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CHAOTIC SYSTEMS CONTROL

Almost all real physical, biological, and chemical as well as
many other systems are inherently nonlinear. This is also the
case with electrical and electronic circuits. Apart from sys-
tems designed to perform linear operations (usually in such
cases they just operate in a small region in which they behave
linearly) there exists an abundance of systems that are non-
linear by their principle of operation. Rectifiers, flip-flops,
modulators and demodulators, memory cells, analog to digital
(A/D) converters, and different types of sensors are good ex-
amples of such systems. In many cases the designed circuit,
when implemented, performs in a very unexpected way, to-
tally different from that for which it was designed. In most
cases, engineers do not care about the origins and mecha-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



242 CHAOTIC SYSTEMS CONTROL

nisms of the malfunction; for them a circuit that does not
perform as desired is of no use and has to be rejected or
redesigned. Many of these unwanted phenomena, such as
excess noise, false frequency lockings, squegging, and phase
slipping have been found to be associated with bifurcations
and chaotic behavior. Also many nonlinear phenomena in
other science and engineering disciplines have a strong link
with ‘‘electronic chaos.’’ Examples are aperiodic electrocar-
diogram waveforms (reflecting fibrillations, arrythmias, or
other types of heart malfunction), epileptic foci in electroen-
cephalographic patterns, or other measurements taken by
electronic means in plasma physics, lasers, fluid dynamics,
nonlinear optics, semiconductors, and chemical or biological
systems. 200180160140120100
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Figure 1. Illustration of the sensitive dependence on initial condi-
tions—first fundamental property of chaotic systems. Two trajector-DEFINITION OF IS CHAOTIC BEHAVIOR
ies of Chua’s oscillator starting from initial conditions with the differ-
ence of 0.001 in the first component for a short time stay close to each

In this section we consider only deterministic systems (i.e., other but eventually separate resulting in waveforms of different
systems for which knowledge of the initial state at some ini- shape.
tial time t0, equations of evolution and input signals fully de-
termine the state and outputs for any t � t0). far away region of earth). Figure 1 gives an example of two

Typically deterministic systems display three types of be- trajectories starting from initial conditions differing by 0.001;
havior of their solutions: they approach constant solutions, after remaining close to each other for some period, they even-
they converge toward periodic solutions, or they converge to- tually separate. Sensitive dependence on initial conditions for
ward quasi-periodic solutions. These are the situations known a system is realized only with some finite accuracy �. If two
to every practicing engineer. initial conditions are closer to each other than �, then they

Now it has been confirmed that almost every physical sys- are not distinguishable in measurements. The trajectories of
tem can also display behaviors that cannot be classified in a chaotic system starting from such initial conditions will,
any of the above-mentioned three categories; the systems be- after a finite time, diverge and become uncorrelated. For any
come aperiodic (chaotic) if their parameters, internal vari- precision we use in measurements (experiments) the behavior
ables, or external stimulations are chosen in a specific way. of trajectories is not predictable—the solutions look virtually
How can we describe chaos except saying that it is the kind random despite being produced by a deterministic system.
of behavior that is not constant, periodic, or quasi-periodic or There is also another consequence of this property that may
convergent to any of the above? For the purpose of this article be appealing for control purposes: a very small stimulus in
we consider some specific properties to qualify behavior as the form of tiny change of parameters can have a very large
chaotic: effect on the system’s behavior.

The second property can be explained easily by Fig. 2. It is
clear that the trajectory shown in this figure ‘‘fills’’ out some

1. The solutions show sensitive dependence on initial con-
ditions (trajectories are unstable in the Lyapunov
sense) but remain bounded in space as time elapses (are
stable in the Lagrange sense).

2. Trajectory moves over a strange attractor, a geometric
invariant object that can possess fractal dimension. The
trajectory passes arbitrarily close to any point of the at-
tractor set—that is, there is a dense trajectory.

3. Chaotic behavior appears in the system as via a ‘‘route’’
to chaos that typically is associated with a sequence of
bifurcations, qualitative changes of observed behavior
when varying one or more of the parameters.

Sensitive dependence on initial conditions means that trajec-
tories of a chaotic system starting from nearly identical initial
conditions will eventually separate and become uncorrelated 21.510.5
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(but they will always remain bounded in space). Large varia- Figure 2. An example of a chaotic trajectory. Two-dimensional pro-
tions in the observed long-term behavior due to very small jection of the double scroll attractor observed in Chua’s circuit is
changes of initial state are often referred to as ‘‘the butterfly shown. The curve never closes itself, moves around in an unpredict-

able way, and densely fills some part of the space (here, the plane).effect’’ (increment of butterfly wings can change weather in a
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locked loop, or a digital filter generating chaotic responses is
of no use—at least for its original purpose. Similarly, we
would like to avoid situations where the heart does not pump
blood properly (fibrillation or arrythmias) or epileptic attacks.
Even more spectacular potential applications might be influ-
encing rainfall and avoiding hurricanes and other atmo-
spheric disasters believed to be associated with large-scale
chaotic behavior.

The most common goal of control for a chaotic system is
suppression of oscillations of the ‘‘bad’’ kind and influencing
the system in such a way that it will produce a prescribed,
desired motion. The goals vary depending on a particular ap-
plication. The most common goal is to convert chaotic motion
into a stable periodic or constant one. It is not at all obvious
how such a goal could be achieved, because one of the funda-
mental features of chaotic systems, the sensitive dependence500450400350300250200150100500
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on initial conditions, seems to contradict any stable system
Figure 3. Bifurcation diagram for the RC-ladder chaos generator operation. Recently, several applications have been men-
with slope m1 chosen as bifurcation parameter. The diagram is ob- tioned in the literature in which the desired state of system
tained in such a way as for every chosen parameter value (abcissa) operation is chaotic. The control problems in such cases are
the long-term behavior of the chosen system variable is observed and defined as: converting unwanted chaotic behavior into an-
coordinates of intersections of the orbit with a chosen plane are re-

other kind of chaotic motion with prescribed properties (thiscorded and plotted. Thus for a chosen parameter value, the number
is the goal of chaos synchronization) or changing periodic be-of points plotted tells exactly what kind of behavior is observed. One
havior into chaotic motion (which might be the goal in thepoint corresponds to a period-one orbit, two points to a period-two
case of epileptic seizures). The last-mentioned type of controlorbit, and a large number of points spread in an interval can be inter-
is often referred to as anticontrol of chaos.preted as chaotic behavior. Visible chaos appears via a ‘‘route’’ when

the parameter is changed continuously—here, branching of the bifur- Many chaotic systems display what is called multiple ba-
cation tree can be interpreted as period doubling route to chaos. The sins of attracton and fractal basin boundaries. This means
diagram also confirms existence of a large variety of qualitatively dif- that, depending on the initial conditions, trajectories can con-
ferent behaviors existing for suitably chosen values of parameter. verge to different steady states. Trajectories in nonlinear sys-

tems may possess several different limit sets and thus exhibit
a variety of steady-state behaviors depending on the initial

part of the space. If we arbitrarily choose a point within this
condition, chaotic or otherwise. In many cases, the sets of ini-

region of space and a small ball of radius � around it, the
tial states leading to a particular type of behavior are inter-

trajector will eventually pass through this ball after a finite
twined in a complicated way forming fractal structures. Thus

time (which might be very long). As an example of the third
we could consider elimination of multiple basins of attraction

property we give a typical bifurcation diagram obtained in
as another kind of control goal.

numerical experiments (Fig. 3). By a suitable choice of param-
In some cases, chaos is the dynamic state in which we

eter m1 one can choose almost every type of periodic behavior
would like the system to operate. We can imagine that mixing

apart from many chaotic states. There is an important fact
of components in a chemical reactor would be much quicker

often associated with bifurications: in many cases creation of
in a chaotic state than in any other one, or that chaotic sig-

new types of new trajectories that are observable in experi-
nals could be useful for hiding information. In such cases,

ments (stable) via bifurcation is accompanied by creation of
however, we need a ‘‘wanted kind’’ of chaotic behavior with

unstable orbits—invisible in experiments. Many of these un-
precisely prescribed features and/or we need techniques to

stable orbits persist also within the chaotic attractor. Many
switch between different kinds of behavior (chaos-order or

authors consider as fundamental the property of existence of
chaos-chaos).

a countable (infinite) number of unstable periodic orbits
Considering the possibilities of influencing the dynamics of

within an attractor.
a chaotic circuit we can distinguish four basic approaches:

Using proprietary numerical procedures it is possible to
detect some of such orbits in numerical experiments (1). Fig-

• variation of an existing accessible system parameterure 4 shows some of the periodic orbits uncovered from the
• change in the system design-modification of its internaldouble scroll attractor shown in Fig. 2.

structureThe above-described fundamental properties of chaotic sys-
tems (their solutions) is the basis of the chaos control ap- • injection of an external signal(s)
proaches described below. • introduction of a controller (classical PI, PID, linear or

nonlinear, neural, stochastic, etc.)
WHAT CHAOS CONTROL MEANS

Because of the very rich dynamic phenomena encountered
in typical chaotic systems, there are a large variety of ap-Chaos, so commonly encountered in physical systems, repre-

sents a rather peculiar type of behavior commonly considered proaches to controlling such systems. This article presents se-
lected methods developed for controlling chaos in various as-as causing malfunctions, disastrous in most applications. It is

obvious that an amplifier, a filter, an A/D converter, a phase- pects—starting from the most primitive concepts like
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Figure 4. Second fundamental property of chaos. Within an attractor (visible in experiments
and depicted in Fig. 2) an infinite but countable number of unstable periodic orbits exist. Such
orbits are impossible to observe in experiments but can be detected using computer methods. In
this picture some approximations to actual unstable periodic orbits are shown. These are uncov-
ered using numerical calculations from time series measured for the double scroll attractor
shown in Fig. 2. Notice the shape of the orbits—when superimposed these orbits reproduce the
shape of the chaotic attractor.

parameter variation, through classical controller applications chaotic system differ from any other object of control? How
could its specific properties be advantageous for control?(open- and closed-loop control), to quite sophihsticated ones

The route to chaos via a sequence of bifurcations has twolike stabilization of unstable periodic orbits embedded within
important implications for chaos control: first, it gives an in-a chaotic attractor.
sight into other accessible behaviors that can be obtained by
changing parameters (this may be used for redesigning the

GOALS OF CONTROL system); second, stable and unstable orbits that are created
or annihilated in bifurcations may still exist in the chaotic

As already mentioned, systems displaying chaotic behavior range and constitute potential goals for control.
possess specific properties. Now we will exploit these proper- Three fundamental properties of chaotic systems are of po-
ties when attacking the control problem. In what way does a tential use for control purposes. For a long time the instabil-
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ity property (sensitive dependence on initial conditions) has
been considered the main obstacle for control. How can one
visualize successful control if the dynamics may change dras-
tically with small changes of the initial conditions or parame-
ters? How can one produce a prescribed kind of behavior if
errors in initial conditions will be exponentially amplified?

This fundamental property does not, however, necessarily
mean that control is impossible. It has been shown that de-
spite the divergence of nearby starting trajectories, they can
be convergent to another prescribed kind of trajectory—one
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simply has to employ a different notion of stability. In fact,
we do not require that the nearby trajectories converge—the Figure 5. Chaos can be stabilized by adding a stabilizing subsystem

to the chaotic one. As an example, a parallel RLC circuit is connectedrequirement is quite different—the trajectories should merely
to the chaotic Chua’s circuit and acts as a chaotic oscillation absorber.converge to some goal trajectory g(t)

ments (which means replacing one of the resistors, capacitors,lim
t→∞

|x(t) − g(t)| = 0 (1)
or inductors). In Fig. 3 a sample bifurcation diagram reveals
a variety of dynamic behaviors observed in the RC chaos gen-Depending on a particular application g(t) could be one of the
erator (4) (when changing one of the slopes of the nonlinearsolutions existing in the system or any external waveform we
element). Thus when the generator is operating in a chaoticwould like to impose. Extreme sensitivity may even be of
range, one can tune (control) it using a potentiometer to ob-prime importance as control signals are in such cases very
tain a desired periodic state existing and displayed in the bi-small.
furcation diagram.The second important property of chaotic systems that will

This method, although intuitively simple, is hardly accept-be exploited is the existence of a countable infinity of unstable
able in practice; it requires large parameter variations (largeperiodic orbits within the attractor, already considered ear-
energy control). This requirement cannot be met in manylier. These orbits, although invisible during experiments, con-
physical systems where the construction parameters are ei-stitute a dense set supporting the attractor. Indeed, the tra-
ther fixed or can be changed over very small ranges. Thisjectory passes arbitrarily close to every such orbit. This
method is also difficult to apply on the design stage as thereinvisible structure of unstable periodic orbits plays a crucial
are no simulation tools for electronic circuits allowing bifurca-role in many methods of chaos control; with specific methods
tion analysis (e.g., SPICE has no such capability). On thethe chaotic trajectory can be perturbed in such a way that it
other hand, programs offering such types of analysis requirewill stay in the vicinity of a chosen unstable orbit from the
a description of the problem in closed mathematical form,dense set. such as differential or difference equations. Changes of pa-

These fundamental properties of chaotic signals and sys- rameters are even more difficult to introduce once the cir-
tems offer some very interesting issues for control not avail- cuitry is fabricated or breadboarded, and if possible at all can
able in other classes of systems (2,3). Namely, be done only on a trial-and-error basis.

• because of sensitive dependence on initial conditions it is ‘‘Shock Absorber’’ Concept—Change in System Structure
possible to influence the dynamics of the systems using This simple technique is being used in a variety of applica-
very small perturbations; moreover, the response of the tions. The concept comes from mechanical engineering, where
system is very fast devices absorbing unwanted vibrations are commonly used

• the existence of a countable infinity of unstable periodic (e.g., beds of machine-tools, shock absorbers in vehicle sus-
orbits within the attractor offers extreme flexibility and pensions). The idea is to modify the original chaotic system
a wide choice of possible goal behaviors for the same set design (add the ‘‘absorber’’ without major changes in the de-
of parameter values sign or construction) in order to change its dynamics in such

a way that a new stable orbit appears in a neighborhood of
the original chaotic attractor. In an electronic system, the ab-SUPPRESSING CHAOTIC OSCILLATIONS
sorber can be as simple as an additional shunt capacitor or anBY CHANGING SYSTEM DESIGN
LC tank circuit. Kapitaniak et al. (5) proposed such a ‘‘chaotic
oscillation absorber’’ for Chua’s circuit—it is a parallel RLCEffects of Large Parameter Changes
circuit coupled with the original Chua’s circuit via a resistor

The simplest way of suppressing chaotic oscillations is to (Fig. 5)—depending on its value the original chaotic behavior
change the system parameters (system design) in such a way can be converted to a chosen stable oscillation. The equations
as to produce the desired kind of behavior. The influence of describing dynamics of this modified system can be given in

a dimensionless form:parameter variations on the asymptotic behavior of the sys-
tem can be studied using a standard tool for analysis of cha-
otic systems—the bifurcation diagram. The typical bifurca-
tion diagram reveals a variety of dynamic behaviors for
appropriate choices of system parameters and tells us what
parameter values should be chosen to obtain the desired be-
havior. In electronic circuits, changes in the dynamic behavior
are obtained by changing the value of one of its passive ele-

ẋ = α[y − x − g(x)]

ẏ = x − y + z + ε(y1 − y)

ż = −βy

ẏ′ = α′[−γ ′y′ + z′ + ε(y − y′ )]

ż′ = −β ′y′

(2)
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Weak Periodic Perturbation

Interesting results have been reported by Breiman and Gold-
hirsch (8), who studied the effects of adding a small periodic
driving signal to a system behaving in a chaotic way. They
discovered that external sinusoidal perturbation of small am-
plitude and appropriately chosen frequency can eliminate
chaotic oscillations in a model of the dynamics of a Josephson
junction and cause the system to operate in some stable peri-
odic mode. Unfortunately, there is little theory behind this

Figure 6. The ‘‘shock absorber’’ eliminates changes in the system
approach and the possible goal behaviors can be learned onlybehavior. For example, the spiral-type Chua’s attractor can be
by trial and error. Some hope for further understanding andquenched and a period-one orbit appears when parameters of the par-
applications can be based on using theoretical results knownallel RLC oscillation absorber, shown in Figure 5, are properly ad-
from the theory of synchronization.justed.

Noise Injection
In terms of circuit equations, we have an additional set of two

A noise signal of small amplitude injected in a suitable wayequations for the ‘‘absorber’’ (y1, z1) and a small term [�(y1 �
into the circuit (system) offers potentially new possibilities fory)] through which the original equations of Chua’s circuit are
stabilization of chaos. The first observations date back to themodified. Figure 6 shows the result of a laboratory experi-
work of Herzel (9). The effects of noise injection were alsoment. Addition of a ‘‘shock absorber’’ in Chua’s circuit
studied in an RC-ladder chaotic oscillator (10). In particularchanges chaotic behavior [Fig. 6(a)] to a periodic one [Fig.
it has been observed that injection of noise of sufficiently high6(b)].
level can eliminate multiple domains of attraction. In the ex-
periments with the RC-ladder chaos generator it has been

EXTERNAL PERTURBATION TECHNIQUES found that the two main branches, representing two distinct,
coexisting solutions, as shown in Fig. 3, will join together if

Several authors have demonstrated that a chaotic system can white noise of high level is added. This approach, although
be forced to perform in a desired way by injecting external promising, needs further investigation because there is little
signals that are independent of the internal variables or theory available to support experimental observations.
structure of the system. Three types have been considered: (a)
aperiodic signals (‘‘resonant stimulation’’), (b) periodic signals

CONTROL ENGINEERING APPROACHESof small amplitude, and (c) external noise.

Several investigators have tried to use known methods be-‘‘Entrainment’’—Open Loop Control
longing to the ‘‘control engineer’s toolkit.’’ For example, PI

Aperiodic external driving is a classical control method and and PID controllers for chaotic circuits, applications of sto-
was one of the first methods introduced by Hübler (6,7) (reso- chastic control techniques, Lyapunov-type methods, robust
nant stimulation). A mathematical model of the considered controllers, and many other methodologies, including intelli-
experimental system is needed (e.g., in the form of a differen- gent control and neural controllers, have been described in
tial equation: dx/dt � F(x), x � Rn, where F(x) is differenti- the literature. Chen and Dong (11) and Chapter 5 in Madan’s
able and a unique solution exists for every t � 0). book (12) give an excellent review of applications of such

The goal of the control is to entrain the solution x(t) to an methods. In electronic circuits two schemes—linear feedback
arbitrarily chosen behavior g(t): and time-delay feedback—seem to find the most successful

applications.lim
t→∞

|x(t) − g(t)| = 0 (3)

Error Feedback Control
Entrainment can be obtained by injecting the control signal:

Several methods of chaos control have been developed that
rely on the common principle that the control signal is some
function � of the difference between the actual system output

dx
dt

= F(x) + [ġ − F(g)]1(t) (4)

x(t) and the desired goal dynamics g(t). This control signal
where 1(t) is 0 for t � 0 and 1 for t � 0. The entrainment could be an actual system parameter:
method has the advantage that no feedback is required and
no parameters are changed—thus the control signal can be p(t) = φ[x(t) − g(t)] (5)
computed in advance and no equipment for measuring the
state of the system is needed. The goal does not depend on or an additive signal produced by a linear controller:
the system being considered, and in fact it could be any signal
at all (except that solutions of the autonomous system since u(t) = K[x(t) − g(t)] (6)
ġ � F(g) � 0 in this case, and there is no control signal). It
should be noted, however, that this method has limited appli- The control term is simply added to the system equations.

One can readily see that, although mathematically simple,cability since a good model of the system dynamics is neces-
sary, and the set of initial statistics for which the system tra- such an ‘‘addition’’ operation might pose serious problems in

real applications. The block diagram of the control scheme isjectories will be entrained is not known.
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Chaotic
system

K

y(t)u(t)y(t)˜
K

Figure 7. Standard control engineering methods can be used to sta-
bilize chaotic systems, for example the linear feedback control scheme
proposed by Chen and Dong, shown here.

Chaotic system

y(t–  )τ

+
–

u(t)

y(t)

DelayK[y(t)–y(t–  )]τ

shown in Fig. 7. Using error feedback, chaotic motion has
been successfully converted into periodic motion both in dis- Figure 9. Block diagram of the delay feedback control scheme pro-
crete- and continuous-time systems. In particular, chaotic mo- posed by Pyragas. Injection of signal proportional to the difference
tions in Duffing’s oscillator and Chua’s circuit have been con- between the original output and its delayed copy can stabilize opera-
trolled (directed) toward fixed points or periodic orbits (11). tion of a chaotic system when the time delay and gain in the feedback

loop are chosen appropriately.The equations of the controlled circuit read:

STABILIZING UNSTABLE PERIODIC ORBITS
ẋ = α[y − x − g(x)]

ẏ = x − y + z − K22(y − ỹ)

ż = −βy
(7)

Time-Delay Feedback Control (Pyragas Method)

An interesting method has been proposed by Pyragas (13).Thus we have a single term added to the original equations.
Figure 8 shows a double scroll Chua’s attractor and large The control signal applied to the system is proportional to the

difference between the output and a delayed copy of the samesaddle-type unstable periodic orbit toward which the system
has been controlled. output:

The important properties of the linear feedback chaos con-
trol method are that the controller has a very simple struc-
ture and that access to the system parameters is not required.

dx
dt

= F[x(t)] + K[y(t) − y(t − τ )] (8)

The method is immune to small parameter variations but
Tuning the delay � one can approach many of the periods ofmight be difficult to apply in real systems (interactions of
the unstable periodic orbits embedded within the chaotic at-many system variables are needed). The choice of the goal
tractor. In such a situation, the control signal approaches 0.orbit poses the most important problem; usually the goal is
A block diagram of the control scheme is shown in Fig. 9.chosen in multiple experiments or can be specified on the ba-
Depending on the delay constant � and the linear factor K,sis of model calculations.
various kinds of periodic behaviors can be observed in the
chaotic system. In the case of Chua’s circuit we were able, for
example, to convert chaotic motion into a periodic one, as
shown in Fig. 10.

Pyragas obtained very promising results in the control of
many different chaotic systems, and despite the lack of math-
ematical rigor, this method is being successfully used in sev-
eral applications.

An interesting application of this technique is described by
Mayer-Kress et al. (14). Pyragas’s control scheme has been
used for tuning chaotic Chua’s circuits to generate musical

I L

V
C

 1

Figure 8. Linear feedback method in many cases enables stabiliza-
tion of a simple orbit which is a solution of the system. For example,
the double scroll (chaotic) attractor and a saddle type unstable peri- Figure 10. The double scroll attractor can be eliminated and the

behavior converted to one of the periodic orbits in experiments in theodic orbit coexist in Chua’s circuit. This periodic orbit can be stabi-
lized using linear feedback. delayed feedback control of Chua’s circuit.
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tones and signals. More recently Celka (15) used Pyragas’s
method to control a real electrooptical system.

The positive features of the delay feedback control method
are that no external signals are injected and no access to sys-
tem parameters is required. Any of the unstable periodic or-
bits can be stabilized provided that delay is chosen in an ap-
propriate way. The control action is immune to small
parameter variations. In real electronic systems, the required
variable delay element is readily available (for example, ana-
log delay lines are available as off-the-shelf components). The
primary drawback of the method is that there is no a priori
knowledge of the goal (the goal is arrived at by trial and
error).

Ott–Grebogi–Yorke Local Linearization Approach

Ott, Grebogi, and Yorke (16,17) in 1990 proposed a feedback
method to stabilize any chosen unstable periodic orbit within
the countable set of unstable periodic orbits existing in the
chaotic attractor. To visualize best how the method works, let
us assume that the dynamics of the system are described by
a k-dimensional map:xn	1 � F(xn, p), xi � Rk. This map, in the
case of continuous-time systems, can be constructed (e.g., by
introducing a transversal surface of section for system trajec-
tories, p is some accessible system parameter that can be
changed in some small neighborhood of its nominal value
p*). To explain the method we will concentrate now on stabili-
zation of a period-one orbit. Let xF � F(xF, p*) be the chosen
fixed point (period one) of the map around which we would
like to stabilize the system. Assume further that the position
of this orbit changes smoothly with p parameter changes (i.e.,
p* is not a bifurcation value) and there are small changes in
the local system behavior for small variatons of p. In a small
vicinity of this fixed point we can assume with good accuracy
that the dynamics are linear and can be expressed approxi-
mately by:

xn+1 − x0 = A(xn − x0) + g(pn − p∗) (9)

The elements of the matrix A � 
F/
x (xF, p*) and vector g �

F/
p (xF, p*) can be calculated using the measured chaotic
time series and analyzing its behavior in the neighborhood of
the fixed point. Further, the eigenvalues �s, �u and eigenvec-
tors es, eu of this matrix can be found

Aeu = λueu and Aes = λses (10)

where the subscripts ‘‘u’’ and ‘‘s’’ correspond to unstable and
stable directions respectively. These eigenvectors determine

XF ( pn)

XF ( pn)

XF ( pn)

90°

es eu

es

fs fu

eu

XF ( pn+1)

Xn+1–XF

Xn+1

XF

fu

Xn
Xn+1

the stable and unstable directions in the small neighborhood Figure 11. Explanation of the linearization technique used by the
of the fixed point (Fig. 11). Ott–Grebogi–Yorke chaos stabilization method. (a) Parameter

change causes displacement of the fixed point. In a small neighbor-
hood of the fixed point the behavior of trajectories and displacement
of the fixed point can be considered as linear. (b) Stable and unstable
eigenvectors of the linearization matrix A. (c) New contravariant ba-

A = [eu es]

[
λu 0
0 λs

]
[eu es]−1 (11)

sis vectors. (d) Action of the control—the trajectory is forced to move
onto the stable manifold of the fixed point.Let us denote by f s, fu the contravariant eigenvectors [fT

s es �
fT

ueu � 1, fT
s eu � fT

ues � 0; see Fig. 11(c)]. Thus

A = [eu es]

[
λu 0
0 λs

][
f T
u

f T
s

]
= λueu f T

u + λses f T
s (12)
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This implies that fT
u is a left eigenvector of A with the same

eigenvalue eu:

f T
u A = f T

u (λueu f T
u + λses f T

s ) = λu f T
u (13)

The control idea (16–18) now is to monitor the system behav-
ior until it comes close to the desired fixed point (we assume
that the system is ergodic and the trajectory fills the attractor
densely; thus eventually it will pass arbitrarily close to any
chosen point within the attractor) and then change p by a
small amount so the next state xn	1 should fall on the stable
manifold of x0 [i.e., choose pn such that fT

u(xn	1 � xF) � 0]:

pn = −
�

λu

f T
u g

�
f T
u (xn − xF) + p∗ (14)
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0

1.01

1

2

350300250200150100500 0
t

350300250200150100500

C1

x

t
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which can be expressed as a local linear feedback action:
Figure 12. Typical results of stabilization of a period-one orbit in
Chua’s circuit using the OGY method. Time-waveform of voltagepn+1 = pn + C f T

u [xn − xF(pn)] (15)
across the C1 capacitor and variations of the control signal are shown.

The actuation of the value of the control signal to be applied
at the next iterate is porportional to the distance of the sys-
tem state from the desired fixed point [xn � xF(pn)] projected

The block diagram of this control scheme is shown in Fig.onto the perpendicular unstable direction fu. The constant C
13. For controlling chaos in Chua’s circuit (compare the cir-depends on the magnitude of the unstable eigenvalue �u and
cuit diagram shown as the left-side subcircuit in Fig. 5) wethe shift g of the attractor position with respect to the change
try to force the system with a sampled version of a signalof the system parameter projected onto the unstable direction
V̂1(t) [(V̂1(t) � CTx̂(t)]. Forcing the system with a continuousfu. The Ott–Grebogi–Yorke (OGY) technique has the notable
signal V̂1(t) will force the system to exhibit a solution x(t),advantage of not requiring analytical models of the system
which tends asymptotically toward x̂(t). This is obvious sincedynamics and is well-suited for experimental systems. One
forcing V1(t) will instantaneously force the current throughcan use either the full information from the process of the
the piecewise linear resistance to a ‘‘desired’’ value iR(t). Thedelay coordinate embedding technique using single variable
remaining subcircuit (R, L, C2), which is an RLC stable cir-experimental time series [see Dressler and Nitsche (19)]. The
cuit, will then exhibit a voltage V2(t) and a current i3(t), whichprocedure can also be extended to higher-period orbits. Any
will asymptotically converge towards V̂2(t) and ı̂3(t).accessible variable (controllable) system parameter can be

The sampled input control method is very attractive as theused for applying perturbation, and the control signals are
goal of the control can be specified using analysis of the out-very small. The method also has several limitations. Its appli-
put time-series of the system; access to system parameters iscation in multiattractor systems is problematic. It is sensitive
not required. The control technique is immune to parameterto noise, and the transients before achieving control might be
variations, noise, scaling, and quantization. Instead of a con-very long in many cases. We have carried out an extensive
troller, we need a generator to synthesize the goal signal. Sig-study of application of the OGY technique to controlling chaos
nal sampling reduces the memory requirements for the gener-in Chua’s circuit (12). Using an application-specific software

package (20), we were able to find some of the unstable peri-
odic orbits embedded in the double scroll Chua’s chaotic at-
tractor and use them as control goals.

Figure 12 shows the time evolution of the voltages when
attempting to stabilize unstable period-one orbit in Chua’s
circuit. Before control is achieved, the trajectories exhibit cha-
otic transients before entering the close neighborhood of the
chosen orbit.

Sampled Input Waveform Method

A very simple, robust, and effective method of chaos control
in terms of stabilization of an unstable periodic orbit has been
proposed (21). A sampled version of the output signal, corre-

Sampled waveform
generator

Linear part of the
system

Nonlinearity
f (.)

x(t)=CTx(t)

y(t)=Cx(t)+Bu(t)

y(t)

t

^

sponding to a chosen unstable periodic trajectory uncovered
Figure 13. Block diagram of the sampled input chaos control system.

from a measured time series, is applied to the chaotic system A sampled version of a periodic signal corresponding to an unstable
causing the system to follow this desired orbit. In real sys- orbit uncovered from measured output is used to force the chaotic
tems, this sampled version of the unstable periodic orbit can system which here has a special structure. This structure consists of
be programmed into a programmable waveform generator a stable linear part and a scalar, static nonlinearity in the feedback

path. Forcing signal is applied to the input of the nonlinearity.and used as the forcing signal.
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ter such that the graph of the return map moves to a new
position as marked on the diagram, thus forcing the next iter-
ation to fall at v*n	1; after this is done the perturbation can be
removed and activated again if necessary.

In mathematical terms we can compute the control signal
using only one variable, for example �1:

p(ξ ) = p0 + c(ξ1 − ξF1) (16)

This method has been successfully implemented in a con-
tinuous-time analog electronic circuit and used in a variety of
applications ranging from stabilization of chaos in laboratoryFigure 14. Using the sampled input forcing the double scroll at-
circuits (22–24) to stabilization of chaotic behavior in laserstractor (a) observed in the experimental system can be converted into

a long periodic orbit (b) stabilized during laboratory experiments. (25–27). The OPF method may be applied to any real chaotic
system (also higher-dimensional ones) where the output can
be measured electronically and the control signal can be ap-

ator. Figure 14 shows the chaotic attractor and two sample plied via a single electrical variable. The signal processing is
orbits controlled within the chaos range. analog and therefore is fast and efficient. Processing in this

case means detecting the position of a one-dimensional projec-
tion of a Poincaré section (map), which can be accomplishedCHAOS CONTROL BY OCCASIONAL
by the window comparator, taking the input waveform. ThePROPORTIONAL FEEDBACK
comparator gives a logical high when the input waveform is
inside the window. A logical AND operation is performed onIn real applications, a ‘‘one-dimensional’’ version of the OGY
this signal and on the delayed output from the external fre-method—the occasional proportional feedback (OPF)
quency generator. This logical signal drives the timing blockmethod—has proved to be most efficient. To explain the ac-
that triggers the sample-and-hold and then the analog gate.tion of the OPF method let us consider a return map as shown
The output from the gate, which represents the error signalin Fig. 15. For present consideration we take an approximate
at the sampling instant, is then amplified and applied to theone-dimensional map obtained for the RC-ladder chaos gener-
interface circuit that transforms the control pulse into a per-ator (4). For nominal parameter values the position of the
turbation of the system. The frequency, delay, control pulsegraph of the map is as shown by the rightmost curve; all peri-
width, window position, width, and gain are all adjustable.odic points are unstable. In particular, the point P is an un-
The interface circuit used depends on the chaotic system un-stable equilibrium. Looking at the system operation starting
der control.from point vn, at the next iteration (the next passage of the

One of the major advantages of Hunt’s controller over OGYtrajectory through the Poincaré plane) one would obtain vn	1.
is that the control law depends on only one variable and doesWe would like to direct the trajectories toward the fixed point
not require any complicated calculations in order to generateP. This can be achieved by changing a chosen system parame-
the required control signal. The disadvantage of the OPF
method is that there is no systematic method for finding the
embedded unstable orbits (unlike OGY). The accessible goal
trajectories must be determined by trial and error. The appli-
cability of the control strategy is limited to systems in which
the goal is suppression of chaos without more strict require-
ments.

IMPROVED ELECTRONIC CHAOS CONTROLLER

Recently, in collaboration with colleagues from University
College, Dublin, we have proposed an improved electronic
chaos controller that uses Hunt’s method without the need for
an external synchronizing oscillator. Hunt’s OPF controller
used the peaks of one of the system variables to generate the
1D map. Hunt then used a window around a fixed level to set
the region where control was applied. In order to find the
peaks, Hunt’s scheme used a synchronizing generator. In our
modified controller (28,29), we simply take the derivative of
the input signal and generate a pulse when it passes through

vn+ 1

No control

With control
signal applied

vn+ 1*

vn

zero. We use this pulse instead of Hunt’s external driving os-
Figure 15. Explanation of the action of the occasional proportional

cillator as the ‘‘synch’’ pulse for our Poincaré map. This obvi-feedback method using a graph of the first return map. Variation of
ates the need for the external generator and so makes thean accessible system parameter causes displacement of the graph—
controller simpler and cheaper to build.when the control signal is chosen appropriately this displacement can

The variable level window comparator is implemented us-be such that from a given coordinate the next iterate will fall exactly
onto the unstable fixed point. ing a window comparator around zero and a variable level
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shift. Two comparators and three logic gates form the window of interconnections, and external signals applied to it. It is
believed that chaos control concepts in spatiotemporal sys-around zero. The synchronizing generator used in Hunt’s con-

troller is replaced by an inverting differentiator and a compa- tems might give explanations for the functioning of the brain.
In controlling spatiotemporal systems we should consider firstrator. A rising edge in the comparator’s output corresponds to

a peak in the input waveform. We use the rising edge of the of all the goals we would like to achieve—they may be differ-
ent in this case from the goals considered so far (stabilizationcomparator’s output to trigger a monostable flip-flop. The fall-

ing edge of this monostable’s pulse triggers another mono- of periodic orbits or anticontrol toward a desired chaotic
waveform). In particular one can consider:stable, giving a delay. We use the monostable’s output pulse

to indicate that the input waveform peaked at a previous
fixed time. If this pulse arrives when the output from the win- 1. Formation of specific spatial or spatiotemporal patterns;
dow comparator is high then a monostable is triggered. The influence on the spatial patterns might be needed, for
output of this monostable triggers a sample-and-hold on its example, in models of crystal growth, memory patterns,
rising edge that samples the error voltage; on its falling edge, creation of waves with prescribed characteristics, and
it triggers another monostable. This final monostable gener- so on.
ates a pulse that opens the analog gate for a specific time (the 2. Stabilization of wanted behavior; this kind of operation
control pulse width). The control pulse is then applied to the might be required, for example, in the case of associa-
interface circuit, which amplifies the control signal and con- tive memory.
verts it into a perturbation of one of the system parameters,

3. Synchronization/desynchronization; in some cases itas required.
might be desirable to obtain a coherent operation of theWe tested our controller using a chaotic Colpitts oscillator
whole spatial structure or a part of the cells only. One(30) and laboratory implementation of Chua’s circuit. Imple-
can also envisage ‘‘anticontrol’’ desynchronization, as inmentation of a laboratory Chua’s circuit together with inter-
the case of epileptic foci and recovery of normal brainface circuit to connect the controller is shown in Fig. 16. Fig-
functioning.ure 17 shows an example of stabilization of a period-four orbit

4. Efficient switching between attractors; we should envis-(found by trial-and-error search) using the improved chaos
age this kind of goal in the models of brain functions:controller. In Fig. 18 we show oscilloscope traces for the goal
change of concentration on various objects is linkedtrajectory and the control signal (bottom trace). It is interest-
with attractor switchings.ing to note the impulsive action of the controller.

5. Removal of a specific type of behavior (e.g., spiral
waves; this is a medical application such as defibrilla-

CHAOS-TO-CHAOS CONTROL tion).
6. Cluster stabilization; in this kind of approach only aSynchronization of a given system solution with an externally

small spatial cluster in the multidimensional mediumsupplied chaotic signal can be considered a particular type of
is to be stabilized while all the surrounding medium hascontrol problem. The goal of the control scheme is to track
to operate in a chaotic mode.(follow) the desired (input) chaotic trajectory. In particular,

the input signal might come from an identical copy of the con-
There is also more flexibility in applying control signals—sidered system, the only difference being the initial condi-
they might be applied at the borders, at every cell, at specifictions. It is only very recently that such a control problem has
locations in space, and so on. Also, connections between thebeen recognized in control engineering. The linear coupling
cells in the network might be varied in some cases.technique and the linear feedback approach to controlling

chaos can be applied for obtaining any chosen goal—
regardless of whether it is chaotic, periodic, or constant in Coupled Map Lattices
time. For a review of the chaos synchronization concepts and

A coupled map lattices (CML) system is a good target to study
applications we refer the reader to Ogorzalek (31).

the control of spatiotemporal chaos because of existence of
One can also envisage controlling a chaotic system toward

very rich spatiotemporal chaotic behavior in the control-free
chaotic targets that are not solutions of the system itself

CML (33). In controlling a one-dimensional CML, stabilizing
(goals might be chaotic trajectories originating from different

the system from spatiotemporal chaos not only to homoge-
systems). An impressive example of this kind of control/in-

neous stationary states but also to periodic states both in
fluence could be in generating Lorenz-like behavior in Chua’s

space and time has been demonstrated already (34). The idea
circuit (32). We believe that this kind of chaotic synchroniza-

of pinnings (putting some local control) plays a very impor-
tion—control to a chaotic goal—could lead to new develop-

tant role in stabilizing spatiotemporal chaos. One advantage
ments and possibly new applications of chaotic systems.

of the pinnings is to avoid the overflow in numerical simula-
tion. Moreover, Hu and Qu have reported that a lower pin-
ning density shows better control performance than a higherCONTROL OF SPATIOTEMPORAL CHAOTIC SYSTEMS
one in numerical experiments (34). Further analysis is needed
of the relationship between the pinning density and controlChaos control becomes much more complicated in the case of

large coupled and possibly very high-dimensional systems performance (34,35).
An important application of controlling CML is to suppress(such as neural networks), spatiotemporal systems (governed

by partial differential equations or time-delay equations), be- or skip very long transient chaotic (sometimes called ‘‘super-
transient’’) waveforms (34). Such phenomena are often ob-cause there exists a very rich repertoire of spatiotemporal be-

haviors depending on parameters of the system, architecture served in CML systems, and sometimes one cannot see the
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In many cases the observed patterns were not perfectly homo-
geneous (symmetrical). It turned out from several experi-
ments that the defect can be removed by external side-wall
stimulation—boundary control. These experiments demon-
strate a potential principle for influencing crystal growth to
obtain perfect structures. The control strategy applied in this
case is a local one—only boundaries of the network are being
excited (in contrast to global modulation).

Control of the Model Cortex

Babloyantz et al. (38) considered applications of feedback con-
trol of the Pyragas type to include control mechanisms in a
model cortex. They studied a model in which all cells have
linear dynamics but the connections are nonlinear of the sig-
moid type. A single stabilizable periodic orbit that corre-

Zero level
for offset input voltage

Zero level
for JFET voltage

sponds to bulk oscillations of the network has been found.
Figure 18. Oscilloscope traces of period-four solution stabilized in Neurological data suggest that synchronized states in the
Chua’s circuit and controlling signal produced by the improved brain are triggered when external stimuli are applied. Basedchaos controller.

on the simulation experiments, the authors proposed the fol-
lowing theory for attentiveness: it results from momentary
(short time scale) control of chaotic activity observed in thesteady state for millions or more of iterations in numerical
cerebral cortex. Since the number of neural cells in the cortexexperiments. However, how to determine the desired (target)
is in the range of 1011, the number of different stabilizablestate of control in suppressing or skipping such transient
spatiotemporal patterns must be enormous and we can easilychaos is still an open problem.
imagine that each stimulus can stabilize its corresponding
characteristic state. Attentiveness, concentration, and recog-Spatial and Temporal Modulation of Extended Systems
nition of patterns as well as wakefulness and sleep could be

The effects of global spatial and temporal modulation on pat- explained in terms of chaos control processes.
tern-forming systems have been widely studied. Global modu-
lation means here that control signals are applied to every Controlling Autowaves: Spatial Memory
cell throughout the network. Examples of effects of this type

A particular type of pattern formation and self-organizationof stimulation/control include pattern instability under peri-
in arrays of chaotic systems is autowaves (39). Developmentodic spatial forcing, spatial disorder induced in an autowave
of autowaves in an array of chaotic oscillators can be con-medium (Belousov–Zhabotinsky reaction), continuous varia-
trolled in several ways. First, adjustment of coupling betweention of the wavelength of a pattern, or transitions between
the oscillators gives a global control mechanism for dynamicstructures with incommensurate wavelengths [see Perez-
phenomena. Second, when the network is operating in an au-Meñuzuri et al. (36) for a good list of references]. This global
towave regime, one can observe the memory effect (39): Thecontrol method remains purely empirical.
position of external stimulation controls the form of the ob-
served spatial pattern. Finally, noise injection can destroy orIntroducing Disorder to Tame Chaos
quench patterns, introducing disorder.

Interesting observations have been made recently by Brai-
man et al. (37). Based on earlier observations that noise injec- Control of Ventricular Fibrillation: Quenching of Spiral Waves
tion can remove chaos in low-dimensional systems, they pro-

Creation of spiral waves in heart tissue is now believed to beposed to introduce uncorrelated differences between chaotic
the principal cause of many arrythmias and heart disorders,oscillators coupled in a large array. They identified two mech-
including often-fatal ventricular fibrillation. Avoiding situa-anisms by which disorder can stabilize chaos. The first re-
tions leading to spiral and scroll waves and eventuallyquires small disorder and relies on disturbance of the system
quenching such developing waves are of paramount impor-‘‘position’’ in a very high-dimensional parameter space, re-
tance in cardiology. Biktashev and Holden (40) proposed asulting in change of the observed attractor. The second mech-
feedback version of the resonant drift phenomenon (i.e., di-anism requires large perturbations; removing some of the os-
rected motion of the autowave vortex by applying an externalcillators in the array from their initial chaotic regime can
signal) to remove the unwanted phenomena. Simulation stud-possibly trigger the whole array into orderly behavior. The
ies confirm that amplitudes of signals needed for defibrillationexperiments of Braiman and others suggest that spatial dis-
using the proposed method are substantially less than thoseorder might be one of control mechanisms of pattern forma-
of conventional single-shock techniques used currently intion and self-organization.
medical practice.

Turing Patterns: Defect Removal
Boundary and Defect-Induced Control

Perez-Meñuzuri et al. (36) studied creation of Turing patterns
in a Network of Chua’s Circuits

in arrays of discretely coupled dynamic systems. They discov-
ered spontaneous creation of hexagonal or rhombic patterns An extensive simulation study has been carried out to dis-

cover the possibilities of controlling pattern formation in CNNwhen systems parameters were adjusted in some specific way.
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(cellular neural network) arrays composed of chaotic Chua’s the ones that offer the best performance for achieving control?
What devices can be used to apply the control signals? Cancircuits. The open-loop control strategy has been applied at

the edge cells only. Thus by the number of cells excited the we make off-line computations? At what speed do we need to
compute and apply the control signals? What is the lowestformation of wavefronts and their shape can easily be modi-

fied. Furthermore, it has been found out that the introduction acceptable precision of computation? Can we achieve control
in real time?of defects in the network could serve as a means of inducing

spiral wave formation with the ‘‘tips’’ positioned at some pre- A slow system like a bouncing magneto-elastic ribbon (with
eigenfrequencies below 1 Hz) is certainly not as demandingscribed locations.
as a telecommunications channel (possibly running at GHz)
or a laser for control.Chaotic Neural Networks

In electronic implementations, one must look at several
Aihara (41,42) has proposed a neural network model com- closely linked areas: sensors (for measurements of signals
posed of simple mathematical neurons, which are described from a chaotic process), electronic implementation of the con-
by difference equations, and exhibit chaotic dynamics. Chaos trollers, computer algorithms (if computers are involved in
control in such chaotic neural networks may be useful to im- the control process), and actuators (introducing control sig-
prove the performance of the associative memory and to solve nals into the system). External to the implementation (but
optimization problems. Control of a simple chaotic neural net- directly involved in the control process and usually fixed us-
work has been reported (43). It has also reported that chaotic ing the measured signals) is determining the goal of the
neural networks that have global or nearest-neighbor cou- control.
pling can be controlled by a modified exponential control Despite the many methods that have been developed and
method (44). However, these results are not sufficient for the described in the literature (3,11,46), most are still only of aca-
applications of controlling chaos mentioned previously be- demic interest because of the lack of success in implementa-
cause these results are only on the networks with homoge- tion. A control method cannot be accepted as successful if
neous synaptic weights (couplings). In order to apply control- computer simulation experiments are not followed by further
ling chaos to the networks for associative memory and solving laboratory tests and physical implementations. Only very few
optimization problems, development of control methods for results of such tests are known; among the exceptions are:
large-scale chaotic neural networks with inhomogeneous syn- the control of a green-light laser (27), the control of a magnet-
aptic weights is needed. oelastic ribbon (47), and a few other examples.

Implementation Problems for the OGY MethodELECTRONIC CHAOS CONTROLLERS

When implementing the OGY method for a real-world appli-
The widespread interest in chaos control is due to its ex- cation one must perform the following series of elementary
tremely interesting and important possible applications. operations (45):
These applications range from biomedical ones (e.g., defibril-
lation or blocking of epileptic seizures), through solid-state 1. Data acquisition—measurement of a (usually scalar)
physics, lasers, aircraft wing vibrations and even weather signal from the chaotic system under consideration.
control, just to name a few attempts made so far. Looking at This operation should be performed in such a way as
the possible applications alone it becomes obvious that chaos not to disturb the existing dynamics. For further com-
control techniques and their possible implementations will puterized processing, measured signals must be sam-
greatly depend on the nature of the process under consider- pled and digitized (A/D conversion).
ation. From the control implementation perspective, real sys-

2. Selection of appropriate control parametertems exhibiting chaotic behavior show many differences. The
3. Finding unstable periodic orbits using experimental datamain ones are (45):

(measured time series) and fixing the goal of control
4. Finding parameters and variables necessary for control• speed of the phenomenon (frequency spectrum of the sig-

nals) 5. Application of the control signal to the system; this step
requires continuous measurement of system dynamics• amplitudes of the signals
in order to determine the moment at which to apply the• existence of corrupting noises, their spectrum and ampli-
control signal (i.e., the moment when the actual trajec-tudes
tory passes in a small vicinity of the chosen periodic

• accessibility of the signals to measurement orbit) and immediate reaction of the controller (applica-
• accessibility of the control (tuning) parameters tion of the control pulse) in such an event.
• acceptable levels of control signals

In computer experiments, it has been confirmed that all these
steps of OGY can be carried out successfully in a great varietyIn most cases, electronic equipment will play a crucial role.

In some applications, like the biomedical ones, we would pos- of systems, achieving stabilization of even long-period orbits.
There are several problems that arise during the attemptsibly need implantable devices. In looking for an implementa-

tion of a particular chaos controller, we must first look at to build an experimental setup. Though variables and param-
eters can be calculated off-line, one must consider that thethese system-induced limitations. How can we measure and

process signals from the system? Are there any sensors avail- signals measured from the system are usually corrupted be-
cause of noise and several nonlinear operations associatedable? Are there any accessible system variables and parame-

ters that could be used for the control task? How do we choose with the A/D conversion (possibly rounding, truncation, finite
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word-length, overflow correction, etc.). Use of corrupted signal Effects of Time Delays. Several elements in the control loop
may introduce time delays that can be detrimental to thevalues and the introduction of additional errors by computer

algorithms and linearization used for the control calculation functioning of the OGY method (45). Although all calculations
may be done off-line, two steps are of paramount importance:may result in a general failure of the method. Additionally,

there are time delays in the feedback loop (e.g., waiting for
the reaction of the computer, interrupts generated when • detection of the moment when the trajectory passes the
sending and receiving data.) chosen Poincaré section

• determination of the moment at which the control signal
Effects of Calculation Precision. To test the effects of the pre- should be applied (close neighborhood of chosen orbit)

cision of calculations in (45) the case of calculating control
parameters to stabilize a fixed point in the Lozi map [see (45)] When these two steps are carried out by a computer with a
was considered. A partial answer to the question of how the data acquisition card, at least a few interrupts (and therefore
A/D conversion accuracy and the resulting calculations of lim- a time delay) must be generated in order to detect the Poin-
ited precision affect the possibilities for control has been caré section, to decide it is in the right neighborhood, and to
found. In the tests the quality of computations alone, without send the correct control signal.
looking at other problems like time delays in the control loop, Most experiments with OGY control of electronic circuits
was taken into account. have been able to achieve control when the systems were run-

To compare the results of digital manipulations, first the ning in the 10 Hz to 100 Hz range. We found out that for
interesting parameters were computed using analytical for- higher-frequency systems time delays become a crucial point
mulas. Next the same parameters were calculated using dif- in the whole procedure. The failure of control was mainly due
ferent word-length and different implementations of the to the late arrival of the control pulse. The system was being
arithmetic operations (overflow rules, rounding, or trunca- controlled at a wrong point in state space where the formulas
tion, etc.). used for calculations were probably no longer valid; trajectory

Comparing the results of computations, it was found that was already far away from the section plane when the control
an accuracy of two to three decimal digits is possible to pulse arrived.
achieve and the calculations are precise enough to ensure
proper functioning of the OGY algorithm in the case of the
Lozi system. To have some safety margin and robustness in CONCLUSIONS
the algorithm, the acceptable A/D accuracy cannot be lower
than 12 bits and probably it would be best to apply 16-bit The control problems existing in the domain of chaotic sys-

tems are neither fully identified nor solved completely. Be-conversion. This kind of accuracy is nowadays easily available
using general purpose A/D converters even at speeds in the cause of the extreme richness of these phenomena, especially

in higher-order systems, every month new papers appear de-MHz range. Implementing the algorithms, one must consider
the cost of implementation—with growing precision and scribing new problems and proposing new solutions. Among

the many unanswered questions these seem to be the mostspeed requirements, the cost grows exponentially. This issue
might be a great limitation when it comes to integrated cir- interesting: How can the methods already developed be used

in real applications? What are the limitations of these tech-cuit (IC) implementations.
niques in terms of convergence, initial conditions, and so on?
What are the limitations in terms of system complexity andApproximate Procedures for Finding Periodic Orbits. Another

possible source of problems in the control procedure is errors possibilities of implementation? Are these methods useful in
biology or medicine? Can we use the ‘‘butterfly effect’’ to tameintroduced by algorithms for finding periodic orbits (goals of

the control). Using experimental data one can only find ap- and influence large-scale systems?
New application areas have opened up thanks to these newproximations to unstable periodic orbits (48,49).

In control applications we used the procedure introduced developments in various aspects of controlling chaos. These
include neural signal processing (50,51), biology and medicineby Lathrop and Kostelich for recovering unstable periodic or-

bits from an experimental time series. The results obtained [Nicolis (52), Garfinkel et al. (53), Schiff et al. (54)], and many
others. We can expect in the near future a breakthrough inusing this procedure strongly depend on the choice of accu-

racy � and the length of the measured time series. Further, the treatment of cardiac dysfunction thanks to the new gener-
ation of defibrillators and pacemakers functioning on thethey depend on the choice of norm and the number of state

variables analyzed. Also, the stopping criterion (�xm	k � xm� � chaos-control principle. There is great hope also that chaos-
control mechanisms will give us insight into one of the great-�) in the case of discretely sampled continuous-time systems

is not precise enough. This means that one can never be sure est mysteries—the workings of the human brain.
There is one more control problem associated in a way withof how many orbits have been found or whether all orbits of

a given period have been recovered. As this step is typically chaos control, although not directly. Sensitive dependence on
initial conditions, the key property of chaotic systems, offerscarried out off-line, it does not significantly affect the whole

control procedure. It has been found in experiments that yet another fantastic control possibility called ‘‘targeting’’
[Kostelich et al. (55), Shinbrot et al. (56)]. A desired point inwhen the tolerances chosen for detection of unstable orbits

were too large, the actual trajectory stabilized during control the phase space is reached by piecing together in a controlled
way fragments of chaotic trajectories. This method has al-showed greater variations and the control signal had to be

applied at every iteration to compensate for inaccuracies. ready been applied successfully for directing satellites to de-
sired positions using infinitesimal amounts of fuel [see Far-Clearly, making the tolerance large can cause failure of

control. quhar et al. (57)].
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22. E. R. Hunt, Stabilizing high-period orbits in a chaotic system:Finally, we stress that almost all chaotic systems known
The diode resonator, Phys. Rev. Letters, 67: 1953–1955, 1991.to date have strong links with electronic circuits; variables

23. E. R. Hunt, Keeping chaos at bay, IEEE Spectrum, 30: 32–36,are sensed in an electric or electronic way; identification,
1993.modeling, and control are carried out using electric analogs;

24. G. E. Johnson, T. E. Tigner, and E. R. Hunt, Controlling chaoselectronic equipment and electronic computers and usually
in Chua’s circuit, J. Circuits Syst. Comput., 3: 109–117, 1993.sensors, transducers, and actuators are also electric by princi-

25. E. Corcoran, Kicking chaos out of lasers, Scientific American, No-ple of operation. This guarantees an infinite wealth of oppor-
vember, p. 19, 1992.tunities for researchers and engineers.

26. I. Peterson, Ribbon of chaos: Researchers develop a lab technique
for snatching order out of chaos, Science News, 139: 60–61, 1991.
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