special manner.
Since CCS is a labeled transition system whose states are system descriptions, we may apply the definition

of ≈S to CCS systems. Unfortunately, ≈S suffers from severe deficiencies for CCS and other languages that
permit the definition of nondeterministic systems, as the following examples illustrate.
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(1) Let p be a.b.nil + a.c.nil, and q be a.(b.nil + c.nil). Then p ≈S q, as S(p) = S(q) = {ε, a, ab, ac}. However,
after an a transition q1 can perform both a b and a c, whereas p1 must reject one or the other of these
possibilities after each of its (two) a transitions.

(2) Let C1 � a.C1 and C2 � a.C2 + a.nil. Then C1 ≈S C2, and yet C2 can reach a “deadlocked” state after an
a-transition (i.e. a state that is incapable of any transitions) while C1 cannot.

The trouble with trace equivalence and nondeterministic systems is that even though two systems have
the same traces, they may go through inequivalent states in performing them. (This situation cannot occur in
deterministic systems.) In particular, trace-equivalent systems can have different deadlocking behavior.

Bisimulation Equivalence. The last observation in the previous section suggests that an appropriate
equivalence for CCS, and indeed for any language permitting the definition of nondeterministic systems, ought
to have a recursive flavor: execution sequences for equivalent systems ought to “pass through” equivalent states.
This intuition underlies the definition of bisimulation, or strong equivalence. The name of the equivalence stems
from the fact that it is defined in terms of special relations called bisimulations.

Definition 3. Let 〈Q, A, →〉 be a LTS. A relation R ⊆ Q × Q is a bisimulation if, whenever 〈p, q〉 ∈ R, the
following conditions hold for any a, p′, and q′:

(1) p
a→ p′ implies q

a→ q′ for some q′ such that 〈p′, q′〉 ∈ R.

(2) q
a→ q′ implies p

a→ p′ for some p′ such that 〈p′, q′〉 ∈ R.

Intuitively, if two systems are related by a bisimulation, then it is possible for each to simulate, or “track,”
the other’s behavior: hence the term bisimulation. More specifically, for a relation to be a bisimulation, related
states must be able to “match” transitions of each other by moving to related states. Two states are then
bisimulation-equivalent exactly when a bisimulation may be found relating them.

Definition 4. Systems p and q are bisimulation-equivalent, or bisimilar, if there exists a bisimulation R
containing 〈p, q〉. We write p ∼ q whenever p and q are bisimilar.

Since CCS may be viewed as a LTS description, one may use ∼ to relate CCS processes. As examples, we
have the following.

(1) a.b.nil + a.b.nil ∼ a.b.nil
(2) a.b.nil + a.c.nil � a.(b.nil + c.nil)
(3) C1 � C2.

Bisimulation equivalence has a number of pleasing properties. Firstly, for any labeled transition system
it is indeed an equivalence; that is, the relation ∼ is reflexive, symmetric, and transitive. Secondly, it can be
shown in a precise sense that two equivalent systems must have the same “deadlock potential”; this point is
addressed in more detail below. Thirdly, ∼ implies ≈S and coincides with it if the LTS is deterministic in the
sense that every state has at most one outgoing transition per action. Finally, ∼ is a congruence for CCS; if p
∼ q, then p and q may be used interchangeably inside any larger system.

However, ∼ does suffer from a major flaw from the perspective of CCS and other process algebras allowing
asynchronous execution: it is too sensitive to internal computation. In particular, the definition does not
take account of the special status that τ has vis-à-vis other actions: the systems a.τ.b.nil and a.b.nil are
not bisimulation-equivalent, even though an external observer cannot detect the difference between them.
Nevertheless, ∼ has been studied extensively in the literature, and for process algebras in which internal
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computation in one component can indeed affect the behavior of other components, it is a reasonable basis for
verification.

Deadlock, Logical Characterizations, and ∼. The preceding discussion states that ∼ relates systems
on the basis of their relative “deadlock potentials.” The remainder of this subsection makes this statement
precise by defining a logic, called the Hennessy–Milner logic (HML) (3), that permits the formulation of simple
system properties, including potentials for deadlock. The logic also characterizes ∼ in the following sense: two
systems are bisimilar if and only if they satisfy exactly the same formulas in the logic.

Syntax of HML. The definition of HML is parametrized with respect to a set A of actions. Given such a
set, the syntax of HML formulas can be given via the following grammar:

We use � for the set of all well-formed HML formulas.
The constructs in the logic may be understood as follows. First, it should be noted that formulas are

intended to be interpreted with respect to states in a labeled transition system. Then tt and ff represent the
constants “true” and “false” that hold of any state and no state, respectively, while ∧ and ∨ denote conjunction
(“and”) and disjunction (“or”), respectively. The final two operators are referred to as modalities, as they permit
statements to be made about the transitions emanating from a state; thus HML is a modal logic. A state
satisfies 〈a〉φ if a target state of one of its a-transitions satisfies φ, while [a]φ holds of a state if the target states
of all of its a-transitions satisfy φ.

Semantics of HML. In order to formalize the previous informal discussion, we first fix a labeled transition
system L = 〈Q, A, →〉 having the same action set as HML. We then define a relation |=L ⊆ Q × �; intuitively,
q |=L φ should hold if state q “satisfies” φ. The formal definition is given inductively as follows:

• q |=L tt for any q ∈ Q.
• q |=L ff for no q ∈ Q.
• q |=L φ1 ∧ φ2 if and only if q |=L φ1 and q |=L φ2.
• q |=L φ1 ∨ φ2 if and only if q |=L φ1 or q |=L φ2.
• q |=L 〈a〉φ if and only if q

a→ q′ and q′ |=L φ for some q′ ∈ Q.
• q |=L [a]φ if and only if for every q′ such that q

a→ q′, one has q′ |=L φ.

This definition includes some subtleties that deserve comment. To begin with, the formula [a]ff is satisfied
by any state not having an a-transition; such states vacuously fulfill the requirement imposed by [a]. Indeed,
a state with no a-transitions satisfies [a]φ for any φ. These facts also imply that a state incapable of any action
in the set {a1, . . ., an} will satisfy the formula [a1]ff ∧ ··· ∧ [an]ff . If such a state occurs in an environment that
requires one of these actions, then a deadlock results. In a related vein, a state satisfies 〈b〉tt if and only if it
has an b-transition; more generally, given a (nonempty) sequence of actions b1 . . . bm, a state includes b1 . . . bm
as one of its strong traces if and only if the state satisfies the formula 〈b1〉 ··· 〈bm〉tt. Finally, consider a state
satisfying a formula of the form
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Such a state satisfies this formula if it can engage in the sequence b1 . . . bm and arrive at a state that rejects
offers for interaction involving any of a1, . . ., an. In an environment capable of exercising the sequence b1 . . .

bm and then requiring an interaction involving one of a1, . . ., an, the given state could deadlock. It is in this
sense that HML permits the formulation of properties expressing potentials for deadlock.

HML and ∼. The relationship between HML and ∼ is captured by the following theorem, which states
that HML characterizes ∼ for labeled transition systems that are image-finite. A LTS is image-finite if every
state in the LTS has at most finitely many transitions sharing the same action label. In practice almost all
labeled transition systems satisfy this requirement; in particular, CCS does, provided the definitions of process
variables obey a small restriction.

Theorem 5. Let L = 〈Q, A, →〉 be an image-finite LTS, and let p, q ∈ Q. Then p ∼ q if and only if for all HML
formulas φ, either p |=L φ and q |=L φ or p �L φ and q �L φ.

On the one hand, this result and the previous discussion substantiate the claim that bisimulation equiv-
alence requires equivalent systems to have the same “deadlock potentials.” On the other hand, the theorem
provides a useful mechanism for explaining why two systems fail to be equivalent: one need only present a
formula satisfied by one system and not the other. The following provides examples illustrating this latter point
in the context of CCS.

• Consider the system p given by a.b.nil + a.c.nil and the system q given by a.(b.nil + c.nil). Since p � q,
there must be a formula satisfied by one and not the other. One such formula is 〈a〉[b]ff , which is satisfied
by p but not by q.

• Consider C1 and C2 given above. The formula 〈a〉[a]ff distinguishes them, as C2 satisfies it and C1 does not.

Observational Equivalence and Congruence for CCS. This subsection presents a coarsening of
bisimulation equivalence that is intended to relax the sensitivity of the former to internal computation. The
definition of this relation relies on the introduction of so-called “weak” transitions.

Definition 6. Let 〈Q, A, →〉 be a LTS with τ ∈ A, and let q ∈ Q.

(1) If s ∈ A∗, then ŝ ∈ (A − {τ})∗ is the action sequence obtained by deleting all occurrences of τ from s.

(2) Let s ∈ (A − {τ})∗. Then q s⇒ q′ if there exists s′ such that q
s

′

→ q′ and s = ŝ′.

Intuitively, ŝ returns the “visible content” (i.e. non-τ elements) of the sequence s; in particular, if a ∈ A,
then â = ε if a = τ, while â = a if a = τ. In addition, q s⇒ q′ if q can perform a sequence of transitions with the
same visible content as s and evolve to q′. In this case note that the sequence of transitions that is performed
is the same as s except that it potentially includes an arbitrary number of τ transitions in between the visible
actions of s. In particular, q ε⇒ q′ if a sequence of τ transitions leads from q to q′, while for a single visible action
a, q a⇒ q′ if q can perform an a, possibly “surrounded” by some internal computation, in order to arrive at q′.

We may now define weak bisimulations as follows.

Definition 7. Let 〈Q, A, →〉 be a LTS, with τ ∈ A. Then a relation R ⊆ Q × Q is a weak bisimulation if, whenever
〈p, q〉 ∈ R, the following hold for all a ∈ A and p′, q′ ∈ Q:

(1) If p
a→ p′ then q â⇒ q′ for some q′ such that 〈p′, q′〉 ∈ R.

(2) If q
a→ q′ then p â⇒ p′ for some p′ such that 〈p′, q′〉 ∈ R.



PROCESS ALGEBRA 11

States p and q are observationally equivalent, or weakly equivalent, or weakly bisimilar, if there exists a
weak bisimulation R containing 〈p, q〉. When this is the case, we write p ≈ q.

A weak bisimulation closely resembles a regular bisimulation; the only difference lies in the fact that
systems may use weak transitions to simulate normal transitions in the other system.

As CCS is a labeled transition system whose action set contains τ, the definition of ≈ may be used to
related CCS system descriptions. Doing so leads to the following observations:

• a.τ.bnil ≈ a.b.nil.
• For any p, τ.p ≈ p.

• Let Svc �= send. .Svc. Then P ≈ Svc, where P is the simple communications protocol described in the
previous section.

The last example illustrates the power of equivalences in relating system designs at different levels of
abstraction, since Svc could be thought of as a “high-level” design that P is intended to conform to.

Even though it ignores internal computation, observational equivalence still enjoys a similar degree of
deadlock sensitivity to bisimulation equivalence: a variant of HML can be defined that characterizes ≈ in
the same way that HML characterizes ∼. (This logic replaces the 〈a〉 and [a] modalities of HML by two new
operators, 〈〈a〉〉 and [[a]]; a state q |=L 〈〈a〉〉φ if there exists a q′ such that qˆq′ and q′ |=L φ, and similarly for [[a]].)
Consequently it would appear to be a viable candidate for relating CCS system descriptions. Unfortunately,
however, it is not a congruence for CCS. To see why, consider the context C[ ] given by [ ] + b.nil. It is easy to
establish that p ≈ q, where p is given by τ.a.nil and q by a.nil. However, C[p] ≈C[q]. To see this, note that C[p]
⇒ a.nil. This transition must be matched by a weak ε-labeled transition from C[q]. The only such transition
C[q] has is C[q] → C[q]. However, a.nil ≈ C[q], since the latter can engage in a b-labeled transition that cannot
be matched by the former.

This defect of ≈ arises from the interplay between + and the initial internal computation that a system
might engage in; in particular, the only CCS operator that “breaks” the congruence-hood of ≈ is +. Some
researchers reasonably suggest that this is an argument against including + in the language. Milner (1,4)
adopts another point of view, which we pursue in the remainder of this section, and that is to focus on finding
the largest CCS congruence ≈C that implies ≈. Such a largest congruence is guaranteed to exist (3).

Definition 8. Let 〈Q, A, →〉 be a LTS with τ ∈ A, and let p, q ∈ Q. Then p ≈C q if the following hold for all a ∈
A and p′, q′ ∈ Q:

(1) If p
a→ p′ then q a⇒ q′ for some q′ such that p′ ≈ q′.

(2) If q
a→ q′ then p a⇒ p′ for some p′ such that p′ ≈ q′.

Some remarks about this relation are in order. Firstly, it should be noted that for p ≈C q to hold, any
τ-transition of p must be matched by a τ⇒ transition of q; in particular, this weak transition must consist of
a nonempty sequence of τ transitions. Secondly, the definition is not recursive: the targets of initial matching
transitions need only be related by ≈. Finally, it indeed turns out that ≈C is a congruence for CCS and that it
is the largest CCS congruence entailing ≈. That is, p ≈C q implies p ≈ q, and for any other congruence R such
that p R q implies p ≈ q, p R q also implies p ≈C q. As examples, we have the following:

(1) a.τ.b.nil ≈C a.b.nil.

(2) τ.a.nil ≈ C a.nil, since the
τ→ transition of the former cannot be matched by a τ⇒ transition of the latter.

(3) For any p, q, if p ≈ q then τ.p ≈C τ.q.
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(4) Svc ≈C P, where Svc and P are as defined above.

Equational Reasoning in CCS

In addition to definitions of behavioral congruences, process algebras traditionally provide equational axioma-
tizations that permit equivalences to be established by means of simple syntactic manipulations. This section
presents such axiomatizations for CCS for both ∼ and ≈C.

Axiomatizing ∼. We present the axiomatization of ∼ for CCS in stages by considering successively
larger fragments of CCS. The first, and most basic, subset of CCS we investigate we term basic CCS.

Axiomatizing Basic CCS. Basic CCS contains only the nil, prefixing and + operators of CCS, and hence
it only allows the definition of “sequential” (i.e. no parallelism) terminating systems. The axiomatization of ∼
for basic CCS consists of the four rules given in Table 1.

Some words of explanation about these axioms are in order. Firstly, and for convenience, each rule we
present has a name; in this case, the rules are named (A1)–(A4). Secondly, each rule contains variables that
are intended to be arbitrary terms in the language under consideration. In (A2), for example, x, y, and z are
variables, and the rule should be read as asserting that regardless of the basic CCS terms substituted for these
variables, the indicated equivalence holds. Finally, axioms are used to construct equational proofs as illustrated
by the following example:

This proof establishes that a.(b.nil + nil) + (a.nil + a.b.nil) = a.b.nil + a.nil in four steps, where each step
represents the “application” of a rule to a subterm, yielding a new term. The development of such equational
proofs typically relies on four rules of inference reflecting the fact that = is reflexive, symmetric, and transitive
and that equal terms may be used interchangeably; these rules implicitly support the construction of proofs
such as the one above. We will not say more about this matter.

When a proof that t1 = t2 may be derived using axioms in set E, we write E � t1 = t2. Thus,

where E1 contains the four rules in Table 1.
Returning to the rules in Table 1, rules (A1) and (A2) assert that + is commutative and associative,

respectively. Rule (A3) indicates that nil is an identity element for +; these first three rules are sometimes
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refered to as the monoid laws, a monoid being any mathematical structure obeying these axioms. The final rule
is often called the absorption law, as it allows multiple copies of the same summand to be “absorbed” into one.

Metatheory. Given a proposed axiomatization for an equivalence relation, one may ask two questions:

(1) Is the axiomatization sound? That is, are all proved equalities true?
(2) Is the axiomatization complete? That is, are all true equalities provable?

Soundness is an absolute necessity; an unsound proof system is worse than useless, since it allows the
derivation of untrue information. Completeness is highly desirable, since once a proof system is shown to be
complete, one knows that there can be no “missing” axioms.

The following results establish the soundness and completeness of the axioms in Table 1 for ∼ over basic
CCS.

Theorem 9 (Soundness). Let t1 and t2 be terms in basic CCS, and suppose that E1 � t1 = t2. Then t1 ∼ t2.

Theorem 10 (Completeness). Let t1 and t2 be terms in basic CCS such that t1 ∼ t2. Then E1 � t1 = t2.

Axiomatizing Basic Parallel CCS. The next fragment of CCS we present an axiomatization for extends
basic CCS with the inclusion of the parallel composition operator, |. In what follows we call this fragment basic
parallel CCS.

As it turns out, rules (A1)–(A4) remain sound for basic parallel CCS, but they are obviously not complete,
since none of the rules mentions |. In order to devise a complete axiomatization for this subset of CCS we
therefore must add axioms for |. The new axiomatization is presented in Table 2.

The single new axiom, (Exp), is often referred to as the expansion law, as it shows how terms involving
| at the top level may be “expanded” into ones involving prefixing and summation. This axiom is the most
complicated rule for CCS, and it deserves further commentary. Firstly, the � notation needs explanation. Rules
(A1) and (A2) indicate that + is commutative and associative. This means that expressions of the form t1 +
··· + tn, while not strictly speaking expressions (since they are not fully parenthesized), nevertheless have a
precise meaning, since all parenthesizations of such expressions are equivalent. More generally, given a finite
index set I and an I-indexed set of terms of the form ti, we may define �i∈I ti as nil if I is empty and as the
summation of all the ti’s otherwise.

The second feature of (Exp) is that it may only be applied to a term t1|t2 if both t1 and t2 have a special
form: namely, each must be a summation of terms whose outermost operator involves prefixing. Technically
speaking, (Exp) is not a single axiom but an axiom schema, with each different value of I and J yielding a
different axiom.

Finally, the right-hand side of (Exp) consists of three summands, each corresponding to a different SOS
rule for |. The first summand allows the left subterm to “move”autonomously, and the second permits the same
behavior from the right subterm. The third summand handles possible synchronizations.



14 PROCESS ALGEBRA

To see how (Exp) is used in equation proofs, consider the following example, showing that E2 � nil|b.nil =
b.nil; recall that nil is the same as �i∈φ ti:

Indeed, for any term t in basic parallel CCS it follows that E2 � nil|t = t. It may also be shown that for any
terms t1, t2 and t3,E2 � t1|t2 = t2|t1 and E2 � t1|(t2|t3) = (t1|t2)|t3; consequently, | is commutative and associative.
Finally, as the strict application of (Exp) results in many occurrences of nil as a summand, these nil’s are
suppressed in practice, since they may be removed by applying (A3) appropriately.

It may be shown that E2 is a sound and complete axiomatization of ∼ for basic parallel CCS.
Axiomatizing ∼ for Finite CCS: Rule Set E3. The next fragment of CCS we axiomatize includes all

operators except for process variables; the literature refers to this fragment as finite CCS. Finite CCS extends
basic parallel CCS with the restriction and relabeling operators; the axioms for this subset of CCS appear in
Table 3.

The axioms for \L and [f ] only explain how these operators interact with nil, prefixing, and +. That no
rules are needed defining the interaction between | and \L, or \L and [f ], is a consequence of the fact that the
innermost occurrences of these so-called static operators (with nil, prefixing, and + being the dynamic ones)
can be eliminated by repeated use of the laws for the operator in conjunction with (A1)–(A4). This argument
may be formalized and used to show that rule set E3 constitutes a sound and complete axiomatization of ∼ for
finite CCS.

Rules for Recursive Processes. In order to axiomatize full CCS, we need rules for reasoning about
terms that include process variables. Unfortunately, results from computability theory imply that no complete
axiomatization can exist for ∼ for full CCS. (The set of equalities one can prove using any axiomatization can
only be recursively enumerable; however, ∼ for full CCS is known not to be recursively enumerable.) However,
two useful heuristics have been developed for handling process variables, and we review these here.

Both techniques take the form of inference rules and are therefore similar in form to the SOS rules
used to define the operational semantics of CCS. The first rule, called the unrolling rule, states that a process
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invocation is equivalent to the body of the invocation.

The second inference rule is often called the unique fixpoint induction principle, and stating it relies on
introducing the notion of equation and solution. Given a variable X and a CCS term t potentially containing X,
and only X, free, we call the expression X = t an equation. A CCS process p is a solution to X = t if and only if
p ∼ t[p/X], where t[p/X] is the CCS term obtained by replacing all occurrences of variable X by p. An equation
has a unique solution up to ∼ if for any two solutions p and q to the equation, p ∼ q. We may now formulate
the unique fixpoint induction rule as follows.

This rule allows one to conclude that two terms are equal, provided one can prove that they are both solutions
to the same equation and the equation has a unique solution.

A couple of comments about (UFI) are in order. Firstly, every equation X = t has a solution: given definition
X � t, it is easy to see that process X is a solution of X = t. Secondly, (UFI) is only useful insofar as one may
readily identify when equations have a unique solution. One large class of equations can be defined as follows.

Definition 11. Let X be a variable, and t be a CCS involving X. Then X is guarded in t if every occurrence of
X in t falls within the scope of a prefix operator.

For example, X is guarded in a.X and a.X|(b.(X + c.nil)), but it is not guarded in X + b.X. We now have
the following result.

Theorem 12. Let X be guarded in t. Then the equation X = t has a unique solution up to ∼.

As an application of (Unr) and (UFI), suppose we wish to prove that A and B are bisimilar, where A � a.A
and B � a.a.B. Consider the equation X = a.a.X. We can show that both A and B are solutions to this equation:

Since X is guarded in a.a.X, X = a.a.X has a unique solution, and consequently, using (UFI), one may conclude
that A = B.

Axiomatizing ≈C. This section presents an axiomatization for ≈C and CCS. Following the development
in the previous subsection, we first consider the finite-CCS fragment and then full CCS.

Axiomatizing Finite CCS. To begin with, it should be noted that the axioms in rule set E3 of Table
3 are also sound for ≈C, since whenever p ∼ q it immediately follows that p ≈C q. In order to obtain a full
axiomatization for ≈C, then, we need only add axioms reflecting the special status of the action τ in this
congruence.

One tempting axiom to add would be x = τ.x; however, this is not sound for ≈C, since it would allow one
to prove that τ.a.nil = a.nil, which is not valid. The correct rules are listed in Table 4 and are often called the
τ laws.

Rule (τ1) allows for the “absorption” of τ actions that immediately follows prefixing operations. Rule (τ2)
is more subtle, and may be understood as follows. First, note that any strong transition of τ.x is also a strong
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transition of x + τ.x. Secondly, any strong transition of x + τ.x, including any τ-transition, may be matched by
an appropriate weak transition in τ.x. The final rule, (τ3) is perhaps the most difficult to interpret; note that
the strong transition

of the right-hand side may however be matched by the weak transition

of the left-hand side.
Somewhat surprisingly, these rules suffice; the axiomatization E4 is sound and complete for ≈C and finite

CCS.
Axiomatizing Full CCS. The same observations for ∼ also hold for ≈C vis-à-vis sound and complete

axiomatizations: none can exist. The (Unr) and (UFI) rules nevertheless still hold, although the characterization
of which equations have unique fixpoints becomes somewhat more complex; guardedness no longer suffices. To
see this, consider the equation X = τ.X. X is guarded in τ.X, and yet any process capable of an initial τ action
is a solution to this equation up to ≈C. In particular, τ.a.nil ≈C τ.τ.a.nil and τ.b.nil ≈C τ.τ.b.nil, and yet τ.a.nil
≈ C τ.b.nil.

One potential solution to this problem is to require a stronger condition than guardedness in equations.

Definition 13. Let X be a variable and t a CCS term involving X. Then X is strongly guarded in t if every
occurrence of X falls within the scope of a prefixing operator a where a = τ.

That is, X is strongly guarded in t if a prefix operator involving a visible action “guards” each occurrence
of X in t. Note that X is not strongly guarded in τ.X. However, even if X is strongly guarded in t, it does not
follow that X = t has a unique solution up to ≈C. To see this, consider the equation

X is strongly guarded in the right-hand side of the equation, and yet it can be shown that e.g. τ.b.nil and τ.c.nil
are both solutions. We may nevertheless solve this problem by requiring the following.

Definition 14. Let X be a variable, and t a CCS term involving X. Then X is sequential in t if no occurrence of
X in t falls within the scope of a parallel composition operator.

As examples, X is sequential in a.X and τ.X + (b.nil|c.nil) but not sequential in a.X|b.nil. The following
can now be proved.
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Fig. 3. Proving that P = Svc.

Theorem 15. Let X = t be an equation with X strongly guarded and sequential in t. Then X = t has a unique
solution up to ≈C.

We conclude this section with an extended example illustrating the use of the axioms. Recall the simple
communications protocol P given in the subsection “The Syntactic Form of CCS Processes” and the specification
Svc given below Definition 7. We may establish that E4 ∪ {(Unr), (UFI)} � P = Svc as follows. First note that X
is strongly guarded and sequential in send.recv.X and consequently has a unique solution up to ≈C. Therefore,
we need only show that both P and Svc are solutions to this equation; then, by (UFI), P = Svc. Now, Svc =
send. .Svc by (Unr)

so Svc is a solution. As for P, we can prove that
P = (S[put/msg,get ack/ack] |M|R[get/msg,put ack/ack])
\{get,put,get ack,put ack}
using (Unr), so it suffices to prove that the right-hand side is a solution to the given equation. The proof

of this may be found in Fig. 3.
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Refinement Orderings for CCS

This article has so far concentrated on the role of behavioral equivalences in process algebra in general, and
CCS in particular. We now shift our attention to refinement orderings, and to a particular class of refinement
orderings that are often referred to as the failures/testing orderings. This section presents a definition of these
orderings and gives axiomatizations for them for CCS.

The Failures/Testing Orderings. The motivation for the failures/testing orderings arises from two
sources. On the one hand, equivalences sometimes impose overly severe restrictions on a designer defining a
lower-level design that is intended to implement a higher-level one. In particular, equivalences require that
the behaviors of the designs be identical; this precludes a higher-level design offering several possibilities
for behavior or including “don’t-care points.” This suggests that an ordering in which a more deterministic
system is larger, or better, than a less deterministic one would be desirable. On the other hand, while ≈ and
≈C abstract from internal computation and are sensitive to deadlock, it can be argued that they are overly
sensitive to unobservable differences in the branching structure of systems. As an example, consider the two
CCS definitions P � a.b.c.nil + a.b.d.nil and Q � a.(b.c.nil + b.d.nil). These two systems are not related by
≈; the formula [[a]]〈〈b〉〉〈〈c〉〉tt is satisfied by the latter and not the former. However, a user ought not to be
able to distinguish them, since to a user it does not matter when the nondeterministic choice that ultimately
eliminates the possibility of c or d is made.

The failures (5,6) and testing (7,8) orderings differ substantially in their approaches to addressing these
issues, and yet the resulting orderings turn out to coincide. In this section we follow the failures presentation
given in Ref. 9 because it requires the introduction of less notation given the machinery we have already
developed. We need the following definitions.

Definition 15. Let 〈Q, A, →〉 be a LTS with τ ∈ A, let q ∈ Q, and let s ∈ (A − {τ})∗ be a sequence of visible
actions.

(1) q s⇒ holds if there exists q′ such that q s
′

⇒ q′. In this case we say s is a trace of q. L(q) denotes the set of all
traces of q.

(2) q refuses B ⊆ A − {τ} if |B| < ∞ and for all b ∈ B, there exists no q′ such that q b⇒ q′.
(3) q is divergent, written q ⇑, if and only if there exists an infinite sequence q0, q1, . . . such that q = q0 and qi

τ→ qi+1 for all i ≥ 0. q ⇑ s if and only if there exists a prefix s′ of s and state q′ such that q s
′

⇒ q′ and q′ ⇑.
When this is the case we say q diverges on s. We write q ⇓ s if q ⇑ s is not true and say that q converges on s
in this case.

(4) A state q is totally convergent if q ⇓ s holds for all sequences s.
(5) Let s be a sequence of visible actions and B ⊆ A be finite. Then 〈s, B〉 is a failure for q if either q ⇑ s or there

is a q′ such that q s⇒ q′ and q′ refuses B. We use F(q) to represent the set of all failures of q.

The failures/testing ordering rely on the notions of trace, refusal, divergence, and failure. Intuitively, a
trace of a state consists of a sequence of visible actions the state can perform, with arbitrary amounts of internal
computation allowed in between. A refusal consists of a finite set of visible actions that a state is incapable of
engaging in, no matter how much internal computation is performed. A state is divergent if it can engage in
an infinite sequence of internal transitions, thereby ignoring its environment; q ⇑ s holds if, in the course of
“executing” s, q could enter a divergent state. Finally, a failure consists of a sequence of actions and a set of
“offered actions” that a state can fail to complete, either by diverging in the course of performing the sequence
or completing the sequence and arriving at a state that is incapable of responding to the offered actions. As
examples, consider the following.
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• The pair 〈a, {b}〉 is a failure of a.b.nil + a.c.nil and of a.(τ.b.nil + τ.c.nil) but not of a.(b.nil + c.nil). Both of
the former processes have a⇒ transitions to c.nil, which refuses {b}; the last process has no such transition.

• Consider D � τ.D; then D ⇑ s for any sequence s of visible actions, and consequently 〈s, B〉 is a failure for any
D for any sequence s and finite set of actions B.

The sets L(q) and F(q) satisfy a number of properties. For example, the empty sequence ε is in L(q) for
any q. In addition, if q ⇓ s then s ∈ L(q) if and only if there is a B such that 〈s, B〉 ∈ F(q). It should also be noted
that if 〈s, B〉 ∈ F(q) and B′ ⊆ B then 〈s, B′〉 ∈ F(q). Readers are referred to Ref. 9 for other such properties.

We now introduce the following orderings and equivalences.

Definition 16. Let 〈Q, A, →〉 be a LTS, with p, q ∈ Q.

(1) p �L q if L(p) ⊆ L(q); p ≈L q if p �L q and q �L p.
(2) p �F q if F(p) ⊇ F(q); p ≈F q if p �F q and q �F p.

The ordering �L and �F capture different aspects of system behavior. The former relates systems on the
basis of their execution sequences; a “lesser” system has fewer execution possibilities. The latter identifies
failure as undesirable; consequently, a “lesser process” has more possibilities for failure than a “greater one.”
In this case failure can either be the result of nondeterminism or of divergence; the more nondeterministic or
divergent a system is, the more failures it has.

Both orderings are preorders on Q; that is, they are reflexive and transitive relations. The relation �L is
also referred to as the may preorder in Refs. 7 and 8, while �F is called the must preorder. This terminology
derives from connections with process testing: p �L q holds if and only if every test that p may pass may also
be passed by q, in a precisely defined sense, while p �F q holds if and only if every test that p must pass must
also be passed by q. In addition, if q is totally convergent, then p �F q implies that q �L p. This follows because
for any failure 〈s, B〉 of q, one has s ∈ L(q).

Finally, it should be noted that in CCS, the system Div given by Div � τ.Div is a least element for both �L
and �F. That is, Div �L p and Div �F p for any p.

For many process algebras �L and �F are precongruences: “larger” systems may be substituted for
“smaller” ones inside any context, with the resulting overall system being larger after the substitution. For
CCS, �L is a precongruence, but �F is not, owing the effect that initial internal computation can have on the
+ operator. As was the case with ≈, one may identify the largest precongruence �C

F contained within �F for
CCS; it turns out that for CCS systems p and q, p �C

F q if and only if the following hold: p �F q, and p p// τ<→
implies q p// τ→.

The relations �F and �C
F have attracted much more attention in the literature than �L, because of certain

full-abstractness results than have been established for the former. In particular, for a number of languages it
turns out that �F/�C

F are the coarsest (i.e. most permissive) preorders that preserve deadlock information, in
a precisely defined sense. Accordingly, the remainder of this section is devoted to a study of �C

F.
Axiomatizing �C

F for CCS. As was the case for ∼ and ≈C, �C
F has been axiomatized for (fragments

of) CCS. We present the axiomatization for finite CCS below and talk briefly about mechanisms for handling
recursive processes.

Finite CCS. The axiomatization for finite CCS appears in Table 5. Unlike the other axiomatizations we
have seen, it is an inequational axiomatization: it is used to prove statements of the form p ≤ q rather than p
= q. The axioms therefore include inequalities; equalities such as rule (F1) should be interpreted as shorthand
for two inequalities, one in each direction.
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To see how these rules may be used to derive results, we give a sample proof of E4 � a.b.nil + a.c.nil ≤
a.b.nil:

The rules in Table 5 are sound and complete for �C
F for finite CCS.

Reasoning about Recursive Processes. To handle recursive processes, one may use rules (Unr) and
(UFI) as given in the subsection “Rules for Recursive Processes.” A sufficient condition for the existence of
unique solutions to equations includes a requirement of divergence-freedom along with the strong-guardedness
and sequentiality requirements needed for ≈C.

Interpreting systems as sets of failures also permits the use of reasoning techniques from fixpoint theory
in denotational semantics (8). This is because the collection of sets of failures can be turned into a domain. We
do not pursue this topic further, however.

Computing Behavioral Relations for Finite-State Systems

The previous sections have developed several semantic equivalences and refinement orderings in the context of
CCS, and (in)equational axiomatizations have been presented for determining when two systems are related.
However, the equational reasoning supported by these axiomatizations is tedious to undertake by hand. When
the systems in question are finite-state, meaning that the rooted labeled transition systems for them contain
only finitely many distinct states, these relations can be computed algorithmically. This section discusses some
of the ideas underlying these decision procedures.

Computing Behavioral Equivalences. Most behavioral equivalences can be computed by combining
appropriate LTS transformations with an algorithm for calculating bisimulation equivalence (10). Accordingly,
we first discuss techniques for deciding ∼ and then show how these methods may be used in the computation
of other equivalences as well.

Calculating ∼. Algorithms for ∼ come in two basic varieties. Global algorithms require the a priori
construction of the state spaces of the systems in question before any analysis can be undertaken. On-the-fly
approaches, on the other hand, combine analysis with state-space construction. The latter algorithms offer
obvious potential benefits: when systems are inequivalent, this may be determined by examining only a subset
of their states. These approaches are relatively new, however, and have not proven themselves in practice.
Global approaches also enjoy better asymptotic efficiency than existing on-the-fly methods. Consequently, we
only discuss the former.

Global approaches to calculating ∼ over a finite-state LTS (11–13) compute the equivalence classes of ∼
using approximation-refinement techniques. Typically, these algorithms begin with a very coarse approxima-
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tion to ∼: they assume that every state is related to every other state, meaning that there is one equivalence
class. Existing classes that are found to contain inequivalent states are then split; the determination of inequiv-
alence relies on examining the transitions emanating from states and the equivalence classes containing the
targets of these transitions. When no more splitting is possible, the final equivalence classes indeed represent
the equivalence classes of ∼ over the given LTS. These algorithms are sometimes called partition-refinement
algorithms, as the collections of equivalence classes are maintained as partitions (i.e. lists of disjoint sets of
states). The best algorithm has complexity O(m log n), where m represents the number of transitions in the
LTS and n the number of states (11,13).

In order to use a partition-refinement algorithm to determine whether two CCS expressions are bisimilar,
one would first construct the labeled transition system whose states consist of all CCS expressions reachable
from the two in question. A partition-refinement algorithm may then be applied to this LTS, and if the two
expressions in question ever wind up in different equivalence classes, they are inequivalent. Otherwise, if the
refinement procedure terminates with them in the same class, then they are equivalent.

Partition-refinement algorithms may also be used to minimize LTSs with respect to ∼. This is done by
replacing states by equivalence classes; the resulting LTS contains exactly one state per equivalence class.

Computing Other Equivalences. As the introduction to this section indicates, a variety of other behav-
ioral equivalences may be computed by first applying a transformation to the underlying LTS and then using
an algorithm for ∼. Here we present two examples of this approach.

Calculating ≈. To calculate the ≈-equivalence classes of a LTS, one may alter the LTS by replacing the
a→-transitions by â⇒-transitions and then computing ∼ over the transformed LTS. A similar approach works for
≈C, although one must first transform the LTS to ensure that the start state contains no incoming transitions

and then replace
a→-transitions from the start state by a⇒-transitions (and not â⇒-transitions).

Computing ≈S. To determine whether two states in a given finite-state LTS are strong trace equivalent,
one may apply the well-known subset construction to determinize the LTS (14) and then compute the equiv-
alence classes of ∼. The two states in question will have the same strong traces if and only if the subsets
containing only these states are bisimilar in the transformed LTS.

Computing Refinement Orderings. The calculation of refinement orderings follows a similar pattern
to that of equivalences: a given ordering can be computed by combining an LTS transformation with a procedure
for a certain generic ordering (10,15). The generic ordering is somewhat less standard than ∼, but in many
cases the simulation ordering may be used. In the remainder of this section we define this ordering and indicate
very briefly how it is used as a basis for computing other relations.

The Simulation Ordering. Given an LTS 〈Q, A, →〉, a simulation is a relation R ⊆ Q × Q with the
property that when 〈p, q〉 ∈ R, then the following holds for all a ∈ A:

So if p is related to q in a simulation, then q can “simulate” the behavior of p by “matching” its transitions. The
simulation ordering then may be defined as follows: p � q if and only if there exists a simulation R with 〈p, q〉
∈ R.

Algorithms for computing � on finite-state LTSs follow a similar strategy to that for ∼ in that they use
approximation refinement. Initially, every state is assumed to be related to every other state; then, as pairs of
states are found not to be related because the first has a transition that cannot be “simulated” by the second,
they are removed. When no more pairs can be removed, the remaining pairs constitute � for this LTS.

Since � is not an equivalence, partitions cannot be used as data structures, and the resulting algorithms
exhibit somewhat worse worst-case performance: the best algorithms use O(mn) time, where m is the number
of transitions and n the number of states (15).
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Computing Other Orderings. As an example of how an algorithm for � may be used in the calculation
of other relations, consider the trace-containment relation: p �L q if and only if L(p) ⊆ L(q). This relation may

be computed by first replacing
a→ transitions by â⇒ ones, determinizing the resulting LTS using the subset

construction, and then applying a � algorithm to the result. Other relations, including the failures/testing
ordering, may be computed similarly (10).

Tool Support. Several tools have been implemented that include implementations of algorithms for
different behavioral relations. Noteworthy examples include Aldébaran (16), the Concurrency Workbench (17),
and FDR (18).

Other Process Algebras

The presentation in this article has focused on a particular process algebra, CCS, and on semantic relations
for CCS. In this section we discuss other process algebras and process-algebra-oriented results. Since 1980
over 1000 journal and conference papers have been published in the area; as a result, the discussion here will
necessarily be incomplete. Interested readers are referred to the forthcoming Handbook of Process Algebra, to
be published by Elsevier, for a more complete account of the state of the art.

Schools of Process Algebras. The discussion in this article has followed the approach advocated by
the Edinburgh school of process algebra, so named because CCS was invented at the University of Edinburgh.
The Edinburgh school places primacy on operational semantics, with equivalences and refinement relations
then defined on labeled transition systems resulting from these operational definitions. The chief virtue of this
approach lies in its insistence on understanding language constructs operationally; this emphasis accords well
with intuitions about system behavior. The drawback of this approach arises from the fact that since operational
equivalences and refinement orderings are defined on language-independent structures (i.e. labeled transition
systems), determining which relations are congruences becomes nontrivial.

Two other schools of process algebra have also arisen. The Amsterdam school focuses on equational axioms
as the basis for defining the semantics of languages (19). In this approach one defines the syntax of an algebra
and then provides a set of axioms that one uses to deduce equivalences. Traditional techniques from universal
algebra may then be used to construct models of these equational theories. These constructions ensure that
the model-theoretic notions of equivalence are congruences for the language in question; the drawback is that
equations obscure the operational intuitions underlying operators in the algebra.

The Oxford school focuses on denotational semantics as the basis for defining process algebras (6). The
Oxford approach relies on defining a mathematical space of system meanings and then interpreting algebraic
operators as functions in this space. The space most studied by Oxford adherents consists of failure sets as
presented in the section “Refinement Orderings for CCS” above; process constructors then become functions
mapping sets of failures to sets of failures. As with the Amsterdam approach, the virtue of this methodology
is that the semantic equivalence inherited from the semantic space is guaranteed to be a congruence for the
language; additionally, traditional techniques from denotation semantics may be used to define the semantics
of recursive processes in a mathematically elegant fashion. The drawback arises from the paucity of operational
insight the semantics provides for the operators.

Operators in Traditional Algebras. The different schools just mentioned have also traditionally fo-
cused on including somewhat different operators in their algebras. CCS includes a parallel composition operator
that supports binary synchronous communication. The Algebra of Communicating Processes (ACP) algebra de-
veloped by the Amsterdam school, on the other hand, allows the specific communication mechanism to be
parametrized; by including different axioms one obtains different synchronization behavior. ACP also includes
a traditional sequential composition operator that generalizes the prefixing construct of CCS. Theoretical CSP
(TCSP), the process algebra studied by the Oxford school, features multiway rendezvous as its model of in-
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teraction; a hiding operator allows actions to be converted into internal actions. Another novel feature of this
language is its separation of choice (i.e. +) into two constructs, external and internal. The former can only
be resolved by visible actions, while the latter is always resolved autonomously, without interaction from the
environment.

These algebras have also inspired the development of LOTOS, a process algebra with explicit data passing
that is an ISO standard protocol specification notation (20). LOTOS combines CSP-like operators with a facility
for user-defined data types; as in CCS actions may be categorized as inputs or outputs, with the former extended
with a capability for binding incoming values to variables and the latter including specific values to be output.

Algebras for Synchrony. Traditional process algebras, including those mentioned above, typically
include a synchronous model of communication but an asynchronous model of execution. That is, processes
interact by synchronizing, but not every process in a system need execute in order for a system transition
to take place. This makes traditional algebras useful for modeling loosely coupled systems, but it renders
them problematic as vehicles for describing synchronous, globally clocked systems such as traditional digital
circuits. To overcome this difficulty, several researchers have proposed algebras whose parallel composition
operator requires all subsystems to engage in transitions in order the system to perform an execution step.
The best-known of these is synchronous CCS (21), whose action set forms a commutative group whose product
operator is interpreted as “simultaneous execution.” Other synchronous process algebras of note include Meije
(22) and CIRCAL (23); the latter was specifically developed for reasoning about circuits. All three algebras
use equivalences based on strong bisimulation; weak equivalences such as observational equivalence will
necessarily not be congruences for such languages, since the internal computation a subsystem may engage in
will directly affect the transitions available to the surrounding system.

Metaalgebraic Results. The algebras just described feature a variety of different operators; in each
case, the Edinburgh approach (which has become dominant) requires the proof of congruence results for
bisimulation. Some researchers have addressed this problem by proving that, provided the SOS rules defining
a langauge’s operators satisfy a certain format, bisimulation is guaranteed to be a congruence (24,25,26). Other
results show how equational axiomatizations for languages satisfying these requirements may be automatically
derived (27).

Other Semantic Relations. Researchers have also investigated relations other than the ones pre-
sented here. Branching bisimulation (28) aims to remedy a perceived defect of observational congruence that
allows transitions in one process to be matched by weak transitions in the other that permit inequivalent states
to “transitioned through.” This equivalence is somewhat finer (i.e. relates fewer systems) than observational
equivalence, and a sound and complete axiomatization for finite ACP terms, and algorithms for finite-state
systems, have been developed. Ready simulation (24) represents a refinement ordering that is fully abstract for
deadlock when the language considered includes all operators definable using SOS rules of a certain format. A
number of other relations have also been proposed; the interested reader is referred to Ref. 29 for a thorough
survey and taxonomy.

Capturing Other Features of System Behavior. Traditional process algebras have focused on non-
determinism and synchronization as the essential behavioral features distinguishing concurrent systems from
sequential ones. Inspired by the elegance of the resulting theories, researchers have attempted to develop
operational theories that allow other aspects of system behavior to be captured (in)equationally. One strand
of inquiry has focused on so-called true concurrency. One criticism of traditional process algebras is that they
“reduce” concurrency to nondeterminism by interpreting parallelism as interleaving. Truly concurrent models
instead attempt to capture “true” notions of simultaneity. A number of different theories have been developed,
and a full account is beyond the scope of this chapter. A good starting point, however, may be found in Ref.
30, which introduces the notion of location of a transition explicitly into the operational semantics of CCS and
develops a bisimulation-based theory of equivalence based on this.

Other work has focused on including notions of priority into the operational semantics of process algebras.
The first such work (31) extends ACP action with priority and and operator for “enforcing” priorities. In Ref. 32
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CCS actions are enriched with a two-level priority structure, with high-priority actions intuitively being thought
of as “interrupts.” Camilleri and Winskel (43) opt instead for a prioritized choice operator that gives precedence
to one choice over another when both are enabled. Also worthy of note is the resource-oriented process algebra
ACSR (33), which allows the modeling of resource contention in which different resource requests may be given
different priorities. In all of these cases, semantic equivalences based on strong bisimulation are defined and
axiomatizations developed.

Process algebras for real-time systems have also been developed. Generally speaking, these theories
introduce special “time-passing” actions, with all other actions being viewed as instantaneous. The Algebra of
Timed Pocesses (34) pioneered this approach, with useful variants being proposed in Ref. 35.

Another area of ongoing research involves the incorporation of probabilistic behavior into systems, with a
view toward providing a theory in which quality-of-service statements can be made. One strand of this research
augments traditional process algebra with notions of probabilistic choice in which nondeterminism is resolved
probabilistically (36,37,38). Other pieces of work incorporate notions of time and probability in order to model
stochastic systems, in which the time needed to perform a given action is drawn from a continuous probability
distribution. Noteworthy examples include Refs. 39 and 40.

Conclusion

This article has surveyed results in the area of process algebra. It has presented several behavioral equivalences
and refinement orderings, and it has shown how they may be axiomatized in the setting of CCS (4). Decision
procedures for finite-state systems have also been touched on. The treatment has necessarily been sketchy,
and much interesting material has been omitted, including a variety of case studies illustrating different
applications of process algebra. Interested readers may turn to Refs. 18, 41, and 42 as a starting point for
investigating this topic.
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