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THEORY OF DIFFERENCE SETS

The construction of periodic sequences with good correlation
properties is very important in signal processing. Many appli-
cations require knowledge of sequences and their correlation
functions. In the binary case, sequences with period v can be
equivalently described as subsets D of the cyclic group of or-
der v. The distribution of the differences that can be formed
with the elements from this subset D can be computed from
the correlation function of the corresponding sequence. There-
fore, we obtain the following meta-statement: Instead of look-
ing for sequences with good correlation functions, we can
equivalently search for subsets of cyclic groups with a good
distribution of differences. A difference set is a subset of a
group such that the list of differences contains every noniden-
tity group element equally often. If the group is cyclic, these
difference sets correspond to sequences whose correlation
function has just two values. Small variations of this uniform
difference property correspond to small variations of the two-
value property of the sequence. This indicates that the study
of difference sets is also important in connection with the de-
sign of sequences with good correlation properties.

The investigation of difference sets and their generaliza-
tions is of central interest in discrete mathematics. For in-
stance, one of the most popular conjectures, the circulant Ha-
damard matrix conjecture, is actually a question about
difference sets. Difference sets have a long tradition: In 1938,
Singer (1) pointed out that the symmetric point-hyperplane
design of a finite projective space PG(n, q) contains a cyclic
group acting regularly (or sharply transitively) on the points.
Geometers call this group the Singer cycle of PG(n, q). After
the pioneering work of Singer, more symmetric designs ad-
mitting sharply transitive groups (equivalently, more differ-
ence sets) have been constructed.

In this article, we describe the parameters of all currently
known series of Abelian difference sets and provide construc-
tions for most of them. We also discuss slight generalizations
of difference sets (relative difference sets).

Many symmetric designs exist that cannot be constructed
via a difference set. Therefore, the question about nonexist-
ence of difference sets has also been investigated. Classical
nonexistence results include multiplier arguments and the so-
called Mann test (2). This test is based on the prime ideal
decomposition of the order of the difference set in an appro-
priate cyclotomic field. However, this test requires an unfor-
tunate assumption (self-conjugacy). Recently, several authors
have tried to overcome this self-conjugacy assumption (3–7).
We will survey both the classical nonexistence results as well
as this new development.

Difference sets are important in combinatorial design the-
ory and in designing sequences with good correlation proper-
ties. In this article, we try to give a flavor of various topics in
this general area by including many results-new and old-but
there are many results that are not included here. For recent
surveys on these topics, we refer the reader to Jungnickel
(8,9), Davis and Jedwab (10), Jungnickel and Pott (11). Beth
et al. (12), Hall (13), Lander (14), Baumert (15), and Pott (16)
serve as good reference books on related topics. In particular,
the second edition of the classic book Design Theory (12) pro-
vides constructions of all known Abelian difference sets. The
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book also contains the most recent nonexistence results on any subset S of G, we let S also denote the corresponding
group ring elementdifference sets without the self-conjugacy assumption.

In this section, we define difference sets, introduce group
rings and their characters, and mention some fundamental
results that can be used to study difference sets. In the follow-

S =
∑

g∈S

g

ing section, we summarize all the known families of Abelian
difference sets. The next section deals with multipliers, a very For A � �g�G ag g � RG and any integer t, we define
useful tool in the investigation of existence tests. The section
thereafter will be devoted to an important concept known as
self-conjugacy, a notion introduced by Turyn (17). Relative

A(t) =
∑

g∈G

aggt

difference sets are then be discussed. The last two sections
We get the following result.deal with sequences having good autocorrelation properties,

which can be constructed from difference sets and their gener-
alizations. Lemma 1. Let D be a k-subset of a group G of order v, and

Let G be a multiplicatively written group of order v. A sub- let R be a commutative ring with 1. Assume that D is a (v,
set D of G of size k is said to be a (v, k, �) difference set in G k, �; n) difference set in G; then the following identity holds
if each nonidentity element can be expressed in exactly � in RG (where n � k � �):
ways as d (d�)�1, where d,d� � D. A (v, k, �) difference set is
said to be cyclic (Abelian) if the underlying group G is cyclic DD(−1) = n + λG
(Abelian). We confine ourselves to Abelian groups throughout
this article. In this case the group is usually written addi- The converse also holds provided that R has characteristic 0.
tively, thus explaining the term difference set.

An easy counting shows We mostly deal with the case R � �, the ring of integers,
and the group G being Abelian. For each positive integer l,
we let �l denote a primitive lth root of unity. A character � ofk(k − 1) = λ(v − 1) (1)
an Abelian group G is a homomophism from G to �*, the non-
zero complex numbers. If G has exponent e, then � maps G tofor any (v, k, �) difference set.
the group of vth roots of unity. Each character � of G can beThere are always trivial examples of difference sets with
extended linearly to �G. This extension � is a ring homo-parameters (v, 1, 0), (v, 0, 0), (v, v, v) and (v, v � 1, v � 2) in
mophism from �G to �[�e], the ring of algebraic integers inany group of order v. Moreover, difference sets always appear
the eth cyclotomic field Q(�e). Let G* denote the set of all char-in pairs: If D is a (v, k, �) difference set in G, then the comple-
acters of G; then G* is a group under pointwise multipli-ment G�D is again a difference set with parameters (v, v �
cation.k, v � 2k � �). Therefore, we may assume k 	 v/2 (actually,

We have the following well-known result.it is easy to see that k � v/2 cannot occur).
The existence of a (v, k, �) difference set is equivalent to

Lemma 2. Inversion formula: Let A � �g�G agg � �G. Thenthe existence of a symmetric (v, k, �) design admitting a
sharply transitive automorphism group. We refer the reader
to Beth et al. (12) for further details.

The investigation of non-Abelian difference sets is a rap-
ag = 1

|G|
∑

χ∈G∗
χ(A)χ(g−1)

idly growing field in discrete mathematics. However, the non-
Abelian case seems to be less important for constructing good Hence, if A, B � �G satisfy �(A) � �(B) for all characters �
sequences. Therefore, we restrict ourselves to the case of Abe- of G, then A � B.
lian difference sets.

An important parameter for a difference set is its order n, A symmetric design is an incidence structure consisting of
which is defined as n � k � �. Sometimes, we include the v points and v blocks (which are subsets of points) with the
order in the parameter description of a difference set and following properties: Any two distinct points lie in exactly �
speak about (v, k, �; n) difference sets. different blocks and the block size is k. The construction of

We now introduce group rings. Let G be a multiplicatively such a design out of a difference set is easy: The points are
written group of order v, and let R be a commutative ring the group elements, the blocks are the so-called translates
with unity 1. Then the group ring RG is the free R module D � g � �d � g : d � D� of D.
with basis G equipped with the following multiplication: Finally we quote a well-known result of Bruck, Ryser, and

Chowla (18–20). Their result is more general; it is applicable
to any symmetric design. We state it only for (v, k, �) differ-
ence sets.

Theorem 1. (19,20). Let D be a (v, k, �) difference set in a

�
∑

g

agg

��
∑

h

bhh

�
=

∑

k

�
∑

g,h
gh=k

agbh

�
k

group G.
We shall identify the unities of R, G, and RG and denote them
by 1. We will use the obvious embedding of R into RG. For 1. If v is even, then n � k � � is a square.
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2. If v is odd, then there exist integers x, y, and z, not all so-called cyclotomic difference sets. The most popular exam-
ples are the Paley difference sets [squares in GF(q), q � 3zero, such that x2 � (k � �)y2 � (�1)v�1/2 � z2.
mod 4].

The next family comprises difference sets obtained usingPart 1 of Theorem is actually due to Schutzenberger (21)
cyclotomic classes in �q.

Family III: Cyclotomic Difference Sets. The following subsets
KNOWN FAMILIES OF DIFFERENCE SETS of �q are difference sets in the additive subgroup of �q:

In this section we summarize the known series of Abelian dif-
• �(2)

q � �x2: x � �q��0,�� q � 3(mod 4) (quadratic residues,
ference sets. In some cases, we describe a construction, but in Paley difference sets)
others we give only the parameters. The reader is referred to

• �(4)
q � �x4: x � �q��0,�� q � 4t2 �1, t oddthe chapter on Abelian difference sets in Refs. 12 and 22.

• �(4)
q � �0�, q � 4t2 � 9, t oddLet us begin with the most classical family, the so-called

• �(8)
q � �x8: x � �q��0��, q � 8t2 � 1 � 64u2 � 9, t, u oddSinger difference sets.

Family I: Singer Difference Sets. Let � be a generator of the • �(8)
q � �0�, q � 8t2 � 49 � 64u2 � 441, t odd, u even

multiplicative group of �qd�1. Then the set of integers �i: 0 	 • H(q) � �xi: x � �q��0�, i � 0, 1 or 3(mod 6)�, q � 4t2 � 27,
i � qd�1

�1 /q � 1, tr(d�1)/i (�i) � 0� mod (qd�1 � 1)/(q � 1) form a q � 1(mod 6) (Hall difference sets)
(cyclic) difference set with parameters

These are cyclotomic difference sets.
The next family is due to Stanton and Sprott (24).
Family IV: Twin Prime Power Difference Sets. Let q and q �

�
qd+1 − 1

q − 1
,

qd − 1
q − 1

,
qd−1 − 1

q − 1
; qd−1

�

2 be prime powers. Then the set D � �(x, y): x, y are both
Here the trace denotes the usual trace function tr(d�1/1) (�) � nonzero squares or both nonsquares or y � 0� is a twin prime
�d

i�0 �qi
from �qd�1 onto �q. power difference set with parameters

In the case d � 1, the designs corresponding to these dif-
ference sets are the classical Desarguesian planes. The pa-
rameters can be rewritten as (n2 � n � 1, n � 1, 1; n), where

�
q2 + 2q,

q2 + 2q − 1
2

,
q2 + 2q − 3

4
; q2 + 2q + 1

4

�

n is, in the classical case, a prime power. Difference sets with
these parameters are called planar difference sets. Many non- in the group (�q, �) � (�q�2, �).
Desarguesian planes are known; however, not a single exam- We note that the Paley difference sets, the twin prime
ple of a plane whose order is not a prime power is known. power difference sets and the Singer difference sets with q �
Moreover, not a single example of a planar difference set cor- 2 have parameters (4n � 1, 2n � 1, n � 1; n). Difference sets
responding to a non-Desarguesian plane is known. Therefore, with these parameters are sometimes called Paley–
the following two questions are of central interest in connec- Hadamard difference sets.
tion with planar difference sets: The next construction is due to McFarland (25). The recent

new constructions (Families VIII and IX) of difference sets
Do planar difference sets of nonprime power order exist? can be viewed as far-reaching generalizations of McFarland’s

original work; see, in particular, Davis and Jedwab (29).Do planar difference sets exist corresponding to a non-De-
Family V: McFarland Difference Set. Let q be a prime powersarguesian plane?

and d a positive integer. Let G be an Abelian group of order
v � qd�1 (qd � � � � � q2 � q � 2), which contains an elemen-There are more examples of difference sets with these Singer
tary Abelian subgroup E of order qd�1. Identify E as the addi-parameters if d � 1. However, only one infinite family is
tive group of �d�1

q . Let r � (qd�1 � 1)/(q � 1) and H1, H2, . . .,known.
Hr be the hyperplanes of order qd of E. If g0, g1, . . ., gr areFamily II: Gordon–Mills–Welch Difference Sets. Ref. (23). If
distinct coset representatives of E in G, thens divides d � 1 and r is relatively prime to qs � 1, then the

set of integers �i: 0 	 i � (qd�1 � 1)/q � 1, trs/1 (�i)r � 0� is a
cyclic difference set with the same parameters as the ones in D = (g1 + H1) ∪ (g2 + H2) ∪ · · · ∪ (gr + Hr )

Family I.
is a McFarland difference set with parametersNo examples of difference sets with Singer parameters are

known when q is not a prime power.
We refer the reader to Pott (16) for more difference sets

with the Singer parameters, which are equivalent to neither

�
qd+1

�
1 + qd+1 − 1

q − 1

�
, qd

�
qd+1 − 1

q − 1

�
, qd

�
qd − 1
q − 1

�
; q2d

�

Singer nor Gordon–Mills–Welch difference sets. (Two differ-
Modifying McFarland’s construction, Spence (27) obtainedence sets D� and D are called equivalent if a translate D� � g
the following.is the image of D under some automorphism of the underly-

Family VI: Spence Difference Sets. Let E be the elementarying group.)
Abelian group of order 3d�1 and G a group of order v �The Singer difference sets and the Gordon–Mills–Welch
3d�1[(3d�1 � 1)/2] containing E. Let m � (3d�1 � 1/2 and H1,difference sets are basically subsets of the cyclic multiplica-
H2 . . ., Hm denote the subgroups of E of order 3d. If g1, . . .,tive group of a finite field. However, the definition of the sets
gm are distinct coset representatives of E in G, thenuse the additive structure of the fields. It is also possible to

use the multiplicative group of a finite field to define subsets
D = (g1 + (E \ H1) ∪ (g2 + H2) ∪ (g3 + H3) ∪ · · · ∪ (gm + Hm ))of the additive group which are difference sets. These are the
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is a Spence difference set with parameters is called a Chen difference set. (Here d is a nonnegative inte-
ger and q a prime power.) The Chen family with d � 0 corre-
sponds to the Menon–Hadamard family; the Chen family
with q � 2 corresponds to the Davis–Jedwab family; and the

�
3d+1

�
3d+1 − 1

2

�
, 3d

�
3d+1 + 1

2

�
, 3d

�
3d + 1

2

�
; 32d

�

Chen family with q � 3 corresponds to the Spence family. We
We now describe Menon–Hadamard difference sets and their distinguish these series for historical reasons.
generalizations. Difference sets are called Menon–Hadamard Looking at the families mentioned previously we have two
if their parameters can be written in the form (4u2, 2u2 � u, major questions. The first question is about nonexistence.
u2 � u; u2). What happens, for instance, if we replace the prime power q

Family VII: Menon–Hadamard Difference Set. A difference or the values of u in the Menon–Hadamard series by some
set with parameters other integer? Can we prove that for these different parame-

ters no difference set can exist? More specifically, the follow-
(4u2, 2u2 − u, u2 − u; u2) ing two questions have attracted a lot of attention:

is called a Menon–Hadamard difference set.
Prime-Power Conjecture (PPC). Determine the parametersThe following theorem summarizes the known Abelian

n for which an (n2 � n � 1, n � 1, 1; n) difference setgroups that contain Menon–Hadamard difference sets.
can exist. The Singer examples with d � 2 show that

Theorem 2. Let G � H � EA(w2) be an Abelian group of examples exist whenever n is a prime power.
order 4u2 with u � 2a3bw2 where w is the product of not neces- Menon–Hadamard Conjecture (MHC). Determine the pos-
sarily distinct odd primes p and EA(w2) denotes the group of sible values for u such that a Menon–Hadamard differ-
order w2, which is the direct product of groups of prime order. ence set of order u2 exists. Is it true that u must be of
If H is of type (2a1) (2a2) � � � (2as) (3b1)2 � � � (3br)2 with � ai � the form in Theorem 2?
2a � 2 (a 
 0, ai 	 a � 2), � bi � 2b (b 
 0), then G contains
a Menon–Hadamard difference set of order u2.

Similar questions can be asked about the Davis–Jedwab–
Chen difference sets.We provide one construction for Family VII; several others

Another question addresses the groups that might carryare known.
difference sets. Although we know that difference sets with

Theorem 3. Let H � �a, b: as�1 � bs�1 � 1	 be an Abelian the parameters mentioned previously in the series do exist, it
group of type (2s�1) (2s�1). Let f be a mapping �2s�1 � ��1� is not at all clear which Abelian groups contain these sets. In
satisfying f (i � 2s) � �f (i). Define a mapping �: �2s�1 � �2s�1 the description of our families, we have always described the
by �(2ri) � 2ri*, where i is odd and ii* � 1 [mod (2s�1)]. Then groups for which it is known that they contain difference sets.
the set D � �aibj: f (�(i)j) � �1� is a Menon–Hadamard differ- In general, it is not at all clear whether other groups are also
ence set with u � 2s. Let G � �a2, c: c2 � b	 be an Abelian possible. Several partial nonexistence results in this direction
group of type (2s) (2s�2). If A � D � �a2	 �b	 and B � a�1 are known for all the series mentioned previously. One of the
(D�A), then A � cB is a Menon–Hadamard difference set with most satisfying theorems in this direction is the following.
u � 2s in G.

Theorem 4 (31). Let G be an Abelian group of order 22d�2.Theorem 3 is due to Dillon (28). Our next family is con-
Then G contains a Menon–Hadamard difference set if andtained in the very important ‘‘unifying’’ work of Davis and
only if G satisfies Turyn’s exponent bound exp(G) 	 2d�2.Jedwab (29).

Family VIII: Davis–Jedwab Difference Sets. A difference set
Finally, it would be interesting to obtain classification re-with parameters

sults saying that the only difference sets with certain parame-
ters are the known ones. For instance, the only known planar
difference sets correspond to the classical Desarguesian
planes. A classification result would say that this must be
the case.

�
22d+4

�
22d+2 − 1

3

�
, 22d+1

�
22d+3 + 1

3

�

22d+1
�

22d+1 + 1
3

�
; 24d+2

�

is called a Davis–Jedwab difference set. (Here d is any non-
MULTIPLIERSnegative integer).

These difference sets exist in all Abelian groups of order
Let D be a (v, k, �) difference set in a group G. An automor-22d�4 [(22d�2 � 1)/3] that have a Sylow 2-subgroup S2 of expo-
phism � of G is said to be a multiplier of D if �(D) � Dg fornent at most 4, with the single exception d � 1 and S2 � �3

4. some g � G. If G is Abelian and if � is given by multiplicationThe most recent family due to Chen (30) is as follows.
by an integer t relatively prime to the order of G, we say thatFamily IX: Chen Difference Sets. A difference set with pa-
t is a numerical multiplier, or simply, multiplier of D. Therameters
parameters of a hypothetical Abelian difference set D would
sometimes imply the existence of numerical multipliers,
which could then be used to investigate the existence of D.
These ideas are due to Hall (32), who considered these for the
case � � 1. An easy extension of Hall’s result obtained by
Chowla and Ryser (20) is given in the following.

�
4q2d+2

�
q2d+2 − 1

q2 − 1

�
, q2d+1

�
2(q2d+2 − 1)

q + 1
+ 1

�

q2d+1(q − 1)

�
q2d+1 + 1

q + 1

�
; q4d+2

�
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Theorem 5 (First Multiplier Theorem). Let D be an Abe- sets have been proved when (v, n) � 1. An extension of known
multiplier theorems to cover a few cases with (v, n) � 1 canlian (v, k, �) difference set. Let p be a prime dividing n � k �

�, but not v. If p � �, then p is a multiplier of D. be found in Arasu and Xiang (36), but these results are diffi-
cult to apply. Almost all results on difference sets with (v, n)
� 1 pertain to exponent bounds and rely on character theo-To use the multipliers, we also need a result of McFarland
retic ideas introduced by Turyn (17) in his seminal paper. Theand Rice (33).
notion of self-conjugacy is introduced by Turyn. A prime p is
said to be self-conjugate modulo a positive integer m, if thereTheorem 6. Let D be an Abelian (v, k, �) difference set in
exists an integer j, such thatG. Then there exists a translate of D that is fixed by every

numerical multiplier of D.
pj ≡ −1(mod m′ )

Example 2. Consider a (21, 5, 1) difference set in �21. Here 2
is a multiplier by Theorem 5. We may assume D consists of where m� is the p-free part of m. In the study of Abelian dif-
orbits of �21 under x � 2x, by Theorem 6. Since k � 5, D must ference sets, we say that the self-conjugacy assumption is sat-
be formed from the orbits �0�, �7, 14�, �3, 6, 12�, �9, 18, 15�. isfied if every prime divisor of n � k � � is self-conjugate
D1 � �7, 14, 3, 6, 12� and D2 � �7, 14, 9, 18, 15� both work. modulo exp(G).

The self-conjugacy assumption can be better understood
Similarly, we can obtain �0, 1, 3, 9� as a (13, 4, 1) difference via Abelian characters. For a (v, k, �; n) difference set D, view-

set in �13, and �1, 2, 4, 8, 16, 32, 64, 5, 37� as a (73, 9, 1) ing D as an element of the group ring �G we obtain
difference set in �73.

χ(D)χ(D) = n (2)
Example 2. Consider a hypothetical (31, 10, 3) difference set
D in �31. 7 is a multiplier of D by Theorem 5. But the orbits for all nonprincipal characters � of G. We note that �(D) is an
of �31 under x � 7x have sizes 1, 15, 15. Hence D cannot exist. algebraic integer in a suitable cyclotomic field.

This idea of studying difference sets using character sums
The Multiplier Conjecture. Theorem 4 holds without the is due to Turyn (17). If n is self-conjugate modulo exp(G), then
assumption that p � �. All known multiplier theorems may it can be shown: Equation (2) implies that n is a square, say
be viewed as an attempt to eliminate conditions such as n � u2, and �(D) � u�, where � is a root of unity. Such solu-
p � �. tions are called trivial solutions. Thus �(D) is determined

completely from Eq. (2) under the self-conjugacy assumption.
Theorem 7 (Second Multiplier Theorem) (34). Let D be This would then impose necessary conditions on the existence
an Abelian (v, k, �)-difference set in G, and let m � � be a of D.
divisor of n that is co-prime with v. Moreover, let t be an inte- In the absence of self-conjugacy �(D) cannot be easily de-
ger co-prime with v satisfying the following condition: For ev- termined from Eq. (2). This difficulty is the primary reason
ery prime p dividing m there exists a nonnegative integer f why McFarland’s investigation (37) of Abelian Hadamard dif-
with t � pf (mod v*), where v* denotes the exponent of G. ference sets in groups of order 4p2, p a prime, was rather te-
Then t is a numerical multiplier for D. dious and quite involved in the p � 1(mod 4) case (where self-

conjugacy is absent), whereas the case p � 3(mod 4) in which
We next state another multiplier theorem due to McFar- self-conjugacy was present was easily disposed of (38).

land (35). We first define a function M as follows: Chan (39) introduced a new approach to deal with the situ-
ation without self-conjugacy. In some special situations, Chan
showed that Eq. (2) has only the trivial solutions, even when

M(2) = 2 × 7, M(3) = 2 × 3 × 11 × 13

M(4) = 2 × 3 × 7 × 31 there was no self-conjugacy. Using that, he was able to obtain
further restrictions on Abelian groups of the form �2pq � �2pq,

recursively, M(z) for z 
 5 is defined as the product of the where p, q are distinct primes, that contain Hadamard differ-
distinct prime factors of the numbers ence sets. In particular, he showed that Abelian Hadamard

difference set in �6p � �6p can exist only if p � 3 or p � 13.
Several useful theorems for studying difference sets without
self-conjugacy can be found in Ma’s work (40) on relative (n,

z, M
�

z2

p2e

�
, p − 1, p2 − 1, . . ., pu(z) − 1

n, n, 1) difference sets.
where p is a prime dividing m with pe � m and where u(z) � We have seen that the existence of a difference set D yields
(z2 � z)/2. (The notation pa � m means that pa 
 m but pa�1 ; the existence of an algebraic integer of a certain absolute
m; we then say that pa strictly divides m.) value. This gives number theoretic conditions that are the ba-

sis for most nonexistence results on difference sets. In this
Theorem 8. Theorem 7 remains true if the assumption m � section, we cannot survey even the most important nonexist-
� is replaced by M(n/m) and v are co-prime. ence results, but we hope that the reader gets an impression

how algebraic number theory can be used to obtain necessary
conditions for the existence of difference sets.NONEXISTENCE RESULTS VIA SELF-CONJUGACY

To start with, let us look at the condition

Multipliers provide nonexistence results, as we saw earlier.
But most of the multiplier theorems for (v, k, �; n) difference χ(D)χ(D) = n
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more closely. If � is a character of order �, then this equation characters. The lemma shows that the coefficients of Y are
constant modulo 2a on cosets of subgroup P1 of order 2. On theholds in Z [��], the ring of algebraic integers in Q(��); here

�� � e2�i/� is a primitive �th root of unity. The ring Z [��] is a other hand, the coefficients are bounded by 22a�2�b. Since Y
cannot be constant on cosets of N, we get 2a � 2 � b 
 a.Dedekind domain, that is, we can decompose the ideals �(D),

(�(D)), and (n) uniquely into prime ideals and obtain This bound is part of Turyn’s famous exponent bound for Ha-
damard difference sets (17).

Another illustration is that there are no Abelian Hada-
mard difference sets of order p2 in groups of order 4p2 if p �

χ(D)χ(D) =
m∏

i=1

Pei
i

3 mod 4 or if the Sylow 2-subgroup is elementary abelian.
Note that p is self-conjugate modulo the exponent of G; hencewhere the Pis are distinct prime ideals. The prime ideal de-
� (D) � 0 mod p for a putative difference set D. Projection ontocomposition of n in Z [��] as well as the action of Galois auto-
the homomorphic image of order 4p yields a contradictionmorphisms of Q (��) on these ideals is known:
similar to the argument above. This (easy) proof is in remark-
able contrast to the case p � 1 mod 4: The nonexistence forResult 1. Let p be a prime and �� a primitive complex �th
those difference sets have been ruled out by McFarland (37)root of unity; write � � pew� where �� is an integer relatively
in a long, detailed paper as mentioned earlier. It is one of theprime to p. The multiplicative order of p modulo �� is denoted
first nonexistence results without using self-conjugacy.by f . Let �(x) be the number of positive integers � x that are

Many more nonexistence results are variations of the ap-relatively prime to x. Then the following identity for ideals
proach that we have just described: Project the difference setsholds in Z[��]:
D in Z[G] onto a group ring Z[H] where H contains a cyclic
Sylow p-subgroup and where p is self-conjugate modulo the( p) = (P1 · · · Pg)�( pe )

exponent of H. However, in many situations (such as, for in-
stance, for McFarland difference sets), this approach is onlywhere the Pi’s are distinct prime ideals and g � �(��)/f . If t
of limited use. The point is that elements in Z[H] with theis an integer relatively prime to p such that t � ps mod ��,
‘‘correct’’ character values and ‘‘correct’’ coefficient sizes do ex-then the Galois automorphism �� � �t

� fixes the ideals Pi. If
ist. In other words, there are elements that ‘‘look like’’ images�� � 1 then g � 1 and P1 � (1 � ��).
of difference sets (although the difference set might not exist).
But, in general, there are many different subgroups N suchResult 1 shows that the self-conjugacy of a prime p modulo
that G/N � H, and the approach described earlier yields in-w implies that all prime ideal divisors of p in �[��] are fixed
formation about the image of a putative difference sets underby complex conjugation. This is basically the content of the so
all these projections. Several authors, notably Ma andcalled Mann-test.
Schmidt (3), developed some combinatorial group-theoretic
tools in order to exploit the information about these differentCorollary 1. Let p be self-conjugate modulo w, and let D be
images simultaneously. This method has been applied suc-a difference set of order n in a group G whose exponent is
cessfully both to relative and McFarland difference sets.divisible by w. Then p cannot divide the square-free part of

Recently, two new approaches to prove nonexistence re-n, that is, p2a is the exact p power dividing n. In particular,
sults without any self-conjugacy assumptions have been de-for each character � of order w, we have �(D) � mod pa.
vised. Schmidt focused his attention on cyclic Hadamard dif-
ference sets and Eq. (2). He proved the following.As an example, there are no Abelian (25, 9, 3; 6) difference

sets: We take w � 5 and p � 3, then p2 � �1 mod w and
Result 2. Let Q be a finite set of primes. Then there are (athence the Galois automorphism �5 � �9

5 � �5 fixes the ideal
most) finitely many elements (aq)q�Q � N
Q
 such that a cyclicdivisors of (3) in Z[�5].
Hadamard difference set of order �q�Q q2aq exists.Note that the proof of this corollary just uses the prime

ideal factorization of (p) in Z[��]. To obtain stronger results,
A slightly different idea to overcome the self-conjugacy as-we must exploit the condition �(D) � 0 mod pa more carefully.

sumption is given by Ma (40). His idea is to get as much infor-In this context, the following lemma is useful (41).
mation as possible about elements D satisfying Eq. (2). He
applies his technique to relative difference sets; in particularLemma 3. Let p be a prime and let G be an Abelian group
he obtains the following strong result on planar functions (wewith a cyclic Sylow p-subgroup of order ps. If Y � Z[G] is an
discuss relative difference sets and planar functions later):element such that � (Y) � 0 mod pa for all characters, then we

can write
Result 3. Given two primes p and q, there are no planar func-
tions on cyclic groups of order pq.Y = paX0 + pa−1P1X1 + · · · + pa−rPrXr

r � min(a, s), where Pi denotes the unique subgroup of order The special case that p is self-conjugate modulo q is com-
paratively easy.pi. Moreover, if the coefficients of Y are nonnegative, the coef-

ficients of the Xi can be chosen to be nonnegative, too. Arasu and Ma (42) used similar methods to investigate
McFarland difference sets without the self-conjugacy as-
sumption.Here is an application: Let D be an Abelian (4u2, 2u2 � u,

u2 � u) difference set. Let u � 2a and assume that G contains Schmidt (43) introduces further techniques to deal with
difference sets without self-conjugacy. He uses properties ofa cyclic subgroup of order 2b. Projection onto this subgroup

yields a group ring element Y with � (Y) � 0 mod 2a for all the decomposition group of the prime ideal divisors of the or-
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der of the difference set, coupled with ideas similar to those ting if G � H � N for some subgroup H (i.e., the forbidden
subgroup N must be a direct factor of G).of McFarland (37, Sec. 4), to find restrictions on the solutions

of Eq. (2). An example of such a result is given in the follow-
ing special case. Example 3. The set of �0, 1, 3� is a (4, 2, 3, 1) relative differ-

ence set in �8 relative to N � �0, 4�.
Theorem 9. Let d � p�m, where p is an odd prime and d �
0 is an odd integer relatively prime to p. If X � �[�d] satisfies Example 4. The set �(0, 0), (1, 1), (2, 1)� is a (3, 3, 3, 1) rela-

tive set in �3 � �3 relative to N � �0� � �3.
XX = p

A relative difference set is said to be semiregular if k �
then with suitable j either � j

dX � �[�m] or X � �� j
dY, where Y n�; otherwise it is called regular.

is a generalized Gauss sum (44). The following result on the parameters m, n, k, and � of
relative difference sets follows from the work of Bose and
Connor (52). The symbol (a, b)p is the Hilbert symbol, whichWith the aid of Theorem 9 it is often possible to find all
takes values �1 or �1 according to whether the congruencethe solutions of Eq. (2). These solutions can then be further
ax2 � by2 � 1 (mod pr) has or has not for every value of r,examined to obtain necessary conditions on the existence of
rational solutions xr and yr.an Abelian difference set.

Result 4. Let D be a regular (m, n, k, �) relative difference
RELATIVE DIFFERENCE SETS set. Then the following holds:

Relative difference sets are a generalization of difference sets. 1. If m is even, then k � n� is a square. If moreover m �
Relative difference sets provide constructions of Hadamard 2(mod 4) and n is even, then k is the sum of two
matrices and generalized Hadamard matrices that are of in- squares.
terest in various branches of mathematics. It turns out that

2. If m is odd and n is even, then k is a square andgroup-invariant Hadamard matrices (equivalently Hadamard
difference sets) are basically the same objects as certain rela-

(k − nλ, (−1)(m−1)/2nλ)p = 1tive difference sets. Similar to ordinary difference sets, rela-
tive differences sets yield sequences with interesting autocor-

for all odd primes p.relation properties (45). Certain types of relative difference
3. If both m and n are odd, thensets give rise to perfect ternary sequences (46).

Relative difference sets were introduced by Bose (47), al-
though he did not use the term relative difference sets. The (k, (−1)(n−1)/2n)p(k − nλ, (−1)(m−1/2nλ)p = 1

term relative difference sets was coined by Butson (48). Sys-
for all odd primes p.tematic investigations of these are due to Elliott and Butson

(49) and Lam (50). A recent survey of these objects can be
Using the group ring notation we introduced earlier, thefound in Pott (51). The interplay of relative difference sets,

definition of relative (m, n, k, �) difference sets R can befinite geometry, and character theory is the subject matter of
translated into a group ring equation in �G:the monograph by Pott (16).

A relative (m, n, k, �) difference set R in a group of G of
RR(−1) = n + λ(G − N) (3)order mn relative to a normal subgroup N of order n is a k-

subset of G with the following properties: the list of quotients
If U is a normal subgroup of G contained in N, we considerr(r�)�1 with distinct elements r, r� � R contains each element
the canonical epimorphism from G into G/U. Extending thisof G�N exactly � times. Moreover, no element in N has such a
epimorphism by linearity from �G to �[G/U] and applying torepresentation. N will be referred to as the forbidden sub-
Eq. (3), we obtain the following.group. Note that each coset of N contains at most one element

from R. (The more general divisible difference sets are sub-
Lemma 4. Let R be a relative (m, n, k, �) difference set insets of G where the number of representations of elements in
G. If U is a normal subgroup of G contained in N, then thereN is not necessarily 0, but another constant �.) Easy counting
exists an (m, n/u, k, �u) difference set in G/U relative toyields
N/U. In particular, G/N contains an (m, k, �n) difference set.

k(k − 1) = λn(m − 1)

The obvious inequality k 	 m follows, for otherwise at least
KNOWN FAMILIES OF RELATIVE DIFFERENCE SETS

one coset of N would contain more than just one element
from R.

Extension of (m, m, m) Difference Sets
If n � 1, the relative difference sets become ordinary differ-

ence sets. A relative difference set is called Abelian, cyclic, There exists a (pa, pa, pa, 1) relative difference set in (�p)2a if p
is an odd prime; in (�4)a relative to (�2)a if p � 2. This givesetc., if the underlying group G has the respective property.

All our results and examples would concern Abelian relative the following series of relative difference sets which are exten-
sions of (m, m, m) difference sets.difference sets. A relative difference set R is said to be split-
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Family I. Relative (pa, pb, pa, pa�b) relative difference sets forbidden subgroup has order 2. Arasu et al. (56) later ob-
tained in the following:exist whenever p is a prime.

Splitting relative difference sets with parameters (n, n, n, Family VI. If q is a power of 2, and d is even, relative differ-
ence sets with parameters1) in H � N are equivalent to the so-called planar functions

f : H � N; see Dembowski and Ostrom (53). The existence of
a planar function implies the existence of a projective plane
with a certain automorphism group (semiregular automor-

�
qd+1 − 1

q − 1
, 2, qd,

qd − qd−1

2

�

phism group). In contrast to the case of planar difference sets,
exist.planar functions describing non-Desarguesian planes are

Arasu, Leung, and Ma (57) obtain the following.known. However, in all known cases H and N are elementary
Family VII. If q is a power of 2, relative difference sets withAbelian (provided n is odd). It is one of the open problems

parametersconcerning planar functions, whether this has to be the case.
Finally, we mention that the case of even n has been settled
completely (at least in the Abelian case): In this case, n has to

�
q2 + q + 1, 2(q − 1)q2,

q
2

�

be a power of 2 and the group has to be as mentioned before.
Menon–Hadamard difference sets of order u2 give rise to exist. A few further sporadic examples obtained using a com-

the following two series of relative difference sets. puter search led Arasu, Leung, and Ma (57) to the following.
Family II. Relative (4u2, 2, 4u2, 2u2) difference sets exist Conjecture. Cyclic ((qd�1 � 1)/q � 1, 2(q � 1), qd, (qd �

whenever difference sets with parameters (4u2, 2u2 � u, u2 � qd�1)/2(q � 1)) relative difference sets exist if q is a power of
u) exist. These are known to exist if u � 2a3bm2, where m is 2 and d is a positive odd integer.
any odd integer (see Theorem 2).

Family III. Relative (8u2, 2, 8u2, 4u2) difference sets exist Remark. In a forthcoming paper (in preparation), Arasu,
whenever difference sets with parameters (4u2, 2u2 � u, u2 � Dillon, Leung, and Ma have proved this conjecture.
u) exist.

Note: Family III contains only nonsplitting examples, be-
DIFFERENCE SETS AND PERFECT SEQUENCEScause otherwise a group of order 8u2 would contain a Hada-

mard difference set, which is impossible. New examples of
We summarize a few results that relate difference sets andsemiregular relative difference sets in groups whose order can
their generalization such as relative/divisible difference setscontain more than two distinct prime factors are explored by
to perfect and almost perfect sequences. For recent results onDavis, Jedwab, and Mowbray (54) and Arasu and deLauney
this topic, we refer the reader to Jungnickel and Pott (58).(55).

A sequence (ai)i�0,1,2,. . . is said to be periodic with period v
if ai � ai�v for all i. A sequence all of whose entries are eitherExtensions of (m, m � 1, m � 2) Difference Sets
�1 or �1 is called binary. The (periodic) autocorrelation func-

Any Desarguesian projective plane of order q gives rise to a tion C of (ai)i�0,1,2,. . . is defined by
cyclic relative (q � 1, q � 1, q, 1) difference set. Thus we get:

Family IV. For any prime power q and any divisor d of q �
1, relative (q � 1, (q � 1)/d, q, d) difference sets exist. C(t) =

v−1∑

i=0

aiai+t

Note: Relative difference sets of Family IV will be consid-
ered later. Since (C(t))t�0,1,2,. . . is also periodic (if (ai) is periodic), it suffices

to consider the autocorrelation coefficients C(t) for t � 0, 1,Extension of ((qd�1 � 1)/(q � 1), qd, qd � qd�1) Difference Sets
. . ., (v � 1). The autocorrelation function measures how

Complements of the Singer difference sets are difference sets much the original sequence differs from its translates. In the
with parameters binary case, C(t) is the number of agreements of (ai)i�0,1,. . .

with its translate by a shift of t minus the number of dis-
agreements. Obviously C(0) � v. The other autocorrelation co-
efficients C(t), with t � 0, are called nontrivial or the off-peak

�
qd+1 − 1

q − 1
, qd, qd − qd−1

�

autocorrelation coefficients. We let k denote the number of �1
As observed by Bose (47), the above difference sets lift to cy- entries in one period of a periodic binary sequence under con-
clic relative difference sets, given in the following. sideration.

Family V. If q is a prime power, relative difference sets Periodic sequences with good autocorrelation properties
with parameters are applicable in engineering. The following is easy to prove.

Lemma 5. A periodic binary sequence with period v, k en-
tries �1 per period, and a two level autocorrelation function

�
qd+1 − 1

q − 1
,

q − 1
t

, qd, qd−1t
�

(with all nontrivial autocorrelation coefficients equal to �) is
equivalent to a cyclic (v, k, �; n) difference set, where � � vexist for each divisor t of q � 1.

Note: The case d � 2 reduces to Family IV. We have de- � 4(k � �) � v � 4n. A �1-sequence (ai) of period v is said to
be perfect if it has a two-level autocorrelation function, wherecided to separate these since geometers usually distinguish

the planar case (dimension 2) and the general case. If q is the off-peak autocorrelation coefficients � are as small in
magnitude as possible.even, Family V does not include relative difference sets if the
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By Lemma 5, sequences with two-level autocorrelation Result 5. For 3 	 u 	 100, no Abelian difference sets with
parametersfunctions correspond to cyclic difference sets. As shown by

Jungnickel and Pott (58), the cases � � 0, �1, �2 give rise to
the following classes of cyclic (v, k, �) difference sets of order (2u2 + 2u + 1, u2, u(u − 1)/2)

n � k � �:
exist. Hence perfect sequences of Class II and period v do not

Class I. (v, v � �v/2, v � 2�v/4) of order v/4 correspond- exist for 13 � v 	 20201.
ing to � � 0

Difference sets with parameters in Class III(b) require 3vClass II. (v, (v � 2�v � 1)2, (v � 1 � 2�2v � 1)4) of or-
� 2 and v � 2 both to be squares. This series contains theder (v � 1/4) corresponding to � � 1
trivial (6, 1, 0) difference set. The next two candidates (66, 26,Class III(a). (v, (v � �2 � v)2, (v � 2 � 2�2 � v)4) of or-
10) and (902, 425, 200) are both ruled by Theorem 4.18 ofder (v � 2)4 corresponding to � � �2
Lander (14). The next permissible value of v is 12546. ThusClass III(b). (v, (v � �3v � 2)2, (v � 2 � 2�3v � 2)4) of
we obtain the following.order (v � 2)4) corresponding to � � �2

Class IV. (v, (v � 1)2, (v � 3)4) of order (v � 1)/4 corre-
Theorem 11. Perfect sequences of Class III(b) and period vsponding to � � �1
do not exist for 6 � v 	 12545.

Lemma 5 shows that the autocorrelation coefficients are al-
Difference sets of Class IV are called Paley–Hadamard dif-ways congruent 4 modulo v. Therefore, in order to determine

ference sets. Known examples (parametrically) are given byin absolute value the smallest coefficients, we have to distin-
Singer difference sets (Family I, with q � 2), the Paley differ-guish v modulo 4. This yields the four series I–IV: However,
ence sets of Family V, and the examples given in Family VI.in the case v congruent 2 modulo 4, it is possible that the off-

Song and Golomb (61) and Golomb and Song (62) systemat-peak autocorrelation coefficient is 2 or �2 [which explains the
ically investigate cyclic Paley–Hadamard difference sets. It istwo classes III(a) and III(b)]. Class III(a) provides only the
conjectured that every such difference set has parameters astrivial (2, 1, 0) difference set, corresponding to � � 2.
in one of the three series earlier above. Golomb and Song (62)Difference sets in Class I are Hadamard difference sets
prove the following.(Family VII) with parameters (4u2, 2u2 � u, u2 � u). The only

known cyclic example of such a difference set is the trivial (4,
Result 6. Assume the existence of a Paley–Hadamard differ-1, 0) difference set. It is conjectured that there cannot be any
ence set D in a cyclic group of order v, where v � 10,000.others. Turyn (17) ruled out the existence of cyclic Hadamard
Then v is either of the form 2m � 1, or a prime � 3 mod 4, ordifference sets of size 4u2, for 1 � u � 55. Schmidt’s recent
the product of two twin primes, with the possible exceptionswork (5), establishes the following results:
of v � 1295, 1599, 1935, 3135, 3439, 4355, 4623, 5775, 7395,
7743, 8227, 8463, 8591, 8835, 9135, 9215, 9423.Theorem 10. Assume the existence of a cyclic Hadamard dif-

ference set of order u2 � �s
i�1q�ii where the qis are distinct odd

Corollary 4. A perfect sequence of Class IV and period v �primes (note that u must be odd). Let
10,000 exists if and only if v is either of the form 2m � 1 or a
prime � 3 mod 4, or the product of two twin primes, with thebj = min{b : qωi

i
≡/ mod qb

j for all i �= j}
possible exceptions given in Result 6.

where �i is the multiplicative order of qi modulo �j�iqj. For j
A concrete application of the perfect sequences correspond-� 1, . . ., s, define cj � min�2aj, bj � 1�. Moreover, let u� �

ing to the twin-prime power difference sets to applied optics�s
j�1qcjj . Then

is explained in Jungnickel and Pott (58).

u ≤
√

2[sin(π/2u′)]−1

ALMOST PERFECT SEQUENCES AND DIVISIBLE
Corollary 2. Let Q be any finite set of odd primes. Then DIFFERENCE SETS
there are only finitely many cyclic Hadamard difference sets
of order u2, where all prime divisors of u are in Q. As we saw in earlier, perfect �1-sequences with off-peak au-

tocorrelation value 0 are quite rare. To remedy this situation,
Remark: Corollary 2 is already contained in Result 2. one studies the so-called almost perfect sequences (a concept

due to Wolfmann (63) in an attempt to obtain further classes
Corollary 3. Cyclic Hadamard difference sets of order 1 � of sequences with good correlation properties.
u 	 2000 with u � �165, 231, 1155� do not exist. An almost perfect sequence is a �1-sequence in which all

the off-peak autocorrelation coefficients are as small as possi-
ble—with exactly one exception, say C(g). Since C(g) is theThe only known Abelian example of difference as in Series

II is the (13, 4, 1) difference set. Parameters in series II can only exceptional autocorrelation coefficient, it follows that g
� �g, forcing the period v to be even and g � v/2. The subsetbe rewritten as (2u2 � 2u � 1, u2, u(u � 1)/2). Results by

Broughton (59) and Eliahou and Kervaire (60) imply the fol- of �v that corresponds to an almost perfect sequence is a divis-
ible difference set.lowing.
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A k-element subset D of a group G of order v relative to a Hence we obtain the following.
subgroup N of G of order u is called a (v/u, u, k, �1, �2) divisi-
ble difference set if the list of all differences Theorem 13. If v � 2(q � 1), where q is a power of an odd

prime, then almost perfect sequences of class I with period v(d1 − d2 : d1, d2 ∈ D, d1 �= d2)
and 
 � 1 exist.

contains every element of N��0� exactly �1 times and every
element of G�N exactly �2 times. If �1 � 0, these reduce to It is widely conjectured that (m � 1, 2, m, (m � 1)/2) rela-
relative difference sets of presented earlier. tive difference sets exist only if m is a prime power. This has

Using group ring notations, D is a (v/u, u, k, �1, �2) divisible been verified for m up to 425 by Reuschling (66). Tools re-
difference set in G relative to N if and only if quired to establish their nonexistence are listed in the fol-

lowing:
DD(−1) = (k − λ1) + λ1N + λ2(G − N) in ZG

Result 8 (16,36). The following integers are multipliers of anyBradley and Pott (64) show: almost perfect sequences are
cyclic relative difference sets with parameters (m � 1, 2, m,equivalent to cyclic divisible difference sets with u � 2, of
(m � 1)/2):certain types. Let f be the exceptional correlation coefficient

C(v/2). Since v is even, we obtain three possible series of al-
most perfect sequences corresponding to the Classes I, III(a), • m
and III(b) described earlier. Class I:

• If m � pk is a power of prime p, then p is a multiplier

• If m � piqj is the product of powers of two distinct primes
p and q, then pi and qj are multipliers

Class I: v ≡ 0 mod 4 :
�v

2
, 2,

v
2

− θ,
f + v

4
− θ,

v
4

− θ

�

where θ =
√

v + f/2
Result 9 (67). Let G be an Abelian group of order 2 (m � 1).

Class III: Let t be a multiplier of a putative (m � 1, 2, m, (m � 1)/2)
difference set relative to N. If G�N contains elements x and y

v ≡ 2 mod 4 with xt � x and yq � (m � 1)y, then G cannot contain a differ-
ence set with these parameters.Class III(a), off-peak autocorrelation 2:

Result 10 (Mann Test). Let D be a divisible (v/u, u, k, �1, �2)
�v

2
, 2,

v
2

− θ,
f + v

4
− θ,

v − 2
4

− θ

�
, where θ = 1

2

√−v + f + 4
difference set in the Abelian group G relative to N. Moreover,
let t be a multiplier of D, and let U be a subgroup of G suchClass III(b); off-peak autocorrelation �2:
that G/U has exponent w (U � G). Let p be a prime not divid-
ing w such that tpf � �1 mod w. Then the following holds:�v

2
, 2,

v
2

− θ,
f + v

4
− θ,

v + 2
4

− θ

�
, where θ = 1

2

√
3v + f − 4

• If N is not contained in U, then p does not divide the
Let us first consider the Class I. Only the cases 
 � 0, 1, and square-free part of k � �12 have been investigated systematically so far. For the case 


• If N is contained in U, then p does not divide the square-� 0, we use the following result of Jungnickel (65).
free part of k2 � mn�2

Result 7. If there exists a cyclic (v/2, 2, v/2, 0, v/4) difference
set, then v � 4. Using these tests for m 	 1000 (m odd), nonexistence of

cyclic (m � 1, 2, m, (m � 1)/2) relative difference sets has
Hence, we obtain been established for composite m (58), except for the following

values of m � 425, 531, 545, 549, 629, 867, 909.Theorem 12. If there exists an almost perfect sequence of
The case m � 425 has been recently settled by Arasu andtype I and 
 � 0, then v � 4.

Voss (68), using multipliers and intersection numbers.
Almost perfect sequences of Class I with 
 � 2 correspondIn case 
 � 1 of type I, an infinite family of almost perfect

to cyclic divisible difference sets with parameterssequences exists: Let D consist of these elements d in the
multiplicative group G of GF(q2), satisfying tr(d � dq) � 1.
Then D is a cyclic relative difference set in G with parame-
ters (q � 1, q � 1, q, 1). Such relative difference are called

�v
2

, 2,
v − 4

2
2,

v − 8
4

�

affine difference sets (9). Projection yields a cyclic relative dif-
ference set with parameters Examples are known for v � 8, 12 and 28. Leung et al. (69)

show the following.�
q + 1,2, q,

q − 1
2

�

Result 11. Almost perfect sequences of Class I with 
 � 2 and
period v exist if and only if v � 8, 12, or 28.if q is odd.
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Next we consider Class III(a). Here two possibilities arise: BIBLIOGRAPHY
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