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construction of complex transfer functions from these sub-
systems. We will examine the properties of transfer func-
tions and introduce special transfer functions like sensitiv-
ity and complementary sensitivity. We will also show how
the single-input, single-output (SISO) transfer function can
be extended to the multiinput, multioutput (MIMO) trans-
fer function matrix. Also, we will take an abbreviated look
at state-space representations of these systems. Finally, we
will examine discrete time transfer functions and the Z
transform and we will introduce model identification and
parameter estimation.

A transfer function is a method for representing a dynamic
mathematical model of a system. It is an algebraic expression
that models the outputs of a system as a function of the sys-
tem inputs. The input/output system is defined by the user of
the model. Typically, a transfer function is used to model a
physical system, which is something that can be described by
the laws of physics. For example, consider the physical sys-
tem defined by the resistor shown in Fig. 1(a). We define the
system input to be the voltage, V, across the resistor, and we
define the system output to be the electrical current, I,
through the resistor. For systems with only one input and one
output we can express the transfer function model as the ratio
of the output divided by the input, which is the slope of the
line shown in Fig. 1(b).

I
V

= 1
R

(1)

By definition, R is the resistance of the resistor. Transfer
functions have a number of assumptions associated with
them. For example, we have assumed that the resistance is
constant in Eq. (1). As current passes through the resistor, it
could cause self-heating from power dissipation (I2R). This
would cause a change in the temperature and the resistance
of the resistor, violating the constant resistance assumption
and possibly causing a modeling error. Thus the assumptions
are an essential part of the model.

The model of the resistor described by Eq. (1) is a static,
nondynamic transfer function that is a trivial example. A
transfer function typically represents the dynamic character-
istics of a system by parameterizing the transfer function
with an operator that is indicative of the dynamics. The oper-
ator is usually the Laplace variable s, which results from con-

TRANSFER FUNCTIONS

This article considers continuous time systems based on dif-
ferential equations and discrete time systems based on differ-
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ence equations. In the following sections, we will look at con-
tinuous time transfer function models for the resistor, Figure 1. (a) Electrical resistor model showing components of a sim-
inductor, and capacitor elements using the Laplace trans- ple, static, transfer function with input voltage and output current.
form. We will use these models to construct first-order and (b) Nondynamic, linear relationship between input voltage and out-

put current in resistor model.second-order transfer function models and will discuss the
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Figure 2. (a) Model of an automotive sys-
tem with accelerator input and velocity
output. (b) Dynamic velocity response of
the model of the automotive system to a
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step input in the accelerator.

verting a differential equation to an algebraic equation using values for Eq. (1), starting at time equal to zero (k � 0) and
the initial velocity equal to zero. The data in this table arethe Laplace transform, or the operator is the z variable, which
plotted in Fig. 2(b). The top plot in Fig. 2(b) shows the expo-results from converting a difference equation to an algebraic
nential velocity response, and the bottom figure shows theequation using the Z transform. We will use the automotive
step input to the accelerator. If we tune and validate thesystem sketched in Fig. 2(a) to introduce the dynamic transfer
model in Eq. (2) against data taken from a real automobile,function. We can model the automobile with the accelerator
then we can use this model to represent the velocity responseas the system input and the velocity as the system output.
of that automobile. We could use this model in the design ofWe can then use the mathematical model to calculate the ve-
a cruise control system for the automobile. The differencelocity as a function of the accelerator value and time. We can
equation in Eq. (2) can be converted to an algebraic equationuse this response to calculate how long it will take the vehicle
using the Z transform. A detailed discussion of the Z trans-to accelerate to some velocity from zero velocity after the
form is outside the scope of this article, but it just requires adriver provides an accelerator input, thus predicting the auto-
simple modification to Eq. (2) in this example. The transfor-mobile acceleration performance. We will use a difference
mation results in Eq. (3), which is in the z domain.equation for this model with a fixed sampling timestep, T,

equal to one second. The difference equation calculates the y(z) = 0.93 · z−1y(z) + 16 · u(z) (3)
velocity at time � kT based on the accelerator position at time
� kT and the previous value of the velocity at time � (k � where u(z) is the Z transform of u(k); y(z) is the Z transform
1)T and is shown in Eq. (2): of y(k); and z�1y(z) is the Z transform of y(k � 1), where z�1 is

the unit time delay operator. Note that Eq. (3) is an algebraic
equation parameterized by z. The only variables in Eq. (3) arey(k) = 0.93 · y(k − 1) + 16 · u(k) (2)
the input, u(z), and the output, y(z), so Eq. (3) can be manipu-

where u is the accelerator input ranging from zero to one (0 lated to obtain the output over input ratio:
to 100%); y is the automobile velocity in kilometers per hour;
k is the integer index where time � kT; and y(k � 1) repre-
sents the velocity at the previous timestep. Table 1 shows the

y(z)

u(z)
= G(z) = 16

1 − 0.93 · z−1
= 16z

z − 0.93
(4)

Table 1. Automotive Discrete Model Velocity Response as a Function of Time to a
Step Input in the Accelerator

One Step Delayed
Sample Index, k Accelerator Input Vehicle Velocity y(k) Vehicle Velocity
and Time � kT u(k) (0 � 1) km/hour y(k � 1) km/hour

0 0 0 0
1 1 16 0
2 1 30.9 16
3 1 44.7 30.9
4 1 57.6 44.7
5 1 69.6 57.6
6 1 80.7 69.6
7 1 91.0 80.7
8 1 100.7 91.0
9 0 93.6 100.7

10 0 87.0 93.6
11 0 81.0 87.0
12 0 75.3 81.0
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and G(z) defines the discrete time, SISO dynamic transfer
function model of the automotive system with a fixed sam-
pling period, T � 1 second. Once we have validated the model
by comparing it to the response of the real automobile, then
we can use the model in place of the real system to perform
the desired numerical studies, subject to the model assump-
tions. (An example of an assumption for a specific make and
model of automobile might be the number of passengers and
weight of the cargo that the vehicle was carrying.)

Note that G(z) in Eq. (4) is comprised of a numerator and
a denominator polynomial in the operator variable, z. The
roots of the numerator polynomial are called system zeros,
and the roots of the denominator polynomial are called sys-
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tem poles. For Eq. (4), there is one zero, z � 0, and one pole,
Figure 4. (a) Dynamic model of an electrical Capacitor with inputz � 0.93. The pole and zero locations convey characteristics
voltage and output current. (b) Bode diagram frequency response ofabout the transfer function model.
an electrical capacitor showing 20 db/decade slope of gain and 90 de-
gree phase lead.

CONTINUOUS TIME TRANSFER FUNCTIONS

Three basic electrical components are the resistor, inductor, (voltage) ratio resulting in the sinusoidal transfer function:
and capacitor. We have already seen the static transfer func-
tion model for the resistor in Eq. (1). We now consider contin-
uous time dynamic transfer functions models for the inductor

I(s)
V (s)

= GL(s) = 1
Ls

(6)

and capacitor using differential equations and the Laplace
transform. Division by s, 1/s, is indicative of an integration with respect

to time. Equation (6) is a sinusoidal transfer function because
Continuous Time Transfer Function Model of an Inductor the properties of the Laplace transform allow us to replace s

with the complex term s � j� to calculate the frequency re-Consider the integral equation of the system defined by the
sponse of the model. The term � is the frequency in radiansinductor shown in Fig. 3(a). The current through the inductor
per second of a sinusoidal input to the system, and j is theis a function of the initial current, I(0), L, the inductance, and
complex variable used to represent �(�1). Thus GL(s � j�) isthe time integral of the voltage across the inductor:
a complex function composed of real and imaginary terms.
Note that I(s) is the Laplace transform of I(t). Similarly, V(s)
is the Laplace transform of V(t). GL(s � j�) is a complex func-I(t) = 1

L

∫
V (t) dt + I(0) (5)

tion of frequency that we can represent with phasor notation.
The phasor notation transforms the real and imaginary terms

This equation is a dynamic model of the inductor. By using of a complex number to an amplitude (gain) and phase angle.
the Laplace transform, the operation of integration with re- At a specific frequency, �o, the complex value GL( j�o) can be
spect to time can be replaced by the operation of division by converted to an amplitude ratio (gain from input to output)
the Laplace variable, s. Assuming that the initial current is and a phase angle between the input and the output. The
zero, I(0) � 0, we can compute the output (current) over input frequency response of the dynamic transfer function model of

the inductor is shown in Fig. 3(b) using a Bode diagram. The
amplitude ratio has a �20 db/decade slope because of the
pure integration in the model. Conversion of the amplitude to
decibels is obtained by taking the log-based 10 of the gain and
multiplying by 20 (20 log10(gain). A decade is an order of mag-
nitude change in frequency from � to 10�. The negative phase
angle shown in Fig. 3(b) implies that the current output lags
the input voltage, so if the input voltage were V(t) � cos(�t),
then the output current would be I(t) � cos(�t � 90)/(L�).

Continuous Time Transfer Function Model of a Capacitor

We can also use the Laplace transform to obtain a dynamic
transfer function model of a capacitor, as shown in Fig. 4(a).
The current passing through a capacitor is the time derivative
of the input voltage. The dynamic model of the capacitor is
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shown as a linear ordinary differential equation:Figure 3. (a) Dynamic model of an electrical inductor with voltage
input and current output. (b) Bode diagram frequency response of an
electrical inductor showing �20 db/decade slope of gain and �90 de-
gree phase lag.

I(t) = C
dV (t)

dt
(7)
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Using the Laplace transform, Eq. (7) can be converted into an numerator and denominator polynomials can be factored into
algebraic equation and then the output over the input ratio the product of first-order and second-order polynomials as
can be computed, resulting in the following: shown for a general case:

I(s)
V (s)

= Gc(s) = Cs (8) y(s)
u(s)

= G(s) = K(s − z1)(s − z2) . . . (s2 + 2ζn1wnn1s + w2
nn1)

(s − p1)(s − p2) . . . (s2 + 2ζd1wnd1s + w2
nd1)

(10)where s implies a time derivative operator. The resulting fre-
quency response of this dynamic model of the capacitor is

The first-order polynomial contains only a single real root.plotted in Fig. 4(b) using a Bode diagram to plot the input-
The second-order polynomial can contain two real roots or aoutput phasor information as an amplitude ratio (gain) and a
complex pair of roots. The response of complex, high-orderphase angle between the input and the output. The positive
transfer functions can be obtained by adding up the contribu-phase angle implies that the current output leads the input
tions of all the first- and second-order polynomials in the fre-voltage, so if the input voltage were V(t) � cos(�t), then the
quency domain. To gain an understanding of how first- andoutput current would be I(t) � C� cos(�t � 90).
second-order polynomials affect the response of a transfer
function model, we will look at first- and second-order trans-Continuous Time Transfer Function Model of a General System
fer functions.

The transfer functions of individual components can be used
to model interconnected devices. This offers a convenient way First-Order Transfer Functions
to construct models out of tested subsystems. The resulting

Consider the electrical circuit of a low-pass filter comprisingsingle-input, single-output model may have many terms in
a resistor and capacitor, as shown in Fig. 5(a). A transferthe numerator and denominator polynomials, as shown in the
function can be written from the current, I, to the output volt-general transfer function in Eq. (9):
age Vo, and from the input voltage, Vi, to the current, I, as
shown in Eq. (8) and in the following equations:y(s)

u(s)
= G(s) = bmsm + bm−1sm−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a2s2 + a1s + a0
(9)

where m is the highest order of the numerator polynomial
and n is the highest order of the denominator polynomial.

I(s)
Vi(s)

= Ga(s) = 1�
R + 1

Cs

� = Cs
RCs + 1

(11)

Causal models of physical systems require n � m, where cau-
sality means that only present inputs and past information
are required to calculate the model output. Once there is a

Vo(s)
I(s)

= Gb(s) = 1
Cs

(12)

model of the system in the form G(s), it can be used to esti-
These equations assume that no current is required to obtainmate y(t) given u(t). For example, if a functional relationship
the measurement of Vo [Io � 0 in Fig. 5(a)]. We can combineis known for u(t) (a step input, for example), it can be con-
Eqs. (11) and (12) and eliminate I(s). The result is only a func-verted to u(s) using the Laplace transform or a table of La-
tion of Vo(s) and Vi(s), which can be rewritten as the transferplace transformations. Then y(s) can be calculated using the
function from the input voltage Vi to the output voltage Vo.product y(s) � G(s)u(s). Finally, y(t) can be calculated from
The dynamic transfer function model of the low-pass filter isy(s) using the inverse Laplace transform or a partial fraction
thenexpansion and the Laplace transformation tables. The section

on Laplace transforms will present more details on this type
of calculation.

TRANSFER FUNCTION MODELS OF FIRST-
AND SECOND-ORDER LINEAR SYSTEMS

Vo(s)
Vi(s)

= G1st(s) = I(s)
Vi(s)

Vo(s)
I(s)

= Ga(s)Gb(s) = 1
τs + 1

, where τ = RC (13)

By combining Ga(s) and Gb(s), we have demonstrated theIn Eq. (9) the mth order numerator polynomial has m roots
and the nth order denominator polynomial has n roots. These multiplicative property of transfer functions. The frequency

Figure 5. (a) Electrical first-order model
of a passive low-pass filter comprised of a
resistor and capacitor. (b) Bode diagram
frequency response of a low-pass filter
showing attenuation of gain at a frequen-
cies greater than 1/	. Gain is �3 dB and
phase is �45 degrees at a frequency of 1/
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response of this dynamic model is shown in Fig. 5(b) as a where �n � 1/�LC is the system natural frequency in radians
Bode diagram. The amplitude ratio is ‘‘flat’’ or approximately per second and 
 � (R/2)�C/L is the system nondimensional
equal to 1 (0 dB) at low frequencies, and the amplitude de- damping coefficient. Note that Eq. (16) is a standard second-
creases for frequencies greater than 1/	. The gain equals �3 order transfer function. Depending on the value of 
, the roots
dB at a frequency � � 1/	. At higher frequencies the ampli- of the denominator polynomial can be real or both complex.
tude ratio decreases at the rate of �20 dB per decade (a de- Figure 6(b) shows the plot for 
 � 0.2, which causes the ampli-
cade is a range of frequency from � to 10�). This appears as tude of the frequency response to peak at a frequency near
a straight line on the plot of amplitude in decibels versus log �n. There is an entire family of curves for the frequency re-
frequency. Thus the system is called a low-pass filter because sponse of a second-order system that vary with the value of 
.
it allows low frequencies to pass but attenuates high frequen- When 
 � 1, both of the roots of the denominator polynomial
cies. The phase angle starts at zero degrees, passes through are real and the system is said to be overdamped. The ampli-
�45 degrees at � � 1/	, and progresses to a phase angle of tude response does not have a peak. When 
 � 1, the system
�90 degrees at high frequency. Note that the negative phase is said to be critically damped and the roots of the denomina-
angle means that the output lags the input. The root of the tor polynomial are both real and repeated or identical. When
polynomial in the denominator of this transfer function is s � 
 � 1, the system is said to be underdamped. The two roots
�1/	. This value is the pole of the first-order transfer func- of the polynomial are a complex pair, (a � jb) and (a � jb),
tion, and it conveys information regarding the speed of re- where a is the real part and b is the complex part of the root.
sponse of the system. The time constant, 	 is equal to the time As 
 approaches 0 from 1, the response becomes more oscilla-
it takes the system to respond to 63.2% of the final value tory and the magnitude of the complex portion of the root
when commanded with a step input. increases. Figure 7 shows the second-order step response for

four values of 
 when � � 10 rad/s. When 
 � 3 the systemSecond-Order Transfer Functions
is overdamped and responds slowly. When 
 � 1 the system is

Figure 6(a) shows a second-order system comprised of a resis- critically damped and responds without an overshoot. When
tor, inductor, and a capacitor. Again we can write a transfer 
 � 0.4 the system is underdamped and overshoots before set-
function from the input voltage to the current passing tling in on the final value of 1.0 for a unit step response.
through all the components, shown in Eq. (14), and from the When 
 � 0.1 the system is oscillatory, and it takes several
current to the output voltage, shown in Eq. (15). seconds for the oscillations to die out. When 
 � 0 the system

is said to be undamped and it will oscillate continuously be-
cause it is marginally stable (on the borderline between the
mathematical definitions of stability and instability). We do

I(s)
Vi(s)

= G1(s) = 1�
R + Ls + 1

Cs

� = Cs
LCs2 + RCs + 1

(14)

not consider the case for 
 � 0 because it implies a negative
coefficient in the denominator polynomial, which indicates
that the system is unstable from Routh stability criterion.

Vo(s)
I(s)

= G2(s) = 1
Cs

(15)

By combining G1(s) and G2(s), eliminating the current, I, and
rearranging the terms, we obtain the transfer function from CASCADING TRANSFER FUNCTIONS
the input voltage to the output voltage: AND THE LOADING ASSUMPTION

We have shown how transfer functions can be multiplied. But
there is an assumption associated with this. When transfer
functions are cascaded together, there can be energy trans-

Vo(s)
Vi(s)

= G2nd(s) = G1(s)G2(s) = 1
s2

w2
n

+ 2ζs
wn

+ 1
(16)
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Figure 6. (a) Electrical second-order model comprised of inductor, resistor, and capacitor. (b)
Bode diagram frequency response of a second-order system showing peak at natural frequency
for system with low damping and high frequency attenuation of gain. The gain at �n depends on
the damping coefficient, 
 � (R/2)�C/L. The gain at �n is large when 
 is small (underdamped)
and the gain is smaller when 
 is large (overdamped).
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Gcascade(s) = 1
τ1τ2s2 + (τ1 + R1C2 + τ2)s + 1

(19)

The difference between Eq. (18) and Eq. (19) is the R1C2 term.
So if R1C2 is small relative to 	1 and 	2, then cascading these
two transfer functions is a good approximation. If these filters
were active instead of passive filters, then the input imped-
ance of the second filter would be high and the output imped-
ance of the first filter would be low, so there would be little
current drawn, and no loading effect.

BLOCK DIAGRAMS

Block diagrams and signal flow graphs are methods for visu-
alizing systems constructed from subsystems, including
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transfer functions. We will concentrate on block diagrams be-
Figure 7. Time history response of second-order system with �n � cause most of the computer-aided control system design soft-
10 rads/s to a step input showing variation of the response with a

ware uses block diagrams for model construction. Block dia-range of damping coefficients, 
. Note that the step response of the
grams have a set of rules for manipulating the blocks in thesecond-order system is sluggish for large values of 
 and oscillatory
diagram. These rules are identical to the rules of manipulat-for small values of 
.
ing transfer functions. Figure 9(a) shows the product of two
blocks representing the cascading of two transfer functions
considered in the previous section in Eq. (17). The block dia-

ferred between the two systems represented by the transfer gram multiplication in Fig. 9(a) assumes a no-loading condi-
functions. By cascading transfer functions it is assumed that tion, and readers should be aware of this assumption when
the energy extracted from one system does not significantly using the computer-aided simulation tools. Figure 9(b) shows
impact the response of that system. This energy flow is called the block diagram addition of two transfer functions.
loading. If there is significant loading from one system to the
next, then multiplying the transfer functions violates an as- Closed-Loop Block Diagrams
sumption and can lead to erroneous results, and the systems

Figure 10 shows the concept of negative feedback in a closed-must be reanalyzed. Consider a system comprised of two cas-
loop system using transfer functions K(s) and G(s). K(s) repre-caded low-pass first-order passive filters that were introduced
sents a control system, and G(s) represents a plant or con-in Fig. 5(a). If we multiply the two low-pass filter transfer
trolled system. This figure represents the servomechanismfunctions from Eq. (13), we get
control problem. There are a number of important transfer
functions that will be examined in the next section using the
closed-loop block diagram in Fig. 10.

Vo(s)
Vi(s)

= Gcascade(s) = G1(s)G2(s) = 1
τ1s + 1

· 1
τ2s + 1

(17)

where 	1 � R1C1 and 	2 � R2C2 are the time constants of the PROPERTIES OF TRANSFER FUNCTIONS
two cascaded filters. Equation (17) can be written as a second-
order transfer function: Thus far in this article we have introduced the transfer func-

tion models for the resistor, inductor, and capacitor. It is im-
portant to note that these electrical elements have analogies
in mechanical, thermal, and fluid systems. Transfer functions

Gcascade(s) = 1
τ1τ2s2 + (τ1 + τ2)s + 1

(18)

have applicability in a wide class of scientific and engineering
fields. Equation (9) represents the Laplace transform of a con-Note that by cascading two of the systems depicted in Fig.

5(a), we may have violated the assumptions that the output stant coefficient, linear differential equation. Constant coeffi-
cient, linear differential equations adhere to the principle ofcurrent draw is zero, (Io1 � 0). Reanalyzing the new system

shown in Fig. 8 without this assumption results in the follow- superposition. Superposition states that the linear system in-
put signal can be broken up into a sum of signals and theing transfer function for the two cascaded first-order filters:

Figure 8. Cascaded first-order systems
used to show the possible violation of a
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Figure 9. (a) Block diagram and transfer
function multiplication. If G1(s) and G2(s)
are transfer functions and not transfer
function matrices, then the process of
multiplication is commutative. (b) Block
diagram and transfer function addition.

G1(s)

(a)

y(s)
G2(s)

y(s)

u(s)

u(s)

=  G1(s)G2(s)

u(s) y(s)

G2(s)

G1(s)

(b)

y(s)

u(s)
=  G1(s) + G2(s)

+
+

system output can be expressed as the sum of the system re- This is not true in general for nonlinear systems. The prop-
erty of superposition holds for transfer functions because theysponses to each of the individual input signals. Consider the
are transformed from systems of linear, constant coefficientsystem y(s) � G(s)u(s). We want to know what y(t) is given
equations. Another property of transfer functions comes fromby u(t) � 6 � cos(2�t) � sin(3�t). We can define u(t) � u1(t)
the fact that the Laplace transform of a unit impulse is equal� u2(t) � u3(t) � u4(t), where u1(t) � 3, u2(t) � 3, u3(t) �
to one. Thus the unit impulse response of a system is justcos(2�t), and u4(t) � sin(3�t). Substituting for u(t), we have
equal to the system transfer function since y(s) � G(s)1 �
G(s). Thus the inverse Laplace transform of the transfer func-y(s) = G(s)u1(s) + G(s)u2(s) + G(s)u3(s) + G(s)u4(s) (20)
tion is the system time response to a unit impulse input.

where
Stability

We have not discussed the stability of the transfer functions
because stability is covered elsewhere in this encyclopedia.

y1(s) = G(s)u1(s),y2(s) = G(s)u2(s)

y3(s) = G(s)u3(s),y4(s) = G(s)u4(s) (21)
We will just briefly mention that continuous time transfer
functions in the Laplace domain are unstable if any denomi-y(s) = y1(s) + y2(s) + y3(s) + y4(s) (22)
nator root, or transfer function pole, has a positive real por-
tion. Thus, if the pole lies in the right-hand side of the y axiswhere
when plotted in the complex s plane, then the transfer func-
tion is unstable, as shown in Fig. 11(a). For discrete transfer
functions parameterized with the Z transform variable, the

y1(s) = G(s)u1(s),y2(s) = G(s)u2(s)

y3(s) = G(s)u3(s),y4(s) = G(s)u4(s) transfer function is unstable if the complex pole lies outside
the unit circle in the z plane, as shown in Fig. 11(b). (See Z

Using the inverse Laplace transform yields TRANSFORMS for details.)

Sensitivity Transfer Functiony(t) = y1(t) + y2(t) + y3(t) + y4(t) (23)

Let us use transfer function algebra to solve for various trans-
where y1(t), y2(t), y3(t), and y4(t), are the inverse Laplace trans- fer functions between variables. Consider the closed-loop
forms of y1(s), y2(s), y3(s), and y4(s), respectively. Thus the sys- block diagram shown in Fig. 10, where G(s) is a transfer func-
tem output is equal to the sum of the system outputs corre- tion of the system to be controlled (the plant) and K(s) is a
sponding to the individual portions of the input. Note that the transfer function of the control system (the controller). The
numerical value of 6 was broken up into 3 and 3. This implies relationship from the commanded input, r(s) to the controller
that scale factors pass through undisturbed, and Eq. (23) error, e(s), is
could be written as

y(s) = G(s)u(s) = G(s)K(s)e(s) (25)
y(t) = 2(y1(t)) + y2(t) + y3(t) (24) e(s) = r(s) − y(s) (26)

Substituting for y(s) in Eq. (26) from Eq. (25) results in the
following:

e(s) = r(s) − G(s)K(s)e(s) (27)
K(s)

Unity gain, negative feedback

y(s)
G(s)

e(s)r(s) u(s)+

−

e(s) = 1
1 + G(s)K(s)

r(s) (28)

Figure 10. Block diagram of a unity gain, negative feedback system
showing the control system transfer function, K(s), and the controlled

e(s)
r(s)

= S(s) = 1
1 + G(s)K(s)

(29)
system transfer function, G(s). The Laplace transform of the respec-
tive command signal, error, input, and output are r(s), e(s), u(s), and

S(s) is called the sensitivity function, and it shows that asy(s). This block diagram is used to calculate the closed-loop, sensitiv-
ity, and complementary sensitivity transfer functions. long as the product G(s)K(s) is large relative to one, then the
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Figure 11. (a) An s domain plot showing
the location of unstable poles for a contin-
uous transfer function in the Laplace s
variable. Two complex pair roots from a
continuous second-order transfer function
are shown. (b) A z domain plot showing
the location of the unstable poles for a dis-
crete transfer function in the z variable.
Two complex pair roots from a discrete
second-order transfer function are shown.
(a) Stable poles of s domain transfer func-
tion are in the right half plane. (b) Stable
poles of the z domain transfer function are

z

(b)

Imaginary axis

Real axis
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 planes
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X

X
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X

X
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error, e(s), will be small. For large values of the product where G(s) represents a model of the system, which is just an
approximation. If G(s) is inaccurate, then the true systemG(s)K(s), Eq. (29) can be approximated as follows:
might be represented by

when G(s)K(s) � 1, then S(s) ≈ 1
G(s)K(s)

(30)
y(s) = (G(s) + �G(s))K(s)r(s)

= G(s)K(s)r(s) + �G(s)K(s)r(s)
(36)

The reason that Eq. (29) is called the sensitivity function will
become apparent later in this discussion. where �G(s) represents the modeling error. The resulting er-

ror in the output y(s) is directly proportional to the modeling
Complementary Sensitivity Transfer Function error. The closed-loop block diagram in Fig. 10 results in the

transfer function in Eq. (33). If we introduce the plant uncer-In Fig. 10, consider the closed-loop transfer function relation-
tainty, �G(s), into Eq. (33) we haveship from the commanded input, r(s), to the controlled out-

put, y(s). Using Eqs. (25) and (26) but substituting for e(s) in
Eq. (25) from Eq. (26) results in the following: y(s)

r(s)
= (G(s) + �G(s))K(s)

1 + (G(s) + �G(s))K(s)
= G(s)K(s) + �G(s)K(s)

1 + G(s)K(s) + �G(s)K(s)
(37)y(s) = G(s)K(s)r(s) − G(s)K(s)y(s) (31)

Assuming that the model variation is �G(s) is small relative
to G(s), then Eq. (37) can be approximated as

y(s) = G(s)K(s)
1 + G(s)K(s)

r(s) (32)

y(s)
r(s)

= T(s) = G(s)K(s)
1 + G(s)K(s)

(33) y(s)
r(s)

≈ G(s)K(s) + �G(s)K(s)
1 + G(s)K(s)

= T(s) + �G(s)K(s)
1 + G(s)K(s)

(38)

T(s) is called the complementary sensitivity transfer function. So the change in the closed-loop, input/output transfer func-
It is the transfer function from the commanded input, r(s), to tion, T(s), due to the change in the open-loop transfer func-
the controlled output, y(s), and complements the sensitivity tion, G(s), is equal to �T(s), defined as follows:
function because of the relationship between T(s) and S(s),
shown as follows:

�T(s) = �G(s)K(s)
1 + G(s)K(s)

(39)

T(s) + S(s) = y(s)
r(s)

+ e(s)
r(s)

= y(s) + (r(s) − y(s))
r(s)

= 1 (34)
Note that compared to the change in the open-loop equation
in Eq. (36), the change in the closed-loop response is scaledSo the sum of the sensitivity function and the complementary
by the denominator (1 � G(s)K(s)). Thus closing the loop withsensitivity function is equal to one.
negative feedback reduces the affect of variations in the sys-The primary purpose of feedback is to reduce the sensitiv-
tem plant. Also note that by the sensitivity function, S(s) isity of the system to parameter variations and unwanted dis-
essentially the reduction factor between Eqs. (36) and (39).turbances. Let us consider the block diagram in Fig. 10 with-

out the feedback path. This would be an open-loop control
Control Sensitivity Transfer Functionsystem resulting in the following model:
Consider the relationship from the commanded input, r(s), to

y(s) = G(s)K(s)r(s) (35) the controller output or plant input, u(s). Using Eqs. (25) and
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(26) but substituting for e(s) in Eq. (25) from Eq. (26), and
using both pieces of Eq. (25), results in the following:

u(s) = K(s)e(s) = K(s)(r(s) − y(s))

= K(s)r(s) − K(s)G(s)u(s)
(40)

u(s)
r(s)

= K(s)
1 + K(s)G(s)

(41)

Equation (41) is important in control system design because
it gives the actuator response in a closed loop design. This
allows the designer to take actuator rate and range limits into
account by limiting the control sensitivity within the design
procedure.

STATE-SPACE METHODS

The standard state-space representation is a set of four matri-

1/s 1/s

x1x2x3

b0
y

b1

b2

b3

−a0

−a1

−a2

+
u

1/s+

ces, A, B, C, D, that make up a set of ordinary differential
equations as follows: Figure 12. Block diagram showing the structure of the control ca-

nonical form.
ẋ = Ax + Bu

y = Cx + Du
(42)

Note that the block coefficients in Fig. 12 and the matrix sca-
where A is the system matrix, B is the input matrix, C is lar elements in Eq. (44) are the coefficients of the denomina-
the output matrix, D is the feedforward matrix, x is a vector tor in the transfer function in Eq. (43). Also, three new vari-
comprised of state variables, and ẋ is the time derivative of ables and the time derivatives of these variables were
the state vector. As before, u is the scalar input and y is the defined, x1, x2, x3. These three variables make up the vector,
scalar output. State-space methods, state feedback, and state x, which is called the system state vector. This state variable
estimation are topics covered in other articles of this encyclo- is not unique, as we will see in a moment. The format in Eq.
pedia. We will discuss state-space representation briefly by (44) and Fig. 12 is also called the phase variable form in
saying that a transfer function can be converted to a state- some references.
space representation and vice versa. A state-space represen-
tation is not unique since the state of any representations can Observer Canonical Form
be transformed to another equivalent input-output represen-

The observer canonical block diagram is shown in Fig. 13. Thetation and a new set of state variables. There are state-space
observer canonical state space representation is as follows:representations and block diagrams that are standard repre-

sentations of block diagrams. These standard forms represent
specific state variable formulations. These forms are called
the control, observer, and modal canonical forms, and they
use only isolated integrators and gains as dynamic elements.
The control and observer canonical forms are related to the
concepts of observerability and controllability, which are dis-
cussed elsewhere in this encyclopedia. The following discus-
sion holds for the transfer function of any single-input, single-




ż1

ż2

ż3


 =




−a2 1 0
−a1 0 1
−a0 0 0







z1

z2

z3


 +




b2 − a2b3

b1 − a1b3

b0 − a0b3


 u

y = [1 0 0]




z1

z2

z3


 + [b3]u

(45)

output system. We will use a third-order system with a third-
order numerator as an example, as follows:

y(s)
u(s)

= G(s) = b3s3 + b2s2 + b1s + b0

s3 + a2s2 + a1s + a0
(43)

Control Canonical Form

The control canonical block diagram is shown in Fig. 12. The
control canonical state-space representation is as follows: 1/s

z3

b1

−a1

+ 1/s

z2

1/s

z1
y

b2

−a2

+

b3

+

b0

u

−a0

+

Figure 13. Block diagram showing the structure of the observer ca-
nonical form.




ẋ1

ẋ2

ẋ3


 =




0 1 0
0 0 1

−a0 −a1 −a2







x1

x2

x3


 +




0
0
1


 u

y = [b0 − b3a0 b1 − b3a1 b2 − b3a2]




x1

x2

x3


 + [b3]u

(44)
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Note that the block coefficients in Fig. 13 and the matrix sca- tion results:
lar elements in Eq. (45) are the coefficients of the denomina-
tor in the transfer function in Eq. (43). Also note that the yyy(s) = [C[sI − A]−1B + D]uuu(s) (47)
state vector, z, used in Eq. (45) is not the same state vector,

where I is an identity matrix of the appropriate dimensionx, used in Eq. (44), even though the input, u, and output, y,
and [sI � A]�1 is the matrix inverse of [sI � A]. For A matricesvariables are the same. The state vectors, x and z, differ by a
larger than 3 by 3, this is a difficult inverse to perform sym-coordinate transformation. See the article in this encyclopedia
bolically and is normally only performed numerically at dis-on state space for more details. The form shown in Fig. 13
crete values of frequency �, after substituting for s � j�. Theand in Eq. (45) is also called the rectangular form in some
result is a matrix of transfer functions:references because of the shape of the block diagram.

Modal Canonical Form

The block diagram for modal canonical form requires a dis-
cussion of residues and repeated roots and is outside of the
scope of this article. We will just say that the modal canonical
form results in a system matrix that is diagonal. The ele-
ments on the diagonal are made up of the roots of the denomi-
nator polynomial of the transfer function. For the modal ca-
nonical form, the elements on the diagonal of the A matrix

yyy(s) =




y1(s)
u1(s)

· · · y1(s)
ui(s)

· · · y1(s)
unu(s)

...
...

yj (s)

u1(s)
· · · yj (s)

ui(s)
· · · yj (s)

unu(s)
...

...
yny(s)
u1(s)

· · · yny(s)
ui(s)

· · · yny(s)
unu(s)




uuu(s) (48)

could be complex, but there are methods for representing this
A matrix with real values using a block diagonal A matrix. where each element of the matrix is a transfer function.

Multivariable Systems SIMULATION OF LINEAR DYNAMIC SYSTEMS

The advantage of the state-space system is that it can easily
A state-space system in Eq. (46) can be simulated with thebe extended to multivariable systems. If the system has nu
addition of a numerical integration routine. The general non-inputs, nx state variables, and ny outputs, then u and y are
linear case is shown in Eq. (49). Equation (46) is obtainednx by 1 and ny by 1 column vectors. x is the nx by 1 state
through the multivariable Taylor’s series expansion of Eq.vector. A, B, C, D are matrices of appropriate dimensions. A
(49).is a square nx by nx matrix. The dimensions of the B, C, and

D matrices are nx by nu, ny by nx, ny by nu, respectively.
Equation (46) shows the general format.

ẋ = F(x, u, t)

y = G(x, u, t)
(49)

Using a numerical integration scheme, the value of x can be
obtained at each timestep. The timestep has to be selected
small enough such that the system dynamics are properly
represented and the simulation plus integration is numeri-
cally stable. Typical numerical integration routines are the
Euler and Runge–Kutta routines.

CONTROL SYSTEM DESIGN AND ANALYSIS

It is the pole and zero locations along with the gain that de-
termine the transient response of any transfer function. Con-
trol system design basically results in the manipulation of the
poles, zeros, and gain, although we are not much concerned
with their location as we are with receiving the desired re-
sponse and system robustness. Design procedures have been
built around both the Nyquist and Bode plots, which repre-
sent the frequency response of a transfer function. Both phase




ẋ1

...
ẋnx


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
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
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
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
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+


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
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
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...
unu


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
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...
yny


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
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c1,1 . . . c1,nx

... . . .
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





x1

...
xnx




+




d1,1 . . . d1,nu

... . . .
...

dny,1 . . . dny,nu







u1

...
unu




(46)

and gain margin are used to check the robustness of single-
input, single-output systems, but a discussion of phase andThere exists a transfer function for each input and output
gain margin is outside the scope of this article. The topic onpair shown. The result is a transfer function matrix. We can
control system design should be examined for more details.no longer obtain the output over input ratio of y(s)/u(s), since

u(s) and y(s) are no longer scalars. They are column vectors.
We can calculate the output over input ratio of each input- EXPERIMENTAL IDENTIFICATION OF
output pair. The transfer function matrix can be obtained as DISCRETE TRANSFER FUNCTIONS
described for single-input, single-output systems. Take the
Laplace transform that results in the replacement of ẋ with System models can be obtained using various methods, but

the two primary methods are (1) to model the system physicssx, and solve for y(s) as a function of u(s). The following equa-
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using differential equations, and (2) to identify the system
dynamic using dynamic data measured from the system. The
first method addresses the physical relationships between all
the components that make up the system. The second ap-
proach takes measured data from an existing system, as-
sumes a model structure, and optimizes the model parame-
ters to fit that measured data. The identified model is
typically a discrete time model since the data are typically
sampled, but a continuous time model could also be derived
from the data. In this section we are interested in the identi-
fication of discrete models. These models are sometimes called
autoregressive (AR) and autoregressive moving average
(ARMA) models, but there are other names depending on the
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model structure and parameter optimization scheme used.
Figure 14. Automotive velocity response showing an example of howYou will see this type of model in the articles on finite impulse
the discrete time delay would be estimated.response (FIR) digital and adaptive filters and linear systems.

Equation (50) is an example of a general linear, constant coef-
ficient difference equation.

timation scheme. Most parameter estimation schemes are
based on model structures that are linear in the parameters
or coefficients. The model variables do not have to be linear,
but in this section on transfer functions, we only consider lin-
ear models of the type shown in Eq. (50). Given this restric-

a0y(k − d) + a1y(k − d − 1) + · · · + any(k − d − n)

= b0u(k) + b1u(k − 1) + · · · + bmu(k − m)

n∑
i=0

aiy(k − d − i) =
m∑

j=0

bju(k − j) (50)

tion, model structure selection comes down to selecting the
order of the polynomials, the values for n and m in Eq. (50).Equation (2) is an example of a first-order difference equation
Typically this is done based on experience and trial and errorwith n � 1, d � 0, a0 � 1, a1 � 0.�92, and m � 0, and b0 �
for simple systems. A model order is selected and then the16. When identifying a discrete model of the type in Eq. (50),
parameter estimation scheme is executed. The model orderthere are generally three steps. The first step is to analyze
can be increased until there is no improvement in the averagethe system response to a step input to ascertain if there is

any time delay between the input and when the effect of that error between the model and the data used to fit the system.
input appears in the output. This time delay is represented There have been theories developed on model order selection,
by the value of d in Eq. (50). The second step is the selection but these theories involve the concepts of probability and ran-
of the structure for the model. The structure is defined by the dom processes, which are beyond the scope of this article. The
values of n and m, which correspond to the order of the two Akaike’s Baysian information criterion is one such example.
polynomials in the coefficients ai and bj. The third step is pa- In the following section on parameter estimation we will as-
rameter estimation or optimization. Parameter estimation sume that the model order has already been selected.
solves for the parameters (coefficients in the polynomials) in
order to reduce the error between the response of the real

Parameter Estimationsystem and the discrete model. There are various optimiza-
tion routines for solving for the parameters. We will briefly There are articles in this encyclopedia on self-tuning regula-
examine each of these three steps in the following sections. tors, adaptive control, recursive filters, parameter estimation,

least squares approximation, and recursive estimation, so we
will just refer the reader to those articles. Basically parame-Delay Estimation
ter estimation comes down to an optimization scheme to solve

The time delay, d, represented in Eq. (50) can be obtained for the coefficients in the model shown in Eq. (50) based on
from the system step response. Figure 14 repeats the automo- some criterion. There are various criteria that account for the
tive velocity model step response but includes a time delay of various parameter optimization schemes. Recursive methods
2.5 samples. With experimental step response data you can were developed for on-line parameter estimation. Recursive
measure d. However, d has to be an integer number, so you schemes require less computation and less memory compared
have two choices: either approximate d as either 2 or 3, or

to their nonrecursive counterparts, but they require computa-increase the sampling rate to 2 Hz (decrease the sampling
tions at each timestep. The recursive scheme came about withperiod, T � 0.5 s). One of the difficulties with time delays is
the advent of adaptive control. Adaptive control attempts tothat when they occur, they are typically not constant. You are
address slow variations in a plant’s dynamic by identifying amore likely to see a time delay in a fluid or thermal system
model on-line. Slow in this instance is relative to the systemthan in a mechanical or electrical system.
characteristics. For example, in the automotive acceleration
model described earlier, a slow variation might be the differ-

Model Structure Selection ence caused by adding passengers or a load to the vehicle.
This load variation does not occur at the same rate as theModel structure section comes down to selecting the mathe-

matical representation that will be used in the parameter es- change in velocity.
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R. E. Skelton, Dynamic Systems Control: Linear Systems Analysis andResearch in the Area of Transfer Functions. Transfer functions
Synthesis, New York: Wiley, 1988.are just a modeling technique for single-input, single-output

R. E. Skelton, A Unified Algebraic Approach to Linear Control Design,systems, and they are based on the linear, constant coefficient
New York: Wiley, 1988.differential and difference equations and the Laplace and Z

B. Wittenmark and K. Astrom, Practical issues in the implementationtransforms. These mathematical concepts are well defined
of self-tuning control, Automatica, 20 (8): 595–605, 1984.and mature, so there are no new developments in the area of

transfer functions themselves. There is research in many
DUANE MATTERNareas of linear systems that use transfer functions concepts.
Mattern Engineering, Controls andWe will just mention a few areas of research.

HardwareWe have mentioned the use of least squares as an optimi-
zation method for estimating the parameters that make up a
discrete time transfer function identified model of a system.
Least squares is one optimization method. There have been
many developments in different optimization approaches to TRANSFERRED-ELECTRON DEVICES. See GUNN ORparameter estimation that offer performance improvements

TRANSFERRED-ELECTRON DEVICES.for a particular application. Some of these approaches are sto-
TRANSFORMABLE COMPUTING. See CONFIGURABLEchastic in nature and they consider the measured variables

COMPUTING.as random variable and random processes (see PROBABILITY).
TRANSFORMATIONS, GRAPHICS 2-D. See GRAPH-The research areas of linear system and linear control system

ICS TRANSFORMATIONS IN 2-D.design have been active with robust and �-synthesis control
design techniques and the linear matrix inequalities (LMI) TRANSFORMER, DC. See DC TRANSFORMER.
approach to solving optimization problems in linear systems.
Much of the systems and control research has moved beyond
the restriction of linear, constant coefficient systems. For ex-
ample, one of the newer approaches to system identification
uses genetic programming to solve for the system structure
and a nonlinear ordinary differential system (see GENETIC AL-

GORITHMS). Also there have been developments in the area
of system modeling based on chaos and wavelets (see
WAVELETS).

BIBLIOGRAPHY

K. Astrom, Theory and applications of adaptive control—A survey,
Automatica, 19: 471–486, 1983.

O. H. Bosgra and H. Kwakernaak, Design Methods for Control Sys-
tems, course notes of the Dutch Institute of Systems and Control,
Winter term, 1996–1997, Portable Document File (PDF) Internet
Resource: http://www.math.utwente.nl/disc/dmcs/, April 26, 1998.

E. O. Doebelin, System Dynamics Modeling and Response, Columbus,
OH: Charles E. Merrill, 1972.

G. Franklin, J. Powel, and A. Emami-Naeini, Feedback Control of
Dynamic Systems, 3rd ed., Reading, MA: Addison-Wesley, 1994.

G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction and Con-
trol, Englewood Cliffs, NJ: Prentice Hall, 1984.

R. Isermann, Parameter adaptive control algorithms—A tutorial, Au-
tomatica, 513–528, 1982.

R. Isermann, Practical aspects of process identification, Automatica,
16: 575–587, 1982.

K. Ogata, Modern Control Engineering, Englewood Cliffs, NJ: Pren-
tice Hall, 1970.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Engle-
wood Cliffs, NJ: Prentice Hall, 1975.

D. Ridgely and S. Banda, Introduction to Robust Multivariable Con-
trol, US Air Force Wright Aeronautical Lab, Wright-Patterson Air
Force Base, Dayton, OH 45433, AFWAL-TR-85-3102, 1986.

R. Rosenberg and D. Karnopp, Introduction to Physical System Dy-
namics, New York: McGraw-Hill, 1983.


