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WAVELET METHODS FOR SOLVING INTEGRAL well. At the end of this article we briefly describe the applica-
tions of wavelets in PDEs and provide references where read-AND DIFFERENTIAL EQUATIONS
ers can find further information.

Many of the phenomena studied in electrical engineering and
physics can be described mathematically by second-order par-
tial differential equations (PDEs). Some examples of PDEs WAVELET PRELIMINARIES
are the Laplace, Poisson, Helmholtz, and Schrödinger equa-
tions. Each of these equations may be solved analytically in In this section we briefly describe the basics of wavelet theory
some cases, but not for all cases of interest. These PDEs can to facilitate further discussion in this article. More details on
often be converted to integral equations. One of the attractive multiresolution and other properties of wavelets may be
features of integral equations is that boundary conditions are found elsewhere in this encyclopedia. Readers may also refer
built in and, therefore, do not have to be applied externally to Refs. 2–10.
(1). Mathematical questions of existence and uniqueness of a As pointed out before, multiresolution analysis (MRA)
solution may be handled with greater ease with the integral plays an important role in the application of wavelets to
form. boundary value problems. In order to achieve MRA, we must

Either approach, differential or integral equations, used to have a finite-energy function (square integrable on the real
represent a physical phenomenon can be viewed in terms of line) �(x) � L2(�), called a scaling function, that generates a
an operator operating on an unknown function in order to nested sequence of subspaces
produce a known function. In this article we will deal with
the linear operator. The linear operator equation is converted {0} ← · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · → L2 (1)
to a system of linear equations with the help of a complete
set of basis functions which are then solved for the unknown

and satisfies the dilation (refinement) equation, namely,
coefficients. The finite-element and finite-difference tech-
niques used to solve PDEs result in sparse and banded matri-
ces, whereas integral equations almost always lead to a dense φ(x) =

∑
k

pkφ(2x − k) (2)

matrix; an exception is the case when the basis functions, cho-
sen to represent the unknown functions, happen to be the

with �pk� belonging to the set of square summable bi-infiniteeigenfunctions of the operator.
sequences. The number 2 in Eq. (2) signifies ‘‘octave levels.’’With the advent of wavelets in the 1980s (although they
In fact this number could be any rational number, but we willwere known in one form or the other since the beginning of
discuss only octave levels or scales. From Eq. (2) we see thatthis century), numerical analysts have been presented with a
the function �(x) is obtained as a linear combination of anew class of ‘‘local’’ basis functions at their disposal which
scaled and translated version of itself, and hence the namecan significantly improve existing methods. Two of the main
scaling function.properties of wavelets vis-à-vis boundary value problems are

The subspaces Vj are generated by �j,k(x) :� 2j/2�(2jx 	 k),their hierarchical nature and the vanishing moments proper-
j, k � �, where � :� �. . ., 	1, 0, 1, . . .�. For each scale j,ties. Because of their hierarchical (multiresolution) nature,
since Vj � Vj�1, there exists a complementary subspace Wj ofwavelets at different resolutions are interrelated, a property
Vj in Vj�1. This subspace Wj is called ‘‘wavelet subspace’’ andthat makes them suitable candidates for multigrid-type meth-
is generated by �j,k(x) :� 2j/2�(2jx 	 k), where � � L2 is calledods in solving PDEs. On the other hand, the vanishing mo-
the ‘‘wavelet.’’ From the above discussion, these results followment property by virtue of which wavelets, when integrated
easily:against a function of certain order, make the integral zero,

is attractive in sparsifying a dense matrix generated by an
integral equation.

In the next section, we provide some definitions and prop-
erties of wavelets that are relevant to understanding the ma-
terials presented in this article. A complete exposition of the




Vj1
∩ Vj2

= Vj1
, j1 > j2

Wj1
∩ Wj2

= {0}, j1 �= j2

Vj1
∩ Wj2

= {0}, j1 ≤ j2

(3)

application of wavelets to integral and differential equation is
beyond the scope of this article. Our objective is to provide The scaling function � exhibits low-pass filter characteris-
the reader with some preliminary theory and results on the tics in the sense that �̂(0) � 1, where a hat over the function
application of wavelets to boundary value problems and give denotes its Fourier transform. On the other hand, the wavelet
references where more details may be found. Since we most function � exhibits bandpass filter characteristic in the sense
often encounter integral equations in electrical engineering that �̂(0) � 0. Some of the important properties that we will
problems, we will emphasize their solutions using wavelets. use in this article are given below:
We give a few examples of commonly occurring integral equa-
tions. The first and the most important step in solving inte-

• Vanishing Moment. A wavelet is said to have a van-
gral equations is to transform them into a set of linear equa- ishing moment of order m if
tions. Both conventional and wavelet-based methods in
generating matrix equations are discussed. Some numerical
results are presented which illustrate the advantages of the
wavelet-based technique. We also discuss wavelets on the

∫ ∞

−∞
xpψ(x) dx = 0, p = 0, . . ., m − 1 (4)

bounded interval. Some of the techniques applied to solving
integral equations are useful for differential equations as All wavelets must satisfy the above condition for p � 0.
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• Orthonormality. The wavelets ��j,k� form an orthonomal and �̃ if we forgo the orthogonality requirement that Vj �

Wj. In such a case we get ‘‘biorthogonal wavelets’’ (11) and(o.n.) basis if
two MRAs, �Vj� and �Ṽj�. In this article we will discuss applica-
tion of o.n. and s.o. wavelets only.〈ψ j,k, ψl,m〉 = δ j,lδk,m for all j,k, l, m ∈ Z (5)

where �p,q is the Kronecker � defined in the usual way as
INTEGRAL EQUATIONS

Integral equations appear frequently in practice, particularlyδp,q =
{

1, p = q;
0, otherwise

(6)

the first-kind integral equations (12) in inverse problems.
These equations can be represented asThe inner product �f 1, f 2� of two square integrable func-

tions f 1 and f 2 is defined as

LK f =
∫ b

a
f (x′)K(x, x′) dx′ = g(x) (14)

〈 f1, f2〉 :=
∫ ∞

−∞
f1(x) f ∗

2 (x) dx

where f (x) is an unknown function, K(x, x�) is the known ker-
with f*2 (x) representing the complex conjugation of f 2. nel which might be the system impulse response or Green’s

• Semiorthogonality. The wavelets ��j,k� form a semiortho- function, and g(x) is the known response functions.
gonal (s.o.) basis if For instance, the electric surface current Jsz on an infi-

nitely long metallic cylinder illuminated by an electromag-
netic plane wave that is transverse magnetic (TM) to the z〈ψ j,k, ψl,m〉 = 0; j �= l for all j, k, l,m ∈ Z (7)
direction, as shown in Fig. 1, is related to the incident electric

Given a function f (x) � L2, the decomposition into various field via an integral equation
scales begins by mapping the function into a sufficiently high-
resolution subspace VM, that is,

jωµ0

∫
C

Jsz(l ′)G(l, l ′) dl ′ = Ei
z(l) (15)

L2 � f (x) �→ fM =
∑

k

aM,kφ(2Mt − k) ∈ VM (8)

where

Now since
G(l, l ′) = 1

4 j
H(2)

0 (k0|ρρρ(l) − ρρρ(l ′)|) (16)

with the wavenumber, k0 � 2�/�0. The electric field, Ei
z, is the

z component of the incident electric field and H(2)
0 is the sec-

ond-kind Hankel function of order 0, and �0 is the wavelength

VM = WM−1 + VM−1

= WM−1 + WM−2 + VM−2

=
N∑

n=1

WM−n + VM−N (9)

in free space. Here, the contour of integration has been pa-
we can write rameterized with respect to the chord length. The field compo-

nent Ei
z can be expressed as

Ei
z(l) = E0 exp[ jk0(x(l) cos φi + y(l) sinφi)] (17)

fM (x) =
N∑

n=1

gM−n(x) + fM−N (x) (10)

where fM	N(x) is the coarsest approximation of fM(t) and where �i is the angle of incidence.

f j (x) =
∑

k

a j,kφ(2 jt − k) ∈ Vj (11)

gj (x) =
∑

k

wj,kψ(2 jt − k) ∈ Wj (12)

If the scaling functions and wavelets are orthonormal, it is
easy to obtain the coefficients �aj,k� and �wj,k�. However, for the
s.o. case, we need a dual scaling function (�̃) and dual wavelet
(�̃). Dual wavelets satisfy the ‘‘biorthogonality condition,’’
namely,

〈ψ j,k, ψ̃l,m〉 = δ j,l · δk,m, j, k, l, m ∈ Z (13)

For the s.o. case, both � and �̃ belong to the same space Wj Z X

Y

e

e

^

n̂

ρ(e)

ρ (e′)

Ei
z

φi

C

for an appropriate j; likewise � and �̃ belong to Vj. One of the
difficulties with s.o. wavelets is that their duals do not have Figure 1. Cross section of an infinitely long metallic cylinder illumi-

nated by a TM plane wave.compact support. We can achieve compact support for both �̃
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∫ b

a
f (x′ )K(x, x′) dx′ = g(x) (22)

where f is the unknown function and the kernel K and the
function g are known. Here the objective is to reconstruct the
function f from a set of known data (possibly measured) g.
The kernel K may be thought of as the impulse response func-
tion of the system.

Although we discuss the solution technique for first-kind
integral equations only, the method can be easily extended to
second-kind equations (14,15) and higher-dimensional inte-
gral equations (16).

MATRIX EQUATION GENERATION

As mentioned in the previous section, the first step in solving
any integral or differential equation is to convert these into a
matrix equation which is then solved for the unknown coeffi-
cients which are subsequently used to construct the un-
known function.

The goal is to transform Eq. (14) to a matrix equation:

Zi = v (23)

where Z is a two-dimensional matrix, sometimes referred to
as impedance matrix, i is the column vector of unknown coef-
ficients, and v is another column vector related to g. Computa-

Ei

Ei

Z

X

2a

X

Y

Z

(a)

(b)
tion time depends largely upon the way we obtain and solve

Figure 2. (a) A thin half-wavelength long metallic strip illuminated Eq. (23). In the following section we describe conventional and
by a TM wave. (b) A thin wire of length �/2 and thickness �/1000 wavelet basis functions that are used to represent the un-
illuminated by a plane wave. known function.

Conventional Basis Functions

The unknown function f (x) can be written asScattering from a thin perfectly conducting strip, as shown
in Fig. 2(a), gives rise to an equation similar to Eq. (15). For
this case, we have f (x) =

∑
n

inbn(x) (24)

where �bn� form a complete set of basis functions. These bases
may be ‘‘global’’ (entire domain), extending the entire length

∫ n

−h
Jsy(z′)G(z, z′) dz′ = Ei

y(z) (18)

[a, b], or they may be ‘‘local’’ (subdomain), covering only a
small segment of the interval, or a combination of both. Somewhere G(z, z�) is given by Eq. (16).
of the commonly used subdomain basis functions are shownAs a final example of the scattering problem, consider scat-
in Fig. 3.tering from a thin wire as shown in Fig. 2(b). Here the current

on the wire and the incident field are related to each other as

∫ l

−l
I(z′)Kw(z, z′) dz′ = −Ei(z) (19)

where the kernel Kw is given by

Kw(z, z′) = 1
4π jωε0

exp(− jk0R)

R5

× [(1 + jk0R) × (2R2 − 3a2) + k2
0a2R2] (20)

Ei(z) = E0 sin θ exp( jk0z cos θ ) (21)

This kernel is obtained by interchanging integration and dif-
ferentiation in the integrodifferential form of Pocklington’s

x1 x2 x1 x2 x3

x1x1 x2 x2 x3

(a) (b)

(c) (d)equation and by using the reduced kernel distance R � [a2 �
(z 	 z�)2]1/2, where a is the radius of the wire (13). Figure 3. Typical subdomain basis functions: (a) piecewise constant,

All of the equations described thus far have the form of a (b) piecewise linear, (c) piecewise cosine, and (d) piecewise sine func-
tions.first-kind integral equation, namely,
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For an exact representation of f (x) we may need an infinite follows we briefly describe four different ways in which wave-
lets have been used in solving integral equations.number of terms in the above series. However, in practice, a

finite number of terms suffices for a given acceptable error.
Substituting the series representation of f (x) into the original Use of Fast Wavelet Algorithm. In this method, the imped-

ance matrix Z is obtained via the conventional method of mo-Eq. (14), we get
ments using basis functions such as triangular functions, and
then wavelets are used to transform this matrix into a sparse
matrix (19,20). Consider a matrix W formed by wavelets. This

N∑
n=1

inLKbn ≈ g (25)

matrix comprises the decomposition and reconstruction se-
quences and their translates. We have not discussed these

For the present discussion we will assume N to be large
sequences here, but readers may find these sequences in any

enough so that the above representation is exact. Now by tak-
standard book on wavelets (2–10), for example.

ing the inner product of Eq. (25) with a set of weighting func-
The transformation of the original MoM impedance matrix

tions or testing functions �tm: m � 1, . . ., M� we obtain a set
into the new wavelet basis is obtained as

of linear equations

WZWT · (WT)−1i = Wv (28)

which can be written as

N∑
n=1

in〈tm, LKbn〉 = 〈tm, g〉, m = 1, . . ., M (26)

Zw · iw = vw (29)which can be written in the matrix form as

where WT represents the transpose of the matrix W. The new[Zmn][in] = [vm] (27)
set of wavelet transformed linear equations are

where Zw = WZWT (30)

iw = (WT)−1i (31)Zmn = 〈tm, LKbn〉, m = 1, . . ., M, n = 1, . . ., N

vm = 〈tm, g〉, m = 1, . . ., M vw = Wv (32)

The solution of the matrix equation gives the coefficients The solution vector i is then given by
�in� and thereby the solution of the integral equations. Two
main choices of the testing functions are (1) tm(x) � �(x 	 i = WT(WZWT)−1Wv (33)
xm), where xm is a discretization point in the domain, and (2)

For orthonormal wavelets WT � W	1 and the transformationtm(x) � bm(x). In the former case the method is called point
(28) is ‘‘unitary similar.’’ It has been shown in Refs. 19 andmatching, whereas the latter method is known as Galerkin
20 that the impedance matrix Zw is sparse, which reduces themethod. The method so described and those to be discussed
inversion time significantly. Discrete wavelet transformin the following sections are generally referred to as ‘‘method
(DWT) algorithms can be used to obtain Zw. Readers may findof moments’’ (MoM) (17). We will refer to MoM with conven-
the details of discrete wavelet transform (octave scale trans-tional bases as ‘‘conventional MoM’’ while the method with
form) elsewhere in this encyclopedia or in any standard bookwavelet bases will be called ‘‘wavelet MoM.’’ Observe that the
on wavelets. Sometimes it becomes necessary to compute theoperator LK in the preceding paragraphs could be any linear
wavelet transform at nonoctave scales. Readers are referredoperator—differential as well as integral.
to Refs. 34–36 for details of such algorithm.

Wavelet Bases
Direct Application of Wavelets. In another method of

Conventional bases (local or global), when applied directly to applying wavelets to integral equations, wavelets are directly
the integral equations, generally lead to a dense (fully popu- applied; that is, first the unknown function is represented as
lated) matrix Z. As a result, the inversion and the final solu- a superposition of wavelets at several levels (scales) along
tion of such a system of linear equations are very time-con- with the scaling function at the lowest level, prior to using
suming. In later sections it will be clear why conventional Galerkin’s method described before.
bases give a dense matrix while wavelet bases produce sparse In terms of wavelets and scaling functions we can write
matrices. Observe that conventional MoM is a single-level ap- the unknown function f in Eq. (14) as
proximation of the unknown function in the sense that the
domain of the function ([a, b], for instance) is discretized only
once, even if we use nonuniform discretization of the domain.
Wavelet MoM, on the other hand, is inherently multilevel in
nature, as we will discuss later.

Beylkin et al. (18) first proposed the use of wavelets in
sparsifying an integral equation. Alpert et al. (14) used

f (x) =
ju∑

j= j0

K ( j)∑
k=K1

wj,kψ j,k(x)

+
K ( j0 )∑
k=K1

aj0 ,kφ j0 ,k(x) (34)

‘‘wavelet-like’’ basis functions to solve second-kind integral
equations. In electrical engineering, wavelets have been used where we have used the multiscale property, Eq. (10).

It should be pointed out here that the wavelets ��j,k� byto solve integral equations arising from electromagnetic scat-
tering and transmission line problems (16,19–33). In what themselves form a complete set; therefore, the unknown func-
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tion could be expanded entirely in terms of the wavelets. sparsify it. In the wavelet MoM case, the entries of [Z�,�] oc-
cupy a very small portion (5 � 5 for linear and 11 � 11 forHowever, to retain only a finite number of terms in the expan-

sion, the scaling function part of Eq. (34) must be included. cubic spline cases) of the matrix, while the rest contain en-
tries whose magnitudes are very small compared to theIn other words, ��j,k�, because of their bandpass filter charac-

teristics, extract successively lower and lower frequency com- largest entry; hence a significant number of entries can be set
to zero without affecting the solution appreciably.ponents of the unknown function with decreasing values of

the scale parameter j, while �j0,k, because of its lowpass filter
characteristics, retains the lowest frequency components or Wavelets in Spectral Domain. In the previous section, we
the coarsest approximation of the original function. have used wavelets in the space domain. The local support

In Eq. (34), the choice of j0 is restricted by the order of the and vanishing moment properties of wavelet bases were used
wavelet, while the choice of ju is governed by the physics of to obtain a sparse matrix representation of an integral equa-
the problem. In applications involving electromagnetic scat- tion. In some applications, particularly in spectral domain
tering, as a ‘‘rule of thumb’’ the highest scale, ju, should be methods in electromagnetics, wavelets in the spectral domain
chosen such that 1/2ju�1 does not exceed 0.1�0, with �0 being may be quite useful. Whenever we have a problem in which
the operative wavelength. the unknown function is expanded in terms of the basis func-

When Eq. (34) is substituted in Eq. (14), and the resultant tion in the space (time) domain while the numerical computa-
equation is tested with the same set of expansion functions, tion takes place in the spectral (frequency) domain, we should
we get a set of linear equations look at the space-spectral window product in order to deter-

mine the efficiency of using a particular basis function. Ac-
cording to the ‘‘uncertainty principle,’’ the space-spectral win-
dow product of a square integrable function cannot be less

[
[Zφ,φ] [Zφ,ψ ]
[Zψ,φ] [Zψ,ψ ]

][
[aj0 ,k]k

[wj,n] j,n

]
=

[
〈v, φ j0 ,k′ 〉k′

〈v, ψ j′ ,k′ 〉 j′ ,k′

]
(35)

than 0.5; the lowest value is possible only for functions of
Gaussian class. Because of the nearly optimal space-spectral

where the � term of the expansion function and the � term of window product of the cubic spline and the corresponding
the testing function give rise to the [Z�,�] portion of the ma- semiorthogonal wavelet, the improper integrals appearing in
trix Z. Similar interpretation holds for [Z�,�], [Z�,�], and [Z�,�]. many spectral domain formulations of integral equations can

By carefully observing the nature of the submatrices, we be evaluated efficiently. This is due to the fact that higher-
can explain the ‘‘denseness’’ of the conventional MoM and the order wavelets generally have faster decay in the spectral do-
‘‘sparseness’’ of the wavelet MoM. Unlike wavelets, the scal- main. The spectral domain wavelets have been used to solve
ing functions discussed in this article do not possess the van- the transmission line discontinuity problem in Ref. 16.
ishing moments properties. Consequently, for two pulse or tri-
angular functions �1 and �2 (usual bases for the conventional

Wavelet Packets. The discrete wavelet packet (DWP) simi-MoM and suitable candidates for the scaling functions), even
larity transformations have been used to obtain a higher de-though ��1, �2� � 0 for nonoverlapping support, ��1, LK�2� is
gree of sparsification of the matrix than is achievable usingnot very small since Lk�2� is not small. On the other hand, as
the standard wavelets (31). It has also been shown that theis clear from the vanishing moment property [Eq. (4)] of a
DWP method gives faster matrix–vector multiplication thanwavelet of order m, the integral vanishes if the function
some of the fast multipole methods.against which the wavelet is being integrated behaves as a

In the standard wavelet decomposition process, first wepolynomial of a certain order ‘‘locally.’’ Away from the singu-
map the given function to a sufficiently high resolution sub-lar points the kernel has a polynomial behavior locally. Con-
space (VM) and obtain the approximation coefficients �aM,k� (seesequently, integrals such as (LK�j,n) and the inner products
section entitled ‘‘Wavelet Preliminaries’’). The approximationinvolving wavelets are very small for nonoverlapping support.
coefficients �aM	1,k� and wavelet coefficients �wM	1,k� are com-Because of its ‘‘total positivity’’ property (5, pp. 207–209),
puted from �aM,k�. This process continues; that is, the coeffi-the scaling function has a ‘‘smoothing’’ or ‘‘variation diminish-
cients for the next lower level M 	 2 are obtained froming’’ effect on a function against which it is integrated. The
�aM	1,k�, and so on. Observe that in this scheme, only approxi-smoothing effect can be understood as follows. If we convolve
mation coefficients �aj,k� are processed at any scale j; the wave-two pulse functions, both of which are discontinuous but to-
let coefficients are merely the outputs and remain untouched.tally positive, the resultant function is a linear B-spline (tri-
In a wavelet packet, the wavelet coefficients are also pro-angular function) which is continuous. Likewise, if we con-
cessed which, heuristically, should result in higher degree ofvolve two linear B-splines, we get a cubic B-spline which is
sparsity since in this scheme the frequency bands are furthertwice continuously differentiable. Analogous to these, the
divided compared with the standard decomposition scheme.function LK�j0,k is smoother than the kernel K itself. Further-

more, because of the MRA properties that give

INTERVALLIC WAVELETS〈φ j,k, ψ j′ ,l〉 = 0, j ≤ j′ (36)

Wavelets on the real line have been used to solve integral
equations arising from electromagnetic scattering and wave-the integrals ��j0,k�, (LK�j,n)� and ��j�,n�, (LK�j0,k)� are quite small.

The [Z�,�] portion of the matrix, although diagonally domi- guiding problems. The difficulty with using wavelets on the
entire real line is that the boundary conditions need to benant, usually does not have entries which are very small com-

pared to the diagonal entries. In the conventional MoM case, enforced explicitly. Some of the scaling functions and wave-
lets must be placed outside the domain of integration. Fur-all the elements of the matrix are of the form ��j,k�, (LK�j,k)�.

Consequently, we cannot threshold such a matrix in order to thermore, because of truncation at the boundary, the van-
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ishing moment property is not satisfied near the boundary.
Also, in signal processing, uses of these wavelets lead to unde-
sirable jumps near the boundaries. We can avoid this diffi-
culty by periodizing the scaling function as (4, Sec. 9.3)

φp
j,k

:=
∑

l

φ j,k(x + l) (37)

where the superscript p implies periodic case. Periodic wave-
lets are obtained in a similar way. It is easy to show that if
�̂(2�k) � �k,0, which is generally true for the scaling functions,
then �k �(x 	 k) � 1. If we apply the last relation (which is
also known as the ‘‘partition of unity’’) to Eq. (37), we can
show that ��p

0,0� � ��p
j,k; j � �� :� �0, 1, 2, . . .�, k � 0, . . .,

2j 	 1� generates L2([0, 1]).
Periodic wavelets have been used by Refs. 28–30. How-

ever, as mentioned in Ref. 4, Sec. 10.7, unless the function
which is being approximated by the periodized scaling func-
tions and wavelets has the same values at the boundaries, we
still have ‘‘edge’’ problems at the boundaries. To circumvent
these difficulties, wavelets, constructed especially for a
bounded interval, has been introduced in Ref. 33. Details on
intervallic wavelets may be found in Refs. 33 and 37–39. Most
of the time, we are interested in knowing the formulas for
these wavelets rather than delving into the mathematical
rigor of their construction. These formulas may be found in
Refs. 10 and 33.

Wavelets on a bounded interval satisfy all the properties
of regular wavelets that are defined on an entire real line; the
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(a)

(b)only difference is that in the former case, there are a few spe-
cial wavelets near the boundaries. Wavelets and scaling func- Figure 4. (a) Linear spline (m � 2) scaling functions on [0, 1]. (b)
tions whose support lies completely inside the interval have Linear spline wavelets on [0, 1]. The subscripts indicate the order of
properties that are exactly the same as those of regular wave- spline (m), scale ( j), and position (k), respectively (33).
lets. As an example, consider semiorthogonal wavelets of or-
der m. For this case the scaling functions (B-splines of order
m) have support [0, m], whereas the corresponding wavelet
extends the interval [0, 2m 	 1]. If we normalize the domain

line discontinuity problems may be found in Ref. 16. For moreof the unknown function from [a, b] to [0, 1], then there will
applications of wavelets to electromagnetic problems, readersbe 2j segments at any scale j (discretization step � 2	j). Conse-
may refer to Ref. 32.quently, in order to have at least one complete inner wavelet,

The matrix equation, Eq. (35), is solved for a circular cylin-the following condition must be satisfied:
drical surface (33). Figure 6 shows the surface current distri-
bution using linear splines and wavelets for different-size cyl-2 j ≥ 2m − 1 (38)
inders. The wavelet MoM results are compared with the
conventional MoM results. To obtain the conventional MoMFor j satisfying the above condition, there are m 	 1 bound-
results, we have used triangular functions for both expandingary scaling functions and wavelets at 0 and 1, and 2j 	 m �
the unknown current distribution and testing the resultant1 inner scaling functions and 2j 	 2m � 2 inner wavelets.
equation. The conventional MoM results have been verifiedFigure 4 shows all the scaling functions and wavelets for
with a series solution (40). The results of the conventionalm � 2 at the scale j � 2. All the scaling functions for m � 4
MoM and the wavelet MoM agree very well.and j � 3 are shown in Fig. 5(a), while Fig. 5(b) gives only

Next we want to show how ‘‘thresholding’’ affects the finalthe corresponding boundary wavelets near x � 0 and one in-
solution. By ‘‘thresholding,’’ we mean setting those elementsner wavelet. The rest of the inner wavelets can be obtained
of the matrix to zero that are smaller (in magnitude) thanby simply translating the first one, whereas the boundary
some positive number � (0  � � 1), called the threshold pa-wavelets near x � 1 are the mirror images of ones near x � 0.
rameter, times the largest element of the matrix.

Let zmax and zmin be the largest and the smallest elements
NUMERICAL RESULTS of the matrix in Eq. (35). For a fixed value of the threshold

parameter �, define % relative error (��) as (33)
In this section we present some numerical examples for the
scattering problems described previously. Numerical results
for strip and wire problems can be found in Ref. 24. Results
for spectral domain applications of wavelets to transmission

εδ := ‖ f0 − fδ‖2

‖ f0‖2
× 100 (39)
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Figure 5. (a) Cubic spline (m � 4) scaling functions on [0, 1]. (b)
Cubic spline wavelets on [0, 1]. The subscripts indicate the order of
spline (m), scale ( j), and position (k), respectively (33).

and % sparsity (S�) as

Sδ := N0 − Nδ

N0
× 100 (40)

In the above, f � represents the solution obtained from Eq. (35)
when the elements whose magnitudes are smaller than �zmax

have been set to zero. Similarly, N� is the total number of
elements left after thresholding. Clearly, f 0(x) � f (x) and
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N0 � N2, where N is the number of unknowns.
Table 1 gives an idea of the relative magnitudes of the Figure 6. Magnitude and phase of the surface current distribution

on a metallic cylinder using linear spline wavelet MoM and conven-largest and the smallest elements in the matrix for conven-
tional MoM. Notice that the results for conventional and wavelettional and wavelet MoM. As is expected, because of their
bases completely overlap each other (33).higher vanishing moment property, cubic spline wavelets give

the higher ratio, zmax/zmin.
Figure 7 shows a typical matrix obtained by applying the

conventional MoM. A darker color on an element indicates a
larger magnitude. The matrix elements with � � 0.0002 for
the linear spline case are shown in Fig. 8. In Fig. 9, we pres-
ent the thresholded matrix (� � 0.0025) for the cubic spline
case. The [Z�,�] part of the matrix is almost diagonalized. Fig-
ure 10 gives an idea of the pointwise error in the solution for
linear and cubic spline cases.

It is worth pointing out here that regardless of the size of
the matrix, only 5 � 5 in the case of the linear spline and
11 � 11 in the case of the cubic splines (see the top-left cor-
ners of Figs. 8 and 9) will remain unaffected by thresholding;

Table 1. Relative Magnitudes of the Largest and the Smallest
Elements of the Matrix for Conventional and Wavelet (33)

Conventional Wavelet Wavelet
MoM MoM (m � 2) MoM (m � 4)

zmax 5.377 0.750 0.216
zmin 1.682 7.684 � 10	8 8.585 � 10	13

Ratio 3.400 9.761 � 106 2.516 � 1011

MoM. a � 0.1�0.
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Figure 9. A typical gray-scale plot of the matrix elements obtainedFigure 7. A typical gray-scale plot of the matrix elements obtained
using cubic wavelet MoM. The darker color represents larger mag-using conventional MoM. The darker color represents larger mag-
nitude.nitude.

a significant number of the remaining elements can be set to In applying wavelets directly to solve integral equations,
zero without causing much error in the solution. one of the most attractive features of semiorthogonal wavelets

is that closed-form expressions are available for such wave-
lets (10,33). Most of the continuous o.n. wavelets cannot beSEMIORTHOGONAL VERSUS ORTHOGONAL WAVELETS
written in closed form. One thing to be kept in mind is that,
unlike signal processing applications where one usually dealsBoth semiorthogonal and orthogonal wavelets have been used
with a discretized signal and decomposition and reconstruc-for solving integral equations. A comparative study of their
tion sequences, here in the boundary value problem we oftenadvantages and disadvantages has been reported in Ref. 24.
have to compute the wavelet and scaling function values atThe orthonormal wavelet transformation, because of its uni-
any given point. For a strip and thin wire case, a comparisontary similar property, preserves the condition number (�) of
of the computation time and sparsity is summarized in Tablesthe original impedance matrix Z; semiorthogonal wavelets do
3 and 4 (24).not. Consequently, the transformed matrix equation may re-

Semiorthogonal wavelets are symmetric and hence have aquire more iterations to converge to the desired solution.
generalized linear phase (5, pp. 160–174), an important factorSome preliminary results comparing the condition number of
in function reconstruction. It is well known (4 Sec. 8.1) thatmatrices for different cases are given in Table 2.
symmetric or antisymmetric, real-valued, continuous, and
compactly supported o.n. scaling functions and wavelets do
not exist. Finally, in using wavelets to solve spectral domain
problems, as discussed before, we need to look at the time–
frequency window product of the basis. Semiorthogonal wave-
lets approach the optimal value of the time-frequency prod-
uct, which is 0.5, very fast. For instance, this value for the
cubic spline wavelet is 0.505. It has been shown (41) that this
product approaches to � with the increase in smoothness of
o.n. wavelets.

DIFFERENTIAL EQUATIONS

An ordinary differential equation (ODE) can be represented
as

L f (x) = g(x); x ∈ [0,1] (41)

with

Figure 8. A typical gray-scale plot of the matrix elements obtained
using linear wavelet MoM. The darker color represents larger mag-
nitude.

L =
m∑

j=0

aj (x)
d j

dxj (42)
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Table 3. Comparison of CPU Time per Matrix Element
for Spline, Semiorthogonal, and Orthonormal Basis
Function (24)

Wire Plate

Spline 0.12 s 0.25 � 10	3 s
s.o. Wavelet 0.49 s 0.19 s
o.n. Wavelet 4.79 s 4.19 s

and some appropriate boundary conditions. If the coefficients
�aj� are independent of x, then the solution can be obtained
via a Fourier method. However, in the ODE case, with non-
constant coefficients, and in PDEs, we generally use finite-
element- or finite-difference-type methods.

In the traditional finite-element method (FEM), local bases
are used to represent the unknown function and the solution
is obtained by Galerkin’s method, similar to the approach de-
scribed in previous Sections. For the differential operator, we
get sparse and banded stiffness matrices that are generally
solved using iterative techniques, the Jacobi method for in-
stance.

One of the disadvantages of conventional FEM is that the
condition number (�) of the stiffness matrix grows as O(h	2),
where h is the discretization step. As a result, the conver-
gence of the iterative technique becomes slow and the solution
becomes sensitive to small perturbations in the matrix ele-
ments. If we study how the error decreases with iteration in
iterative techniques, such as the Jacobi method, we find that
the error decreases rapidly for the first few iterations. After
that, the rate at which the error decreases slows down (42,
pp. 18–21). Such methods are also called ‘‘high-frequency
methods’’ since these iterative procedures have a ‘‘smoothing’’
effect on the high-frequency portion of the error. Once the
high-frequency portion of the error is eliminated, convergence
becomes quite slow. After the first few iterations, if we could
re-discretize the domain with coarser grids and thereby go to
lower frequency, the convergence rate would be accelerated.
This leads us to a multigrid-type method.

Multigrid or hierarchical methods have been proposed to
overcome the difficulties associated with the conventional
method (42–58). In this technique, one performs a few itera-
tions of the smoothing method (Jacobi-type), and then the in-
termediate solution and the operator are projected to a coarse
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grid. The problem is then solved at the coarse grid, and by
Figure 10. The magnitude of the surface current distribution com- interpolation one goes back to the finer grids. By going back
puted using linear (m � 2) and cubic (m � 4) spline wavelet MoM for and forth between finer and coarse grids, the convergence can
different values of the threshold parameter � (33). be accelerated. It has been shown for elliptic PDEs that for

wavelet-based multilevel methods, the condition number is

Table 2. Effect of Wavelet Transform Using Semiorthogonal and Orthonormal
Wavelets on the Condition Number of the Impedance Matrixa

Condition Number �
Number

Basis and of Octave Before After
Transform Unknowns Level � S� �� Threshold Threshold

Pulse and none 64 NA NA 0.0 2.6 � 10	5 14.7 —
Pulse and s.o. 64 1 7.2 � 10	2 46.8 0.70 16.7 16.4
Pulse and o.n. 64 1 7.5 � 10	3 59.7 0.87 14.7 14.5

a Original impedance matrix is generated using pulse basis functions.
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Table 4. Comparison of Percentage Sparsity (S�) and Percentage Relative Error (��) for Semiorthogonal and
Orthonormal Wavelet Impedance Matrices as a Function of Threshold Parameter (�) (24)

Number of Sparsity Relative Error
Unknowns S� ��Threshold

Scatterer/Octave Levels s.o. o.n. � s.o. o.n. s.o. o.n.

Wire/j � 4 29 33 1 � 10	6 34.5 24.4 3.4 � 10	3 4.3 � 10	3

5 � 10	6 48.1 34.3 3.9 1.3 � 10	3

1 � 10	5 51.1 36.5 16.5 5.5 � 10	2

Plate/j � 2, 3, 4 33 33 1 � 10	4 51.6 28.1 1 � 10	4 0.7
5 � 10	4 69.7 45.9 4.7 5.2
1 � 10	3 82.4 50.9 5.8 10.0
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domain analysis of transmission line discontinuities, Int. J.Multiresolution aspects of wavelets have also been applied
Numer. Model., 11: 41–54, 1998.in evolution equations (57,58). In evolution problems, the

17. R. F. Harrington, Field Computation by Moment Methods, Newspace and time discretization are interrelated to gain a stable
York: IEEE Press, 1992.numerical scheme. The time-step must be determined from

18. G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transformthe smallest space discretization. This makes the computa-
and numerical algorithms I, Commun. Pure Appl. Math., 44: 141–tion quite complex. A space-time adaptive method has been
183, 1991.introduced in Ref. 58, where wavelets have been used to ad-

19. R. L. Wagner, P. Otto, and W. C. Chew, Fast waveguide modejust the space-time discretization steps locally.
computation using wavelet-like basis functions, IEEE Microw.
Guided Wave Lett., 3: 208–210, 1993.

20. H. Kim and H. Ling, On the application of fast wavelet transformBIBLIOGRAPHY
to the integral-equation of electromagnetic scattering problems,
Microw. Opt. Technol. Lett., 6: 168–173, 1993.1. G. B. Arfken and H. J. Weber, Mathematical Methods for Physi-

21. B. Z. Steinberg and Y. Leviatan, On the use of wavelet expan-cists, San Diego, CA: Academic Press, 1995.
sions in method of moments, IEEE Trans. Antennas Propag., 41:2. Y. Meyer, Wavelets: Algorithms and Applications, Philadelphia,
610–619, 1993.PA: SIAM, 1993.

22. K. Sabetfakhri and L. P. B. Katehi, Analysis of integrated milli-3. S. Mallat, A theory of multiresolution signal decomposition: The
meter-wave and submillimeter-wave waveguides using orthonor-wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell.,
mal wavelet expansions, IEEE Trans. Microw. Theory Tech., 42:11: 674–693, 1989.
2412–2422, 1994.

4. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Ser. Appl.
23. B. Z. Steinberg, A multiresolution theory of scattering and dif-Math., No. 61, Philadelphia, PA: SIAM, 1992.

fraction, Wave Motion, 19 (3): 213–232, 1994.
5. C. K. Chui, An Introduction to Wavelets, Boston: Academic

24. R. D. Nevels, J. C. Goswami, and H. Tehrani, Semi-orthogonalPress, 1992.
versus orthogonal wavelet basis sets for solving integral equa-

6. C. K. Chui, Wavelets: A Mathematical Tool for Signal Analysis, tions, IEEE Trans. Antennas Propag., 45: 1332–1339, 1997.
Philadelphia, PA: SIAM, 1997.

25. Z. Xiang and Y. Lu, An effective wavelet matrix transform ap-
7. G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley, proach for efficient solutions of electromagnetic integral equa-

UK: Wellesley-Cambridge Press, 1996. tions, IEEE Trans. Antennas Propag., 45: 1205–1213, 1997.
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