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EQUATION MANIPULATION

Formal symbol manipulation is ubiquitous. In a broad sense, most of computer science, artificial intelligence,
symbolic logic, and even mathematics can be viewed as nothing but symbol manipulation. We focus on a very
narrow but useful aspect of symbol manipulation: reasoning about equations. Equations arise in all aspects of
modeling and computation in many fields of engineering and their applications. We show how equations can
be deduced from other equations (using the properties of equality) as well as how equations can be solved, both
in a general framework and in some concrete cases.

In the next section, we discuss a rewrite-rule-based approach for inferring equations from other equations.
Equational hypotheses are transformed into unidirectional simplification rules, and these rules are then used
for rewriting. The concept of a completion procedure is introduced for generating a canonical rewrite system
from a given rewrite system. A canonical rewrite system has the useful property that every object has a unique
normal form (canonical form) using the rewrite system. Objects equivalent by an equality relation have the
same canonical form. To infer an equation, it is necessary and sufficient to check whether the two sides of the
equation have identical canonical forms.

In the third section, equation solving is reviewed. Given a set of equations in which function symbols
are assumed to be uninterpreted (i.e., no special meaning of the symbols is assumed), a method is given for
finding substitutions for variables that make the two sides of every equation identical. This unification problem
arises in many diverse subfields of computer science and artificial intelligence, including automated reasoning,
expert systems, natural language processing, and programming. In the same section, we also discuss how the
algorithm is changed to exploit the semantics of function symbols when possible. In particular, we discuss
changes to the unification algorithm when some function symbols are commutative, or both associative and
commutative, as is often the case for many applications.

The fourth section is the longest. It reviews three different approaches for solving polynomial equations
over complex numbers—resultants, the characteristic set method, and the Gröbner basis method. For polynomial
equations with parameters, these methods can be used to identify conditions on parameters under which
a system of polynomial equations has a solution. This problem comes up in many application domains in
engineering, including CAD/CAM, solid modeling, robot kinematics, computer vision, and chemical equilibria.
These approaches are compared on a wide variety of examples.

Equational Inference

Consider the following equations:
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2 EQUATION MANIPULATION

In the above equations, 0 is a constant symbol, standing for the identity for +, a binary function symbol, and −
is a unary function symbol. Each variable is universally quantified; that is, any expression involving variables,
the operations −, +, 0, and other generators can be substituted for the free variables.

The reader may have noticed that these equations are the defining axioms of the familiar algebraic
structure groups. It is easy to see that the equations

follow from the above defining axioms. By appropriately substituting expressions for variables in the above
axioms, this deduction follows by the properties of equality. However, proving other equations routinely given
as homework problems in a first course on abstract algebra, such as

or showing that −(u + v) �= −(u) + −(v), is not that easy. It requires some effort. One has to find appropriate
substitutions for variables in the above axioms, and then chain them properly to derive these properties.

In a more general setting, a natural question to ask is: given a finite set of equations as the defining
axioms, such as the group axioms above, can another equation be deduced from them by substituting for
universally quantified variables and using the well-known properties of equality, such as reflexivity, symmetry,
transitivity, and replacement of equals by equals? This is a fundamental problem in equational deduction. The
answer to this problem is, in the general case, negative, as the problem is undecidable (that is, there can never
exist a computer program/algorithm that can solve this problem in general, even though specific instances of
it can be solved).

In many cases, however, this question can be answered. Below we discuss a particular heuristic that is
often useful in finding the answer. The basic idea is not to use the above equational axioms in both directions;
in other words, if an instance of its left side can be replaced by the corresponding instance of its right side,
then that instance of its right side cannot be replaced by the instance of its left side, and similarly, the other
way around. Instead, using some uniform well-founded measure on expressions, we determine which of the
two sides in an equation is more “complex,” and view an equation as a unidirectional rewrite (simplification)
rule that transforms more complex expressions into less complex. We often employ such a heuristic in solving
problems. For instance, the axiom

is viewed as a simplification rule in which x + 0 (or any other instance of it) is simplified to x, and not the
other way around; that is, x is never replaced by x + 0 .

Let us precisely define simplification or rewriting. Given a rewrite rule

where L and R are terms built from variables and function symbols, a term t can be simplified by the rule (at
position p, a sequence of nonzero positive integers,1 in t ) if the subterm t/p of t matches L, that is there is a
substitution σ for variables in L, written as { x1 ← s1, x2 ← s2, . . ., xn ← sn }, such that t/p = σ(L), the result
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of applying the substitution σ on L . The result of this simplification is then

—the term obtained by replacing the subterm at position p in t by σ(R) . This definition can be extended to
consider rewriting (including multistep rewriting) by a system of rewrite rules. A term t is in normal form
(also called irreducible) with respect to a rule L → R (respectively, a system of rewrite rules) if no subterm in t
matches L (respectively, the left side of any rewrite rule in the system).

It should be noted that for rewriting to be meaningfully defined, the variables appearing in the right side
R must also appear in the left side L, as otherwise substitutions for extra variables appearing in R cannot be
determined. Henceforth, every rule is assumed to satisfy this property; i.e., all variables appearing in R must
appear in L as well.

For example,

can be proved easily by simplifying the left side: first using the axiom in Eq. (3), followed by the axiom in Eq.
(2), and then by axiom in Eq. (1), using each axiom as a left-to-right rewrite rule.

For certain equations, it is not too difficult to determine which side is more complex (e.g., the first two
axioms). But there are cases in which it is not easy.2

Consider the case of the associativity axiom. The left side is more complex if left-associative expressions
are considered simpler; if right-associative expressions are considered simpler, then the left side is less complex
than the right side. In this sense, there is sometimes a choice for certain equations. If all equational axioms
can be oriented into terminating rewrite rules (meaning that simplification using such rewrite rules always
terminates), then simplification by rewriting itself serves as a useful heuristic for checking whether the given
two terms are equal.

Notice that there is another way to simplify the left side of the above equation, which is to first simplify
using the axiom in Eq. (2), giving a new equation

Clearly, both u and 0 + −(−(u)) are normal forms of ( u + −(u)) + −(−(u) ) with respect to the above axioms
considered as left-to-right rewrite rules. This would imply that u = 0 + −(−(u)) is an equation following from
the above axioms as well.

For attempting proofs of other equations from equational axioms, the following two properties of equations
are helpful. The first property is whether equational axioms can be collectively oriented into terminating
rewrite rules. The second property is whether the rewrite rules thus obtained have the so-called Church–
Rosser or confluence property: that is, given an expression, no matter how it is simplified using rewrite rules,
if there is a normal form, that normal form is unique. Both of these properties are undecidable in the general
case. However, for terminating rewrite rules, the confluence property is decidable.

As discussed earlier, the equational axioms of groups can be oriented as terminating rewrite rules (by
going from left to right). These rewrite rules do not have the confluence property, as we saw above that the
expression ( u + −(u)) + −(−(u) ) has two different normal forms.

If a set of rewrite rules is terminating and confluent, then every expression has a normal form, and further,
that normal form is unique; unique normal forms are also called canonical forms. For such rewrite rules, it is
easy to decide whether an equational formula follows from the axioms or not: compute the unique normal forms
of the expressions on the two sides of the equality; if the normal forms are identical, the equational formula is
a theorem; otherwise, it is not a theorem.
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For groups, the following set of rewrite rules is terminating and confluent; this system thus serves as a
decision procedure for equational formulas involving +, −, 0 :

Given a set of equational axioms, it is sometimes possible to generate an equivalent terminating and
confluent rewriting system from them. The generated system is equivalent to the input system in the sense
that the equations provable from the equations corresponding to rewrite systems are precisely the equations
provable from the original equational axioms. This can be done using completion procedures.

In the next subsection, we discuss heuristics for ensuring/checking termination of rewrite rules. In the
following subsection, we discuss the concepts of superpositions and critical pairs for checking the confluence
of terminating rewrite rules. This is followed by a discussion of completion procedures for generating an
equivalent confluent and terminating rewrite system from a given terminating rewrite system. Finally, we
discuss advanced concepts relating to generalizations of these techniques when semantic information of some
function symbols must be exploited. The special focus is on systems in which certain function symbols have the
associative and commutative (AC) properties.

These methods and heuristics can be implemented and tried on a variety of examples. We have built an
automated reasoning program called Rewrite Rule Laboratory (RRL) for checking termination of a large class
of rewrite systems, as well as for generating a confluent and terminating rewrite system from a given rewrite
system using completion. This program has been used for solving many nontrivial problems in equational
inference, and has also been used in a variety of applications, including: automatic verification of hardware
arithmetic circuits, such as the SRT division algorithm widely believed to have been implemented in the
Pentium chip; software verification; analysis of database integrity constraints; checking consistency; and com-
pleteness of behavioral specifications of abstract data types. For details and citations, an interested reader may
refer to Refs. 1 and 2.

Termination of Rewriting. Checking for termination of a set of rewrite rules is undecidable, in general.
In fact, the termination of a single rewrite rule is undecidable, as a Turing machine can be encoded using just
one rewrite rule. However, for a large class of interesting rewrite systems, heuristics have been developed to
check their termination.

As stated above, one approach for checking termination is to define a complexity measure on expressions
by mapping them to a well-founded set (i.e., a set that does not admit any infinite descending chain) such
that for every rule, its right side is of smaller measure than its left side. Since these rewrite rules are used
for simplification, such a measure should satisfy some additional properties, namely, in any context (larger
expression), whenever the left side of a rule is replaced by the right side, the measure reduces, and similarly,
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the measure of every instance of the right side of a rule is always smaller than the measure of the corresponding
instance of its left side.

In their seminal paper discussing a completion procedure, Knuth and Bendix 3 introduced a measure
by associating weights with expressions by assigning weights to function symbols. They required that for an
expression s > t, every variable in s must have at least as many occurrences as in t . This idea was extended
by Lankford to design a complexity measure by associating polynomials with function symbols.

A more commonly used measure is syntactic, based on a precedence relation among function symbols.
Assuming that function symbols can be compared, terms built using these function symbols are compared by
recursively comparing their subterms. These path orderings are quite powerful in the sense that termination of
all primitive recursive function definitions, as well as other definitions such as of Ackermann’s function, which
grows faster than any primitive recursive function, can be established using these orderings. For a function
symbol that takes more than one argument, if two terms have that function symbol as their root, then the
arguments can be compared without considering their order, left-to-right order, right-to-left order, or any other
permutation. A commonly used path ordering based on these ideas is the lexicographic recursive path ordering
(4); this is the ordering implemented in our theorem prover RRL.

Let �f be a well-founded precedence relation on a set of function symbols F ; function symbols can also
have equivalent precedence, written f ∼f g . The lexicographic recursive path ordering (with status) �rpo
extends �f to a well-founded ordering on terms:

Definition 1. s = f (s1, . . ., sm) �rpo g(t1, . . ., tn) = t iff one of the following holds.

(1) f f g, and s �rpo tj for all j (1 ≤ j ≤ n) .
(2) For some i (1 ≤ i ≤ n), either si ∼rpo t or si �rpo t
(3) f ∼ f g, f and g have multiset status, and {{s1, . . ., sm}} �mul {{t1, . . ., tn}}
(4) f ∼f g, f and g have left-to-right status, then (s1, . . ., sm) �lex (t1, . . ., tn), and s �rpo tj for all j (1 ≤ j ≤ n) ; if

f and g have right-to-left status, then (sm, . . ., s1) �lex (tn, . . ., t1) and s �rpo tj for all j (1 ≤ j ≤ n) .

Of course, s �rpo x if s is nonvariable, and the variable x occurs in s . Term s ∼rpo t if and only if f ∼f g
and

(1) f and g have multiset status, and {{s1, . . ., sm}} = {{t1, . . ., tn}}, or
(2) f ∼f g, f ∼ and g have left-to-right (similarly, right-to-left) status, and for each 1 ≤ i ≤ m, si �rpo ti .

In the above definitions, �rpo is recursively defined using its multiset and sequence extensions. The
multiset M1 �mul M2 if and only if for every ti ∈ M2 − M1, where − is the multiset difference, there is an sj ∈
M1 − M2, sj �rpo ti . The sequence (s1, . . ., sm) �lex (t1, . . ., tn) if and only if there is a 1 ≤ i ≤ m such that for all
1 ≤ j < i one has sj �rpo tj and si �rpo ti .

It can be shown that �rpo has the desired properties of a measure needed to ensure that rewrite rules
used for simplification are indeed terminating. So if the left side of an equation is �rpo its right side, it can be
oriented from left to right as a terminating rewrite rule. The properties are as follows:

• �rpo is well founded,
• �rpo is stable under substitutions, that is, if s �rpo t, then for any substitution σ of variables, σ(s) �rpo σ(t),

and
• �rpo is preserved under contexts, that is, s �rpo t, then for any term c that has a position p, one has c[p ← s]

�rpo c[p ← t] as well.



6 EQUATION MANIPULATION

Local Confluence of Rewriting: Superposition and Critical Pairs. Since bidirectional equations
are used as unidirectional rewrite rules for efficiently exploring search space, additional rewrite rules are
needed to compensate for the lack of symmetric use of equations. For instance, we saw above an example of an
expression, (u + −(u)) + −(−(u)), which could be simplified in two different ways—using the axiom in Eq. (3) or
using the axiom in Eq. (2). Depending upon the axiom used, two different normal forms can be computed from
the expression, thus showing that the rewrite system obtained from the axioms is not confluent. However, 0 +
−(−(u)) = u can be inferred from the three axioms.

A rewrite system R is called confluent if for every term t, if t is simplified by R in many steps in two
different ways to two different results, it is always possible to simplify the results to the same expression.
Checking for confluence is, in general, undecidable. However, for a terminating rewrite system, the confluence
check is equivalent to local confluence, which can be easily decided based on the concepts of superpositions
and critical pairs generated by overlapping the left sides of rewrite rules. A rewrite system R is called locally
confluent if for every term t, if t is simplified in a single step in two different ways to two different results, it is
always possible to simplify the results to the same expression.

Theorem 2. If a terminating rewrite system R is locally confluent, then R is confluent.
Definition 3. Give two rules L1 → R1 and L2 → R2, not necessarily distinct, such that a nonvariable

subterm of L1 at position p unifies with L2 with a most general substitution (unifier) σ, σ(L1) is called a
superposition of L2 → R2 into L1 → R1 and

is called the associated critical pair.
(Unification of terms is defined in the next section.)
Theorem 4. Give a rewrite system R if for every critical pair 〈c1, c2〉 generated from every pair of L1 →

R1, L2 → R2 in R , c1 and c2 have the same normal form, then R is locally confluent.
As an illustration, consider the axioms in Eqs. (2) and (3) above, viewed as left-to-right unidirectional

rules. Using unification (see the next section), the superposition (x + −(x)) + z [of rules 2 and 3 corresponding
to the axioms in Eqs. (2) and (3), respectively] can be generated from the overlap of the two left sides; when
axiom 2 is applied on it, the result is 0 + z, but if the axiom in Eq. (3) is applied on the same expression, the
result is x + (−(x) + z) . The pair 〈x + (−(x) + z), 0 + z〉 is the critical pair obtained from the superposition. Such
pairs are critical in determining the confluence property; hence the name. In this example, the expressions
in the above critical pair have different normal forms (both 0 + z and x + (−(x) + z) are already in normal
form). So the rewrite rules corresponding to the three group axioms are not confluent, even though they are
terminating.

In contrast, the system of 10 rewrite rules given above is confluent; it can be shown that every superpo-
sition generated from possible overlaps between the left sides of these rewrite rules generates critical pairs in
which the two terms have the same normal form. For instance, terms in the pair 〈x + (−(x) + z), 0 + z〉 reduce
to the same normal form using the ten rewrite rules above.

Identifying which superpositions are essential and which are redundant for checking local confluence as
well as in completion procedures has been a fruitful area of research in rewrite-rule-based automated deduc-
tion. Implementation of such results speeds up generation of canonical rewrite systems using the completion
procedure as discussed below. As the reader might have observed, superpositions and critical pairs are defined
by unifying a nonvariable subterm of the left side of a rule with the left side of another rule, since variable
subterms always result in pairs that rewrite to the same expression. This research of identifying and discarding
unnecessary inferences has recently been found useful in other approaches to automated deduction as well,
including resolution-based calculi.
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Completion Procedure: Making Rewrite Systems Canonical. As the reader might have guessed,
if a terminating rewrite system is not confluent, it may be possible to make it confluent by augmenting it with
additional rewrite rules obtained from normal forms of critical pairs. An equation between the two different
normal forms of the terms in a critical pair obtained from a superposition is an equational consequence of the
original rules. Including it in the original set of equations does not, in any way, change the equational theory of
the original system. An equational theory associated with a set of equations is defined as the set of all equations
that can be derived from the original set of equations using the rules of equality and instantiation of variables.

This process of adding new equational consequences generated from superpositions and critical pairs
from rewrite rules is called completion. Every nontrivial new equation generated must be oriented into a
terminating rewrite rule. If this process terminates successfully, then the result is a terminating and confluent
rewrite system (also called a canonical or complete rewrite system), which serves as a decision procedure for
the equational theory of the original set of equations. An equation s = t is an equational consequence of the
original system if and only if the normal forms of s and t with respect to the canonical rewrite system are the
same. A canonical rewrite system thus associates canonical forms with congruence classes induced by a set of
equations. For example, from the equational axioms defining groups, the above set of ten rewrite rules can be
obtained by completion from the original set of three rewrite rules; this set can be generated by our theorem
prover RRL in less than a second.

A completion procedure can be viewed as an implementation of an inference system consisting of the
following inference steps (5). Each inference step transforms a pair consisting of a set E of equations and a set
R of rules. The initial state is E 0 and R 0, with R 0 usually being { }, the empty set. An inference step transforms
〈E i, R i〉 to 〈E i + 1, R i+1〉 using a termination ordering � on terms, as follows:

(1) Process an Equation. Given an e1 = e2 in E i, let n1 and n2 be, respectively, normal forms of e1 and e2 using
R i .

(1) Delete a Redundant Equation. If n1 ≡ n2, then E i+1 = E i − {e1 = e2} and R i+1 = R i (n1 ≡ n2 stands for n1
and n2 being identical.)

(2) Add a New Rule.

(1) If n1 � n2, then E i+1 = E i − {e1 = e2} and R i+1 = R i ∪ {n1 → n2} .
(2) If n2 � n1, then E i+1 = E i − {e1 = e2} and R i+1 = R i ∪ {n2 → n1} .

Introduce a New Function. Let f be a new function symbol not in the theory, and let x1, . . ., xj be the
common variables appearing in n1 and n2 .

(1) If n1 � f (x1, . . ., xj), then E i+1 = E i − {e1 = e2} ∪ {n2 = f (x1, . . ., xj)} and R i+1 = R i ∪ {n1 → f ∼ (x1, . . ., xj)} .
(2) If f (x1, . . ., xj) � n1, then E i+1 = E i − {e1 = e2} ∪ {n2 = f (x1, . . ., xj)} and R i+1 = R i ∪ {f (x1, . . ., xj) → n1} .

This choice should not be taken. Almost always, f (x1, . . ., xj) should be made the right side of introducing
rules.

Add Critical Pairs. Given two (not necessarily distinct) rules l1 → r1 and l2 → r2 in R i ,
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and

Normalize Rules. Given two distinct rules l1 → r1 and l2 → r2 in R i :

(1) If l1 → r1 rewrites l2, then E i+1 = E i ∪ {l2 = r2} and R i+1 = R i − {l2 → r2} . The rule l2 → r2 is thus deleted
from R i and inserted as an equation into E i .

(2) If l1 → r1 rewrites r2, then E i+1 = E i and R i+1 = R i − {l2 → r2} ∪ {l2 → r′
2}, where r′

2 is a normal form of
r2 using R i .

The above steps can be combined in many different ways to generate a complete system when all critical
pairs among rules have been considered. The resulting algorithm must be fair in the sense that critical
pairs among all pairs of rules must eventually be considered. Many useful heuristics have been explored and
developed to make completion faster. The order in which rules are considered for computing superpositions,
the order in which critical pairs are processed, how new rules are used to simplify already generated rules,
and so on, appear to affect the performance of completion considerably. For some early work on this, the reader
may consult Ref. 6.

There are at least two ways a completion procedure can fail to generate a canonical rewrite system:

(1) An equational consequence is generated that cannot be oriented into a terminating rewrite rule.
(2) Even if all equational consequences generated from critical pairs during completion are orientable, the

process of adding new rules does not appear to terminate.

The first condition could arise for many reasons. The new equation, when oriented either way, might
result, in conjunction with other rules, in nontermination of rewriting. Or the ordering heuristics might not
be powerful enough to establish the termination of the rewrite system when augmented with the new rewrite
rule. It is also possible that the generated equation could not be made into a rewrite rule because either side
has extra variables that the other side does not have.

In some cases, it is helpful to split such an equation by introducing a new function symbol (to stand for
the operation corresponding to one of the sides of the equation); this is done in the “Introduce a New Function”
step above. For instance, the following single axiom can be shown to characterize free groups using completion:

where/corresponds to the right division operation. During completion of the above axiom, an equation

is generated, which suggests that a new constant can be introduced. That constant turns out to satisfy the
properties of the identity. Similarly, an inverse function symbol is introduced, finally leading to the following
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canonical system:

Above, f 2 behaves as the identity 0; f 3 behaves as the inverse −; f 1 is an extra function symbol introduced
during completion; x + y can be defined as x/f 3(y) . All the rewrite rules corresponding to the canonical system
of free groups presented earlier are equational consequences of the above canonical system.

Another approach for handling nonorientable equations is discussed below in which such equations are
processed semantically. Finally, an equation could be kept as is in E i, and its instances could be oriented and
used for simplification as needed by including them in R i ; this is the approach taken in unfailing completion
(7).

The second condition above (non-termination of completion) cannot, in general, be avoided, since the
decision problem of equational theories is unsolvable. In some cases, however, introducing a new function
symbol to stand for an expression is helpful even though intermediate equations can be oriented as terminating
rewrite rules. With the help of this new symbol, it may be possible to generate a finite canonical system though
no such system can be generated without it (see Ref. 8 for such an example of a finitely presented semigroup).

Forward versus Backwards Reasoning. A completion procedure employs forward reasoning and sat-
uration. That is, additional consequences are derived from the original set of axioms, without considering
conjectures/goal(s) being attempted. And this process is continued until the resulting set of derivations is
completely saturated.

A completion procedure can also be used in a goal-directed way. A conjecture to be attempted is negated,
and a proof by contradiction is attempted. Axioms interact with each other by forward reasoning, generating
new consequences. They can also interact with the negation of the goal, and attempt to generate a contradiction
using backward reasoning. This approach based on the completion procedure can be shown to be semidecidable
for determining membership in an equational theory. In other words, if a conjecture is provable, then barring
any difficulties arising due to nonorientability of new equations,3

a proof by contradiction can always be generated by the completion procedure.
To illustrate using the group example again, one way to attempt a proof of 0 + x = x is to

(1) first complete the above axioms using a completion procedure that generates a complete set of rewrite rules,
and then

(2) simplify both sides of the conjecture, and check for identity.

If a completion procedure does not terminate, then the second step will never be performed. To circumvent
this problem, an obvious heuristic is to do step 2 whenever a new rule is generated, to see whether with the
existing set of rules, the conjecture can be proved by rewriting. The same approach can be tried in a uniform
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way by adding the negation of the (Skolemized) conjecture (for the example, 0 + a �= a), and then running
completion on the axioms and the negated conjecture, and looking for a contradiction.

Unorientable Equations. So far, all equations are assumed to be oriented as terminating rewrite rules.
In many applications, one often has to consider function symbols that are commutative and/or associative.
Commutative axioms (and associative axioms in conjunction with commutative axioms) are nonterminating
when used for simplification. For example, consider the axioms defining abelian groups, which, in addition to
the three axioms in Eqs. (1, , ), include the commutative axiom as well:

One approach for handling axioms such as commutativity and associativity is to integrate them into the
definitions of rewriting (simplification) and superpositions. In the definition of rewriting, instead of looking for
an exact match of the left side of a rewrite rule L → R, matching is done modulo such axioms. In the discussion
below, we assume that certain function symbols have the associative and commutative properties.

A term t rewrites at position p using a rewrite rule L → R (where t and L could have occurrences of
function symbols with associative and commutative properties) if there is a t′ =AC t such that t′/p =AC σ (L),
where =AC is the congruence relation defined by the associative–commutative properties of those function
symbols on terms; t is then said to rewrite to t[p ← σ (R)] .4

For instance, −(u) + (u + w) can be simplified by associative–commutative simplification using the axiom
x + −(x) = 0 to 0 + w, which simplifies further using the axiom x + 0 = x to w . Notice that the term −(u) +
(u + w) is first rearranged using the associativity property of + to the equivalent term (−(u) + u) + w . The
subterm −(u) + u then matches modulo commutativity to x + −(x) . Similarly, the result 0 + w matches modulo
commutativity to x + 0 .

Similarly, superpositions among the left sides of rewrite rules are defined using unification modulo ax-
ioms. Further, to ensure confluence of terminating rewrite rules, additional checks must be made (which can
be viewed as considering specialized superpositions between each rule and the axioms to account for the se-
mantics) (9,10). In the next section, we discuss unification modulo associative–commutative properties as well.
Termination heuristics must be generalized appropriately also; termination of rewrite rules modulo axioms,
such as associative–commutative, means defining a well-founded ordering on equivalence classes defined by
the axioms (11).

Below is a list of rewrite rules of abelian groups which is canonical modulo AC.

This list is much smaller than the list for (general, abelian as well as nonabelian) groups, since one rewrite
rule here, namely x + 0 → x, is equivalent to both x + 0 → x and 0 + x → x because of the commutativity
property of + . Using the above rewrite rules, it can proved that −(x + y) = −(x) + −(y), a property true for
abelian groups but not for nonabelian groups.
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Below is another list of canonical rewrite rules of abelian groups. Notice that the rule in Eq. (10) above is
oriented in the opposite direction below:

The issue of redundant superpositions becomes very critical when confluence check and completion proce-
dure modulo a set of axioms are considered. In general, there are a lot more superpositions to consider, because
unlike the “ordinary” case, there can be many most general unifiers of two terms. Further, rewriting modulo
axioms is a lot more expensive than “ordinary” rewriting. It was control over this redundancy which led us to
easily prove ring commutative problems using RRL (12). In his EQP program, McCune extensively exploited
heuristics for discarding redundant superpositions to establish that Robbins algebras are Boolean (13), thus
solving a long-standing open problem in algebra and logic.5

Without these optimizations, it is unclear whether EQP would have been able to settle this long-standing
conjecture.

The concept of a completion procedure and related properties generalize as well. For instance, from the
first two axioms of groups discussed above (since the associativity axiom in addition to the commutativity
axiom is semantically built-in), the canonical system consisting of the five rules in Eqs. (1), (2), (4), (5), (10)
above can be generated using the completion procedure for associative–commutative function symbols. Our
theorem prover RRL can generate this canonical system in a few seconds. For details about an associative–
commutative completion procedure as well as for an E completion procedure, where E is a first-order theory for
which E -unification and E -rewriting are decidable, an interested reader can consult 9,10. In a later section,
we discuss the Gröbner basis algorithm, which is a specialized completion procedure for finitely generated
polynomial rings in which coefficients are from a field. This completion procedure has the nice property that it
always terminates.

Extensions. We have discussed proofs in equational theories, in which only the properties of equality
are used. When function symbols are defined by recursive equations on inductively (recursively) defined data
structures, equations must be proved by induction as well. For example, if addition on numbers is defined
recursively as

where s is the successor function on numbers, then 0 + x = x cannot be proved equationally from the definition.
But 0 + x = x can be proved by induction; that is, no matter what ground term built using 0 and s is substituted
for x in the above equation, the resulting equation is an equational inference of the two equations defining + .
Proofs by induction have been found useful in verification and specification analysis.

There are many approaches for mechanizing proofs of equational formulae by induction, in which some
of the variables are ranging over inductively (recursively) defined data structures such as natural numbers,
integers, lists, sequences, or trees (14,15). In the following sub-subsection, we will briefly review the cover-
set approach implemented in RRL (15), which is closely related to the approach in 14 in that the induction
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scheme used in attempting a proof of a conjecture is derived from the well-founded ordering used to show the
termination of the definitions of function symbols appearing in the conjecture.

We will not be able to discuss full first-order inference, in which properties of other logical connectives
are used for deduction. This is a very active area of research, with many conferences and workshops. First-
order theorem proving can be mechanized equationally as well. In fact, this was proposed by the author
in collaboration with Paliath Narendran (16), in which quantifier-free first-order formulae are written as
polynomials over a Boolean ring, using + to represent exclusive or and ∗ to represent conjunction. Our theorem
prover RRL includes an implementation of this approach to first-order theorem proving.

Inductive Inference: Cover-Set Method. The cover-set method for mechanizing induction is based on
analysis of the definitions of function symbols appearing in a conjecture. The definition of a function symbol
as a finite set of terminating rewrite rules is used to design an induction scheme based on the well-founded
ordering used to show the termination of the function definition. The induction hypotheses are generated
from the recursive calls in the definition, which are lower in the well-founded order. In the case of competing
induction variables and induction schemes, heuristics are employed to pick the variable and the associated
induction scheme most likely to succeed. Most induction theorem provers use backtracking so that if one
particular choice fails, another choice can be attempted.

Let us start with a simple example. Assume that functions +, ∗, and xy are defined on natural numbers,
generated by 0 and s, where s is the successor operation to denote incrementing its argument by 1, as follows:

Without assuming any additional properties of +, ∗, xy, we wish to prove from the above definitions that

It is easy to see that the above defining equations, when oriented from left to right as terminating rewrite
rules, are confluent as well. Further, since the two sides of the above conjecture are already in normal form, it is
clear that the conjecture is not provable by equational reasoning; that is, the conjecture is not in the equational
theory of the definitions.

The conjecture can, however, be proved by induction, using the property that every natural number can be
generated freely by 0 and s . Our theorem prover RRL, for instance, can prove the above conjecture automatically
without any guidance or help; it generates the needed intermediate lemmas, including the associativity and
commutativity of ∗, +, and so on.

While attempting a proof by induction of a conjecture (by hand or automatically), a number of issues need
to be considered:

(1) Which variable in a conjecture should be selected for performing induction? Associated with this choice is
determining an induction scheme to be used.
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(2) What mechanisms can be attempted for generalizing intermediate subgoals so as to have stronger lemmas,
which are likely to be more useful?

(3) How does one ensure whether progress is being made while trying subgoals generated from following a
particular approach, and when should an alternate approach be attempted instead?

(4) When should one give up?

In the above example, there are three candidates for an induction variable. By performing definition
analysis, it can be easily determined that if x or y is chosen as a induction variable, a proof attempt will get
stuck, since the definitions above are given using recursion on the second argument of +, ∗, and xy . Thus the
most promising variable to be used for doing induction is z .

The induction scheme to be used is suggested by the definitions of the function symbols + and xy, in
which z appears as an argument. Since each of these definitions can be proved to be terminating, a well-
founded ordering used to show termination of the definition can be used to design an induction scheme. For
this example, the induction schemes suggested by the definitions of + and xy are precisely the principle of
mathematical induction, namely, that to prove the above conjecture, it suffices to show that the conjecture can
be proved for the case when

(1) z = 0—the basis subgoal, and
(2) z = s(z′), using the induction hypothesis obtained by making z = z′—the induction step subgoal.

In general, for each rewrite rule in the function definition used for designing the induction scheme, a
subgoal is generated. A rewrite rule whose right side does not have a recursive call to the function gives a
basis subgoal. A rewrite rule whose right side invokes recursive calls to the function gives an induction step,
in which the changing arguments in the recursive calls generate substitutions for producing potentially useful
induction hypotheses. In general, there can be many basis subgoals, and in an induction subgoal there can be
many induction hypotheses.

For the above example, the basis subgoal can be easily proved by normalizing it using the rewrite rules.
The induction subgoal after normalization produces

assuming the induction hypothesis

Using the induction hypothesis, the conclusion in the subgoal simplifies to

Most induction theorem provers, including RRL, would attempt to generalize this intermediate conjecture
using a simple heuristic of abstracting common subexpressions on the two sides by new variables. For instance,
the above intermediate conjecture would be generalized to
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This conjecture cannot be proved equationally either, but can be proved by induction. The variable v is
chosen as the induction variable by recursion analysis. The basis subgoal can be easily proved. The induction
step subgoal leads to the following intermediate subgoal to be attempted:

assuming

In the conclusion above, it is not even clear how to use the induction hypothesis.
Another induction on the variable v′ (which is an obvious choice based on recursion analysis) leads to a

basis subgoal when v′ = 0 :

the commutativity of ∗. The induction step, after generalization, leads to an intermediate conjecture:

which can be easily established by induction. Using these intermediate conjectures, the original intermediate
conjecture

is proved, from which the proof of the main goal follows.
As the reader might have guessed, the major challenge during proof attempts by induction is to gener-

ate/speculate lemmas likely to be found useful for the proof attempt to make progress.
More details about the cover-set induction method can be found in Ref. 15; see Ref. 2 for the use of the

cover-set method for mechanically verifying parametrized generic arithmetic circuits of arbitrary data width.
For mechanizing inductive inference about Lisp-like functions, an interested reader may consult Ref. 14.

Equation Solving Over Terms: Unification

In the last section, we discussed whether an equation can be deduced from a set of equations using the properties
of equality, with the assumption that any expression can be substituted for a variable, that is, variables in
hypothesis equations are assumed to be universally quantified. In equation solving, one is often interested in a
particular instance of such variables; that is, variables in equations are assumed to be existentially quantified.
In this section, we focus on this aspect of symbolic computation.

Given a set of equations over terms involving variables and function symbols, we are interested in solving
these equations, that is, finding a substitution for variables appearing in the equations so that after the
substitution is made, both sides of every equation become identical. At first, nothing is assumed about the
meaning of the function symbols appearing in the equations (such symbols are called uninterpreted). In a
later subsection, we assume that as in the case of + in abelian groups, some of the function symbols have
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the associative–commutative properties. In a subsequent section, we discuss solving polynomial equations,
and assume even more about the operators, namely that +, ∗ are, respectively, addition and multiplication on
numbers.

For example, consider an equation

This equation can be solved, and it has many solutions. One solution is

In fact, this solution is the most general solution, and any other solution can be obtained by instantiating
the variables in it.

Another equation,

does not have any solution, since x cannot be made equal to both a and b (recall that the function symbols are
assumed to be uninterpreted, so it cannot be assumed that a could possibly be equal to b) .

In the previous section, we saw an application of unification for considering overlaps among the left sides
of rewrite rules to compute superpositions and critical pairs. Later, we will summarize other applications of
unification as well.

Simple Unification. Consider a finite set of equations

The goal is to find whether they have a common solution; i.e., whether there is a substitution σ for
variables in {si, ti | 1 ≤ i ≤ k} such that for each i, σ(si) and σ(ti) are the same. If so, what is a most general
solution; that is, what is a solution from which all other solutions can be found by instantiating the variables?
A solution of these equations is called a unifier, and a most general solution is called a most general unifier
(mgu).

Just as in the case of solving linear equations (in linear algebra), it is necessary to be clear about the
simplest equations for which there is a solution as well as for equations that do not have any solution.

Similarly to x = 3 in linear algebra, the equation x = t, where x does not appear in t, has a solution, and
in fact, the most general solution is {x ← t} . Such an equation is said to be in solved form. Similarly to 3 = 0
having no solution, the equation f (. . .) = g(. . .), where f , g are different function symbols, has no solution. No
substitution for variables can make the two sides equal, as no assumption can be made about the properties of
distinct function symbols.

Also, an equation x = t, where t is a nonvariable term with an occurrence of x, has no solution, since no
substitution for x can make the two sides of the equation equal. After the substitution, the size of the left side
is not equal to the size of the right side.

The general problem of solving a finite set of equations can be transformed into those of the above simple
equations by a sequence of transformation steps. During the transformation, if a simple equation x = t, with t
having no occurrence of x, is identified, then the partial solution obtained so far can be extended by including
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{x ← t} (solution extension step). In addition, t is substituted for x in the remaining equations yet to be solved.
Equations of the form t = t can be deleted, as solutions are not affected (deletion step).

If a simple equation x = t, where t is nonvariable and includes an occurrence of x, is generated, there is no
solution to the system of equations under consideration. Similarly, an equation f ∼(. . .) = g(. . .), in which f ∼,
g are different function symbols, has no solution either. These two cases are the no-solution steps.

An equation of the form f (u1, . . ., ui) = f (v1, . . ., vi) is replaced by the set of equations {u1 = v1, . . ., ui = vi}
(decomposition step), since every solution to the original equation is also a solution to the new set of equations
and vice versa.

The above transformation steps (decomposition, solution extension, deletion, and no solution) can be
repeated in any order (nondeterministically) until either the no-solution condition is detected or a solved
(triangular) form {x1 ← w1, . . ., xj ← wj } is obtained, in which for each 1 ≤ i ≤ j, xi does not appear in wh, h ≥
i .

The termination of these steps follows from the following observations:

• If the system of equations has no solution, then during the transformation, an unsolvable equation is
generated, which would eventually be recognized by the no-solution step,

• whenever a simple equation x = t, where x does not occur in t, is included in a solved form, the number of
variables under consideration goes down (even though the size of the problem may increase because of the
substitution, unless proper data structures with bookkeeping are chosen), and

• a decomposition step reduces the problem size.

A measure that lexicographically combines the number of unsolved variables and the problem size reduces
with every transformation step.

The order in which these transformation steps are performed determines the complexity of the algorithm.
An algorithm of linear time complexity is discussed in Ref. 17; it is rarely used, due to the considerable overhead
in implementing it. A typical implementation is of n2 (quadratic) or n log n complexity, where n is the sum of
the sizes of all the terms in the original problem. The main trick is to keep track of variables that have the
same substitution; this can be done using a union-find data structure.

It can be easily shown that a set of equations either does not have a solution, or has a solution, in
which case, then the most general solution (mgu) is unique up to the renaming of the (independent) variables
(variables not being substituted for).

Simple unification is fundamental in automated reasoning and other areas in artificial intelligence. For
example, superposition and critical-pair construction used in checking confluence, as well as in the completion
procedure discussed in the section on equational inference, use a unification algorithm for identifying terms
that can be simplified in either of two different ways. Resolution theorem provers as well as provers based on
other approaches also use unification as the main primitive. Unification is the main computation mechanism
in logic programming languages, including Prolog. Unification is also used for type inference and type checking
in programming languages such as ML.

Associative–Commutative (AC) Unification. The above algorithm for simple unification assumed
no semantics for the function symbols appearing in equations. That is why simple equations such as x = t,
where x appears in t, as well as f (u1, . . ., ui) = g(v1, . . ., vj), where f , g are distinct symbols, cannot be solved. If
we assume some properties of function symbols and constants, then some of these equations may be solvable.
For example, since for any x we have x = x + 0 over the integers, any substitution for x is a solution to this
equation over the integers. Similarly, x ∗ y = x + 1 has a solution over natural numbers: { x ← 1, y ← 2 }, even
though the top function symbols of the terms on the two sides of the equation are different.

Unification algorithms have been developed for solving equations in which some of the function symbols
have specific interpretations whereas other symbols may be uninterpreted. Procedures have been proposed for
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solving the general E-unification problem in which equations are solved in the presence of interpreted symbols,
whose semantics are given by an equational theory generated by a set E of equations.

Below, we briefly review a particular but very useful case of solving equations over algebraic struc-
tures when some of the function symbols have the associative–commutative (AC) properties. The use of an
associative–commutative unification/matching algorithm was key in McCune’s EQP theorem prover settling
the Robbins algebra conjecture (13).

Consider a finite set of equations

in which some of the function symbols are known to be AC. Except for the decomposition step, all transformation
steps discussed above for the simple unification problem are still applicable.

For a commutative function symbol f , an equation of the form f (u1, u2) = f (v1, v2) has two possible most
general solutions—one in which it is attempted to make u1, u2 equal to v1, v2, respectively, and the other in
which it is attempted to make u1, u2 equal to v2, v1, respectively. In general, there are many solutions possible.
Each of these possibilities can lead to a different most general unifier. So in the presence of commutative
function symbols, there can be exponentially many most general unifiers of a set of equations. In fact, it is easy
to construct examples of equations with commutative function symbols for which the number of most general
solutions is exponential in the size of the input.

If f is associative as well, then the problem gets even more interesting. As a simple example, consider

where + is an AC function symbol. There are many most general solutions of the above equation. The problem
is related to the partitioning problem. In one most general solution x, y, z, and u all have the same substitution,
say w ; in another, the substitution for u can be u1 + u2, whereas x gets u1, y gets u2 + u2, and z gets u1 + u1 +
u2 ; of course, there are many other possibilities as well.

As the reader must have observed, for an AC symbol f , its occurrences appearing as arguments to f (i.e.,
an argument of f has f itself as the outermost symbol) can be flattened. An AC f can be viewed as an n-ary
function symbol instead of a binary function symbol.

Consider an equation of the form f (u1, . . ., ui) = f (v1, . . ., vj) where f is AC and no ui or vj has f as its
outermost symbol. This equation cannot be decomposed as before, since the order of arguments is irrelevant;
also notice that i need not be equal to j . Many different decomposition may be possible.

As shown in Ref. 18, such decompositions can be done by building a decision tree that records all possible
different choices made. For every nonvariable argument uk, it must be determined whether uk will be unified
with (made equal to) some nonvariable argument vl with the same outermost symbol, or will be part of a
solution for some variable vl . Such choices can be enumerated systematically with some decision paths leading
to a solution, whereas others may not give any solution. Similarly, for every variable uk, it must be determined
whether it will unify with another variable and/or what its top level symbol will be in a solution. Every possible
choice must be pursued for generating a complete set of unifiers (from which every unifier can be generated by
instantiating variables in some element in the set) unless it can be determined that a particular choice will not
lead to a solution.

Partial solutions are built this way until equations of the form f (u1, . . ., ui) = f (v1, . . ., vj) in which
every argument is either a variable or a constant are generated. These equations are transformed to linear
diophantine equations, for which nonzero nonnegative solutions are sought (18). Since constants stand for
nonvariable subterms, a solution for a variable x should not include a constant that stands for a subterm in
which x occurs.
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The decision tree is so constructed that a complete set of AC unifiers of s and t is the union of complete
sets of AC unifiers of the unification problem corresponding to the leaf node resulting from each path. The
termination of the algorithm is obvious. Further, there is considerable flexibility and the possibility of using
heuristics to speed up the computation as well as to discard a priori paths leading to leaf nodes not resulting
in any solutions.

Computing a complete basis of nonnegative solutions of simultaneous linear diophantine equations can
be done in exponentially many steps. AC unifiers can be constructed by considering every possible subset of
such a basis that assigns a nonzero value to every variable. In the worst case, double-exponentially many steps
must be performed. Since there are exponentially many leaf nodes in a decision tree in the worst case, the
complexity of the algorithm has an upper bound of double-exponentially many steps [i.e., there is a polynomial
p(n), where n is the input size, such that the number of steps is O(22p(n)

]. This also gives a double-exponential
bound on the size of a complete set of AC unifiers. In fact, there exist simple equations (generalizations of the
equation describing the partitioning problem given above) for which this bound on the number of most general
AC unifiers, as well as the number of steps for computing them, is optimal.

To illustrate the main steps of the above algorithm, consider an equation s = t, where

and + and ∗ are the only AC function symbols. Since h is assumed to be uninterpreted, the decomposition step
applies and we get the equation ∗(+ (x, a), + (y, a), + (z, a)) = ∗(+(w, w, w), z, z) as well as x = x . The second
equation is trivial (i.e., it is always true no matter what substitution is made) and is discarded by the deletion
step.

Consider now

A decision tree can be built based on what arguments of ∗ on both sides are made equal. One possibility
is to make +(x, a) = + (w, w, w) . Under this assumption, the above equation simplifies to

The latter equation does not have any solution, as any possible solution would have to satisfy the equation
z = +(z, a), which has no solution.

Similarly, making +(y, a) = +(w, w, w) also does not lead to any solution.
The next possibility is to make +(z, a) = +(w, w, w), which simplifies Eq. (24) to

From this equation, we have z = +(x, a) = +(y, a), giving a solution { x ← y }. Substituting for z in +(z,
a) = +(w, w, w) gives +(y, a, a) = +(w, w, w) . This path thus leads to the following set of equations:
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The equation

has two most general solutions:

(1) { y ← w }, which also makes { w ← a }, thus producing { x = y = w ← a }
(2) { w ← +(v1, a) }, which also makes { x = y ← +(v1, v1, v1, a) }

For this example, there are two most general unifiers:

An algorithm for computing a complete set of AC unifiers is discussed in detail in Ref. 18, where its
complexity analysis is also given. For function symbols that, in addition to being AC, have properties such as
identity and idempotency, unification algorithms are discussed in Ref. 19, where their complexity is also given.

Other Aspects of Equation Solving. The discussion thus far has focused on solving equations over
first-order terms, that is, equations in which variables range over terms, and function symbols cannot be
variables. However, methods have been developed for solving equations over higher-order terms, that is, terms
that are built with two types of variables: variables that range over terms, also called first-order variables, and
variables that range over functions and functionals, called higher-order variables, An allowable substitution
for a first-order variable is a term, whereas a function expression (also called a λ-expression) is substituted for
a higher-order variable.

For illustration, consider a very simple equation in which f and x are variables, and 0 is a constant
symbol; in contrast to x, f ∼ is a function variable:

This equation has many most general solutions, including the following two: f = (λv.0) to stand for the
constant function 0, together with f ∼ = (λu.u) to stand for the identity function; and x = 0 .

Higher-order unification and equation solving have been useful in many applications, including program
synthesis, program transformation, mechanization of proofs by induction (particularly for generation of in-
termediate lemmas), generic and higher-order programming, and mechanization of different logics. Theorem
provers such as HOL, Isabelle, and NuPRL have been designed that use higher-order unification and matching
as primitive inference steps. A logic-based programming language, λ-Prolog, has been designed for facilitating
some of these applications. For more details about different approaches for solving equations over higher-order
terms as well as their applications, the reader may consult Ref. 20.

Narrowing is a particular approach for solving equations; a by-product of the narrowing method is that
it can also be used for solving unification problems with respect to a set of equations from which a canonical
rewrite system can be generated.

Assume that E is a finite set of equations, from which a finite canonical rewrite system R can be generated.
A term s is said to narrow to a term s′ with respect to R if there is a rewrite rule l → r in R, and a nonvariable
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subterm s/p at position p in s, such that s/p and l unify by the most general unifier σ, and s′ = σ(s[p ← r]) . To
check whether s = t can be solved [i.e., a substitution σ for variables in s and t can be found such that σ(s) and
σ(t) are equivalent with respect to E ], both s and t are narrowed using R so that narrowing sequences from s
and t converge. In that case, a substitution solving s = t can be generated from the narrowing sequence.

Equation solving using narrowing is discussed in Ref. 21; see also Ref. 22, where basic narrowing is used to
derive complexity results on equation solving. Narrowing can be viewed as a generalization of pseudodivision
of a polynomial by a polynomial; pseudodivision is discussed in a later subsection on the characteristic-set
approach for polynomial equation solving.

Polynomial Equation Solving

So far, we have discussed equational reasoning and equation solving in a general and abstract framework. In
this section, we focus on equation solving in a concrete setting. All function symbols appearing in equations
are interpreted; that is, the meaning of the symbols is known. This additional information is exploited in
developing algorithms for solving equations.

Consider what we learn in high school about solving a system of linear equations. Functions +, −, and
multiplication by a constant, as well as numbers, have the usual meaning. We learn methods for determining
whether a system of linear equations has a solution or not. For solving equations, Gauss’s method involves
selecting a variable to eliminate, determining its value (in terms of other variables), eliminating the variable
from the equations, and so on. With a little more effort, it is also possible to determine whether a system of
equations has a single solution or infinitely many solutions. In the latter case, it is possible to study the structure
of the solution space by classifying the variables into independent and dependent subsets, and specifying the
solutions in terms of independent variables.

In this section, we discuss how nonlinear polynomial equations can be solved in a similar fashion, though
not as easily. Below we briefly review three different approaches for symbolically solving polynomial equations—
resultants, characteristic sets, and Gröbner bases. The last two approaches are related to each other, as well
as to the equational inference approach based on completion discussed in the second section. The treatment
of resultants is the most detailed in this section, since the material on multivariate resultants is not easily
accessible. In contrast, there are books written on the Gröbner-basis and characteristic-set approaches (23
24,25).

Nonlinear polynomials are used to model many physical phenomena in engineering applications. Often
there is a need to solve nonlinear polynomial equations, of if solutions do not have to be explicitly computed,
it is necessary to study the nature of solutions. Many engineering problems can be easily formulated using
polynomial with the help of extra variables. It then becomes necessary to eliminate some of those extra
variables. Examples include implicitization of curves and surfaces, geometric reasoning, formula derivation,
invariants with respect to transformation groups, robotics, and kinematics. To get an idea about the use of
polynomials for modeling in different application domains, the reader may consult books by Morgan (26,27)
Kapur and Mundy 28, and Donald et al. 29.

Resultant Methods. Resultant means the result of elimination. It is also the projection of intersection.
Let us start with a simple example. Given two univariate polynomials f (x), g(x) ∈ Q [ x] of degrees m and n
respectively, where Q; is the field of rational numbers—that is,
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and

—do f and g have common roots over the complex numbers, the algebraically closed extension of Q; ? Equiva-
lently, do { f (x) = 0, g(x) = 0 } have a common solution? If the coefficients of f and g, instead of being rational
numbers, are themselves polynomials in parameters, one is then interested in finding conditions, if any, on the
parameters so that a common solution exists.

The above problem can be generalized to the elimination of many variables.
Resultant methods were developed in the eighteenth century by Newton, Euler, and Bezout, in the

nineteenth century by Sylvester and Cayley, and the early parts of the twentieth century by Dixon and
Macaulay. Recently, these methods have generated considerable interest because of many applications using
computers. Sparse resultant methods have been discussed in Ref. 30. In Refs. 31 and 32, we have extended and
generalized Dixon’s construction for simultaneously eliminating many variables.

Most of the earlier work on resultants can be viewed as an attempt to extend simple linear algebra
techniques developed for linear equations to nonlinear polynomial equations. A number of books on the theory
of equations were written that are now out of print. Some very interesting sections were omitted by the authors
in revised editions of some of these books because abstract methods in algebraic geometry and invariant theory
gained dominance, and constructive methods began to be viewed as too concrete to provide any useful structural
insights. A good example is the 1970 edition of van der Waerden’s book on algebra (33), which does not include
a beautiful chapter on elimination theory that appeared as the first chapter in the second volume of its 1940
edition. For an excellent discussion of the history of constructive methods in algebra, the reader is referred to
an article by Abhyankar (34).

Resultant techniques can be broadly classified into two categories: (1) dialytic methods, in which a square
system of equations is generated by multiplying polynomials by terms so that the number of equations equals
the number of distinct terms appearing, and (2) differential methods, in which suitable linear combinations of
polynomials are constructed, again resulting in a square system. Methods of Euler, Sylvester, Macaulay, and
(more recently) sparse resultants fall in the first category, whereas methods of Bezout, Cayley, and Dixon and
their generalization, along with other hybrid methods, fall into the second category.

Euler and Sylvester’s Univariate Resultants. In 1764, Euler proposed a method for determining whether
two univariate polynomial equations in x have a common solution. Sylvester popularized this method by giving
it a matrix form, and since then, it has been widely known as Sylvester’s method. Most computer algebra
systems implement this method for eliminating a variable from two polynomials. It is based on the observation
that for polynomials f (x), g(x) to have a common root, it is necessary and sufficient that there exist factors φ,
ψ, respectively of f , g such that deg(φ) < n and deg(ψ) < m and

which is equivalent to f ∗ ψ− g ∗ φ = 0 . Since the above relation is true for arbitrary f (x), g(x), the coefficient
of each power of x in the left side f ∗ ψ− g ∗ φ must be identically 0. This gives rise to m + n equations in m +
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n unknowns, which are the coefficients of terms in φ, ψ. This linear system gives rise to the Sylvester matrix:

The existence of a nonzero solution implies that the determinant of the matrix R is zero.
The Sylvester resultant can be used successively to eliminate several variables, one at a time. One soon

discovers that the method suffers from an explosive growth in the degrees of the polynomials generated in the
successive elimination steps. If one starts out with n or more polynomials in Q;[x1, x2, . . ., xn], whose degrees
are bounded by d, polynomials of degree double-exponential in n (i.e., d2 n ) can get generated in the successive
elimination process. The technique is impractical for eliminating more than three variables.

Macaulay’s Multivariate Resultants. Macaulay generalized the resultant construction for eliminating
one variable to eliminating several variables simultaneously from a system of homogeneous polynomial equa-
tions (35).

In a homogeneous polynomial, every term is of the same degree. A term or power product of the variables
x1, x2, . . ., xn is xα1

1 xα
2, . . ., xα

n with αj ≥ 0, and its degree is α1 + α2 + . . . + αn, denoted by deg(t), where t = x
α1 x α22 . . . x αn

n .
Macaulay’s construction is also a generalization of the determinant of a system of homogeneous linear

equations. For solving nonhomogeneous polynomial equations, the polynomials must be homogenized first.
This can be easily done by introducing an extra variable; every term in the polynomial is multiplied by the
appropriate power of the extra variable to make the degree of every term equal to the degree of the highest
term in the polynomial being homogenized. Methods based on Macaulay’s matrix give out projective zeros of
the homogenized system of equations, and they can include zeros at infinity.

The key idea is to show which power products are sufficient to be used as multipliers for the polynomials
so as to produce a square system of linear equations in as many unknowns as the equations. The construction
below discusses that.

Let f 1, f 2, . . ., f n be n homogeneous polynomials in x1, x2, . . ., xn . Let di = deg(f i), 1 ≤ i ≤ n, and dM = 1
+ �1

n (di − 1) . Let T denote the set of all terms of degree dM in the n variables x1, x2, . . ., xn :
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and let

The polynomial f 1 is viewed as introducing the variable x1 ; similarly, f 2 is viewed as introducing x2, and
so on. For f 1, the power products used to multiply f 1 to generate equations are all terms of degree dM − d1,
where d1 is the degree of f 1 . For f 2, the power products used to multiply f 2 to generate equations are all terms
of degree dM − d2 that are not multiples of x1 d1 ; power products that are multiples of x1 d1 are considered to
be taken care of while generating equations from f 1 . That is why the polynomial f 1, for instance, is viewed as
introducing the variable x1 .) Similarly, for f 3, the power products used to multiply f 3 to generate equations are
all terms of degree dM − d3 that are not multiples of x1 d1 or x2 d2, and so on. The order in which polynomials
are considered for selecting multipliers results in different systems of linear equations.

Macaulay showed that the above construction results in |T| equations in which power products in xi ’s of
degree dM (these are the terms in T ) are unknowns, thus resulting in a square matrix A . This matrix is quite
sparse, most entries being zero; nonzero entries are coefficients of the terms in the polynomials.

Let det(A) denote the determinants of A, which is a polynomial in the coefficients of the f i ’s. It is easy to
see that det(A) contains the resultant, denoted as R, as a factor. This polynomial det(A) is homogeneous in the
coefficients of each f i ; for instance, its degree in the coefficients of f n is d1 d2 . . . dn − 1 .

Macaulay discussed two ways to extract a resultant from the determinants of matrices A . The resultant R
can be computed by taking the gcd of all possible determinants of different matrices A that can be constructed
by ordering f i’s in different ways (i.e., viewing them as introducing different variables). However, this is quite
an expensive way of computing a resultant.

Macaulay also constructed the following formula relating R and det(A) :

where det(B) is the determinant of a submatrix B of A; B is obtained from A by deleting those columns labeled
by terms not divisible by any n − 1 of the power products { x 1d1, x 2d2, . . ., xnd n }, and deleting those rows
that contain at least one nonzero entry in the deleted columns. See Ref. 35 for more details.

u -Resultants The above construction is helpful for determining whether a system of polynomials has a
common projective zero as well as for identifying a condition on parameters leading to a common projective
zero. If the goal is to extract common projective zeros of a nonhomogeneous system S = {f 1(x1, x2, . . ., xn),
. . ., f n(x1, x2, . . ., xn)} of n polynomials in n variables, this can be done using the construction of u-resultants
discussed in Ref. 33.

Homogenize the polynomials using a new homogenizing variable x0 . Let Ru denote the Macaulay resultant
of the n + 1 homogeneous polynomials hf 1, hf 2, . . ., hf n, hf u in n + 1 variables x0, x1, . . ., xn wherehf i is a
homogenization of f i, f u is the linear form

and u0, u1, . . ., un are new unknowns. Ru is a polynomial in u0, u1, . . ., un, homogeneous in ui ’s of degree B =
�n

i = 1 di. Ru is known as the u-resultant of F . It can be shown that Ru factors into linear factors over C ; that
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is,

and if u0α0, j + u1α1,j + . . . + unαn, j is a factor of Ru, then ( α0,j, α1,j, . . ., αn,j ) is a common zero of hf 1, hf 2, . . .,
hf n . The converse can also be proved: if ( β0,j, β1,j, . . ., βn,j ) is a common zero of hf 1, hf 2, . . ., hf n, then u0 β0,j +
u1 β1,j + . . . + un βn,j divides Ru . This gives an algorithm for finding all the common zeros of hf 1, hf 2, . . ., hf n .

Recall that B is precisely the Bezout bound on the number of common zeros of n polynomials of degree d1,
. . ., dn when zeros at infinity are included and the multiplicity of common zeros is also taken into consideration.

Nongeneric Polynomial Systems. The above methods based on Macaulay’s formulation do not always
work, however. For a specific polynomial system in which the coefficients of terms are specialized, the matrix A
may be singular or the matrix B may be singular. If F has infinitely many common projective zeros, then its u
-resultant Ru is identically zero, since for every zero, Ru has a factor. Even if we assume that the f i′s have only
finitely many affine common zeros, that is not sufficient, since the u -resultant vanishes whenever there are
infinitely many common zeros of the homogenized polynomials hf i

′s—finitely many affine zeros, but infinitely
many zeros at infinity. Often, one or both conditions arise.

Grigoriev and Chistov 36 and Canny 37 suggested a perturbation of the above algorithm that will give all
the affine zeros of the original system (as long as they are finite in number) even in the presence of infinitely
many zeros at infinity. Let gi = hf i + λxd

i i for i = 1, . . ., n, and gu = (u0 + λ)x0 + u1 x1 + . . . + un xn, where λ is a
new unknown. Let Ru(λ, u0, . . ., un ) be the Macaulay resultant of g1, g2, . . ., gn and gu, regarded as homogeneous
polynomials in x0, x1, . . ., xn . The polynomial Ru(λ, u0, . . ., un) is called the generalized characteristic polynomial.
Suppose Ru is considered as a polynomial in λ whose coefficients are polynomials in u0, u1, . . ., un :

where k ≥ 0 and the Ri′s are polynomials in u0, u1, . . ., un . Then the trailing coefficient Rk of Ru has all the
information about the affine zeros of the original polynomial system. If k = 0, then R0 is the same as the u
-resultant of the original polynomial system when there are finitely many projective zeros. However, if there
are infinitely many zeros at infinity, then k > 0 . As in the case of the u -resultant, Rk can be factored, and the
affine common zeros can be extracted from these factors; Rk may also include extraneous factors.

This perturbation technique is inefficient in practice because of the extra variable λ introduced. As shown
in Table 1 later, the method is unable to compute a result in practice even on small examples (it typically
runs out of memory). We discuss another linear algebra technique in a subsequent subsection, called the
rank submatrix construction, for computing resultants in the context of Dixon resultant formulation. This
construction can be used for singular Macaulay matrices also, as shown on a number of examples discussed in
Table 1.

Sparse Resultants. As stated above, the Macaulay matrix is sparse (most entries are 0) since the size
T of the matrix is larger than the number of terms in a polynomial f i . Further, the number of affine roots of
a polynomial system does not directly depend upon the degree of the polynomials, and this number decreases
as certain terms are deleted from the polynomials. This observation has led to the development of sparse
elimination theory and sparse resultants. The theoretical basis of this approach is the so-called BKK bound
(30) on the number of zeros of a polynomial system in a toric variety (in which no variable can be 0); this bound
depends only on the support of polynomials (the structure of terms appearing in them) irrespective of their
degrees. The BKK bound is much tighter than the Bezout bound used in the Macaulay’s formulation.

The main idea is to refine the subset of multipliers needed using Newton polytopes. Let f̂ be the square
matrix constructed by multiplying polynomials in Fˆ so that the number of multipliers is precisely the number
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of distinct power products in the resulting set of polynomials. Given a polynomial f i, the exponents vector
corresponding to every term in f i defines a point in n -dimensional Euclidean space R

n . The Newton polytope
of f i is the convex hull of the set of points corresponding to exponent vectors of all terms in f i . The Minkowski
sum of two Newton polytopes Q and S is the set of all vector sums, q + s, q ∈ Q, s ∈ S .

Let Qi ⊂ R
n be the Newton polytope ( wrt X ) of the polynomial pi in F . Let Q = Q1 + . . . + Qn+1 ⊂ R

n

be the Minkowski sum of Newton polytopes of all the polynomials in F . Let E be the set of exponents (lattice
points of Z

n ) in Q (obtained after applying a small perturbation to Q to move as many boundary lattice points
as possible outside Q ).

Construction of Fˆ is similar to the Macaulay formulation—each polynomial pi in F is multiplied by
certain terms to generate Fˆ with | E | equations in | E | unknowns (which are terms in E ), and its coefficient
matrix is the sparse resultant matrix. Columns of the sparse resultant matrix are labeled by the terms in E in
some order, and each row corresponds to a polynomial in F multiplied by a certain term. A projection operator
(a nontrivial multiple of the resultant, as there can be extraneous factors) for F is simply the determinant of
this matrix; see discussion on extraneous factors below.

In contrast to the size of the Macaulay matrix ( |T| ), the size of the sparse resultant matrix is | E |, and
it is typically smaller than |T|, especially for polynomial systems for which the BKK bound is tighter than
the Bezout bound. Canny, Emiris, and others have developed algorithms to construct matrices, using greedy
heuristics, that may result in smaller matrices, but in the worst case, the size can still be | E | .

Much like Macaulay matrices, for specialization of coefficients, the sparse resultant matrix can be singular
as well—even though this happens less frequently than in the case of Macaulay’s formulation.

Theoretically as well as empirically, sparse resultants can be used wherever Macaulay resultants are
needed (unless one is interested in projective zeros that are not affine). Further, sparse resultants are much
more efficient to compute than Macaulay resultants.

So far, we have used the dialytic method for setting up the resultant matrix and computing a projection
operator. To summarize, the main idea in this method is to identify enough power products that can be
used as multipliers for polynomials to generate a square system with as many equations generated from the
polynomials as the power products in the resulting equations.

In the next few subsections, we discuss a related but different approach for setting up the resultant
matrix, based on the methods of Bezout and Cayley.
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Bezout and Cayley’s Method for Univariate Resultants. In 1764, around the same time as Euler, Bezout
developed a method for computing the resultant that is quite different from Euler’s method discussed in the
previous sub-subsection. Instead of generating m + n equations as in Euler’s method, Bezout constructed n
equations (assuming n ≥ m ) as follows:

(1) First multiply g(x) by xn − m to make the result a polynomial of degree n .
(2) From f (x) and g(x)xn − m, construct equations in which the degree of x is n − 1, by multiplying:

(1) f (x) by gm and g(x)xn − m by f n and subtracting,
(2) f (x) by gm x + gm − 1, and g(x)xn − m by f n x + f n − 1 and subtracting,
(3) f (x) by gm x2 + gm − 1 x + gm − 2, and g(x)xn − m by f n x2 + f n − 1 x + f n − 2 and subtracting, and so on.

This construction yields m equations. An additional n − m equations are obtained by multiplying g(x) by
1, x, . . ., xn − m − 1, respectively. There are n equations and n unknowns—the power products, 1, x, . . ., xn − 1 .

In contrast to Euler’s construction, in which the coefficients of the terms in equations are the coefficients
of the terms in f and g, the coefficients in this construction are sums of 2 × 2 determinants of the form f i gj −
f i gj .

Cayley reformulated Bezout’s method, and proposed viewing the resultant of f (x) and g(x) as follows: If
we replace x by α in both f (x) and g(x), we get polynomials f (α) and g(α) . The determinant

is a polynomial in x and α, and is obviously equal to zero if x = α, meaning that x − α is a factor of 	(x, α) . The
polynomial

is a degree n − 1 polynomial in α and is symmetric in x and α . It vanishes at every common zero x0 of f (x) and
g(x), no matter what values α has. So, at x = x0, the coefficient of every power product of α in δ(x, α) is 0. This
gives n equations which are polynomials in x, and the maximum degree of these polynomilas is n − 1 . Any
common zero of f (x) and g(x) is a solution of these polynomial equations, and they have a common solution if
the determinant of their coefficients is 0. It is because of the above formulation of δ(x, α) that we have called
these techniques differential methods.

Extraneous Factor. There is a price to be paid in using this formulation instead of the Euler–Sylvester
formulation. The result computed using Cayley’s method has an additional extraneous factor of f n

n − m . This
factor arises because Cayley’s formulation is set up assuming both polynomials are of the same degree.

Except for a system of generic polynomials, almost all multivariate elimination methods rarely compute
the exact resultant. Instead, they produce a projection operator, which is a nontrivial nonzero multiple of the
resultant. The resultant, on the other hand, is the principal generator of the ideal of the projection operators.
Sometimes it is possible to predict these extraneous factors from the structure of a polynomial system, as in the
case of two polynomials from which a single variable is eliminated. In general, however, it is a major challenge
to determine the extraneous factors. For some results on this topic, the reader may consult Ref. 38.

Dixon’s Formulation for Elimination of Two Variables. Dixon showed how to extend Cayley’s formulation
to three polynomials in two variables. Consider the following three generic bidegree polynomials, which have
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all the power products of the type xi yj where 0 ≤ i ≤ m, 0 ≤ j ≤ n :

Just as in the single-variable case, Dixon 39 observed that the determinant

vanishes when α is substituted for x or β is substituted for y, implying that (x − α)(y − β) is a factor of the
above determinant. The expression

is a polynomial of degree 2m − 1 in α, n − 1 in β, m − 1 in x, and 2n − 1 in y . Since the above determinant
vanishes when we substitute x = x0, y = y0 where ( x0, y0 ) is a common zero of f (x, y), g(x, y), h(x, y ) into the
above matrix, δ(x, y, α, β) must vanish no matter what α and β are. The coefficients of each power product αi

βj, 0 ≤ i ≤ 2m − 1, 0 ≤ j ≤ n − 1, have common zeros that include the common zeros of f (x, y), g(x, y), h(x, y) .
This gives 2mn equations in power products of x, y, and the number of power products xi yj, 0 ≤ i ≤ m − 1, 0 ≤
j ≤ 2n − 1, is also 2mn . Using a simple geometric argument, Dixon proved that the determinant is in fact the
resultant up to a constant factor.

If the polynomials f (x, y), g(x, y), h(x, y) are not bidegree, it can be the case that the resulting Dixon matrix
is not square or, even if square, is singular.

Kapur, Saxena, and Yang’s Formulation: Generalizing Dixon’s Formulation. Cayley’s construction for
two polynomials generalizes for eliminating n−1 variables from a system of n nonhomogeneous polynomials
f 1, . . ., f n . A matrix similar to the above can be set up by introducing new variables α1, . . ., αn − 1, and its
determinant vanishes whenever xi = αi, 1 ≤ i < n, implying that (x1 − α1) . . . (xn − 1 − αn − 1) is a factor. The
polynomial δ, henceforth called the Dixon polynomial, can be expressed directly as the determinant
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where � = {α1, α2, . . ., αn − 1}, where for 1 ≤ j ≤ n − 1 and 1 ≤ i ≤ n we have

and where f i(α1, . . ., αk, xk+1, . . ., xn) stands for uniformly replacing xj by αj for 1 ≤ j ≤ k in f i .
Let

F ˆ be the set of all coefficients (which are polynomials in X ) of terms in δ, when viewed as a polynomial in � .
Terms in � can be used to identify polynomials in

F ˆ based on their coefficients. A matrix D is constructed from Fˆ in which rows are labeled by terms in � and
columns are labeled by the terms in polynomials in

F ˆ . An entry di,j is the coefficient of the jth term in the ith polynomial, where polynomials in

F ˆ and terms appearing in the polynomials can be ordered in any manner. We have called D the Dixon matrix.
n + 1 nonhomogeneous polynomials f 0, f 1, . . ., f n in x1, . . ., xn are said to be generic n-degree if there exist

nonnegative integers m1, . . ., mn such that each f j = �
m1
i1 1m1 = 0 . . . � inmn = 0 aj,i1, . . ., in x1

i
1 . . . xn in for 1 ≤

j ≤ n, where aj, ii1, . . ., in is a distinct parameter. For generic n -degree polynomials, it can be shown that the
determinant of the Dixon matrix so obtained is a resultant (up to a predetermined constant factor).

If a polynomial system is not generic n-degree, and/or the coefficients of different power products are
related (specialized), then its Dixon matrix is (almost always) singular, much as in the case of Macaulay
matrices. This phenomenon of resultant matrices being singular is observed in all the resultant methods when
more than one variable is eliminated. In the next sub-subsection, we discuss a linear algebra construction, the
rank submatrix, which has been found very useful for extracting projection operators from singular resultant
matrices.

As shown in Table 1 below comparing different methods, this construction seems to outperform other
techniques based on perturbation—for example, the generalized characteristic polynomial construction for
singular Macaulay matrices discussed above. Further, empirical results suggest that the extraneous factors in
projection operators computed by this method are fewer and of lower degrees.
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Rank Submatrix (RSC) Construction. If a resultant matrix is singular (or rectangular), a projection
operator can be extracted by computing the determinants of its largest nonsingular submatrices. This method
is applicable to Macaulay matrices and sparse matrices as well as Dixon matrices. The general construction
(31) is as follows:

(1) Set up the resultant matrix R of F .
(2) Compute the rank of R and return the determinant of any rank submatrix, a maximal nonsingular subma-

trix of R . The determinant computation of a rank submatrix can be done along with the rank computation.

It was shown in Refs. 31 and 32 that
Theorem 5. If a Dixon matrix of a polynomial system f has a column that is linearly independent of the

others, the determinant of any rank submatrix is a nontrivial multiple of the resultant of F .
The above theorem holds in general, including for nongeneric polynomial systems whose coefficients are

specialized in any way. If the coefficients are assumed to be generic, then any rank submatrix is a projection
operator, since one of the columns in the Dixon matrix is linearly independent of others.

Comparison of Different Resultant Methods. Interestingly, even though the Dixon formulation is clas-
sical, it does exploit the sparsity of the polynomial system, as illustrated by the following results about the size
of the Dixon matrix (40).

Let N(P) denote the Newton polytope of any polynomial P in F . A system F of polynomials is called unmixed
if every polynomial in F has the same Newton polytope. Let πi(A) be the projection of an n -dimensional set
A to n − i dimensions obtained by substituting 0 for all the first i dimensions. Let mvol(F) [which stands for
mvol(N(P), . . ., N(P))] be the n -fold mixed volume of the Newton polytopes of polynomials in F in the unmixed
case, mvol(F) = n! vol (N (P)), where vol(A) is the volume of an n -dimensional set A .

Theorem 6. The number of columns in the Dixon matrix of an unmixed set F of n + 1 polynomials in n
variables is

A multihomogeneous system of polynomials of type ( l1, . . ., lr; d1, . . ., dr ) is defined to be an unmixed set
of �i = 1

r li + 1 polynomials in �i = 1
r li variables, where

(1) r = number of partitions of variables,
(2) li = number of variables in the ith partition, and
(3) di = total degree of each polynomial in the variables of the ith partition.

The size of the Dixon matrix for such a system can be derived to be
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For asymptotically large number of partitions, the size of the Dixon matrix is

which is proportional to the mixed volume of F for a fixed n .
The size of the Dixon matrix is thus much smaller than the size of Macaulay matrix, since it depends

upon the BKK bound instead of the Bezout bound. It also turns out to be much smaller than the size of the
sparse resultant matrix for unmixed systems:

Since the projections are of successively lower dimension than the polytopes themselves, the Dixon matrix
is smaller. Specifically, the size of the Dixon matrix of multihomogeneous polynomials is of smaller order than
their n -fold mixed volume, whereas the size of the sparse resultant matrix is larger than the n -fold mixed
volume by an exponential multiplicative factor.

Table 1 gives some empirical data comparing different methods on a suite of examples taken from different
application domains including geometric reasoning, geometric formula derivation, implicitization problems in
solid and geometric modeling, computer vision, chemical equilibrium, and computational biology, as well as
some randomly generated examples. Macaulay GCP stands for Macaulay’s method augmented with the gener-
alized characteristic polynomial construction (perturbation method) for handling singular matrices. Macaulay
RSC, Dixon RSC, and Sparse RSC stand for, respectively, Macaulay’s method, Dixon’s method, and the sparse
resultant method augmented with rank submatrix computation for handling singular matrices. All timings are
in seconds on a 64 Mbit Sun SPARC10. An asterisk in a time column means either that the resultant could not
be computed even after running for more than a day or the program ran out of memory. N/R in the GCP column
means there exists a polynomial ordering for which the Macaulay and the denominator matrix are nonsingular
and therefore GCP computation is not required. Determinant computations are performed using multivariate
sparse interpolation. Examples 3, 4, and 5 consist of generic polynomials with numerous parameters and dense
resultants. Interpolation methods are not appropriate for such examples, and timings using straightforward
determinant expansion in Maple are in Table 2. Further details are given in Ref. 41.

We included timings for computing resultant using Gröbner basis construction (discussed in a later
subsection) with block ordering (variables in one block and parameters in another) using the Macaulay system.
Gröbner basis computations were done in a finite field with a much smaller characteristic (31991) than in
the resultant computations. Gröbner basis results produce exact resultants, in contrast to the other methods,
where the results can include extraneous factors.
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As can be seen from the tables, all the examples were completed using the Dixon RSC method. Sparse
RSC also solved all the examples, but always took much longer than Dixon RSC. Macaulay RSC could not
complete two problems and took much longer than Sparse RSC (for most problems) and Dixon RSC (for all
problems).

Characteristic-Set Approach. The second approach for solving polynomial equations is to use Ritt’s
characteristic-set construction 42. This approach has been recently extended and popularized by Wu Wentsun.
Despite its success in geometry theorem proving, the characteristic-set method does not seem to have gotten as
much attention as it should. For many problems, characteristic-set construction is quite efficient and powerful,
in contrast to both resultants and the Gröbner basis method discussed in the next section.

Given a system S of polynomials, the characteristic-set algorithm transforms S into a triangular form
S′, much in the spirit of Gauss’s elimination method, with the objective that the zero set of S′ (the variety of
S′ ) is “roughly equivalent” to the zero set of S . (This is precisely defined later in this subsection.) From the
triangular form, the common solutions can then be extracted by solving the polynomial in the lowest variable
first, back-substituting the solutions one by one, then solving the polynomial in the next variable, and so on.
A total ordering on variables is assumed. Multivariate polynomials are treated as univariate polynomials in
their highest variable.

Similarly to elimination steps in linear algebra, the primitive operation used in the transformation is that
of pseudodivision of a polynomial by another polynomial. It proceeds by considering polynomials in the lowest
variables. (It is also possible to devise an algorithm that considers the variables in descending order.) For each
variable xi, there may be several polynomials of different degrees with xi as the highest variable. GCD-like
computations (dividing polynomials by each other) are performed first to obtain the lowest-degree polynomial,
say hi, in xi . If hi is linear in xi, then it can be used to eliminate xi from the rest of the polynomials. Otherwise,
polynomials in which the degree of xi is higher are pseudodivided by hi to give polynomials that are of lower
degree in xi . The smallest remainder is then used to pseudodivide other polynomials, until no remainder is
generated. This process is repeated until for each variable, a minimal-degree polynomial is generated such
that every polynomial generated thus far pseudodivides to 0. The set of these minimal-degree polynomials for
each variable constitutes a characteristic set.

If the number of equations in S is less than the number of variables (which is typically the case when
elimination or projection needs to be computed), then the variable set { x1, . . ., xn } is typically classified
into two subsets: independent variables (also called parameters) and dependent variables. A total ordering on
the variables is chosen so that the dependent variables are all higher in the ordering than the independent
variables. For elimination, the variables to be eliminated must be classified as dependent variables. The
construction of a characteristic set can be employed with a goal to generate a polynomial free of variables being
eliminated. We denote the independent variables by u1, . . ., uk and dependent variables by y1, . . ., yi, and the
total ordering is, u1 < . . . < uk < y1 < . . . < yi, where k + l = n .

To check whether another equation, say f = 0, follows from S [that is, whether f vanishes on (most of) the
common zeros of S ], f is pseudodivided using a characteristic set S′ of S . If the remainder of the pseudodivision
is 0, then f = 0 is said to follow from S under the condition that the initials (the leading coefficients) of
polynomials in S′ are not zero. This use of characteristic-set construction is extensively discussed in Refs.
24,43, and 44 for geometry theorem proving. Wu 45 also discusses how the characteristic set method can be
used to study the zero set of polynomial equations. These uses of the characteristic-set method are discussed in
detail in our introductory paper (46). In Ref. 47, a method for constructing a family of irreducible characteristic
sets equivalent to a system of polynomials is discussed; unlike Wu’s method discussed in a later subsection,
this method does not use factorization over extension fields.

The following sub-subsections discuss the characteristic set construction in detail.
Preliminaries. Assuming an ordering y1 < y2 < . . . < yi − 1 < yi < . . . < yn, the highest variable of a

polynomial p is yi if p /∈ Q;[u1, . . ., uk, y1, . . ., yi] and p /∈ Q;[u1, . . ., uk, y1, . . ., yi − 1] ; that is, yi appears in p and
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every other variable in p is < yi . The class of p is then said to be i . A polynomial p is ≥ another polynomial q
if and only if

(1) the highest variable of p, say yi, is > the highest variable of q, say yj (i.e., the class of p is higher than the
class of q ), or

(2) the highest variable of p and q is the same, say yi, and the degree of p in yi is ≥ the degree of q in yi .

A polynomial p is reduced with respect to another polynomial q if (1) the highest variable yi of p is < the
highest variable of q, say yj (i.e., p < q ), or (2) yi ≥ yj and the degree of yj in q is < the degree of yj in p .

A list C of polynomials ( p1, . . ., pm ) is called a chain if either (1) m = 1 and p1 �= 0, or (2) m > 1 and the
class of p1 is > 0, and for j > i, pj is of higher class than pi and reduced with respect to pi ; we thus have p1 <

p2 < . . . < pm . [A chain is the same as an ascending set defined by Wu 44.] A chain is a triangular form.
Pseudodivision. Consider two multivariate polynomials p and q, viewed as polynomials in the main

variable x, with coefficients that are polynomials in the other variables. Let Iq be the initial of q . The polynomial
p can be pseudodivided by q if the degree of q is less than or equal to the degree of p . Let e = degree (p) −
degree(q) + 1 . Then

where s and r are polynomials, and the degree of r in x is lower than the degree of q . The polynomial r is called
the remainder (or pseudoremainder) of p obtained by dividing by q . It is easy to see that the common zeros of
p and q are also zeros of the remainder r, and that r is in the ideal of p and q .

For example, if p = xy2 + y + (x + 1) and q = (x2 + 1)y + (x + 1), then p cannot be divided by q but can be
pseudodivided as follows:

with the polynomial x5 + x4 + 2x3 + 3x2 + x as the pseudoremainder.
If p is not reduced with respect to q, then p reduces to r using q by pseudodividing p by q, giving r as the

remainder of the result of pseudodivision.
Characteristic Set Algorithm.
Definition 7. Given a finite set � of polynomials in u1, . . ., uk, y1, . . ., yl a characteristic set 
 of � is

defined to be either

(1) {p1}, where p1 a polynomial in u1, . . ., uk, or
(2) a chain 〈p1, . . ., pl〉, where p1 is a polynomial in y1, u1, . . ., uk with initial I1, p2 is a polynomial in y2, y1, u1,

. . ., uk with initial I2, . . ., pl is a polynomial in yl, . . ., y1, u1, . . ., uk with initial Il, such that

(1) any zero of � is a zero of 
, and
(2) any zero of 
 that is not a zero of any of the initials Ii is a zero of � .
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Then Zero(�) ⊆ Zero(
) as well as Zero(
/�i = 1
l Ii) ⊆ Zero(�), where using Wu’s notation, Zero(
/I) stands

for Zero(
) − Zero(I) . We also have

Ritt 42 gave a method for computing a characteristic set from a finite basis � of an ideal. A characteristic
set 
 is computed from � by successively adjoining � with remainder polynomials obtained by pseudodivision.
Starting with �0 = �, we extract a minimal chain Ci from the set �i of polynomials generated so far as follows.
Among the subset of polynomials with the lowest class (with the smallest highest variable, say xj ), include in
Ci the polynomial of the lowest degree in xj . This subset of polynomials is excluded for choosing other elements
in Ci . Among the remaining polynomials, include in Ci a polynomial of the lowest degree in the next class
(i.e., the next higher variable), and so on. So Ci is a chain consisting of the lowest-degree polynomials in each
variable in �i .

Compute nonzero remainders of polynomials in �i with respect to the chain Ci . If this remainder set is
nonempty, we adjoin it to �i to obtain �i+1 . Repeat the above computation until we have �j such that every
polynomial in �j pseudodivides to 0 with respect to its minimal chain. The set �j is called a saturation of �,
and that minimal chain Cj of �j is a characteristic set of �j as well as � . The above construction is guaranteed
to terminate since in every step, the minimal chain of �i is > the minimal chain of �i+1, and the ordering on
chains is well founded.

The above algorithm can be viewed as augmenting � with additional polynomials from the ideal generated
by �, much like the completion procedures discussed in the section on equational inference, until a set 	 is
generated such that

(1) � ⊆ 	 ,
(2) � and 	 generate the same ideal, and
(3) a minimal chain 
 of 	 pseudodivides every polynomial in 	 to 0.

There can be many ways to compute such a 	 . For detailed descriptions of some of the algorithms, the
reader may consult. Ref. 24 42,43,44,46.

Definition 8. A characteristic set 
 = {p1, . . ., pl} is irreducible over Q;[u1, . . ., uk, y1, . . ., yl,] if for i =
1 to l, pi cannot be factored over Qi − 1 where Q0 = Q;(u1, . . ., uk), the field of rational functions expressed as
ratios of polynomials in u1, . . ., uk with rational coefficients, and Qj = Qj − 1(αj) is an algebraic extension of Qj − 1,
obtained by adjoining a root αj of pj = 0 to Qj − 1 that is pj(αj) = 0 in Qj for 1 ≤ j < i .

If a characteristic set 
 of � is irreducible, then Zero(�) = Zero(
), since the initials of 
 do not have a
common zero with 
 . Ritt defined irreducible characteristic sets.

Not only can different orderings on dependent variables result in different characteristic sets, but one
ordering can generate a reducible characteristic set whereas another one gives an irreducible characteristic
set. For example, consider �1 = {(x2 − 2x + 1) = 0, (x − 1)z − 1 = 0} . Under the ordering x < z, �1 is a
characteristic set; it is however reducible, since x2 − 2x + 1 can be factored. The two polynomials do not have
a common zero, and under the ordering z < x, the characteristic set �2 of �1 includes only 1.

In the process of computing a characteristic set from �, if an element of the coefficient field (a rational
number if l = n ) is generated as a remainder, this implies that � does not have a solution, or is inconsistent.
For instance, the above �1 is indeed inconsistent, since a characteristic set of �1 includes 1 if z < x is used.

If � does not have a solution, either
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• a characteristic set 
 of � includes a constant [in general, an element Q(u1, . . ., uk) ], or
• 
 is reducible, and each of the irreducible characteristic sets includes constants [respectively, elements of

Q (u1, . . ., uk) ].

Theorem 9. Given a finite set � of polynomials, if (i) its characteristic set 
 is irreducible (ii) 
 does not
include a constant, and (iii) the initials of the polynomials in 
 do not have a common zero with 
 then � has
a common zero.

Ritt was apparently interested in associating characteristic sets only with prime ideals. A prime ideal is
an ideal with the property that if an element h of the ideal can be factored as h = h1 h2, then either h1 or h2
must be in the ideal. A characteristic set C of a prime ideal PI is necessarily irreducible. It has the desirable
property that a polynomial p pseudodivides to 0 using C if and only if p is in PI . As discussed in the next
sub-subsection, in contrast, for any ideal, prime or not, a polynomial reduces by its Gröbner basis to 0 if and
only if the polynomial is in the ideal.

For ideals in general, it is not the case that every polynomial in an ideal pseudodivides to 0 using its
characteristic set. For example, consider the characteristic set �1 above with the ordering x < z ; even though 1
is in its ideal, 1 cannot be pseudodivided at all using �1 . It is also not the case that if a polynomial pseudodivides
to 0 by a characteristic set, then it is in the ideal of the characteristic set, since for pseudodivision a polynomial
can be multiplied by initials.

Elimination Using the Characteristic-Set Method. For elimination (projection) of variables from a poly-
nomial system �, variables being eliminated are made greater than other variables in the ordering, and a
characteristic set is computed from � using this ordering, with the understanding that the characteristic set
will include a polynomial for each eliminated variable, as well as a polynomial in the independent parameters
(i.e., the other variables not being eliminated).

As soon as a polynomial in the independent parameters is generated during the construction of a charac-
teristic set, it is a candidate for a projection operator; the conditions under which this polynomial is zero ensure
a common zero of the original system � . As the characteristic set computation proceeds, lower-degree simpler
polynomials serving as projection operators may be generated. Thus the characteristic set so computed may
include a lower-degree polynomial in the parameters, with fewer extraneous factors, along with the resultant.
Just as with resultant-based approaches for elimination, the characteristic-set method does not generate the
exact resultant. In contrast, as we shall see in the next section, the Gröbner basis method can be used to
compute the exact eliminant (resultant).

Proving Conjectures from a System of Equations. A direct way to check whether an equation c = 0
follows (under certain conditions) from a system f of equations is to

• compute a characteristic set 
 = {p1, . . ., pl} from f , and
• check whether c pseudodivides to 0 with respect to 
 .

If c has a zero remainder with respect to 
, then the equation c = 0 follows from 
 under the condition that
none of the initials used to multiply c is 0. In this sense, c = 0 “almost” follows from the equations corresponding
to the polynomial system S . The algebraic relation between the conjecture c and the polynomials in 
 can be
expressed as

where Ij is the initial of pj, j = 1, . . ., l . It is because of this relation that c is not in the ideal generated by 


or S .
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To check whether c = 0 exactly follows from the equations corresponding to S (i.e., the zero set of c
includes the zero set of S ), it must be checked whether 
 is irreducible. If so, then c = 0 exactly follows from
the equations; otherwise, a family of irreducible characteristic sets must be generated from S, and it must be
checked that for each such irreducible characteristic set, c pseudodivides to 0. This is discussed in the next
sub-subsection.

The above approach is used by Wu for geometry theorem proving (43,44). A geometry problem is al-
gebraized by translating (unordered) geometric relations into polynomial equations. A characteristic set is
computed from the hypotheses of a geometry problem. For plane Euclidean geometry, most hypotheses can be
formulated as linear polynomials in dependent variables, so a characteristic set can be computed efficiently. A
conjecture is pseudodivided by the characteristic set to check whether the remainder is 0. If the remainder is 0,
the conjecture is said to be generically valid from the hypotheses; that is, it is valid under the assumption that
the initials of the polynomials in the characteristic set are nonzero. The initials correspond to the degenerate
cases of the hypotheses. If the remainder is not 0, then it must be checked whether the characteristic set is
reducible or not. If it is irreducible, then the conjecture can be declared to be not generically valid. Otherwise,
the zero set of the hypotheses must be decomposed, and then the conjecture is checked for validity on each of
the components or some of the components. This method has turned out to be quite effective in proving many
geometry theorems, including many nontrivial theorems such as the butterfly theorem, Morley’s theorem, and
Pappus’s theorem. Decomposition is necessary when case analysis must be performed to prove a theorem,
for example theorems involving exterior angles and interior angles, or incircles and outcircles. An interested
reader may consult Ref. 24 for many such examples.

A refutational way to check whether c = 0 follows from f is to compute a characteristic set of S ∪ {cz − 1
= 0}, where z is a new variable. This method is used in Ref. 48 for proving plane geometry theorems.

Decomposing a Zero Set into Irreducible Zero Sets. The zero set of a polynomial system � can be also
computed exactly using irreducible characteristic sets. The zero set of � can be presented as a union of zero
sets of a family of irreducible characteristic sets. Below, this construction is outlined.

A reducible characteristic set can be decomposed using factorization over algebraic extensions of Q;(u1,
. . ., uk) . In the case that any of the polynomials in a characteristic set can be factored, there is a branch for each
irreducible factor, as the zeros of pj are the union of the zeros of its irreducible factors. Suppose a characteristic
set 
 = {p1, . . ., pl} from � is computed such that for i > 0, p1,. . ., pi cannot be factored over Q0, . . ., Qi − 1,
respectively, but pi+1 can be factored over Qi . It can be assumed that

where g is in Q;[u1, . . ., uk, y1, . . ., yi] and where pi+1
1 . . . pj

i+1 ∈ Q; [u1, . . ., uk, y1, . . ., yi, yi+1] and these
polynomials are reduced with respect to p1,. . ., pi . Wu 43 proved that

where �1h = � ∪ {ph
i+1}, 1 ≤ h ≤ j, and �2h = � ∪ {Ih}, where Ih is the initial of ph, 1 ≤ h ≤ l .

Characteristic sets are instead computed from new polynomial sets to give a system of characteristic sets.
(To make full use of the intermediate computations already performed, � above can be replaced by a saturation
	 of � used to compute the reducible characteristic set 
.) Whenever a characteristic set includes a polynomial
that can factored, this splitting is repeated. The final result of this decomposition is a system of irreducible
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characteristic sets:

where 
i is an irreducible characteristic set and Ji is the product of the initials of all of the polynomials in 
i .
In Ref. 47, another method for decomposing the zero set of a set of polynomials into the zero set of

irreducible characteristic sets is discussed. This method does not use factorization over extension fields. Instead,
the method computes characteristic sets à la Ritt using Duval’s D5 algorithm for inverting a polynomial with
respect to an ideal. The inversion algorithm splits a polynomial in case it cannot be inverted. The result of this
method is a family of characteristic sets in which the initial of every polynomial is invertible, implying that
each characteristic set is irreducible.

Complexity and Implementation. Computing characteristic sets can, in general, be quite expensive.
During pseudodivision, coefficients of terms can grow considerably. Techniques from subresultant and GCD
computations can be used for controlling the size of the coefficients by removing some common factors a priori.
In the worst case, the degree of a characteristic set of an ideal is bounded from both below and above by an
exponential function in the number of variables. Other results on the complexity of computing characteristic
sets are given in Ref. 49.

We are not aware of any commercial computer algebra system having an implementation of the
characteristic-set method. We implemented the method in the GeoMeter system (50,51), a programming en-
vironment for geometric modeling and algebraic reasoning. Chou developed an efficient implementation of
the characteristic-set algorithm with many heuristics and compact representation of polynomials (24). His
implementation has been used to prove hundreds of geometry theorems. This seems to suggest that despite
the worst case complexity of computing characteristic sets being double-exponential, characteristic sets can be
computed efficiently for many practical applications.

Gröbner Basis Computations. In this subsection, we discuss another method for solving polynomial
equations using a Gröbner basis algorithm proposed by Buchberger 52. A Gröbner basis is a special basis of a
polynomial ideal with the following properties:

(1) every polynomial in the ideal simplifies to 0 using its Gröbner basis, and
(2) every polynomial has a unique normal form (canonical form) using a Gröbner basis.

A Gröbner basis of an ideal is thus a canonical (confluent and terminating) system of simplification by
the polynomials in the ideal.

A Gröbner basis algorithm can be used for elimination, as well as for generating triangular forms from
which common solutions of a polynomial system can be extracted. A Gröbner basis of a polynomial ideal can
also be used for analyzing many structural properties of the ideal as well as its associated zero set (variety);
see Refs. 23 and 25 for details.

Variables in polynomials are totally ordered. But unlike the case of characteristic set construction, polyno-
mials are viewed as multivariate rather than as univariate polynomials in their highest variables. A polynomial
is used as a simplification (rewrite) rule in which its highest monomial is used to replace the remaining part of
the polynomial. Simplification of a polynomial by another polynomial is thus defined differently from pseudo-
division.

The discussion below assumes the coefficient field to be Q; the approach however carries over when
coefficients come from any other field. Extensions of the approach have been worked out when the coefficients
are from a Euclidean domain (53).
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Reduction Using a Polynomial. Recall that a term or power product of the variables x1, x2, . . ., xn is x1
α1 x2 α2 . . . x αnn with αj ≥ 0 and its degree is α1 + α2 + . . . + αn, denoted by deg(t), where t = xα1

1 x α22 . . . xn
αn . Assume an ordering x1 < x2 < . . . < xn .

Total orderings (denoted by > ) on terms are defined as those satisfying the following properties:

(1) Compatibility with multiplication. If t, t1, t2 are terms, then t1 > t2 ⇒ t t1 > t t2 .
(2) Termination. There can be no strictly decreasing infinite sequence of terms such as

Term orderings satisfying property 2 are called admissible term orderings. Two commonly used term
orderings are

(1) The lexicographic order, �l, in which terms are ordered as in a dictionary; that is, for terms t1 = xα11 xα22
. . . xαnn and t2 = x1β1 xβ2 2 . . . xβn

n, t1 �l t2 iff ∃i ≤ n such that αj = βj for i < j ≤ n and αi > βi.
(2) The degree order, �d, in which terms are compared first by their degrees, and equal-degree terms are

compared lexicographically; that is,

Given an admissible term order >, for every polynomial f in Q[x1, x2, . . ., xn], the largest term (under >

) in f that has a nonzero coefficient is called the head term of f , denoted by head ( f ). Let ldcf(f ) denote the
leading coefficient of f , i.e., the coefficient of head ( f ) in f . Every polynomial f can be written as

We write tail(f ) for f̂ . For example, if f (x, y) = x3 − y2, then head(f ) = x3 and tail(f ) = −y2 under the
total degree ordering �d; under the purely lexicographic ordering with y �i x, we have head (f ) = y2 and tail(f )
= x3 .

A polynomial f (i.e., the equation f = 0 ) is viewed as a rewrite rule

Let f and g be two polynomials; suppose g has a term t with a nonzero coefficient that is a multiple of
head(f ) ; that is,
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for some term t′ . Then g is said to be reducible with respect to f , written as a reduction by →f ,

where

The polynomial g is said to be reducible with respect to a set (or basis) of polynomials F = {f 1, f 2, . . .,
f r} if it is reducible with respect to one or more polynomials in f ; otherwise, we say that g is reduced or g is a
normal form with respect to F .

Given a polynomial g and a basis F = {f 1, f 2, . . ., f r}, through a finite sequence of reductions

such that gs cannot be reduced further, a normal form gs of g with respect to F can be computed. Because of
the admissible ordering on terms used to choose head terms of polynomials, any sequence of reductions must
terminate. Further, for every gi in the above reduction sequence, gi − g ∈ (f 1, f 2, . . ., f r) .

For example, let F = {f 1, f 2, f 3}, where

and

Under �d, we have head (f 1) = x2
1 x2, head (f 2) = x1 x2

2, head (f 3) = x2
2 x3, and g is reducible with

respect to f . One possible reduction sequence is

and g3 is a normal form with respect to F . It is possible to reduce g in a another way that leads to a different
normal form. For example,

and the normal form g′
2 is different from g3 .
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Gröbner Basis Algorithm.
Definition 10. A finite set of polynomials G ∈ Q; [x1, x2,. . ., xn] is called a Gröbner basis for the idea ( G )

it generates if and only if every polynomial in Q;x1, x2, . . ., xn] has a unique normal form with respect to G .
In other words, the reduction relation defined by a Gröbner basis is canonical (confluent and terminating).

Buchberger (52,54) showed that every ideal in Q; [x1, x2, . . ., xn] has a Gröbner basis. He also designed an
algorithm to construct a Gröbner basis for any ideal I in Q;x1, x2, . . ., xn] starting from an arbitrary basis for I .

Much like the superpositions and critical pairs discussed for first-order equations in an earlier section
on equational inference, head terms of polynomials can be analyzed to determine whether a given basis is a
Gröbner basis. For the above example, the reason for two different normal forms ( g3 and g′

2) for g with respect
to f is that the monomial 3x2

1 x2
2 in g can be reduced by two different polynomials in the basis F in different

ways; so head(g) was a common multiple of head(f 1) and head (f 2) .
Buchberger proposed a completion procedure to compute a Gröbner basis by augmenting the basis f by

the polynomial g3 − g′
2 [the augmented basis still generates the same ideal since g3−g′

2 ∈ (f )], much like the
completion procedure for equations discussed in the first section. The polynomial g3−g2

′ corresponds to the
equation between two different normal forms of a critical pair. Much like a critical pair, an s-polynomial of two
polynomials f 1, f 2 is defined as follows. Let

where m1, m2 are terms; m plays the role of a superposition. Define

Given a basis F for an ideal I and an admissible term ordering >, the following algorithm returns a
Gröbner basis for I for the term ordering > :

In the above, NFG(f ) stands for any normal form of f with respect to the basis G . Unlike completion for
equational theories, the above procedure always terminates, since by Dickson’s lemma there are only finitely
many noncomparable terms that can serve as the leading terms of polynomials in a Gröbner basis. For proofs
of termination and correctness of the algorithm, the reader is referred to Refs. 23 and 25. The above algorithm
does not use any heuristics or optimizations. Most Gröbner basis implementations use several modifications to
Buchberger’s algorithm in order to speed up the computations.

Examples. Consider the ideal I generated by

( f defines a cusp and g defines an ellipse). Then
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is a Gröbner basis for I under the degree ordering with y > x ,

is a Gröbner basis for I under the lexicographic ordering with y � x, and

is a Gröbner basis for I under the lexicographic ordering with x ∼ x .
These examples illustrate the fact that, in general, an ideal has different Gröbner bases for different term

orderings. For the same term ordering, a reduced Gröbner bases is unique for an ideal; for every g in a reduced
Gröbner basis G, N$$G′ (g) = g where G′ = G − {g} ; i.e., each polynomial in G is reduced with respect to all the
other polynomials in G .

Finding Common Solutions: Lexicographic Gröbner Bases. In the Gröbner basis G2 for the above
example, there is a polynomial g1 (x) that depends only on x and one that depends on both x and y (in general,
there can be several polynomials in a Gröbner basis that depend on x, y ).

Given a reduced Gröbner basis G = {g1, . . ., gk} and an admissible term ordering >, G can be partitioned
based on the variables appearing in the polynomials. If G includes a single polynomial in x1, a finite set of
polynomials in x1, x2, a finite set of polynomials in x1, x2, x3, and so on, then variables are said to be separated
in the Gröbner basis G . For example, variables are separated in Gröbner bases G2 and G3, whereas they are
not separated in G1 . From a basis in which variables are separated, a triangular form can be extracted by
picking the least-degree polynomial for every variable in the set of polynomials introducing that variable. (It
is possible that some of the variables get skipped in a separated basis.) It was observed by Trinks that such a
separation of variables exists in Gröbner bases computed using lexicographic term orderings (23).

The triangular form extracted from a Gröbner basis of I in which variables are separated can be used to
compute all the common zeros of I . We first find all the roots of the univariate polynomial introducing x1 .
These give the x1-coordinates of the common zeros of the ideal I . For each such root α, we can find the common
roots of g2(α, x2), the lowest-degree polynomial in x2 that may have both x1, x2 ; this gives the x2-coordinates of
the corresponding common zeros of I . In this way, all the coordinates of all the common zeros can be computed.
The product of the degrees of the polynomials in triangular form used to compute these coordinates also gives
the total number of common zeros (including their multiplicities) of a zero-dimensional ideal I, where an ideal
is zero-dimensional if and only if Zero(I ) is finite.

If a variable gets skipped in a triangular form (meaning that there is no polynomial in a Gröbner basis
introducing it), this implies that I is not zero-dimensional, and that I has infinitely many common zeros. As
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the reader might have guessed, a Gröbner basis in which variables are separated can be used to determine the
dimension of an ideal.

In principle, any system of polynomial equations can be solved using a lexicographic Gröbner basis for the
ideal generated by the given polynomials. However, Gröbner bases, particularly lexicographic Gröbner bases,
are hard to compute. For zero-dimensional ideals, a basis conversion has been proposed that can be used to
convert a Gröbner basis computed using one admissible ordering to a Gröbner basis with respect to another
admissible ordering (25). In particular, a Gröbner basis with respect to a lexicographic term ordering can be
computed from a Gröbner basis with respect to a total degree ordering, which is easier to compute.

If a set of polynomials does not have a common zero (i.e., its ideal is the whole ring), then it is easy to see
that a Gröbner basis of such a set of polynomials includes 1 no matter what term ordering is used. Gröbner
basis computations can thus be used to check for the consistency of a system of nonlinear polynomial equations.

Theorem 11. A set of polynomials in Q;[x1, . . ., xn] has no common zero in C if and only if their reduced
Gröbner basis with respect to any admissible term ordering is {1}.

Elimination. A Gröbner basis algorithm can also be used to eliminate variables as well as to compute
the exact resultant. Variables to be eliminated are made higher than the other variables in the term ordering,
just as in characteristic set computation. A Gröbner basis G of a set S of polynomials is then computed using
the lexicographic term ordering from S . If there are k + 1 polynomials from which k variables have to be
eliminated, then the smallest polynomial g in the Gröbner basis G is the exact resultant, as it can be shown
that this polynomial g is the unique generator of the elimination ideal (contraction) of I in the subring of
polynomials in the variables that are not being eliminated.

In Table 1 above, methods for computing multivariate resultants are contrasted with the Gröbner basis
method for computing resultants on a variety of problems from different application domains. Even though
the timings for the Gröbner basis approach do not compare well with resultant methods, the Gröbner basis
method has an edge over the resultant methods in that it computes the resultant exactly. In contrast, resultant
methods produce extraneous factors; identifying extraneous factors can require considerable effort.

The results reported in Table 1 for the Gröbner basis method were obtained using block ordering instead
of lexicographic ordering. In a block ordering, variables are partitioned into blocks, and blocks are lexicograph-
ically ordered. Terms are compared considering variables block by block. Starting with the biggest block, the
degree of a term in the variables in that block is compared against the degree of another term in these variables.
Only if these degrees are the same is the next block considered, and so on. The lexicographic ordering and total
degree ordering are particular cases of block orderings; each variable constitutes a block in the former, and all
variables together constitute a single block in the latter. For elimination, variables being eliminated together
as a block are made lexicographically bigger than the parameters (variables not being eliminated) considered
together as another block. Gröbner basis computation is typically faster using a block ordering than using a
lexicographic ordering, but slower than using a total degree ordering.

Theorem Proving Using Gröbner Basis Computations. A refutational approach to theorem proving
has been developed exploiting the property that a Gröbner basis algorithm can be used to check whether a set
of polynomial equations is inconsistent. In Ref. 55, we discussed a refutational method for geometry theorem
proving. A geometry theorem proving problem (that does not involve an order relation) is formulated as the
problem of checking inconsistency of a set of polynomial equations. This approach can also be used to discover
missing degenerate cases as well as missing hypotheses in an incompletely stated geometry theorem. Many
examples proved using Geometer, including nontrivial problems such as the butterfly theorem and Pappus’s
theorem, are discussed in Ref. 55.

An approach based on Gröbner basis computations has also been proposed for first-order theorem proving
and implemented in our theorem prover RRL. For propositional calculus, formulae are translated into polyno-
mial equations over the Boolean ring generated by propositional variables. Deciding whether a formula is a
theorem is done by checking whether the corresponding polynomial equations have a solution over {0, 1}. This
idea is then generalized to work on first-order rings and first-order polynomials. Details can be found in Ref.
16.
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Complexity Issues and Implementation. In general, Gröbner bases are hard to compute. It was shown
by Mayr and Meyer (56) that the problem of testing for ideal membership is exponential space complete. Their
construction shows that for ideals given by bases of the form ( m1,1 − m1,2, m2,1 − m2,2, . . ., mk,1 − mk,2 ) where
mi, j is a monomial of degree at most d, Gröbner basis computation will encounter polynomials of degree as
high as O(d 2n), double-exponential in n, the number of variables. This is an inherent difficulty and cannot
be avoided if one expects to handle all possible ideals. While double-exponential degree explosions are not
observed in all problems of interest, high-degree polynomials are frequently encountered in practice.

The second problem comes from the extremely large size of the coefficients of polynomials that are
generated during Gröbner basis computations. While intermediate expression swell is a common problem in
computer algebra, it seems to be particularly acute in this context.

Despite these difficulties, highly nontrivial Gröbner bases computations have been performed. If the
coefficients belong to a finite field (typically Zp, where p is a word-sized prime), much larger computations are
possible. Macaulay, CoCoA, and Singular are specialized computer algebra systems built for performing large
computations in algebraic geometry and commutative algebra. Most general computer algebra systems (such
as Maple, Macsyma, Mathematica, Reduce) provide the basic Gröbner basis functions. An implementation
of the Gröbner basis algorithm also exists in GeoMeter (50,51), a programming environment for geometric
modeling and algebraic reasoning. This implementation has been used for proving nontrivial plane geometry
theorems.
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Footnotes

1. Using a sequence of positions of arguments, each subterm in a term can be uniquely identified by its
position. For instance, in (u + −(u)) + −(−(u)), the position � (the empty sequence) identifies the whole
term; 1 identifies the subterm u + −(u), the first argument of the top level symbol +; 1.1 and 1.2 identify,
respectively, u and −(u), the first and second arguments of + in u + −(u) ; similarly, 2 identifies −(−(u)), the
second argument of the top level symbol +, 2.1 identifies −(u), and 2.1.1 identifies the subterm u which is
the argument of − in the subterm −(u), the argument of − in −(−(u)) .

2. For certain equations such as x + y = y + x, the commutativity law, it is not even possible to transform
an equation into a terminating rule, no matter which side is considered more complex. Such equations are
handled semantically as discussed in a later subsection.

3. This case can be handled by one of the heuristics discussed earlier, including unfailing completion.
4. There are other ways to define rewriting modulo a set of equational axioms. For details, a reader may consult

9. The above definition matches the implementation of AC rewriting in our theorem prover Rewrite Rule
Laboratory (RRL).

5. H. Robbins in 1930 conjectured that three equations defining commutativity and associativity of a binary
function symbol +, and a third equation −(−(x + y) + −(x + −(y))) = x, with a unary function symbol −, are
a basis for the variety of Boolean algebras.
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