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CHAOS TIME SERIES ANALYSIS

Chaos theory is a relatively new concept. It was first intro-
duced in the 1970s with applications in meteorology (1). Since
that time, chaos theory and fractal analysis have been applied
in numerous areas in addition to meteorology, including med-
icine, economics, and the social sciences (2,3).

The basic concept underlying chaotic systems is that seem-
ingly simple equations can produce extremely complex behav-
ior when followed over time. One of the earliest equations
studied was the logistic equation, sometimes called the Poin-
caré equation. This equation is in the form of a recurrence
relation, in which subsequent terms are some combination of
previous terms. For example, in the logistic equation the (n �
1)th term in the sequence is given in terms of the nth term:

an+1 = Aan(1 − an) (1)

where A is a constant chosen in the range 2 � A � 4, and n
is considered to be a point in time. Note that most researchers
and textbooks assume that n takes integer values. Later we
will discuss Eq. (1) in the context of real values of n. The
solution viewed under real value conditions corresponds more
closely to experimental data.

This equation has one initial, or boundary, condition a0,
0 � a0 � 1. Figure 1 shows a bifurcation map of the logistic
equation. For values of A close to 2, the sequence converges
to a single value. As the value of A increases, the sequence
bifurcates (that is, it oscillates between two values). These
bifurcations themselves then bifurcate for higher values of
A. When A exceeds 3.57, all values begin to fill in, an indica-
tion of the onset of chaos. In fact, Eq. (1) displays the stan-
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Figure 1. Bifurcation map for the logistic equation showing progres-
sion from single point convergence to chaos.
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of the same pattern on different scales (5). Figure 3 illustrates
the concept of fractals in a geometrical sense. This image is
called the Koch snowflake. The large triangle (a) is divided
into smaller triangles in an infinite progression. Part (b)
shows the initial division, and part (c) the beginning of the
next division.

In nature, the idea of a fractal can be seen if one looks at
a structure, such as a coastline on a map (6). Depending on
the scale of the map, the details of the coastline will change.
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curves may be noted that indicate San Francisco Bay, Monte-Figure 2. Plot of logistic equation for a0 � 0.25 and a0 � 0.3 demon-
rey Bay, and so on. If, however, a map of San Francisco isstrating sensitivity to initial conditions.
considered, many more details are seen in San Francisco Bay,
which itself contains many smaller indentations. This process
can be continued down to the scale of grains of sand. Thus
the length of the coastline depends on the length of our mea-

dard characteristics of a chaotic equation if the constant A suring device. This process leads to the concept of fractal di-
exceeds the value of 3.57. These conditions include mension, which in short is the measure of irregularity of a

surface. It is an intermediate measure that extends the idea
of one, two, or three dimensions to include fractional dimen-1. Lack of periodic pattern that repeats itself at regular
sions. Thus a fractal dimension is any noninteger dimension.intervals

The idea of fractal dimension is also important in measur-
2. Sensitivity to initial conditions (i.e., a small change in ing the irregularity of mathematical constructs that may not

the value of a0 results in a large change in long-term be geometric in nature. Thus we can model a system and look
behavior). Thus two points that are close to each other at its fractal dimension to determine the nature of the system
at the beginning (n � 0) may have significantly differ- in terms of chaotic behavior. Mathematical details of this ap-
ent values when n is large. proach will be given in the next section. In another type of

application, fractals have found widespread use in computer
graphics to produce realistic images based on patterns re-Figure 2 illustrates the second condition. Two plots of n
peating on different geometric scales.versus an, with different initial conditions, a0 � 0.25 and a0 �

A major area of work that utilizes chaos theory is the mod-0.3, A � 4, result in a dramatic change in the subsequent
eling of nonlinear dynamical systems. Chaos theory is attrac-values of an. For this example, the difference is quite dra-
tive for these models because traditional mathematical mod-matic. For an initial value of a0 � 0.25, the equation in fact
els cannot be solved analytically (1). One of the areas ofconverges, representing a point of stability even in the region
greatest interest is in cardiology applications, where a num-

of chaos. On the other hand, an initial value of a0 � 0.3 re-
ber of chaotic techniques have been employed to model the

sults in chaos. functioning of the heart and circulatory system (7). Models
The logistic equation is an example of a seemingly simple are used both to explain the system at a functional level and

equation that results in chaos. Many nonlinear differential to classify patients according to presence or absence of dis-
equations also result in chaos. The chaotic nature of these ease. The goal is to determine the degree of chaos, or variabil-
equations poses a major problem in modeling many physical ity, that is present. The classification process is based on the
processes, as these models rely on nonlinear models. Applica- identification of chaos, or the degree of chaos, associated with
tions that result in nonlinear dynamic models include fluid specific diseases. Typically the process involves physical mea-
dynamics, meteorology, and hemodynamics. As the models for sures of system behavior, such as electrocardiograms (ECG),
these systems usually have mathematical formulations that which are time-series data showing the functioning of the
cannot be solved analytically (1), numerical methods that in- heart through the interpretation of electrical signals.
volve discrete solutions of the continuous models are em-
ployed. These discrete solutions are similar in nature to Eq.
(1) and thus pose serious problems due to the consequences
of chaotic systems.

One problem that arises in the aforementioned modeling
process is determining whether the systems themselves are
chaotic or whether the discrete numerical solution introduces
chaotic factors that are not present in the original continuous
model. Insight into this problem can be gained through exam-
ination of the solution of Eq. (1), which in fact has an exact
solution for the values A � 2 and A � 4. It is also possible to
obtain an approximate solution for other values of A. It will
be illustrated later that these solutions change the perception

(a)

(b) (c)of chaos in this system (4).
An important topic that is connected to chaos is the con- Figure 3. A geometric example of fractals illustrating the repetition

of a pattern on different scales: the Koch snowflake.cept of fractals. Fractals have the characteristic of repetition
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A number of techniques are available that can show either
graphically or numerically the degree of chaos in a system.
Graphical methods include logistic maps, Poincaré plots, sec-
ond-order difference plots, and strange attractors. Logistic
maps are another method for viewing the onset of chaos that
are related to the bifurcation map shown in Fig. 1. An exam-
ple is given in the next section. Poincaré plots graph an�1 ver-
sus an. A plot with points clustering close together indicates
little chaotic behavior, while a wide dispersion of points
shows a high level of chaos. Second-order difference plots
graph an�2 � an�1 versus an�1 � an and are similar to Poincaré
plots except that the points are centered on the origin. These
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graphs can be used for both theoretical models and experi-
Figure 4. Logistic map for A � 2, a0 � 0.3, in the logistic equationmental data. Strange attractors are also used as indicators of
which illustrates a nonchaotic state.

chaos and have fractal dimensions. These approaches require
some mathematical foundation and will be discussed later.

Numerical methods for evaluating the chaotic nature of a x and its velocity v; thus its phase space is a plane. Similarly,
system include fractal dimension, Lyapunov exponent, and a particle moving in two dimensions would have a four-di-
the central tendency method (CTM). The higher the fractal mensional phase space: two for position and two for velocity.
dimension, the more chaos is present in the system. The frac- If a phase space is conservative (constant energy), then all
tal dimension can be used to determine the dimension of points in a given area of phase space at one point in time
strange attractors. The Lyapunov exponent is used in the move so that the area occupied by these points remains con-
same way and is related to the fractal dimension. The central stant at later points in time. In three-dimensional systems,
tendency measure is used as a numerical summary of the sec- the areas becomes a volume, with appropriate generalizations
ond-order difference plot. A low value indicates a high degree to higher dimensions.
of chaos (few points are centered near the origin). Mathemati- Dynamical systems can be classified as conservative or dis-
cal details for these methods are given in the following sec- sipative. In dissipative systems the phase areas contract.
tions. Equations of motion can be determined for conservative and

dissipative systems. Consider a set of phase points in a box of
volume V. In time dt the volume will change to V � dV. UsingMETHODS FOR EVALUATION OF TIME SERIES DATA
the product rule and approximating the result with a Taylor
series yields the logarithm volume change (9):Graphical Representations of Chaos

Bifurcation Maps. Referring to the bifurcation map in Fig. (1/V )dV/dt = ∇F (3)
1, it is easy to see the progression from convergence to bifur-
cation to chaos. Although this map is for the logistic equation, where F represents the equation of motion. If �F is zero, the
similar maps can be drawn for other chaotic equations. The system is conservative; if it is negative, the system is dissi-
logistic map offers another method for viewing the same phe- pative.
nomenon. A contractive space representing the phase-space trajecto-

ries of the damped pendulum is shown in Fig. 5, with areas
Logistic Maps. Using Eq. (1), logistic maps also can be contracting to a point. This point is said to be an attractor

drawn that use the differential equation analog of the differ- (10). In chaotic systems, the concept of attractors becomes
ence equation: more complex. Instead of the type of attractor we see in Fig.

5, which is in two-dimensional space, a chaotic attractor has
dx/dt = Ax(1 − x) (2)

The logistic map consists of three parts:

1. A parabolic curve y � Ax (1 � x)
2. A diagonal line xn�1 � xn

3. A set of lines connecting the value at xn with the value
at xn�1

The set of lines is repeated until a steady state is reached.
Figure 4 shows this graph for A � 2 and initial condition
x0 � 0.3. If the system exhibits chaotic properties, the logistic
map will be characterized by boxes that begin to cover the
entire space (8).

π–π

ω

θ

Strange Attractors. An attractor is a point of convergence.
Attractors are often used in phase space. The phase space is Figure 5. An attractor for the damped pendulum, which represents

a contractive space.defined for a particle moving in one dimension as its position
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centered at the origin and represent the rate of variability. As
an example, Fig. 6 shows time series of hemodynamic studies
of hepatic blood flow recorded using implanted pulsed Doppler
flow meters in an animal model (12). The first time series
shows the normal blood flow in the conscious animal. The sec-
ond time series shows the blood flow after the introduction of
nicotine. Note that the variability has decreased significantly
in the second time series. Figure 7 shows the second-order
difference plots that correspond to these two time series. Sec-
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Figure 6. Time series for hemodynamic studies. (a) Control (high
variability), (b) nicotine (low variability).

a fractal dimension greater than two. An attractor that has a
noninteger dimension (i.e., a fractal dimension) is called a
strange attractor. The presence of a strange attractor indi-
cates the presence of chaos. In general, low-dimensional at-
tractors are embedded in lower-dimensional space. As the ac-
tual dimension increases, it is necessary to have more points
available to achieve representative results. This often limits
the usefulness of this approach in dealing with experimental
data sets (11).

A Poincaré section simplifies phase-space diagrams for
complex systems. It consists of cutting a spiral attractor at
regular intervals along the � axis through the (�, �) plane, as
shown in Fig. 5.

(a) 

(b) 

an+2 – an+1

an+2 – an+1

an+1 – an

an+1 – an

80

40

20

–80

–40

–80 –40

–20

–20 20 40 80

80

40

20

–80

–40

–80 –40

–20

–20 20 40 80

Difference Plots. As mentioned earlier, second-order differ- Figure 7. Second-order difference plots corresponding to time series
in Fig. 4: (a) control, (b) nicotine.ence plots are similar in nature to Poincaré plots, but they are
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ond-order difference plots are useful in modeling biological Chaotic systems, on the other hand, result in a broadband
power spectrum with substantial power at low frequenciessystems, such as hemodynamics and heart rate variations,

and represent the degree of theoretical chaos. The difference (13).
approach appears to give a more robust picture of the problem

Measures of Chaosand fits well within the theoretical results for the continuous
logistic equation. Figure 8 shows theoretical representations While graphical representations are useful for obtaining in-
for A � 3.75, for which a low degree of chaos is seen, and A sight into chaotic systems, the use of numerical methods
� 4.0, for which a high degree of chaos is seen. Both of these allows information to be used in more complex decision algo-
values of A are within the region of chaos. The initial value rithms for the purposes of classification. A number of numeri-
is a0 � 0.5 for both plots. cal measures of chaos have been developed, some of which are

described here.
Power Spectrum Analysis. A common technique used in the

analysis of time series is spectral analysis. Spectral analysis Feigenbaum Number. In a system that exhibits bifurca-
involves the use of the Fourier transform F(�) of the time tions, the ratios of spacing between subsequent bifurcations
series f (t): has been found to be constant. This number is called the

Feigenbaum number � such that
F(ω) = [1/(2π)]

∫ ∞

−∞
f (t) exp (−iωt) dt (4)

lim
k→∞

(Ak − Ak−1)/(Ak+1 − Ak) = δ = 4.669 . . . (5)

The Fourier transform is useful in discerning properties of where Ak is the value at the kth bifurcation. This number
the time series. In general, periodic functions result in a applies to maps with a quadratic maximum, such as the logis-
power spectra that contains one principal component at the tic map for the logistic equation.
drive frequency along with some higher-frequency harmonics.

Fractal Dimension. There are a number of interpretations
of the fractal dimension. The most common is the capacity
dimension, dc. The approach is to cover a set of points c by
volume elements needed to cover c, where c is a subset of the
Euclidean space Rn. Let N(
) denote the smallest number of
n-dimensional cubes with sides of length 
 required to cover
c. Then

dc = lim
ε→0

log [N(ε)]/ log [1/ε] (6)

As an example, consider the Koch snowflake in Fig. 3. It
begins with an equilateral triangle. The middle third of each
side is then used as the base for a new equilateral triangle.
The length of 
 is reduced by a factor of �� each time and the
number of 
’s increases by 4, so 
 � (��)n and N(
) � 3.4n. Thus

dc = lim
n→∞(log 3 + n log 4)/(n log 3) = log 4/ log 3 = 1.2618 . . .

(7)

Here we have a dimension greater than 1 but less than 2. The
fractal dimension can also be used to determine the dimen-
sion of an attractor. Other types of fractal dimensions include
information dimension, correlation dimension, kth nearest-
neighbor dimension, and Lyapunov dimension (14).

Lyapunov Exponents. The Lyapunov exponent � can be used
to measure the degree of dependence on initial conditions. It
is easily computed for one-dimensional maps, such as the lo-
gistic map seen previously. Consider two different initial con-
ditions, x and x � 
. If � is negative, the trajectories converge
and there is no chaos. If � is positive, then the trajectories
are sensitive to initial conditions and chaos exists. For a one-
dimensional map where xn�1 � f (xn),

fn(x + ε) − fn(x) ≈ εe λn (8)
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where fn(x) is the function at the nth iteration. ThenFigure 8. Second-order difference plots for conjectured solution of
logistic equation at A � 3.75 (low variability) (a) and A � 4.0 (high
variability) (b). ln [( fn(x + ε) − fn(x))/ε] ≈ nλ (9)
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As 
 approaches 0, making model (such as neural network modeling, decision
analysis, or Bayesian decision making) to determine the clas-
sification that indicates whether or not a particular diseaseλ ≈ (1/n) ln |d fn|dx) (10)
is present.

Using the chain rule,

Examples

Graphical Measures of Chaos in Disease Classification. Con-
λ = lim

n→∞(1/n)

n−1∑
i=0

| f ′(xi )| (11)

sider the case of ECG analysis. The ECG itself is a time series
with a repeating pattern based on the QRS complex, withFor n-dimensional maps, there are n Lyapunov exponents (9).
each pattern corresponding to a heartbeat. Thus it is not itself
a chaotic time series. However, of more interest for the diag-Central Tendency Measure. The central tendency measure
nosis of disease is the pattern of the R–R intervals, which isquantifies the degree of variability in the second-order differ-
the time between heartbeats. Plotting the R–R intervals ver-ence plots discussed previously (15). The CTM is computed by
sus time gives a new time series that may or may not be cha-selecting a circular region around the origin of radius r,
otic. The second-order difference plot can be used effectivelycounting the number of points that fall within the radius, and
to demonstrate the character of the R–R intervals. Data isdividing by the total number of points. Let t � total number
taken from 24 h Holter tape modeling, which produces in ex-of points, and r � radius of central area. Then
cess of 100,000 points. Figure 9(a) shows a second-order dif-
ference plot for a normal individual, while Fig. 9(b) shows a
person with congestive heart failure (CHF) (13).CTM =

[
t−2∑
i=1

δ(di)

]/
(t − 2) (12)

Numerical Measures of Chaos in Disease Classification. To ob-where
tain a numerical summary of information contained in the
second-order difference plots, the central tendency measure
(CTM) can be used. Central tendency measures that corre-

δ(di) = 1 if [(ai+2 − ai+1)2 + (ai+1 − ai)
2].5 < r

0 otherwise
spond to the plots in Fig. 9 are as follows:

The radius r is chosen depending on the character of the
data (11). CTMa = 0.986 (total number of points =104,443)

CTMb = 0.232 (total number of points =109,374)

EVALUATION OF EXPERIMENTAL DATA
where the CTMa is the value for the normal case and CTMb is

Detection of Chaos the value for the diseased case. For these two cases, the CTM
differs markedly for the normal individual and the patientMany of the approaches discussed previously give measures
with CHF. To investigate whether the CTM measure alonefor evaluating the presence of chaos of theoretical models. It
can be used as an indicator of congestive heart failure, 54becomes more difficult to verify the presence of data in experi-
Holter tapes were analyzed: 26 for patients with CHF and 28mental models. In the evaluation of time-series data collected
for normal subjects. Central tendencies were evaluated usingexperimentally, possible approaches for determination of the
r � 0.1 in Eq. (11). The analysis mean CTMs for CHF andpresence of chaos are the Lyapunov exponent, the fractal di-
normals of 0.69 and 0.90, respectively, are statistically sig-mension, and the central tendency measure. The Lyapunov
nificantly different at the p � 0.01 level. Only three normalsexponent and the fractal dimension are used in general to
had a CTM less than 0.8; 15 CHF subjects were in this cate-determine the presence or absence of chaos in the system.
gory. No normal subjects were found with a CTM � 0.62 (14).The central tendency measure is used differently in that it

indicates the degree of chaos in the system.
Chaotic Parameters in Decision Models. The CTM is one de-

scriptor of the pattern seen in the second-order differenceClassification Using Chaotic Parameters
plots. It is possible to use more complex descriptions in a deci-

In many applications, especially in medicine, often the pres-
sion-making model through the use of neural network model-ence or absence of chaos in a time series such as the ECG is
ing (16). A nonstatistical neural network with a supervisedused to indicate the presence or absence of disease. Viewing
learning algorithm was used to combine several measures.the logistic equation for real values of n (i.e., for continuous
The result of the learning algorithm is a decision hypersur-rather than discrete solutions), it can be seen that the transi-
face:tion to chaos is not significant in the context of the time se-

ries. The degree of chaos is a better indicator for determina-
tion of presence of disease. Thus one of the numerical or
graphical measures can be used directly for classification. In

D(xxx) =
n∑

i=1

wixi +
n∑

i=1

n∑
j=1
i �= j

wi j xi j (13)

most cases, however, the problem is not that straightforward,
and other parameters must be considered. If a numerical

where x is an n-component vector with components (x1, x2,measure of chaos is used, it can then be combined with other
. . ., xn), with each xi representing an input parameter andparameters, such as results of laboratory tests and informa-

tion from patient history and physical exam, in a decision- each wi indicating the relative weight associated with the pa-
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number of R–R intervals in 24 h, and lowest value of r for
which CTM � 0.99. The model resulted in sensitivity of 80%,
specificity of 89%, and overall accuracy of 85%. Using this
approach, it is also possible to combine measures of chaos
with clinical parameters in the same decision models. In an-
other study, clinical parameters were recorded for 32 patients
with CHF and 20 patients with other types of cardiovascular
disease. Holter tapes were analyzed using the CTM method.
Using the CTM measure alone, if a cutoff value of 0.87 is
used, only one non-CHF patient has a CTM value below the
cutoff, while 22 of the 32 CHF patients have CTM values be-
low the cutoff, showing that this is indeed a strong parameter
in the decision process. For the model that includes clinical
parameters, the neural network selected the following clinical
parameters: edema, rales, heart rate, concentration of nitro-
gen in the form of urea in the blood (BUN), CTM (r � 0.1).
The first three of these are physical findings and the fourth
is a test result. Using these five parameters, the model was
able to classify cases with a sensitivity of 84%, a specificity of
82%, and an accuracy of 84% (16).

The CTM as it is used in these examples gives a measure
of the degree of chaos that is seen to be useful in the analysis
of experimental data.

CONTINUOUS CHAOTIC MODELING
VERSUS DISCRETE CHAOTIC MODELING

Most approaches to chaotic modeling involve discrete models,
although the processes that they represent are continuous.
The process of discretization may, in fact, introduce problems,
including singularities. Chaos may occur only in the strict
mathematical sense. These problems can be illustrated by
looking at the continuous solution of Eq. (1). As mentioned
previously, there are exact solutions of Eq. (1) for A � 2 and
A � 4. The solution at A � 4 is of particular interest since it
falls within the region of chaos. The solution is

an = 1
2 [1 − T2n(1 − 2a0)] (14)

where Tn(x) is the Chebyshev function, valid for all real values
of n.

This solution has a number of interesting properties that
emphasize that it is indeed a well-behaved function. It is in-
deed orthogonal (17), satisfying the relation

∫ 1

0
fn(a0) fm(a0)[a0(1 − a0)]−1/2da0 = 0 n �= m

B n = m
(15)
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whereFigure 9. Second-order difference plots for normal individual (low
variability) (a) and patient with CHF (high variability) (b).

rameter in the decision process. The classification is then
made according to

fn(a0) = (an+1)
�

1 − 2an−1

for � = 1,2, 3, . . .

n = 1,2, 3, . . .

m = 1,2, 3, . . .

B = (�π )4�+1(1/2)2�(1/2)2�−1

(4�)!

where

D(xxx) > 0 Case belongs to class 1
D(xxx) < 0 Case belongs to class 2
D(xxx) = 0 Indeterminate

The neural network was used to establish a decision with
four values: CTM with r � 0.05, CTM with r � 0.10, total

(c)k = c(c + 1) . . . (c + k − 1), k ≥ 1
= 1 k = 0
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the interval 0 � n � 1. Thus

a2
n =

�∑
α2

kT2
k (2nx) + 2

∑
αiα jTi(2

nx)Tj (2
nx) (17)

k = 0 j > i
i = 0, 1, . . ., � − 1
j = 1, 2, . . ., �

The conjecture adopted is that going from one point to an-
other implies adding a Chebyshev polynomial. Hence0

0
1

1

2 3 4 5 6

a n

n

Figure 10. Exact solution of logistic equation at A � 4, a0 � 0.2
compared to discrete values of n in Eq. (1), demonstrating well-

an+1 =
2�∑

k=0

βkTk(2nx) (18)

behaved nature of continuous solution.

where n is assumed to be a real number.
Feeding Eqs. (16), (17), and (18) into the logistic equation

[Eq. (1)], simplifying, and comparing coefficients gives nonlin-
Note that B reduces to 
 for � � 1, an interesting special case. ear equations involving the unknowns �i’s and �j’s and the

Figure 10, for A � 4, shows a graph with the integer values arguments x of the Chebyshev polynomials. Solving 300 equa-
generated by Eq. (1) (curved line) along with the continuous tions involving 300 variables and choosing the appropriate
solution (straight line) for n between 0 and 6 inclusive, with �i’s and �j’s and the argument of the Chebyshev to satisfy an

initial value a0 � 0.2. Note that while examination of integer to be strictly monotonic increasing in the interval 0 � n � 1
values only results in a graph with an apparently arbitrary produces the approximate solution. It should be pointed out
pattern, the continuous solution shows a well-behaved oscilla- that the nonlinear equations give a multitude of solutions.
tory function. Figure 11 shows a similar graph with an initial By imposing appropriate boundary conditions, one obtains a
value of a0 � 0.5. If only integer values are considered, it ap- unique solution to these nonlinear equations involving 300
pears that Eq. (1) converges to zero for this initial value. The variables. Values for n � 1 are obtained by applying the logis-
exact solution demonstrates that this is not the case. tic equation to the points obtained for 0 � n � 1.

It is important to note that the approximate solution per-The approximation given in Eq. (2) is valid only for A � 4,
mits the extension of the solution to be valid not only for inte-a point in the region of chaos. As no exact solution is available
gers but for all real values of n, and for all values of A in thefor other values within the region of chaos, we constructed a
range of interest, 2 � A � 4. Figure 12 shows the conjecturedmethod for approximating solutions for any value of A, 2 �
solution (straight line) superimposed on the exact solutionA � 4.
(curved line) for A � 4. Figure 13 shows a graph using theAssume a solution of the type
conjectured solution at A � 3.55 and A � 3.6, values on each
side of the onset of chaos. Note that there is no significant
change when the continuous solution is considered. Also note
that this plot is consistent with the bifurcations found in the

an =
�∑

k=0

αkTk(2nx) (16)

discrete solution.
The concept of continuous chaotic modeling raises a num-

where Tk(x) is the Chebyshev function of the first kind and n ber of issues in the analysis of chaotic systems (18). Many
discrete approximations to continuous models have limita-is a real number. We assume � to be the number of points in
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Figure 12. Comparison of conjectured solution of logistic equation toFigure 11. Exact solution of logistic equation at A � 4, a0 � 0.5
compared to discrete values of n in Eq. (1) illustrating misleading exact solution at A � 4.0 showing close agreement.
perception of discrete view.
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11. T. S. Parker and L. O. Chua, Practical Numerical Algorithms for
Chaotic Systems, New York: Springer-Verlag, 1989.

12. M. E. Cohen et al., Chaotic blood flow analysis in an animal
model. In R. A. Miller (ed.), Comput. Appl. Med. Care, Washing-
ton, DC: IEEE Computer Society Press, 14: 323–327, 1990.
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Press, 1994.
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continuous chaotic modeling to signal analysis, IEEE Eng. Med.no abrupt change from nonchaotic to chaotic state.
Biol. Mag. 15 (5): 97–102, 1996.

16. M. E. Cohen, D. L. Hudson, and P. C. Deedwania, Combination
of chaotic and neural network modeling for diagnosis of heart
failure, Proc. Int. Soc. Comput. Appl., 254–257, 1997.

tions that must be observed. If boundary conditions are not
17. M. E. Cohen et al., A conjecture to the solution of the continuousknown, it is difficult to verify if the discrete solutions corre-

logistic equation, Int. J. Uncertainty, Fuzziness Knowledge-basedspond to the original model. This proviso applies not only to Syst., 2 (4): 445–461, 1994.
the discrete models of chaotic equations but to other discrete

18. M. Blank, Discreteness and continuity in problems of chaotic dy-mathematical approaches, such as numerical solution of the
namics, Translations of Mathematical Monographs, 161, Provi-

partial differential equations through methods such as the dence, RI: American Mathematical Society, 1997.
finite element approach, as well as to the use of the fast Fou-
rier transform, the discrete analog of the Fourier transform. MAURICE E. COHEN
This is not to say that these methods should not be utilized, DONNA L. HUDSON
but that solutions must be verified to correspond to known University of California, San
boundary conditions. In chaotic systems, this is often difficult. Francisco
Due to the sensitivity to initial conditions, round-off error
caused by computer representation can come into play. Even
with very long word length in double precision using the Cray
computer, errors will occur after a few hundred iterations. CHAOTIC CARRIER SIGNALS. See TRANSMISSION US-

Under some conditions, these errors can overtake the actual ING CHAOTIC SYSTEMS.
solution.

Chaos theory is a powerful tool in the analysis of nonlinear
problems, particularly in its application to time series.
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