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The Laplace and Fourier transforms are appropriate for
analog signals. When dealing with digital signals, the Z
transform is used. The reasons for using it are analogous: (1)
complicated difference equations in the time domain become
algebraic equations in the Z domain, and (2) the relationship
between the input and output of a linear system is a multipli-
cation in the Z domain instead of a convolution in the sam-
pled time domain.

DEFINITION OF THE Z TRANSFORM

The Z transform is extremely useful when dealing with func-
tions in the sampled time domain; that is, instead of the func-
tion x(t), we have a function of the type

x(n) =
∞∑

n=−∞
x(t)δ(t − nT )

where T is a uniform time interval. The Z transform is de-
fined by

Z[x(n)] = X (z) =
∞∑

n=−∞
x(n)z−n (1)

A power of z is associated with each delay interval T. Sup-
pose we have a function x(n), as given in Fig. 1(a)

x(n) = δ(t) + 0.5δ(t − T ) + 0.25δ(t − 2T ) (2)

In the Z domain, this is written as

X (z) = 1 + 0.5z−1 + 0.25z−2 (3)

which is shown in Fig. 1(b). Note that the first term is merely
1, because z�0 � 1.

In its simplest form, the z�1 operator associated with the Z
transform can be thought of as a delay operator. So if

y(n) = x(n − 1)

then the Z transform of this equation would be written as

Y (z) = z−1X (z)

Z TRANSFORMS

One of the most useful techniques in engineering analysis is
transforming a problem from the time domain to the fre-
quency domain. Using a Fourier transform, differential equa-
tions are changed to difference equations, often substantially
simplifying the analysis. When dealing with linear systems,
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(b)the relationship between the input and output is a convolu-
tion integral. However, this reduces to simple multiplication Figure 1. Graph of Eq. (2) in (a) the sampled time domain and (b)
in the frequency domain. When dealing with transient sig- the Z domain. Notice that the Z domain is exactly the same as the
nals, it is often more convenient to use the Laplace transform, sampled time domain, except that delays by the time interval T are

indicated by the z�1 operator.but the principle is the same.
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the output is

y(n) = 1 for n = 0 or 1

y(n) = 0 otherwise

w(n)
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See Ref. 1 or 2. Therefore,Figure 2. Graph of Eq. (4) after it has been put in the time domain.
Since W(z) � z�2X(z), the graph of w(n) is the same as x(n) in Fig. 1,

h(n) = δ(n) + δ(n − 1) (6)except it has been delayed by 2T, as indicated by the z�2.

A more mathematically concise expression is

and if
y(n) =

1∑
i=0

x(n − i) · h(i) (7)

w(n) = y(n − 1)

Equation 7 is a discrete convolution. Notice that the index i
the Z transform of w(n) is only ranges between 0 and 1 because in Eq. (6) h(n) has only

these two terms. This could be generalized for any upper limit
W (z) = z−1Y (z) = z−1�z−1X (z)

� = z−2X (z) (4) to infinity.
If, instead of an impulse, we use the values of x(n) from

If W(z) is defined as in Eq. (3), and X(z) as defined in Eq. (2) Eq. (2), y(n) is calculated from Eq. (7):
then

y(n) = δ(t) + 1.5 · δ(t − T ) + 0.75 · δ(t − 2T ) + 0.25 · δ(t − 3T )

(8)W (z) = z−21 + 0.5z−3 + 0.25z−4

This process was made tractable only by the small number ofwhich in turn, going back to the sampled time domain (Fig.
terms used in this example.2), means that

As an alternative approach, take the Z transforms of x(n)
and h(n):w(n) = δ(t − 2T ) + 0.5 · δ(t − 3T ) + 0.25 · δ(t − 4T )

We can add two Z transforms, merely by making sure like
powers of z are lumped together. For instance, adding X(z) of

X (z) = 1 + 0.5 · z−1 + 0.25 · z−2

H(z) = 1 + z−1

Eq. (2) and W(z) of Eq. (3) gives
Multiplying the two together gives

X (z)+W (z) = [1 + 0.5z−1 + 0.25z−2] + [1z−2 + 0.5z−3 + 0.25z−4]

= 1 + 0.5z−1 + 1.25z−2 + 0.5z−3 + 0.25z−4
H(z) · X (z) = (1 + 0.5 · z−1 + 0.25 · z−2) · (1 + z−1)

= 1 + 1.5 · z−1 + 0.75 · z−2 + 0.25 · z−2

Going back to the sampled time domain, Going back to the time domain gives the y(n) of Eq. (8). This
illustrates the powerful ‘‘convolution theorem’’: Convolution
in the discrete time domain becomes multiplication in the Z

x(n) + w(n) = δ(t) + 0.5 · δ(t − T ) + 1.25 · δ(t − 2T )

+ 0.5 · δ(t − 3T ) + 0.25 · δ(t − 4T ) domain. The H(z), which is the Z transform of the impulse
response, is referred to as the transfer function. The proof

which could have been obtained by adding x(n) and w(n), be- follows.
ing sure to keep like delta (�) terms together. Starting with the definition of convolution in the discrete

time domain,

CONVOLUTION USING THE Z TRANSFORM
y(n) =

∞∑
i=0

h(n − i) · x(i) (9)
Figure 3 illustrates a simple linear system. In this example,
suppose h(n) is a system that adds the present value of x(n) take the Z transform of both sides
to its previous value x(n � 1) and outputs it as the new value
of y(n): ∞∑

n=0

y(n)z−n =
∞∑

n=0

∞∑
i=0

h(n − i) · x(i)z−n

y(n) = x(n) + x(n − 1) (5)

and then interchange the summation signs
This function h(n) is referred to as the ‘‘impulse response’’ for
the following reason: if the input x(n) is an impulse �(n) then

Y (z) =
∞∑

i=0

x(i)
∞∑

n=0

h(n − i) · z−n

Finally, multiplying by z�i  zi gives
h(n)

x(n) y(n)

Figure 3. A simple discrete linear system.
Y (z) =

∞∑
i=0

x(i)z−1
∞∑

n=0

h(n − i) · z−n+i
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and using the parameter m � n � i Or we could simply refer to a table of Z transforms, such as
Table 1. The desired convolution is

Y (z) =
∞∑

i=0

x(i) · z−i
∞∑

m=0

h(m) · z−m

gives

Y (z) = H(z) · U (z) = A
1 − e−T/t0 z−1

· 1
1 − z−1

= A
1 − (1 + e−T/t0 )z−1 + e−T/t0 z−2

(14)

Y (z) = H(z) · Y (z) (10) To get a solution in the time domain, we take the partial frac-
tion expansion of Y(z)

Note that Eq. (1) is usually referred to as the bilateral Z
Transform because it is defined for both positive and nega-
tive n. However, we will almost always use causal functions,
so the summation will be over the positive n’s.

Y (z) = A
1 − e−T/t0 z−1

· 1
1 − z−1 = A ·

[
B

1 − e−T/t0 z−1
+ C

1 − z−1

]
(15)

It turns out thatExample

As an example, suppose the impulse response in Fig. 3 is an
exponentially decaying function B = − e−T/t0

1 − e−T/t0
and C = 1

1 − e−T/t0

(The partial fraction expansion technique will be explainedh(n) = Ae−nT/t0 n = 0, 1, 2,3, . . . (11)
later.) Now the two terms in Eq. (15) can be taken back into
the sampled time domain by finding the time domain termsand the input is the discretized unit step function
corresponding to the two Z domain terms in Table 1, giving

u(n) = 1 n = 0, 1,2, 3, . . . (12)
y(n) = A

1 − e−T/t0
[1 − e−(n+1)T/t0] n = 0,1, 2, 3 . . . (16)

Since

Equation (16) is an analytic solution. An alternative approach
exists. Consider Eq. (14) as a purely algebraic problem where
we are solving for Y(z):

∞∑
n=0

a−n = 1
1 − a−1 when a ≤ 1

H(z) can be calculated [1 − (1 + e−T/t0 )z−1 − e−T/t0 z−2] · Y (z) = A

Y (z) = (1 + e−T/t0 )z−1Y (z) − e−T/t0 z−2Y (z) + A
(17)

Then remembering that the z�1 is an operator that just meansZ [h(n)] = H(z) = A
∞∑

n=0

[eT/t0 z]−n = A
1 − e−T/t0 z−1

(13)

a delay of one, we can go back to the sampled time domain

and similarly y(n) = (1 + e−T/t0 )y(n − 1) − e−T/t0 y(n − 2) + A · δ(n) (18)

Note the following: The A term of Eq. (17) became A  �(n)
because a constant in the Z domain is a delta function in the

Z[u(n)] = U (z) = 1
1 − z−1

Table 1. Transforms Among the Time, Frequency, Sampled-Time, and Z Domains

Time Domain Frequency Domain Sampled Time Domain Z Domain

�(t) 1 �(n) 1

1
j�

1
1 � z�1u(t) u(n)

1
( j�)2

z�1

(1 � z�1)2tu(t) n · u(n)

1
	 � j�

1
1 � z�1e�	 · Te�	t · u(t) e�	nT · u(n)

�
(	2 � �2) � j2	� � �2

e�	 · T · sin(�T) · z�1

1 � 2e�	 · T · cos(�T) · z�1 � e�2	 · T · z�2e �	t sin(�t) · u(t) e�	nT sin(�nT) · u(n)

	 � j�
(	2 � �2) � j2	� � �2

1 � e�	 · T · cos(�T) · z�1

1 � 2e�	 · T · cos(�T) · z�1 � e�2	 · T · z�2e �	t cos(�t) · u(t) e�	nT cos(�nT) · u(n)
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The convolution in the time domain is

y(t) =
∫ ∞

0
h(τ ) · x(t − τ ) dτ (20)

where it has once again been assumed that the system re-
sponse h(t) is causal. Suppose that in order to simulate it on
a computer, this problem had to be implemented in the dis-
crete domain. The finite difference approximation of the inte-
gral in Eq. (20) is

DELTA � 1
DO N�0,NMAX

Y(N) � (1 � EXP(�T/T0) ) * Y(N�1) � EXP(�T/T0)*Y(N�2) � A*DELTA
DELTA � 0

END DO

(a)

X � 1
DO N�0,NMAX

Y(N) � EXP(�T/T0) * Y(N�1) � A* X
END DO

(b)

Figure 4. Computer codes to convolve an exponentially decaying
function and the unit step function: (a) implementation of Eq. (18);

y(n) ∼=
n∑

i=0

h(n − i) · x(i) · T

= T
n∑

i=−∞
h(n − i) · x(i)

(21)

(b) implementation of Eq. (19). The two codes are apparently of differ-
ent form, but give identical results.

where T is the time interval between samples. Taking the Z
transform of both sides

time domain (Table 1). To convince yourself of this, substi-
tute �(n) for x(n) in Eq. (1), the definition of the Z transform.

∞∑
n=0

y(n)z−n = T
∞∑

n=0

n∑
i−0

h(n − i) · x(i)z−n

Only the n � 0 term survives, that is, a constant. It is not
obvious, but Eq. (18) is equivalent to Eq. (16). Equation (16) is

the development becomes identical to the previous section, ex-an analytic solution, while Eq. (18) is more appropriate when
cept we obtain the extra T:calculating the solution iteratively. A computer code to calcu-

late Eq. (17) is given in Fig. 4(a).
Y (z) = T · X (z) · H(z) (22)There is yet another alternative approach. In the previous

example, we specified the input x(n) in Fig. 1, as u(n). This is
the step function, sometimes referred to as the Heaviside Simulation of a Two Pole Digital Filter
function. Suppose x(n) is left as an unspecified function. Then

In this section, we will design a digital filter equivalent to
the RLC circuit in Fig. 5(a). It will be convenient to start in
the frequency domain [Fig. 5(b)], from which we obtain theY (z) = H(z)X (z) = A

1 − e−T/t0 z−1
· X (z)

following transfer function:

and following the same process
H(ω) = Y (ω)

X (ω)
= 1/ jωC

jωL + 1/ jωC + R
= 1/LC

1/LC + jωR/L − ω 2

(23)Y (z)(1 − e−T/t0 z−1) = A · X (z)

Y (z) = e−T/t0 z−1Y (z) + A · X (z)

y(n) = e−T/t0 y(n − 1) + A · x(n)

(19)

Now the appropriate computer code is given by Fig. 4(b). The
result is identical to that generated in Fig. 4(a); however, this
is the more general form. The function x is just specified as 1,
and assuming that N � 0 corresponds to t � 0, X is the step
function. However, we could replace X with any function and
it would be convolved with the exponential. In fact, this is a
simple one pole digital filter.

CONVOLUTION OF SAMPLED SIGNALS

In dealing with discrete functions, there are actually two
types of problems: (1) the discrete functions are sequences of
numbers, or (2) the discrete functions are sampled versions
of continuous functions. The key point separating the two is
whether or not the time interval between samples is an issue.
In the previous section, we treated the first problem; now we

x(t) y(t)

L = 1 mH

R = 1 kΩ

C = 1 nF

(a)

X( f ) Y( f )

R

(b)

j   Lω

j   C ω 
1

will look at the second.
In Fig. 3, suppose we started with continuous functions Figure 5. (a) An RLC circuit; (b) Fourier components of the RLC

circuit.x(t), h(t), and y(t) instead of x(n), h(n), and y(n), respectively.
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To get this into a recognizable form, we will use the following 7. Note the use of delay registers (marked D), which hold the
values for one clock cycle, changing y(n) to y(n � 1) andchange of parameters:
y(n � 1) to y(n � 2). These, along with the input, are
multiplied by their respective scaling factors and summed to
give the new value of y(n) at every clock cycle, as per Eq. (26).

Sum of Two Parallel Systems

α = R
2L

= 0.5 × 106 β =
r

1
LC

− α2 = 0.866 × 106

γ β = 1
LC

⇒ γ = 1.155 × 106

A system diagram is given in Fig. 8. The two transfer func-
The Z transform can now be read from the frequency domain tions are
expression in Table 1

H1(ω) = 1
jω + α1

(27)

and

H(z) = Z
[
γ

β

(α2 + β2) + j2αω − ω2

]

= 1.155 × 106 e−αT sin(β · T ) · z−1

1 − 2e−αT · cos(β · T ) · z−1 + e−2αT

(24)

H2(ω) = 1
jω + α2

(28)
At first, we may be somewhat startled to see the magnitude
of the multiplier resulting from the � term. But remember, Suppose we want to design a digital simulation of this sys-
when it is convolved with another function, it will be tem. The overall transfer function of the system is given by
multiplied by T! Since � � 0.866 � 106, we will want T to be
much smaller, so choose T � 10�7. Notice now that Y (ω) = [H1(ω) + H2(ω)] · X (ω) (29)

Going to the Z domain givese−α·T = e−0.05 = 0.951

e−2α·T = e−.1 = 0.904

and

sin(β · T ) = sin(0.086) = 0.086

cos(β · T ) = cos(0.086) = 0.9963

Y (z) = [H1(z) + H2(z)] · X (z) · T

=
[

1
1 − e−α1T z−1

+ 1
1 − e−α2T z−1

]
· T · X (z)

=
[

2 − (e−α1T + e−α2T )z−1

1 − (e−α1T + e−α2T )z−1 + z−2

]
· T · X (z) (30)

Now take the convolution of h(n) with an unknown function from which we get
x(n).

Y (z) = (e−α1T + e−α2T )z−1Y (z) − z−2Y (z)

+ 2 · T · X (z) − T · (e−α1T + e−α2T )z−1X (z) (31)

Note that two terms of the input are used with X(z) corre-
sponding to x(n), and z�1X(z) corresponding to x(n � 1). This
does not present any particular difficulty.

Going back to Eq. (30), instead of cross multiplying, sup-

Y (z) = H(z)X (z)T

= 1.155 × 106 · (0.951) · (0.086) · 10−7

1 − 2 · (0.951) · (0.9963) · z−1 + (0.904)z−2
z−1X (z)

= 0.0094
1 − 1.895z−1 + 0.9044z−2

z−1X (z)

(25)
pose we define two auxiliary functions

Y (z) = 1.895 · z−1Y (z) − 0.9044z−2Y (z) + 0.0094 · z−1X (z)

y(n) = 1.895 · y(n − 1) − 0.9044 · y(n − 2) + 0.0094 · x(n − 1)

(26)

Note that the z�1 in the numerator of H(z) in Eq. (25) resulted

S1(z) = T
1 − e−α1T z−1

· X (z)

S2(z) = T
1 − e−α2T z−1

· X (z)

in the x(n � 1), that is, a delay in the input in Eq. (26). The
computer code in Fig. 6 implements Eq. (26). So instead of the results of Eq. (31), we get

Alternatively, we may be asked to build the digital equiva-
lent of the analog filter shown in Fig. 5. This is done in Fig. S1(z) = e−α1T z−1S1(z) + T · X (z)

S2(z) = e−α2T z−1S2(z) + T · X (z)

Y (z) = S1(z) + S2(z)

(32a)

(32b)

(32c)

The results of Eqs. (32) present a simpler formulation. This
is a method of defining auxiliary parameters so that several
small calculations are being made instead of one large one,
often an easier process. If, for instance, H1 and H2 were each

T � 1E�7
GAMMA � 1.155e6
DO N�0,NMAX

Y(N) � 2*EXP(�ALPHA*T)*COS(BETA*T)* Y(N�1)
� EXP(�2*ALPHA*T) * Y(N�2)� T*GAMMA*SIN(BETA*T)* X(N�1)

END DO second-order systems, the cross multiplication similar to Eq.
(31) would produce a fourth order system. It would be far bet-Figure 6. Simulation of the RLC circuit in Fig. 5. X(N) is the (as yet

unspecified) input. ter to define two-second order auxiliary parameters and make
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Figure 7. Digital hardware implementation of the
analog filter in Fig. 5. The boxes marked D represent

x(n)
0.0094 ⋅ x(n –1)

y(n –1) y(n –2)

y(n)

0.0094 +D

1.895

0.9044

D D

delay registers.

two second-order calculations, similar to Eq. (32a) and Eq. Initial Value Theorem
(32b). Figure 9 is the digital simulation of the transfer

If F(z) � Z [f (n)], then f (0) � limz⇒�F(z)
function.

Proof The proof comes directly from the definition of the Z
PROPERTIES OF Z TRANSFORMS transform in Eq. (1). As z ⇒ �, all terms vanish except f (0),

which proves the theorem.
The definition of the Z transform has been given along with
some examples of how the Z transform may be used. In solv-

Final Value Theoreming these examples, we used the important convolution theo-
rem. Here are some other important properties of Z trans- If F(z) � Z[ f (n)], and (z � 1)F(z) has no poles on or outside
forms. the unit circle (see the section on stability), then

Linearity

If F1(z) � Z [f 1(n)] and F2(z) � Z[ f 2(n)], then Z[	f 1(n) �
f (∞) = lim

z→1
(z − 1)F(z)

�f 2(n)] � 	F1(z) � �F2(z)

This theorem can be extremely helpful, because it gives usProof
the steady state value without solving for the entire sequence
in the time domain. However, the proof is nontrivial. The in-
terested reader should see Ref. 3.

There are numerous other theorems, some of which are
listed in Table 2. More extensive lists are available in the
literature (1–4).

Z [α · f1(n) + β · f2(n)]

=
∞∑

n=−∞
(α · f1(n) + β · f2(n))z−n

= α

∞∑
n=−∞

f1(n) + β

∞∑
n=−∞

f2(n) = α · F1(z) + β · F2(z)

Time-Shifting THE INVERSE Z TRANSFORM
If F(z) � Z[ f (n)], then Z[ f (n � m)] � z�mF(z)

Like all frequency domain transforms, there is an inverse Z
Proof transform given by

f (n) = 1
2π j

∫
�

F(z)z n−1 dz (33)

This involves contour integration in the complex plane and is
rarely of practical use (2). Instead, we will use much the same

Z [ f (n − m)] =
∞∑

n=−∞
f (n − m)z−n

= z−m
∞∑

n=∞
f (n − m)z−(n−m)

= z−m
∞∑

l=−∞
f (l)z−(l) = z−mF(z) l = n − m

approach we used to get the forward Z transform: get the ex-

Note that this proof was for the general case of a noncausal
function f (n). If f (n) is causal, or of a finite duration, then
additional terms may appear (3).

DO N�0,NMAX
S1(N) � EXP(�ALPHA1*T)*S1(N�1) � T*X(N)
S2(N) � EXP(�ALPHA2*T)*S2(N�1) � T*X(N)
Y(N) � S1(N) � S2(N)

END DO

Figure 9. Computer program to calculate the response of the system

H1(  )ω

H2(  )ω

X(  )ω Y(  )ω
+

in Fig. 8. The responses S1 and S2 are the responses of the two paral-
lel paths in Fig. 8.Figure 8. A system made up of two parallel sub systems.
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Now solve for B and C by multiplying through by their respec-
tive denominators and evaluating at the location of the pole
in the Z domain:

B = (z− e−T/t0 )

[
1

z − e−T/t0
· Az

z − 1

]
z=e−T/t0

= Ae−T/t0

e−T/t0 − 1

C = (z − 1)

[
1

z − e−T/t0
· Az

z − 1

]
z=1

= A
1 − e−T/t0

(37a)

(37b)

Putting these values in Eq. (36), we arrive at

Y (z)

z
=

[
1

z − 1
− e−T/t0

z − e−T/t0

]
A

1 − e−T/t0
(38)

The reason for dividing by z before we did the expansion is

Table 2. Properties of the Z Transform

Sampled Time Domain Z Domain

f (n) F(z)
Linearity 	 · f (n) � � · g(n) 	 · F (z) � � · F (z)
Time shift f (n � m) z �mF (z)
Initial value f (0) limz�0F (z)
Final value f (�) limz�1(z � 1) · F (z)

1
1 � z�1 F (z)�N

n�0
f (n)Integration

Convolution F (z) · H(z)��
n�0

f (n)h(m � n)

Complex
f (n) · g(n)convolution 1

2�j 	C
G(v)F 
z

v� v�1 �v

now apparent: we can multiply both sides of Eq. (38) by z,
and on the right side, we can divide the numerators and de-

pression in a form we recognize, then look it up in a table. nominators by z giving
This involves the well-known partial fraction expansion.

Partial Fraction Expansion Y (z) =
[

1
1 − z−1

− e−T/t0

1 − e−T/t0 z−1

]
A

1 − e−T/t0

Recall the previous example in which we were convolving two
sequences, one an exponentially decaying function of Eq. (11)

Now all the Z terms are in a format that exist in Table 1, and
we geth(n) = Ae−nT/t0 n = 0, 1, 2,3, . . . (11)

and the other the discretized unit step function of Eq. (12)

u(n) = 1 n = 0, 1,2, 3, . . . (12)

Their Z transforms are expressed in Eq. (13)

y(n) = A
1 − e−T/t0

[1 − e−T/t0 e−nT/t0 ]u(n)

= A
1 − e−T/t0

[1 − e−(n+1)T/t0]u(n)

(39)

Partial Fraction Expansion of Multiple RootsZ [h(n)] = H(z) = A
1 − e−T/t0 z−1 (13)

If multiple roots exist at one location, a modification to the
and partial fraction expansion is needed. Suppose we have

Z[u(n)] = U (z) = 1
1 − z−1

The desired convolution is

Y (z)

z
=

[
N(z)

(z − p1)(z − p2)r

]

= k1

z − p1
+ k21

(z − p2)
+ k22

(z − p2)2 + · · · + k2r

(z − p2)r

Y (z) = H(z)U (z) = A
1 − e−T/t0 z−1

· 1
1 − z−1

(34)

The term k1 is calculated as explained above. The other terms
To get the inverse Z transform, it is preferable to work with are calculated by the formula
z instead of z�1, so multiply the numerator and denominator
by z2:

krj = 1
(r − j)!

dr− j

dzr− j
[(z − p2)rY (z)]z=p2

Y (z) = A
z − e−T/t0

· 1
z − 1

z2

As an example, suppose we convolve the one pole filter of the
For reasons that will be apparent a little later, divide both previous example with a ramp function,
sides by z:

x(n) = nu(n)Y (z)

z
= A

z − e−T/t0
· 1

z − 1
z (35)

Convolving this with h(n), and going to the Z domain gives
Take the partial fraction expansion of Y(z)/z:

Y (z)

z
= B

z − e−T/t0
+ C

z − 1
(36) Y (z) = A

1 − e−T/t0 z−1
· z−1

(1 − z−1)2 T (40)
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or It is best to start by solving for K3. First divide through by
z/(z � 1) and solve:

K3 =
[

0.0094z
z2 − 1.895 · z1 + 0.9044

]
z=1

= 0.0094
1 − 1.895 + 0.9044

= 0.0094
0.0094

= 1

Hereafter, however, we are reduced to cross multiplying

0.0094z
z2 − 1.895 · z + 0.9044

· z
z − 1

= (K1z2 + K2z)(z − 1) + z(z2 − 1.902 · z + 0.9044)

(z2 − 1.895 · z + 0.9044)(z − 1)

Y (z)

z
= A

z − e−T/t0
· 1
(z − 1)2

Tz

= k1

z − e−T/t0
+ k22

(z − 1)2 + k21

z − 1

k1 = ATz
(z − 1)2

∣∣∣∣
z=e−T /t0

= ATe−T/t0

(e−T/t0 − 1)2

k22 = ATz
(z − e−T/t0 )

∣∣∣∣
z=1

= AT
(1 − e−T/t0 )

= AT(1 − e−T/t0 )

(1 − e−T/t0 )2

k21 = d
dz

[
ATz

(z − e−T/t0 )

]
z=1

= AT
[

(z − e−T/t0 ) − z(1)

(z − e−T/t0 )2

]
z=1

= −ATe−T/t0

(1 − e−T/t0 )2

Equating like powers of z in the numerator gives
Now the inverse of Eq. (40) is

0 = K1z3 + z3 ⇒ K1 = −1

0.0094z2 = K2z2 + K1z2 − 1.902 · z2 ⇒ K2 = 0.9044y(n) = ATe−T/t0

(e−T/t0 − 1)2
[(e−nT/T0 − 1) + (e−T/t0 − 1)n]u(n)

and the accuracy can be checked by the remaining equation
Cross Multiplication

There is an alternative to the partial fraction expansion 0 = −K2z + 0.9044z
method that is often easier to implement, particularly when
dealing with complex roots. We start by illustrating its use on Now plugging these numbers back into Eq. (43) gives
an earlier problem and then move to an example with com-
plex roots. Starting with Eq. (36) and cross multiplying the
terms in the denominators, we can set this equal to Eq. (35)

Y (z)

z
=

[
B(z − 1) + C(z − e−T/t0 )

(z − e−T/t0 )(z − 1)

]
= ATz

(z − e−T/t0 )(z − 1)

Equating the numerators gives

B(z − 1) + C(z − e−T/t0 ) = ATz

Y (z) = 0.0094z
z2 − 1.895 · z1 + 0.9044

· z
z − 1

= −z2 + 0.9044z
z2 − 1.895 · z1 + 0.9044

+ z
z − 1

= 1
1 − z−1

− 1 − 0.9044z−1

z − 1.895 · z−1 + 0.9044z−2

= 1
1 − z−1 − 1 − 0.9044z−1

z − 2 · e−αT cos(βT ) · z−1 + e−2αTz−2

and then, by equating like powers of z This is starting to look like something from Table 1, but the
last term resembling the decaying cosine isn’t quite there.

B = −Ce−T/t0
The following manipulation is required:

and

C(1 − e−T/t0 )z = ATz

which leads to the same values as Eq. (37). The advantage to
this approach will become apparent with more complicated
expressions.

Y (z) = 1
1 − z−1 − 1 − 0.9044z−1

z − 2 · e−αT cos(βT ) · z−1 + e−2αTz−2

= 1
1 − z−1 − 1 − e−αT cos(βT )z−1

z − 2 · e−αT cos(βT ) · z−1 + e−2αTz−2

+ 0.521 · e−αT sin(βT )z−1

z − 2 · e−αT cos(βT ) · z−1 + e−2αTz−2
Suppose we go back to the RLC filter problem and calcu-

late the expression for the response to a unit step function.
Notice that it was necessary to break the last term into twoEq. (25) becomes
parts to give two terms that can be found in Table 1

Y (z) = 0.0094z−1

1 − 1.895 · z−1 + 0.9044z−2

1
1 − z−1 y(n) = [1 − e−αnT cos(βnT ) − 5.21 · e−αnT sin(βnT )] (42)

Expanding this out into the separate terms, we get the follow-
ing general form STABILITY

In dealing with the transfer function H(z) of a discrete sys-
tem, a key issue is the stability of this system. By stability
we are saying that the output remains bounded for any
bounded input (3). An Nth order causal system has a transfer

Y (z) = 0.0094z
z2 − 1.895 · z1 + 0.9044

· z
z − 1

= K1z2 + K2z
z2 − 1.895 · z1 + 0.9044

+ K3z
z − 1

(41)
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function which can be expressed as domain. Our approach has been to take the partial fraction
expansion of the frequency domain expression, find the corre-
sponding Z transforms, and solve the problem in the Z do-
main. Our success depended upon the ability to manipulate

H(z) = Y (z)

X (z)
= b0 z N + b1z N−1 + · · · + bN−1z + bN

a0 z N + a1z N−1 + · · · + aN−1z + aN
(43)

the frequency domain expression in a form that could be
found in a table like Table 1. In this section, we presentIn determining the response to an input X(z), the output can
some alternatives.be expressed in the following manner after factoring the de-

nominator into its roots and taking the partial fraction expan-
Backward Rectangular Approximationsion

Fourier Transform Theory tells us that a j� in the frequency
domain becomes a derivative in the time domain (1,2). In go-Y (z) = c1z

z − p1
+ c2z

z − p2
+ · · · + cNz

z − pN
+ YI (z) (44)

ing from the time domain to the sampled time domain, the
derivative may be approximated by(For this example, it is assumed there are no repeated roots.)

YI(z) contains only those terms that originated from the poles
of the input X(z). Taking the inverse transform of Eq. (44)

d f (t)
dt

∼= f [nT] − f [(n − 1)T]
T

gives
Taking the Z transform of the right side gives

y(n) = c1 pn
1 + c2 pn

2 + · · · + cN pn
N + yI (n) (45)

Each of the poles of Eq. (44) produced an exponential term in Z
{

f [nT] − f [(n − 1)T]
T

}
= F(z) − z−1F(z)

T
= 1 − z−1

T
F(z)

Eq. (45). As long as the magnitude of each of the poles in Eq.
(44) is less than one, then each of the terms in Eq. (45) is Suppose this is taken one step further and the transition from
exponentially decaying. The term yI(n) originated from the in- the frequency domain to the Z domain is made by simply re-
put, which we have already assumed is bounded. Therefore, placing
looking at Fig. 10, we can say that the system is stable if each
pole is inside the unit circle in the complex Z plane.

The RLC filter that we analyzed earlier had the following jω ⇒ 1 − z−1

T
(46)

transfer function:
As an example, the transition from the frequency domain to
the Z domain for the one pole filter becomesH(z) = 1.155 × 106 e−αT sin(β · T ) · z−1

1 − 2e−αT cos(β · T ) · z−1 + e−2αTz−2

= 0.0818z−1

1 − 1.895z−1 + 0.904z−2

1
α + jω

⇒ 1

α + 1 − z−1

T

= T
αT + 1 − z−1 (47)

The denominator has its roots at z � 0.9475 � j .079 and
At first glance, this does not seem in any way, shape, or form0.9475 � j .079 , forming a complex conjugate pair. Most im-
to represent the Z transform in Table 1. An approximationportant is that �z� � 0.9508; both roots have a magnitude of
that is useful here and elsewhere isless than one and lie inside the unit circle.

ALTERNATIVE METHODS TO FORMULATE
1

1 + δ
∼= e−δ if δ 
 1

THE Z TRANSFORM
Utilizing this approximation Eq. (47) becomes

We have seen examples in which problems were stated in the
frequency domain and we solved them in the sampled time T

αT + 1 − z−1
= T/(1 + αT )

1 − z−1/(1 + αT )
∼= Te−αT

1 − e−αT z−1
(48)

There are two points worth noting. First, the factor T that we
usually add in the convolution theorem is already there be-
cause the substitution of Eq. (48) is essentially Riemann Inte-
gration, that is, approximating an integral by a summation
at specific intervals of size T. Furthermore, the amplitude has
been changed by a factor of

1
1 + αT

∼= e−αT

Once again, if 	T is small, this term will be very close to 1.
This means that more accuracy can be obtained by making

Simple poles

Real axis1

1

–1

–1

Complex
conjugate
poles

Z plane

Stable
region

Imaginary axis

T smaller.
The practical reasoning for this approach is a little clearerFigure 10. Complex Z plane. All poles must be inside the unit circle

(shaded area) to insure stability. if we go back to the RLC circuit of Fig. 5, which had the trans-
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because trapezoidal integration is more accurate than rectan-
gular integration. The disadvantage is obvious: the order of
the system in the Z domain is doubled!

As a simple example, take the Z transform of the one pole
function using the bilateral transform (4)

0.05

0.03

0.01

–0.01
s

1 2 3

Analytic
Direct Z
1st order

h(n)

0

µ

Figure 11. Impulse response of the second-order RLC circuit as cal-

1
α + jω

= 1

α + 2
T

1 − z−1

1 + z−1

= (1 + z−1) · T
(1 + z−1) · αT + 2 · (1 − z−1)

= (1 + z−1) · T
(αT + 2) + (αT − 2)z−1 =

(1 + z−1) · T
2 + αT

1 + 1 − αT/2
1 + αT/2

z−1

(51)

culated analytically (dashed curve), by the direct Z transforms (�),
and by the first-order backward rectangular approximation (�). No-

Figure 12 compares the formulation of Eq. (48) with the newtice that the latter is not as accurate. However, it can be made arbi-
bilateral formulation from Eq. (51) and with the analytic for-trarily close to the analytic solution by using smaller time steps.
mulation of Eq. (22). Clearly Eq. (51) is more accurate, after
the first pulse. (Notice that 1 � z�1 in the numerator of Eq.
(51) means that the impulse response is calculated by averag-fer function
ing the impulse over the first two time steps.)

The different approaches used to change from the Fourier
domain to the Z domain can be summarized as follows: TheH(ω) = ω2

0

ω2
0 + jω2δ0ω0 − ω2

direct transform, that is, converting from terms in the fre-
quency domain to those in the Z domain by looking them up

where in a table, is the most accurate and also gives the lowest order
expression in the Z domain. The disadvantage of the directω0 = 1/LC δ0 = R/2Lω0 transform is that it often requires a partial fraction expan-
sion. For third and higher order systems, this is not trivial.Instead of having to transform this to the form in Table 1,
Using direct substitution via either the backward approxima-replace each j� with (1 � z�1)/T:
tion or the bilateral transform is usually easier, however,
these are approximations. The bilateral transform is better
than the backward approximation, at the cost of increased
complexity.

Most authors describe these transforms starting from the
Laplace domain (3,4). The concepts are the same, but begin
with s instead of j�.

AN EXAMPLE FROM ELECTROMAGNETIC SIMULATION

H(z) = ω2
0

ω2
0 +

�
1 − z−1

T

�
2δ0ω0 +

�
1 − z−1

T

�2

= ω2
0T2

ω2
0T2 + (1 − z−1)2δ0ω0T + (1 − 2z−1 + z−2)

= ω2
0T2

(ω2
0T2 + 2δ0ω0T + 1) − 2(1 + δ0ω0T )z−1 + z−2

(49)

The past decade has seen a dramatic increase in the use of
The resemblance to the Z transform of Table 1 is not as computer simulation methods for a wide variety of applica-

obvious, but it is there. Figure 11 shows the impulse response tions in electromagnetics. In particular, time domain meth-
using Eq. (49) compared to the results obtained from Eq. (26). ods, such as the finite-difference time-domain (FDTD) method
These plots were made using a time step of 0.1 �s. If the time have become more popular because of their flexibility and
step is reduced to 0.01 �s, the results correspond almost ex-
actly.

Trapezoidal Approximation (Bilinear Transform)

Equation (46) can be improved upon by the following transfor-
mation:

jω ⇒ 2
T

1 − z−1

1 + z−1 (50)

This is referred to as the bilinear transform. While the use of
Eq. (46) can be thought of as approximating the time domain

1

0
0 10 20 30

0.5

Time steps

h

Analytic
1st order
Bilateral

convolution integral with rectangular step Reimann integra-
tion, Eq. (50) represents trapezoidal integration. Equation Figure 12. Impulse response of the single-pole filter as calculated
(50) is preferred by theoreticians in the signal processing field analytically (dashed curve), by the first-order backward rectangular
because it is unconditionally stable, whereas Eq. (46) is not approximation (�), and by the second-order bilateral approximation

(�). The bilateral is more accurate, but requires twice as many terms.(3). From a somewhat more intuitive view, it is more accurate
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their efficiency in utilizing the power of today’s computers (5). present value of I(z). The present value of D(z) is not a prob-
lem because in the order in which the algorithm is imple-In this example, it will be demonstrated that the Z transform

can be used in formulating the FDTD simulation for complex mented, it has already been calculated in Eq. (52a). However,
the present value of I(z) requires the present value of E(z).materials (6,7).

The time dependent Maxwell’s equations are given by This problem is circumvented by simply replacing I(z) with
its expanded version in Eq. (57a). Now Eq. (56) becomes

D(z) = εrE(z) + z−1I(z) + σ · T
ε0

· E(z) + z−1S(z)

from which E(z) can be calculated by

dD
dt

= ∇ × H

D(ω) = ε0 · ε∗
r (ω) · E(ω)

dH
dt

= 1
µ0

∇ × E

(52a)

(52b)

(52c)

where �0 is the permeability and �0 is the permittivity of free
space. It will be assumed that we are dealing with nonmag-
netic materials. However, the relationship between the flux
density D and the electric field E can be an extremely compli-
cated function of frequency.

In implementing the FDTD method, Eqs. (52a) and (52c)
are formulated using spatial and temporal difference approxi-

E(z) = D(z) − z−1I(z) − z−1S(z)

εr + σ · T/ε0
εr E(z)

I(z) = z−1I(z) + σ · T
ε0

· E(z)

S(z) = 2e−αT cos(ω0T ) · z−1S(z)

− e−2αTz−2S(z) + ε1 · e−αT · sin(ω0T ) · T · E(z)

(58)

(57a)

(57b)

mations. This is straightforward and is described extensively
in the literature (5). However, we still need a method of calcu- Note that S(z) did not have to be expanded out because it
lating E from D. We will regard this as a digital filtering prob- already had a z�1 in the numerator.
lem, and utilize the Z transforms.

Suppose we are simulating a medium described by the fol-
SUMMARYlowing complex dielectric constant

The Z transform plays the same role in discrete time that the
Laplace and Fourier transforms play in continuous time. As

ε∗
r (ω) = εr + σ

jωε0
+ ε1

ω0

(ω 2
0 + α2) + j2αω + ω 2 (53)

shown earlier in this article, it can be used to analyze discrete
time equations, develop iterative solutions to discrete timeInserting Eq. (53) into Eq. (52b) and taking the Z transforms,
equations, or design digital circuitry to calculate a solution inwe get
hardware. It has even found application in electromagnetic
simulation.

The theory and examples in this article are by no means
complete. However, they illustrate the power and flexibility
of the Z transform as one of the essential tools in electrical

D(z) = εr E(z) + σ · T/ε0

1 − z−1 · E(z)

+ ε1
e−αT · sin(ω0T ) · T · z−1

1 − 2e−αT cos(ω0T ) · z−1 + e−2αTz−2 · E(z)

(54)

engineering today.
It will prove worthwhile to define two auxiliary parameters:
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