
ALGORITHMIC DIFFERENTIATION AND DIFFER-
ENCING

Values of derivatives and Taylor coefficients of functions
are required in various computational applications of
mathematics to engineering and science. The traditional
method for evaluation of derivatives is to use symbolic dif-
ferentiation, in which the rules of differentiation are ap-
plied to transform formulas for functions into formulas for
their derivatives. Then derivative values are calculated by
evaluating these formulas.

Algorithmic differentiation (AD) is an alternative
method for evaluation of derivatives. AD is based on the
sequence of basic operations, that is, the algorithm used
to evaluate the function to be differentiated. Each step in
such a sequence consists of an arithmetic operation or the
evaluation of some intrinsic function such as the sine or
square root. The rules of differentiation are then applied
to transform this sequence into a sequence of operations
for evaluation of the desired derivative. Thus, AD trans-
forms the algorithm for evaluation of a function into an al-
gorithm for evaluation of its derivatives. Since evaluation
of functions on digital computers is carried out by means
of algorithms in the form of subroutines or programs, AD
is particularly suitable in this case. Hence, the historical
designation “automatic differentiation” as the process was
intended for use on computers. These terms for AD are
equivalent.

The processes of algorithmic and symbolic differentia-
tion are based on the same definitions and theorems of
differential calculus. They differ in their goals. The pur-
pose of symbolic differentiation being production of formu-
las for derivatives, while the purpose of AD is computa-
tion of values of derivatives. Hence, AD is also referred
to as “computational differentiation.” Their starting points
also differ. Symbolic differentiation begins with formulas,
and AD begins with algorithms. If the function to be dif-
ferentiated is expressed as a formula, then an equivalent
algorithm for its evaluation must be derived before AD
can be applied. Automatic methods for conversion of for-
mulas to algorithms are well known (1) and are used to
produce internal algorithms by calculators and computer
programs which accept formulas as input. On the other
hand, AD is applicable to functions which are only defined
algorithmically, as by computer subroutines or programs.
For many computational purposes, such as the solution of
linear systems of equations, efficient algorithms are pre-
ferred to formulas. AD generally requires less computa-
tional effort than symbolic differentiation followed by for-
mula evaluation even for functions defined by formulas.
The algorithmic approach to derivatives also applies to ac-
curate evaluation of divided differences as described in the
final section of this article.

In this article the basic idea of AD is first illustrated by
a simple example. This is followed by sections on automatic
generation of Taylor series and its application to the com-
putational solution of initial value problems for ordinary
differential equations. Subsequent sections deal with eval-
uating partial derivatives, including gradients, Jacobians,
and Hessians, along with various applications, including

estimation of sensitivities, solution of nonlinear systems of
equations, and optimization. See Ref. 2 for an introduction
to AD and its applications.

AN EXAMPLE

To begin on familiar ground, first consider the application
of AD to a function defined by a formula. Suppose a cir-
cuit, the details of which are unimportant, produces the
amplitude-modulated current I(t) given by

as a function of time t, where the amplitude A and the fre-
quencies �, ω are known constants pertaining to the cir-
cuit. If this current flows through a device with inductance
L, then the corresponding voltage drop is given by

Suppose we want to construct a graph of I(t) and E(t) by

evaluating I(t), E(t) = L
²
I(t) for a number of values of t and

connecting the resulting points to obtain smooth curves.
First, consider the evaluation of I(t) itself. Although for-
mula (1) defines I(t), it does not give an explicit step-by-step
procedure to compute its value for given t. A straightfor-
ward method is to compute the quantities s1, . . . , s7 given
by

For a given value of t, it is evident that s7 = I(t). It follows
that Eq. (1) and Eq. (3) are equivalent but different repre-
sentations of the same function. In fact, given Eq. (3), Eq.
(1) is obtained by literal substitution for the values of s1,
. . . , s7, starting with s1 = t. The algorithmic representation
in Eq. (3) of the function is called a code list (3), because
early computers and programmable calculators required
this kind of explicit list of operations to evaluate a function.
Computers and calculators that accept formulas as input
convert them internally to a sequence similar to Eqs. (3) to
carry out the evaluation process.

Now the value of the derivative
²
I(t) is computed by ap-

plying the rules of differentiation to the code list (3) rather
than to Eq. (1). This is implemented in several ways. The
earliest is interpretation of the code list, introduced by
Moore (4) and later by Wengert (5). In this method, the
code list is used to construct a corresponding sequence of
calls to subroutines that compute the appropriate deriva-
tive values. For example, if s = uv appears as an entry in

the code list, then the values of u, v,
²
u,

²
v are sent to a sub-

routine that returns the value
²
s = u

²
v +

²
uv. In terms of the

usual differentiation formulas, the result of this process is

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Algorithmic Differentiation and Differencing

the sequence
²
s1, . . . ,

²
s7 given by

As in the case of Eq. (3) for evaluating I(t), it is evident that

the result of Eq. (4) is
²
s7 =

²
I(t).Thus, it is possible to compute

the value of the derivative of a function directly from a
code list for evaluating the function. Furthermore, literally
evaluating the sequence in Eq. (4) gives the formula

So in this sense, automatic and symbolic differentiation of
a function are equivalent. However, it is important to note
that AD is used to compute numerical values of s1, . . . , s7

and
²
s1, . . . ,

²
s7 rather than literal values. Certain values

from the code list for evaluating the function are required
for evaluating its derivative, in this case s2, s4, s5, s6.

Another method for automatic differentiation uses the
fact that the formulas for derivatives as used in Eq. (4) can
themselves be represented by code lists. For example, the
derivative of s = uv would be computed in the three steps

d1 = u
²
v, d2 =

²
uv, d3 = d1 + d2 from the previously obtained

values of u, v,
²
u,

²
v. Then these sublists are inserted at the

appropriate place to obtain a code list for the derivative of
the original function. Application of this method to Eq. (3)
gives

This process is called code transformation because it trans-
forms a code list for the function into a code list for its
derivative. The same method is used to transform Eq. (6)

into a code list for the second derivative
²
I(t), if desired, and

so on. An early example of code transformation appears in
Ref. 3; see also Ref. 6. A third way to implement automatic
differentiation, operator overloading, is described later.

However implemented, it follows from the chain rule
for derivatives that AD succeeds if and only if the func-
tion represented by the code list is differentiable at the
given value of t. Nondifferentiability causes the step-by-
step evaluation of the derivative to break down at some

stage, for example, because of attempted division by zero
or evaluating a standard function for an invalid argument.

Before leaving this simple example, it is also important
to note that AD can be used to compute values of differen-
tials as well as derivatives (6). If the value of d1 in the code
list in Eq. (6) is taken to be d1 = τ instead of d1 = 1, then the

result is d11 =
²
I(t)τ. By definition, this is the value of the

differential dI =
²
I(t)dt for dt equal to the given value τ. In

some applications, dI is used as an approximation to the
increment �I = I(t + τ) − I(t) for τ = dt small. If the values of

I(t0) and
²
I(t0)τ are computed with τ = t − t0, then the results

are also the values of the first two terms of the Taylor series
expansion of I(t) at t = t0,

Next, we show how AD is used to obtain values of as many
subsequent terms of the Taylor series as desired for a suf-
ficiently differentiable function, in particular, for series so-
lution of initial-value problems for ordinary differential
equations.

ALGORITHMIC GENERATION OF TAYLOR
COEFFICIENTS

Suppose that the function x(t) has a convergent Taylor se-
ries expansion at t = t0, at least for |t − t0| sufficiently small.
This expansion is written

where

The numbers a0, a1, . . . are called the normalized Taylor co-
efficients of x(t) expanded at t = t0 with increment τ = t − t0.
For computational purposes, it is convenient to identify the
function value x(t) with the vector of its normalized Taylor
coefficients, x(t) ↔ (a0, a1, . . . , an , . . .). If C is a constant,
then C ↔ (C, 0, 0, . . .), and for the independent variable t,
t ↔ (t0, t − t0, 0, . . .).

Normalized Taylor coefficients can be evaluated by AD
for functions defined algorithmically. This method is also
called recursive generation of normalized Taylor coeffi-
cients, and a few special applications prior to the computer
era are known (6). By 1959, this technique was incorpo-
rated in computer programs created by R. E. Moore and
his coworkers at Lockheed Aviation (7).

For simplicity, assume that the function to be expanded
is defined by a code list. This reduces the problem to calcu-
lating normalized Taylor coefficients of the results of arith-
metic operations and standard functions, given the coeffi-
cients of their arguments. Typical formulas for these are
given later, and more details are in Refs. 6 and 7. The com-
putations involved are numerical and are carried out very
rapidly on a digital computer. This permits carrying out the
Taylor expansion to a much higher degree than ordinarily
possible by symbolic methods, which are of course limited

Algorithmic Differentiation and Differencing 3

to functions defined by formulas.
Suppose that the normalized Taylor coefficients for the

functions x(t) and y(t) expanded at t = t0 with increment
τ = t − t0 are given. The coefficients of the result z(t) = x(t)
◦ y(t), where ◦ denotes an arithmetic operation, are ob-
tained directly by power series arithmetic. Let a0, a1, . . . ,
an , . . . and b0, b1, . . . , bn , . . . be the coefficients of the series
for the operands x(t), y(t), respectively. The coefficients c0,
c1, . . . , cn , . . . of the result z(t) = x(t) ± y(t) are given by

for addition and subtraction, respectively, and by the con-
volutional formula

for multiplication, z(t) = x(t)y(t). The formula for division,
z(t) = x(t)/y(t), is obtained by using Eq. (11) for the prod-
uct y(t)z(t) = x(t), which gives a system of linear equations
to be solved for c0, c1, These equations are b0c0 = a0,
b0c1 + b1c0 = a1, and so on. If b0 �= 0, then they are solved in
turn for the general coefficient of the result,

This formula is recursive because the previously computed
values of c0, . . . , cn−1 are needed for calculating cn , whereas
the formulas for addition, subtraction, and multiplication
depend only on the coefficients of their arguments.

Generating normalized Taylor coefficients is also re-
quired for standard functions, for example, for z(t) = sin x(t)
given the coefficients of x(t). In principle, this is done by
substituting of the power series for x(t) in the power series
for the sine function and collecting coefficients of like pow-
ers of τ = t − t0, but the algebra is extremely cumbersome.
An efficient method formulated by Moore (4) (see Refs. 6
and 7), uses differential equations satisfied by the stan-
dard functions. This technique is described in general in
the next section. Here, the basic idea is illustrated by the
exponential function

which satisfies the first-order linear differential equation

Given the normalized Taylor coefficients a0, a1, . . . of x(t) ex-
panded at t = t0 with increment τ = t − t0, the corresponding
coefficients b0, b1, . . . of y(t) are found as follows: First, note
that at t = t0, the initial condition y(t0) = exp[x(t0)], that is,
b0 = exp(a0). Next, formal term-by-term differentiation of

the series for x(t) gives
²
x(t) ↔ [a1/τ, 2a2/τ, . . . , (n + 1)an+1/τ,

. . .] and a similar vector of coefficients for
²
y(t). It follows

from the differential equation in Eq. (14) that the coeffi-

cient (n + 1)bn+1/τ of
²
y(t) is equal to the corresponding coef-

ficient in the series for the product y(t)
²
x(t) given by Eq. (11).

After multiplying by τ and dividing by (n + 1), the result is

As with division, this formula gives bn+1 in terms of b0, . . . ,
bn and the known coefficients of x(t) and hence is recursive.
Starting with the initial value b0 = exp(a0), Eq. (15) gives
b1 = a1b0, and so on. Note that the exponential function is
evaluated only once to obtain b0. Calculating subsequent
coefficients is purely arithmetical.

Automatically generating Taylor coefficients is easily
implemented by using the algorithmic representation of
the function (such as by a code list) to construct calls to sub-
routines for arithmetic operations and standard functions.
Another method is operator overloading, which is described
later.

Because computation is inherently finite, the results ac-
tually obtained are the coefficients a0, . . . , ad of the Taylor
polynomial

of degree d rather than the complete Taylor series for a
typical function x(t). As before, it is convenient to use the
correspondence Tdx(t) ↔ (a0, a1, . . . , ad) between a Tay-
lor polynomial and the (d + 1)-dimensional vector of its co-
efficients. For given values of t0, t, AD is used to gener-
ate Taylor polynomials of high degree d with a reasonable
amount of effort, compared with symbolic differentiation
when the latter is applicable. For example, consider calcu-
lating I100(t) by AD from the code list in Eq. (3) compared
with applying symbolic differentiation 100 times to Eq. (1).

From calculus, the goodness of the approximation of x(t)
by Tdx(t) is given by the remainder term,

Moore has shown that automatically generating the Taylor
coefficient by using interval arithmetic is a computational
procedure that yields guaranteed bounds for the remainder
term. For details, see Ref. 7.

SOLUTION OF INITIAL-VALUE PROBLEMS

The principal application of automatically generating Tay-
lor coefficients is not to known functions but rather to un-
known functions defined by initial-value problems for or-
dinary differential equations. The simplest example is for
a single, first-order equation

where the known function f(t, x) is defined by an algorithm,
such as a code list, and the initial value a0 is given. The
method works as follows: The Taylor coefficients (t0, t − t0,
0, . . . , 0) of t are known, and suppose that the coefficients
(a0, a1, . . . , ad) of Tdx(t) have been computed. Then, AD is

4 Algorithmic Differentiation and Differencing

used to obtain the coefficients (b0, b1, . . . , bd) of the Taylor

polynomial Tdf[t,Tdx(t)]. From the Taylor series for
²
x(t) and

the differential, Eq. (18) it follows that

so the series for x(t) is extended as long as the coefficients
bd can be calculated. This process starts with the initial
value a0. Then because b0 = f(t0, a0), a1 = b0(t − t0), and so
on. Generally speaking, the value of t − t0 is small, so mul-
tiplication by it and division by (d + 1) reduce the effect of
any error in calculating of bd on the value of the subsequent
Taylor coefficient ad+1 of x(t).

Initial-value problems for higher order equations

with x(k)(t0) given for k = 0, . . . , n − 1, are handled in much
the same way as the first-order problem. Here,

so the coefficients of the Taylor polynomial xn−1(t) are
known. From these, the coefficients b0, . . . , bn−1 of fn−1 [t,
x(t), . . . , x(n−1)(t)] are calculated. Then Eq. (19) gives an and
likewise subsequent coefficients of x(t). Another method is
to transform higher order differential equations into a sys-
tem of first-order equations. This is done by the substitu-
tions xk (t) = x(k)(t), k = 1, . . . , n − 1 that give

and

This is a special case of the general first-order system

where x(t) = [x1(t), . . . , xm (t)] and f(t) = [f1(t, x(t)], . . . , fm [t,
x(t)] are m-dimensional vectors of functions of t. It is as-
sumed that f[t, x(t)] is a known function of its arguments.
Given the initial condition

the Taylor expansion of x(t) is carried out similarly as for a
single equation, but of course more arithmetic is involved
(7). It is assumed as before that the functions f1(t), . . . ,
fm (t) have representations suitable for automatic differen-
tiation.

For example, recurrence relationships for the standard
functions c(t) = cos x(t) and s(t) = sin x(t), are obtained from
the first-order system

and

which these functions satisfy, together with the initial con-
ditions c(t0) = cos x(t0), s(t0) = sin x(t0), that is, c0 = cos a0,

s0 = sin a0, where c(t) ↔ (c0, c1, . . .), s(t) ↔ (s0, s1, . . .), and
x(t) ↔ (a0, a1, . . .). The results are

n = 0, 1, 2, . . . (see Refs. 6 and 7). Equations (11) and (19)
are sufficient to compute an arbitrary number of Taylor
coefficients of the function defined by the code list in Eq.
(3), given the values of t0 and t.

Further work on solving differential equations by auto-
matically generating Taylor series has been done by Chang
and Corliss (8) and the computer program ATOMFT (9)
developed for this purpose. Using interval arithmetic for
bounding solutions of initial-value problems, as originated
by Moore (see Ref. 7), runs into a technical problem called
the “wrapping effect,” when applied to systems. This causes
interval error bounds to increase unrealistically rapidly.
Moore (10) proposed automatic coordinate transformations
to alleviate this problem. Further work by Lohner (11) pro-
duced an efficient method for minimizing the wrapping ef-
fect that is implemented in the computer program AWA.

FIRST-ORDER PARTIAL DERIVATIVES

Automatic differentiation is also effective for evaluating
partial derivatives and Taylor coefficients of functions of
several variables. For example, suppose that the resonant
frequency f = f(R, L, C) of a certain circuit is defined by the
formula

AD requires algorithmic representations of functions, in
this case, the code list

for evaluating f(R, L, C) at given values of R, L, and C. In
Eq. (30), the standard functions sqr(s) = s2 and sqrt(s) = √

s

have been introduced for convenience, and it is assumed
that the value of the constant 1/2π is available as a single
quantity.

Values of the partial derivatives ∂f/∂R, ∂f/∂L, and ∂f/∂R
are useful in a number of applications. For example, ∂f/∂R
can be taken as a measure of the sensitivity of the value

Algorithmic Differentiation and Differencing 5

of f to a change in R with L and C held constant because
�f = f(R + �R, L, C) − f(R, L, C) is approximately equal to
(∂f/∂R) �R in this case, and similarly for the other vari-
ables. Partial derivatives are also used to estimate the im-
pact of round-off error on final results of calculations (12),
and the gradient of f, which is the vector

appears in optimization and other problems.
The obvious, but usually not the most efficient way to

evaluate partial derivatives is to apply the rules for dif-
ferentiation to the code list for the function, as in the case
of ordinary derivatives and Taylor coefficients. In terms of
differentials, this gives

The result of evaluating Eq. (32) along with Eq. (30) is the
total differential df = ds10 of f,

(see Refs. 5 and 6). This result is the same as the normal-
ized Taylor coefficient f1 of f computed from the Taylor poly-
nomials of degree one with coefficients (R, dR), (L, dL), and
(C, dC), respectively. It is evident that the value of ∂f/∂R is
obtained from Eq. (32) for dR = 1, dL = 0, dC = 0, and sim-
ilarly for the other two partial derivatives of f. Thus, the
computational sequence Eq. (32) has to be repeated three
times to obtain the components of the gradient ∇f of f. This
method is called the forward mode of AD because the inter-
mediate calculations are done in the same order as in the
code list in Eq. (30) for evaluating the function. An often
more efficient method is the reverse mode described in the
next section.

Note that if (LC)−1< (R/L)2, then evaluating f in real
arithmetic by Eq. (30) breaks down at s9 because of
a negative argument for the square root, whereas for
(LC)−1 = (R/L)2, f = 0 but differentiation breaks down at ds9

because of the indicated division by s9 = 0.
As pointed out by Wengert (5), higher partial derivatives

can be recovered from Taylor coefficients. If the Taylor poly-
nomials with coefficients (R, dR, 0), (L, dL, 0), and (C, dC, 0)
are substituted for the respective variables, then the value
of the second normalized Taylor coefficient f2 = f2(dR, dL,

dC) of the function is given by

Thus, for dR = 1, dL = dC = 0, the value of the second par-
tial derivative with respect to R is given by ∂2f/∂R2 = 2f2(1,
0, 0), and similarly for ∂2f/∂L and ∂2f/∂C. Then the values of
the mixed, second partial derivatives are computed by solv-
ing linear equations. For example, the choice dR = dL = 1,
dC = 0 gives

The method of code transformation (6) is likewise applica-
ble to evaluating individual partial derivatives or gradient
vectors. The idea is to obtain code lists from Eq. (32) that
contain the needed entries. For example, the code list

produces the differential coefficient dr8 = (∂f/∂R)dR. Simi-
lar code lists for (∂f/∂L)dL and (∂f/∂C)dC can be adjoined
to the code list in Eq. (30) for f(R, L, C). This increases the
length of the code list by approximately a factor of three
and results in the corresponding increase in computational
effort for evaluating the gradient, compared to the value of
the function alone. Once the code lists for the first partial
derivatives have been formed, they are used to construct
code lists for second partial derivatives, and so on. This
leads eventually to a large amount of code compared to the
repetitive generation of Taylor coefficients described pre-
viously.

GRADIENTS IN REVERSE MODE

The reverse mode of automatic differentiation appears in
the 1976 paper by Linnainmaa (13), the Ph.D. thesis of
Speelpennig (14), and later in the paper (12) by Iri. As the
name implies, this computation proceeds in the reverse or-
der of the sequence of operations used to evaluate the func-
tion. For example, consider the function f(R, L, C) defined
by the code list in Eq. (30). The first partial derivatives of
this function are

6 Algorithmic Differentiation and Differencing

and

These quantities are obtained by differentiating s10 begin-
ning with s10, then working backward through the code list:

In this simple example, 19 arithmetic operations are re-
quired to evaluate the partial derivatives of f in reverse
mode, whereas the forward mode based on Eq. (32) takes 24
operations. The following analysis indicates that the sav-
ings are generally greater as the number of independent
variables increases.

In general, suppose that the function f = f(x1, . . . , xm) of
m variables is represented by the code list s = (s1, . . . , sn),
where the values of x1, . . . , xm are assigned to s1, . . . , sm ,
respectively. The forward and reverse modes of AD result
from applying the chain rule to s in different ways. In the
forward mode,

where Ki denotes the set of indices k < i such that si de-
pends explicitly on sk . Consequently, there are mn quan-
tities to evaluate in this case. For the reverse mode, let Ij

denote the set of indices i > j such that si depends explicitly
on sj . Then,

and

giving a total of (n − 1) quantities to evaluate. Thus the
computational effort in the reverse mode is independent

of the number of variables m instead of increasing propor-
tionally as in the forward mode. A more detailed analysis
of complexity takes into account that the sets Ki contains
at most two indices, whereas Ij may contain as many as
(n − j) (15).

The method of code transformation applied to the com-
putation in Eq. (39) gives a code list for the gradient in the
reverse mode;

where the trivialities ∂s10/∂s10 = 1 and ∂s10/∂s5 = ∂s10/∂s8

have been omitted from the computation. Now if desired,
reverse mode AD is applied to the code list in Eq. (43) to
obtain higher partial derivatives.

CODE LISTS, PROGRAMS, AND COMPUTATIONAL
GRAPHS

In early papers on AD, it was simply assumed implicitly
that the function of interest is expressed as a composition
of elementary operations to which the rules of differen-
tiation are applied. Then the chain rule guarantees that
this composite function is correctly differentiated. Explicit
formulation of code lists followed a little later (3). Precise
definitions were given by Kedem (16), who also extended
the idea of AD from code lists to computer subroutines and
entire programs.

Technically speaking, a code list is a sequence s = {s1,
. . . , sn} in which each entry si is (1) an assignment of the
form si = t, where the value of t is known, (2) arithmetic op-
eration si = sj ◦ sk , j, k < i involving previous entries, where
◦ denotes addition, subtraction, multiplication, or division,
or (3) si = φ(sj), j < i, where sj is a previous entry and the
function φ is one of a known set of standard functions (or
library functions), such as sine, cosine, and square root,
available as subroutines or built into computer hardware.
Before the advent of electronic calculators and computers,
functions were also evaluated in this way with tabulated
or easily computed functions comprising the set of stan-
dard functions but without much attention to the actual

Algorithmic Differentiation and Differencing 7

process. AD depends on an explicit formulation of the se-
quence of steps in the evaluation process and, of course,
differentiability of the individual operations and standard
functions. These steps consist of specifying one or more in-
put variables, followed by the calculating of intermediate
variables and finally the output variables, giving the de-
sired function values.

Because computers require exact specification of the se-
quence of operations to be performed, one of the first ad-
vances in computer science was formula translation, that
is, conversion of formulas to equivalent code lists for func-
tional evaluation (1). In addition, the advent of comput-
ers focused attention on algorithms, that is, step-by-step
methods for functional evaluation rather than formulas.
For example, the solutions of linear systems of equations
are functions of the coefficients of the system matrix and
the components of the right-hand side. Cramer’s rule gives
formulas for these solutions in terms of determinants, but
these are essentially useless for actual computation. In-
stead, linear systems are generally solved by an elimina-
tion algorithm (17). If the data of the problem depend on
one or more variables, then AD is applied to this process to
obtain values of derivatives of the solutions. The same ap-
plies to other functions defined by algorithms, as embodied
in computer subroutines or entire programs.

In the previous sections, the principles of AD were
developed for functions defined by code lists, sometimes
called “straight-line code.” Generally, computer subrou-
tines and programs contain loops and branches in addition
to straight-line code. Although these do not affect AD, in
principle, certain practical problems arise [see Ref. 16 and
the paper by Fischer (18)].

A loop is simply a set of instructions repeated a fixed
or variable number of times. Thus, a loop can be “unrolled”
into a segment of straight-line code which is longer than
the original by the same factor. If the number of repetitions
is fixed, this presents no essential difficulty other than the
usual ones of computational time and storage required.

A branch occurs in a computational routine if different
sets of instructions are executed under different conditions.
For example, the value of abs(x) = |x| for real x is calculated
to be x if x ≥ 0, or −x otherwise. If a branch occurs, then AD
yields the value of the derivative of the function computed
by the branch actually taken, provided, of course, that this
function is differentiable. For the standard function abs(x),
abs′(x) = −1 for x < 0, abs′(x) = 1 for x > 0, whereas AD ter-
minates for x = 0 if properly implemented.

A useful tool for analyzing computer programs is the
computational graph, introduced by L. V. Kantorovich (19).
For example, Fig. 1 shows diagrammatically how to eval-
uate the function given by Eq. (29) according to the equiv-
alent code list in Eq. (30). The nodes of this graph indi-
cate the operations to be performed on the input variables.
Now the automatic differentiation process is visualized as
transformation of the computational graph corresponding
to the code transformation described before. This transfor-
mation is carried out in forward mode by Eq. (8) or reverse
mode by Eq. (15). Because the input variables are conven-
tionally placed at the bottom of the computational graph,
the reverse mode is referred to as “top down” whereas the
forward mode is “bottom up” in this terminology.

f (R, L, C)

×

×

SQRT

–

SQR

1

/

R

/

L

1
2π

C

Figure 1. Computational graph of f(R, L, C).

Computational graphs form what are called directed
acyclic graphs (20). Known results from the theory of these
graphs are used to analyze the automatic differentiation
process and its complexity (12, 15). To automate the results
of graph theory, the nodes of a computational graph are
numbered, and the edge from node i to node j is designated
by the ordered pair (i, j). Then the operation performed at
node i determines the result of differentiation. This leads
to a matrix representation of the process of automatic dif-
ferentiation. See Ref. 2 for a matrix-vector formulation of
the forward and reverse modes of gradient computation.

DIFFERENTIATION ARITHMETICS

The process of automatic differentiation has an equivalent
formulation as a mathematical system in which the oper-
ations yield values of derivatives in addition to values of
functions (22). It is evident that a code list such as Eq.
(3) can be evaluated if arithmetic operations and standard
functions are defined for the quantities involved. For ex-
ample, complex or interval arithmetic (7) could be used to
evaluate Eq. (3) instead of real arithmetic. Instead, con-

sider the set of ordered pairs U = (u,
²
u) where with addi-

tion and subtraction are defined by U ± V = (u ± v,
²
u ± ²

v),

respectively, multiplication by UV = (uv, u
²
v + v

²
u), and divi-

sion by U/V = {u/v, [
²
u − (u/v)

²
v]/v} for v �= 0. In this system,

the sine function is defined as sin U = (sin u,
²
u cos u). Now

if the evaluation of Eq. (3) begins with s1 = (t, 1) and con-
stants, such as � represented by (�, 0), then the result is

s7 = (I(t),
²
I(t)) which gives the values of the function and its

derivative. Here, the rules of differentiation are built into

8 Algorithmic Differentiation and Differencing

the definitions of the arithmetic operations and standard
functions.

A direct generalization of the previous example is Tay-
lor arithmetic. Here, the elements are (d + 1)-dimensional
vectors U = (u0, u1, . . . , ud) corresponding to the coefficients
of a Taylor polynomial of degree d. In this arithmetic, addi-
tion and subtraction are defined by Eq. (10), and multipli-
cation and division are given by Eqs. (11) and (10), respec-
tively. Representations of standard functions are derived
as previously, for example, exp(u0, . . . , ud) = (v0, . . . , vd),
and v0 = exp(u0) and v1, . . . , vd are given by Eq. (15). In this
arithmetic, the independent variable is represented by (t0,
t − t0, 0, . . . , 0) for Taylor expansion at t0, and constants,
such as �, by (�, 0, . . . , 0). With these as inputs, evaluat-
ing Eq. (3) in Taylor arithmetic gives the coefficients of the
Taylor polynomial of degree d of I(t) expanded at t0. More
generally, if an arbitrary Taylor polynomial is given as the
input variable, then the result of the evaluation process is
the corresponding Taylor polynomial of the output.

Differentiation arithmetics are also available for au-
tomatically evaluating functions of several variables and
their partial derivatives. The simplest is gradient arith-
metic with elements (f, ∇f), where ∇f = (f1, . . . , fm) is an
m-dimensional vector. Arithmetic operations in this arith-
metic are defined by

as before. If φ(x) is a differentiable standard function of
the single variable x, then the definition of this function in
gradient arithmetic is φ(f, ∇f) = [φ(f), φ′(f) ∇f] by the chain
rule. The independent variables x1, . . . , xm are represented
by (xi , ei), where ei is the ith unit vector, i = 1, . . . , m, and
constants c by (c,0) because the gradient of a constant is the
zero vector 0 = (0, . . . , 0). Thus evaluating Eq. (30) in gradi-
ent arithmetic with the inputs s1 = [R, (1, 0, 0)], s2 = [L, (0,
1, 0)], s3 = [C, (0, 0, 1)] gives the output (f, ∇f), the values of
the function f = f(R, L, C), and its gradient vector. Gradient
arithmetic also applies if the input variables are functions
of other variables. As long as the values and gradients of
the input variables are known, the values and gradients
of the output variables are computed correctly by gradient
arithmetic.

Straightforward evaluation of a code list, such as Eq.
(30) in gradient arithmetic is a forward-mode computa-
tion, often less efficient than reverse mode. This compar-
ison applies to serial computation. If a parallel computer
with sufficient capacity to compute the components of (s,
∇s) simultaneously is available, then only one evaluation
of the code list in gradient arithmetic is required. When
it is simpler to program just the parallel evaluation of ∇s,
then two passes through the code list are required, one for
the function value and the next for its gradient.

Differentiation arithmetics for higher partial deriva-
tives are constructed according to the same pattern. The
(m × m) symmetrical matrix

of second partial derivatives is called the Hessian of the
function f = f(x1, . . . , xm) of m variables. The corresponding
Hessian arithmetic is based on the definition of arithmetic
operations and standard functions for the triples (f, ∇f, Hf)
representing the value, gradient vector, and Hessian ma-
trix of a function. For details, see Refs. 2 and 22.

When based on real or complex arithmetic, differentia-
tion arithmetics form a mathematical system called a com-
mutative ring with identity. Performed in interval arith-
metic (7), differentiation arithmetics give lower and up-
per bounds for the Taylor coefficients or partial derivatives
to take into account the possibilities of inexact data and
round-off error in the computation. Bounds on Taylor co-
efficients are useful for determining the accuracy of Tay-
lor polynomial approximations to solutions of differential
equations and other functions.

SOME APPLICATIONS OF AUTOMATIC
DIFFERENTIATION

Automatic differentiation is applicable to the wide vari-
ety of computational problems that require evaluation of
derivatives. The solution of initial-value problems has been
described previously. Other applications of AD to scientific
and engineering problems are in the conference proceed-
ings Refs. 23 and 24. Here, brief descriptions of applying
AD to solving nonlinear systems of equations, optimiza-
tion, implicit differentiation, and differentiation of inverse
functions are given.

Computational solution of nonlinear equations is usu-
ally carried out by iterative algorithms that yield a se-
quence of improved approximations to solutions, if success-
ful. For a single equation f(x) = 0, Newton’s method,

yields a sequence that converges rapidly to a solution x = x*
of the equation, if the initial approximation x0 is good
enough and f′(x*) �= 0 (3). This method generalizes immedi-
ately to the m-dimensional problem f(x) = 0, where x = (x1,
. . . , xm) and bf f(x) = [f1(x), . . . , fm (x)]. The derivative of the
transformation f is represented by the (m × m) Jacobian
matrix

and the Newton step �xn = xn+1 − xn is obtained by solving
the linear system of equations

The rows of the Jacobian matrix f′(xn)are the gradients of
the component functions fi (xn) and are computable by AD
in forward or reverse mode. Conditions for the convergence
of Newton’s method and bounds for the error x* − xn are
verified on the basis of evaluation of the Hessians Hfi (xn)
by AD in interval arithmetic (3). It is also possible to com-
pute Newton steps by solving a large, sparse, linear system
of equations based on differentiating the code list for val-
ues of the component functions (25).

Algorithmic Differentiation and Differencing 9

A simple optimization problem is to find maximum or
minimum values of a real function φ(x) = φ(x1, . . . , xm) of
m variables. If this function is differentiable, then these
extremal values are found at one or more of the critical
points of the function, which are the solutions of the gen-
erally nonlinear system of equations ∇φ(x) = 0. Once the
values of the function f(x) = ∇φ(x) and its Jacobian matrix
f′(x) = Hφ(x) are obtained by AD, calculating critical points
proceeds by Newton’s method or some other optimization
method based on evaluating the Newton step. Optimiza-
tion involving constraint functions is handled similarly by
AD, after introducing Lagrange multipliers (22).

In addition to functions defined explicitly in terms of
the input variables, AD is also applicable to functions de-
fined implicitly. For example, suppose that the relation-
ship f(x, t) = 0 defines x = x(t). From the calculation of ∇f(x,

t) by AD, the value of
²
x(t) is given by the usual formula

²
x(t) = −(∂f/∂t)/(∂f/∂x). Similarly, for relationships of the form
f(x1, . . . , xm) = 0, the gradient ∇f(x) obtained by AD fur-
nishes the coefficients of linear systems of (m − 1) equa-
tions for the various partial derivatives ∂xi /∂xj .

A special case of implicit differentiation is the differen-
tiation of inverse functions, which are usually not known
explicitly, but are obtained by solving equations. In the case
of one variable, this means solving the equation f(y) = x
for y = f−1(x) = g(x) by Newton’s method or some other it-
erative procedure (3). The iteration is continued until the
solution y is considered satisfactorily accurate according to
some criterion giving a stopping condition. In principle,AD
can be applied to the iterative procedure to obtain corre-
sponding approximations to derivatives and values of the
inverse function. However, a more efficient and likely more
accurate method is to obtain the value of f′(x) by AD from
the known algorithm for f(x), from which g′(x) = 1/f′(x) gives
the derivative of the inverse function. It is interesting to
note that the value of g′(x) is obtained in this case with-
out the need to evaluate g(x). This applies also to vector-
valued functions of several variables in m dimensions. If
g(x) = f−1(x) and if the Jacobian matrix f′(x) calculated by
AD is invertible, then g′(x) = [f(x)]−1.

IMPLEMENTATION OF AUTOMATIC DIFFERENTIATION

Methods for implementing AD are interpretation, code
transformation, and operator overloading. Interpretive
procedures take the code list for a function as input, an-
alyze each entry, and then use the appropriate subroutine
to compute the result. This approach is useful, for exam-
ple, in interactive programs that accept functions entered
from the keyboard of a computer. The corresponding code
lists are generated and the desired derivatives computed
by interpretation of the code list. Interpretation was also
used in early AD programs in which the functions to be dif-
ferentiated were provided by subroutines (6). In noninter-
active programs, interpretation is generally less efficient
than code transformation.

Code transformation is generally carried out by precom-
pilation. A program written for function evaluation is an-
alyzed and code for the desired derivatives is inserted at

the appropriate places. Then the resulting program is com-
piled for efficient execution. Current examples of precom-
pilers for AD are PADRE2 (26), ADOL-F (27), and ADIFOR
2.0 (28) for programs written in FORTRAN, and ADOL-C
(29) for C programs.

The use of precompilers requires some caution. This is
particularly true when dealing with what is called “legacy”
code which was written previously by someone else with-
out differentiation in mind. Functions are often approxi-
mated very accurately by piecewise rational or highly os-
cillatory functions, but AD applied to these algorithms can
yield nonsensical derivative values. See Refs. 16 and 18 for
a discussion of problems which arise in the use of AD.

The idea of operator overloading is a natural reflection
of a common practice in mathematics. For example, the
symbol “+” is used to denote the addition of diverse quan-
tities, such as integers, real or complex numbers, vectors,
matrices, functions, and so on. The idea is essentially the
same in each instance, but the actual operation to be per-
formed differs. Without thinking much about it, a person
uses the meaning of the addition symbol aappropriate to
the type of addends considered. However, computers are
ordinarily built to add only integers or floating-point num-
bers, and early computer languages reflected this limita-
tion of the meaning of + and the types of addends permit-
ted. Later, languages, such as C++ (30), were developed
which allow extending the meaning of operator symbols to
types of operands defined by the programmer. This is called
“overloading” the symbol. The overloaded operations and
functions are carried out by appropriate subroutines. The
compiler checks types of operands and constructs calls to
these subroutines. See Refs. 31 and 32 for examples of au-
tomating differentiation arithmetics by operator overload-
ing. In C++,AD is implemented by “class libraries” contain-
ing the appropriate definitions, operators, and functions for
various differentiation arithmetics (30).

Use of operator overloading to implement AD simplifies
programming because functions and subroutines are writ-
ten in the usual way and the compiled program produces
derivative and functional values. Here, differentiation is
done at compile time because the compiler generates the
sequences of calls to subroutines for evaluating functions
and their derivatives. The price for this convenience is that
the final computation is carried out in forward mode with
the corresponding possible loss of efficiency. As mentioned
before, this may not be a drawback in parallel computation.

ALGORITHMIC DIFFERENCING

The algorithmic method also facilitates accurate computa-
tion of divided differences

f [x + h, x] = f (x + h) − f (x)
h

,

see Refs. 33 and 34. Direct computation of f [x + h, x] by
subtraction followed by division is problematical in finite-
precision arithmetic as h approaches zero due to the fact
that f(x + h) and f(x) will agree to more significant digits,
and the difference will eventually consist of only round-
off error which is then multiplied by the large number

10 Algorithmic Differentiation and Differencing

1/h. This difficulty is avoided in algorithmic differencing
(A�) by the use of expressions for divided differences of
the arithmetic operations which are numerically stable for
|h| small, and approach the values of their derivatives as
h → 0 as required by mathematical theory. The postfix op-
erator [x + h, x] is defined for differentiable functions f(x)
by

f [x + h, x] = { (f (x + h) − f (x))/h if h �= 0,

f ′(x) if h = 0.
(27)

For composite functions (f ◦ g)(x) = f(g(x)), the chain rule

(f ◦ g)[x + h, x] = f [g(x + h), g(x)] · g[x + h, x] (28)

holds as for derivatives. This guarantees that starting the
algorithm with the divided difference of the input (for ex-
ample, x[x + h, x] = 1) will yield the divided difference of
the output. The A� rules for arithmetic operations and in-
trinsic functions are obtained as in elementary calculus as
expressions which give derivatives as h → 0. For example,
the divided-difference expression for the quotient is

(f/g)[x + h, x] = (f [x, x + h] − (f/g)g[x, x + h])/(g + h),

which gives the derivative formula (f/g)′ = (f ′ −
(f/g)g′)/g for h = 0. Similarly, if f(x) = arctan g(x),
one has

f [x, x + h] = 1
h

arctan(
hg[x, x + h]

1 + g(u + g[x, x + h])
),

for h �= 0, and the derivative

f [x, x] = f ′(x) = u′(x)
1 + g2(x)

for h = 0, and so on.
The arithmetic operations and standard functions for

AD are the special cases of those for A� with h = 0. Thus, a
computer program to implement A� can be used to provide
values of derivatives, divided differences (or differences
f (x + h) − f (x) = h f [x + h, x]) of equivalent accuracy for
a wide range of values of h.

BIBLIOGRAPHY

1. A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools, Reading, MA: Addison-Wesley, 1988.

2. L. B. Rall, G. F. Corliss, Introduction to automatic differen-
tiation, inM. Berz et al. (eds.), Computational Differentia-
tion, Techniques, Applications, and Tools, Philadelphia: SIAM,
1996.

3. L. B. Rall, Computational Solution of Nonlinear Operator
Equations, New York: Wiley, 1969. Reprint, Huntington, NY:
Krieger, 1979.

4. R. E. Moore, Interval Arithmetic and Automatic Error Analysis
in Digital Computing, Ph.D. Thesis, Stanford University, 1962.

5. R. E. Wengert, A simple automatic derivative evaluation pro-
gram, Commun. ACM, 7 (8): 463–464, 1964.

6. L. B. Rall, Automatic Differentiation: Techniques and Applica-
tions, New York: Springer, 1981.

7. R. E. Moore, Methods and Applications of Interval Analysis,
Philadelphia: SIAM, 1979.

8. Y. F. Chang, G. F. Corliss, Solving ordinary differential equa-
tions usingTaylor series,ACMTrans. Math. Softw.,8: 114–144,
1982.

9. Y. F. Chang, G. F. Corliss, ATOMFT: Solving ODE’s and DAE’s
using Taylor series, Comput. Math. Appl., 28: 209–233, 1994.

10. R. E. Moore, Automatic local coordinate transformations to
reduce the growth of error bounds in interval computation of
solutions of ordinary differential equations, inL. B. Rall (ed.),
Error in Digital Computation, Vol. 2, New York: Wiley, 1965.

11. R J. Lohner, Enclosing the solutions of ordinary initial and
boundary value problems, inE. W. Kaucher, U. W. Kulisch,
andC. Ullrich (eds.), Computer Arithmetic: Scientific Computa-
tion and Programming Languages, Stuttgart: Wiley-Teubner,
1987.

12. M. Iri, Simultaneous computation of function, partial deriva-
tives and estimates of rounding errors—Complexity and prac-
ticality, Jpn. J. Appl. Math., 1: 223–252, 1984.

13. S. Linnainmaa,Taylor expansion of the accumulated rounding
error, BIT, 16: 146–160, 1976.

14. B. Speelpennig, Computing Fast Partial Derivatives of Func-
tions Given by Algorithms, Ph.D. Thesis, University of Illinois,
1980.

15. A. Griewank, Some bounds on the complexity of gradients,
Jacobians, and Hessians, inP. M. Pardalos (ed.), Complexity
in Nonlinear Optimization, Singapore: World Scientific, 1993.

16. G. Kedem, Automatic differentiation of computer programs,
ACM Trans. Math. Softw., 6: 150–165, 1980.

17. G. Forsythe, C. B. Moler, Computer Solutions of Linear Alge-
braic Systems, Englewood Cliffs, NJ: Prentice-Hall, 1967.

18. H. Fischer, Special problems in automatic differentiation,
inA. Griewank andG. F. Corliss (eds.), Automatic Differenti-
ation of Algorithms, Theory, Implementation, and Application,
Philadelphia: SIAM, 1992.

19. L. V. Kantorovich, On a mathematical symbolism convenient
for performing mathematical calculations, Russian, Dokl.
Akad. Nauk USSR, 113: 738–741, 1957.

20. C. W. Marshall, Applied Graph Theory, New York: Wiley, 1971.

21. L. B. Rall, Gradient computation by matrix multiplication,
inH. Fischer, B. Riedmüller, andS. Schäffler (eds.), Applied
Mathematics and Parallel Computing, Heidelberg: Physica-
Verlag, 1996.

22. L. B. Rall, Differentiation arithmetics, inC. Ullrich (ed.), Com-
puter Arithmetic and Self-Validating Numerical Methods,
New York: Academic Press, 1990.

23. A. Griewank, G. F. Corliss (eds.), Automatic Differentia-
tion of Algorithms, Theory, Implementation, and Applications,
Philadelphia: SIAM, 1992.

24. M. Berz et al. (eds.), Computational Differentiation, Tech-
niques, Applications, and Tools, Philadelphia: SIAM, 1996.

25. A. Griewank, Direct calculation of Newton steps without ac-
cumulating Jacobians, inT. F. Coleman andY. Li (eds.), Large-
Scale Numerical Optimization, Philadelphia: SIAM, 1990.

26. K. Kubota, PADRE2—Fortran precompiler for automatic dif-
ferentiation and estimates of rounding errors, inM. Berz et
al. (eds.), Computational Differentiation, Techniques, Applica-
tions, and Tools, Philadelphia: SIAM, 1996.

27. D. Shiriaev, A. Griewank, ADOL-F: Automatic differentiation
of Fortran codes, inM. Berz et al. (eds.), Computational Differ-
entiation, Techniques, Applications, and Tools, Philadelphia:
SIAM, 1996.

Algorithmic Differentiation and Differencing 11

28. C. Bischof, A. Carle, Users’ experience with ADIFOR 2.0, inM.
Berz et al. (eds.), Computational Differentiation, Techniques,
Applications, and Tools, Philadelphia: SIAM, 1996.

29. D. W. Juedes, A taxonomy of automatic differentiation tools,
inA. Griewank andG. F. Corliss (eds.), Automatic Differentia-
tion of Algorithms, Theory, Implementation, and Applications,
Philadelphia: SIAM, 1991.

30. B. Stroustrup, The C++ Programming Language, Reading,
MA: Addison-Wesley, 1987.

31. L. B. Rall, Differentiation and generation of Taylor coefficients
in Pascal-SC, inU. W. Kulisch andW. L. Miranker (eds.), A
New Approach to Scientific Computation, New York: Academic
Press, 1983.

32. L. B. Rall,Differentiation in Pascal-SC, type GRADIENT,ACM
Trans. Math. Softw., 10: 161–184, 1984.

33. L. B. Rall and T. W. Reps, Algorithmic differencing, In U.
Kulisch, R. Lohner, and A. Facius (eds.), Perspectives on En-
closure Methods, Springer-Verlag, Vienna, 2001.

34. T. W. Reps and L. B. Rall, Computational divided differencing
and divided-difference arithmetics, Higher-Order and Sym-
bolic Computation, 16, 93–149, 2003.

LOUIS B. RALL

GEORGE F. CORLISS

Department of Mathematics
University of
Wisconsin-Madison, 480
Lincoln Drive, Madison, WI

Department of Electrical and
Computer Engineering
Marquette University,
Milwaukee, WI

