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cades ago, and developments since then have occurred
rapidly.

DIFFERENT TYPES OF PIECEWISE
CONSTANT BASIS FUNCTION

Haar Functions

The set of Haar functions is periodic, orthogonal, and com-
plete and was proposed in 1910 by Alfred Haar (4). Figure 1
shows the set of first eight Haar functions. A recurrence rela-
tion that enables one to generate the Haar functions �har( j,WALSH FUNCTIONS
n, t)� in the semi-open interval t � [0, 1) is given by (5). The
first member of the set isOrthogonal properties (1,2) of the familiar sine–cosine func-

tions have been known for over two centuries. Use of such
functions in an elegant manner to solve complex analytical har(0,0, t) = 1 t ∈ [0,1)

problems was initiated by the work of the famous mathemati-
while the general term for other members is given bycian Baron Jean-Baptiste-Joseph Fourier (3). The system of

sine and cosine functions plays a distinguished role in many
areas of electrical engineering. There are a number of histori-
cal and practical reasons for this. From the theoretical point
of view, one of the major reasons is that Fourier series and
Fourier transform permit the representation of a large class
of functions by a superposition of sine and cosine functions.

har( j, n, t) =




2 j/2 n − 1
2 j

≤ t <
n − 0.5

2 j

−2 j/2 n − 0.5
2 j ≤ t <

n
2 j

0 elsewhere

This representation makes it possible to apply the concept of
where j, n, and m are integers governed by the relationfrequency, which was originally defined for sine and cosine

only, to other functions.
0 ≤ j ≤ log2 m 1 ≤ n ≤ 2 j

In the fields of circuit analysis, control theory, and commu-
nications the complete and orthogonal properties of sine and

The number of members in the set is of the form m � 2k, kcosine functions produce attractive solutions. But with the ap-
being a positive integer.plication of digital techniques and semiconductor technology

Haar’s set is such that the formal expansion of a givenin these areas, awareness for other more general complete
continuous function in terms of Haar functions converges uni-systems of orthogonal functions has developed. This class of
formly to the given function (6).functions, though not possessing some of the desirable proper-

ties of sine-cosine functions in linear time-invariant networks,
Rademacher Functionshas other advantages rendering its use more directly applica-

ble to all such applications in the context of digital technol- Rademacher functions are an incomplete set of orthonormal
ogy. Many members of this class of orthogonal functions are functions which were developed by the German mathemati-
piecewise constant basis functions (PCBF), thus resembling
the high-low switching characteristic of semiconductor de-
vices. Walsh functions belong to the class of PCBFs that have
been developed in the twentieth century and have played an
important role in scientific and engineering applications. The
mathematical techniques of studying functions, signals, and
systems through series expansions in orthogonal complete
sets of basis functions are now a standard tool in all branches
of science and engineering. Actually, the signals involved in
Morse telegraphy are PCBFs, but no mathematical study of
these signals was made prior to the beginning of the twenti-
eth century.

The origin of the mathematical study of PCBFs is due to
the Hungarian mathematician Alfred Haar (studies com-
pleted 1910–1912), who used a set of functions now bearing
his name. These functions have not found much use in com-
parison to the Walsh and block-pulse functions. The develop-
ment and utilization of Walsh functions has been strongly in-
fluenced by the parallel developments in digital electronics
and computer science and engineering. Efforts to replace Fou-
rier transforms by Walsh-type transforms have been made in
communication, signal processing, image processing, pattern
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recognition, and so forth. Applications of Walsh functions in
the systems and control field were begun only about two de- Figure 1. A set of the first eight Haar functions.
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dering. In what follows, we discuss some aspects of each of
these orderings.

Sequency or Walsh Ordering

This is the ordering which was originally employed by Walsh
(9). Sequency ordered Walsh functions are arranged in as-
cending order of zero crossings. Sequency is defined as one-
half the average number of zero crossings over the unit inter-
val [0, 1), and is used as a measure of generalized frequency
of wave forms. Figure 3 shows a set of the first eight sequency
order Walsh functions wal(m, t), where m is the sequency or-
der number and 0 	 t 
 1.

If each waveform is divided into eight intervals, the magni-
tude of the waveform can be expressed as a matrix
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Figure 2. A set of the first five Rademacher functions.

cian H. Rademacher in 1922 (7). Figure 2 shows the set of the
first five Rademacher functions. The Rademacher function of
index m, denoted by rad(m, t) is given by a square wave of

W (m, l) =




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1




(1)

unit amplitude and 2m�1 cycle in the semi-open interval [0, 1),
with the exception of rad(0, t) which has a constant value of where m denotes the order of Walsh function (the row of the
unity throughout the interval. Rademacher functions can be matrix), l the corresponding bit of this order (the column of
generated using the recurrence relation (8) the same matrix), and W(m, l) is called the Walsh matrix.

Walsh functions are either symmetrical or asymmetrical
rad(m, t) = rad(1,2m−1t), m �= 0 with respect to their middle point. They are called cal and sal

functions respectively. These functions are expressed as
with

wal(2m, t) = cal(m, t) m = 1,2, . . .,
N
2

(2)
rad(1, t) =

{
1 t ∈ [0, 0.5)

−1 t ∈ [0.5,1)
wal(2m − 1, t) = sal(m, t) m = 1, 2, . . .,

N
2

(3)

Walsh Functions

The incomplete set of Rademacher functions was completed
by J. L. Walsh in 1923, to form the complete orthogonal set
of rectangular functions we now call the Walsh functions (9).

As indicated by Walsh, there are many possible orthogonal
function sets of this kind. Since Walsh’s work several re-
searchers have suggested orthogonal series formed with the
help of combinations of the well-known piecewise constant or-
thogonal functions (10–12).

In his original paper Walsh pointed out that, ‘‘. . . Haar’s
set is, however, merely one of an infinity of sets which can be
constructed of functions of this same character.’’ While pro-
posing his new set of orthogonal functions, Walsh wrote, ‘‘. . .
each function takes only the values �1 and �1 except at a
finite number of points of discontinuity, where it takes the
value zero.’’

It is interesting to note that some of the square wave pat-
terns of individual Walsh functions appear in several ancient
designs (13). Chess board or checker board designs are two-
dimensional Walsh functions, whereas the Rubik Cube is a
three-dimensional Walsh function.

The set of Walsh functions is generally classified into three
groups. These groups differ from one another in that the order
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in which individual functions appear is different. The three
types of orderings are: (1) Sequency or Walsh ordering, (2) Figure 3. A set of the first eight Walsh functions arranged in se-

quency order.Dyadic or Paley ordering, and, (3) Natural or Hadamard or-
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Because of their symmetrical characteristic, sal and cal terms
can be thought of as being analogous to the sine and cosine
terms of the Fourier series.

Similarly to the Fourier series representation, the Walsh
series representation of a time function that is absolutely in-
tegrable in [0, 1) is defined as

f (t) =
∞∑

m=0

Fmwal(m, t) (4)

where Fm is the coefficient of the Walsh function of f (t). It is
desirable to determine the coefficient such that the integral
square error is minimized

pal(0, t) = rad(0, t)

pal(1, t) = rad(1, t)

pal(2, t) = [rad(2, t)]1[rad(1, t)]0

rad(3, t) = [rad(2, t)]1[rad(1, t)]1

pal(4, t) = [rad(3, t)]1[rad(2, t)]0[rad(1, t)]0

pal(5, t) = [rad(3, t)]1[rad(2, t)]0[rad(1, t)]1

pal(6, t) = [rad(3, t)]1[rad(2, t)]1[rad(1, t)]0

pal(7, t) = [rad(3, t)]1[rad(2, t)]1[rad(1, t)]1

...

pal(n, t) = [rad(q, t)]bq [rad(q − 1, t)]bq−1 · · · [rad(1, t)]b1

where

q = [log2(n)] + 1 (6)ε =
∫ 1

0

[
f (t) −

∞∑
m=0

Fmwal(m, t)

]2

dt

in which [ � ] means taking the greatest integer. Therefore,
Taking the partial derivative of � with respect to Fm and set-

n = bq2q−1 + bq−12q−2 + · · · + b120
ting it equal to zero yields

where bqbq�1 � � � b1 is the binary expression of n.
Hence, if a particular Walsh function pal(n, t) is given and

its Rademacher function components are required, we simplyFm =
∫ 1

0
f (t)wal(m, t) dt m = 0, 1, 2, . . . (5)

change n into binary form and then substitute into Eq. (6).
For example, the Rademacher function components of Walsh

This simple result is due to the orthonormal property of function pal(10, t) is
Walsh functions. Let us illustrate the Walsh series expansion
for the ramp function pal(10, t) = [rad(4, t)]1[rad(3, t)]0[rad(2, t)]1[rad(1, t)]0

where
f (t) = t

q = [log2 10] + 1 = 4

Substituting f (t) into Eq. (5) and taking four terms yields because Rademacher functions are easy to draw, as are Walsh
functions. Figure 4 shows the Walsh functions in Paley order-
ing from pal(0, t) to pal(7, t).

F0 =
∫ 1

0
twal(0, t) dt = 1

2

F1 =
∫ 1

0
twal(1, t) dt = −1

4

F2 =
∫ 1

0
twal(2, t) dt = 0

F3 =
∫ 1

0
twal(3, t) dt = −1

8

After substituting these obtained values of coefficients into
Eq. (4) we have

t = 1
2

wal(0, t) − 1
4

wal(1, t) − 1
8

wal(3, t)

which is the four term sequency ordered Walsh function se-
ries expansion of the ramp function.

Dyadic or Paley Ordering

The dyadic type of ordering was introduced by Paley (14). The
dyadic order is obtained by generating Walsh functions from
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–1 tsuccessive Rademacher functions. The set of Walsh and Rade-
macher functions that are referred to here as pal(n, t) and Figure 4. A set of the first eight Walsh functions arranged in dy-

adic order.rad(q, t) respectively have the following relation:
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Since all Radmacher functions except rad(0, t) are odd out affecting these orthogonal properties. This makes it possi-
ble to obtain a symmetrical Hadamard matrix whose first rowfunctions about t � 0.5, they do not form a complete set. On

the contrary, one can see that the Walsh functions constitute and first column contain only �1’s. The matrix obtained in
this way is known as the normal form for the Hadamard ma-a complete orthonormal set of functions. The Walsh series

representation of a function f (t), which is absolutely inte- trix. The lowest-order Hadamard matrix is of order two,
grable in [0, 1) in a dyadic ordering is

H2 =
[
1 1
1 −1

]
f (t) =

∞∑
m=0

cmpal(m, t) (7)

Higher-order matrices, restricted to having powers of 2, can
where be obtained from the recursive relationship

HN = HN/2 ⊗ H2cm =
∫ 1

0
f (t)pal(m, t) dt m = 0, 1, . . . (8)

where � denotes the direct or Kronecker product (16) and N
Let us now return to the Walsh coefficient evaluation in dy- is a power of 2. In the Kronecker product each element in the
adic ordering for ramp function. Substituting f (t) � t into Eqs. matrix (in this case HN/2) is replaced by the matrix H2. Thus,
(7) and (8), we have for N � 4 we have

f (t) = t = 1
2

pal(0, t) − 1
4

pal(1, t) − 1
8

pal(2, t) − 1
16

pal(4, t)

− 1
32

pal(8, t) − 1
64

pal(16, t) + · · · (9)
H4 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




The original curve f (t) � t and its Walsh series approxima-
Furthermore, if we now replace each element in the H4 matrixtions are shown in Figure 5. They are stairways waves. The
by an H2 matrix we obtain an H8 matrix. By replacing eachfirst representation is obtained by taking one term of the
row of this matrix by its equivalent naturally ordered WalshWalsh series, or �� pal(0, t); the second one is �� pal(0, t) � ��
functions we can form a series of functions which will indicatepal(1, t). Figure 5 shows up to a four term approximation.
the ordering obtained through this derivation. Therefore, forFrom the coefficient evaluation process, we can easily see the
a series consisting of eight terms we getsimilarities between the Fourier series and Walsh series.

Natural or Hadamard Ordering

This ordering was originally proposed by Henderson (15) and
follows the Hadamard matrix derived from successive Kro-
necker products. A Hadamard matrix is a square array whose
coefficients comprise only �1 and �1 and in which the rows
(and columns) are orthogonal to one another. In a symmetri-
cal Hadamard matrix it is possible to interchange rows and
columns or to change the sign of every element in a row with-

H8 = H4 ⊗ H2 =




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




=




had(0, t)
had(1, t)
had(2, t)
had(3, t)
had(4, t)
had(5, t)
had(6, t)
had(7, t)




Relationship Between Ordered Series

The wal(i, t), pal(i, t), and had(i, t), i � 0, 1, 2, . . . ordered
Walsh functions are related (1) through a bit reversal for the
position of each component in a series, (2) through a conver-
sion using a Gray code or (3) by a combination of both of
these. For example, given a function numbered in dyadic or-
dering, the corresponding sequency order is given by

0.5 pal(0,t) – 0.25 pal(1,t)

0.5 pal(0,t)

0.5 pal(0,t) – 0.25 
pal(1,t) – 0.125 pal(2,t)

f 
(t

) 
=

 t
f 

(t
) 

=
 t

f 
(t

) 
=

 t

t

t

t

pal(n, t) = wal(b(n), t)Figure 5. Expanding a ramp function into a Walsh series.
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Figure 6. Relationships between three
methods of ordering the Walsh functions
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where b(n) is a Gray-code-to-binary conversion of n. A proce- where
dure for carrying out this conversion is described by Yuen
(17). These relationships for N � 8 are shown in Fig. 6 in
which both dyadic and natural ordering are related to a se-

αi = m
∫ i/m

i−1/m
f (t) dt i = 1, 2, . . ., m

quency ordered.
and

Block-Pulse Functions

Block-pulse functions constitute another complete set of or-
γ = [α1 α2 · · · αm]T

B(t) = [b(1, t) b(2, t) · · · b(m, t)]T

thogonal basis functions. The type of approximation is the
same as with Walsh functions, the only difference being in
the simplicity of computations. The block-pulse function b(i,
t), i � 1, 2, . . ., m over a time interval t � [0, 1) is defined
as

b(i, t) =

1

i − 1
m

≤ t <
i

m
i = 1,2, . . ., m

0 otherwise
(10)

Thus, as shown in Fig. 7, the 8-order block-pulse functions
are time functions having a unit height and �� width. By using
the orthogonal property that is

∫ 1

0
b(i, t)b( j, t) dt =




1
m

i = j i, j = 1,2, . . ., m

0 i �= j

A time function f (t) which is absolutely integrable in t � [0,
1) can be approximately represented by a block-pulse series
as

b(1,t)+1

b(2,t)+1

b(3,t)+1

b(4,t)+1

b(5,t)+1

b(6,t)+1

b(7,t)+1

b(8,t)+1

t

Figure 7. A set of the first eight block-pulse functions.
f (t) =

m∑
i=1

aib(i, t) = γ T B(t)
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Relationship between Walsh and Block-Pulse Functions called an array generator. Ideally the generated waves will
be orthogonal to each other, and some designs are better in

A one-to-one relationship between Walsh and block-pulse
achieving this than are others.

functions was first offered in (18). In their work, Chen et al.
Two classifications of array generators are considered. The

used block-pulse operational matrices for simplifying their
first generates fixed sets of Walsh functions wal(n, t), where

approach in Walsh domain analysis. The completeness of the
only the sequency range of the entire array is controlled ex-

block-pulse functions was first proved by Rao and Srinivasan
ternally. These array generators find use in multiplexing and

(19) and later the convergent properties of the block-pulse se-
signal processing. The second classification includes genera-

ries as well as its completeness were investigated by Kwong
tors for which the sequency order n and/or the time interval t

and Chen (20).
are controlled externally. These are known as programmable

It was shown by Chen et al. (18) that the block-pulse func-
generators. Further subclassifications of programmable gen-

tions b(i, t) are related to the Walsh functions wal(i, t) by the
erators can be defined, namely, serial programmable genera-

relation
tors in which the time interval is fixed and the sequency order
controlled and parallel programmable generators in which theφb(t) = W(m×m)φw(t)
sequency range is fixed and the time interval controlled.

A global Walsh generator capable of producing three differ-where W(m�m) is a square matrix of order m called the Walsh
ent ordered outputs. These outputs are natural, sequency,matrix, �b(t) and �w(t) are block-pulse and Walsh vectors re-
and dyadic (26). This generator generates Walsh functionsspectively, defined by
through logical combinations of Rademacher functions. How-
ever, these methods are all implemented using hardware digi-
tal logic and sequential circuits.

φb(t) = [b(1, t) b(2, t) · · · b(m, t)]T

φw(t) = [wal(0, t) wal(1, t) · · · wal(m − 1, t)]T
The use of microprocessors for the generation of global

Walsh functions provides wider flexibility for low-cost applica-
The Walsh matrix has the following property: tions which can be controlled by supporting software with bet-

ter accuracy and much wider versatility. In system analysis,W2
(m×m) = mI(m) where the Walsh function technique provides easier mathe-

matical manipulations, for example, power-electronic systems
where I(m) is a unit matrix of order m. For m � 8 Walsh matrix (27), this kind of generator can be used to study system be-
is given by Eq. (1). havior where slow speed of software based generation does

Construction of any function in time domain is easier with not hinder the time responses.
block-pulse functions rather than with Walsh functions. If a
function is represented by block-pulse functions, then the am-
plitude of each block-pulse in any sub-interval represents the RELATIONSHIP BETWEEN WALSH AND FOURIER SERIES
average value of that function in that particular time in-
terval. When the Walsh series representation of a time signal is re-

Some properties of the block-pulse functions are (1) they quired to be converted to the more familiar Fourier series rep-
form a complete orthogonal set which could easily be normal- resentations, then the Fourier transforms of the Walsh func-
ized, (2) they are computationally much simpler, and yet pro- tions are needed in the conversion equations. A nonrecursive
duce the same numerical accuracy as that obtained by the algorithm by Siemens and Kitai (28) is used to set up the
Walsh function approach, (3) any number of block-pulse func- necessary conversion coefficients. A recursive formula by
tions can be used to form a complete set, while Walsh func- Blachman (29) is used to evaluate the Walsh transforms of
tions require 2p (p � 1, 2, . . .) component functions to form sinusoids. This formula can also be modified to yield the Fou-
a set suitable for analytical manipulations, and (4) they need rier transform of Walsh functions. The result in both cases is
less computation time as well as computer memory space the same, although in the former case the resulting conver-
than Walsh functions (21–23). sion matrix is more easily obtainable. A brief review of Fou-

rier series follows.
WALSH FUNCTION GENERATOR A periodic function f (t) defined over the interval 0 to 1 may

be expanded into Fourier series as follows
The Walsh function and Walsh transform are important ana-
lytical and hardware tools for signal processing. They have
found wide application in digital communications (24) as well f (t) = a0 +

∞∑
n=1

{an cos(2nπt) + a∗
n sin(2nπt)} (11)

as in system analysis (25). Walsh function generators have
frequent use in many areas of electrical engineering. Imple-

where the Fourier coefficients an and a*n are given bymentation of such generators through hardware logic gives
rise to orthogonality error. Orthogonality error is the shift of
the transition points of the Walsh functions of Fig. 3 or Fig.
4 from their assigned places in the time scale.

The sequency generators having the widest applicability
are those generating a set of Walsh series, although in some
cases the series are obtained by first generating a series of
Radmacher functions. A generator that produces a set of m
Walsh functions wal(n, t) where n � 0, 1, . . ., m � 1, is

a0 =
∫ 1

0
f (t) dt

an = 2
∫ 1

0
f (t) cos(2nπt)dt n = 1, 2, . . .

a∗
n = 2

∫ 1

0
f (t) sin(2nπt)dt n = 1, 2, . . .
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if f (t) is truncated up to its first 2r � 1 terms, then Eq. (11) v of the conversion matrix B. These elements can be
calculated according to the following equations (30).can be written as

f (t) = a0 +
r∑

n=1

{an cos(2nπt) + a∗
n sin(2nπt)} = AT�(t) (12)

where the Fourier series coefficient vector A and the Fourier
series vector 
(t) are defined as

B(u,v) = 2(−1)y0 (− j)d

[
h−1∏
w=0

cos
( uπ

2u+1 − ywπ

2

)]

×
sin

(uπ

2h

)
uπ

2h

where y0 is the least significant bit in the Gray code
expression of y and j � ��1.

A = [a0 a1 a2 · · · ar a∗
1 a∗

2 · · · a∗
r ]T

�(t) = [φ0(t) φ1(t) · · · φr(t) φ∗
1 (t) · · · φ∗

r (t)]T

The sequency-ordered matrix B of order 8 � 8 can be
with obtained as follows (30,31):

φn(t) = cos(2nπt) n = 0, 1, 2, . . .

φ∗
n(t) = sin(2nπt) n = 1, 2, . . .

The elements of 
(t) are orthogonal in the interval t � [0, 1).
The sal and cal terms defined in Eqs. (2) and (3) for the

Walsh functions are analogous to sine and cosine terms in the
Fourier series, respectively. In a similar fashion to Fourier
series expansion by truncating Eq. (4), any time signal f (t)




1 0 0 0 0 0 0 0
0 1.27 0 −0.527 0 −0.105 0 −0.253
0 0 1.27 0 0 0 −0.527 0
0 0.424 0 1.02 0 −0.685 0 0.284
0 0 0 0 1.27 0 0 0
0 0.255 0 0.615 0 0.092 0 −0.381
0 0 0.424 0 0 0 1.02 0
0 0.182 0 −0.007 0 0.379 0 0.914




can be expressed as a sum of Walsh functions as

Relationship between Block-Pulse and Fourier Series

Using Eq. (10), the Fourier series for b(n, t) is given by
f (t) = d0wal(0, t) +

m−1∑
i=1

diwal(i, t) = DTφw(t) (13)

where b(n, t) = b0 +
k∑

i=1

[bni cos(2iπt) + b∗
ni sin(2iπt)] (14)

where
d0 = 2

∫ 1

0
f (t)wal(0, t) dt

d1 =
∫ 1

0
f (t)wal(i, t) dt, i = 1, . . ., m − 1

b0 =
∫ 1

0
b(n, t) dt = 1

m
(15)

and

D = [d0 d1 · · · dm−1]T

bni = 2
∫ 1

0
b(n, t) cos(2πit) dt

= 2
πi

sin
(

πi
m

)
cos

(
πi
m

(2n − 1)

)
i = 1, . . ., k

n = 1, . . ., m

(16)

Using Eqs. (11) and (12), the following expression holds

and
Bφw(t) = �(t)

where B is the Fourier–Walsh conversion matrix.
The inverse relation is also valid

b∗
ni = 2

∫ 1

0
b(n, t) sin(2πit)dt

= 2
πi

sin
(

πi
m

)
sin

(
πi
m

(2n − 1)

)
i = 1, . . ., k

n = 1, . . ., m

(17)

φw(t) = B−1�(t)

Using Eqs. (14–17) the following expression holdsThe following steps can be used to create the conversion
matrix B:

B(t) = R�(t)

1. For Walsh function order number v, obtain its binary where R is the m � (1 � 2k) Fourier block-pulse conversion
equivalent expression b. matrix given by

2. Convert b to its Gray code equivalent y.
3. The total number of bits in y is h and the number of

bits with the binary value 1 in y is d.
4. The Fourier coefficient of order u of the Walsh function

of order v appears as the element in row u and column

R =




b0 b11 · · · bik b∗
11 · · · b∗

1k
...

...
. . .

...
...

. . .
...

b0 bm1 · · · bmk b∗
m1 · · · b∗

mk



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and

�(t) = [1 cos(2πt) · · · cos(2kπt) sin(2πt) · · · sin(2kπt)]T

For example for k � 5 and m � 6, we get

E(8×8) =




1
2

−1
4

−1
8

0 − 1
16

0 0 0

1
4

0 0 −1
8

0 − 1
16

0 0

1
8

0 0 0 0 0 − 1
16

0

0
1
8

0 0 0 0 0 − 1
16

1
16

0 0 0 0 0 0 0

0
1

16
0 0 0 0 0 0

0 0
1

16
0 0 0 0 0

0 0 0
1
16

0 0 0 0




It is preferable to make the dimension of the matrix equal to
2n, where n is an integer. Making this choice will enable us to
obtain simpler results. It is noted that

R = 1
6




1 1.654 0.827 0 −0.414 −0.331
1 0 −1.654 0 0.827 0
1 −1.654 0.827 0 −0.414 0.331
1 −1.654 0.827 0 −0.414 0.331
1 0 −1.654 0 0.827 0
1 1.654 0.827 0 −0.414 −0.331

0.955 1.432 1.273 0.716 0.191
1.910 0 −1.273 0 0.382
0.955 −1.432 1.273 −0.716 0.191

−0.955 1.432 −1.273 0.716 −0.191
−1.910 0 1.273 0 −0.382
−0.955 −1.432 −1.273 −0.716 −0.191




using Eq. (12), we get

∫ t

0
pal(0, t) dt = t

therefore, the first row of E is the first four terms of Eq. (9).
A = RTC A general formula for E(n�n) can be written as

Application of Walsh Functions in Dynamic
Systems, Identification, and Control

The initiation of the analysis of dynamic systems in the time
domain via Walsh functions was made by Corrington in 1973
(32) in his paper on the solution of differential and integral
equations. The key idea was the observation that successive
integrals of Walsh functions are expressed as Walsh series
with well-defined, tabulated coefficients. The differential
equation is solved for the highest derivative, and the result is
then integrated as many times as required to give the solu-

E(n×n) =




1
2

− 2
n

In/8

2
n

In/8 0n/8

− 1
n

In/4

1
n

In/4 0n/4

− 1
2n

In/2

1
2n

In/2 0n/2




(18)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - -

--------------

---------------------

---------------------------

tion. Two years later, Chen and Hsiao (33) presented the solu-
tion of dynamic systems in state space formulation by a more It is interesting to note that if Eq. (18) is partitioned into four
systematic use of the Walsh function integration property ex- parts as shown, the upper left part of E(n�n) is identical to
pressed by an operational equation as

E
( n

2 × n
2 )

and the upper left corner of

∫ t

0
P(t)dt = EP(t)

where E
( n

2 × n
2 )

is E
( n

4 × n
4 )

Therefore, this regularity of the structure of the E matrix en-P(t) = [pal(0, t) pal(1, t) · · · pal(n − 1, t)]T

ables us to write the nth enlarged matrix to any dimension,
if the dimension number is restricted to 2n where n is an inte-

and E is a well-defined operational matrix. Using this opera- ger number.
tional equation, the state-space differential system is con- Let us illustrate the application of operational matrix of
verted to a linear algebraic system, which has to be solved for integration by solving the following state equation
a set of unknown Walsh series coefficients. In what follows
the operational matrix for Walsh functions will be briefly dis- ẋ(t) = Ax(t) + Bu(t) x(0) = x0
cussed.

Let us take pal(0, t), pal(1, t), . . ., pal(7, t) and integrate where x(t) is a state vector of n components and u(t) is an
them; we will have various triangular waves (33). If we evalu- input vector of l components. A and B are n � n and n � l
ate the Walsh coefficient for these triangular waves, we get matrices, respectively. We now solve the state equations via

Walsh series.the following matrix for E(8�8):
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First we assume the rate variable vector ẋ(t) can be ex- incorporated in a close-loop optimal controller. Both continu-
pressed as ous and discrete time systems, time-invariant, and time-vary-

ing are considered. The solution provides a computational al-
gorithm that gives the Walsh expansion coefficients of theẋ(t) = [c0 c1 · · · cm−1]P(t) = CP(t)
state and observer output. Further, Chen and Hsiao applied

where each ci, i � 1, . . ., m � 1, is an n vector. The state Walsh functions (1) to solve the problems of linear systems by
variable x(t) may be obtained as the state space model (36), (2) for time domain synthesis (37),

(3) To solve the optimal control problem (38), (4) in the varia-
tional problem (39), and (5) for fractional calculus as applied
to distributed systems (40).

x(t) = C
∫ t

0
P(t) dt + x0

Additionally, Walsh functions proved to be very powerful
Also the input vector can be expressed by Walsh series as in solving the identification (or synthesis) problem of dynamic

systems from given input-output records. The paper by Chen
u(t) = HP(t) and Hsiao (37) appears to be the first work in which the prob-

lem of identifying dynamic systems is solved with the aid of
where H is a l � m matrix. Thus we get Walsh functions. The key idea is the application of repeated

integration together with the Walsh operational matrix em-
CP(t) = A(CEP(t) + x0) + BHP(t)

ployed for determining the system response. In Ref. 41, bilin-
ear system identification is considered and solved by using

Ax0 can also be written as the Walsh operational matrix and the group properties of
Walsh functions. The same type of systems were also re-Ax0 = Ax0P(t) = [Ax0 0 · · · 0]P(t) = GP(t)
searched by Chen and Shih (42).

Rao and Palanisamy (43) provides a methodology for im-Finally we have
proving the identification accuracy of continuous systems
through the so-called one-shot operational matrices for re-C = ACE + G + BH
peated integration via Walsh functions. Further, a multistep
parameter estimation algorithm is given in Ref. 43 for sys-hence
tems with large, unknown time delays. Some additional
works in the area of systems identification via Walsh func-C = ACE + K
tions are described in Rao and Sivakumar (44), Gopalsami

where and Deekshatulu (45), Tzafestas and Chrysochoides (46), and
Tzafestas, Papastergoius, and Anoussis (47).

Moreover, Rao used Walsh function for (1) optimal controlG + BH = K
of time delay systems (48) (2) identification of time-lag sys-

If we arrange the n � m matrix C as an nm vector c by chang- tems (49) (3) transfer function matrix identification (50) (4)
ing its first column into the first n components of the vector; parameter estimation (25) (5) solving functional differential
the second column, the second n components of the vector, equations and related problems (51). Rao and Tzafestas (52)
and so on; and rearrange K in the same manner; we obtain indicated the potentiality of Walsh and related functions in

the area of systems and control in a review paper.
c = (A ⊗ ET )c + k (19) W. L. Chen defined a shift Walsh matrix for solving delay-

differential equations (53) and used Walsh functions for pa-where � denote Kronecker product. Using Eq. (19), the solu-
rameter estimation of bilinear systems (42) as well as in thetion of c is
analysis of multidelay systems (54). Paraskevopoulos deter-
mined the transfer function of a single input single outputc = [I − A ⊗ ET ]−1k
(SISO) system from its impulse response with the help of
Walsh functions and a fast Walsh algorithm (55). Tzafestasonce c has been decided, the Walsh series representation for
applied a Walsh series approach for lumped and distributedthe rate variable is determined. The state variable vector is
system identification (56). Mahapatra used Walsh functionsthen found by substitution.
for solving matrix Riccati equation arising in optimal controlIn addition to being applied to system analysis Walsh func-
studies of linear diffusion equation (57). Mouldeens work wastion expansions have also been applied with success to the
concerned with the application of Walsh spectral analysis ofdesign and implementation of optimal filter and controllers,
ordinary differential equations in a very formal as well asnaturally providing piecewise constant approximations of the
mathematical manner (58). Deb and Datta was the first tooptimal feedback gains. Previously, such approximations
define Walsh operational transfer function for analysis of lin-were determined by prespecifying the structural form of the
ear SISO systems (27,59) and Deb, Sen, and Datta (60) gavetime varying gains by Kleinman, Fortmann, and Athans in
a review paper in Walsh functions and their applications in1968 (34). The idea in using Walsh function series in optimal
1992.control problems was first employed by Chen and Hsiao (33).

The mathematical basis of Walsh function methods has be-Essentially, the method belongs to the direct variational ap-
come strong and versatile enough to encourage their applica-proach and is very powerful and easily implemenable. Tzafes-
tion to the analysis of power-electronic circuits, and systemstas and Stavroulakis (35) used finite Walsh series expansion

for designing approximate (suboptimal) observers and filters (31–61). From the study of different aspects of the Walsh
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functions, we find the following properties suitable for appli- The techniques of domain analysis have also led to their use
in the design of higher logic functions such as threshold logiccation to the analysis power-electronic systems
gates (70). Here a subset of Walsh series, known as the Chow
parameters (71), have proved particularly useful. In addition1. Any member of the Walsh-function set resembles, to
to these, application of Walsh functions has expanded to thesome extent, the typical switching pattern of a power-
formulation of multiinput gate structures (72), digital systemelectronic converter. Hence, the voltage output of such
fault diagnosis (73), digital circuit synthesis (74), and othera converter can be well represented by Walsh functions.
related areas.2. Walsh functions are defined in time domain. Thus, we

The widespread interest in practical applications of Walshdo not need any inverse transformation as we do in La-
functions has stimulated further contributions to the mathe-place domain analysis.
matical theory. Of special interest is the logical differential3. The set of Walsh functions is complete and orthonor-
calculus of Gibbs (75–76). In contrast to the sine-cosine func-mal, thereby offering the facility for easier mathemati-
tions, which often represent the characteristic solution to cer-cal manipulations, including the design of fast computa-
tain linear differential equations, the Walsh functions aretional algorithm.
shown to represent the solutions to what is known as the logi-
cal differential equations. Applications of Gibbs derivative are

Application of Walsh Functions in Different
found in mathematical logic (77), approximation theory (78),

Areas of Science and Technology
statistics (79–80), and linear system theory (81).

Scientists have found that the binary nature of Walsh func-
tions and its striking similarity to the familiar sine–cosine SUMMARY
functions could adapt it for application in many areas of sci-
ence and technology. With the efforts of many researchers during the past twenty

In the early 1960s, the first significant application of a five years, the mathematical basis of Walsh functions meth-
Walsh function in the field of communications was noted. The ods has become strong and versatile. This basis encourages
credit goes mostly to Harmuth and his associates (62–64). the application of these methods to the analysis of problems
Consequently, the Walsh functions were found to be an effi- related to circuits, systems, and communications. When the
cient tool in the field of signal multiplexing. Several experi- analysis is carried out in the sequency domain instead of fre-
mental multiplexing systems were developed which made use quency domain, the method is straightforward, elegant, and
of this nonsinusoidal technology. compatible with easy computer manipulations.

In the multiplexing scheme, several independent signals
are sent via a common communication channel. Walsh func-
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