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WAVELET TRANSFORMS

Functions that oscillate over time are often called waves. If
the function is such that it oscillates only in a localized region
and goes to zero outside the region it may be called a wavelet.
Thus we say wavelets are localized waves. This is analogous
to many processes in nature. Consider a sound wave that
starts out at zero, builds to some maximum, and then dies
out to zero. If the duration of the sound is a few seconds we
say the scale for the process is on the order of seconds. When-
ever examining some physical object scale plays an important
role. For example, when looking at another human at a scale
of about a meter you see the whole individual, but if you ex-
amine the same individual at a scale of about a centimeter
you can see details such as whorled ridges that form the fin-
gerprint.

The fundamental role of the wavelet transform is to facili-
tate the analysis of signals or images according to scale.
Wavelets are functions with some very special mathematical
properties that serve as a tool for efficiently dividing data into
a sequence of frequency components without losing all infor-
mation about position. This can be thought of in terms of
viewing an object through different size windows. If a large
window is used we see gross features, and if a small window
is used we only see small detail features. There are many
similarities between wavelet analysis and classical windowed
Fourier analysis. The goal in the latter is to determine the
local frequency content of a signal by using sine and cosine
functions multiplied by a sliding window. The wavelet analy-
sis makes use of translations and dilations of an oscillating
wavelet, called the mother wavelet, to characterize both spa-
tial and frequency contents of a signal. The properties of this
analyzing wavelet are very different from those of sines and
cosines. These differences make it possible to approximate a
signal contained in a finite region or a signal with sharp
changes with a few coefficients, something not possible with
classical Fourier methods.
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Many of the principles that are the foundation for wavelet
analysis emerged independently in mathematics, physics,
geophysics, and engineering. In most cases the concepts came
from the motivation to solve some problem that related to res-
olution or scale. During the last decade wavelets have been
used with great success in a very wide variety of areas, in-
cluding image compression, coding, signal processing, numeri-
cal analysis, turbulence, acoustics, seismology, and medical
imaging.

There are some basic mathematical concepts that must be
understood prior to a full explanation of the two types of
wavelet transforms, the continuous transform and the dis-
crete transform. The next section on basic concepts from lin-
ear algebra and Fourier analysis can be skipped by those who
have already reached that level of mathematical sophisti-
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Figure 2. Two simple curves. The curve in Fig. 1 is the sum of these
two curves.

BASIC CONCEPTS

Basis Technical Definitions: Motion that repeats in equal inter-
vals of time is called periodic. The period is the time requiredOne of the most fundamental ideas associated with many
for one complete cycle or oscillation. The frequency is the repe-areas of mathematics is the concept of a basis. A simple illus-
tition rate of a periodic process. This is the number of cyclestration serves to get the idea across. Suppose we have a curve
that occur over a given interval of time. If the period is given(waveform or signal) that looks somewhat complicated, as in
in seconds, the frequency is in hertz, abbreviated Hz. In Fig.Fig. 1. (In practice this could be a voltage that varies in time.)
2, if the x axis represents time (in seconds) the frequenciesHow could you explain to someone who could not see the
are 1 Hz and 3 Hz for the two curves.curve just what it looks like? One possible way is to think of

the complicated curve as being made up of the sum of several
The concept of a basis comes from an extension of the ap-simple curves. The complicated curve is selected so that it is

proach used to produce the curve in Fig. 1 from the sum ofexactly the sum of two simple curves shown in Fig. 2. The
the curves in Fig. 2. If the basis is selected so that it is com-simple curves are known as sine curves. These fundamental
plete, an arbitrary curve can be replaced by a sum of basiccurves can be described in terms of how many times they go
curves. When this is done for periodic functions using sine orthrough a complete cycle. Note that the low-frequency curve
cosine curves with different frequencies and amplitudes it isgoes through one cycle and the higher frequency curve goes
called a Fourier series decomposition. If the original functionthrough three cycles. Also note that the low-frequency curve
is not periodic and can be defined over the entire x axis suchhas two times the amplitude of the high frequency curve. You
that its area is finite, a Fourier transform is used.could tell someone exactly how to reproduce the more compli-

The important concept here is that there is a formal waycated curve by giving the information about frequency and
to represent a function or waveform as a sum of basic parts.amplitude for the two basic curves. For those familiar with
Fourier analysis corresponds to the language used, and thereformulas for sine curves, the complicated curve is given by
is a prescription for calculating the coefficients in the sum.y � 2 sin(2�x) � sin(6�x).
This corresponds to finding the amplitudes in Fig. 2. You
might think of this as a sort of mathematical prism. The
prism breaks light into various colors in much the same way
the Fourier analysis breaks the complicated waveform into
component parts.

When considering all sorts of waveforms an obvious ques-
tion emerges. Under just what conditions is Fourier analysis
the appropriate mathematical language to use to decompose
the waveform? The complete answer to this question is the
subject of the enormous literature on Fourier series and Fou-
rier transforms. There are some simple answers that will suf-
fice for our purposes. The sum in a typical Fourier series prob-
lem is an infinite sum. This means an infinite number of
coefficients must be computed to represent the function. It
seems we have made the problem more complicated! It turns
out that in many physical situations only a few coefficients
are needed to give an adequate description of the waveform.
The coefficients associated with the high-frequency sines and
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cosines approach zero as the frequency increases. You can
think about it this way: The large coefficients correspond toFigure 1. A complicated curve.
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the case where there is a fair match between the original
function and the basic sine or cosine. If the original waveform
changes slowly relative to the high-frequency oscillations
there is a poor match, and consequently the coefficients are
very small. More will be said about this in the sections that
follow.

Orthogonality

Another concept that is essential is that of orthogonality. Re-
call from elementary geometry, if two line segments are per-
pendicular we say they are orthogonal. If we make vectors out
of line segments by giving them properties of magnitude and
direction we can determine whether they are orthogonal or
not by computing their scalar product. This is sometimes
called the dot or inner product. If the scalar product is zero
they are orthogonal. Another way to think about this is that
orthogonal vectors do not have any components in common,
or they contain completely independent information. The

Time domain Frequency domain

same type of thing can be defined for functions; however, the
rule for doing the scalar product is different. It involves doing Figure 3. Signals concentrated in one domain are spread in the

other domain.an integral of the product of two functions. The coefficients in
a Fourier series expansion can be found by computing scalar
products of the original waveform multiplied by sine and co-

Time and Frequency Domainssine functions with different frequencies. The important point
is that the building blocks, the sines and cosines of different When we look at the signal in the time domain we have full
frequencies, are orthogonal and complete. An important con- information about the amplitude of the signal at any time.
sequence is that the frequency content of the waveform can When we do the Fourier decomposition we have full informa-
be determined in an unambiguous way. Also, an orthogonal tion about the frequency content of the signal, but the time
transformation allows perfect reconstruction of the original information is not apparent. The inverse transform yields the
waveform and eliminates redundancy. Generally, orthogonal time information, but then the frequency spectrum is not ap-
transformations are more efficient and easier to use. parent. Another way to think about this is to observe that a

very sharp signal in the time domain is flat in the frequency
domain. Inspection of the frequency spectrum does not tellSampling and the Fast Fourier Transform
when the sharp signal occurred in time. Some time domain

In nature many waveforms are continuous functions of time. and frequency domain transform pairs are shown in Fig. 3.
If we want to work with these signals using digital computers The important point is that signals localized in time are
it is necessary to find a discrete representation. This means spread in frequency and those spread in time are localized
we have to sample the continuous function. There is an ex- in frequency.
tremely important theorem known as the Shannon sampling
theorem that is invoked in these situations. Proofs are given

CLASSIFICATION OF SIGNALS
in most standard texts on Fourier analysis, for example,
Bracewell (1) and Brigham (2). The theorem states that a con- It is useful to give a broad classification of signals as station-
tinuous signal can be represented completely by and recon- ary, quasi-stationary, and nonstationary. A signal is station-
structed perfectly from a set of measurements (samples) of its ary if its statistical properties are invariant over the time du-
amplitude made at equally spaced times. The time interval ration of the signal. For these signals the probability of
between samples must be equal to or less than one-half the unexpected events is known in advance. If there are transient
period of the highest frequency present in the signal. For ex- events (such as blips or discontinuities) in the signal that can-
ample, for a typical voice signal the frequency range is from not be predicted, even with knowledge of the past, the signal
0 Hz to 4,000 Hz. This signal must be sampled 8,000 times is nonstationary. Consider viewing the signal through a win-
per second in order to describe it perfectly. In practice the dow of some width; that is, look at a section of the signal. A
idea of perfect reconstruction must be compromised. When signal is called quasi-stationary if the signal is stationary at
the amplitude is sampled with real physical apparatus there the scale of the window.
must be some sort of round off. In speech transmission an The ideal tool for studying stationary signals is Fourier
error of 1% is often sufficient for practical purposes. analysis. The study of nonstationary signals requires other

Another development that helped usher in the digital com- techniques. One of these is the use of wavelets. An important
munication revolution is the Fast Fourier Transform (FFT ). technique for the study of quasi-stationary signals came be-
For n sampled points this reduces the number of computa- fore wavelets and will be discussed first.
tions from n2 to n log n. This is especially important for large The desire to maintain information about time when doing
values of n. A very interesting discussion of the FFT is given Fourier decompositions leads to the short-time Fourier trans-

form (STFT), sometimes called the windowed Fourier trans-by Heideman, Johnson, and Burrus (3).
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as a Gabor transform in honor of early work done by Dennis
Gabor (4). Difficulties in connection with this approach in-
volve both orthogonality and invertibility. An introduction to
the STFT and the wavelet transform is given by Rioul and
Vetterli (5). The close connection with wavelets is illustrated
in Fig. 4. Note that the main difference is that the functional
form of the wavelet does not change, hence the name mother
wavelet. The choices for the mother wavelet are virtually un-
limited. This is in sharp contrast to Fourier analysis where
the basis functions are sines and cosines.

The mother wavelet is allowed to undergo translations and
dilations. It is the various translations and dilations of the
mother wavelet that form the basis functions for the wavelet
transform. This stretching or compressing of the wavelet
changes the size of the window and allows the analysis of
signals at different scales. This is in some sense like a micro-
scope; the wide stretched out wavelets are used to give a
broad approximate image of the signal while the smaller and
smaller compressed wavelets can zoom in on finer and finer
details.

(a) (d)

(b) (e)

(c) (f)

TIME–FREQUENCY RESOLUTIONFigure 4. Comparison of STFT and wavelets. On the left, select the
window and allow different frequency sinusoids to fill the window. On

We have already seen that sharp signals in the time domainthe right, select the mother wavelet, then translate and dilate the
wavelet. The second wavelet is expanded and shifted to the left. The correspond to flatness in the frequency domain. If the window
third wavelet is compressed and shifted to the right. for the STFT is selected as in the third row of Fig. 3 then the

tiles that represent the essential concentration in the time–
frequency plane are squares as indicated on the left in Fig. 5.
For a window fixed at one position along the time axis, goingform. The idea is to select a window with fixed width and

slide it along the signal. The Fourier decomposition is done up vertically corresponds to higher and higher frequency si-
nusoidal curves contained within the window. The corre-for several short times of the signal rather than for the entire

signal all at once. By a proper choice of the window it is possi- sponding tiles for the wavelet transform are shown on the
right in Fig. 5. Here the wavelet that is stretched out over theble to maintain both time and frequency information; thus,

this transformation is known as a time–frequency decomposi- time axis (low frequency) has a narrow concentration in the
frequency domain. As the wavelet is compressed (higher fre-tion. When the window is a Gaussian the transform is known
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Figure 5. Left: Time and frequency resolution for STFT. Right: Time and frequency resolution
for WT. The tiles indicate the region of concentration in the time–frequency plane for a basis
function. As an illustration, if the tile labeled (b) corresponds to (b) in Fig. 4, then tile (c) could
correspond to (c) in Fig. 4. The corresponding comparison for wavelets is for tiles labeled (d) and
(f) with (d) and (f) in Fig. 4.
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quencies, smaller time window) the concentration in the fre- The important point of all of this is that the foundations of
wavelet transforms were implicit in several areas of science,quency domain is less and less concentrated. Think about this

in terms of the curves in Fig. 3 where small time windows but those working in the various areas were not communicat-
ing outside their own field. The grand unification came as acorrespond to broad frequency windows. This helps in under-

standing how scale plays such an important role in the wave- surprise to many and is certainly one reason why this subject
has become so popular. Several people made important contri-let transform.
butions to this unification. Yves Meyer, in the foreword to the
book by Hernández and Weiss (10), gives special tribute to
Alex Grossmann and Stéphane Mallat.SOME HISTORY

In the early 1980s Jean Morlet, a geophysicist with the
French oil company Elf-Aquitaine, coined the name waveletThere are many avenues that can be followed in trying to
in connection with analysis of data in oil prospecting [seetrace the history of wavelets. Barbara Burke Hubbard (6) has
Morlet et al. (25)]. Morlet’s early work was based on exten-a quote in her beautiful discussion of wavelets by Yves Meyer.
sions of the Gabor transform coupled with the fundamentalHe says: ‘‘I have found at least 15 distinct roots of the theory,
idea of holding the number of oscillations in the window con-some going back to the 1930s.’’ Seven of these sources in pure
stant while varying the width of the window. Morlet devel-mathematics are discussed in some detail in the translation
oped empirical methods for decomposing a signal into wave-of some Meyer’s (7) lecture notes. The reader with some back-
lets and then reconstructing the original signal, but it wasground in harmonic analysis will find this discussion covering
not clear how general the numerical techniques were. Morlet70 years of mathematics fascinating: the Haar basis (1909),
was referred to Alex Grossmann who had extensive experi-the Franklin orthonormal system (1927), Littlewood–Paley
ence in Fourier analysis as utilized in quantum mechanics. ittheory (1930), Calderón–Zygmund theory (1960–1978), and
took them about two years to determine that the inversionthe work of Strömberg (1980). In addition to the lecture notes
was exact, and not an approximation [Grossmann and Mor-by Meyer, references for this background include Haar (8),
let (26)].Franklin (9), Hernández and Weiss (10), Edwards and

During 1985–1986 Stéphane Mallat (27,28), an expert inGaudry (11) for Littlewood–Paley theory, Stein (12) for Calde-
computer vision, signal processing, and applied mathematics,rón–Zygmund theory, and Strömberg (13).
discovered some important connections among: (1) the quad-This work done by mathematicians is now understood as
rature mirror filters, (2) the pyramid algorithms, and (3) thepart of the history of wavelets. The term ‘‘atomic decomposi-
orthonormal wavelet bases of Strömberg Meyer, building ontions’’ was used in place of the term wavelets. During this
the work by Mallat, constructed wavelets that are continu-period from 1910 to 1980, mathematicians from the Univer-
ously differentiable but they do not have compact support. (Asity of Chicago (location of Zygmund and Calderón) were lead-
function with compact support vanishes outside a finite inter-ers in harmonic analysis, but apparently they did not interact
val.) A full discussion of these Meyer wavelets is given byvery much with the experts in physics and signal processing.
Ingrid Daubechies (29), where she points out that Meyer actu-In physics, the ideas underlying wavelets are present in
ally found this basis while trying to prove the nonexistence ofNobel laureate Kenneth Wilson’s (14) work on the renormal-
such nice wavelet bases. It requires a considerable amount ofization group. A review of some of Wilson’s work and other
work to calculate the wavelet coefficients for the Meyer wave-uses of wavelets in physics is given by Guy Battle (15,16).

Wavelet concepts also appear in the study of coherent states lets, and Daubechies wanted to construct wavelets that would
be easier to use. She had worked with Grossmann in Francein quantum mechanics. This work dates from the early 1960s

by Glauber (17) and Aslaksen and Klauder (18,19). on her Ph.D. research in physics and she knew about Mallat
and Meyer’s work before it was published. She demanded or-In parallel with advances in mathematics and physics

there were important ideas fundamental to wavelets being de- thogonality, compact support, and some degree of smoothness
(wavelets with vanishing moments). These constraints are soveloped in signal and image processing. This work was mostly

in the context of discrete-time signals. As is often the case in much in conflict that most people doubted such a task could
be accomplished. After some very intense work she had theapplied science much of this work was driven by the need to

solve a problem. We have already mentioned the work by Ga- construction by the end of March 1987. See the revealing
quote on page 47 of Hubbard (6). This work is elegant and thebor who introduced concepts very close to wavelets in speech

and signal processing. A technique called subband coding was Daubechies wavelets have become the cornerstone of wavelet
applications throughout the world. The first publication onproposed by Croisier, Esteban, and Galand (20) for speech

and image compression. This work and related work by Es- her construction is in Ref. 30. Other relevant descriptions are
in Refs. 29 and 31.teban and Galand (21) and Crochiere, Webber, and Flanagan

(22) made use of special filters known as quadrature mirror This concludes an all too brief history of a topic that has
roots reaching into the core of pure and applied mathematics,filters (QMF). This led to important work in perfect recon-

struction filter banks discussed in detail by Vetterli and Ko- physics, geophysics, computer science, and engineering. The
reader with interest in these matters will find the informalvac̆ević (23). Other important relevant work was the develop-

ment of pyramidal algorithms in image processing by Burt discussion by Ingrid Daubechies (32) both enjoyable and en-
lightening. In that discussion she does not cite specific refer-and Adelson (24), where images are approximated proceeding

from a coarse to fine resolution. This idea is similar to the ences, but all of the characters in the story are identified in
the bibliography or reading list for this article or in the booksmultiresolution framework currently used in connection with

the discrete wavelet transform. by Vetterli and Kovac̆ević (23) and Daubechies (29).
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THE CONTINUOUS WAVELET TRANSFORM The continuous wavelet transform has an energy conserva-
tion property that is similar to Parseval’s formula for the Fou-

Families of continuous wavelets are found by shifting and rier transform. The function f (x) and its continuous wavelet
scaling a ‘‘mother’’ wavelet �(x) transform f̃(a, b) satisfy

ψa,b = 1√
a

ψ

�x − b
a

�
, a, b ∈ R, a �= 0 (1)

∫ ∞

−∞
| f (x)|2 dx = 1

Cψ

∫ ∞

−∞

∫ ∞

−∞

da db
a2 | f̃ (a,b)|2 (4)

The parameter a is the scale parameter, b is the shift parame-
The wavelet transform has localization properties. There is ater, and � is the set of real numbers. One possible identifica-
sharp time localization at high frequencies, in marked con-tion for � is the Mexican hat function,
trast with Fourier transforms. For example, the wavelet
transform of a delta function centered at x0 is

ψ(x) = 2√
3

π−1/4(1 − x2)e−1/2x2

This function is the second derivative of a Gaussian e	1/2x2
. The

1√
a

∫ ∞

−∞
ψ

�x − b
a

�
δ(x − x0) dx = 1√

a
ψ

�x0 − b
a

�

normalization is such that its square integrated over the real
line is unity, L2(�) norm equal to 1. This is the function used

For a given scale factor a the transform is equal to a scaledfor illustration on the right side of Fig. 4. The reason for the
and normalized wavelet centered at the location of the deltaname comes from the image generated by a rotation around
function.its axis of symmetry (29). Observe that for large a the basis

function �a,b is a stretched out version of � and small a gives
a contracted version.

If the basis functions are required to satisfy a complete- DISCRETE WAVELET TRANSFORM
ness condition, then it is necessary for the wavelet to satisfy
an ‘‘admissibility’’ condition (23) The wavelet transform has to be discretized for most applica-

tions. One way to approach this is to attempt to directly dis-
cretize the continuous wavelet transform and find a discrete
version of the reconstruction formula given in Eq. (3). In ef-

Cψ =
∫ ∞

−∞

|ψ̂ (ξ )|2
ξ

dξ < ∞
fect this means replace �a,b by �m,n with m, n � �, where � is
the set of integers. The appropriate replacements for a and bwhere �̂ is the Fourier transform of �,
are (23,29)

ψ̂ (ξ ) =
∫ ∞

−∞
ψ(x)e−ixξ dx

a = am
0 , b = nb0am

0 , a0 > 1, b0 > 0

This means that for practical cases we must require (Let � � When this is done, it turns out that in the discrete parameter
0 in the formula for the Fourier transform):

case there is no direct generalization of Eq. (3); however, for
certain � and appropriate a0 and b0 there exist �̃m,n such that∫ ∞

−∞
ψ(x) dx = ψ̂ (0) = 0

f =
∑
m,n

〈ψm,n, f 〉ψ̃m,n

Thus, the wavelet function cannot be a symmetric positive
‘‘bump’’ function like a Gaussian, but must wiggle around the

This leads to the introduction of frames and dual frames.x axis like a wave. The zero of the Fourier transform at the
These represent an alternative to orthonormal bases in a Hil-origin and the decay of the spectrum �̂ at high frequencies
bert space [see Heil and Walnut (33)]. This approach will notimplies that the wavelet has a bandpass behavior.

The continuous wavelet transform of a function f (x) is de- be pursued here. We refer the reader to standard references
fined by (10,23,29,33).

The approach presented here leads to the construction of
orthonormal wavelet expansions for discrete sets of data. We
do not start with a continuous wavelet and attempt to find a

f̃ (a,b) = 〈ψa,b, f 〉 =
∫ ∞

−∞
ψa,b(x) f (x) dx (2)

discrete counterpart. We make full use of multiresolution, the
for a real set of basis functions. The function f is recovered idea of looking at something at various scales or resolutions.
from the transformed function f̃ by the inversion formula

Multiresolution Analysis

In this approach another function � plays a fundamental role
f (x) = 1

Cψ

∫ ∞

−∞

∫ ∞

−∞

da db
a2 f̃ (a,b)ψa,b(x) (3)

along with the wavelet function �. The simplest possible sys-
tem that illustrates most of the fundamental properties ofFor a proof, see Chapter 5 of Ref. 23. This last formula says
these functions is the Haar scaling function and Haar wave-that f (x) can be written as a superposition of shifted and di-

lated wavelets. let. In this case the scaling function is the box function illus-
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Each of these functions is supported on an interval of length
��. A continuation of this process gives infinite families of func-
tions,

φ j,k(x) = 2− j/2φ(2− jx − k); ψ j,k(x) = 2− j/2ψ(2− jx − k) (5)

with j, k � �. For the range of values ( j 
 0) and (0 
 k �
2	j), these functions form a basis over the interval [0, 1].

Important Remark: The Haar system is used for illustra-
tion purposes since it is simple and easy to understand. The
important point is that all of this holds for other scaling func-
tions and wavelets that have increasing degrees of smooth-
ness. Some of these will be discussed and illustrated later.

Suppose we designate the space spanned by functions of
the form �(x 	 k), k � �, by V0 and the space spanned by
functions of the form �(2x 	 k), k � �, by V	1. Clearly, the
function �(x) can be written as

φ(x) = φ(2x) + φ(2x − 1)

Since functions in V0 can be written as a linear combination
of functions in V	1 we have the condition

V0 ⊂ V−1

This argument can be extended in either direction, for exam-
ple

φ( 1
2 x) = φ(x) + φ(x − 1), V1 ⊂ V0

An example of the projection of a function onto V0 and V1 is
shown in Fig. 7. By continuing this process the nesting of the
closed subspaces Vj follows,

1

1

2

(a)

1

–1

2

(b)

1

–1

1

(d)

1

–1

(f)

1

1 2

–1

(h)

1

1

2

(c)

1

1

2

(e)

1

1

2

(g)

Figure 6. Scaling function � and wavelet function � for the Haar ← coarser . . .V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . . finer → (6)
system: (a) �(x), (b) �(x), level 0, basic; (c) �(x 	 1), (d) �(x 	 1), level
0, translated; (e) �(��x), (f) �(��x), level 1, basic; and (g) �(2x), (h)
�(2x), level 	1, basic.

trated in Fig. 6(a) and the corresponding wavelet is shown in
Fig. 6(b). We refer to these two functions as the level 0 func-
tions. The fundamental idea is to construct other scaling func-
tions and wavelets from dilations and translations of the level
0 functions. Some of these are shown in Fig. 6. Note that scal-
ing by x � 2x corresponds to a contraction and scaling by
x � ��x gives an expansion. There are two scaling functions
and two wavelet functions at level 	1, with support on an
interval of length ��,

φ(2x), φ(2x − 1), ψ(2x), ψ(2x − 1)

Complete families of scaling functions and the wavelets are
obtained by appropriate translations and dilations. The func-
tions �(x) and �(x) are the functions at level 0. The move
from �(x) to �(2x) is a dilation operation, whereas the shift
from 0 to 1 is a translation operation. Starting from � and �
the functions are shifted and compressed. The next level
down (level 	2) contains
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Figure 7. A function y � f (x) (dots) projected onto V0 (top), projected
onto V1 (bottom).

φ(4x), φ(4x − 1), φ(4x − 2), φ(4x − 3);
ψ(4x), ψ(4x − 1), ψ(4x − 2), ψ(4x − 3)
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The nesting order is selected so that the spaces show less de-
tail as the index increases. For example, in Fig. 7 the projec-
tion onto V1 can be considered as a blurred version of the pro-
jection onto V0. This is an agreement with the choice made by
Daubechies (29). A caution for the reader is in order on this;
about half of the wavelet literature uses the opposite conven-
tion, coupled with a change of 	j to �j in Eq. (5). Properties

y

x

1

–1

0
2 4 6 8 10

of the Vj are summarized by the following definition of an or- Figure 8. The detail information for the function from Fig. 7 in W1.thogonal multiresolution analysis.
A multiresolution analysis of L2(�) consists of a sequence

of closed subspaces Vj, for all j � �, such that
If we designate the projection of f (x) onto Vm by Pmf and the
projection of f (x) onto Wm by Qmf , then Eq. (7) implies that

Pj−1 f = Pj f + Qj f (8)

If j � 1 this is P0 f � P1f � Q1 f. Projections P0 f and P1 f are
shown in Fig. 7. The projection Q1 f contains the difference or
detail information, illustrated in Fig. 8. Note that this does
indeed represent Haar wavelets at level 1.

To see how the general decomposition emerges, consider

(M1) Vj ⊂ Vj−1

(M2)
⋃

j

Vj = L2(R) and
⋂

j

Vj = {0}

(M3) f (x) ∈ Vj ⇔ f (2x) ∈ Vj−1

(M4) f (x) ∈ V0 ⇔ f (x − k) ∈ V0 for all k ∈ Z
(M5) There exists a functionφ ∈ V0 so that φ(x − k),k ∈ Z

form an orthonormal basis forV0.

V0 = V1 ⊕ W1 = V2 ⊕ W2 ⊕ W1 = V3 ⊕ W3 ⊕ W2 ⊕ W1Several remarks are in order in regard to this definition. In
(M2) the bar over the union is to indicate closure. The closure

This could be extended as far as desired. The general formulaof a set is obtained by including all functions that can be ob-
istained as limits of sequences in the set. This terminology

could be replaced by saying that the union is dense in L2.
Condition (M5) is often relaxed by assuming that the set of
functions �(x 	 k) is a Reisz basis for V0. For a full treatment

Vj = Vj ⊕
J− j−1⊕

k=0

WJ−k (9)

of this approach, see Refs. 10 and 34.
Now let us observe that although we have the condition where all subspaces on the right are orthogonal. This means

V0 � V	1 the basis functions in V0 are not orthogonal to the that any function can be represented as a sum of detail parts
basis functions in V	1, plus a smoothed version of the original function. This is often

expressed by saying that the function is resolved into a low-
frequency part plus a sum of high-frequency parts. To see

∫
φ(x)φ(2x)dx �= 0 and

∫
φ(x)φ(2x − 1) dx �= 0

this, think of Fourier transforms. The broad part in VJ has a
Fourier transform concentrated at the origin in the FourierThe integrals are over all x where the functions do not vanish.
domain, hence low frequencies. The parts in Wj have FourierFor the Haar case illustrated earlier this would be over the
transforms that must vanish at the origin since the area ofinterval [0, 1]. There is a clever way to fix this. Note that we
the wavelet is 0, hence high-frequency parts.can write

By use of (M2) and Eq. (9) it follows that

φ(2x) = 1
2 [φ(x) + ψ(x)] and φ(2x − 1) = 1

2 [φ(x) − ψ(x)] L2(R) =
⊕
j∈Z

Wj (10)

If we designate the space spanned by the wavelets 2	j/2�(2	jx
(Note that Vj � �0� as j � �.) The collection ��j,k; j, k � �� is	 k), j, k � �, by Wj, it follows that the direct sum of sub-
an orthonormal basis for L2(�). The spaces Wj also have thespaces gives
scaling property (M3), so the job is to find a � � W0 such that
the �(x 	 k) form an orthonormal basis for W0.V−1 = V0 ⊕ W0

Orthonormal Wavelets with Compact Support
Moreover, it is easy to check that basis functions in V0 are

Before we embark on the task of determining other acceptableorthogonal to basis functions in W0. This idea can be extended
scaling and wavelet functions it may be useful to examine thein either direction
Haar system more closely. Keep in mind that what we are
doing applies to any functions � and � that satisfy the multi-V−2 = V−1 ⊕ W−1 and V0 = V1 ⊕ W1
resolution analysis and decomposition, Eq. (9).

First, we observe that the scaling function �j,k from Eq. (5)
The space Wj is said to be the orthogonal complement of Vj in satisfies an orthogonality condition at the same scale,
Vj	1. In general we have

Vj−1 = Vj ⊕ Wj , Wj ⊥ Wj′ , if j �= j′ (7) 〈φ j,k, φ j,k′ 〉 ≡
∫
R

φ j,kφ j,k′ dx = δkk′ (11)
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Here �kk� is the Kronecker delta defined to be 1 if k � k� and Since the integral of the scaling function is assumed to be
finite there is a requirement that0 if k � k�. The wavelets are orthogonal at the same scale and

across scales, ∑
k

ck = 2 (16)〈ψ j,k, ψ j′ ,k′ 〉 = δ j j′ , δkk′ (12)

The wavelets and scaling functions also satisfy A convenient choice for the normalization on � is such that

〈φ j,k, ψ j′ ,k′ 〉 = 0 (13) ∫ ∞

−∞
φ(x) dx = 1

We focus our attention on the containment V0 � V	1 and
W0 � V	1 for the Haar system,

Caution: Some authors use a slightly different convention
for the constants. The other popular choice is to use cn � �2φ(x) = φ(2x) + φ(2x − 1) ψ(x) = φ(2x) − φ(2x − 1)
hn, where hn corresponds to the notation used by Daubechies
(29).This is a special case of general expansions for � or � where

The orthogonality condition in Eq. (11) leads to anotherφ(x) =
∑
k∈Z

ckφ(2x − k) ψ(x) =
∑
k∈Z

dkφ(2x − k) (14)
important relation. The reader may wish to see Alpert (35)
for details.

For the Haar system there are only two coefficients needed;
namely, c0 � c1 � 1. The d coefficients are found from these.
We will see later that the condition is dk � (	1)k c1	k. One
way to obtain the coefficients for more general functions �
and � is to place constraints on the coefficients ck in the
expansion of the scaling function. The method here follows
the pioneer work on this by Ingrid Daubechies (30).

The expansion for �(x) in Eq. (14) is called a dilation equa-
tion. If only a finite number of the coefficients are nonzero,
then � must vanish outside a finite interval. This gives the
property of compact support. Suppose the nonzero coefficients

δkl =
∫ ∞

−∞
φ(x − k)φ(x − l) dx

=
∫ ∞

−∞

∑
m

cmφ[2(x − k) − m]
∑

n

cnφ[2(x − l) − n] dx

= 1
2

∑
m,n

cmcnδ2k+m,2l+n

= 1
2

∑
m

cmc2k−2l+m

are cm, cm�1, . . ., cn. If the original function � has support on
the interval [a, b], then �(2x) has support on the interval Since the sum is over all m � � we can make the change of
[a/2, b/2]. The shifted function �(2x 	 k) has support on index m � m � 2l. This leads to the desired orthogonality
[a � k/2, b � k/2]. Since the index k goes from m to n we condition
have ∑

m∈Z
c2k+mc2l+m = 2δkl (17)

φ(x) =
n∑

k=m

ckφ(2x − k) (15)

This equation ensures the orthogonality of the translates of
The support on the left side is related to the support on the the scaling function.
right side by The coefficients dk must be selected so that an orthogonal-

ity condition holds for the translates of the wavelet function
�(x). It is easy to show that this works for[a, b] =

[
a + m

2
,

b + n
2

]
dk = (−1)kc1−k (18)

This requirement yields a � m and b � n, hence the support
is on [m, n].

The calculation makes use of Eqs. (14) and (17)

Example: Suppose �(x) is the level 0 Haar box function, and
let the sum go from 0 to n. If this function is substituted and
used on the right side of Eq. (15) then the function on the left
has support on [0, 1 � n/2]. If this function is now substituted
on the right side the function on the left has support on [0,
1 � 3n/4]. If this procedure is continued the limiting case is
just the interval [0, n].

A consistency condition can be established by integrating
the dilation equation. This is easy and the details that involve
a change of variables (t � 2x 	 k) are left for the reader,∫ ∞

−∞
φ(x) dx =

∫ ∞

−∞

∑
k

ckφ(2x−k) dx = · · · = 1
2

∑
k

ck

∫ ∞

−∞
φ(t)dt

∫ ∞

−∞
ψ(x − k)ψ(x − l) dx

=
∑
m,n

∫ ∞

−∞
dmφ[2(x − k) − m]dnφ[2(x − l) − n] dx

= 1
2

∑
m

d2k+md2l+m

= 1
2

∑
m

(−1)2k+mc1−2k−m(−1)2l+mc1−2l−m

= 1
2

∑
m

c1−2k−mc1−2k−l

= δkl



558 WAVELET TRANSFORMS

Also, the choice made in Eq. (18) is adequate to establish the The change of variables 2x 	 k � x leads to
orthogonality

2− j−1
j∑

r=0

�
j
r

�∑
k

k j−rdk

∫ ∞

−∞
xrφ(x) dx = 0∫ ∞

−∞
φ(x − k)ψ(x − l) dx = 0

The integral over x cannot be zero since by assumption xr can
This is left as an exercise; observe that you do not have to be written as a linear combination of translates of � for r �
make use of Eq. (17). 0, . . ., N 	 1. It follows that we must require

The key conditions thus far are Eqs. (16), (17), and (18).
These are not adequate for a unique determination of the co-
efficients that lead to the family of Daubechies that extend

j∑
r=0

�
j
r

�∑
k

k j−rdk = 0

the Haar system in a natural way. The next condition relates
to approximation. hold for individual values of j from 0 to N 	 1. If you write

The idea is to approximate polynomials of degree j � 0, 1, this out for j � 0 then for j � 1, and j � 2 you see that the
. . ., N 	 1 as linear combinations of translates of the scaling condition is
function in V0. Thus, we look for coefficients � such that ∑

k

k jdk = 0, ( j = 0, . . ., N − 1)
x j =

∑
k∈Z

αN
j,kφ(x − k), ( j = 0, 1, . . ., N)

This is usually written in terms of the cj coefficients from Eq.
(18) with a slight modification. The index is usually shifted soBy orthogonality
the nonzero coefficients range from 0 to 2N 	 1 for the Daube-
chies coefficients (29). This is accomplished by using the con-
nectionαN

j,k =
∫ ∞

−∞
x jφ(x − k) dx

dk = (−1)kc2N−1−kThe scaling function depends on N and is often written as
N�. Here we suppress the N and just use �. Recall that only

Then, the approximation condition becomestwo coefficients are needed for the Haar scaling function. In
this case polynomials of degree N � 0 can be represented with
no error by scaling functions in V0. For many situations as
smoother scaling function is desired. We are looking for the

2N−1∑
k=0

(−1)kk jc2N−1−k = 0, ( j = 0, . . ., N − 1) (19)

conditions that must hold when we allow more than two coef-
Examples. The key equations are Eqs. (17)–(19). There areficients, and require that polynomials of higher degree be rep-
two coefficients for N � 1 that satisfy the conditionsresented exactly by functions in V0.

The space V0 is orthogonal to W0; consequently, for j � 0,
c2

0 + c2
1 = 2, c0 − c1 = 0. . ., N 	 1,

with region of support [0, 1]. These are the familiar Harr coef-
ficients c0 � c1 � 1. For N � 2 we have four coefficients,

∫ ∞

−∞
x jψ(x) dx = 0

known as the D4 coefficients. They satisfy orthogonality con-
ditions

Now, use Eq. (14) along with the trick (identity)
c2

0 + c2
1 + c2

2 + c2
3 = 2 and c0c2 + c1c3 = 0

and approximation conditions (for j � 0 and j � 1)x j =
�2x − k + k

2

� j

c3 − c2 + c1 − c0 = 0 and 0c3 − 1c2 + 2c1 − 3c0 = 0This yields

The solution is unique up to a left–right reversal (c0 } c3,
c1 } c2)

∫ ∞

−∞

∑
k

�2x − k + k
2

� j

dkφ(2x − k) dx = 0

The general binomial expansion
c0 = (1 +

√
3)/4 c1 = (3 +

√
3)/4

c2 = (3 −
√

3)/4 c3 = (1 −
√

3)/4

Note that Eq. (16) is also satisfied by these D4 coefficients.
Keep in mind that if the other popular normalization condi-

(a + b) j =
j∑

r=0

�
j
r

�
aj−rbr,

�
j
r

�
= j!

r!( j − r)!
tion is used cn � �2 hn, then each of these coefficients must
be divided by �2. When this is done then the sum of thecan be applied to give
squares is 1 rather than 2.

The region of support for the D4 scaling function and the
wavelet function is [0, 3]. The graphs of these are shown in

2− j
j∑

r=0

�
j
r

�∑
k

k j−rdk

∫ ∞

−∞
(2x − k)rφ(2x − k) dx = 0



WAVELET TRANSFORMS 559

Figure 9. D4 scaling function (top left),
D4 wavelet (top right), D12 scaling func-
tion (bottom left), and D12 wavelet (bot-
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0 108642 tom right).

Fig. 9 across the top. The graphs for N � 6 (D12) are shown can be started and then refer the reader to some excellent
references where this approach is utilized.across the bottom. Here the region of support is [0, 11]. Note

that as the number of coefficients increases the graphs get Start with the dilation equation for the scaling function
smoother and the region of support increases. Tables of coef-
ficients for various values of N are given by Daubechies (29).

The functions in Fig. 9 are interesting, but knowing what
φ(x) =

∑
k

ckφ(2x − k)

these functions look like is absolutely unnecessary for imple-
The Fourier transform of this equation ismentation of the wavelet transform. The coefficients are all

you need, coupled with an algorithm. An example is given in
the section on Mechanics of Doing Transforms, and a method
for obtaining Fig. 9 is indicated.

φ̂(ξ ) =
∑

k

ck

∫ ∞

−∞
φ(2x − k)e−iξx dx

Other Wavelets. We have only touched the surface by indi- The change of variables t � 2x 	 k gives
cating how to find the family of Daubechies wavelets. If the
orthogonality and approximation conditions are modified,
other sets of coefficients follow. For example, if you impose φ̂(ξ ) = 1

2

∑
k

cke−ikξ /2
∫ ∞

−∞
φ(t)e−iξ t/2 dt

conditions of vanishing moments on � as well as � then the
resulting wavelets are known as coiflets, after a suggestion by Observe that the integral is just �̂(�/2). This yields
Ronald R. Coifman of Yale University. For more information
on these see Refs. 29, 36, and 37. Another example is provided
by biorthogonal wavelets. The filter coefficients for the recon- φ̂(ξ ) = m0

�
ξ

2

�
φ̂

�
ξ

2

�

struction are not the same as those for the decomposition, and
there are two dual wavelet bases associated with two differ- where, in keeping with the notation of Daubechies (29), we
ent multiresolution ladders. This leads to symmetric wavelets define
that are an advantage for some applications. Important refer-
ences on these are by Cohen and Daubechies (38): Cohen,
Daubechies, and Feauveau (39): and Vetterli and Herley (40). m0(ξ ) ≡ 1

2

∑
k

cke−ikξ

Fourier Space Methods. Very powerful methods for finding
Note that m0(0) � 1 follows fromwavelet coefficients are provided by Fourier techniques. These

techniques can be used to find the family of Daubechies wave-
lets; also, they form a foundation for finding wavelets with
other important properties. Here, we only indicate how this

m0(0) = 1
2

∑
k

cke0 = 1
2

∑
k

ck = 1
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If we make the replacement � � �/2 then This is just the Fourier transform of � where � is the box
function,

φ̂

�
ξ

2

�
= m0

�
ξ

4

�
φ̂

�
ξ

4

�

φ̂(ξ ) =
∫ ∞

−∞
φ(x)e−iξx dx =

∫ 1

0
e−ξx dx = 1 − e−iξ

iξand

just as expected.
φ̂(ξ ) = m0

�
ξ

2

�
m0

�
ξ

4

�
φ̂

�
ξ

4

�
=

[
2∏

j=1

m0

�
ξ

2 j

�]
φ̂

�
ξ

22

�

A rich resource of information about wavelets comes from
using Fourier techniques. The books by Hernández and WeissClearly this procedure can be continued to give
(10), Vetterli and Kovac̆ević (23), Strang and Nguyen (41),
and Daubechies (29) are excellent sources.

φ̂(ξ ) =
[

N∏
j=1

m0

�
ξ

2 j

�]
φ̂

�
ξ

2N

�

As N � �, �̂(�/2N) � �̂(0) � 1, since the area under the scal- MECHANICS OF DOING THE TRANSFORM
ing function is normalized to 1. This means that as N � � the
infinite product goes to the Fourier transform of the scaling

This example of how the wavelet transform can be imple-function,
mented using matrices will be of value to those who wish to
acquire an intuitive understanding about how the transform
works. This is for illustration only, since in practice efficientφ̂(ξ ) =

∞∏
j=1

m0

�
ξ

2 j

�

code may not be written in matrix form. This example is for
the simplest case, the Haar; however, the extension to

Example. Let us investigate how this works for the box func- smoother cases is easy and we will indicate how following this
tion, the scaling function for the Haar case. If c0 � c1 � 1, example. The following operations are illustrated:
then

1. Generate the wavelet coefficients with down sampling.

2. Show how this is a dual filter operation with a shrink-
m0

�
ξ

2

�
= 1

2
(1 + e−iξ /2)

ing matrix and signal.
and

3. Mechanics of the reconstruction, the inverse transform.

There is a pyramidal structure to the procedure. At each level
the detail information is stored, while the smooth information
may be transformed at the next higher scale. One way to indi-

m0

�
ξ

2

�
m0

�
ξ

4

�
= 1

22
(1 + e−iξ /2)(1 + eiξ /4)

= 1
22

(1 + e−iξ /4 + e−2iξ /4 + e−3iξ /4)

cate this is shown in Fig. 10, where we have carried the trans-
The part in parenthesis on the right is just the sum of 22 � 4 form through three stages.
terms of a geometric series where the first term is 1 and the Let the transpose of the original signal vector for an eight-
ratio term r is e	i�/4. The sum of n terms is given by (1 	 point transform be designated by
rn)/(1 	 r). Thus

[16,32,64,16, 6,32, 16,8]
m0

�
ξ

2

�
m0

�
ξ

4

�
= 1

22

1 − eiξ

1 − e−iξ /4

In the general case where there are 2j terms, the result is

m0

�
ξ

2

�
. . . m0

�
ξ

2 j

�
= 1

2 j

1 − eiξ

1 − e−ξ /2 j

Now let 2	j � x, then

2 j(1 − e−iξ /2 j
) = 1 − cos xξ

x
+ i

sin xξ

x

f

H

L

d1

s1

LH

LL

d2

s2

LLH

LLL

d3

s3

In the limit as j � �, and x � 0 we get i�. It follows that
Figure 10. Pyramidal decomposition of a signal. The low- and high-
pass parts are indicated by L and H. The corresponding smooth and
detail parts are designated by s and d with subscripts indicating the
level.

∞∏
j=1

m0

�
ξ

2 j

�
= 1 − e−iξ

iξ
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The full smoothing operator (the low pass part) with c0 � The last two coefficients are found as before
c1 � 1 is given by

d3 = Hs2 ↓= [8,−8] ↓= [8], s3 = Ss2 ↓= [24,24] ↓= [24]

This completes the eight-point transform. The eight points in
the signal vector have been transformed by the Haar wavelet
transform to eight points,

d1 = [−8, 24,−12, 4] d2 = [−8, 4] d3 = [8] s3 = [24]

S = 1
2

�
BBBBBBBBBBBBBB�

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1

�
CCCCCCCCCCCCCCA

The inverse transform must start with the wavelet coeffi-
cients and end with the original signal coefficients. This is

The shift on the last row is to take into account edge effects, done by a clever reversal of the directions in Fig. 10, with a
and is essential to insure that the inversion is exact. The

sum used to go from two branches on the right to one on the
highpass operator associated with the detail is given by

left, at a vertex where three lines meet. Here is how it works.
Use the transpose of S and H without the factor of �� at each
step and insert zeros where there were discarded values. This
upsampling is indicated by the up arrow.

S† =
�

1 1
1 1

�
H† =

�
1 −1

−1 1

�

S†s3 ↑ = S†

�
24
0

�
=
�

24
24

�
H†d3 ↑= H†

�
8
0

�
=
�

8
−8

�
H = 1

2

�
BBBBBBBBBBBBB�

1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1

−1 0 0 0 0 0 0 1

�
CCCCCCCCCCCCCA

Now we calculate the detail and smooth coefficients that lie The s2 signal is recovered by addition
in W1 and V1, respectively

d1 = H f ↓= [−8,−16, 24,4,−12,8, 4,−4] ↓= [−8, 24,−12, 4]
�

24
24

�
+
�

8
−8

�
=
�

32
16

�
and

At the next step we haves1 = S f ↓= [24,48, 40,12,20,24, 12,12] ↓= [24,40,20,12]

The use of the down arrow is to indicate down sampling. Ev-
ery other value is discarded. You might think information has
been lost by doing this, but note that you started with eight
independent values in the signal and after down sampling
you still have eight independent values, four detail and four
smooth coefficients. These can be used to recover the original
values. The next step is to contract the matrices S and H,

S = 1
2

�
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

�
H = 1

2

�
1 −1 0 0
0 1 −1 0
0 0 1 −1

−1 0 0 1

�

The coefficients for W2 and V2 follow by applying these new

S† =

�
1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

�
H† =

�
1 0 0 −1

−1 1 0 0
0 −1 1 0
0 0 −1 1

�

S†s2 ↑ = S†

�
32
0

16
0

�
=

�
32
32
16
16

�

H†d2 ↑= H†

�−8
0
4
0

�
=

�−8
8
4

−4

�
contracted matrices to the s1 vector,

Again by addition we recover the s1 signal,d2 = Hs1 ↓= [−8, 10,4,−6] ↓= [−8,4]

s2 = Ss1 ↓= [32,30,16,16] ↓= [32,16]

Once again we contract S and H,

S = 1
2

�
1 1
1 1

�
H = 1

2

�
1 −1

−1 1

�
�

32
32
16
16

�
+

�−8
8
4

−4

�
=

�
24
40
20
12

�
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In the final step we are back to the full matrices and apply the inverse transform we get back the wavelet
function

[1,1, 1, 1,−1,−1,−1,−1]

This is one way to obtain the wavelets illustrated in Fig. 9.
We simply run a unit vector, made up of 0’s except for a 1 in
a single location through the inverse transform.

OCTAVE BAND TREE STRUCTURE

The type of division of the spectrum for the tree structure of
Fig. 10 is known as a dyadic or octave band. The part labeled
s is the low-pass part and the part labeled d is the high-pass
part. At each level of the tree the lower half of the spectrum
is split into two equal bands. In Fourier space this can be
represented by Fig. 11. For an extensive discussion of tree
structures and the corresponding frequency band splits, see
Akansu and Haddad (46). Another important type of tree
structure for wavelet analysis is that used in connection with

S† =

�
BBBBBBBBBBBB�

1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1

�
CCCCCCCCCCCCA

H† =

�
BBBBBBBBBBBB�

1 0 0 0 0 0 0 −1
−1 1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1

�
CCCCCCCCCCCCA

wavelet packets and best basis algorithms pioneered by Coif-
man and Wickerhauser (47,48) and Wickerhauser (49). In thisThe up sampling gives
type of tree there is an option along both the high-pass and
low-pass branches to send the signal through more high-pass
and low-pass filters. This is part of an important and exten-
sive area of wavelet theory known as adaptive wavelet trans-
form methods. For a full discussion we refer the reader to
Refs. 47–49 and the Reading List.

An extension of the octave band tree structure to 2-D was
suggested by Burt and Adelson (24). The technique goes by
the name of the Laplacian pyramid. The multiresolution anal-
ysis can be extended to 2-D for functions f (x, y), for details

S†s1 ↑= S†
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see Daubechies (29). We define a scaling function of two vari-
ables and three wavelets. These come from tensor products of

The original signal vector is recovered by addition horizontal and vertical 1-D wavelets. Here superscripts s, h,
v, and d refer to smooth, horizontal, vertical, and diagonal,
respectively.

�s(x, y) = φ(x)φ(y) L(x)L(y)

�h(x, y) = φ(x)ψ(y) L(x)H(y)

�v(x, y) = ψ(x)φ(y) H(x)L(y)

�d (x, y) = ψ(x)ψ(y) H(x)H(y)

f =

�
BBBBBBBBBBBB�

24
24
40
40
20
20
12
12

�
CCCCCCCCCCCCA

+

�
BBBBBBBBBBBB�

−8
8

24
−24
−12

12
4

−4

�
CCCCCCCCCCCCA

=

�
BBBBBBBBBBBB�

16
32
64
16

8
32
16

8

�
CCCCCCCCCCCCA

This concludes the Haar example; however, some additional
things should be observed. It is possible to combine the matrix
multiplication and the up and down sampling. For a discus-
sion of this see Strang and Nguyen (41). Also, one can com-
bine the operations of finding the d and s parts along with
the down sampling. A practical example of this is contained
in Ref. 42, section 13.10, for the Daubechies D4 wavelet with
four coefficients. In addition to Ref. 42 other sources of code
for efficient implementation of the forward and inverse wave-
let transform include Bruce and Gao (43), and Cody (44,45).
Also, see the section on Wavelet Resources on the Internet.
Finally, note that if we start with

LL LH
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ξ

Figure 11. Relation of positive part of frequency spectrum to ideal
high- and low-pass parts from Fig. 10.d1 = [0,0, 0, 0] d2 = [0, 0] d3 = [1] s3 = [0]



WAVELET TRANSFORMS 563

clearly degraded, but not significantly. On the lower left we
did the same thing with 6.25% of the coefficients, and on the
lower right with only 1.56%.

There is an enormous amount of literature on compression.
Here we suggest only a few recent articles. These contain
guidance to earlier work. Uses of wavelet transform maxima
in signal and image processing are described by Mallat and
Zhong (50) and Mallat (51). Some new ideas on optimal com-
pression are discussed by Hsiao, Jawerth, Lucier, and Yu (52)
and DeVore, Jawerth, and Lucier (53). See Ref. 23 for a gen-
eral discussion of video compression, and speech and audio
compression. Acoustic signal compression with wavelet pack-
ets and a comparison of compression methods are given by
Wickerhauser (54,55), and some general theorems on optimal
bases for data compression are developed by Donoho (56).

Turbulence

2
L(x)L(y)
L(x)L(y)

2
L(x)L(y)
H(x)L(y)

1
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1

H(x)H(y)

1

L(x)H(y)

2
L(x)L(y)
L(x)H(y)

2
L(x)L(y)
H(x)H(y)

Wavelet analysis has provided a new means for examining
Figure 12. Decomposition of the 2-D transform into two levels. To the structure of turbulent flow. They are especially useful
go to the next level the low-pass part in the upper left is further when it is important to obtain some information about the
broken down just as going from level 1 to level 2. spatial structure of the flow. Some of the pioneer work in this

area along with a comparison of older methods is in the re-
view by Marie Farge (57). Also, see the paper on wavelets and

This leads to a decomposition at levels 1 and 2 illustrated by turbulence by Farge, Kevlahan, Perrier, and Goirand (58) for
Fig. 12. At level 2 the smooth part from level 1 is further a discussion of the main applications of wavelets and wavelet
divided to produce the parts in the upper left corner. To go to packets to analyze, model, and compute turbulent flows.
level 3 the upper left smooth–smooth part would be further Wavelet spectra of buoyant atmospheric turbulence are ana-
broken down as in going from level 1 to level 2. This can go lyzed by Mayer, Hudgins, and Friehe (59) and an experimen-
on as far as is practical. In an image, horizontal edges show
prominently in the �h part, vertical edges in the �v part, and
diagonal edges in the �d part. See Fig. 13 and the discussion
and images in Chapter 10 of Ref. 29.

SOME INTERESTING APPLICATIONS

The range of fields, both pure and applied, where wavelets
have had an impact is wide. The disciplines include mathe-
matics, physics, geophysics, fluid dynamics, engineering, com-
puter science, and medicine. The broad list of topics include
Fourier analysis, approximation theory, numerical analysis,
functional analysis, operator theory, group representations,

(a)fractals, turbulence, signal processing, image processing,
medical imaging, various types of compressions, speech and
audio, image, and video. In this section we give a brief intro-
duction to some of these applications and provide the reader
with references to current literature for further study.

Compression

In many cases a digitized image contains more information
than is needed to convey the message the image carries. In
these cases we want to remove some of the information in the
original image without degrading the quality too much; this
is called lossy compression. This modified image can be stored
more economically and can be transmitted more rapidly, us-
ing less bandwidth over a communications channel. Wavelets
have been used for these kinds of problems with striking suc- (b)
cess. We illustrate this in Fig. 14. The original image is upper Figure 13. (a) House to be decomposed using wavelet transform. (b)
left. To obtain the image upper right we performed a wavelet Decomposition through level 2. The gray scale has been reversed and
transform of the original image, kept 25% of the coefficients rescaled to emphasize the important features. Note the prominence
with the largest magnitude, replaced the other 75% with of the vertical, horizontal, and diagonal parts in the appropriate loca-

tions.zeros, then did the inverse transform. The resulting image is
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Figure 14. Boat figure to illustrate compression: (a) origi-
nal, (b) use largest 25%, (c) use largest 6.25%, (d) use
largest 1.56%. The degradation can be seen as fewer and
fewer coefficients are used to reconstruct the boat.

tal study of inhomogeneous turbulence in the lower tropo- lography (EEG) is given by Unser and Aldroubi (64). This ar-
ticle also contains a brief review of biomedical image pro-sphere using wavelet analysis is discussed by Druilhet et al.

(60). Wickerhauser et al. (61) compare methods for compres- cessing. Applications of importance include: noise reduction in
magnetic resonance images (65) using methods systematizedsion of a two-dimensional turbulent flow, and find that the

wavelet packet representation is superior to the local cosine by Donoho and Johnstone (66,67) and DeVore and Lucier (68),
image enhancement and segmentation in digital mammogra-representation.
phy to accentuate and detect image features that are clini-

Fractals cally relevant (69–71), and image restoration to restore degra-
dation due to photon scattering and collimator photonThe wavelet transform is valuable for the efficient representa-
penetration with the gamma camera (72). A general strategytion of scale-invariant signals. Fractal geometry is being used
for extraction of microcalcification clusters in digitized mam-more and more to describe processes that do not fit naturally
mograms making use of wavelets is outlined by DeVore, Lu-into traditional Euclidean geometry. Many fractals of interest
cier, and Yang (73), and a multiresolution statistical methodhave structure that is similar on different scales. These prop-
for the identification of normal mammograms with respect toerties of wavelets and fractals lead to important foundations
microcalcifications has been developed (74); the key to thefor scale-invariant signal models. The discrete wavelet trans-
method is the recognition of the statistical properties of theform algorithm is a key component for practical processing of
various levels of the wavelet decomposition. In computer-as-scale-invariant signals, and for estimating fractal dimensions.
sisted tomography (CT) the Radon transform (75) is funda-Signal processing with fractals using wavelets is an emerging
mental to the algorithms for reconstruction from projections.area, one that is exciting with much work remaining to be
Several authors have successfully combined wavelet methodsdone. An important resource in this field is the book by Wor-
with Radon methods to obtain improved algorithms for cer-nell (62). The local self-similarity aspect of fractals and the
tain areas of CT (see Refs. 64 and 76 and citations therein).analysis through wavelet transforms is discussed by Hol-
Other medical applications are to magnetic resonance imagingschneider (34), Chapter 4. These two references and the brief
(MRI) (77) and functional neuroimaging using positron emis-review by Hazewinkel (63) provide guidance to the rich litera-
sion tomography (PET) and functional MRI (fMRI). A reviewture in this field.
is given by Unser and Aldroubi (64).

Medicine and Biology
Others

Wavelets are playing an important role in many areas of med-
icine and biology. A review of one-dimensional processing in There are several other areas of application where the wave-

let transform plays a key role. We have added a reading listbio-acoustics, electrocardiography (ECG), and electroencepha-
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at the end of the bibliography. A quick survey of this list will both graphical user interface (GUI) and command line rou-
tines. Information on the toolbox can be found at the Matlabprovide guidance to good starting points for various applica-

tions. Wavelet Toolbox site (http://www.mathworks.com/products/
wavelettbx.shtml).

An example of a wavelet application in the real world can
be found at the Federal Bureau of Investigation (FBI) finger-WAVELETS ON THE INTERNET
print image compression standard website (http://
www.c3.lanl.gov/~brislawn/FBI/FBI.html). The FBI selectedAn increasing amount of wavelet resources are available on

the Internet. Preprints of academic papers are available on a wavelet standard for digitized fingerprints, and this site
gives some of the reasons behind the choice.the Internet long before they appear in print. Many research-

ers maintain Internet sites where they post their papers, soft- Another interesting site on the Web is the Jelena Kova-
c̆ević Bell Labs Wavelet Group page which includes a link toware, and tutorial guides. In fact the World Wide Web (Web),

the graphical interface of the Internet, was created by Tim wavelet related Java applets (http://cm.bell-labs.com/who/
jelena/Wavelet/w_applets.html).Berners-Lee while he was at the CERN particle physics labo-

ratory in Geneva. The particle physics community has pio- This list is far from comprehensive. The interested reader
can find wavelet-related links at these sites or by searchingneered in the use of the Internet and the Web in the exchange

of ideas, abstracts, and papers since 1991. on any of the Internet search engines. There are some things
one must keep in mind while browsing the Web. Not all infor-A similar effort has been made by Wim Sweldens who

founded the Wavelet Digest in 1992. The Wavelet Digest is a mation on the Web has been screened by any rigorous peer-
review process. One must check the provenance of the infor-free monthly newsletter, edited by Sweldens, available to sub-

scribers by e-mail. One can browse through past issues of the mation on the Web. Also note that Web addresses are not
permanent. The author of a page may graduate or change jobsdigest at the Wavelet Digest home page (http://

www.wavelet.org/wavelet/index.html). The Wavelet Digest and the site could be removed. The Internet is a useful re-
source for any serious researcher. One cannot only get a lotcarries announcements of papers, books, conferences, and

seminars in the field of wavelets. It is also a forum for sub- of useful information on the Web, but one can contact other
researchers to exchange ideas, data, and programs.scribers to ask questions they have about wavelets. Given the

wide reach of the Wavelet Digest someone is likely to have an
answer for almost any question.
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Press, 1994, pp. 399–423.glewood Cliffs, NJ: Prentice-Hall, 1995.

49. M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to
24. P. J. Burt and E. H. Adelson, The Laplacian pyramid as a com-

Software, Wellesley, MA: A. K. Peters, 1994.
pact image code, IEEE Trans. Commun., 31: 532–540, 1983.

50. S. Mallat and S. Zhong, Wavelet transform maxima and
25. J. Morlet et al., Wave propagation and sampling theory—Part II: multiscale edges, in M. B. Ruskai et al. (eds.), Wavelets and Their

Sampling theory and complex waves, Geophysics, 47: 222–236, Applications, Boston: Jones and Bartlett, 1992, pp. 67–104.
1982.

51. S. Mallat, Wavelets for a vision, Proc. IEEE, 84: 604–614, 1996.
26. A. Grossmann and J. Morlet, Decomposition of Hardy functions

52. C.-C. Hsiao et al., Near optimal compression of orthonormalinto square integrable wavelets of constant shape, SIAM J. Math.
wavelet expansions, in J. J. Benedetto and M. W. Frazier (eds.),Anal., 15: 723–736, 1984.
Wavelets: Mathematics and Applications, Boca Raton, FL: CRC

27. S. G. Mallat, A theory for multiresolution signal decomposition: Press, 1994, pp. 425–446.
The wavelet representation, IEEE Trans. Pattern Anal. Mach. 53. R. A. DeVore, B. Jawerth, and B. J. Lucier, Image compression
Intell., 11: 674–693, 1989. throught wavelet transform coding, IEEE Trans. Inf. Theory, 38:

28. S. G. Mallat, Multiresolution approximations and wavelet orthog- 719–746, 1992.
onal bases of L2(�), Trans. Amer. Math. Soc., 315: 69–87, 1989. 54. M. V. Wickerhauser, Acoustic signal compression with wavelet

29. I. Daubechies,, Ten Lectures on Wavelets, Philadelphia: SIAM, packets, in C. K. Chui (ed.), Wavelets: A Tutorial in Theory and
1992. Applications, San Diego: Academic Press, 1992, pp. 679–700.

30. I. Daubechies, Orthonormal bases of compactly supported wave- 55. M. V. Wickerhauser, Comparison of picture compression meth-
lets, Comm. Pure Appl. Math., 41: 909–996, 1988. ods: Wavelet, wavelet packet, and local cosine transform coding,

in C. K. Chui, L. Montefusco, and L. Puccio, (eds.), Wavelets: The-31. I. Daubechies, The wavelet transform, time-frequency localiza-
ory, Algorithms, and Applications, San Diego: Academic Press,tion and signal analysis, IEEE Trans. Inf. Theory, 36: 961–
1994, pp. 585–621.1005, 1990.

56. D. L. Donoho, Unconditional bases are optimal bases for data32. I. Daubechies, Where do wavelets come from?—A personal point
compression and for statistical estimation, Appl. Computat. Har-of view, Proc. IEEE, 84: 510–513, 1996.
monic Anal., 1: 100–115, 1993.

33. C. E. Heil and D. F. Walnut, Continuous and discrete wavelet
57. M. Farge, Wavelet transforms and their applications to turbu-transforms, SIAM Rev., 31: 628–666, 1989.

lence, Annu. Rev. Fluid Mech., 24: 395–457, 1992.
34. M. Holschneider, Wavelets an Analysis Tool, Oxford: Clarendon

58. M. Farge et al., Wavelets and turbulence, Proc. IEEE, 84: 639–
Press, 1995.

669, 1996.
35. B. K. Alpert, Wavelets and other bases for fast numerical linear 59. M. E. Mayer, L. Hudgins, and C. A. Friehe, Wavelet spectra of

algebra, in C. K. Chui (ed.), Wavelets: A Tutorial in Theory and buoyant atmospheric turbulence, in C. K. Chui, L. Montefusco,
Applications, San Diego: Academic Press, 1992, pp. 181–216. and L. Puccio, (eds.), Wavelets: Theory, Algorithms, and Applica-

36. I. Daubechies, Orthonormal bases of compactly supported wave- tions, San Diego: Academic Press, 1994, pp. 533–541.
lets II. Variations on a theme, SIAM J. Math. Anal., 24: 499– 60. A. Druilhet et al., Experimental study of inhomogeneous turbu-
519, 1993. lence in the lower troposphere by wavelet analysis, in C. K. Chui,

37. G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms L. Montefusco, and L. Puccio, (eds.), Wavelets: Theory, Algo-
and numerical algorithms I, Comm. Pure Appl. Math., 44: 141– rithms, and Applications, San Diego: Academic Press, 1994, pp.
183, 1991. 543–559.

61. M. V. Wickerhauser et al., Efficiency comparison of wavelet38. A. Cohen and I. Daubechies, A stability criterion for biorthogonal
wavelet bases of compactly supported wavelets, Duke Math. J., packet and adapted local cosine bases for compression of a two-

dimensional turbulent flow, in C. K. Chui, L. Montefusco, and L.68: 313–335, 1992.



WAVELET TRANSFORMS 567

Puccio, (eds.), Wavelets: Theory, Algorithms, and Applications, San G. W. Walter, Wavelets and Other Orthogonal Systems with Applica-
tions, Boca Raton, FL: CRC Press, 1994.Diego: Academic Press, 1994, pp. 509–531.

62. G. W. Wornell, Signal Processing with Fractals: A Wavelet-Based P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge:
Approach, Upper Saddle River, NJ: Prentice Hall, 1966. Cambridge University Press, 1997.

63. M. Hazewinkel, Wavelets understand fractals, in T. H. Koorn- This list contains useful sources for applications. Most of these
winder (ed.), Wavelets: An Elementary Treatment of Theory and were not cited in the bibliography, but in a few cases there is overlap.
Applications, River Edge, NJ: World Scientific, 1995, pp.

M. Akay (ed.), Time Frequency and Wavelets in Biomedical Signal207–219.
Processing, New York: IEEE Press, 1998.64. M. Unser and A. Aldroubi, A review of wavelets in biomedical
This is excellent for engineers and applied scientists. It coversapplications, Proc. IEEE, 84: 626–638, 1996.

time–frequency analysis methods with biomedical applications; wave-65. J. B. Weaver et al., Filtering noise from images with wavelet
lets, wavelet packets, and matching pursuits with biomedical applica-transforms, Magn. Reson. Med., 24: 288–295, 1991.
tions; wavelets and medical imaging; and wavelets, neural networks,66. D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf.
and fractals.Theory, 41: 613–627, 1995.
A. Aldroubi and M. Unser (eds.), Wavelets in Medicine and Biology,67. D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation via

Boca Raton, FL: CRC Press, 1996.wavelet shrinkage, Biometrika, 81: 425–455, 1994.
This covers many applications in medicine and biology. The main68. R. A. DeVore and B. J. Lucier, Fast wavelet techniques for near-

topics are wavelet transform: theory and implementation, waveletsoptimal image processing, Proc. IEEE Military Commun. Conf.,
in medical imaging and tomography, wavelets and biomedical signalNew York: IEEE, 1992, pp. 48.3.1–48.3.7.
processing, wavelets and mathematical models in biology.69. J. Fan and A. Laine, Multiscale contrast enhancement and de-
J. J. Benedetto and M. W. Frazier (eds.), Wavelets: Mathematics andnoising in digital radiographs, in A. Aldroubi and M. Unser (eds.),

Applications, Boca Raton, FL: CRC Press, 1994.Wavelets in Medicine and Biology, Boca Raton, FL: CRC Press,
1996, pp. 163–189. This is good for both foundations and applications. It contains core

material, wavelets and signal processing, and wavelets and partial70. W. Qian et al., Computer assisted diagnosis for digital mammog-
differential operators.raphy, IEEE Eng. Med. Biol. Mag., 14: 561–569, 1995.
E. Foufoula-Georgiou and P. Kumar (eds.), Wavelets in Geophysics,71. W. Qian et al., Tree structured wavelet transform segmentation

San Diego: Academic Press, 1994.of microcalcifications in digital mammography, Med. Phys., 22:
1247–1254, 1995. A brief summary of wavelets is followed with applications directed

toward turbulence and geophysics.72. W. Qian and L. P. Clarke, Wavelet-based neural network with
fuzzy-logic adaptivity for nuclear image restoration, Proc. IEEE, C. K. Chui (ed.), Wavelets: A Tutorial in Theory and Applications, San
84: 1458–1473, 1996. Diego: Academic Press, 1992.

73. R. A. DeVore, B. Lucier, and Z. Yang, Feature extraction in digi- This reference contains many articles on foundations for applica-
tal mammography, in A. Aldroubi and M. Unser (eds.), Wavelets tions. There are sections on orthogonal wavelets, semi-orthogonal and
in Medicine and Biology, Boca Raton, FL: CRC Press, 1996, pp. nonorthogonal wavelets, wavelet-like local bases, multivariate scaling
145–161. functions and wavelets, short-time Fourier and window-Radon trans-

74. J. J. Heine et al., Multiresolution statistical analysis of high-reso- forms, theory of sampling and interpolation, and applications to nu-
lution digital mammograms, IEEE Trans. Med. Imaging, 16: 503– merical analysis and signal processing.
515, 1997. L. L. Schumaker and G. Webb (eds.), Recent Advances in Wavelet

75. S. R. Deans, The Radon Transform and Some of Its Applications, Analysis, San Diego: Academic Press, 1994.
New York: Wiley, 1983. Malabar, FL: Krieger, 1993. The articles here are mainly on recent advances related to mathe-

76. F. Rashid-Farrokhi et al., Wavelet-based multiresolution local to- matical properties of wavelets.
mography, IEEE Trans. Image Process., 6: 1412–1430, 1997.

C. K. Chui, L. Montefusco, and L. Puccio (eds.), Wavelets: Theory,
77. D. M. Healy, Jr. and J. B. Weaver, Adapted wavelet techniques Algorithms, and Applications, San Diego: Academic Press, 1994.

for encoding magnetic resonance images, in A. Aldroubi and M.
Several fundamentals are covered. These include multiresolutionUnser (eds.), Wavelets in Medicine and Biology, Boca Raton, FL:

and multilevel analysis, wavelet transforms, spline wavelets, otherCRC Press, 1996, pp. 297–352.
mathematical tools for time–frequency analysis, wavelets and frac-
tals, numerical methods and algorithms, and applications.

Reading List W. Dahmen, A. Kurdila, and P. Oswald (eds.), Multiscale Wavelet
Methods for Partial Differential Equations, San Diego: AcademicIn addition to Refs. 10, 23, 29, 34, 41, 46, 49, and 62 other possible
Press, 1997.texts are listed.
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J. M. Combes, A. Grossmann, and Ph. Tchmitchian (eds.), Wavelets:
Time–Frequency Methods and Phase Space, 2nd ed., Berlin:
Springer-Verlag, 1990.

The conference proceedings of a conference held at Marseille,
France in 1988 are contained here. This brought together an interdis-
ciplinary mix of participants, including many major contributors to
the development of wavelet methods.

Y. Meyer (ed.), Wavelets and Applications, Berlin: Springer-Verlag,
1992.

The proceedings of an international conference on wavelets held
at Marseille are in this volume. This conference along with the previ-
ous one illustrates and captures some of the flavor and excitement
of time.

A. Antoniadis and G. Oppenheim (eds.), Wavelets and Statistics, Lec-
ture Notes in Statistics 103, New York: Springer-Verlag, 1995.

This contains the proceedings of a conference on wavelets and sta-
tistics held at Villard de Lans, France in 1994.

T. H. Koornwinder (ed.), Wavelets: An Elementary Treatment of Theory
and Applications, River Edge, NJ: World Scientific, 1993.

This series of articles provides a good introduction to wavelets. It
is available in paperback and could serve as a text for a one-semes-
ter course.

Finally, there are a few important issues of journals that have
been devoted entirely to wavelets, and applications. These include:
IEEE Trans. Inf. Theory, 38: March 1992, Part II of two parts; IEEE
Trans. Signal Process., 41: December 1993; Proc. IEEE, 84: April
1996; Ann. Biomed. Eng. 23 (5), 1995. A fairly new journal is Applied
and Computational Harmonic Analysis, started in 1993; many articles
in this journal are devoted to wavelets and applications.
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