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TEMPORAL LOGIC

Concurrent systems are notoriously hard to design and debug.
Part of the problem is that concurrent systems exhibit a sur-
prising variety of behaviors, and some bugs lead to failure
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only under pathological scenarios. The difficulty of catching
such errors through conventional software engineering meth-
ods (such as testing) creates a need for more formal, system-
atic approaches to the design and analysis of such systems.

Temporal logic provides one such approach. The adjective
temporal refers to the introduction of special logical modal-
ities that allow the specification of when a property is ex-
pected to hold. For example, with temporal logic, one can
state that if a process waits forever, it will eventually be ser-
viced; this statement might be formalized as

(�wait) ⇒ (♦ service)

where � means always and � means eventually. Although
such analyses can be carried out within classical mathematics
(by treating the system state as an explicit function of time),
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the encapsulation of time within temporal modalities makes Figure 1. Peterson’s protocol.
the analyses easier to understand and more amenable to au-
tomation. Temporal logics are most often applied to systems
that evolve through a sequence of discrete state transitions,
but there are also logics designed for systems exhibiting both

Previewdiscrete and continuous behavior (discussed later).
These questions are nontrivial, even for this (rather simple)
protocol. One can ask similar questions about much moreAn Example
complex systems (e.g., microprocessors, distributed memory

As a running example, we consider Peterson’s protocol for systems, and communication protocols). Temporal logic tools
mutual exclusion (1). This protocol allows two processes (la- have been successfully applied to a number of such systems.
beled P and Q) to share access to a resource, while making To analyze the Peterson protocol, we model it formally as
sure that the processes do not access the resource at the same a transition system. We then show how properties of its execu-
time (this is the mutual exclusion property) and without re- tions can be formulated in linear-time logic and proved using
quiring special hardware support (beyond atomic access to ordinary mathematics along with some special rules for han-
shared variables). While the Peterson protocol is less complex dling temporal operators. Later we show how somewhat dif-
than most industrial examples (by orders of magnitude), it is ferent properties can be formulated in branching-time logic
still far from trivial. and verified automatically using a special program called a

For now we present the protocol with pseudocode; later, we model checker. We then survey some additional logics that can
model the protocol more precisely. be used to reason about systems with timing constraints and

systems that can undergo continuous state evolution.
P : tryp :� true; Q : tryq :� true;

t :� 1; t :� 0; TRANSITION SYSTEMS
wait(¬tryq ∨ t � 0); wait(¬tryp ∨ t � 1);
access resource; access resource; To simplify the treatment of the Peterson protocol, we add to
tryp :� false; tryq :� false; each process an explicit program counter, and eliminate the

try variables; this transformation does not change the behav-
ior of the protocol:The system starts with tryp � tryq � false; the code shown

for P is executed every time P wants to obtain access the re-
P : p :� 1; Q : q :� 1;source (and similarly for Q).

p, t :� 2, 1; q, t :� 2, 0;There are several questions one might ask about this pro-
wait(q � 0 ∨ t � 0); wait(p � 0 ∨ t � 1);tocol:
p :� 3; q :� 3;
access the resource; access the resource;

• Does the protocol indeed prevent P and Q from accessing
p :� 0; q :� 0;the resource simultaneously?

• If a P starts to execute the protocol, is it guaranteed to Here, p, q, and t are counters (modulo 4, 4, and 2 respec-
get access to the resource? If not, is it guaranteed that at tively); initially, p � q � 0.
least one of the processes will get access? If not, is it at A state of the system is given by an assignment of values
least guaranteed that the system will not reach a dead- to its state variables (here p, q, and t). We notate states of
lock state where neither component can do anything? the Peterson protocol by listing p, q, and t in order (e.g., the

possible starting states of the protocol are 000 and 001). The• On what process scheduling assumptions do these prop-
erties depend? How are these properties affected if the behavior of a system can be specified by writing down a state

graph showing how the state can change; the state graph ofprotocol is modified slightly (e.g., if a process is allowed
to fail)? the Peterson protocol is shown in Fig. 1. (The figure does not
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include states, such as 321, which are not reachable from the Finally, a transition of the whole system is either a transition
of P, a transition of Q, or a ‘‘stuttering’’ step where none ofstarting states.) However, most systems of interest are too

large to be specified in this way; it is usually more practical the variables changes:
to describe this graph with formulas, as follows.

A transition formula is a Boolean formula built up from
primed and unprimed state variables. If f is a transition for-
mula and s1 and s2 are states, s1 �f s2 is the formula ob-
tained from f by replacing unprimed variables with their val-
ues in s1, and replacing primed variables with their values
in s2. For example, if f is the transition formula p � 3 ∧ p
 �
0, then 300 �f 001 simplifies to true, but 300 �f 301 simplifies
to false. Note that a transition formula does not restrict how
unmentioned state variables can change at the same time.

A state formula is a transition formula without primed
variables. If f is a state formula and s is a state, f (s) abbrevi-

init ≡ p = q = 0

trans ≡ P ∨ Q ∨ skip

P ≡ p′ = (p + 1 mod 4) ∧ q′ = q

∧ (p = 2 ⇒ (q = 0 ∨ t = 0)

∧ (p = 1 ⇒ t ′ = 1) ∧ (p �= 1 ⇒ t ′ = t)

Q ≡ q′ = (q + 1 mod 4) ∧ p′ = p

∧ (q = 2 ⇒ (p = 0 ∨ t = 1)) ∧ (q = 1 ⇒ t ′ = 0)

∧ (q �= 1 ⇒ t ′ = t)

skip ≡ p = p′ ∧ q = q′ ∧ t = t ′
ates s �f s, which is equivalent to f with variables replaced
by their values in s. If f is a state formula, f 
 denotes the

This system is analyzed in subsequent sections.transition formula obtained from f by priming all state vari-
In passing, we note that there are alternative notationsables. As a convenience, we sometimes use states as state for-

available for describing transition systems. The state-chartmulas (e.g., 210 is shorthand for the state formula p � 2 ∧
notation (2) provides a number of tools for making stateq � 1 ∧ t � 0).
graphs (Fig. 1) practical for somewhat larger systems. It isA transition system T is given by a state formula T.init
also possible to work directly with sequential programs (3) or(specifying the possible starting states of the system) along
communicating state machines (4).with a transition formula T. trans (specifying how the state

of the system can change from one moment to the next). We
omit T when its value is clear from the context. A path e of T LINEAR-TIME TEMPORAL LOGIC
is an infinite sequence of states (e0, e1, . . .) in which consecu-
tive pairs of states are related by the transition relation: In analyzing a transition system, we are primarily interested

in proving that all of its paths satisfy some property. Linear-
(∀n : 0 ≤ n ⇒ en

T.trans−−−−−→ en+1) time logics provide languages for stating and proving proper-
ties of an individual path. There are many such logics; we

If, in addition, init(e0), then e is an initial path of T. The initial illustrate some of their principles with a particularly simple
paths of a transition system capture its possible executions; logic, which we refer to as LTL. (This logic is closely related
for example, the initial paths of the Peterson protocol include to the logic simple TLA of Ref. 5).
the path LTL formulas are defined as follows. Every transition for-

mula is an LTL formula, and if f and g are LTL formulas, so
(000,100,110,211,220,320,020,030,130, . . .) are ¬f (‘‘not f ’’), f ∨ g (‘‘f or g’’), and �f (‘‘always f ’’). The

semantics of LTL is given by the following rules, which define
A systematic way to translate an ordinary concurrent pro- what it means for a formula f to hold for a path e (written e

gram into a transition system is to introduce explicit program X f ) (the nth suffix of e, en, is defined as the path en
i � en�i):counters (as above), to write a transition for each atomic step

of each process, and to take the disjunction of all these transi-
tions, along with a special transition skip in which all of the
state variables remain fixed.

For example, the transitions of the process P of the Pe-
terson protocol can be read as follows:

e � f �= e0
f→ e1 for transition formula f

e � ¬ f �= ¬(e � f )

e � f ∨ g �= (e � f ) ∨ (e � g)

e � � f �= (∀n : 0 ≤ n : en
� f )

These definitions can be understood as follows. A transition
formula holds for a path if and only if it relates the first two
states of the path. (As a special case, a state formula holds

p = 0 ∧ p′ = 1 ∧ t ′ = t ∧ q′ = q

p = 1 ∧ p′ = 2 ∧ t ′ = 1 ∧ q′ = q

(q = 0 ∨ t = 0) ∧ p = 2 ∧ p′ = 3 ∧ t ′ = t ∧ q′ = q

p = 3 ∧ p′ = 0 ∧ t ′ = t ∧ q′ = q
for a path if and only if it holds for the first state of the path.)
The negation of a formula holds for a path if and only if theThe disjunction of these transitions can be written more com-
formula does not hold for the path; the disjunction of formulaspactly as the logically equivalent formula
holds for a path if and only if either disjunct holds for the
path. (The logical operators ∧, ⇒, and � can be defined from
∨ and ¬ in the usual way.) �f holds for a path if f holds for
every suffix of the path.

We define

♦ f �= ¬�¬ f

(p′ = p + 1 mod 4)

∧ (q′ = q)

∧ (p = 2 ⇒ (q = 0 ∨ t = 0))

∧ (p = 1 ⇒ t ′ = 1)

∧ (p �= 1 ⇒ t ′ = t)
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�f (‘‘sometime f ’’) holds for a path if and only if f holds for 3. �((p � 3 ⇒ (q � 1 ∨ t � 0)) ∧ (q � 3 ⇒ (p � 1 ∨ t �
1))) from (1), (2), and the conjunction rulesome suffix of the path. The operators � and � can be used

to define a number of interesting properties: 4. �¬(p � q � 3) from (3) and the monotonicity of �

• ��f says that f holds infinitely often For interesting systems, the required invariants are often
much more complicated than the properties being proved; this• ��f says that f holds almost everywhere
phenomenon is the primary source of complexity in most• �( f ⇒ �f ) says that f , once true, remains true
state-based program reasoning.

• �( f ⇒ �g) says that every f state is followed by a g state

Reasoning About Progress
For any transition system T, the initial paths of T are pre-

Recall that the Peterson protocol, as defined previously, hascisely those paths satisfying the formula T. init ∧ �T. trans.
the stuttering step skip as one of its possible actions. ThusThis means that we can prove properties of a transition sys-
one possible behavior of the protocol is to remain in the sametem by reasoning purely in terms of LTL formulas. It is possi-
state forever; to prove that the system ever does anything, weble to give a complete proof system for LTL, but we will in-
need to add additional assumptions. We first consider how tostead concentrate on rules used for practical reasoning about
specify these assumptions, and then show how to use them totransition systems.
prove more general types of progress properties.Two classes of properties are of particular interest: safety

properties (‘‘nothing bad ever happens,’’ e.g., the system never
Fairness. Fairness conditions provide a formal way to cap-reaches a state where both processes are accessing the re-

ture the assumption that certain things that can happensource) and progress properties (‘‘something good happens,’’
eventually do happen. For example, they can be used to guar-e.g., a process trying to access the resource will eventually get
antee that some process eventually takes a step, or that ain). These two classes are treated in the following sections.
process eventually stops accessing the resource. If f is a tran-
sition formula, f is enabled in those states where it is possibleReasoning About Safety
to execute the transition f ∧ trans; formally,

Formulas of the form �f , where f is a transition formula, are
typically proved with the following three rules: enabled. f ≡ (∃ v′ : f ∧ T.trans)

(where v
 is the vector of all primed variables). For example,• Propositional equivalences can be used to rewrite formu-
if enterP is the transition formula p � 2 ∧ p
 � 3,las to equivalent ones. For example, since the formulas
enabled.enterP is the formulaX and ¬¬X are equivalent for any Boolean X, we can

rewrite �(p � 3) to �¬¬(p � 3). We call this the tautol-
(∃ p′, q′, t ′ : T ∧ p = 2 ∧ p′ = 3)ogy rule.

• For formulas f and g, If T is the Peterson protocol, this simplifies (using ordinary
logical reasoning) to the state formula p � 2 ∧ (q � 0 ∨ t � 0).

�( f ∧ g) ≡ � f ∧�g There are several ways to specify that a transition is not
unreasonably ignored.

(the conjunction rule). Note that the tautology and con-
junction rules imply that � is monotonic: if f ⇒ g follows Unconditional Fairness. The formula ��f says that f is
from ordinary propositional reasoning, then �f ⇒ �g. executed infinitely often. Note that this may have unde-

• For state formula f , sirable side effects; for example, unconditional fairness
for enterP forces P to access the resource infinitely often.

� f ≡ f ∧�( f ⇒ f ′ ) Strong Fairness. The formula ��enabled.f ⇒ ��f says
that if f is enabled infinitely often, it must be executed

In terms of transition systems, if T.init satisfies f and infinitely often. For example, strong fairness for enterP
T.trans preserves f , then f always holds throughout ev- says that if P infinitely often has the opportunity to ac-
ery initial path; such an f is called an invariant of the cess the resource, it will do so infinitely often.
transition system. This rule says that an invariant is al- Weak Fairness. The formula ��enabled.f ⇒ ��f says
ways true. that if f is almost always enabled, it must be happen

infinitely often. For example, weak fairness for enterP
To prove �f , where f is a state formula, it is usually neces- says that if P is permanently able to enter, it will even-
sary to strengthen f to an invariant g. For example, the tually do so. Note that weak fairness of f is equivalent
mutual exclusion condition ¬(p � q � 3) holds in every reach- to unconditional fairness for enabled.f ⇒ f .
able state of the Peterson protocol, but it is not an invariant,
since trans does not preserve it (for example, 321 �trans 331). In LTL, fairness conditions can be added directly as addi-
�¬(p � q � 0) can be proved as follows: tional hypotheses to the formula being checked. For example,

when we say that a formula f holds assuming unconditional
1. (p � 3 ⇒ (q � 1 ∨ t � 0)) is an invariant of the Peterson fairness for g, we mean that (��g) ⇒ f holds.

protocol, so �(p � 3 ⇒ (q � 1 ∨ t � 0)) by the invariance
rule Exploiting Fairness Hypotheses. The usual way to make use

of weak or unconditional fairness is to use the following rule,2. Similarly, �(q � 3 ⇒ (p � 1 ∨ t � 1))
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which generates a progress property from an unconditional tional disjunct ��¬enabled.f , which is just treated as a sepa-
rate case.fairness property:

Decision Procedures for LTL�( f ⇒ f ′ ∨ g ∨ g′) ∧�♦h ⇒ �( f ⇒ ♦(( f ∧ h) ∨ g))

The problem of checking if an LTL formula is true isThe first hypothesis says that whenever f holds, it remains
PSPACE-complete, which means that in practice the time totrue up until the first point that g holds. For example, in the
perform the check is exponential in the length of the formula.Peterson protocol, if f is the formula p � 2 ∧ t � 0, then,
One way to perform this check is to treat the formula as anassuming weak fairness of enterP,
omega-regular language (encoding individual states as or-
dered lists of variable-value pairs), which reduces the validity

�( f ⇒ f 
 ∨ p
 � 3) from �trans and logical reasoning
problem to the well-known problem of checking equivalence

��( f ⇒ p � 3) from weak fairness of enterP
of omega-regular languages (6).

�( f ⇒ �(p
 � 3)) from the last two conclusions and the
progress rule

BRANCHING-TIME LOGICS
Using similar reasoning, we can obtain the following prog-

In linear-time logics, formulas specify properties that hold forress properties for the Peterson protocol from the correspond-
all paths. Branching-time logics provide additional flexibilitying weak fairness properties:
by allowing one to specify that a property must hold for some
path. Although sound engineering demands that a system1. �(p � 1 ⇒ �(p � 2)) from fairness of p � 1 ∧
should work for every possible execution, there are severalp
 � 2
reasons that branching-time logics are useful:2. �(p � 2 ∧ t � 0 ⇒ �(p � 3)) from fairness of p � 2 ∧

p
 � 3
• Branching-time formulas can guarantee that the system3. �(211 ⇒ �(p � 2 ∧ t � 0)) from fairness of q � 1 ∧

does not unrealistically constrain the environment inq
 � 2
which is embedded. For example, for the Peterson proto-4. �(201 ⇒ �(p � 3 ∨ 211)) from fairness of p � 2 ∧
col, one might specify that in every state, it is possiblep
 � 3
that q 	 0 in the following state; this effectively says5. �(221 ⇒ �231) from fairness of q � 2 ∧
that the process Q is free to enter the protocol at anyq
 � 3
time.6. �(231 ⇒ �201) from fairness of q � 3 ∧

q
 � 0 • Branching-time formulas can specify that the system
cannot reach a state in which the operations are forever

These basic progress properties are then combined with stuck waiting for each other to release resources (for ex-
the following rules, that say that progress is idempotent, ample, by requiring that it is always possible to reach a
transitive, and disjunctive: state where p � q � 0).

• Possibility can sometimes be used as a substitute for
guaranteed progress under fairness hypotheses, which
can make model checking much easier to carry out.

�(p ⇒ ♦p)

�(p ⇒ ♦q) ∧�(q ⇒ ♦r) ⇒ �(p ⇒ ♦r)

�(p ⇒ ♦r) ∧�(q ⇒ ♦s) ⇒ �(p ∨ q ⇒ ♦(r ∨ s))
Our example of a branching-time logic is computation tree

logic (CTL) (7), which is the logic used by most current modelFor example, from the progress properties proved above,
checkers. As opposed to linear-time logics, which specify prop-we can prove
erties of arbitrary paths, CTL formulas are always interpre-
ted in the context of a transition system, and formulas hold�(p ≥ 1 ⇒ ♦p = 3)

or fail to hold for a particular state, rather than for a path.
which says that if P is trying to access the resource, it will CTL formulas are defined as follows. A path quantifier is
eventually obtain access: either A (necessarily) or E (possibly). Every state formula is a

CTL formula; if Q is a path quantifier and f and g are CTL
7. �(211 ⇒ �p � 3) by (3), (2), and transitivity formulas, then ¬f , f ∨ g, QXf , and QfUg are CTL formulas.
8. �(201 ⇒ �p � 3) by (4), (7), disjunctivity and tran- Formulas are interpreted as follows:

sitivity
9. �(231 ⇒ �p � 3) by (6), (8), and transitivity

10. �(221 ⇒ �p � 3) by (5), (9), and transitivity
11. �(p � 2 ∧ t � 1 ⇒ by (7), (8), (9), (10), and dis-

�p � 3) junction
12. �(p � 2 ⇒ �p � 3) by (11), (2), and disjunctivity
13. �(p � 1 ⇒ �p � 3) by (1), (12), and transitivity
14. �(p 	 0 ⇒ �p � 3) by (12), (13), idempotence and

disjunctivity

Strong fairness properties are exploited in the same way;
the only difference from unconditional fairness is the addi-

s � f �= f (s) for state formula f

s � f ∨ g �= (s � f ) ∨ (s � g)

s � ¬ f �= ¬(s � f )

e � X f �= e1 � f

e � fUg �= (∃n : en � g ∧ (∀m : m < n ⇒ em � f ))

s � A f �= (∀e : e a path of T ∧ e0 = s ⇒ e � f )

s � E f �= (∃e : e a path of T ∧ e0 = s ∧ e � f )
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These definitions can be read as follows. A state formula ple, in the Peterson protocol, if f is the formula p � 3,
then EXf isholds in a state if it holds in the sense the section entitled

‘‘Transition Systems.’’ The disjunction of two formulas holds
in a state if and only if either disjunct holds; the negation of (∃ p′, q′, t ′ : (trans ∧ p′ = 3))

a formula holds if and only if the formula fails to hold. Xf
which simplifies to the state formula(‘‘next time f ’’) holds for a path if and only if f holds for the

second state of the path; fUg (‘‘f until g’’) holds for a path if
p = 3 ∨ (p = 2 ∧ (t = 0 ∨ q = 0))and only if g holds for some state of the path and f holds for

every state up to the first state in which g holds. Af (‘‘neces-
Similarly, the state formula for AXf is (� v
: (T.trans ∧sarily f ’’) holds in a state if and only if f holds for every path
f 
)).starting at that state; dually, Ef (‘‘possibly f ’’) holds for a

• The state formula of EfUg is the strongest formula x sat-state if and only if f holds for some path starting at that state.
isfying the equation x � (( f ∧ EXx) ∨ g); that is, EfUg isThe � and � operators can be defined from U, that is,
the set of all states that can reach a g state via a se-�f � (trueUf ), and �f � ¬�¬f . The path quantifiers A and
quence of f transitions. x can be calculated by startingE allow one to speak about the possible futures of the system.
with x � g, and repeatedly performing the assignmentFor example,
x :� x ∨ ( f ∧ EXp) until a fixed point is reached (i.e., until
the assignment yields a logically equivalent state for-• A�f says that f always holds
mula).

• E�f says that it is possible for f to always hold
The state formula of AfUg is calculated using the

• A�f says that f is guaranteed to hold eventually same procedure, but with all A’s above changed to E’s.
• E�f says that it is possible for f to eventually hold

For example, to check that E((q � 0)U(p � 3)), we first• A�( f ⇒ E�g) says that, from every f state it is possible
calculate the state formula E((q � 0)U(p � 3)) as above; theto reach a g state
successive values of x are

In the case of Peterson’s protocol, one might wish to prove
properties like

A�(q = 0 ⇒ E(q = 0Up = 3))

p = 3

p = 3 ∨ (q = 0 ∧ p = 2)

p = 3 ∨ (q = 0 ∧ (p = 1 ∨ p = 2))

p = 3 ∨ q = 0which says that at any time at which Q is not trying to access
the resource, it is possible for P to gain access without Q ever

which is a fixed point. Since init ⇒ (p � 3 ∨ q � 0), E((q �entering the protocol (i.e., P can gain access without any coop-
0)U(p � 3)) checks successfully.eration from Q).

Each of these operations can be performed in time linearSome LTL formulas can be translated to CTL equivalents
in the number of states in the transition system, so the timeby prefixing every temporal operator with A (e.g., the LTL
to check a system for any CTL property grows at worst as theformula ��p � 0 translates to the CTL formula A�A�p �
product of the size of the transition system and the size of0). However, even without considering primed variables,
the formula being checked. In contrast, the model-checkingthere are LTL formulas that cannot be written as CTL formu-
problem for LTL is PSPACE-complete, which means in prac-las. For example, the formula �(p � 1) ∨ �(p � 0) has no
tice that it is exponential in the size of the formula. Thus,CTL equivalent; it is not equivalent to A�(p � 1) ∨ A�(p �
CTL model checking is much more efficient.0) (the first holds in the Peterson protocol, while the second

One drawback of CTL is that, unlike LTL, fairness proper-does not), and A(�(p � 1) ∨ �(p � 0)) is not a CTL formula.
ties cannot be expressed within the logic. However, the model-There are branching-time logics that generalize both LTL and
checking procedure can be extended to work with fairnessCTL, such as CTL* (8), but model checking procedures for
conditions; the penalty is an extra factor that is polynomial insuch languages are at least exponential in the size of the for-
the number of fairness assumptions (9). Most modern modelmula being checked. The preferred solution is to work fair-
checkers allow fairness assumptions as part of the systemness assumptions into the system model and model checking
model.procedures.

The above computations can be performed symbolically (as
indicated above); a model checker that works in this way isCTL Model Checking
called a symbolic model checker (10). The main technology

We now describe a simple way to check CTL formulas in a that makes this practical is the use of ordered binary decision
transition system, by showing how to reduce each CTL for- diagrams (11) to represent state formulas in a way that
mula f to an equivalent state formula, based on the transition makes their logical manipulation (in particular, testing
relation trans. f then holds if and only if init ⇒ f [because whether two formulas are equivalent) very efficient (at least
this is a state formula, it can be checked using ordinary (non- for large classes of formulas). An important research problem
temporal) logic]. To reduce QXf or QfUg to a state formula, is the investigation of alternative ways to represent formulas
we first reduce f and g to state formulas. The next step de- that allow this efficient manipulation.
pends on the formula being reduced:

Explicit State Search. Most model checkers do not work ex-
plicitly with formulas, but instead work one state at a time.• The state formula for EXf is (� v
: (trans ∧ f 
)), where

v
 is the vector of all primed state variables. For exam- For example, to test A�f , the checker can just enumerate the
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state graph of Fig. 1, checking that each state satisfies f . This
approach, called explicit state search, is sometimes more effi-
cient, particularly for system with many state variables but
relatively few reachable states.

In practice, the coverage of explicit state search is limited
by the space needed to keep track of the set of states that
have been explored. Some special techniques have been devel-
oped to overcome this problem. One way to do this efficiently
is to represent a set of states using a hash table of bits; a
state is in the set if the table indices it hashes to (using sev-
eral independent hash functions) all have their bits set. This
representation is not perfect, because multiple states might
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hash to the same index, but it allows large sets to be repre-
Figure 2. Water-level monitor.sented very efficiently (using a few bits per state) (12).

A fair body of research has been devoted to techniques that
avoid exploring redundant paths to the same state (‘‘partial
order techniques’’) and, more generally, to states that are
equivalent under some symmetry relation (for systems com- x. Whenever this invariant is falsified, the hybrid automaton
posed of a number of identical processes). jumps out of its current mode into an adjacent mode.

An invariant is linear if it is a disjunction of inequalities
of the form A � x � c where A is a constant matrix, c is a
constant vector, and � is either � or �. A hybrid automatonREASONING ABOUT REAL-TIME SYSTEMS
is linear if its invariants are linear and its differential ine-
qualities are of the form A � ẋ � c where ẋ is the vector of firstSome systems depend on timing constraints for correctness.
derivatives of the variables x.For example, many message transmission protocols depend

Figure 2 shows a linear hybrid model of a control systemon a sender’s timeout being long enough to guarantee that a
for a water tank. The variable y represents the level of themessage was lost if no reply is received during the timeout
water in the tank; the system is designed to keep this levelinterval. Systems that depend on such explicit timing as-
between 1 and 12 in. It does this by turning a pump on or off;sumptions are generically called real-time systems.
when the pump is on (states 0 and 1), the water level rises atOne way to reason about real-time systems is to represent
1 in./sec., and when the pump is off (states 2 and 3), the waterthe time with an explicit state variable t, along with axioms
level falls at 2 in./sec. The diagram can be read as follows.that say that time never moves backward and that that the
The system starts with the water level at 1 in. and the pumptime is guaranteed to move beyond any fixed boundary. Rules
on (state 0). When the water level reaches 10 in., the timer xof inference are used to derive real-time formulas from other
is reset (state 1). When the timer hits 2 sec., the pump turnsreal-time formulas. See, for example, (13).
off (state 2). When the water level falls to 5 in., the timer isFor automatic verification, it is necessary to introduce tim-
reset (state 3); 2 sec. later, the pump turns on again (state 0).ing into the automata model. A timed automaton is like a reg-

Certain temporal properties of linear hybrid automata canular finite-state transition system, except that it also has tim-
be checked automatically using methods from the logical the-ers that can be set, and perform a specific action when they
ory of linear arithmetic (15).expire. Like ordinary transition systems, CTL properties of

timed automata can be checked automatically (14).
A hybrid system is a system that can undergo both discrete Duration Calculus

transitions and continuous evolution (e.g., where the changes
The duration calculus (16) is a calculus for specifying and rea-of real-valued variables are governed by differential equa-
soning about the duration over which formulas hold. If S is ations). Hybrid systems typically arise in control applications;
Boolean function of time, �S denotes a function called the du-for example, in air-traffic control, the movement of planes is
ration of S. The value of �S for a real-valued interval of timecontinuous, while the protocols governing communication are
denotes the total duration for which S holds in that interval.discrete. We conclude with a brief description of two formal-
Atomic formulas are predicates upon durations. Formulas areisms for reasoning about hybrid systems.
constructed from other formulas using logical connectives,
and a special connective called the ; operator (‘‘chop’’). The

Hybrid Automata formula A;B is true for an interval [b, e] when this interval
can be divided into an initial subinterval [b, m] for which AA hybrid system’s behavior over time can be modeled as a
is true and a final subinterval [m, e] for which B holds. Thesequence of phases; during each phase the system state is
requirement that a formula S holds for every subinterval ofgoverned by a set of differential equations. At a phase bound-
an interval can be expressed as ¬(true;¬S;true), abbreviatedary a discrete event occurs and the system state is governed
�S. This states that it is not possible to find a subinterval inby a new set of differential equations. In hybrid automata
the interval for which S is false.(15), phases are modeled by modes and discrete events by con-

New duration calculus formulas can be derived using infer-trol switches. Associated with the hybrid automaton is a set
ence rules; an example of such a rule isof real-valued variables x denoting the ‘‘physical state’’ of the

system. Associated with each mode is a set of differential ine-
qualities governing x as well as an invariant condition upon (

∫
S = x); (

∫
S = y) ⇒ (

∫
S = x + y)
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which says that the duration of S for a sequential combina- For other approaches to the analysis of concurrent sys-
tems, see the articles on PROCESS ALGEBRA and PROGRAMMINGtion of intervals is equal to the sum of its durations for the

two intervals. THEORY.
For example, in the Peterson protocol, the requirement
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TERMINALS, TELECOMMUNICATION. See TELECOM-

MUNICATION TERMINALS.
TERMINATED CIRCULATORS. See MICROWAVE ISO-

LATORS.


