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TIME-DOMAIN ANALYSIS

The study of many linear physical phenomena and processes, including electromagnetic wave radiation, prop-
agation, and scattering, can in principle be done either in the time domain or in the frequency domain.

In time-domain analysis, the study is done by considering the time as an independent variable. Fields,
signals, and systems are considered as explicit functions of time and mathematically described through their
natural evolution from the past towards the future. In such time-domain description, time can be treated
either as a continuous variable (continuous time) or as a discrete variable (discrete time) (1,2). Traditionally,
continuous-time problems are usually associated with electric circuits, communication, and physics problems,
while discrete-time problems are usually associated with time-series analysis, statistical problems, and numer-
ical analysis. However, with the advent of high-speed digital computers, it has been increasingly advantageous
to treat phenomena that occur in the time continuum as discrete-time processes through some process of
sampling. This has led to an increasing connection between continuous time-domain and discrete time-domain
analysis.

Frequency-domain analysis, on the other hand, is done by treating the frequency as an explicit variable.
This is because physical processes and signals described in the time domain can often (advantageously) be
spectrally (Fourier) decomposed, i.e., decomposed into a (possibly infinite) sum of elementary modes or signals,
each one with a definite frequency (periodicity). These elementary components are called spectral (Fourier)
components. The relative weights of these spectral components in the sum correspond to an alternative (dual)
description of the original signal, where now the frequency is taken as an explicit variable. Such spectral
decomposition is useful because many signals allow for a much simpler representation in the frequency domain
than in the time domain.

Mathematically, the passage from the time domain to the frequency domain is done through the a Fourier
transform pair [1,2,3,4,5]. Given a time-domain function φ(t), its Fourier transform (ω) is defined by

Furthermore, the original time-domain function φ(t) can be easily reconstructed from through the use of the
inverse Fourier transform

In the above expressions, we have used the so-called e− iωt convention (3,4,5), common in optics and
physics. An alternative convention is the ejωt (1,2), common in circuit analysis and signal processing. One can
go from one convention to the other by simply replacing i with −j in all expressions or vice versa.
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The Fourier transform pair establishes a one-to-one relationship between the time-domain and frequency-
domain descriptions. There are some mathematical conditions to observe on the function φ(t) for its Fourier
transform to exist. These conditions are related to the convergence of the integrals in Eqs. (1a). Discussion of
those aspects is beyond the scope of this article. The interested reader may consult, for example, Refs. 1,2,3.
Suffice is to say that, for most functions of interest in practice, a Fourier transform pair is well defined.

Many physical processes of interest are described by linear time-invariant (LTI) differential equations.
For instance, Maxwell’s equations, which govern the behavior of the electromagnetic fields, are written as (4,5)

where E is the electric field, H is the magnetic field, J is the electric current density, and ρ the electric charge
density. If ε(r) and µ(r) are functions only of position, the above equations constitute a linear, time-invariant
system. Linearity means that if we take two set of possible field solutions of Eq. (2a), say {E1, H1} and {E2,
H2}, then any linear combination {αE1+βE2, αH1+βH2} will still be a solution of those equations (principle
of superposition). Time invariance means that if we consider a set of excitations (sources) {J(t), ρ(t)} and
corresponding solutions (responses) {E(t), H(t)}, and shift the excitations (sources) by an arbitrary amount of
time τ, that is, {J(t −τ), ρ(t − τ)}, then the new corresponding solutions are the original solutions shifted by
the same amount of time, that is, {E(t − τ), H(t − τ)}.

Differential equations describing LTI systems in the time domain can be easily translated to the frequency
domain by replacing the temporal derivative with the algebraic operator −iω. Time integrals can be similarly
replaced by algebraic operators. As a result, the analytical treatment of LTI differential equations (such as
Maxwell’s equations) or LTI integral equations is significantly simplified when described in the frequency
domain. This constitutes a major reason for the popularity for analytical treatments in the frequency domain.

For a discrete-time signal φ(n), ∞ < n < ∞, where n is an integer, a Fourier representation is also possible,
in the form (2)

where we have used the ejωt (ejωn for the discrete time-domain case) convention mentioned previously, instead.
In the above, ) is given by
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Equations (3a) constitute the discrete Fourier transform (DFT) pair. In this case, the Fourier transform (ejω) is
a periodic function with period 2π. The DFT plays an important role in the analysis and design of discrete-time
signal-processing algorithms and systems, analogous to the role of the Fourier transform for continuous-time
systems. Also important is the fact that very efficient algorithms, collectively known as fast Fourier transforms
(FFTs), exist to compute the DFT (2). It is interesting to observe the correspondence with the continuous-
time case: the summation in Eq. (5b) is simply the Fourier series of a periodic signal (ejω), whereas the
integral for the “coefficients” φ(n) in Eq. (5a) is just the integral that would be used to obtain the coefficients
of the Fourier series. Of course, the discrete-time treatment can nevertheless be carried out independently of
this correspondence. Another connection between the continuous-time representation and the discrete-time
representation is given by the celebrated Nyquist sampling theorem, which states that a band-limited signal
φ(t) whose Fourier transform (ω) = 0 for ω > ωmax is uniquely determined by its samples (i.e., a discrete-time
representation), φ(n) = φ(n 	t), − ∞ < n < ∞, if ωs = 2 π/ 	t > 2ωmax. The frequency ωmax is usually referred
as the Nyquist frequency, and the frequency ωs as the Nyquist rate. Therefore, a band-limited signal can be
reconstructed exactly from discrete samples. It is possible to generalize both the Fourier transform and the
DFT to fully exploit the theory of complex variables in the analysis of the time-domain signals. In the case
of continuous-time systems, this generalization is given by the Laplace transform (1), and for discrete-time
systems it is given by the z transform (2).

Apart from its advantages in analytical treatment, the popularity of frequency-domain analysis also
stems from the fact that many measurement apparatuses are confined to frequency-domain measurements.
With the advent of high-speed digital computers, however, the strong prevalence of frequency-domain analysis
in comparison with time-domain analysis has declined. Digital computers altered the way problems can be
solved and paved the way to new algorithms and increasing popularity of time-domain analysis (6,7,8,9,10).
Moreover, they also promoted dramatic changes in the measurement hardware. Some of the specific reasons
for the increasing popularity of time-domain analysis in the digital age are:

(1) Many problems of interest are actually nonlinear or time-variant. In those cases, time-domain analysis
provides a more direct and straightforward modeling.

(2) In some cases, fewer arithmetic operations are required in the time domain than in the frequency do-
main. For instance, for broadband problems, time-domain analysis is more efficient because the problem is
localized in the time domain (e.g., short duration times) but not in the frequency domain (large bandwidths).

(3) It is often easier to get frequency-domain results from time-domain data than vice versa.
(4) Time-domain analysis is conceptually closer to our intuition, which develops in the space–time arena.

In this article, we will describe the basics of time-domain analysis as applied to Maxwell’s equations,
which govern the behavior of electromagnetic waves. Because of their pervasiveness in electrical engineering,
Maxwell’s equations will provide a general ground for the discussion of time-domain algorithms. A more
detailed discussion of time-domain algorithms in relation to electric circuit and network analysis is presented
in the article Time-Domain Network Analysis

Electromagnetic Wave Propagation

The equations governing the electromagnetic field are given by Eq. (2a). If we take a source-free case, J = 0
and ρ = 0, substitute Eq. (2a) into Eq. (2b), and solve for E, we obtain
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By making use of the identity

and of the divergence-free condition for the electric field in a source-free region,

we obtain

which is know as the vector wave equation. The speed of propagation is given by v = (µε)− 1/2 and depends on
the background medium. In vacuum, v = c = (µ0ε0)− 1/2 ≈ 2.998 × 108 m/s.

In Cartesian coordinates, the Laplacian operator, ∇2, is written as

Furthermore, we can write E in terms of its field components, i.e., E = Ex + Ey + Ez, where , ,

and are the Cartesian unit vectors. The vector wave equation can therefore be written as three scalar wave
equations:

and the same for Ey and Ez. Although the field components appear decoupled in these three equations, they
are nevertheless coupled through the divergence-free condition, ∇ · E = 0.

The wave-propagating nature of the solutions of Eq. (9) can be easily understood by considering, for
simplicity, the one-dimensional case

and considering the trial solutions Ex(x, t) = F+(x − vt) + F − (x + vt), where F± are twice differentiable functions.
It is a simple exercise to verify that this functions satisfy Eq. (10), regardless of the specific functional choice for
F±. The functions F± are known as propagating wave functions (also called D’Alembert solutions) because they
represent a traveling function propagating with speed v in the +x (F+) and −x (F − ) directions, respectively.
The above solutions establishes the propagating-wave nature of the solutions of Maxwell’s equations.

The wave equation is a linear second-order partial differential equation: only derivatives up to second order
are present. Linear second-order partial differential equations can be classified into three classes, according
to the coefficients that multiply the highest-order terms (11). The wave equation is the prototypical hyperbolic
differential equation. The other classes are the elliptic and the parabolic. Elliptic equations are associated with
steady-state phenomena (boundary-value problems), do not involve time evolution, and therefore will not be
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considered here. The prototypical elliptic equation is the Laplace equation, i.e., ∇2φ = 0. Parabolic equations
are associated with diffusion phenomena, such as heat diffusion (heat equation). They can also occur in the
context of electromagnetics, as for instance, in a medium with high conductivity. In that case, Eq. (16b) becomes

If the conductivity is sufficiently large so that displacement currents can be neglected, the second term
above can be dropped and we have

which is the diffusion equation, the same parabolic equation that governs heat flow.
Both parabolic and hyperbolic equations are evolutionary equations, which undergo change as a function

of time and to which time-domain analysis applies. Parabolic and hyperbolic equations are usually solved
through similar techniques, as opposed to elliptic equations.

Note that the passage from the time domain to the frequency domain corresponds to replacing the wave
equation (4) by the so-called Helmholtz equation,

which is an elliptic equation with no time evolution present.

Time-Domain Differential-Equation Modeling

The time-domain analysis of differential equations using numerical methods on a computer involves a dis-
cretization procedure, whereby the infinite number of degrees of freedom of the original model is reduced to a
finite number, tractable by the computer. For instance, the passage from a continuous-time representation to
a discrete-time representation (sampling) mentioned before is an example of a discretization procedure. The
spatial discretization of partial differential equations requires a meshing of the space, whereby the spatial
domain is replaced by a lattice of discrete points or a set of elementary discrete domains (facets, volumes, etc.).
The discretization constitutes the central step in the modeling of differential equations.

When referring to the spatial discretization, three major families of techniques can be identified for
differential-equation time-domain modeling. The first are the finite-difference techniques, which consists in
replacing the derivatives (both temporal and spatial) present in the differential equations with finite-difference
approximations. Finite-difference methods are simple to implement and well suited for modeling time-domain
problems in moderately complex domains. The second family are the finite-volume techniques, where (spatial)
local integral relations are derived for the field quantities and discretized through the use of elementary
contours, surfaces, and volumes. The third family are the finite-element techniques, usually associated with
variational formulations and where the fields are projected on the space of some compactly supported basis
(interpolatory) functions, usually defined over finite domains (so-called elements). Finite elements are better
suited for problems involving very complex geometries. They can also provide very accurate error estimates.

There are strong conceptual links between finite-difference, finite-volume, and finite-element techniques
(12,13), and in some instances the distinctions between them can become quite blurred. For example, finite-
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difference techniques can be recast as particular (point-matched) finite-element techniques with some specific
choices for the basis functions. Moreover, the finite-element method can be used as a systematic way to produce
more complex finite-difference methods with sharp error estimates. The finite-volume technique can often be
also reinterpreted as a finite-difference technique over irregular grids.

Besides these three families of techniques, other families can also be identified. (Pseudo) spectral meth-
ods (14,15), for example, can be identified as a class of finite methods with global, smooth (for example,
Chebyshev or sinusoidal) basis functions, that is, functions defined over the entire spatial domain, instead of
compactly supported as in the finite-element method. Pseudospectral methods can be seen as limiting cases
of increasing-order finite-difference methods. Another popular time-domain method for Maxwell’s equation is
the transmission-line method (TLM) (16), closely related to the finite-difference method.

When referring to the temporal discretization of hyperbolic equations, the most relevant distinction is
between explicit and implicit techniques. In explicit techniques, the values of the fields at a given instant of time
depend only on the previous instant of time. Therefore, they can be written explicitly as a function of previously
known values in a time-update scheme. In implicit methods, the field values at some instant of time depend
not only on field values at previous instants, but also on field values at the same instant of time (and distinct
points of space). Therefore, they cannot be written explicitly as a function of previously known field values.
Implicit methods require the solution of a linear system at each time step, as opposed to explicit methods.
Although for differential-equation modeling the associated matrix is usually sparse, this can be a considerable
computational burden. On the other hand, implicit methods are superior in their numerical stability, allowing
for larger time discretization steps. This will be discussed in more detail later on.

Finite-Difference Time-Domain Methods. The finite-difference time-domain (FDTD) modeling (8,9,
16) of differential equations replaces derivatives by finite differences. It starts by assuming some field quantity,
say ψ(x,t), to exist only at discrete points of space and time separated by fixed intervals 	x and 	t and labeled
by the indices m, n that is, ψm,n = ψ(m 	x, n 	t). In general, the intervals do not need to be of equal length, but
here they will be assumed so for the sake of simplicity. If ψ(x,t) satisfies a one-dimensional scalar wave equation
of the form

then the spatial derivative can be approximated as

which corresponds to forward differencing. Alternatively, the spatial derivative can also be approximated as

or
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which correspond to backward and central differencing, respectively. For a second derivative, central differenc-
ing can be applied twice,

A more systematic way to derive the finite-difference approximation is to expand the functions using a
Taylor expansion for ψm+1,n and ψm − 1,n around x = m 	x, that is, in terms of ψm,n and its derivatives:

By adding the above equations, we obtain the expression for the second derivative,

which shows that the approximation in Eq. (15) is an approximation of second order, that is, with error O(	x2).
On the other hand, backward differencing and forward differencing both have error O(	x).

In a hyperbolic equation, the solution region in the (x,t) domain is open in the coordinate t, so that a
solution advances towards positive t from prescribed initial conditions at some specified initial time t = t0.
On the other hand, in the spatial domain, at any given instant of time, the solution is known for all x and
should satisfy prescribed boundary conditions. This is illustrated in Fig. 1. Because we are dealing with an
initial-value problem in the temporal domain and with a boundary-value problem in the spatial domain, there
is a fundamental difference between the time discretization and the spatial discretization.

If we apply the discretization given by Eq. (15) to the time derivative, and substitute in the wave equation
in Eq. (13), we arrive at

which is a time-stepping formula, that is, given the knowledge of ψm,n − 1 and ψm,n, one can find ψm,n+1. In
particular, given the values of ψm,0 and ψm,1, the values of ψm,n at all subsequent time steps can be determined,
as long as the time-stepping scheme is stable. The stability of the time-stepping scheme is related to the relative
values of 	x, 	t, and v and will be discussed later on. By combining the time and spatial finite differences, the
resulting discrete equation becomes
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Fig. 1. Time evolution of a hyperbolic partial differential equation in the (x, t) domain, with boundary conditions on x
and initial conditions on t.

which can be solved on a computer for some prescribed initial and boundary values.
In the case of Maxwell’s equations, we can solve for one of the fields first and discretize the resulting

equation, for example the second-order wave equation for E, Eq. (12). Otherwise, we can work directly with the
first-order curl equations, Eqs. (2a) and (2b), and both fields, E and H, simultaneously. Yee’s scheme (8,9) is a
very popular FDTD scheme to discretize the first-order Maxwell’s curl equations in Cartesian coordinates. In
terms of components, Eq. (2a) is written as

Yee’s FDTD discretization scheme for the above equations starts by spatially staggering the electric
and magnetic field components and replacing the spatial derivatives by central differences. The staggering of
electric and magnetic fields and the location of each field component are illustrated in Fig. 2. This is equivalent
to defining the electric and magnetic field components over different (dual) grids, staggered with respect to
each other. A temporal staggering is also used for the electric and magnetic fields in the time evolution. The
temporal staggering is such the magnetic field at a time t = (n + 1

2 ) 	t is obtained from the electric field at
an instant of time t = n 	t. The electric field at t = (n + 1) 	t is then obtained from the magnetic field at t =
(n + 1

2 ) 	t, and the scheme is iterated. Such a time update scheme is usually known as a leapfrog scheme. By
denoting the field components using ψ(i 	x, j 	y, k 	z, n 	t) = ψn

i,j,k, then the FDTD discretization for Eqs.
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(20a) become

An analogous discretization applies for the other curl equation (Ampere’s law) by duality (4). Once the E
field at t = 0 and the H field at t = − 1

2 	t are known (initial conditions), the update equations can be used to
find the fields at all future time steps.

Yee’s FDTD scheme is an explicit scheme, and for a given choice of 	x, 	y, and 	z, a basic condition
applies to the maximum admissible value of 	t to obtain numerically stable time stepping. This is given by the
Courant-Friedrichs-Levy (CFL) criterion (4,8,16),

For an inhomogeneous medium, v is a function of position, and in the above, v should be taken as its
maximum value in the computational domain. The CFL criteria can be derived through a von Neumann
stability analysis (8). We note that this criterion is also related to the causality condition. It essentially states
that the time step 	t should be smaller than the shortest travel time for waves between the lattice planes, a
requirement of causality. However, implicit schemes, which include the same time-step interactions at different
spatial grid points, do allow for the relaxation of the CFL condition.

In the case of a parabolic equation such as Eq. (11b), if forward differencing is used for the first-order
temporal derivative and central differencing for the second-order spatial derivative (Euler scheme), the re-
sulting scheme will be stable if 2 	t ≤ (µσ 	s2/ n), where n is the dimension of the problem, and 	s is the
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Fig. 2. Yee’s elementary staggered FDTD cell, depicting the location of the electric and magnetic field components.

spatial discretization size (assumed uniform) (4). (If central differencing is used for both temporal and spatial
derivatives, the update is always unstable.) The right-hand side of this condition is just the time for the field
to diffuse between successive planes in the numerical grid. This condition therefore just states that the time
step should be smaller than half this diffusion time. In contrast to the discretization of the wave equation, we
observe that the computation time for the diffusion equation modeled using FDTD grows as N(n+2)/n, where N
is the total number of grid points. The computational effort to solve a diffusion problem grows faster with the
size of the problem than that in solving the wave equation (the maximum temporal step depends quadratically
on the spatial step). This can be physically understood in connection with the difference in how the wavelength
(wave equation) and the skin depth (diffusion equation) scale with frequency. One possible way to increase
the efficiency of the solution is to use an implicit scheme instead of an explicit one. Another is to add a small
wavelike term to the diffusion equation, making it possible to employ a central-differencing scheme for the
temporal derivative in which the CFL criterion is always satisfied (unconditionally stable). This must be done
without altering much of the physics of the problem (4).

Apart from numerical stability, a second general criterion to be observed in the choice of the discretization
size is related to the numerical (or grid) dispersion effects. Numerical dispersion refers to the fact that plane
waves do not all propagate with the same phase velocity on the lattice (4,8). Plane waves with different
frequencies will have different phase velocities. Moreover, plane waves with the same frequency but different
propagation directions will also have different phase velocities (due to the anisotropy of the discretized space),
this last effect, of course, being present only in two- or three-dimensional problems. As a result of numerical
dispersion, a time-domain pulse, which is a linear superposition of plane waves, will be distorted as it propagates
through the lattice. To minimize the numerical dispersion error, the spatial discretization size should be chosen
small compared to the wavelength (usually between λ/10 and λ/20). Alternatively, higher-order finite-difference
methods can be employed to reduce the dispersion error (8). Higher-order schemes utilize larger stencils in the
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finite-difference approximation for the derivatives. Both alternatives lead to larger computational requirements
in memory and CPU time.

In many cases, it is not the numerical dispersion effects but the fine geometrical features of the problem
that dictate the maximum values of the spatial discretization steps. In those cases, the use of nonuniform grids,
where the spatial discretization size is locally reduced to accommodate the fine geometrical details, is often
advantageous.

To speed up the time-domain simulation, it is convenient to chose 	t to be as large as possible yet satisfying
Eq. (22). As a bonus, it can be shown that, for Yee’s scheme, this choice minimizes the numerical dispersion
error (8).

Finite-Element Time-Domain Methods. Another popular discretization scheme is the finite-element
method (FEM) (10,17,18). Although more commonly used for frequency-domain problems (elliptical equations),
it has nevertheless been applied with success for time-domain analysis (10). Its major attractiveness is that it
is well suited for use with unstructured spatial grids. Finite-element methods can often also be seen as a con-
venient way to generate complex finite-difference schemes and obtain accurate error estimates. Finite-element
schemes are based on general analytical expansion techniques to obtain approximate solutions. They are also
usually known as the Rayleigh–Ritz method for stationary problems and the method of weighted residuals for
problems that are posed directly as differential equations (18). Contrary to finite-difference methods, which are
based on a finite-point-set approximation to a differential equations, finite-element methods most often utilize
piecewise continuous polynomials to expand the unknown functions and generate the discretized version of
the equations (in the method of weighted residuals). Hence, instead of discretizing the spatial domain directly,
finite-element methods first discretize the function used to represent the solution.

The point-matched, or collocation, time-domain finite-element method is chosen in the short exposition
that follows because of its simplicity and because it already incorporates some of the main features of the
time-domain finite-element method. In this scheme, the spatial domain is first subdivided into finite elements.
In the two-dimensional case, the elements may correspond, for example, to triangles as depicted in Fig. 3. We
assume the E and H fields to have the following functional forms:

The functions φi(r) and ψj(r) are called basis functions and interpolate the fields within each element using
the values of the nodes constituting the element (nodal elements). Alternatively, the degrees of freedom can
be associated with edges instead of nodes. In that case, the interpolatory elements are called edge elements.
Although nodal elements are simpler to implement, they may produce spurious modes in a finite-element
implementation. Proper care should be taken to avoid that when using nodal elements to interpolate H or E
(17,18). Edge elements avoid spurious modes because they better mimic the physics of the problem. Using the
language of differential forms, H and E are one-forms, while B and D are two-forms. The natural interpolants
for one-forms are edge (Whitney) elements. Nodal elements are the natural interpolants for zero-forms (e.g.,
scalar potentials) only.

The expansion in Eq. (23a) is required to be complete, that is, it can represent any function up to the
order of approximation, but the basis functions are not required to be orthogonal. By substituting the above
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Fig. 3. Typical finite-element meshing of an L-shaped domain using triangular elements.

expressions into Maxwell’s equations, we obtain

Because both φi(r) and ψj(r) are known functions, the only unknowns in Eqs. (24a) are the time-dependent
nodal values of the electric and magnetic fields Ei(t) and Hj(t) at the nodal points ri. By conveniently normalizing
the basis functions so that φi(rj) = ψi(rj) = δij, and enforcing Eqs. (24a) at each nodal point (point matching),
we obtain

This corresponds to the semidiscrete system of the finite-element method (i.e., discretization in space
only). Because both ψj(r) and ψj(r) have finite support in space, only a few terms in the summation in Eq. (25a)
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will contribute, and, because of the point matching, an explicit scheme for the time update is obtained. The
leapfrog scheme can then be used similarly to the FDTD method. In this manner we have

Other strategies are possible to obtain the expansion coefficients in Eq. (23a). In general, instead of a
point matching, testing functions (spanning the test space) are utilized in conjunction with the basis functions
(spanning the trial space), and the resultant semidiscrete system produces a implicit scheme. These are known
as Galerkin methods and are perhaps the most popular. Point matching can be shown to be equivalent to a
special case of a Galerkin method with Dirac delta test functions (distributions) associated with the electric and
magnetic field nodes. Another strategy is the least-squares method of weighted residuals, where the square of
residuals is integrated over the domain of the problem and the expansion coefficients in Eq. (23a) are obtained
by minimizing the resulting integral. Note that in contrast to the FDTD scheme described previously, all three
components of the electric field are placed at the same node for Eqs. (26a). The same is true for the magnetic
field components.

There are many important issues connected with the finite-element method that are beyond the scope of
this article, such as variational formulations, choice of meshing and elements utilized, bases and test functions,
nodal versus edge elements, and mass lumping (a procedure used to convert an implicit time-update scheme
to an explicit one). For a detailed discussion of those issues, the reader is referred to Refs. 17,18.

Finite-Volume Time-Domain Methods. The term finite-volume has a loose meaning in the literature,
and it often can refer to different discretization methods. For instance, it sometimes synonymous with three-
dimensional FDTD schemes on irregular, unstructured grids. Here we will use the classification employed in
Ref. 19. The finite-volume time-domain method starts by subdividing the computational domain into elementary
volumes (most often irregular). Upon integration of Maxwell’s curl equations in each elementary volume, we
obtain

Many time-domain algorithms can be obtained through different choices of elementary volumes and
surfaces. As with the finite-difference and finite-element methods, the discretization scale should resolve the
wavelength well to minimize dispersion error. The grid may consist of cubes, distorted cubes, tetrahedrons,
prisms, or their combination. By using a leapfrog scheme similar to the previously discussed finite-difference
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Fig. 4. Illustration of the dual grid construction used in the finite-volume method with cubical elements.

and finite-element discretizations, the time update equations for the above become

Similarly to Yee’s FDTD case, a dual grid is often utilized as illustrated in Fig. 4, where the electric field
components are located on the primary grid and the magnetic field components are located on the secondary
grid. At each time step a double interpolation should be used to interpolate field values from one grid to another.
There is a close association of the finite-volume time-domain method with the FDTD method, in that it can be
shown that the FDTD can be derived through application of the integral relations

Therefore, while the finite-volume time-domain method is derived by using the curl of the electric field
over a surface to find the magnetic vector at the center of the enclosed volume as in Eq. (27a) [and vice versa
on the dual grid, Eq. (27b)], the FDTD can be derived through using the circulation of the electric field around
a contour to update the magnetic field over the enclosed area as in Eq. (29a) [and vice versa on the dual-grid,
Eq. (29b)]. For an additional discussion of the finite-volume time-domain method, the reader may consult Ref.
19.
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Time Integration Schemes

In the previous sections, we have illustrated the main features of different discretization methods using leapfrog
schemes. The leapfrog scheme is convenient for a system of two first-order equations such as Maxwell’s curl
equations, because it achieves overall second-order accuracy in time with only first-order time differencing.
However, many other time-stepping schemes are possible. In this section, we will illustrate some of those.

Single-Step Methods. Starting from a problem already discretized in the spatial domain, the resulting
semidiscrete problem can be written as

where v and F are vectors, and v is subject to some initial condition, v(t0) = v0. In general F can be a nonlinear
function. The algorithms for solving first-order equations such as Eq. (30) immediately generalize to systems of
first-order equations, and because a higher-order equation can be cast as a system of first-order equations, the
methods discussed here apply to differential equations of arbitrary order. In the case of Maxwell’s equations,
F is linear and Eq. (30) can be decomposed as

In this case, v1 and v2 represent the field components at all grid points, while F1(v2) = F1 · v2 and F2(v1)
= F2 · v1 are (sparse) matrices representing the curl operators on the grid.

A time-step update scheme for the prototypical Eq. (30) can be written as

with tn = n 	t, and 0 ≤ θ ≤ 1. This is called a theta method. If θ = 0, we arrive at Euler’s method (explicit), and
if θ = 1

2 , we arrive at the trapezoidal rule.
We can interpret Eq. (32) geometrically, by assuming the slope of the solution to be piecewise constant

and given by a linear combination, weighted through the variable θ, of the derivatives at the endpoint of each
discretization interval. Alternatively, we can also use a Taylor expansion as in Eqs. (16a) to arrive at the above
approximation. By doing so, it can be shown that the theta approximation is of first order, except for θ = 1/2,
when it is of second order (trapezoidal rule). Moreover, if θ = 0 the method is explicit, and otherwise implicit.

Multistep Methods. The theta method and the leapfrog scheme described before are examples of step-
by-step methods, that is, once the solution for vn+1 is obtained, the value of vn is discarded for future updates.
However, past values at more than one time step can be used to compute the value at next time step. This gives
rise to multistep methods, which can be written in general form as
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If bs = 0, the method is explicit; otherwise, it is implicit. Of course, the efficacy of the method depends on
the values of the coefficients am and bm. The method above has 2s + 1 degrees of freedom (coefficients), and in
principle an optimal scheme could be obtained by adjusting the maximum number of coefficients. However, it
can be shown that an implicit method of order 2s does not converge for s ≥ 3. It is also possible to show that
the maximum order for a convergent s-step method, as in Eq. (33), is equal to s for explicit schemes and to 2
int[(s + 2)/2] for implicit schemes. This result is known as the Dahlquist first barrier (11).

Convergence is a most important characteristic of a time-stepping scheme. A scheme is said to be conver-
gent if, for every equation of the form in Eq. (30), |vn

	t − u(tn)| → 0 as 	t → 0 for all n, where u denotes the
actual solution (i.e., exact) in the case of an ordinary-differential-equation problem or a semidiscrete solution in
the case of a partial-differential-equation problem, and vn

	t denotes the numerical solution obtained by using
a time step of size 	t. The numerical solution of a convergent scheme tends to the analytical or semidiscrete
solution as the discretization step size approaches zero. Note that, because the semidiscrete solution is itself
an approximation to the exact solution, a time-stepping convergent scheme may not converge to the exact
solution of the problem if the spatial discretization is not consistent (13). In that case, to study the convergence
properties of the overall numerical scheme, we must consider the discretization with respect to time and space
conjointly.

A popular multistep scheme is the two-step predictor–corrector scheme. We again consider Eq. (30). In the
first step (predictor), we predict the function value at the middle of the discretization interval:

and this is followed by a corrector step, where the next step value is estimated through

The predictor–corrector scheme can be related to the popular Lax–Wendroff scheme when F is a linear
time-invariant function. The Lax–Wendroff scheme uses the following identity from a Taylor expansion:

to estimate the derivative at tn as

The second derivative of v in Eq. (37) can be obtained from Eq. (30):
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and, if F(v,t) = F · v (linear, time-invariant), Eq. (36) then becomes

which is a second-order scheme.
Runge–Kutta (RK) methods form another popular class of time-stepping schemes. They are essentially

based on (estimated) numerical quadrature rules to approximate the integral

through a sum like

where tk ε (tn, tn+1), k = 1, . . ., K. Because the values of F (v(tk), tk) are not known a priori, they also need to
be approximated. The idea is to use an estimate F (v (tl),tl) ≈ ζl, given as a linear combination of the previous
estimates ζk, k = 0, . . ., l − 1, namely,

The matrix (Alk) is called the RK matrix, ck are the RK weights, and αk are the RK nodes. The number
K denotes the stage of the RK scheme (and usually, but not always, also corresponds to its order). Popular
third-order schemes are the classical RK scheme, with K = 3 and α1 = 0, α2 = 1

2 , α3 = 1, c1 = 1
6 , c2 = 2

3 , c3 = 1
6 ,

A21 = 1
2 , A31 = −1, A32 = 2, and Akl = 0 for k ≤ l; and the Nystrom RK scheme, also with K = 3, and α1 = 0, α2

= α3 = 2
3 , c1 = 1

4 , c2 = c3 = 3
8 , A21 = A32 = 2

3 , and all other Akl = 0.
The best-known fourth-order Runge–Kutta method has K = 4, and α1 = 0, α2 = α3 = 1

2 , α4 = 1, c1 = c4 =
1
6 , c2 = c3 = 1

3 , A21 = A32 = 1
2 , A43 = 1, and all other Akl = 0.

One of the reasons for the popularity of the fourth-order RK scheme is that, to obtain a fifth-order scheme,
we need at least six stages. All these RK schemes correspond to explicit schemes, but implicit RK schemes can
also be derived (11). Implicit schemes require the solution of a linear system at each time step, but present
superior stability properties.
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Convolution and Recursive Functions

In (time-)dispersive media, the relationship between the electric field vectors D and E in the time domain
(constitutive relation) is given by a convolutional operator of the form

Translated to the frequency domain, the above relation reads

where ε(ω) is the (frequency-dependent) permittivity, ε0 is the free-space permittivity, ε∞ is the infinite-
frequency permittivity (instantaneous response), and χ(t) is the time-domain susceptibility. In Eq. (43) causality
was invoked by having ε(t) = 0 for t < 0.

A naive implementation of the convolution in Eq. (43) for a time-stepping scheme requires the storage of
the whole previous time history of E(t) in order to obtain D(t) at each successive time step. However, this can
be avoided through the use of a recursive convolution algorithm (20,21), as described below.

Letting tn = n 	t, we have

If the time interval 	t is sufficiently small, we may approximate the field quantities as constants over
each interval (piecewise-constant approximation) so that the above integration becomes a summation of the
form

The objective is to incorporate the summation above in a explicit time-domain update at minimal compu-
tational cost. A discretized form of the constitutive relation can be written as

with

where we define
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We assume the susceptibility function χ(t) to be an exponential function in time. As we will see later, this
assumption is not as restrictive as it may seem.

At first, it appears that the summation in Eq. (48) (convolution) requires the storage of all the past
values of En. In order to see how, on assuming an exponential dependence for χ(t′), this storage is actually not
necessary, we use Eq. (48) and rewrite the last term in Eq. (47) as

We also define

and the recursive accumulator

For a susceptibility function of the form

for t > 0 and zero otherwise, Eq. (52) can then be written recursively as

with Q0 = Q1 = 0. From the above, we observe that only the previous value of the recursive accumulator is
needed.

The recursive convolution algorithm can be easily extended to the case where the susceptibility function
χ(t) displays sinusoidal or damped sinusoidal behavior, by equating it to the real part of a complex exponential
susceptibility function (22). Moreover, the restriction of χ to a exponential function above is not problematic,
because the susceptibility function from a more arbitrary frequency-dependent material ε(ω) can be modeled
as a sum of exponentials, for example, via Prony’s method.

Other variants of the recursive convolution algorithm exist. For instance, instead of approximating the
electric field as a constant at each time interval in Eq. (46), one can approximate it as a linear function over
each interval. This gives rise to the so-called piecewise-linear recursive convolution algorithm (23).

Moreover, it is also possible to efficiently incorporate the dispersive behavior of Eq. (43) into update
equations through entirely different approaches, such as the z-transform method or the auxiliary differential
equation (ADE) method. In the ADE approach, for instance, the frequency-dependent dispersion relation is
transformed into a ordinary differential equation in the time variable, which relates E and D. To illustrate the
approach, we take ε(ω) having the form (Debye dispersion)
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If we substitute this expression into Eq. (44), we arrive at

In the time domain, the above becomes

In a update scheme, the above equation can be easily updated concomitantly with Maxwell’s curl equations.
A more detailed description of the ADE and z-transform approaches is beyond the scope of this article, however.
The interested reader may consult Refs. 24,25,26,27.

Time-Domain Integral-Equation Methods

Time-domain methods can be used not only in conjunction with differential equations, but also in conjunction
with integral equations (time-domain integral equations). Models based on time-domain integral equations
provide, in general, a more efficient formulation of, for example, surface-scattering phenomena or, in general,
of problems where a Green’s function is available (6,7,16,28).

A typical time-domain integral equation can be written as

where g(r,t) is the excitation function, K(r,r′,t) is the kernel of the integral equation (often the Green’s function
of an associated differential equation), f (r,t) is the unknown solution, for r ε D, and D is some integration
volume or surface. To solve Eq. (58) numerically, the unknown is represented in terms of suitably chosen
spatiotemporal basis functions:

where an,i are the unknown coefficients. Spatial and the temporal basis functions having local support are
often employed. Upon substituting Eq. (59) into Eq. (58) and taking the inner product (also called a testing
procedure) with each of the spatial basis functions bm(r) at discrete times t = tj = j 	t, the following matrix
equation is obtained:

where the elements of the vectors j and j are given by
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and

The elements of the (sparse) interaction matrix are given by

Equation (60) relates the expansion coefficients at the jth time step to the excitation and the expansion
coefficients at previous time steps. This algorithm is often termed the marching-on-time (MOT) scheme (28).
Numerical methods based on integral equations are often termed boundary element methods because, from
the knowledge of the Green’s function of the problem, the discretization needs to be performed only on the
boundary of the domain. In electromagnetics, for historical reasons, the general procedure of projecting an
integral equation into a matrix equation is often termed method of moments (29).

Current Issues

Time-domain algorithms continue to be a topic of active research. Because of the need to model large-scale
broadband and nonlinear systems and with the ever increasing advance in the computational resources avail-
able, time-domain techniques have become an indispensable tool. Among the topics of current research in time-
domain analysis are (a) higher-order methods to reduce the inherent dispersion error caused in finite-difference,
finite-element, and finite-volume methods (30), (b) the use of irregular grids (structured or unstructured) to
better model irregular geometries and to avoid the staircasing approximation of regular grids (31), (c) the use
of (pseudo)spectral methods to reduce the number of nodes per wavelength necessary for a given accuracy (15),
and (d) multigrid (32), adaptative meshing (33), or subgridding (34) schemes. In case of time-domain integral
equations, the use of time-domain fast multipole methods (28) to reduce the computational complexity of the
algorithms is also a topic under current investigation. Moreover, asymptotic techniques, such as the geometric
theory of diffraction (GTD), originally developed in the frequency domain, have also been translated in recent
years to the time domain (35). For a more detailed discussion of modern aspects of time-domain analysis, the
reader is referred to Refs. 6,7,8 and references therein.
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