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sults in any computation will suffer from contamination of
rounding errors, and the final results will suffer from the ac-
cumulated effects of all the intermediate rounding errors. The
field of numerical analysis is the study of the behavior of vari-
ous algorithms when implemented in the floating-point sys-
tem subject to rounding errors. In this article, we describe
the main features typically found in floating-point systems in
computers today, give some examples of unusual effects that
are caused by the presence of rounding errors, and discuss
techniques developed to perform accurate fault tolerance in
the presence of these errors.

REPRESENTATION OF FLOATING-POINT NUMBERS

Mantissa Plus Exponent

All computers today represent floating-point numbers in the
form mantissa � baseexponent, where the mantissa is typically a
number less than 2 in absolute value, and the exponent is a
small integer. The base is fixed for all numbers and hence is
not actually stored at all. Except for hand-held calculators,
the base is usually 2 except for a few older computers where
the base is 8 or 16. The mantissa and exponent are repre-
sented in binary with a fixed number of bits for each. Hence
a typical representation is

[s e7 e6 . . . e0 m23 m22 . . . m1 m0] (1)

where s is the sign bit for the mantissa, e7, . . ., e0 are the
bits for the exponent, and m23, . . ., m0 are the bits for the
mantissa. If the base is fixed at 2, then the number repre-
sented by the bits in Eq. (1) is

(−1)s × (m23 · 20 + m22 · 2−1 + · · · + m0 · 2−23) × 2exponent (2)

where the exponent is an 8-bit signed integer. In this exam-
ple, we have fixed the number of bits for the mantissa and
the exponent to 24 and 8, respectively, but in general these
vary from computer to computer, and even within the com-
puter vary from single to double precision. Notice that the
mantissa represented in Eq. (2) has the ‘‘binary point’’ (analog
to the usual decimal point) right after the leftmost digit. Re-
garding the exponent as a signed integer, it is not typically
represented as a ones or twos complement number but more
often in excess 127 notation, which is essentially an unsigned

ROUNDOFF ERRORS integer representing the number 127 larger than the true ex-
ponent. Again, if we have k bits instead of 8 as in this exam-

Rounding errors are the errors arising from the use of float- ple, then the 127 is replaced by 2k�1 � 1.
ing-point arithmetic on digital computers. Since the computer We illustrate this with a few examples, where we shorten
word has only a fixed and finite number of bits or digits, only the mantissa to 7 bits plus a sign and the exponent to 4 bits.
a finite number of real numbers can be represented on a com- Hence the exponent is in excess 7 notation:
puter, and the collection of those real numbers that can be
represented on the computer is called the floating-point sys-
tem for that computer. Since only finitely many real numbers
can be represented exactly, it is possible, indeed likely, that
the exact solution to any particular problem is not part of the
floating point system and hence cannot be represented ex-
actly. Ideally, one would hope that one could obtain the repre-

decimal binary bits remarks

+5/2 +1.01 × 21 0 1000 1010000
−5/2 −1.01 × 21 1 1000 1010000
+20 +1.01 × 24 0 1011 1010000
1/3 +1.010101 × 2−2 0 0101 1010101 inexact

1/10 +1.100110 × 2−3 0 0100 1100110 inexact

(3)

sentable number closest to the true exact answer. With simple
computations this is usually possible, but is more problematic We remark that this representation, using normalized

mantissas and excess notation for the exponents, allows oneafter long or complicated computations. Even the four ba-
sic operations, addition, subtraction, multiplication, and divi- to compare two positive floating-point numbers using the

usual integer compare instructions on the bit patterns.sion, cannot be carried out exactly, so the intermediate re-
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Normalization A more serious problem occurs if the result of the calcula-
tion is larger than the largest representable number. This is

Notice that in Eq. (3) there can be multiple ways to represent
called an overflow condition, and in most older computers,

any particular decimal number. If the leading digit of the
this would generate an error. However, in the recent IEEE

mantissa is zero, or more generally, if the digit(s) of the man-
floating point standard (discussed below), such a result would

tissa to the left of its binary point do not represent 1 (e.g., 0.
be replaced with a special bit pattern representing plus-infin-

xxx. . ., 10.xxx. . .), then the number is said to be unnormal-
ity or minus-infinity. When two such infinities are combined,

ized, otherwise it is said to be normalized. So we could also
the result can be totally undefined, so yet another special bit

use the representation
pattern is reserved for such a result. This last result is called
Not A Number, and is often printed by most computer systems
as NaN. By not generating an exception upon overflow, pro-
grams may fail more gracefully.

decimal binary bits remarks

+20 +0.00101 × 27 0 1110 0001010 unnormalized
1/3 +0.101010 × 2−1 0 0110 0101010 inexact and

unnormalized

(4)

Rounding versus Chopping

Another issue affecting rounding errors is the choice ofWhen the number is unnormalized, we lose space for signifi-
rounding strategy. Given any particular real number, whichcant digits; hence floating-point numbers are always stored in
nearby floating point number should one use? For example,normalized fashion. We see that in Eq. (3), the normalized
in Eq. (3), when we represented 1/3 as an unnormalized num-representation for the number 1/3 captures more nonzero bits
ber, we chopped away the last bit, but an alternative choicethan the unnormalized representation in Eq. (4). When the
would be to round up to the next higher number to yield �base is equal to 2, then the leading digit of the mantissa is
0.101011binary � 2�1. The error committed in chopping in thisjust a bit whose only possible nonzero value is 1, and hence it
case is .0052, but in rounding is only .0026. But rounding re-is not even stored. So in the representation in Eq. (1), the bit
quires slightly more computation since the digits being re-m23 is always 1 and is not actually stored in the computer.
moved must be examined. This issue arises when convertingWhen not stored in this way, the bit m23 is called an implicit
a number from an external decimal representation and whenbit. These bits are written in italics in Eq. (3).
trying to fit the result of an intermediate arithmetic operation
into a memory word. This is because the arithmetic logic

Special Numbers, Overflow, Underflow units on most computers actually operate on more digits than
can fit in a word, the extra digits being called guard digits,The representation in Eq. (1) with the implicit bit m23 does
discussed below.not admit the number 0, since 0 would have an all-zero man-

The IEEE standard actually provides that the defaulttissa that must be unnormalized. To accommodate this, cer-
rounding strategy should be a ‘‘round-to-even’’ strategy. Thetain special bit patterns are reserved to zero and certain other
round-to-even mode is exactly the rounding strategy de-special ‘‘numbers.’’ A zero is often represented by a word of
scribed above, except when the number being rounded liesall zero bits, which would otherwise represent the smallest
exactly half-way between two representable numbers, as inrepresentable positive floating-point number. If a calculation
rounding 12.5 to an integer. The default round-to-even strat-gives rise to an answer less than the smallest representable
egy selects the representable number whose last digit is even,number (in absolute value), then an underflow condition is
so that 12.5 would round to 12 and not 13. If the rounding insaid to exist. In the past, the result was simply set to zero,
this case were always up, then more numbers would end upbut in the recent IEEE standard, the result is denormalized.
being increased than decreased during the rounding process,The use of gradually denormalized numbers involves those
on average. If the combinations of trailing digits occur equallyfloating-point numbers which are less (in absolute value) than
likely, it is generally desirable that the number of times thethe smallest representable normalized number. As discussed
rounding is up is about equal to the number of times thein Ref. (1), there is a relatively big gap between the smallest
rounding is down, to try to cancel out this bias as much asrepresentable normalized number and zero. To fill this gap,
possible.the IEEE decided to allow for the use of unnormalized num-

bers. We can illustrate this with the representation in Eq. (3).
Guard DigitsThe smallest normalized number representable in Eq. (3) is

�1.00binary � 2�7. However, we can represent smaller numbers Guard digits are extra digits kept only within the Arithmetic
in an unnormalized manner, such as �0.10binary � 2�7. Since Logic Unit (ALU) during the course of individual floating-
we have adopted the convention of using the implicit bit, such point operations. They are never stored in memory. The ALU
an unnormalized number cannot be encoded in this format. carries out the operation using at least one extra guard digit,
The solution is to provide that the smallest representable nor- then the result is rounded to fit in the register of a memory
malized number be actually �1.00binary � 2�6, reserving the word. We illustrate the effect of guard digits using the simple
smallest possible exponent value for unnormalized numbers. addition of two decimal floating point-numbers, 1.01 � 10�1

This was adopted in the IEEE standard (see below). Since and �9.93 � 100 (this example is from Ref. 1), where we keep
this smallest exponent value has all its bits equal to zero, the 3 decimal digits in the mantissa. To accomplish this, the first
representation of the number zero in this format becomes just step for the ALU is to shift the decimal point in the second
a special case of such unnormalized numbers. As pointed out operand to make the exponents match, yielding �.993 �
by Goldberg (1), the use of denormalized numbers also guar- 10�1. Then the mantissas may be added together directly. The
antees that the computed difference of two unequal numbers accuracy of the answer is greatly affected by the number of

digits kept for the computation. The simplest approach is towill never be zero.
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use simple chopping and to keep only the digits corresponding any of the four arithmetic operations:
to the larger operand. The result in this case is 1.01 � 10�1 �
0.99 � 10�1 � 2.00 � 10�1. If, however, we keep at least one f l(a � b) = (a � b) · (1 + ε) (5)
extra guard digit, then we obtain 1.010 � 10�1 � 0.993 �

where ��� � macheps, and macheps is called the unit round-10�1 � 1.70 � 10�1. The latter answer is exact, whereas the
off or machine epsilon for the given computer. The motivationformer result has no correct digits.
behind this model is that the best any computer could do isThe reader may ask whether keeping just one guard digit
to perform any individual arithmetic operation exactly, andsuffices to make a significant enhancement to the accuracy of
then round or chop to the nearest floating-point number whenfloating-point arithmetic operations. The answer can be found
finished. The rounding or chopping involves changing the lastin Ref. (1), in which it is proved that if no guard digit is kept
bit in the (base 2) mantissa, and hence the macheps is theduring additions, then the error could be so large as to yield
value of this last bit—always relative to the size of the num-no correct digits in the answer, whereas if just one guard digit
ber itself. This model can be expensive to implement, so someis kept during the operation, the result being rounded to fit
computer manufacturers have designed arithmetic operationsin the memory word, then the error will be at most the equiv-
that do not obey it, but one can show that one or two guardalent of 2 units in the last significant digit. In this context,
digits suffice to be consistent with this model.the ‘‘correct answer’’ is regarded as the answer computed us-

In most higher level languages, the details of the floating-ing all available digits and keeping ‘‘infinite precision’’ for the
point representation (especially the length of a computerintermediate results.
word) are generally hidden from the user. Hence the macheps
has a definition that can be computed in a higher level lan-IEEE Standard
guage, not specifically by the number of bits in a word. The

The previous discussion has shown that there are many macheps is defined as the value of � yielding the minimum in
choices to be made in representing floating-point numbers,
and in the past different manufacturers have made different, min

ε>0
f l(1 + ε) > 1 (6)

incompatible, choices. The result is that the behavior of float-
ing-point algorithms can vary from computer to computer,

This formula can be used to calculate macheps by trying aeven if the precision (number of bits used for exponent and
sequence of trial values for �, each entry one-half the previ-mantissa) stays the same. In an attempt to make the behavior
ous, until equality in Eq. (6) is achieved. The specific value ofof algorithms more uniform across platforms, as well as to
macheps depends on the rounding strategy. This can be mostimprove the performance of such algorithms, the IEEE has
easily illustrated with 3 digit decimal floating point arithme-established a floating-point standard which specified some of
tic. The smallest s such that fl(1 � s) � 1 is 1.00 � 10�3 inthese choices (2,3). This standard specifies the kind of
chopping, 5.00 � 10�4 if a traditional rounding strategy isrounding that must be used, the use of guard digits, the be-
used, and 5.01 � 10�4 if rounding to even is used. In general,havior when underflow or overflow occurs, etc. The first stan-
macheps in rounding is approximately half that obtained us-dard (2) was limited to 32- and 64-bit floating-point words,
ing chopping.and provided for optional extended formats for computers

with longer words. The second standard (3) extended this to
general length words and bases. The principal choices made CATASTROPHIC EFFECTS OF ROUND-OFF ERROR
in (2) include the following:

To illustrate how rounding errors can accumulate catastroph-
• Rounding to nearest (also known as round to even) ically in unexpected ways, we give two examples adapted

from Ref. (4). An extensive introductory discussion on the ef-• Base 2 with a sign bit and an implicit bit
fects of rounding error in scientific computations involving the• Single precision with 8-bit exponent and 23-bit mantissa
use of floating point can be found in Ref. (4,5).fields (not including the implicit bit)

Of the four arithmetic operations, subtraction and addition
• Double precision with 11 bit exponent and 52 bit man-

are really the same operation. Most loss of significance andtissa fields (not including the implicit bit)
cancellation errors described below arise from these two oper-

• The presence of 
� and NaN, as well as 
 0 ations. Multiplication and division give rise to problems only
• Gradually denormalized numbers for those numbers un- if the results overflow, underflow, or must be denormalized.

representable as normalized numbers An unusual effect of the fact that floating-point numbers are
discrete in nature is that the operations no longer obey the• User-settable bits to turn on exception handling for over-
usual laws of real numbers. For example, the associative lawflow, underflow, etc. and to vary the rounding strategies
for addition does not hold for floating-point numbers. If s is a
positive number less than macheps, but more than machepsWe have tried to explain the reasons for some of these choices
� 2, then 1 � (s � s) will be strictly bigger than 1, but (1 �with the above discussion, but detailed formal analyses of
s) � s will equal 1. This is an extreme case, but the order inthese choices can be found in Ref. (1).
which numbers are added up can affect the computed sum
markedly. This is further illustrated by the first example

Usual Model for Round-Off Error
below.

It has been pointed out (1) that the use of the denormalizedIn order to analyze the behavior of algorithms in the presence
of round-off errors, a mathematical model for round-off errors numbers means that programs can depend on the fact that

fl(a �b) � 0 implies a � b. However, it can still happen thatis defined. The usual model is as follows, where � represents
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fl(a � b) � a when a � 0 and b � 1. This can happen, for lating an ordinary differential equation (such as a control sys-
tem) ẋ � Ax � f where f is a forcing function, the intermedi-example, when a is the smallest representable floating-point

number, and b is a number between .6 and 1, when rounding ate results may not be any larger than than the final or initial
values, yet severe loss of accuracy can result. One source ofis used. Programs whose logic depend on fl(a � b) being al-

ways different from a can suffer very mysterious failures. error is the propagation of intermediate errors, and in nasty
cases, the effect of those intermediate errors can grow, becom-However, generally, multiplication and division do not give

rise to catastrophic rounding errors unless numbers near the ing more and more significant as the algorithm proceeds.
ends of the exponent range are involved, or when combined
with other operations. Algorithm Stability versus Conditioning of Problem

In an attempt to analyze and alleviate the effects of roundingTaylor Series for e�40

errors, numerical analysts have developed paradigms for the
A simple algorithm to compute the exponential function ex is analysis of the behavior of numerical algorithms and have
to use its well-known Taylor series: used these paradigms to develop algorithms themselves for

which one can prove that the effect of rounding errors is
bounded. It is useful to describe these paradigms. The most
fundamental is the concept of algorithm stability versus con-

ex =
∑
i≥0

x i

i!

ditioning of the problem. The latter refers to the ill posedness
When x � 0, this can yield accurate results if one is willing of the problem. If a problem is ill posed, then slight variations
to take enough terms, but if used when x � 0, this can yield to the coefficients in the problem will yield massive changes
catastrophic results, all due to the finite word length of the to the exact solution. In this case, no floating point algorithm
machine. To take an extreme case, let x � �40. Then all the will be able to compute a solution with high accuracy. If the
terms after the 140th term are much less than 10�16 and de- problem is well posed, then one would expect a good algo-
cay rapidly, and the result is also very small: e�40 � 4.2484 � rithm to compute a solution with full accuracy. An algorithm
10�18. But simply adding up the terms of the Taylor series will that fails that requirement is called unstable. An algorithm
yield 1.8654, which is nowhere near the true answer. The that is able to compute solutions with reasonable accuracy for
problem is the terms in this series alternate in sign, and the well-posed problems, and that does not lose more accuracy
intermediate terms reach 1.4817 � 10�16 in magnitude, and on ill-posed problems than the ill-posed problems deserve, is
we end up subtracting very large numbers that are almost called stable.
equal and opposite. This results in severe cancellation.

Relevance to Fault ToleranceNumerical Derivative of ex at x � 1
The study of rounding errors is relevant to fault tolerance inSuppose we take the naive approach to approximate the nu-
two ways. At the most elementary level, the presence ofmerical derivative of a function f :
rounding errors means that no computed solution will be ex-
act, and we cannot check for the presence of faults by check-
ing if the computed solution satisfies some condition exactly.f ′(x) = f (x + h) − f (x)

h
Any fault detection system would have to allow for the pres-
ence of errors in the solution arising naturally from normalfor some suitable small h. Applying this to f (x) � ex and tak-
rounding errors. This thus leads to the difficult task of distin-ing the derivative at x � 1, we find that we get as much accu-
guishing between errors arising from natural rounding errorsracy with h � 2 � 10�6 as with h � 10�10 on a machine with
and errors arising from faults. If the underlying problem is illapproximately 16 decimal digits in the mantissa. In both
posed to any degree (called ill-conditioned) then the accuracycases, the error is about 3 � 10�6, and less than half the com-
of the computed solution will be very poor, even if that solu-puted digits are good. Here again we have severe cancellation
tion were computed correctly.from subtracting numbers that are almost equal. Hence, sim-

On the other hand, many numerical algorithms have beenply making the step size h smaller does not lead to more ac-
shown to be stable in a certain sense. Algorithms arising incuracy.
matrix computations have been especially well studied. In
particular, in the domain of solving systems of linear equa-

EFFECT ON ALGORITHMS tions, certain algorithms have been shown to compute the ex-
act solution to a system within a small multiple of macheps

Round-Off Causes Perturbation to of the original system of equations, even when the system is
Data and Intermediate Results moderately ill posed. In some cases, precise bounds on the

possible discrepancy have been derived. These can be used toThe examples above are extreme cases showing that cata-
develop conditions that then can be used to check for faults.strophic loss of accuracy can result if floating-point arithmetic
Note that even if the computed solution exactly satisfies ais not used carefully. The effect of round-off error is applied
nearby system of equations, that does not imply that the errorto each intermediate result and is guaranteed to be small rel-
in the solution is small, unless the system of equations is veryative to those intermediate results. However, in some cases,
well conditioned. As a consequence, any validation procedurethose intermediate results can be larger than the final desired
for fault detection can only check for the correctness of theresults, leading to errors much larger than would be expected
computed solutions indirectly, and not by computing the accu-from just the sizes of the input and final output of a particular

algorithm. However, in some algorithms, such as when simu- racy of the solution itself.
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The result of this analysis has been the development of summed by taking linear combinations of the entries in each
row. When two rows are added in a row operation, the check-conditions to check the correctness of numerical computa-

tions, mainly in the domain of matrix computations and sig- sums are also added and compared with the checksum gener-
nal processing. These conditions all involve the determination ated from scratch from the newly computed row. In a floating-
of a set of precise tolerances that are tight enough to enforce point environment, the checksums will be corrupted by
sufficient accuracy in the solutions, yet guaranteed to be loose round-off error, and hence a tolerance must be used to decide
enough to be satisfiable even when solving problems that are if they match. This tolerance depends on the condition num-
moderately ill posed. The principal approaches in this area ber of the matrix of checksum coefficients (9).
involve the use of checksums, backward error assertions, and Another class of methods involves comparing the results
mantissa checksums. In all cases, it has been found that with certain error tolerances. For matrix multiplication, the
applying these techniques to series of operations instead of error tolerances are forward error bounds (‘‘how far is the
checksumming each individual operation has been the most computed answer from the true answer?’’) (10). For solving
successful. systems of linear equations, the error tolerances are back-

Instead of using tolerances, an alternative approach that ward error bounds (‘‘how well does the computed answer fit
has been used with some success is interval arithmetic. Space the original problem?’’ or more precisely, ‘‘how much must the
does not permit a full treatment here, since most software, original problem be changed so that the computed answer fits
languages, compilers, and architectures do not provide inter- it exactly?’’) (11). In these methods, the error bounds used
val arithmetic as part of their built-in features. A synopsis of depend critically on the properties of the arithmetic, particu-
interval arithmetic, including its uses and applications can be larly the macheps, and in some cases on the conditioning of
found in Ref. 6. In this article, we limit our discussion to a the underlying system being solved. Hence these techniques
short description. The easiest way to view interval arithmetic can sometimes detect violations of the mathematical assump-
is to consider replacing each real number or floating-point tions of solvability that are due to ill posedness of the
number in the computer with two numbers representing an problem.
interval [a, b] in which the ‘‘true’’ result is supposed to lie. Yet a third class of methods is derived by considering the
Arithmetic operations are performed on the intervals. For ex- mantissas alone. It turns out that for certain floating-point
ample, addition would result in [a1, b1] � [a2, b2] � [a1 � operations (like multiplication), one can compute checksums
a2, b1 � b2]. If all endpoints are positive, then multiplication of the mantissas alone, treating them as integers (12,13).
of intervals would be computed by [a1, b1] � [a2, b2] � Then the checksum computed the same way derived from the
[a1 � a2, b1 � b2]. All the other arithmetic operations and more mantissa of the result must match the combination of the
general situations can be defined similarly. However, if no original mantissa checksums. Since the checksums are com-
special precautions are taken, the size of the intervals can puted using integer arithmetic, round-off errors do not apply.
grow too large to give useful bounds on the location of the The only limitation to this approach is that this technique
‘‘true’’ answers. So most successful applications involve more cannot be applied to all floating-point operations (like addi-
sophisticated analysis of whole series of arithmetic operations tion), but can be used to check the multiplication part of inner
such as an inner product rather than analysis of each individ- products. However, when both the floating-point and integer
ual operation, or else use some statistical techniques to nar- mantissa checksum tests are applied in a ‘‘hybrid test,’’ all
row the intervals. As pointed out in Ref. 1, in order to main- operations are covered and much higher error coverages are
tain the guarantee that computed intervals contain the ‘‘true’’ obtained compared to using only the floating-point test.
answer, it is necessary to round down the left endpoint and The latter two techniques are discussed further below.
round up the right endpoint of each computed interval. This
requires the user to vary the rounding strategy used within
the computer. The IEEE standards require that the hardware ANALYSIS OF ERROR PROPAGATION
provide a way for the user to vary the rounding strategy as
well as some other parameters of the arithmetic, but, as The research area of numerical analysis is devoted to the
pointed out by Kahan (7) most compilers and systems today study of the behavior of algorithms that must emulate contin-
do not actually provide the user access to that level of hard- uous mathematics on a digital computer using floating-point
ware control. arithmetic. Such analyses are based on the previously men-

tioned model for the error in floating-point arithmetic in Eq.
(5):

SYNOPSIS OF FAULT TOLERANCE
TECHNIQUES FOR LINEAR ALGEBRA

f l(a � b) = (a � b) · (1 + ε)

We present a short synopsis of various techniques that have
where ��� � macheps, and macheps is called the unit round-been proposed for the verification of floating-point computa-
off or machine epsilon for the given computer. We illustratetions, mostly in linear algebra. The use of checksums was
with a couple of examples how the propagation of errors ismade popular by Abraham (8). This method takes advantage
typically analyzed. Space does not permit a complete deriva-of the fact that the result of most computations in linear alge-
tion of error bounds, but we refer the reader to Refs. 14 andbra bears a linear relation to the arguments originally sup-
15 for complete discussions on error analysis of numerical al-plied. So a linear combination of those results bears the same
gorithms.linear relation to that same linear combination of the original

The dot product or inner product of two vectors provides adata. For example, the row operations in Gaussian elimina-
tion (used to solve systems of linear equations) can be check- simple example of how round-off errors can propagate. The
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inner product of two vectors x, y can be computed by may affect the row interchanges performed during the algo-
rithm, yielding very different results. Hence it is possible that
the computed L and U will not be close to the L, U that wouldx · yx · yx · y = x1 y1 + x2 y2 + · · · + xn yn

be obtained in exact arithmetic. Thus it is not possible to ob-
In floating-point arithmetic, however, one will obtain tain a tight forward error bound of the form �Ucomputed � Uexact�

� some_bound. However it has been shown that a tight back-
ward error bound can be obtained. One such bound has the
form (15, sec. 3.3.1).

LcomputedUcomputed = PA + H with |H| ≤ 3nu|A|ρ + O(u2)

where � is a growth factor depending on the pivoting strategy
used, and is typically a small number. This bound does not

f l(x · yx · yx · y) = f l{. . . f l[ f l(x1 y1) + f l(x2 y2)] + · · · + f l(xn yn )}
= {[(x1 y1)(1 + ε1) + (x2 y2)(1 + ε2)](1 + δ2)

+ · · · + (xn yn )(1 + εn)}(1 + δn)

= (x1 y1)(1 + ε1)(1 + δ2) . . . (1 + δn)

+ (x2 y2)(1 + ε2)(1 + δ2) . . . (1 + δn)

+ · · · + (xn yn )(1 + εn)(1 + δn)

say anything about how close Ucomputed is to the ‘‘true’’ U, but
where the �i, �i’s are quantities bounded by the macheps of does say that Lcomputed, Ucomputed are the exact factors for a matrix
the machine. Carrying out the analysis in [Ref. 15, sec. 2.4] A � PTH that is very close to the original one. When used to
one can obtain the relation, for some �: compute the solution to the original system of linear equa-

tions, this will guarantee that the computed solution will al-
(1 + ε1)(1 + δ2) . . . (1 + δn) = (1 + δ) such that |δ| ≤ 1.01nu most satisfy that system of equations, or exactly satisfy a

nearby system of equations, even if there is no guarantee that
where n is the dimension of the vectors and u � macheps is the solution obtained will be anywhere close to the solution
the unit round-off for the machine, under the assumption that that would be obtained in exact arithmetic.
nu � .01. This leads to the bound on the error in the dot
product (15, sec. 2.4.5).

INTEGER CHECKSUMS FOR
FLOATING-POINT COMPUTATIONS| f l(x · yx · yx · y) − x · yx · yx · y| ≤ 1.01nu(|xxx| · |yyy|)

where �x� denotes the vector of absolute values of the entries Floating-Point Checksum Test
in x. This formula can be interpreted as saying that if two

Many previous approaches for error detection and correctionvectors are accumulated together, the accumulated error is
of linear numerical computations have been based on the usebounded by the machine unit round-off amplified by a factor
of checksum schemes (8,16–18). A function f is linear if f (ugrowing only linearly in the dimension n. Applying this result
� v) � f (u) � f (v), where u and v are vectors. We discussto matrix-matrix multiplication using the usual inner product
here a commonly used checksum technique for a frequentlyalgorithm, we obtain the bound
encountered computation, matrix multiplication.

The floating-point checksum technique for matrix multipli-f l(A · B) = A · B + E with |E| ≤ 1.01nu|A| · |B|
cation due to Ref. 8 is as follows. Consider an n � m matrix
A with elements ai,j, 1 � i � n, 1 � j � m. The column check-where � here denotes elementwise inequality.
sum matrix Ac of the matrix A is an (n �1) � m matrix whoseMost algorithms, even in linear algebra, do not consist
first n rows are identical to those of A, and whose last rowsolely of inner products, and in such cases a different ap-
rowsum(A) consists of elements an�1, j : � �n

i�1ai,j for 1 � j �proach to error analysis based on the backward error analysis
m. Matrix Ac can also be defined ashas been very successful. We consider the example of

Gaussian elimination, used to solve systems of linear equa-
tions expressed in matrix terms as Ax � b, where x is the Ac :=

[
A

eeeTA

]
vector of unknowns. The Gaussian elimination algorithm with
row interchanges (e.g., partial pivoting) (15, sec. 3.2) can be

where eT is the 1 � n row vector (1, 1, . . ., 1). Similarly, theviewed as computing the factorization of the matrix A of the
row checksum matrix Ar of the matrix A is an n � (m � 1)form PA � LU, where P is a permutation matrix encoding the
matrix whose first m columns are identical to those of A, androw interchanges occurring during the elimination process, L
whose last column colsum(A) consists of elements ai,n�1 : �is a lower triangular matrix holding the multipliers, and U is
�n

j�1ai,j for 1 � i � n. Matrix Ar can also be defined as Ar : �an upper triangular matrix encoding the coefficients of the
[A�Ae], where Ae is the column summation vector. Finally, aeliminated equations. This factorization of A into a product of
full checksum matrix Af of A is defined to be the (n � 1) �simpler matrices then permits the solution of the original set
(m � 1) matrix, which is the column checksum matrix of theof equations Ax � b by forward and back substitution.
row checksum matrix Ar. Corresponding to the matrix multi-The Gaussian elimination algorithm must compute multi-
plication C : � A � B, the relation Cf : � Ac � Br was estab-ples of certain rows to be added to other rows in order to elim-
lished in Ref. 8. This result leads to their ABFT scheme forinate variables one at a time, but in floating-point arithmetic,
error detection in matrix multiplication, which can be de-the multiples computed will be subject to round-off error. This
scribed as follows:means that variables will be eliminated only approximately.

It becomes extremely complicated to analyze the effect of such
approximations on the values of subsequent multipliers and Algorithm Mult_Float_Check(A,B)

/* A is an n � m matrix and B an m � l matrix. */eliminated rows. In an extreme case, slight perturbations
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1. Compute Ac and Br. Amant : � mant(A) : � [mant(ai,j)]—we use the : � symbol to
denote equality by definition, � to denote the standard (de-2. Compute Cf : � Ac � Br.
rived) equality, and �

? to denote an equality test of two quan-3. Extract the n � l submatrix D of Cf consisting of the
tities that are theoretically supposed to be equal, but may notfirst n rows and l columns. Compute Df.
be because of errors and/or round-off.4. Check if cn�1 �

? dn�1, where cn�1 and dn�1 are the (n �
Let f be any linear function on vectors. The linearity of f1)th rows of Cf and Df, respectively.

allows us to apply the following floating-point checksum test
5. Check if cn�1 �

? dn�1, where cn�1 and dn�1 are the (n � on the computation of f on a set S of vectors:
1)th columns of Cf and Df, respectively.

6. If any of the above equality tests fail then return (‘‘er-
ror’’) else return (‘‘no error’’). f

(∑
vvv∈S

vvv

)
?=

∑
vvv∈S

f (vvv) (7)

The following result was proved indirectly in Theorem 4.6 of
Ignoring the round-off problem, the left- hand side (LHS) andRef. 8.
right-hand side (RHS) of the above equation should be equal,
if there are no errors in computing the f (v)’s for all v � STheorem 1 At least three erroneous elements of any full
(which is the original computation), in summing up thesechecksum matrix can be detected, and any single erroneous
f (v)’s to get the RHS, and in summing up the v’s andelement can be corrected.
applying f to the sum to get the LHS. If they are not equal,
then an error is detected. Unfortunately, because of round-off,Theorem 1 implies that Mult_Float_Check can detect at
the test of Eq. (7) often fails to hold in the absence of compu-least three errors and correct a single error in the computa-
tation errors. Therefore, we want to seek an integer versiontion of Cf � Ac � Br, as long as all operations, especially float-
of this test that is not susceptible to round-off problems. Ofing-point additions, have a large enough precision such that
course, this integer checksum test should involve integers de-no round-off inaccuracies are introduced. Of course, such an
rived from the floating-point quantities.‘‘infinite’’ precision assumption is unrealistic, and thus the

Now, since f is a linear function, irrespective of whetherabove checksum scheme is susceptible to round-off introduced
the vectors are floating points or integers, the following check-by finite-precision floating-point arithmetic, as described ear-
sum property also holds:lier. In particular, there can be false alarms in which the

checksum test fails because of round-off in spite of the ab-
sence of real errors (those occurring due to hardware glitches
or failures) in the computation. Alternatively, real errors

f

[∑
vvv∈S

mant(vvv)

]
=

∑
vvv∈S

f [mant(vvv)] (8)

could be masked/canceled by round-off leading to nondetec-
tion of a potential problem in the hardware. where the mant(v)’s are integer quantities, as we saw above.

Note that Eq. (8) is in general not related to the original
Integer Checksum Test floating-point computation f (v), and can be used to check it

only if f is mantissa preserving, that is, f [mant(v)] is equal toThe susceptibility of the floating point checksum test to
mant[ f (v)], [f (v)], which is derived from the original computa-roundoff inaccuracies can be largely mitigated by applying in-
tion f (v). Then the above equation becomesteger checksums to various (linear) computations that are

‘‘mantissa preserving.’’ This results in high error coverage
and zero false alarms stemming from the fact that integer
checksums do not have to contend with the round-off error

f

[∑
vvv∈S

mant(vvv)

]
=

∑
vvv∈S

mant[ f (vvv)] (9)

problem of floating-point checksums. The integers involved
Thus, if there are errors introduced in the mantissas of theare derived from the mantissas of the intermediate floating-
f (v)’s, then those errors are also present in the mant[f (v)]’spoint results of the floating-point computation. To date, we
and these will be detected by the integer checksum test of Eq.have successfully applied integer checksums (hereafter also
(9). Furthermore, this test is not susceptible to round-off.called mantissa checksums) to two important matrix compu-
Hence it will not cause any false alarms, and very few compu-tations, matrix–matrix multiplication and LU decomposition
tation errors will go undetected vis-a-vis the floating-point(using the Gaussian elimination algorithm) (12,13). Here we
test of Eq. (7). In practice, since an integer word can store abriefly discuss the general theory of mantissa checksums and
finite range of numbers, integer arithmetic is effectively donehow they are applied to these two computations.
modulo q where q � 1 is the largest integer that can be stored
in the computer. Some higher-order bits can be lost in a mod-General Theory. In the following discussion, we use u �

(u1, . . ., un)T to represent column vectors and a, b, c, etc., for ulo summation. However, as we will establish shortly, a sin-
gle error on either side of Eq. (9) will always be detected evenscalars. Unless otherwise specified, these variables will de-

note floating-point quantities. We use the notation mant(a) to in the presence of overflow.
The crucial condition that must be satisfied to apply adenote the mantissa of the floating-point number a treated

as an integer. For example, considering 4-bit mantissas and mantissa-based integer checksum test on f is that f [mant(v)] �
mant[f (v)]. To check if f is mantissa preserving, we have tointegers, if 1.100 is the mantissa portion of a, with its implicit

binary point shown, then the value of the mantissa is 1.5 in look at the basic floating-point operations like multiplication,
division, addition, subtraction, square-root, etc. that f is com-decimal. However, mant(a) � 1100., and has value 12 in deci-

mal. Furthermore, for a vector v : � (v1, . . ., vn)T, mant(v) posed of, and see if they are mantissa preserving. A binary
operator � is said to be mantissa preserving if mant(a) �: � [mant(v1), . . ., mant(vn)]T, and for a matrix A : � [ai,j],
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mant(b) � mant(a � b). Let a floating-point number a be rep- where aT
i is the ith row of A, and aT

i � B is a vector-matrix
resented as a1 � 2a2, where a1 is the mantissa and a2 the expo- multiplication. We have that fB(aT

i ) : � aT
i � B is a linear func-

nent of a. Ignoring the position of the implicit binary point, tion. This property leads to the floating-point row checksum
that is, in terms of just the bit pattern of numbers, floating- test for matrix multiplication. In terms of fB, the row check-
point multiplication is mantissa preserving, since sum test is:

fB

(
n∑

i=1

aaaT
i

)
?=

n∑
i=1

fB(aaaT
i ) (10)

Matrix multiplication can also be thought of as a sequence of

mant(a) · mant(b) := a1 · b1

while

mant(a · b) = mant(a1 · b1 × 2a2+b2 ) := a1 · b1

matrix-vector products A � B � (A � b1, A � b2, . . ., A � bl). This
Note that sometimes the mantissa c1 of the product c � leads to a similar column checksum test.

a � b is ‘‘forcibly’’ normalized by the floating-point hardware We define a vector-vector component-wise product � for
when the ‘‘natural’’ mantissa of the resulting product is un- two vectors u and v as the vector
normalized (e.g., 1.100 � 1.110 � 10.101000; the product
mantissa is unnormalized, and is normalized to 1.010100, as- nnn � vvv := (u1 · v1, u2 · v2, . . ., un · vn)T

suming 6 bits of precision after the binary point, and the ex-
ponent is incremented by 1). In such a case, c1 is either equal For a matrix Bm�l, and an m-vector u, we define uT � B as
to (a1 � b1) � 2 as in the previous example, or is equal to (a1 �
b1) �2 � 1 when the unnormalized mantissa has a 1 in its uuuT � B := (uuuT � bbb1,uuuT � bbb2, . . .,uuuT � bbbl )least-significant bit. When normalization is performed, the
exponent of c becomes a2 � b2 � 1. However, this normaliza-

where bi denotes the i-th column of B. Thus uT � B is antion done by the floating-point multiplication unit is easy to
m � l matrix. For example,detect and reverse in c (a process we call denormalization) so

that floating-point multiplication is effectively mantissa pre-
serving. Similarly, floating-point division is also mantissa
preserving. However, floating-point addition and subtraction
are not mantissa preserving.

Thus, if f is composed of only floating-point multiplications
and/or divisions, it is mantissa preserving, and we can apply

(5,2)T �
(

2 3
1 4

)
:= (

(5,2)T � (2,1)T , (5, 2)T � (3,4)T )

=
(

10 15
2 8

)

the integer checksum test to it. On the other hand, if f has
floating-point additions also, and there is no guarantee that It is easy to see that hB defined by hB(u) : � uT � B is linear
the exponents of all numbers involved are equal, then f is not and mantissa preserving.
mantissa preserving. However, all is not lost in such a case, Finally, defining function rowsum(C) for a matrix C �(c1,
since it might be possible to formulate f as a composition g � . . ., cm) as rowsum(C) : � [�

�
(c1), . . ., �

�
(cm)] where �

�
(v)

h(g � h(u) : � g[h(u)]) of two (or more) linear functions g and : � �m
j�1 vi, we obtain the decomposition:

h, where, without loss of generality h is mantissa preserving,
while g is not. In such a case, we can apply an integer check- Theorem 2 (12) The vector-matrix product uT � B : � fB(u) �
sum test to the h portion of f , that is, after computing h(u), rowsum � hB(u).
and a floating-point checksum test to f , that is, after comput-
ing g[h(u)] : � f (u). Since errors in h(u) are caught precisely, Since matrix multiplication A � B is a sequence of fB(ai)
this will still increase the error coverage and reduce the false computations, one for each row of A, we can apply a mantissa-
alarm rate in checking f vis-a-vis just applying the floating- based integer row checksum test to the hB(ai) components to
point checksum test to f . This type of a combined mantissa precisely check for errors in the floating-point multiplies in
and floating-point checksum is called a hybrid checksum. A � B. This integer row checksum test is:

Application to Matrix Multiplication. We discuss here the ap-
plication of integer mantissa checksums to matrix multiplica-
tion; the description of this test for LU decomposition can be

hBmant

[
n∑

i=1

mant(aaai )

]
?=

n∑
i=1

mant[hB(aaai)] (11)

found in Ref. 12. Matrix multiplication is not mantissa pre-
serving, since it contains floating-point additions. However, or, in other words,
we can formulate matrix multiplication as a composition of
two functions, one mantissa preserving and the other not, as
shown below. rowsum[mant(A)] � mant(B)

?=
n∑

i=1

mant(aaaT
i � B) (12)

First of all, matrix multiplication can be thought of as a
sequence of vector-matrix multiplications, that is, Note that the RHS of Eq. (12) is obtained almost for free from

the floating-point computations aT
i � B that are computed as

part of the entire floating-point vector matrix product aT
i �

B. A similar derivation can be made for an integer column
checksum test.

The floating-point additions have to be tested by applying
the floating-point checksum tests to rowsum � hB(u) : � fB(u),

An×m · Bm×l :=




aaaT
1 · B

aaaT
2 · B
...

aaaT
n · B



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Figure 1. Error coverage vs. dynamic range of data for the mantissa checksum test, a properly
thresholded floating-point checksum test, and the hybrid checksum test for (a) matrix multiplica-
tion, and (b) LU decomposition.

that is, to the final matrix product A � B, to give rise to the � exp(b) � exp(a � b) � 1 (this means that a normalization was
needed and the mantissa of a � b needs to be denormalized forhybrid test for matrix multiplication.
use in the mantissa checksum test). If neither of these condi-
tions hold, then an error is detected in the exponent of a � b.Error Coverage Results

Analytical Results. Two noteworthy results that have been Empirical Results. A dynamic range of x means that the ex-
ponents of the input data lie in the interval [�x, x]. In Fig. 1obtained regarding the error coverage of the mantissa check-

sum method are given in the two theorems below. coverage or the number of detection events (for single errors)
is plotted against different dynamic ranges of the input data
for the following tests.Theorem 3 (12) If either modulo or extended-precision inte-

ger arithmetic is used in a mantissa checksum test of the
form of Eq. (9) shown again below 1. The thresholded floating-point checksum test (with the

lower 24 bits masked in the checksum comparison for
matrix multiplication, and 12 bits for LU decomposi-
tion). The threshold of the floating-point checksum testf

[∑
vvv∈S

mant(vvv)

]
?=

∑
vvv∈S

mant[ f (vvv)]

component of the hybrid checksum test was chosen to

then any single-bit error in each scalar component of this test
will be detected even in the presence of overflow in modulo
(or single-precision) integer arithmetic.

In Eq. (9), we compare scalars ai and bi, where a : � (a1,
. . ., an)T and b : � (b1, . . ., bn)T are the LHS and RHS, re-
spectively, of Eq. (9). The above result means that we can
detect single-bit errors in either ai or bi, for each i, even when
single-precision integer arithmetic is used. We also have the
following two results regarding the maximum number of arbi-
trarily distributed errors (i.e., not necessarily restricted to one
error per scalar component of the check) that can be detected
by the mantissa checksum test.

Theorem 4 (13) The row and column mantissa checksums
for matrix multiplication can detect errors in any three ele-
ments of the product matrix C � A � B that are due to errors
in the floating-point multiplications used to compute these el-
ements.

Input bus

Input
exponents

Intermediate
exponents

Final
exponents

Unnormalized
mantissa

Proposed
modification

Output bus

Normalized
mantissa

Input
mantissas

E2 M1 M2E1

Normalization
unit

Adder

Multiplier

E3 M3

E'

M'

The mantissa checksum test also implicitly detects errors
in the exponents of the floating point products. This is done Figure 2. A simple modification of a floating-point multiplier, shown
during the denormalization process by checking if exp(a) � by the dashed line from internal register M� to the output bus, to
exp(b) � exp(a � b) (this occurs when the floating-point multi- make the unnormalized mantissa of the product available at no extra

time penalty.plier did not need to normalize the product a � b) or if exp(a)
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Figure 3. Timing results with a simulated modification of the floating point multiplier for (a)
matrix multiplication and (b) LU decomposition.

correspond to masking the lower 24 (12) bits, which hardware modification is needed in this case to extract the
mantissa for free.guarantees almost zero false alarm in matrix multipli-

cation (LU decomposition). Assuming the above scenarios in which mantissa extrac-
tion and denormalization is available without any time pen-2. The mantissa checksum test alone as described above.
alty, Fig. 3 shows the plots of the times of the fault-tolerant3. The hybrid checksum test that uses both the thresh-
computations that use the hybrid checksum test and that useolded floating-point test and the mantissa checksum
only the floating-point checksum test. The average overheadtest—an error is detected in the hybrid test if either an
of the hybrid checksum for matrix multiplication is 15%,error is detected in its mantissa checksum test or in its
while that for LU decomposition is only 9.5%. Thus the sig-floating-point checksum test.
nificantly higher error coverages yielded by the mantissa
checksum test are obtained at only nominal time overheads,The plots clearly show the significant improvements in cov-
which are lower than those of previous techniques (10) devel-erage of the hybrid checksum test with respect to both the
oped for addressing the susceptibility of the floating-pointmantissa and the floating-point checksum tests. They also
checksum test to roundoff.show that for the low false alarm case, the mantissa check-

sum test has a superior coverage compared to the floating-
point checksum test. An important point to be noted that is BIBLIOGRAPHY
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