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HOMOTOPY ALGORITHM FOR RICCATI EQUATIONS

In modern control an H2 cost function is used to measure the response of a controlled system to wide band
disturbances while an H∞ cost function is used to measure the response to narrow band disturbances and can
also be used to account for unstructured uncertainties in the design model. To take into account controller
processor limitations, it is also desired to prespecify the order of the controller in the design process. Hence, an
important problem in modern control design is the synthesis of fixed-order controllers that are optimized subject
to these H2 and H∞ constraints. This synthesis problem requires the solution of a challenging optimization
problem, and this article reviews a solution approach based on homotopy methods.

There are many approaches to solving both full- and reduced-order linear state equation, quadratic
objective function, Gaussian noise (LQG) controller design problems with an H∞ constraint on disturbance
attenuation. The Riccati equation based approach enforces the H∞ constraint by replacing the covariance
Lyapunov equation by a Riccati equation whose solution gives an upper bound on H2 performance. Numerical
algorithms, based on homotopy theory, solve the necessary conditions for a minimum of the upper bound on
H2 performance subject to the H∞ constraint given by the Riccati equation. A summary of the properties
of Riccati equations and numerical algorithms for solving them is also included. The homotopy algorithms
are based on a minimal parameter formulation: Ly, Bryson, and Cannon’s 2 × 2 block parametrization. An
overparametrization formulation is also proposed. Numerical experiments suggest that the combination of
a globally convergent homotopy method and a minimal parameter formulation applied to the upper bound
minimization gives excellent results for mixed-norm H2/H∞ synthesis. The nonmonotonicity of homotopy zero
curves is demonstrated, proving that algorithms more sophisticated than standard continuation are necessary.
To achieve high computational performance the homotopy algorithm is also parallelized to run in distributed
environments such as a network of Unix workstations or an Intel Paragon parallel computer. Comparing
results on the workstations with the results from the Intel Paragon, the study concludes that utilizing Unix
workstations can be a very cost-effective approach to shorten computation time. Furthermore, this economical
way to achieve high performance computation can easily be realized and incorporated in a practical industrial
design environment.

The Riccati equation is central to modern linear-quadratic estimation and control design. Many problems
in control analysis and synthesis can be formulated in terms of Riccati equations, with the H2/H∞ mixed-norm
controller synthesis problem being one of them.

The H2/H∞ mixed-norm controller synthesis problem provides the means for simultaneously addressing
H2 and H∞ performance objectives. In practice, such controllers provide both robust performance (via sub-
optimal H2) and robust stability (via H∞). Hence mixed-norm synthesis provides a technique for trading off
performance and robustness, a fundamental objective in control design.

The H2/H∞ mixed-norm problem has been addressed in a variety of settings. The Riccati equation based
approach was given in (1,2) which utilized an H2 cost bound as the basis for an auxiliary minimization problem.
Necessary conditions for optimality within a full- and reduced-order fixed-structure setting were then used to
characterize feedback control gains. These necessary conditions have the form of coupled Riccati equations in
both the full- and reduced-order cases. In related work (3,4), the H2 cost bound in the case of equalized H2 and
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H∞ performance weights was shown to be equal to an entropy cost functional. The centralized controller was
then shown to yield a full-order controller that optimizes the entropy cost.

An additional treatment in (5) using a bounded power characterization of the H2 norm obtained both
necessary and sufficient conditions for optimality. Finally, a convex optimization approach was developed in (6)
for the full-order problem.

The purpose of this article is to develop numerical algorithms for solving the Riccati equation based
mixed-norm H2/H∞ problem addressed in (1,2). Basically, the modified cost function is optimized subject to
constraints, including a coupled Riccati equation. The approach here is based upon homotopy methods which
have been applied to related fixed-structure problems in (7,8,9,10,11). Using globally convergent homotopy
techniques similar to those applied to the combined H2/H∞ model reduction problem (8,9,10,11), and using a
controller parametrization suggested by Ly, Bryson, and Cannon, results are obtained for the combined H2/H∞

full- and reduced-order controller synthesis problems. Another parametrization, the input normal Riccati form,
was used in (9) and its details will not be repeated here. However, such controller parametrizations, which use
the minimum possible number of parameters, make structural assumptions about the optimal controller which
may not be valid in a particular case. Invalidity of these assumptions manifests itself in numerical instability,
and failure to converge. An over-parametrization formulation which does not make structural assumptions is
also proposed. However, over-parametrization introduces singularity of the homotopy map at the solution and
the algorithm may fail for a high dimensional system.

These homotopy methods utilize the solution of a related easily solved problem as the starting point. In
the case of full-order H2/H∞ control with unequalized weights, the starting point is provided by the standard
LQG solution. For the reduced-order problem, the starting point is obtained by constructing a low authority,
nearly nonminimal LQG compensator (12).

The theoretical foundation of all probability-one globally convergent homotopy methods is given by the
following definition and theorem from differential geometry.

Definition. Let U ⊂ Rm and V ⊂ Rp be open sets, and let ρ U × [0, 1) × V → Rp be a C2 map. ρ is said to be
transversal to zero if the Jacobian matrix Dρ has full rank on ρ− 1(0).

Transversality Theorem. If ρ(a, λ, x) is transversal to zero, then for almost all a ∈ U the map

is also transversal to zero, that is, with probability one the Jacobian matrix Dρa(λ, x) has full rank on ρ− 1
a(0).

To solve the nonlinear system of equations

where f : Rp → Rp is a C2 map, the general probability-one homotopy paradigm is to construct a C2 homotopy
map ρ: U × [0, 1) × Rp → Rp such that

(1) ρ(a, λ, x) is transversal to zero, for each fixed a ∈ U,
(2) ρa(0, x) = ρ(a, 0, x) = 0 is trivial to solve and has a unique solution x0,
(3) ρa(1, x) = f (x),
(4) the connected component of ρ− 1

a(0) containing (0, x0) is bounded.

Then (from the transversality theorem) for almost all a ∈ U there exists a zero curve γ of ρa, along which
the Jacobian matrix Dρa has rank p, emanating from (0, x0) and reaching a zero x̄ of f at λ = 1. This zero curve
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γ has no bifurcations (i.e., γ is a smooth 1-manifold), and has finite arc length in every compact subset of (0, 1)
× Rp. Furthermore, if Df (x̄) is nonsingular, then γ has finite arc length. The complete homotopy paradigm is
now apparent: Construct the homotopy map ρa and then track its zero curve γ from the known point (0, x0) to
a solution x̄ at λ = 1. ρa is called a probability-one homotopy because the conclusions hold almost surely with
respect to a, that is, with probability one. Since the vector a, and indirectly the starting point x0, are essentially
arbitrary, an algorithm to follow the zero curve γ emanating from (0, x0) until a zero x̄ of f (x) is reached (at λ =
1) is legitimately called globally convergent.

There is considerable confusion in the control literature over the terms continuation, homotopy, and glob-
ally convergent. A careful discussion of the distinct meanings of these terms can be found in (13). Continuation
refers to the standard classical technique of solving ρ(θ, λ̄ + �λ) = 0 with fixed �λ > 0, given a solution (θ̄, λ̄):
ρ(θ̄, λ̄) = 0. It is implicitly assumed that θ = θ(λ), that is, the zero curve γ of ρ(θ, λ) being tracked in (θ, λ) space
is monotone in λ. Other tacit assumptions are that γ does not bifurcate or otherwise contain singularities. The
most general homotopy methods make no such assumptions, and include mechanisms to deal with bifurcations
and turning points. In particular, homotopy methods do not assume that the zero curve γ is monotone in λ, that
is, θ = θ(λ). Globally convergent means that the zero curve γ reaches a solution θ̄, ρ(θ̄, 1) = 0, from an arbitrary
starting point θ0, ρ(θ0, 0) = 0. A continuation or homotopy algorithm is not a priori globally convergent. A partic-
ular class of homotopy methods, known as probability-one homotopy methods, are provably globally convergent
under mild assumptions (14), and their zero curve γ is guaranteed to contain no singularities with probability
one. The homotopy algorithms proposed here are examples of probability-one globally convergent homotopy
methods; the matrices A0, B0, . . ., and the starting point θ0 defined later play the role of the parameter vector a
in the probability-one homotopy theory (13). Computational results for the example in (1) clearly demonstrate
the nonmonotonicity in λ and that standard continuation in λ would fail.

The LQG controller synthesis problem with an H∞ performance bound can be stated as follows: given the
nth order stabilizable and detectable plant

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D1 ∈ Rn×p, D2 ∈ Rl×p, D1DT
2 = 0, and w(t) is p-dimensional white noise,

find a ncth order dynamic compensator

where Ac ∈ Rnc×n
c, Bc

∈R
nc×l, Cc ∈ Rm×n

c, and nc ≤ n, which satisfies the following criteria:

(1) The closed-loop system of Eqs. (1) and (2) is asymptotically stable, that is

is asymptotically stable;
(2) The q∞ × p closed-loop transfer function
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from w(t) to

where C̃∞ = (E1∞ E2∞Cc) (E1∞ ∈ Rq∞×n, E2∞ ∈ Rq∞×m, ET
1∞E2∞ = 0), ñ = n + nc, and

satisfies the constraint

where γ > 0 is a given constant; and
(3) The performance functional

is minimized, where E is the expected value, R1 = ET
1E1 ∈ Rn×n and R2 = ET

2E2 ∈ Rm×m (E1 ∈ Rq×n,
E2 ∈ Rq×m, ET

1E2 = 0) are, respectively, symmetric positive semidefinite and symmetric positive definite
weighting matrices.

The closed-loop system of Eqs. (1, 2, 3) can be written as the augmented system

where

Using this notation and under the condition that Ã is asymptotically stable, for a given compensator the
performance of Eq. (5) is given by

where

and Q̃ satisfies the Lyapunov equation
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with symmetric positive semidefinite V1 = D1DT
1, symmetric positive definite V2 = D2DT

2, and

Lemma 1 1. Let (Ac, Bc, Cc) be given and assume there exists Q̂ ∈ Rñ×ñ satisfying

and

where

R1∞ = ET
1∞E1∞, and R2∞ = ET

2∞E2∞ are symmetric positive semidefinite matrices. Then

if and only if

In this case

Hence the satisfaction of Eqs. (9) and (10) along with the generic condition of Eq. (11) leads to: (1) closed-loop
stability; (2) prespecified H∞ attenuation; and (3) an upper bound for the H2 performance criterion.

The auxiliary minimization problem is to determine (Ac, Bc, Cc) that minimizes J(Ac, Bc, Cc) and thus
provides a bound for the actual H2 criterion J(Ac, Bc, Cc).

(Ac, Bc, Cc, Q̂) is restricted to the open set S ≡ {(Ac, Bc, Cc, Q̂): Ã and Ã + γ − 2Q̂R̃ are asymptotically
stable, Q̂ is symmetric positive definite, and (Ac, Bc, Cc) is controllable and observable}.

Note that if Ã and Ã + γ − 2Q̂R̃ are asymptotically stable, Eq. (10) has a unique positive definite solution
Q̂. The condition on Q̂ in the set S is stated for clarity. However, there are no special conditions imposed in the
homotopy algorithm to force Ã and Ã + γ − 2Q̂R̃ to be asymptotically stable, nor are such conditions required.

Practical applications often lead to large dense systems of nonlinear equations which are time-consuming
to solve on a serial computer. For these systems, parallel processing may be the only feasible means to achieving
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solution algorithms with acceptable speed. One economical way of achieving parallelism is to utilize the
aggregate power of a network of heterogeneous serial computers. In industrial environments where interactive
design is often the practice, the parallel code can be easily incorporated into interactive software such as
MATLAB or Mathematica with proper setup of the network computers. To the engineering users the design
environment is identical. However, the parallel computations are faster.

The most expensive part of the H2/H∞ homotopy algorithm is the computation of the Jacobian matrix,
which can be parallelized easily to run across an Ethernet network with little modification of the original
sequential code, and which has relatively large task granularity. There is a trade-off between the programming
effort and the speedup of the parallel program. To obtain a better speedup, other parts of the homotopy
algorithm, such as finding the solution to the Riccati equations and the QR factorization (factorization of a
matrix into an orthogonal matrix Q and an upper triangular matrix R) to compute the kernel of the Jacobian
matrix, need to be parallelized as well.

In a later section, the homotopy algorithm for H2/H∞ controller synthesis is parallelized to run on a
network of workstations using PVM (parallel virtual machine) and on an Intel Paragon parallel computer,
under the philosophy that as few changes as possible are to be made to the sequential code while achieving
an acceptable speedup. The parallelized computation is that of the Jacobian matrix, which is carried out in
the master-slave paradigm by functional parallelism, that is, each machine computes a different column of the
Jacobian matrix with its own data. Unless the Riccati equation solver is parallelized, there is a large amount
of data needed for each slave process at each step of the homotopy algorithm. To avoid sending too many
large messages across the network or among different nodes on the Intel Paragon, all slave processes repeat
part of the computation done by the master process, which therefore decreases the speedup of the parallel
computation.

The speedups of the parallel code are compared as the number of workstations increases or as the number
of nodes increases on an Intel Paragon and as the size of the problem varies. A reasonable speedup can be
achieved using an existing network of workstations compared to that of using an expensive parallel machine,
the Intel Paragon. It is demonstrated that for a large problem, the approach of using a network of workstations
to achieve parallelism is feasible and practical, and provides an efficient and economical computational method
to parallelize a homotopy based algorithm for H2/H∞ controller synthesis in a workstation-based interactive
design environment.

Riccati Equations

Equation (10) is a Riccati equation. In the numerical algorithm described in the later sections, Riccati Eq. (10)
needs to be solved. Some of the known results about Riccati equations are summarized next.

A generalized algebraic Riccati equation can be written as

where X is the unknown matrix, A, W, R, and V are real square matrices, and V and R are also assumed to
be symmetric, with R being positive semidefinite, and W being nonsingular. For some of the applications, V is
also assumed to be positive semidefinite.

Since Riccati equations are central to modern control analysis and synthesis, their theoretical properties
have been thoroughly studied (15,16,17,18). Conditions that guarantee the existence of a unique symmetric
solution may be also found in (19,20,21,22). Several numerical solution techniques have been developed for
Riccati equations including eigenvalue methods (23,24,25,26,27,28,29,30), the Chandrasekhar algorithm (31,
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32,33), and the matrix sign function technique (34). Software for Riccati equations is widely available and is
included in numerous control-design packages for MATLAB and Mathematica.

For the given Riccati Eq. (12), the Hamiltonian pencil associated with it is defined as

Some useful existence conditions are summarized next.

• If V is positive semidefinite, (A, R) is stabilizable, and (A, V) is observable, then there exists a unique
symmetric positive semidefinite solution X.

• If V is indefinite, (A, R) is controllable, and the Hamiltonian pencil associated with the equation has no
eigenvalues on the imaginary axis, then a unique symmetric solution exists.

• If both V and R are possibly indefinite and the associated Hamiltonian pencil has no pure imaginary
eigenvalues, then a unique symmetric solution exists.

The homotopy algorithms described in the following sections require the solution of Eq. (10) at each
point along the homotopy curve. Therefore, efficiently solving a Riccati equation is important to achieving high
computational speed for the homotopy algorithm. The Schur method and an implementation by Laub (25) is
used in our code.

Homotopy Algorithm Based on Ly’s Formulation

In optimizing performance with respect to stabilizing controllers of fixed order nc, it is desirable to consider
controller realizations of a specified structure. In this regard there exist a variety of realizations that involve
fewer than the nc(nc + m + l) parameters appearing in a fully populated parameterization (35,36,37,38,39,
40,41,42). However, as discussed in (35,36,38), realizations that involve a minimal number of independent
parameters cannot provide a smooth, global parameterization of all MIMO (multiple input multiple output)
systems. Specialized parameterizations are also useful for realizing transfer functions of specified classes (40).

In this article we employ the Ly, Bryson, and Cannon parameterization proposed in (42). The follow-
ing result characterizes the particular class of transfer functions G realized by the Ly, Bryson, and Cannon
parameterization.

Proposition 1. Suppose that G has the minimal realization (Ac, Bc, Cc), where the matrix Ac is similar to a
2 × 2 block-diagonal matrix where each 2 × 2 block has distinct eigenvalues, violation of which will lead to
ill-conditioned transformation from the given basis to the Ly form (10). There is an additional 1 × 1 block if nc
is odd. Then there exists a state space basis with respect to which G has a Ly–Bryson–Cannon realization.

Although this parameterization does not provide a global representation of all transfer functions even
in the SISO (single input single output) case, it does provide a generic representation which is particularly
suited for parametric optimization. Although the Ly–Bryson–Cannon form implicitly assumes somewhat more
than that Ac be diagonalizable, computing the two-dimensional invariant subspaces is better conditioned
than computing the eigenvectors, which algorithms that assume diagonalizability attempt to do. When the
transformation to the Ly–Bryson–Cannon form is not ill conditioned, this particular representation turns out
to be very efficient computationally.

Ly et al. (42) introduced a canonical form with ncm + ncl parameters. The compensator is represented
with respect to a basis such that Ac is a 2 × 2 block-diagonal matrix (2 × 2 blocks with an additional 1 × 1
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block if nc is odd) with 2 × 2 blocks in the form

Bc is a full matrix, and

where

(Cc)r = (1 ∗ ··· ∗)T if nc is odd.
It is assumed that (Ac, Bc, Cc) is in Ly’s form. Let I be the set of indices of those elements of Ac which are

parameters, that is

To optimize J(Ac, Bc, Cc) over the open set S under the constraint that symmetric positive definite Q̂ satisfies
Eq. (10), and (Ac, Bc, Cc) is in Ly’s form, the following Lagrangian is formed:

where P ∈ Rñ×ñ is a Lagrange multiplier. Setting ∂L /∂Q̂ = 0 yields

Partition Q̂, P ∈ Rñ×ñ as

The partial derivatives of L can be computed as



HOMOTOPY ALGORITHM FOR RICCATI EQUATIONS 9

Let Af , Bf , Cf , γf , R1f , R2f , R1∞f , R2∞f , V1f , and V2f denote A, B, C, λ, R1, R2, R1∞, R2∞, V1, and V2 in the
last expression and define A(λ), B(λ), C(λ), γ(λ), R1(λ), R2(λ), R1∞(λ), R2∞(λ), V1(λ), V2(λ) as

and denote them by A, B, C, γ, R1, R2, R1∞, R2∞, V1, and V2 respectively in the following. Let

where in HAc only those elements corresponding to the parameter elements of Ac are of interest and

denotes the independent variables, Q̂ and P satisfy respectively Eqs. (10) and (13), (Ac)I is a vector consisting
of those elements in Ac with indices in the set I, that is

and (Cc) T is the matrix obtained from rows P = {2, . . ., m} of Cc. Vec(P) for a matrix P ∈ Rp×q is the concatenation
of its columns:
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The most natural homotopy map, given the embeddings in Eq. (15), is defined as

and its Jacobian matrix is

In practice it may be difficult to find the initial point θ0 such that ρ(θ0, 0) = 0. A somewhat more artificial (lacking
a physical interpretation) homotopy then, letting θ0 be the chosen initial point, is the Newton homotopy map
defined as

which will give rise to an extra term ρ(θ0, 0) in Dλρ̄(θ,λ). To guarantee a full rank Jacobian matrix along the
whole homotopy zero curve except possibly at the solution corresponding to λ = 1, define the homotopy map to
be

The Jacobian matrix of ρ̄ is given by

In the following, the homotopy map of Eq. (18) is assumed for the full-order problem and Eq. (19) is
assumed for the reduced-order case since the reduced-order initialization scheme produces a singular starting
point if Eq. (18) is used. Define



HOMOTOPY ALGORITHM FOR RICCATI EQUATIONS 11

where the superscript (j) means ∂/∂θj, Using these definitions, we have for θj = (Ac)kl, where (k,l) ∈ I ,

for θj = (Bc)kl,

and for θj = (Cc)kl, where k > 1,

where

and E(k,l) is a matrix of the appropriate dimension of which the only nonzero element is ekl = 1. P (j) and Q̂ (j)

can be obtained by solving the Lyapunov equations
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Similarly for λ, using a dot to denote ∂/∂λ,

where Ṗ and Q̇ are obtained by solving

Homotopy Algorithm Based on Overparametrization Formulation

The parametrization in the previous section, the Ly form, is minimal in the sense that it uses the minimum
possible number of parameters, nc(m + l), to describe the controller. However, it also assumes a particular
structure for the controller that may not be satisfied by the optimal controller, or even if it is, that structure
may be ill conditioned near the optimum. The formulation in this section makes no assumptions whatsoever
on the controller structure, treating all the components of (Ac, Bc, Cc) as independent variables.

To optimize T(Ac, Bc, Cc) over the open set S under the constraint that symmetric positive definite Q̂
satisfies Eq. (10), the following Lagrangian is formed:

whereP∈ Rñ×ñ is a Lagrange multiplier. Setting ∂L /∂Q̂ = 0 yields Eq. (13). Partition Q̂,P∈ Rñ×ñ as in Eq. (14).
The partial derivatives of L can be computed as



HOMOTOPY ALGORITHM FOR RICCATI EQUATIONS 13

Let Af , Bf , Cf , γf , R1f , R2f , R1∞f , R2∞f , V1f , and V2f denote A, B, C, λ, R1, R2, R1∞, R2∞, V1, and V2 in
the last expression and define A(λ), B(λ), C(λ), γ(λ), R1(λ), R2(λ), R1∞(λ), R2∞(λ), V1(λ), and V2(λ) as in Eq. (15)
and denote them by A, B, C, γ, R1, R2, R1∞, R2∞, V1, and V2 respectively in the following.

Define HAc(θ, λ), HBc(θ, λ), and HCc(θ, λ) as in Eq. (16) where

denotes the independent variables, and Q̂ andPsatisfy respectively Eq. (10) and Eq. (13). Vec applied to a
matrix is a column vector obtained by concatenating the columns of the matrix.

Define

whose Jacobian matrix is

Note that θ in Eq. (29) has n2
c + ncm + ncl components, more than the minimal number ncm + ncl needed.

Because of this over-parametrization, the Jacobian matrix of ρ is seriously rank deficient. To remedy this severe
rank deficiency, the homotopy map is defined as

which guarantees a full rank Jacobian matrix along the entire homotopy zero curve except possibly at the
solution (corresponding to λ = 1). The Jacobian matrix of ρ̄ is given by

To find Dθρ(θ, λ), define the auxiliary matrices ĤAc(P(j), Q̂ (j)), ĤBc(P(j), Q̂ (j)), and ĤCc(P(j), Q̂ (j)) as in Eq. (20).
Using these definitions, we have Eqs. (21), (22), (23) for θj = (Ac)kl, θj = (Bc)kl, and θj = (Cc)kl respectively. P(j)

and Q̂(j) can be obtained by solving the Lyapunov Eq. (25). Similarly we have Eq. (26) for λ and ṗ and Q̇ are
obtained by solving Eq. (27).

Numerical Algorithms

Choose r0, the initial γ, so that γ − 2
0 is approximately zero. The initial point (θ, λ) = (θ0, 0) is chosen so that it

satisfies ρ(θ0, 0) = 0 and the triple ((Ac)0, (Bc)0, (Cc)0) is in the respective form for each homotopy.
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It is well known that the full-order LQG compensator of Eq. (2) for the plant Eq. (1) minimizing the
steady-state quadratic performance functional Eq. (5) is given by:

where � ≡ BR− 1
2BT, � ≡ CTV − 1

2C, and P and Q are the unique, symmetric, positive semidefinite solutions
respectively, of

Full-Order Initialization. The initial point for the full-order problem can be chosen as follows:

(1) Solve for Q and P from Eq. (34) and obtain ((Âc)0, (B̂c)0, (Ĉc)0) from Eqs. (32) and (33).
(2) Transform the triple ((Âc)0, (B̂c)0, (Ĉc)0) to Ly’s form for the Ly form homotopy, and build θ0 as described in

Eq. (17) and Eq. (28) for the respective homotopies.

Reduced-Order Initization. The initialization scheme for the reduced-order problem is more complicated
since a closed form expression for the reduced-order H2 LQG compensator does not exist. For a given system
(Ā, B̄, C̄), and matrices R̄1, R̄2, R̄1∞, R̄2∞, V̄1, and V̄2, the reduced order starting point is chosen using a method
in (12) which can be summarized as:

(1) Compute the real Schur decomposition of Ā so that Ā = UAUt,

where A1∈Rnc×nc , and transform B̄, C̄, R̄1, V̄1, R̄1∞ so that B = UB̄, C = C̄Ut, R1 = UR̄1Ut, V1 = UV̄1Ut, R1∞
= UR̄1∞Ut and let R2 = R̄2, V2 = V̄2, R2∞ = R̄2∞.

(2) If A is not asymptotically stable, modify either diagonal elements or 2 × 2 diagonal blocks of A so that it is
asymptotically stable and call this modified matrix A0. Note that this step can always be done easily. For
example, a diagonal matrix can be added to A0 until the sum is asymptotically stable.

(3) Take B0 = B, C0 = C, R2,0 = R2f ≡ R2, R2∞,0 = R2∞f ≡ R2∞, V1,0 = V1f ≡ V1, V2,0 = βV2f ≡ βV2, β � 0, and

where (R1)1 is the leading nc × nc block of R1f ≡ R1.
(4) Solve
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for symmetric, positive semidefinite P and Q, where �0 ≡ B0R− 1
2,0BT

0, and �̄0 ≡ CT
0V − 1

2,0C0.
(5) Obtain (Ac, Bc, Cc) from Ac = A0 − �0P − Q�̄0, Bc = QCT

0V − 1
2,0, Cc = −R− 1

2,0BT
0P.

(6) Solve

for symmetric, positive semidefinite P̂ and Q̂.

Following (43), obtain the reduced-order compensator starting point from (Ac, Bc, Cc), P̂, Q̂, and nc, as
follows:

(1) Compute the Cholesky decomposition of (assumed positive definite) P̂ and Q̂,that is P̂ = L P̂ LT P̂, Q̂ = L
Q̂ LT Q̂ .

(2) Compute the singular value decomposition of LT P̂ L Q̂ , that is, LT P̂ L Q̂ = U	VT.
(3) Let T = L Q̂ V	− 1/2, T − 1 = 	− 1/2UTLT P̂ .
(4) Let Āc = T − 1AcT, B̄c = T − 1Bc, and C̄c = CcT so that

The starting point θ0 for the reduced order problem is chosen using ((Āc)1, B̄c)1, (C̄c)1), with the construction
in Eq. (17) and Eq. (28) for the respective homotopies.

The main idea of choosing the initial point is to find an approximate H2 solution as the initial point so
that the corresponding γ is very big. As λ increases to 1, γ goes to the given value. Computationally, if choosing
γ0 = 105 and γ0 = 106 lead to the same solution, then the initial γ0 can be chosen as 105. If γ is too small for
the existence of a solution, the Riccati solver fails. In other words, it is impossible to obtain a symmetric and
positive definite solution Q̂ from Eq. (10) in this situation.

Homotopy Zero Curve Tracking. Once the initial point is chosen, the rest of the computation is as
follows:

(1) Set λ := 0, θ := θ0.
(2) Calculate R̃, R̃∞, Ṽ, and compute Q̂ andPaccording to Eqs. (10) and (13).
(3) Evaluate the homotopy map ρ(θ, λ) or ρ̂(θ, λ) and the Jacobian of the homotopy map Dρ(θ, λ) or Dρ̂(θ, λ).
(4) Predict the next point Z(0) = (θ(0), λ(0)) on the homotopy zero curve using, for example, a Hermite cubic

interpolant.
(5) For k := 0, 1, 2, ··· until convergence do
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where [Dρ(Z)]† is the Moore–Penrose inverse of Dρ(Z). Let (θ1, λ1) = limk→∞ Z(k).
(6) If λ1 < 1, then set θ := θ1, λ := λ1, and so to step 2.
(7) If λ1 ≥ 1, compute the solution θ̄ at λ = 1.

For the over-parametrization formulation homotopy, because of the singularity at λ = 1, step 7 is replaced
by:

(1) If λ1 ≥ 1, use the last point (λ̃, λ̃) with λ̃ < 1 to redefine the homotopy map with θ0 = λ̃.
(2) Redo steps 1–6 until λ ≥ 1.
(3) Use Hermite polynomial interpolation to obtain the solution at λ = 1.

The Distributed Homotopy Algorithm

In the preceding algorithm, step 2 involves solving one Riccati equation and one Lyapunov equation. The
Riccati equation is solved using Laub’s Schur method (25). The algorithm of Bartels and Stewart (44) is applied
to solve the Lyapunov equation. Although both algorithms are O((n + nc)3), the Riccati equation, being more
complicated, takes much more CPU (central processing unit) time to solve. Once Q̂ andPare obtained, the
homotopy map ρ̄ is formed by matrix multiplication operations.

The major part of the computation in step 3 is that of the Jacobian matrix. The number of variables
including λ in this formulation is nc(m + l) + 1. Each column of the Jacobian matrix corresponds to the
derivative of the homotopy map with respect to one variable and requires the solution of two Lyapunov
equations (9). Therefore, the time complexity of the Jacobian matrix computation is O(nc(m + l)(n + nc)3). The
Bartels and Stewart algorithm finds the real Schur form of Ã or ÃT depending on the Lyapunov equation.
At each step along the homotopy path unnecessary factorization can be avoided if the previous factorization
results from the computation of ρ̄ and Dλρ̂ are used.

Our goal of distributed computation is to make use of the existing code and to achieve reasonable parallel
efficiency economically. The only part of the algorithm that is parallelized is the Jacobian matrix computation
in step 3. To utilize existing computer resources such as a network of workstations, the software package PVM
(parallel virtual machine) is used to provide the distributed computing capabilities.

The parallel algorithm follows the master-slave paradigm. The master sends the index of the column of
the Jacobian matrix to be computed to a slave. The slave computes the corresponding column of the Jacobian,
sends the column back to the master, and waits for the next index from the master to arrive. After receiving a
column of the Jacobian, the master sends another index to the idle slave. In the implementation for the Intel
Paragon, asynchronous send, which sends a message without waiting for completion, is used whenever possible
to speed up the communication.

When the algorithm is implemented on a network of workstations, the modification to the original sequen-
tial source code consists of three parts: the first one is to spawn slave processes and set up the communication
links between the master and the slaves; the second is to extract a slave program from the original code
and at the same time simplify the master program; the last is to add a mechanism to guarantee correct
communication between master and slaves. The first part consists of standard PVM operations, while the sec-
ond is more problem oriented. To decrease communication, each slave process repeats part of the computation
of ρ̄ and Dλρ̂ so that Q̂ andPare not sent through the network. There is no loss of efficiency since the master
is also computing the same quantities. The slave program consists of mainly the original subroutines with
additional code for communication.

For the implementation on the Intel Paragon, the modification of the original code is even simpler. There is
no need for a separate slave program if control statements use node identification properly. The parent process,
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which runs on an Intel Paragon, always gets node number 0, while other nodes are numbered 1 and higher. The
statement if node number == 0 precedes the code that is to be executed by the master, and an else following
the previous master code will precede the code to be executed by the slave. The remaining modification to
the original code is similar to the implementation using PVM. Asynchronous send is used whenever possible.
A wait is used later when the data is needed, to ensure correct communication between the master and the
slaves.

Numerical Results and Discussion

The following systems are solved by the homotopy algorithms discussed in the previous sections. The homotopy
curve tracking was done with HOMPACK (14).

The first system, formulated in Ref. 45 and studied in Ref. 1, is given by

For a given initial (Ac, Bc, Cc), γ is lowered until a solution cannot be found anymore. The smallest γ

for which a solution can still be found is γmin. For the full-order (i.e., 8th order) problem, the solutions of the
auxiliary minimization problem are obtained for γ ≥ γmin ≡ 0.481 using the Ly form homotopy approach. For
γ < γmin = 0.481, the Riccati equation solver fails and therefore no solution can be found. In Fig. 1, ‖H(s)‖∞ is
plotted against J. The ratio of ‖H(s)‖∞ at γ = γmin to that at γ = ∞ is 0.33, which indicates that there is about
67% improvement in the H∞ performance of the compensator with γ = γmin over the compensator without the
H∞ constraint.
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Fig. 1. ‖H(s)‖∞ versus J for nc = n.

Fig. 2. ‖H(s)‖∞ versus Jfor nc = 4, 6.

For nc = 4, 6, the solutions of the auxiliary minimization problem are obtained for γ ≥ 2.55 using the Ly
form homotopy approach. In Fig. 2, ‖H(s)‖∞ is plotted against J for nc = 4 (solid line with “x” indicating the
data points) and nc = 6 (dashed line with “o” indicating the data points). For both nc = 4 and nc = 6, the ratio
of ‖H(s)‖∞ at γ = 2.55 to that at γ = ∞ is 0.49, which indicates that there is about 51% improvement in the



HOMOTOPY ALGORITHM FOR RICCATI EQUATIONS 19

Fig. 3. ‖H(s)‖∞ versus J for nc = 2.

H∞ performance of the compensator with γ = 2.55 over the compensator without the H∞ constraint. For this
example, the 4th-order and 6th-order compensators have almost the same H2 and H∞ performance.

For nc = 2, two different sets of solutions are obtained by varying β in the initialization step. Different
β correspond to different initial (Ac, Bc, Cc), and therefore different homotopy curves. In this case, these two
different homotopy curves lead to different solutions which have different minimum H∞ upper bounds γmin.

The trade-off curves are shown in Fig. 3 (β = 100) and Fig. 4 (β = 1). The first set of solutions (shown in
Fig. 3) is obtained for γ ≥ 2.54, while the second set (shown in Fig. 4) is obtained for γ ≥ 9.5. It can be seen
that the first set of solutions has lower H2 cost and better H∞ performance. It was verified by sampling in a
neighborhood that all the points in both Figs. 3 and 4 are local minima of the auxiliary cost J.

The homotopy algorithms proposed here are examples of probability-one globally convergent homotopy
methods; the matrices A0, B0, . . ., and the starting point θ0 here play the role of the parameter vector a in
the probability-one homotopy theory (13). Figure 5 shows a portion of γ for the previous example, clearly
demonstrating the nonmonotonicity in λ and that standard continuation in λ would fail.

As a second example, consider the system given by
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Fig. 4. ‖H(s)‖∞ versus J for nc = 2.

Fig. 5. (Ac)2,2 versus λ for γ = 3.8 and nc = 2.

The trade-off curve is shown in Fig. 6. The solutions of the auxiliary minimization problem are obtained for γ

≥ 0.032. The ratio of ‖H(s)‖∞ at γ = 0.032 to that at γ = ∞ is 0.69, which indicates that there is about 31%
improvement in the H∞ performance of the compensator with γ = 0.032 over the compensator without the H∞

constraint.
The relative performance of homotopies based on the Ly parametrization, and overparametrization for

the combined H2/H∞ model order reduction problem was reported in detail in (8,9,10,11). The Ly’s formulation
is very efficient but can fail to exist or lead to ill conditioning and it is conceivable that it will fail for some
problems. This failure of existence in general is related to the insistence on using the minimal number of
parameters ncm + ncl.
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Fig. 6. ‖H(s)‖∞ versus J for the second example.

By using nc(nc + m + l) parameters, the over-parametrization formulation solves the ill-conditioning
issue related to existence, but introduces a very high order singularity at the solution. It is doubtful whether
the Hermite interpolation used here can handle a large problem with a singularity of order 100. A pragmatic
suggestion is to try Ly’s form first and then the over-parametrization form, switching if ill conditioning or failure
occurs. The optimal projection equations formulation of (1) does not make structural assumptions (in fact is
completely basis independent), but the optimal projection equations are very difficult and expensive to solve
numerically. This cost can be reduced by exploiting tensor product structure and assuming monotonicity in λ

of the homotopy zero curves, but Fig. 5 here shows that assumption is not tenable. The over-parameterization
formulation makes no structural assumptions and is cheaper computationally than the optimal projection
equations, but it is inherently singular at the solution with rank deficiency n2

c, which will ultimately overwhelm
the numerical linear algebra (8), (11).

The distributed code using PVM was run on a network of seven SGI Indigo2 workstations. The data came
from a control problem for suppressing vibrations in a string under transverse loading from a time varying
disturbance force. For dimensions n = 12, 20, 28, 36 reduced order controllers of dimensions nc = 10, 18, 26,
34 are sought, respectively.

The speedups versus the number of workstations are shown in Fig. 7 and Fig. 8 (n = 36, 28, 20, 12, top to
bottom). Figure 7 shows the speedup versus the number of workstations when the master process and the slave
processes are run on different machines, while Fig. 8 corresponds to the situation where the master process
and a slave process with lower priority are run on one machine and the rest of the slaves are on other machines.
For fair comparison all the speedups are computed relative to the results of the best optimized sequential code.
In Fig. 7 two workstations correspond to the master process on one machine and the only slave on the other.

As shown in the figures, the speedup increases as the dimension of the problem increases, or as the
number of workstations increases for a sufficiently large problem. The speedups from three scenarios (solid
line—master and slaves on different machines; dash-dot line—master and a low priority slave on one machine
and the rest of the slaves on others; dashed line—master and a slave with the same priority as the master on
one machine) for n = 20 are plotted against the number of workstations in Fig. 9. If the number of workstations
is < 4 it is better to use the second scenario. When the number of workstations is > 4, the speedup is higher if
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Fig. 7. Speedup with master and slaves on different machines.

Fig. 8. Speedup when one slave is on the master machine.

all the processes including the master and the slaves are run on different machines. Similar results obtain for
large n.

The same algorithm is implemented using the system function calls of an Intel Paragon and run on one
with 28 processors at Virginia Polytechnic Institute and State University. Figure 10 shows the results obtained
from the run for n = 12, 20, 28. The number of nodes varies up to 25. The highest curve corresponds to the
speedup when n = 28 and the lowest corresponds to that when n = 12. As n increases, the advantage of parallel
processing also increases. The highest speedup achieved for n = 28 using seven SGI Indigo2 workstations is
about 3.3 while the highest speedup using 25 nodes on an Intel Paragon is about 5.1. Comparing speedups is
meaningful since the performance of a single SGI Indigo2 processor is roughly comparable to that of a single
i860XP Paragon node (actually, depending on the task, the 100 MHz R4000 Indigo2 is faster by a factor of 2).
However, the cost of the Intel Paragon is a factor of three times the cost of the SGI Unix workstation network.
Much higher speedups are potentially possible with the Paragon, but not without considerable programming
effort for this controller design problem.

The above methodology can be easily generalized to industrial design environments where software
packages like MATLAB or Mathematica are often used. The sequential program for mixed-norm H2/H∞ LQG
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Fig. 9. Comparison of speedups.

Fig. 10. Results for Intel Paragon XPE-28.

controller synthesis has been developed into a MATLAB package. It is easy to include this distributed imple-
mentation into the MATLAB package. Installation requires two steps: the first one is to install PVM on the
network of workstations, and the second is to create a file in which all the worker machines on the network
are listed (46). The execution of the distributed program from within an interactive design environment, for
example, MATLAB, can be done by using a MATLAB function defined in a MATLAB .m file, in which Unix
shell commands will start the PVM daemons if they have not already been started, and will then execute the
distributed code.
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