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TRAVELING SALESPERSON PROBLEMS

Many problems of both practical and theoretical importance
deal with the search for an optimal solution as defined by
Papadimitriou and Steiflitz (1). Wilde and Beightler (2) have
identified three major requirements for an optimization
method: (1) determine precisely the problem variables and
their interaction, (2) develop a measure of problem effective-
ness expressible in terms of the problem variables, and (3)
choose those values of the problem variables that yield bet-
ter solutions.

There exist several classes of problems; Pierre (3) provides
mathematical definitions of some of them. Optimization prob-
lems are usually divided into two main categories: those with
continuous variables and those with discrete (combinatorial)
variables. In problems with continuous variables, a set of real
numbers or a function that provides a solution is generally
looked for. In combinatorial problems, a solution that con-
tains a finite integer set, a permutation set, or a graph is
searched for. In optimization designs, only certain feature
combinations are possible. This means that the possible solu-
tions are restricted to a subregion. The function may be de-
signed to focus on the subregion. The goal of optimization is
to find the solution in this subregion for which the function
obtains its smallest value, which is referred to by Torn and
Zilinxkas (4) and other researchers as the global minimum.

Among optimization problems, the traveling salesperson
problem (TSP), classified as an NP-complete problem, has
been widely studied. For this problem, no algorithm has been

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



TRAVELING SALESPERSON PROBLEMS 547

demonstrated to find the optimum solution in polynomial Genetic algorithms mimic natural evolution as a popula-
tion-based optimization process. They are search algorithmstime. In a 20-city TSP, there are roughly 6 � 1016 possible

tours [20!/(2 � 20)]. Many other problems have similar com- based on the mechanics of natural selection and natural ge-
netics. They combine survival of the fittest among stringplexity, such as computer wiring, wallpaper cutting, and job

sequencing. Consequently, the solution of this NP-complete structures with a structured and randomized information ex-
change to form a search algorithm. In every generation, a newproblem has been the subject of a large amount of work. The

TSP is one of the most prominent of the unsolved combinato- set of artificial chromosomes is created using pieces of the
fittest chromosome of the previous generation. Genetic algo-rial optimization problems and the most common basis for

comparisons. According to Lawler, et al. (5), the TSP contin- rithms efficiently exploit historical information to speculate
on new search points with expected improved performanceues to influence the development of optimization concepts

and algorithms. (3). These algorithms generally provide good solutions at low
speed. Hybrids of heuristic and genetic algorithms for theThe TSP consists of two sets: a set of cities V � �1, . . ., n�

and a set of links A. The links are represented by pairs (i, j) TSP are presented here, with mathematical models as well as
performance results.� A, meaning that there is a link between city i and city j.

The travel distance between city i and city j is expressed as
cij. The problem is to find a tour starting at any city, visit

EVOLUTIONARY COMPUTATION
every city exactly once, and return to the starting city. This
tour should take the least total traveled distance.

Evolutionary computation is the most commonly used term to
To formulate this problem, a variable xij is introduced;

describe the new computing paradigm that mimics natural
where xij � 1 if j immediately follows i on the tour and xij � 0

evolution. Evolutionary computation comprises three major
otherwise. The requirement that each city be entered and left

fields: genetic algorithms, evolutionary strategies, and evolu-
exactly once is stated as

tionary programming. Each evolutionary computation algo-
rithm uses similar operations. Each begins with a population
of contending trial solutions for the task at hand. New solu-

∑
i:(i, j)∈A

xij = 1 for j ∈ V (1)

tions are created by altering the existing solutions using a set
of evolutionary computation operators. An objective measure

∑
j:(i, j)∈A

xij = 1 for j ∈ V (2)
called fitness of the trial solution is used to evaluate the new
solution. A selection mechanism determines which solutions

The above constraints are not sufficient to define a tour, since to maintain as parents (or seeds) for the subsequent genera-
a subtour can satisfy them as well. One way to eliminate sub- tion. The differences between the procedures are character-
tours is to introduce another constraint. For each subset U � ized by the types of admissible alterations on parents to cre-
V, 2 � U � V � 2, the constraint is that ate offspring and the methods employed for selecting new

parents; readers are referred to Fogel (12,13) and Srinivas
and Patnaik (14). In natural evolution, genes on chromosomes

∑
(i, j)∈A:i∈U, j∈V \U

xi j ≥ 1 for j ∈ V (3)

carry the environment-fitting information of the species
across generations. In genetic algorithms, such information isThe TSP can be formulated as
represented by a fitness function (competitive selection), and
chromosomes provide the link between generations. If a chro-
mosome does not fit well within the current environment, itmin

{ ∑
(i, j)∈A

cij xij : x satisfies Eqs. (1)−(3)

}
(4)

will become extinct. The adaptive procedure is implemented
by means of mutation, inversion, or crossover operators. Be-

The number of constraints is nearly 2(V).
low the basic genetic algorithm and its operators are pre-

There are three major types of methods that deal with the
sented.

TSP, namely, neural networks, heuristic searches, and ge-
netic algorithms. Neural networks potentially offer a powerful

Genetic Algorithm Approaches
tool for solving combinatorial problems. This approach has an
embedded parallelism that potentially can be implemented in The simplest form of a genetic algorithm includes reproduc-

tion and selection according to Goldberg (15). Each offspring’shardware. The original work can be traced back to Hopfield
and Tank (6). The proposed method is to encode the TSP into fitness value is used as a criterion to perform the selection of

the potential new parents (seeds). The basic procedure of thea two-dimensional neuron array. The approach relies on a
fully connected artificial neural network. This type of ap- genetic algorithms is shown below in a programlike format.

In this procedure t indicates the current generation, and theproach has been presented and evaluated by a number of re-
searchers, among them Aiyer (7), Sanchez-Sinencio and Lau number P(t) represents the population at generation t:
(8), Pretzel et al. (9), and Lin (10).

The other algorithms generally rely on some sort of heuris- begin
t � 0;tic or an intelligent guess to find good solutions in reasonable

time. The most common techniques range from the simple Initialize P(t0);
Evaluate P(t0);greedy algorithm to the more complex branch-and-bound

search and Lin–Kernighan (11) algorithms. A comprehensive while no_termination
beginaccount of such techniques for the TSP can be found in

Lawler et al. (5). In general, heuristic algorithms provide a t � t � 1;
Select P(t) from P(t � 1);fast approach to a lower bound.
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Recombine from P(t)
Evaluate P(t);

end
end.

Goldberg (15) has identified three basic recombination op-
erators in genetics algorithms, namely crossover, inversion,
and mutation. These three operators are described in the fol-

5 2 4 9 3 6 7 1 8 10

Point 1 Point 2
Invert

5 2 4 7 6 3 9 1 8 10

Point 1 Point 2

Original chromosome New chromosomes after inversion

(a) (b)
lowing sections.

Figure 2. Standard inversion operator.
Crossover Operator. The crossover operator requires two

chromosomes. These chromosomes exchange a number of
genes. The exchanged genes maintain the same relative posi-
tion with respect to each other. The steps that are required tor is to slightly disrupt the current chromosome by inserting
for a crossover operation are listed below. In this description, a new gene. The steps that are followed in the implementa-
the chromosomes are referred as strings: tion of this operator are listed below:

1. Select two mating strings according to a selection pol- 1. Select a string.
icy. 2. Select a site in the current chromosome.

2. Select two points for each string (this selection is usu- 3. Obtain a new gene from a gene pool.
ally random).

4. Replace this site with the new gene.
3. Swap the piece of string within these two points be-

tween the two strings. Figure 3 shows the mutation operation.

Figure 1 illustrates the crossover operation. In this case Genetic Approaches for the Traveling Salesperson Problem
there are two chromosomes called A and B. Each chromosome

Several genetic approaches to the TSP have been introduced.has 10 genes (which are numbered from 1 to 10). Although
These approaches include partially matched crossover (PMX)some applications allow a duplication of some genes in the
by Goldberg (15), cycle crossover (CX) by Oliver et al. (16),same chromosome, for the TSP in general it is considered that
order crossover (OX) by Goldberg (15), edge recombination byeach chromosome has a unique set of genes. Figure 1(a) shows
Whitley et al. (17), matrix crossover (MX) by Homaifar et al.the original two chromosomes A and B; the points 1 and 2 are
(18), and evolutionary programming by Fogel (19). These ap-randomly selected. The resulting new chromosomes are
proaches are described in the following sections.shown in Fig. 1(b).

Goldberg Partially Matched Crossover Approach. PMX, intro-Inversion Operator. The inversion operator works on a
duced by Goldberg (15), has been considered as a way tochromosome by reversing the sequence of a substring of
tackle a blind TSP. The blind TSP approach is not aware ofgenes. The steps to follow are:
the distance between the cities. The total traversed distance
is obtained only at the end of the tour. The application of1. Select a string.
PMX to the TSP follows the procedure provided below; an ex-2. Select two points in the string.
ample is shown in Fig. 4:

3. Invert the piece of the string between the two points.

1. Code a tour as a chromosome.
Figure 2 shows this operation.

2. Select two chromosomes as parents. PMX proceeds by
positionwise exchange. Two crossing sites are pickedMutation Operator. The mutation operator requires a chro-
from a uniform distribution along the string.mosome (or string) to operate on. The objective of this opera-

3. Map chromosome 2 to chromosome 1. In the example
(Fig. 4), ACHB (of chromosome 2) exchange places with
DEFG (of chromosome 1).

4. Use a correction procedure to legitimize the TSP path.

5 2 4 9 3 6 7 1 8 10

Mutation

Original chromosome

(a)

5 2 4 9 3 6 7 A 8 10

1 is replaced by A

New chromosome after mutation

(b)

5 2 4 9 3 6 7 1 8 10

4 8 1 3 7 9 6 5 2 10

Point 1 Point 2 Point 1

Original chromosome New chromosomes after crossover

Point 2

A:

B:
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Figure 1. Standard crossover operator. Figure 3. Standard mutation operator.
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Order Crossover Approach. The OX approach requires two
strings. The order crossover starts in a similar way to PMX
by selecting a range of genes. Figure 6 shows an example of
the use of OX. Below a description of this approach is pro-
vided:

1. Randomly select a section of genes as crossover seg-
ment.

2. Exchange string 1’s segment and string 2’s segment.
3. Replace the illegal city (visited twice) with a empty en-

try.
4. Shift those empty entries together at the opposite ends

of each string.
5. Replace the empty entries with the corresponding seg-

ment in the other string.

The absolute positions are preserved.

Whitley Edge Recombination. Another operator, introduced
by Whitley et al. (17), constructs an offspring tour by exclu-
sively using links present in the two parent structures. On
average, these edges should reflect the goodness of the parent

Parent:
Chrom. 1: A B C D E F G H I 
Chrom. 2: D G I A C H B F E

Offspring:
Chrom. 1: D G E A C H B F I 
Chrom. 2: A B I D E F G H C

Step 2: Crossover
Chrom. 1 :  A B C  A C H B H I 
Chrom. 2 : D G I D E F G F E

Step 3: Correction
Chrom. 1 :  D G E A C H B F I 
Chrom. 2 : A B I D E F G H C

Step 1: Selection
Chrom. 1 :  A B C  D E F G H I 
Chrom. 2 : D G I A C H B F E

structures. There is no random information that might drive
Figure 4. PMX operation. the search toward any arbitrary links in the search space.

Operators that break links introduce unwanted mutation,
which can change the search processing. The edge recombina-
tion operator uses an edge map to construct an offspring that

The benefit of this crossover approach is that each string con- inherits as much information as possible from the parent
tains ordering information determined by both its parents. structures. The procedure for this approach is listed below:
However, the algorithm does not use the distance infor-
mation. 1. Assume that there are two strings of chromosomes in

the parent, string 1 and string 2, selected to recombine:
Oliver Cycle Crossover Approach. The CX approach, intro-

duced by Oliver et al. (16), creates offspring from a pair of String 1: A B C D E F G H I
parents. Every element of an offspring comes from one of the String 2: D G I A C H B F E
two parents; the position of each element is identical to that
in one of the parents. However, the offspring will be different
from both parents. Two rules can be imposed. One is that
every position of the offspring must retain a value found in
the corresponding position of a parent, and the other is that
the offspring must contain a permutation. The operation pro-
cedure is explained by means of an example shown in Fig. 5.
The steps are as follows:

1. Select two strings as parents as shown in Fig. 5.
2. Randomly select a starting point. Assuming C is se-

lected, the relative position of C in the other chromo-
some corresponds to I. I is selected in chromosome 1.
The relative position of I in chromosome 2 corresponds
to E. E is selected from chromosome 1. The relative po-
sition of E in the chromosome 2 corresponds to C. Since
C has been already selected, a complete cycle is formed.

3. Preserve the selected genes in chromosomes 1 and 2.
4. Switch the selected genes between the two chromo-

somes.

In a standard crossover operator, a random crossover point,
or cut section, is chosen. In the cycle crossover a random par-

Parent:
Chrom. 1: A B C D E F G H I 
Chrom. 2: D G I A C H B F E

New 1: D G C A E H B F I 
New 2: A B I D C F G H E

String 1: _ _ C _ E _ _ _ I
String 2: _ _ I _ C _ _ _ E

Offspring:
Chrom. 1: D G C A E H B F I 
Chrom. 2: A B I D C F G H E

Starting point

A B C D E F G H I

D G I A C H B F E

ent is chosen for each cycle. The absolute positions of both
parents are preserved. Figure 5. CX operation.
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be eliminated from all the edge maps. At step 1, since A, E,
and F contain only two links, assuming A is randomly se-
lected as the second city to visit, then A is eliminated from all
edge maps. At step 2, C, E, F, I contain two edges, assuming
F is randomly selected, then F is eliminated from all edge
maps. At step 3, E contains one link. Then E is selected and
eliminated from all edge maps. At step 4, since C, D, G, I
contain two edges, the randomly selected city is D; thus D is
eliminated from all edge maps. At step 5, since C contains
one edge, C is selected and eliminated from all edge maps. At
step 6, G, H, and I contain two edges, and the randomly se-
lected city is I; then I is eliminated from all edge maps. At
step 7, since G and H contain only one edge each, the ran-
domly selected city is G, which is eliminated from all edge
maps. H becomes the last city to visit, and the tour goes back
to city B. The tour construction becomes B, A, F, E, D, C, I,
G, H. Comparing with the parent strings (A B C D E F G H I
and D G I A C H B F E), we see that the entire edges of the
offspring are taken from both parents except A F and C I. For
A F and C I, two new edges are introduced in the tour. This
is called edge failure. For a large TSP, the edge failures as
reported by Whitley amounts to less than 2%, which is similar
to a conventional mutation rate. Based on the experiments,
Whitley proposed that rather than optimizing for the posi-
tions in order, the algorithm should probably allocate more
reproductive trials to high-performance edges and find the
critical edge combination.

Homaifar Matrix Crossover. Homaifar et al. (18) proposed
a different TSP representation method. Instead of a string
representation, a binary matrix is used to represent edges di-
rectly. The applied crossover is a conventional one. For this
representation, the tour and procedure are now presented, us-

Parent:
Chrom. 1: A B C D E F G H I 
Chrom. 2: D G I A C H B F E

Step 5: Insertion
Chrom. 1: D E F G A C H B I 
Chrom. 2: I D E F G A C H B

Offspring: 
Chrom. 1: D G E A C H B F I 
Chrom. 2: A B I D E F G H C

Step 2: Crossover
Chrom. 1 :  A B C  A C H B H I 
Chrom. 2 : D G I D E F G F E

Step 3: Removal
Chrom. 1 :  _  _  _  A C H B _ I 
Chrom. 2 : – – I D E F G – –

Step 4: Merge
Chrom. 1 :  _  _  _ _ A C H B I 
Chrom. 2 : I D E F G – – – –

Step 1: Selection
Chrom. 1 :  A B C  D E F G H I 
Chrom. 2 : D G I A C H B F E

ing a nine-city problem as example:
Figure 6. OX operation.

1. Code strings into binary matrices for the parents.
String 1 (A B C D E F G H I) and string 2 (D G I A C
H B F E) are thus coded into 2-D matrices. Figure 72. Select the city with the largest number of connections,
shows the chromosomes.or randomly select one in the case of a tie.

2. Assuming the crossover sites are indicated by the3. Select the city with the fewest connections first, to pre-
arrows for string 1 and string 2, exchange the genesvent its isolation.
using the crossover operation. (This step is shown in4. This processing continues until the tour is constructed.
Fig. 8.)

3. Any invalid tour is corrected by moving the duplicatedA time step table for the new offspring generation is shown
1’s from the row to another row that does not have anyin Table 1. Initially, B, C, G, and H contain four links. As-

sume that B is randomly selected as starting city. Then B will 1. The correction is done to preserve existing edge as

Table 1. Time Step Table for the Edge Recombination

City Initial Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

A B, I, C I, C
B A, C, H, F
C A, B, D, H A, D, H D, H D, H D, H H
D C, E, G C, E, G C, E, G C, E, G C, G
E D, F D, F D, F D
F B, E, G E, G E, G
G D, F, H, I D, F, H, I D, F, H, I D, H, I H, I H, I H, I H H
H B, C, G, I C, G, I C, G, I C, G, I C, G, I C, G, I G, I G
I A, G, H A, G, H G, H G, H G, H G, H G, H
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A

A
B
C
D
E
F
G
H
I

B C D E F G H I

0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0

A

A
B
C
D
E
F
G
H
I

B C D E F G H I

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

String 1b String 2b

Figure 9. First-level correcting matrices 1 (from string 1a to string
1b) and 2 (from string 2a to string 2b).

A

A
B
C
D
E
F
G
H
I

B C D E F G H I

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0

A

A
B
C
D
E
F
G
H
I

B C D E F G H I

0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

(a)

Coding parent 1 into matrix 1

(b)

Coding parent 2 into matrix 2

String 1 String 2

Figure 7. Coding of parents 1 and 2 into matrices.
species rather than that of the chromosome operation. Ge-
netic algorithms, in general, may be viewed as bottom-up
procedures that combine building blocks of code to arrive at
superior solutions, whereas evolutionary programming is a

much as possible. The resulting matrices are shown in top-down procedure that tries to optimize all parameters of a
Fig. 9. The offspring from this procedure are as follows: cohesive interactive code simultaneously.
String 1b: A B F E D C G H I Fogel (19) has proposed an inversion operation for the TSP.

The procedure uses simulated annealing. From observing nat-String 2b: A C D E F G I and B H
ural systems, Fogel suggests that the behavior difference4. Since the binary matrix representation may produce an
across generations decreases over time as species become bet-illegal tour, additional correction in the binary matrix
ter predictors of their environment. The approach is de-may be needed. The correction procedure is performed
scribed below:with the objective of preserving as many existing edges

as possible. For string 2b (A C D E F G I and B H), the
1. Code the TSP in an ordered list.correction can be made by comparing the parent tour
2. Create a population that consists of N parent solutions.edges and modifying the string to A B H C D E F G I.

Each parent produces a single offspring through muta-Figure 10 shows the changes to the matrix for string 2b.
tion.

3. Linearly decrease the maximum inversion length fromHomaifar et al. (18) suggested that the specifics of a genetic
one-half of the string down to neighbor inversion at thealgorithm’s implementation, including its representation,
maximum number of evaluated offspring.play an important role in its ability to satisfactorily solve the

TSP or any other such problem. 4. The best N solutions are retained at each iteration to
become parents for the next generation.

Fogel Evolutionary Programming. As described earlier, evo-
lutionary programming is a subset of evolutionary computa- Fogel (19) suggests that it is crucial to maintain a behavioral

link between parent and offspring as behavior evolves.tion. Evolutionary programming emphasizes the level of the

A

A
B
C
D
E
F
G
H
I

B C D E F G H I

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

String 2c

A

A
B
C
D
E
F
G
H
I

B C D E F G H I

0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0

A

A
B
C
D
E
F
G
H
I

B C D E F G H I

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

String 1a String 2a

Figure 10. Second-level correcting matrix for string 2b.Figure 8. Exchange of segments of matrix 1 and matrix 2 to form
string 1a and string 2a.
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Remarks over generations. Holland’s fundamental theorem and two re-
quirements for the design of novel genetic algorithms are pre-

PMX, CX, OX, edge recombination, and MX methods use a
sented here.

mating procedure and a crossover operator that are complex.
Holland’s fundamental theorem facilitates the investiga-

The evolutionary improvement between parents and offspring
tion of the behavior of genetic algorithms. A good solution is

across generations relies on the number of parents’ good chro-
formed in the genetic algorithms over the generations by

mosome segments (namely, schemata) that are inherited by
gradually aggregating many small well-fitted gene structures,

the offspring. Parents’ search information is merged into their
called schemata. The number of schemata, M(H), where H is

offspring; thus, both parents’ information on the environment
the schemata, at a given generation t is denoted as M(H, t).

appears in the offspring. In the TSP, most of the offspring
Holland’s fundamental theorem shows that in a good genetic

tours generated by those genetic permutation operators are
algorithm the number of schemata in the next generation,

illegitimate. A correcting procedure is usually needed to
M(H, t � 1), is larger. This is due to the genetic operations

purge the offspring of inadmissible conditions. The correcting
such as selection, genetic operation, and mutation. The sche-

procedure produces mutationlike effects. Most of the informa-
mata can be expressed as

tion from parents is scrambled. The link information between
cities is not preserved when an offspring is generated.

For instance, in the MX approach there are two levels of
correction. The coding method applied in binary MX and in-
version needs a matrix of N2 elements to represent one tour
(chromosome), where N is the number of cities. Thus, the

M(H, t + 1) ≥M(H, t) × [fitness improvement

(selection method)]

× [genetic operator survival rate]

× [mutation survival rate] (5)
memory requirements are proportional to N2 � (population-
size). A fitness function f represents a search surface. Let H be a

The operation of MX is complex; it includes expensive cor- schema, and f (H) be its fitness value. Let f avg be the popula-
recting procedures. For the first level of correction, each row tion-average fitness value. If the selection method is to choose
and column can have only one element set to 1. This correc- those chromosomes with higher fitness value than f avg, the ra-
tion procedure is based on the parent connection edges; thus, tio of the fitness values ensures that the schema number in-
a comparison of parents’ edges and possible offspring correc- creases if the operator survival rates are not very low:
tion are required. At the second level, all the connections need
to be checked to prevent a subtour condition from occurring.
If a subtour exists, its removal is based on the parent tour. M(H, t + 1) = M(H, t) × f (H)

favg
× (operator survival rates) (6)

This type of computation grows extremely fast as the problem
size increases. Edge recombination constructs a chromosome To ensure that M increases and leads to a globally optimal
according to the linkage of the parents. However, the off- solution, genetic operators should be able to search the solu-
spring tour closely reflects the number of links of each city in tion surface properly. From the above, two basic requirements
the parents’ tours, and new edges are created from time to for designing applications based on genetic algorithms (or hy-
time. This approach may be considered as clustering two brid genetic algorithms) are obtained:
cities as one and randomly arranging those two-city clusters.
The inheritance is kept fairly well. However, the operator is

1. The selection method must have a large effect on thecomplex.
population.The crossover operator is the most commonly used opera-

2. The genetic operators affect the searching behavior andtor. Qi and Palmieri (20,21) have shown that this operator
should provide a low disruption rate.has good characteristics for searching on the solution surface.

Nevertheless, this operator gives a poor performance on the
Qi and Palmieri (20,21) provide measurements for these re-TSP type of permutation problem, as a result of the inadmis-
quirements. For requirement 1, the selection method shouldsible tours that occur occasionally.
show thatIn addition to the crossover operator, inversion and muta-

tion operators are also used in genetic algorithms. They not
only produce legitimate offspring tours, but also are simple
operators. They seem to have potential for TSP problems.

lim
k→∞

∑
fpoor gk(x1, . . ., xn)∑
fwell gk(x1, . . ., xn)

= 0 (7)

where k is the generation number. Equation (7) means thatHOLLAND’S FUNDAMENTAL THEOREM
as the number of generations increases, the chance of gettingAND THE TSP SCHEMATA
a poor fitness chromosome approaches zero. Thus the popula-
tion should attain a high concentration of well-fitted chromo-The most widely used theorem to explain the behavior of ge-
somes.netic algorithms is Holland’s fundamental theorem, which is

As for requirement 2, an operator with searching behaviorcompletely explained by Goldberg (15). This theorem is based
can be evaluated as a statistically independent interaction ofon the concept of building blocks in a chromosome structure.
two chromosomes (or gene segments). Assuming chromosomeA good chromosome should contain many well-organized se-
A with [xa

1, xa
2, . . ., xa

n] and chromosome B with [xb
1, xb

2, . . .,quences of gene structures. These building blocks are called
xb

n], the joint probability density function of A and B isschemata. The fundamental theorem is a mathematical tool
used to interpret the formation of schemata and the accumu-
lation of good schemata in the population of chromosomes fx1

, x2, . . ., xn(x1, x2, . . . xn) = fx1
(x1) fx2

(x2) · · · fxn (xn) (8)
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city is 5, which is followed by 2, 4, 9, 3, 10, 7, 1, 8, 6, and then
5 again. The gene pool needs be carefully selected. The gene
represents the system’s feature, character, or detector. The
gene pool must contain sufficient information about the sys-
tem. Since the TSP restriction is to visit each city exactly once
and each gene represents a city, the size of the gene pool is
the same as the city number. Termination is usually ensured

5 2 4 9 3 10 7 1 8 6

1 2 3 4 5 6 7 8 9 10

Visiting order Cvi

City number Ci
by a ceiling on the number of generations.

Figure 11. Ten-city TSP chromosome. For the TSP, given the chromosome representation, city
ordering is the major concern. This in turn makes this prob-
lem a permutation one. The schemata are formed according
to the relation between genes (cities) rather than the position
within the chromosome. A permutation search genetic opera-Under this condition, two chromosomes will expand their
tor can be implemented by using an inversion. Whitely et al.search range when a genetic operator is used. Those two chro-
(17) have used an inversion operator with reasonably goodmosomes will gradually merge. Thus, their covariance will ap-
results. An inversion operator used on a 50-city TSP has out-proach zero.
performed a cross-and-correct operator. A drawback of usingThe disruption rate of the genetic operators is studied be-
the inversion operator is that it takes information from onlylow along with the proposed genetic algorithms, since these
one parent. Thus, this approach does not provide alternativeoperators affect the performance of the algorithms.
information that is often found in recombination. The search
power that results from using recombination is not exploited.

HYBRID NEWTON–RAPHSON GENETIC ALGORITHM In order to compensate for this drawback, a numerical
method has been embedded in the genetic search.

In this section an inversion with embedded Newton–Raphson The IENS consists of five major components: the fitness
search (IENS) is introduced. This algorithm is used as an ex- function, GA operators, the operation mode, selection, and re-
ample of genetic algorithms for the TSP. IENS uses an inver- production. The fitness function, used in this approach, is the
sion genetic operator incorporating the Newton–Raphson distance of the tour. The chromosome structure provides in-
method. By detecting the neighborhood tendency, the New- formation about the distance. A well-fitted chromosome
ton–Raphson method is used to update the system variables. should have a small distance (compared with its predeces-
The algorithm combines the behavior of Newton–Raphson sors). In this approach there are three GA operators: inver-
method, genetic algorithm neighborhood inversion, and stan- sion, neighborhood inversion, and mutation. The inversion op-
dard inversion operators to perform a global and local search erator randomly selects two nonneighbor genes (cities) in the
in the solution space. The fittest chromosome will become the chromosome and inverts the gene string. Neighborhood inver-
parent of the next generation so as to seek the minimum by sion selects two consecutive genes in the chromosome to per-
a Newton–Raphson update. Genetic algorithms provide pow- form a pairwise inversion. In this approach, mutation is done
erful multiple-point search within a solution space. Through by randomly selecting two genes from the gene pool; these
competition and reproduction, the genetic algorithm enables two genes swap their positions in the chromosome. The IENS
the Newton–Raphson operation to move around the solution operation mode can be summarized as having two operations:
surface. inversion search and neighbor inversion search. It is shown

Using a genetic algorithm (GA) for the solution of a prob- in Fig. 12.
lem often requires encoding the problem into a chromosome The same search operation is used as long as it produces a
structure. An appropriate genetic-like manipulation of the better solution. After a threshold number of generations with
chromosomes leads toward a solution of the problem. It is no better solution, the other inversion operator is used on the
therefore important to choose a chromosome code that facili- best result in the history. The threshold can be determined
tates genetic-like manipulation. In this approach, a city is by means of experimental runs. In the experiments and simu-
coded as a gene and the gene position in the chromosome is lations the number of generations required was found to be
interpreted as the order of travel (adjacency representation) less than 40; thus, the threshold was set to 40.
as introduced by Michalewicz (22). These two inversion search operations have a similar

Figure 11 shows an example of the chromosome coding for structure. The operations have five basic steps which are de-
scribed below. These steps, also shown in Fig. 13, are:a 10-city TSP chromosome. In this example the first visited

Below 
threshold 

Below 
threshold 

Inversion
search

operation

Neighborhood
inversion
search

operation

Reach threshold:
Send best history result

Start

Figure 12. IENS operation mode.
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closer to zero when the system converges. That is,

m∑
j=1

αij δxj = βi, where αij = ∂Fi

∂xj
and βi = −Fi (10)

If �X has a valid (finite) value, the correction becomes xnew
i �

xold
i � �xi.

In the proposed genetic algorithm, each city is coded as a
gene. Thus, F becomes a chromosome. The distance of a tour
is given by Fi(x1, x2, . . ., xm), where each x represents a city.
If we denote the minimum distance by Dmin, then Fi(x1, x2,
. . ., xm) � Dmin represents the solution. The coefficient �ij in
the genetic algorithm represents a neighborhood inversion
and is given by a derivative term. The neighborhood inversion
acts as a local hill-climbing operator. For a given generation,
i and j represent the ith chromosome and the jth gene. �x is
a continuous function and provides information for the next
solution. Since �x has discrete values in the genetic algorithm
environment, a steepest-descent approach for �x can be used.
Thus, xnew

i is equal to the maximum improvement in the �i,
that is, Fi. Since a steepest-descent approach is applied, the
selection method is simplified to selecting only the best chro-
mosome. To achieve reproduction, mutation is applied to gen-
erate the entire population from the best offspring. Using mu-
tation prevents the population from settling far away from
the current point. The population size has been set to be equal

Population
P

Population P1

Selection

Mutation

Population P1'

Population P2

Best offspring
(seed)

Noise mutation
with

probability PM

Threshold

Neighborhood
inversion

Inversion

Initial
path

to the city problem size, i.e., n � m; the Newton–Raphson
method needs the number of independent equations to be atFigure 13. Inversion or neighborhood inversion operation steps.
least equal to the number of variables to have a solvable
system.

To use the Newton–Raphson method, two major issues
need be addressed: (1) the starting point must be near the

1. Perform an inversion operation on the population P. solution and (2) the operation can easily be trapped in a local
This operation generates an offspring population P1. minimum. To avoid these problems, standard inversion is ap-

2. Perform a noise mutation on offspring population P1, plied in the search process. Standard inversion provides large
randomly with probability PM. In general PM is small, steps that can help not only to reach a near-optimal point but
e.g., PM � 0.01. also to jump out of a trap (local minimum).

Each operation needs at least several generations to reach3. Evaluate P1� and select the best offspring.
the solution or a stable state; thus, a generation threshold for4. Generate population P2 using mutation as the repro-
each operation and generation counter must be set. A recordduction operator with the best offspring as seed.
of the best history is always kept. If the search result is better

5. Replace P with P2. than the record, the record is updated and the generation
counter is reset. If the search result is not better than the

The neighborhood inversion search operation is accomplished previous result, the generation counter is increased by one.
in a similar fashion to inversion search, except that the first When the generation counter reaches the generation thresh-
step is replaced by the neighborhood inversion operation as old, the record is transferred to the other operation as the
shown in Fig. 13. Each parent can generate only one off- starting seed. When the other operation receives the seed,
spring. In both search operations an approach has been em- mutation is applied to generate the new population. Since
bedded to find the solution. there is no information about where the optimal solution re-

This approach mimics the Newton–Raphson method (23), sides, the initial chromosome is randomly generated.
numerical method used to solve the problem of making n
functional relations equal to zero: Fi(x1, x2, . . ., xm) � 0, Dynamics
where i � 1, 2, . . ., n. If X denotes the entire vector of values

Sirag and Weisser (24) have shown that when the inversionof xi, then, in the neighborhood of X, each of the functions Fi
operates on a string chromosome, the behavior of this opera-can be expanded into a Taylor series as follows:
tor can be obtained by evaluating the survival rate of the O
schemata. The O-schema number, as explained in Goldberg
(15), provides information about the goodness of the solution.
This approach is used to show the dynamics of IENS. It is

Fi(X + δX ) = Fi(X ) +
m∑

j=1

∂Fi

∂xj
δxj + O(δX 2) (9)

assumed that the chromosome length is L and two distinct
points A and B are selected to represent the ends of the in-By neglecting terms of order �X2 and higher, a set of linear

equations can be obtained. A change �X moves each function version.
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Standard Inversion. For standard inversion, A could be ei- Since EA � P(A  B) EAB � P(A � B) EA�B,, then
ther larger or smaller than B. The expected survival rate EA

for a given A is expressed as
E =

L∑
A=1

EA (15)
EA = P(A > B|A)EA>B + P(A < B|A)EA<B (11)

Thuswhere EAB and EA�B are the expected O-schema survival rates
under the condition A  B and A � B, respectively. For sim-
plicity, the probabilities P(A  B�A) and P(A � B�A) will be
abbreviated to P(A  B) and P(A � B) respectively. These
probabilities are

P(A > B) = A − 1
L − 1

and P(A < B) = L − A
L − 1

(12)

The total number of O schemata can be considered as the
total number of subsets; thus, for chromosomes of size L, the
total number of O schemata is 2L. Then EAB can be calculated
by using the total number of O schemata minus the number
of O schemata with genes in the inversion range. The result

E =
[

L∑
A=1

L
L − 1

�
2L(A − 1) + (A − 1) −

A∑
x=2

2x

�

+
�

2L(L − A) + (L − A) −
1+L−A∑

x=2

2x

�]

=
L∑

A=1

�
2L + 1 − 1

L − 1
(2A+1 − 4 + 22+L−A − 4)

�

= L(2L + 1)
1

L − 1

�
L∑

A=1

2A+1 +
L∑

A=1

22+L−A − 8L

�

= L(2L + 1)
1

L − 1
(8 × 2L − 8 − 8L)

is multiplied by the probability for a gene to be selected as
B[P � 1/(A � 1)]. Thus,

Thus,

EA>B = 1
A − 1

[2L − (21+A−B − 1)] (13)
E = L × (2L + 1) − 1

L − 1
(8 × 2L − 8 − 8L)

EA�B can be calculated in a similar fashion:
and Eavg � E/L, so that

EA<B = 1
L − A

[2L − (21+B−A − 1)] (14)
Eavg = (2L + 1) + 8

L − 1
+ 8

L(L − 1)
− 8 × 2L

L(L − 1)

By replacing B with x, we obtain the expected value of EAB

as Thus, the survival rate is

SRinv = Eavg

2L = 1 + 1
2L + 8

2L(L − 1)
+ 8

2LL(L − 1)
− 8

L(L − 1)

For a large chromosome, L becomes large. Thus, the survival
rate can be simplified to

EA>B =
A∑

x=1

� 1
A − 1

[2L − (21+A−x − 1)]
�

= 1
A − 1

�
2L(A − 1) + (A − 1) −

A∑
x=2

2x

�

Likewise, the expected value of EA�B is SRinv = 1 − 8
L(L − 1)

(16)

Neighborhood Inversion. Neighborhood inversion can be
considered as a special case of standard inversion. Since only
one component will be selected, the selection probabilities be-
come

EA<B =
1+L−A∑

x=1

� 1
L − A

[2L − (21+x−A − 1)]
�

= 1
L − A

�
2L(L − A) + (L − A) −

1+L−A∑
x=2

2x

�

The products of the probabilities and expected values are ex- P(A > B) = 1
2 and P(A < B) = 1

2
pressed as

The equations (13) and (14) become

EA>B = 2L − (22 − 1)

EA<B = 2L − (22 − 1)

Using Eq. (11) results in EA � 2L � (22 � 1). Thus, the sur-
vival rate becomes

SRn inv = 1 − 3
2L

(17)

P(A > B)EA>B = A − 1
L − 1

× 1
A − 1

�
2L(A − 1) + (A − 1) −

A∑
x=2

2x

�

P(A < B)EA<B = L − A
L − 1

× 1
L − A

�
2L(L − A) + (L − A) −

1+L−A∑
x=2

2x

�
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Mutation. Mutation behaves similarly to standard inver- Eq. (19) becomes
sion from the expected-value point of view. Thus, the expected
value is given by Eq. (11), and the selection probabilities are
given by Eq. (12). EAB can be calculated by using the total

M(H, t + 1) = M(H, t)
f (H)

favg

�
1 − 6

2L

�
(20)

number of O schemata minus the number of O schemata that
use genes in the inversion range. The result is multiplied by For the inversion search operation, M(H, t � 1) satisfies the
the probability P � 1/(A � 1) for a gene to be selected as B. following inequality:
Thus, EAB is

EA>B = 1
A − 1

[2L − (22 − 1)]

In a similar fashion EA�B is calculated using P � 1/(L � A):

M(H, t + 1) ≥ M(H, t)
f (H)

favg

�
1 − 6

2L

�

×
�

1 + 1
2L

+ 8
2L(L − 1)

+ 8
2LL(L − 1)

− 8
L(L − 1)

− 6P
2L

�

EA<B = 1
L − A

[2L − (22 − 1)]
When L is large, this can be simplified to

The PE products become
M(H, t + 1) ≥ M(H, t)

f (H)

favg

�
1 − 8

L(L − 1)

�
(21)

P(A > B)EA>B = A − 1
L − 1

× 1
A − 1

[2L × (A − 1) − 3 × (A − 1)]
For the neighborhood inversion search operation, M(H, t � 1)
satisfies the following inequality:

and

M(H, t + 1) ≥ M(H, t)
f (H)

favg

�
1 − 6

2L

��
1 − 3

2L
− 6P

2L

�
P(A < B)EA<B = L − A

L − 1
× 1

L − A
[2L × (L − A) − 3 × (L − A)]

For large L, this is simplified toThus, using Eq. (17), E becomes

M(H, t + 1) ≥ M(H, t)
f (H)

favg
(22)

To ensure that M increases as the equilibrium point gets
closer, a comparison between f (H, t) at time t and f (H, t � 1)
at time t � 1 is necessary. The best history of each operation
is transferred to the other as seed; this in turn provides a
monotonic change of M.

E =
L∑

A=1

� 1
L − 1

[2L(A − 1) − 3(A − 1)]

+ 1
L − 1

[2L(L − A) − 3(L − A)]
�

=
L∑

A=1

(2L − 6)

= L × 2L − 6L
Effect of Operators on Distance

The average E is Changes in M depend largely on the selection, as shown ear-
lier. The inversion and mutation operators provide a slow and
steady improvement. The effect of these operators on the trav-Eavg = E

L
= 2L − 6

eled distance is evaluated in this subsection.

and the survival rate becomes
Inversion. For the inversion operator two points must be

selected. The probability of randomly selecting two points
from a string of length m is (m

2 )�1. A uniform distribution isSRmut = 1 − 6
2L

(18)
used, and the chromosome is considered to be a ring string
rather than a line string. Assuming that A and B are the two

Analysis Using Holland’s Fundamental Theorem. Holland’s inversion points, then �A � B� � 1 is the number of genes to
fundamental theorem is used to investigate the behavior of be inverted in the string. Having A � i and B � j, the original
IENS. The selection method is to choose the fittest chromo- distance and the new distance after inversion are
some as seed; therefore, the next-generation O-schema num-
ber M(H, t � 1) is

M(H, t + 1) = M(H, t)
f (H)

favg
(19)

Distorig = d1,2 + d2,3 + · · · + di−1,i + di,i+1 + · · · + dj−1, j

+ dj, j+1 + · · · + dm−1,m + dm,1

Distinv = d1,2 + d2,3 + · · · + di−1, j + dj, j−1 + · · · + di+1,i

+ di, j+1 + · · · + dm−1,m + dm,1

where H is the O schema, f (H) is the fitness value, and f avg is
the population-average fitness value. The ratio of the fitness The new distance Distinv has been modified in �A � B� �1

genes. However, the overall distance change is equal to �di�1,ivalues ensures that the O-schema number increases. The re-
production is done by means of the mutation operator; thus � dj,j�1 � di�1, j � di, j�1�. This is because in the considered TSP
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Figure 14. Changes in the chromosome

Inversion string

Original
chromosome

Chromosome
after inversion

di – 1, i di, i + 1

i – 1 i + 1 i + 2 j – 2 j – 1 j j + 1i

A B

B A

di + 1, i + 2 . . .. . . . . .dj – 2, j – 1 dj – 1, j dj, j + 1

di – 1, j dj, j – 1

i – 1 j – 1 j – 2 i + 2 i + 1 i j + 1j

dj – 1, j – 2 . . .. . . . . .di + 2, i + 1 di + 1, i di, j + 1

edges after using inversion.

the distance calculation is direction-insensitive, i.e., di,i�1 � Thus the upper and lower bounds of the distance after inver-
sion becomedi�1,i. It should be pointed out that there are other TSPs where

distance is direction-sensitive (di,i�1 � di�1,i).
Figure 14 shows the changes in the chromosome edges Distorig − 2dorig ≤ Distinv ≤ Distorig + 2dinv

when the inversion operation is applied. The new links in this
Considering a 2-D Euler surface, the maximum distance be-chromosome are drawn with thicker lines. The new distance
tween two points in a unit square isis rewritten as

dmax =
p

(x1 − x2)2 + (y1 − y2)2 =
√

2 (23)Distinv = d1,2 + d2,3 + · · · + di−1, j + di,i+1 + · · · + dj−1, j

+ dj, j+1 + · · · + dm−1,m + dm,1
Therefore, the bounds for Distinv are Distorig � 2�2 � Distinv

� Distorig � �2.Thus, Distinv can be expressed in terms of the original distance
For an r-square surface, the following changes are intro-as follows:

duced: x1 to rx1, x2 to rx2, y1 to ry1, and y2 to ry2. Consequently,
the distance bounds becomeDistinv = Distorig − di−1,i − dj, j+1 + di−1, j + di, j+1

Distorig − 2r
√

2 ≤ Distinv ≤ Distorig + 2r
√

2 (24)
on replacing i by A andj by B, the distance expression be-
comes

Mutation. For mutation distance analysis a similar ap-
proach and assumptions to those of the inversion analysis canDistinv = Distorig − dA−1,A − dB,B+1 + dA−1,B + dA,B+1
be used. Having A � i and B � j, the original distance and
the new distance after mutation areIn order to obtain the upper and lower bounds, distances dorig

and dinv need be introduced:

dorig = max(dA−1,A, dB,B+1)

dinv = max(dA−1,B, dA,B+1)

Distorig = d1,2 + d2,3 + · · · + di−1,i + di,i+1 + · · · + dj−1, j

+ dj, j+1 + · · · + dm−1,m + dm,1

Distmut = d1,2 + d2,3 + · · · + di−1, j + dj,i+1 + · · · + dj−1,i

+ di, j+1 + · · · + dm−1,m + dm,1
Thus Distinv becomes

The new distance has been modified only on two genes. How-
ever, the overall distance change is equal to �di�1,i � di,i�1 �

Distinv = Distorig − 2dorig + 2dinv

Figure 15. Changes in the chromosome

Original
chromosome

Chromosome
after mutation

di – 1, i di, i + 1

i – 1 i + 1 i + 2 j – 2 j – 1 j j + 1i

A B

B A

di + 1, i + 2 . . .

. . .

. . . . . .dj – 2, j – 1 dj – 1, j dj, j + 1

di – 1, j dj, j – 1

i – 1 i + 1 i + 2 j – 2 j – 1 i j + 1j

di + 1, i + 2 . . .. . . . . .dj – 2, j – 1 di + 1, i di, j + 1

edges after using mutation.
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The monotonic behavior of IENS is shown in Fig. 16. It can
be observed that the inversion and mutation operators drive
the chromosome population towards better fitness values.

Since the best chromosome after inversion is preserved as
the seed for reproduction (using mutation), the distance is
driven toward better fitness. Each of the reproduced chromo-
some can obtain a fitness value that is as much as twice its
parent’s fitness value. The reproduced chromosomes are then
used by the inversion operator.

The inversion and neighborhood inversion searches have

P
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b
a

b
ili

ty

Inversion

Improving

Mutation Inversion

FitnessLater generationEarly generation

Mutation

. . .
Seed
from

inversion

Seed
from

inversion

similar effects on the distance. Thus, these two operators
Figure 16. Monotonic behavior of the proposed IENS genetic algo- have comparable distributions. The best-history chromosome
rithm. is kept as the starting seed for each search operator. From

the fundamental theory analysis for IENS and the distance
analysis, both the ordering survival rate and number of Odj�1, j � dj, j�1 � di�1, j � dj,i�1 � dj�1,i � di, j�1�. This is because a
schemata can be estimated as well as how much the distancemutation operation changes four edges.
is improved. IENS preserves the order and at the same timeFigure 15 shows changes in the chromosome edges when
explores the search solution space in a monotonic fashion.the mutation is applied. This figure highlights the affected

links. On replacing i by A and j by B, the distance expression
Performancebecomes
The IENS approach has been applied to a number of TSP
benchmarks. These benchmarks include 10-city problems
(25), 30-city problems (16), 50- and 75-city problems (26), and

Distmut = Distorig − dA−1,A − dA,A+1 − dB−1,B − dB,B+1

+ dA−1,B + dB,A+1 + dB−1,A + dA,B+1

105- and 318-city problems (11).
In order to obtain the upper and lower bounds, two distances For the 10-city TSP, a set of five benchmarks, fully de-
(dorig and dmut) are introduced: scribed in Lin et al. (10,25), have been used. The hybrid ge-

netic algorithm has been used to find solutions for these
benchmarks. A summary of the results is shown in Table 2.
The optimal solutions are included. The ceiling number of

dorig = max(dA−1,A, dA,A+1, dB−1,B, dB,B+1)

dmut = max(dA−1,B, dB,A+1, dB−1,A, dA,B+1)

generations is set at 200. The threshold number of genera-
tions is 5. For each benchmark 100 runs were performed.Thus Distmut becomes
From Table 2, it can be observed that:

Distmut = Distorig − 4dorig + 4dmut

• The IENS algorithm obtains the optimal solution for all
Thus the upper and lower bounds of the distance after muta- the 10-city TSPs in every run. The distance is that of
tion become the best solution, i.e., at least one chromosome per run

represents the optimal solution.
Distorig − 4dorig ≤ Distmut ≤ Distorig + 4dmut

• The number of generations to find the optimal solutions
in the best case is extremely small. It ranges from 3 to 7.

Considering a 2-D Euler unit square and the distance dmax in
• The average number of generations to find the optimalEq. (23), from Eq. (24) the bounds for Distmut are Distorig �

solution is fairly small. With exception of benchmark4�2 � Distmut � Distorig � 4�2. For an r-square surface, this
10.4, it is below 30.becomes

Other benchmarks for 30- to 318-city TSPs were used to eval-Distorig − 4r
√

2 ≤ Distmut ≤ Distorig + 4r
√

2 (25)
uate the proposed IENS approach. The results of the simula-
tions are shown in Table 3. For comparison, the results are

Behavior
reported using both the integer and real-number solutions.
The integer solutions are obtained by adding the roundoff dis-It is interesting to observe how the IENS approach reaches

the solution. Using Eqs. (20) to (25), it is possible to illustrate tance between any two cities in the traveled path. The per-
centage divergence rate gives a measurement of the differencethe behavior of IENS as function of fitness.

Table 2. Simulation Results for 10-City TSP Benchmarks

Benchmark: 10.1 10.2 10.3 10.4 10.5

Optimal distance: 2.986918 3.52247 2.82804 2.88463 2.9262
IENS best solution: 2.986918 3.52247 2.82804 2.88463 2.9262
IENS best-solution generation: 5 3 6 7 4
IENS average distance: 2.986918 3.52247 2.82804 2.88463 2.9262
IENS average generations: 21.58 20.38 23.94 69.47 26.04
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Table 3. Results for 30- to 318-City TSP Problems

Benchmark: 30 50 75 105 318

Best known solution: 420 (integer) 425 (integer) 535 (integer) 14382.9 41345 (integer)
IENS best solution (real): 423.740 427.855 542.309 14382.995 43105.6048
IENS best solution (int.): 420 425 535 — 43020
IENS best-soln. gen.: 262 8938 48353 25794 942052
IENS average distance: 425.75 433.821 550.849 14742.736 43710.278
IENS avg. generations: 2027.78 5899.68 50807.88 45287.16 647305.01
IENS ceiling generations: 5000 10,000 100,000 100,000 1000,000
IENS runs: 50 50 50 30 18
IENS divergence rate (%): 0.47 1.39 1.57 2.5 5.4

2. D. J. Wilde and C. S. Beightler, Foundations of Optimization,between the average distance and the best known solution.
Englewood Cliffs, NJ: Prentice-Hall, 1967.The percentage divergence rate is computed as follows:

3. D. A. Pierre, Optimization Theory with Applications, New York:
Wiley, 1969.

4. A. Torn and A. Zilinxkas, Global Optimization, New York:
Springer-Verlag, 1987.

divergence rate = average distance − best known distance
best known distance

× 100% (26)

5. E. L. Lawler et al., The Traveling Salesman Problem, New York:It can be observed that:
Wiley, 1985.

6. J. J. Hopfield and D. W. Tank, Neural computation of decisions• IENS obtains the best known solution for all the bench-
in optimization problems, Biol. Cybern., 52: 141–152, 1985.marks with the exception of the 318-city benchmark.

7. S. V. B. Aiyer, Solving combinatorial optimization problems using• All the results are always extremely close to the best
neural networks with applications in speech recognition, Ph.D.known solutions. Average divergence rates vary from
dissertation, Cambridge University, England, 1991.0.47% to 5.4% as for 30- to 318-city benchmarks.

8. E. Sanchez-Sinencio and C. Lau, Artificial Neural Networks Para-
• The average number of generations increases fast from digms, Applications, and Hardware Implementations, New York:

the 30- to the 318-city benchmark. IENS requires more IEEE Press, 1992.
search time for large problems. However, due to its sim-

9. P. W. Pretzel, D. L. Palumbo, and M. K. Arras, Performance and
plicity, IENS operates fast in each generation. fault-tolerance of neural networks for optimization, IEEE Trans.

Neural Netw., 4: 600–614, 1993.
Remarks

10. W. Lin, High quality tour hybrid genetic schemes for TSP optimi-
The hybrid genetic algorithm called inversion with embedded zation problems, Ph.D. dissertation, State University of New

York at Binghamton, 1995.Newton–Raphson search (IENS), which combines the New-
ton–Raphson numerical method and a genetic algorithm, has 11. S. Lin and B. W. Kernighan, An effective heuristic algorithm for
been introduced. This algorithm is an example of hybrid ge- the traveling salesman problem, Oper. Res., 21: 498–516, 1976.
netic algorithms for the TSP. The operations and their analy- 12. D. B. Fogel and L. J. Fogel, Evolutionary computation, IEEE
sis can be used for other TSP genetic approaches. The IENS Trans. Neural Netw., 5: 1, 1994.
approach has the following characteristics: 13. D. B. Fogel, An introduction to simulated evolutionary optimiza-

tion, IEEE Trans. Neural Netw., 5: 3–14, 1994.
• Simple and inexpensive operation

14. M. Srinivas and L. M. Patnaik, Genetic algorithms: A survey,
• Monotonic improvement of the tour IEEE Comput., 27: 17–26, 1994.
• Optimal solution for all the 10-city TSPs at every run. 15. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

The distance is identical to that of the optimal solution. Machine Learning, Reading, MA: Addison-Wesley, 1989.
• Best known solution for all the TSP benchmarks except 16. I. M. Oliver, D. J. Smith, and J. R. C. Holland, A study of permu-

the 318-city benchmark. It can be observed (in Table 3) tation crossover operators on the traveling salesman problem,
that the solutions are always extremely close to the opti- Proc. 2nd Int. Conf. Genet. Algorithms: Genet. Algorithms Appl.,

Cambridge, MA, 1987, pp. 224–230.mal solutions. The average distance increases from
0.47% to 5.4% as one goes from 30- to 318-city bench- 17. D. Whitley, T. Starkweather, and Q. Fuquay, Scheduling prob-

lems and traveling salesman: The genetic edge recombination op-marks.
erator, Proc. 3rd Int. Conf. Genet. Algorithms: Genet. Algorithms

This example shows that genetic algorithms have a poten- Appl., Arlington, VA, 1989, pp. 133–140.
tial for obtaining extremely good solutions to optimization 18. A. Homaifar, S. Guan, and G. E. Liepins, A new approach on the
problems such as the TSP. traveling salesman problem by genetic algorithms, Genet. Algo-

rithms Appl.: Proc. 5th Int. Conf. Genet. Algorithms, 1993, pp.
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