
720 DISTRIBUTED MULTIMEDIA SYSTEMS

scale to thousands of concurrently active clients. The princi-
ple characteristics of continuous media is their sustained bit
rate requirement (1,2). If a system delivers a clip at a rate
lower than its prespecified rate without special precautions
(e.g., prefetching), the user might observe frequent disrup-
tions and delays with video and random noises with audio.
These artifacts are collectively termed hiccups. For example,
CD-quality audio (2 channels with 16 bit samples at 44 kHz)
requires 1.4 Megabits per second (Mbps). Digital component
video based on the CCIR 601 standard requires 270 Mbps for
its continuous display. These bandwidths can be reduced us-
ing compression techniques due to redundancy in data. Com-
pression techniques are categorized into lossy and lossless.
Lossy compression techniques encode data into a format that,
when decompressed, yields something similar to the original.
With lossless techniques, decompression yields the original.
Lossy compression techniques are more effective in reducing
both the size and bandwidth requirements of a clip. For exam-
ple, with the MPEG standard (3), the bandwidth requirement
of CD-quality audio can be reduced to 384 kilobits per second.
MPEG-1 reduces the bandwidth requirement of a video clip
to 1.5 Mbps. With some compression techniques such as
MPEG-2, one can control the compression ratio by specifying
the final bandwidth of the encoded stream (ranging from 3 to
15 Mbps). However, there are applications that cannot toler-
ate the use of lossy compression techniques, for example,
video signals collected from space by NASA (4).

Most of the compression schemes are Constant Bit Rate
(CBR) but some are Variable Bit Rate (VBR). With both tech-
niques, the data must be delivered at a prespecified rate. Typ-
ically, CBR schemes allow some bounded variation of this rate
based on some amount of memory at the display. With VBR,
this variation is not bounded. The VBR schemes have the ad-
vantage that for the same average bandwidth as CBR, they
can maintain a more constant quality in the delivered image
by utilizing more megabits per second when needed, for exam-
ple, when there is more action in a scene.

The size of a compressed video clip is quite large by most
current standards. For example, a two hour MPEG-2 encoded
video clip, requiring 3 Mbps, is 2.6 Gigabytes in size. (In this
paper, we focus on video due to its significant size and band-
width requirements that are higher than audio.) To reduce
cost of storage, a typical architecture for a video server em-
ploys a hierarchical storage structure consisting of DRAM,
magnetic disks, and one or more tertiary storage devices.
(Magnetic tape typically serves as a tertiary storage device
(5)). As the different levels of the hierarchy are traversed
starting with memory, the density of the medium and its la-
tency increases while its cost per megabyte decreases. It is
assumed that all video clips reside on the tertiary storage de-
vice. The disk space is used as a temporary staging area for
the frequently accessed clips in order to minimize the number
of references to tertiary. This enhances the performance of
the system. Once the delivery of a video clip has been initi-
ated, the system is responsible for delivering the data to the
settop box of the client at the required rate so that there is
no interruption in service. The settop box is assumed to have

DISTRIBUTED MULTIMEDIA SYSTEMS little memory so that it is incumbent on the server and net-
work to deliver the data in a ‘‘just in time’’ fashion. (We will

Advances in computer processing and storage performance specify this requirement more precisely and formally later.)
Note that the system will have some form of admission con-and in high speed communications has made it feasible to

consider continuous media (e.g., audio and video) servers that trol, and while it is reasonable to make a request wait to be

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

DISTRIBUTED MULTIMEDIA SYSTEMS 721

initiated, once started, delivery in support of a hiccup-free pause, resume, fast forward and rewind with scan, then the
startup latency starts to become important. This is because adisplay is required. An important concept is that of a stream

which is one continuous sequence of data from one clip. At client might not tolerate tens of seconds of latency for a fast
forward scan. The impact of startup latency becomes moreany point in time, a stream is associated with a specific offset

within the clip. Note that two requests for the same clip that profound with nonlinear digital editing systems. To explain
this, consider the role of such a system in a news organiza-are offset by some time are two different streams.

In this article, we start by assuming a set of videos stored tion, for example, CNN. With sports, a producer tailors a pre-
sentation together based on highlights of different clips, foron disk and describe techniques to stage data from disk to

memory buffers. Subsequently, we explore the role of tertiary example, different events at the Olympics. Moreover, the pro-
ducer might add an audio narration to logically tie these high-storage devices and address issues such as how a presenta-

tion can be displayed from a tertiary storage device, how data lights together. Upon the display of the presentation, the sys-
tem is required to display (1) the audio narration inshould be staged from tertiary onto the magnetic disk storage,

and how pipelining can be used to minimize the incurred synchrony with video, and (2) the highlights in sequence, one
after another, with no delay between two consecutive high-startup latency. The models are described assuming CBR en-

coded data. We do not investigate the networking issues (6) lights. If the system treats the display of each highlight as a
request for a stream, then the startup latency must be mini-and assume, therefore, that the communication network will

transmit a stream at a constant bit rate. Note that this is a mized between each stream to provide the desired effect.
Later, we will describe scheduling techniques that hide thissimplifying assumption. There will be some amount of varia-

tion in the network transmission. To account for this, some latency.
The rest of this paper is organized as follows. We provideamount of buffering is required in the network interface as

well as the settop box. We do not consider this further. See an overview of the current disk technology. Subsequently, we
describe scheduling techniques in support of a continuous dis-(6) for a detailed treatment of buffer requirements to mask

delays in end to end delivery of continuous media streams. play and the role of hierarchical storage structures. Then, we
focus on optimization techniques that can enhance the perfor-In this context, the disk subsystem is responsible for deliv-

ering data from the disk image of a clip to buffers such that mance of a continuous media server. Finally, describes an ex-
perimental prototype named Mitra that realizes a number ofif RC is the play-out rate of the object in Mbps, then at � sec-

onds after the start of the stream, at least RC � � megabits techniques in this paper.
must have been delivered to the network interface. This en-
sures that the network never starves for data. OVERVIEW OF MAGNETIC DISKS

There are a number of ways of scheduling streams de-
pending on the frequency of access to each video. The simplest A magnetic disk drive is a mechanical device operated by its
would be to define a fixed schedule a priori of start times. At controlling electronics. The mechanical parts of the device
the other extreme, one could start a new stream for each re- consist of a stack of platters that rotate in unison on a central
quest at the earliest possible time (consistent with available spindle; see (9) for details. A single disk contains a number of
resources). Video-on-demand implies the latter policy, but platters, as many as sixteen at the time of this writing. Each
there are variations that will be described in later. With n platter surface has an associated disk head responsible for
videos, we define f i(t) to be the frequency of access to the ith reading and writing data. Each platter stores data in a series
video as a function of time. This notation emphasizes that the of tracks. A single stack of tracks at a common distance from
frequency of access to videos varies over time. Some varia- the spindle is termed a cylinder. To access the data stored in
tions might be periodic over the course of a day, or some other a track, the disk head must be positioned over it. The opera-
period, while other variations will not be repetitive (e.g., a tion to reposition the head from the current track to the de-
video becoming old over a couple of months). It is important, sired track is termed seek. Next, the disk must wait for the
therefore, to design a system that can respond effectively to desired data to rotate under the head. This time is termed
both variations and do so automatically. As we shall see, rotational latency.
striping of objects across disks in an array alleviates this The seek time is a function of the distance traveled by the
problem. disk arm (7–9). Several studies have introduced analytical

The following are the main performance metrics that con- models to estimate seek time as a function of this distance.
stitute the focus of this article. To be independent from any specific equation, this study as-

sumes a general seek function. Thus, let Seek(c) denote the
1. Throughout: number of simultaneous displays sup- time required for the disk arm to travel c cylinders to reposi-

ported by the system. tion itself from cylinder i to cylinder i � c (or i � c). Hence,
2. Startup latency: amount of time elapsed from when a Seek(1) denotes the time required to reposition the disk arm

request arrives referencing a clip until the time the between two adjacent cylinders, while Seek(#cyl) denotes a
server starts to retrieve data on behalf of this request. complete stroke from the first to the last cylinder of a disk

that consists of #cyl cylinders. Typically, seek increases linear
Startup latency corresponds roughly to the usual basic distance except for small number of cylinders (7,8). For exam-

measure of response time. Alternative applications might sac- ple, the model used to describe the seek characteristic of Sea-
rifice either startup latency in favor of throughput or vice gate ST31200W disk, consisting of 2697 cylinders, is
versa. For example, a service provider that supports video-on-
demand might strive to maximize its throughput by delaying
a user by tens of seconds to initiate the display. If the same
provider decides to support VCR functionalities, for example,

Seek(c) =
{

1.5 + (0.510276 × √
c) if c < 108

6.5 + (0.004709 × c) otherwise
(1)

722 DISTRIBUTED MULTIMEDIA SYSTEMS

dia Types, and the second in Hierarchical Storage Manage-
ment. To support continuous display of an object X, it is parti-
tioned into n equisized blocks: X0, X1, . . ., Xn�1, where n is a
function of the block size (B) and the size of X. We assume a
block is laid out contiguously on the disk and is the unit of
transfer from disk to main memory. The time required to dis-
play a block is defined as a time period (Tp):

Tp = B

RC
(2)

12
16
20
24
28
32
36
40

1000800600
Disk capacity (MB)

400200

T
ra

n
sf

e
r

ra
te

 (
M

b
p

s)

To support the continuous display of X, one can retrieveFigure 1. Zone characteristics of the Seagate ST31200W magnetic
disk. blocks of X, one after the other, and send it to the user display

consecutively. This is a traditional production-consumption
problem. Since RD, rate of production, is larger than RC, rate
of consumption, a large amount of memory buffer is requiredA trend in the area of magnetic disk technology is the con-
at the user site. To reduce the amount of required buffer, onecept of zoning. Zoning increases the storage capacity of a disk
should slow down the production rate. Note that the con-by storing more data on the tracks that constitute the outer
sumption rate is fixed and dictated by the display bandwidthregions of the disk drive. With a fixed rotational speed for the
requirement of the object. Therefore, if Xi and Xj are two con-disk platters, this results in a disk with variable transfer rate
secutive blocks of X, Xj should be in the user buffer once thewhere the data in the outermost region is produced at a faster
consumption of Xi has been completed. This is the core of arate. Figure 1 shows the transfer rate of the 23 different
simple technique, termed round-robin schema (12,2).zones that constitute a Seagate disk drive. [Techniques em-

With round-robin schema, when an object X is referenced,ployed to gather these numbers are reported in (10).]
the system stages X0 in memory and initiates its display.
Prior to completion of a time period, it initiates the retrieval

CONTINUOUS DISPLAY of X1 into memory in order to ensure a continuous display.
This process is repeated until all blocks of an object have

This section starts with a description of a technique to sup- been displayed.
port continuous display of CM objects assuming a platform To support simultaneous displays of several objects, a time
that consists of a single disk drive with one zone. Subse- period is partitioned into fixed-size slots, with each slot corre-
quently, we extend the discussion to incorporate multizone sponding to the retrieval time of a block from the disk drive.
disks. Next, we describe the role of multiple disk drives in The number of slots in a time period defines the number of
support of environments that strive to support thousands of simultaneous displays that can be supported by the system
CM streams. Finally, we show how the architecture can be (N). For example, a block size of 1 MB corresponding to a
extended to support a hierarchy of storage structures in order MPEG-2 compressed movie (RC � 4 Mb/s) has a 2 s display
to minimize the cost of providing online access to petabytes time (Tp � 2). Assuming a typical magnetic disk with a trans-
of data. fer rate of 68 Mb/s (RD � 68 Mb/s) and maximum seek time

of 17 ms, 14 such blocks can be retrieved in 2 s. Hence, a
Single Disk Drive single disk supports 14 simultaneous displays. Figure 2 dem-

onstrates the concept of a time period and a time slot. EachIn this article, we assume that a disk drive provides a con-
box represents a time slot. Assuming that each block is storedstant bandwidth, RD. The approaches discussed can, however,
contiguously on the surface of the disk, the disk incurs a seekbe extended to multizone disk drives with variable transfer
every time it switches from one block of an object to another.rates. Interested readers can consult (11). We also assume
We denote this as TW_Seek and assume that it includes the aver-that all objects have the same display rate, RC. In addition,

we assume RD � RC first assumption is relaxed in Mix of Me- age rotational latency time of the disk drive. We will not dis-

Figure 2. Time period.

System
activity

Disk
activity

Time period (Tp)

TW_Seek

Wi Xj Zk Wi + 1 Wi + 2Xj + 1 Zk + 1
.

Display Wi

Display Xj

Display Wi + 1

DISTRIBUTED MULTIMEDIA SYSTEMS 723

cuss rotational latency further because it is a constant added This is because a request might arrive a little too late to em-
ploy the empty slot in the current time period. Note that � isto every seek time.
the maximum startup latency (the average latency is �/2)Since the blocks of different objects are scattered across
when the number of active users is N � 1. If the number ofthe disk surface, the round-robin schema should assume the
active displays exceeds N , then Eq. 5 should be extendedmaximum seek time [i.e., Seek(#cyl)] when multiplexing the
with appropriate queuing models. This discussion holds truebandwidth of the disk among multiple displays. Otherwise, a
for the maximum startup latencies computed for othercontinuous display of each object cannot be guaranteed. Seek
scheme in this paper.is a wasteful operation that minimizes the number of simulta-

In the following sections, we investigate two general tech-neous displays supported by the disk. In the worst case, the
niques to reduce the duration of the worst seek time. Whiledisk performs N seeks during a time period. Hence, the per-
the first technique schedules the order of block retrieval fromcentage of time that the disk performs wasteful work can be
the disk, the second controls the placement of the blocksquantified as [N � Seek(d)]/Tp � 100, where d is the maxi-
across the disk surface. These two techniques are orthogonal,mum distance between two blocks retrieved consecutively
and we investigate a technique that incorporates both ap-(d � #cyl with round-robin). By substituting Tp from Eq. 2,
proaches. Three main objectives are (1) maximizing the num-we obtain the percentage of wasted disk bandwidth:
ber of simultaneous displayed streams (i.e., throughput), (2)
minimizing the startup latency time, and (3) minimizing the
amount of required memory. Since these objectives are con-wasteful = N × Seek(d) × RC

B
× 100 (3)

flicting, there is no single best technique. Each of the de-
scribed techniques strive to strike a compromise among theBy reducing this percentage, the system can support a higher
mentioned objectives.number of simultaneous displays. We can manipulate two fac-

tors to reduce this percentage: (1) decrease the distance tra-
Disk Scheduling. One approach to reduce the worst seekversed by a seek (d), and/or (2) increase the block size (B). A

time is Grouped Sweeping Scheme (13), GSS. GSS groups Nlimitation of increasing the block size is that it results in a
active requests of a time period into g groups. This divides ahigher memory requirement. Here, we investigate display
time period into g subcycles, each corresponding to the re-schema that reduce the first factor. An alternative aspect is
trieval of N /g blocks. The movement of the disk head tothat by manipulating d and fixing the throughput, one can
retrieve the blocks within a group abides by the SCAN algo-

decrease the block size and benefit from a system with a lower
rithm in order to reduce the incurred seek time in a group.

memory requirement for staging the blocks. The following Across the groups, there is no constraint on the disk head
paragraphs elaborate more on this aspect. movement. To support the SCAN policy within a group, GSS

Suppose N blocks are retrieved during a time period; shuffles the order that the blocks are retrieved. For example,
then, Tp � N B /RD � N � Seek(#cyl). By substituting Tp assuming X, Y, and Z belong to a single group, the sequence
from Eq. 2, we solve for B to obtain of the block retrieval might be X1 followed by Y4 and Z6 (de-

noted as X1 � Y4 � Z6) during one time period, while during
the next time period, it might change to Z7 � X2 � Y5. In this
case, the display of (say) X might suffer from hiccups because

Bround−robin = RC × RD

RD − N × RC
× N × Seek(#cyl) (4)

the time elapsed between the retrievals of X1 and X2 is greater
than one time period. To eliminate this possibility, (13) sug-From Eq. 4, for a given N , the size of a block is propor-
gests the following display mechanism: the displays of all thetional to Seek(#cyl). Hence, if one can decrease the duration
blocks retrieved during subcycle i start at the beginning ofof the seek time, then the same number of simultaneous dis-
subcycle i � 1. To illustrate, consider Fig. 3 where g � 2, andplays can be supported with smaller block sizes. This will
N � 4. The blocks X1 and Y1 are retrieved during the firstsave some memory. Briefly, for a fixed number of simultane-
subcycle. The displays are initiated at the beginning of sub-ous displays, as the duration of the worst seek time decreases
cycle 2 and last for two subcycles. Therefore, while it is impor-(increases) the size of the blocks shrinks (grows) proportion-
tant to preserve the order of groups across the time periods,ally with no impact on throughput. This impacts the amount
it is no longer necessary to maintain the order of block re-of memory required to support N displays. For example, as-
trievals in a group.sume Seek(#cyl) � 17 ms, RD � 68 Mb/s, RC � 4 Mb/s, and

The maximum startup latency observed with this tech-
N � 15. From Eq. 4, we compute a block size of 1.08 MB that

nique is the summation of one time period (if the request ar-wastes 12% of the disk bandwidth. If a display schema re-
rives when the empty slot is missed) and the duration of aduces the worst seek time by a factor of two, then the same
subcycle (Tp/g):throughput can be maintained with a block size of 0.54 MB,

reducing the amount of required memory by a factor of two
and maintaining the percentage of wasted disk bandwidth at
gas = Tp + Tp

g
(6)

12%.
The maximum startup latency observed by a request, de- By comparing Eq. 6 with Eq. 5, it may appear that GSS re-

fined as the amount of time elapsed from the arrival time of sults in a higher latency than round-robin. However, this is
a request to the onset of the display of its referenced object, not necessarily true because the duration of the time period
with this schema is is different with these two techniques due to a choice of differ-

ent block size. This can be observed from Eq. 2, where the
duration of a time period is a function of the block size.
round-robin = Tp (5)

724 DISTRIBUTED MULTIMEDIA SYSTEMS

X1

Subcycle 1 Subcycle 2

. . .

Time period (Tp)

Display X1 and Y1 Display X2 and Y2

Y1 Z1 W1 Y2 X2 Z2 W2 Y3 X3 W3 Z3 X4 Y4 Z4 W4

Figure 3. Continuous display with GSS.

To compute the block size with GSS, we first compute the ment techniques described in the literature (18–22). In this
section, we describe a technique termed Optimized REBECAtotal duration of time contributed to seek times during a time

period. Assuming N /g blocks retrieved during a subcycle (22) (OREO for short). OREO (23) reduces the worst seek time
by bounding the distance between any two blocks that areare distributed uniformly across the disk surface, the disk in-

curs a seek time of Seek(#cyl/(N /g)) between every two con- retrieved consecutively. OREO achieves this by partitioning
the disk space into R regions. Next, successive blocks of ansecutive block retrievals. This assumption maximizes the

seek time according to the square root model, providing the object X are assigned to the regions in a round-robin manner
as shown in Fig. 4. The round-robin assignment follows theworst case scenario. Since N blocks are retrieved during a

time period, the system incurs N seek times in addition to efficient movement of disk head as in the scan algorithm (24).
To display an object, the disk head moves inward (see Fig. 5)N block retrievals during a period; that is Tp � N B /RD �

N � Seek[(#cyl � g)/N]. By substituting Tp from Eq. 2 and from the outermost region toward the innermost one. Once
the disk head reaches the innermost region, it is repositionedsolving for B , we obtain
to the outermost region to initiate another sweep. This mini-
mizes the movement of the disk head required to simultane-
ously retrieve N objects because the display of each object

Bgas = RC × RD

RD − N × RC
× N × Seek

(
#cyl × g

n

)
(7)

abides by the following rules:
By comparing Eq. 7 with Eq. 4, observe that the bound on the
distance between two blocks retrieved consecutively is re- 1. The disk head moves in one direction (inward) at a
duced by a factor of g/N , noting that g � N . time.

Observe that g � N simulates the round-robin schema. 2. For a given time period, the disk services those displays
(By substituting g with N in Eq. 7, it reduces to Eq. 4.) Other that correspond to a single region (termed active re-
disk scheduling algorithms for continuous media objects are gion, Ractive).
also discussed in the literature. Almost all of them (14–16) 3. In the next time period, the disk services requests corre-
can be considered as special cases of GSS because they follow sponding to either Ractive � 1.
the main concept of scheduling within a time period (or

4. Upon the arrival of a request referencing object X, it isround). The only exception is SCAN-EDF (17).
assigned to the region containing X0 (say RX).

5. The display of X does not start until the active regionConstrained Data Placement. An alternative approach to re-
reaches X0 (Ractive � RX).duce the worst seek time is to control the placement of the

blocks across the disk surface. There are many data place-
To compute the worst seek time with OREO, note that the

distance between two blocks retrieved consecutively is
bounded by the length of a region (i.e., #cyl/R). This distance
is bounded by 2 � #cyl/R when the blocks belong to two dif-
ferent regions. This only occurs for the last block retrieved
during time period i and the first block retrieved during time
period i � 1. To simplify the discussions, we eliminated this
factor from the equations (see (22) for precise equations).

R0

R5
R4

R1 R2

R3

Inward movement

Outward movement

X0

One
region

. . .

. . .

. . .

. . .

. . .

. . .

One block

X6 X12

X1 X7 X13

X2 X8

X3 X9

X4 X10

X5 X1

Figure 4. OREO. Figure 5. Disk head movement.

DISTRIBUTED MULTIMEDIA SYSTEMS 725

Thus, the worst incurred seek time between two block retriev- with R2, while the assignment of both X and Z starts with
R0. Assume that the system can support three simultaneousals is Seek(#cyl/R). Furthermore, the system observes a long

seek, Seek(#cyl), every R regions (to reposition the head to displays (N � 3). Moreover, assume a request arrives at
time T1, referencing object X. This causes region R0 to becomethe outermost cylinder). To compensate for this, the system

must ensure that after every R block retrievals, enough data active. Now, if a request arrives during T1 referencing object
Y, it cannot be serviced until the third time period evenhas been prefetched on behalf of each display to eclipse a de-

lay equivalent to Seek(#cyl). There are several ways of achiev- though sufficient disk bandwidth is available [see Fig. 6(b)].
Its display is delayed by two time periods until the disk heading this effect. One might force the first block along with ev-

ery R other blocks to be slightly larger than the other blocks. moves to the region that contains Y0 (R2).
In the worst case, assume (1) a request arrives referencingWe describe OREO based on a fix-sized block approach that

renders all blocks to be equisized. With this approach, every object Z when Ractive � R0, and (2) the request arrives when
the system has already missed the empty slot in the time pe-block is padded so that after every R block retrievals, the

system has enough data to eclipse the Seek(#cyl) delay. Thus, riod corresponding to R0 to retrieve. Hence, R � 1 time peri-
ods are required before the disk head reaches R0 in order tothe duration of a time period is
start servicing the request. Hence, the maximum startup la-
tency is computed asTp = N B

RD
+ N + Seek

(
#cyl

R

)
+ Seek(#cyl)

R

By substituting Tp from Eq. 2, we solve for B to obtain
oreo =




(R + 1) × Tp if R > 2

(2 × Tp) if R = 2

Tp if R = 1

(9)

Hybrid: Disk Scheduling Plus Constrained Data Placement. In

Boreo = RC × RD

RD − N × RC
×

[
N × Seek

(
#cyl

R

)
+ Seek(#cyl)

R

]
(8)

order to cover a wide spectrum of applications, GSS and
By comparing Eq. 8 with Eq. 4, observe that OREO reduces OREO can be combined. Recall that with OREO, the place-
the upper bound on the distance between two blocks retrieved ment of objects within a region is unconstrained. Hence, the
consecutively by a factor of 1/R . distance between two blocks retrieved consecutively is

Introducing regions to reduce the seek time increases the bounded by the length of a region. However, one can intro-
average latency observed by a request. This is because during duce the concept of grouping the retrieval of blocks within a
each time period, the system can initiate the display of only region. In this case, assuming a uniform distribution of blocks
those objects that correspond to the active region. To illus- across a region surface, the distance between every two blocks
trate this, consider Fig. 6. In Fig. 6(a), Y is stored starting retrieved consecutively is bounded by #cyl � g/N R . Hence

Tp = N B

RD
+ N + Seek

(
#cyl × g

N R

)
+ Seek(#cyl)

R

By substituting Tp from Eq. 2, we solve for B to obtain

Bcombined = RC × RD

RD − N × RC

×
[

N × Seek
(

#cyl × g
N R

)
+ Seek(#cyl)

R

] (10)

Observe that, with OREO � GSS, both reduction factors of
GSS and OREO are applied to the upper bound on the dis-
tance between any two consecutively retrieved blocks (com-
pare Eq. 10 with both Eqs. 7 and 8).

The maximum startup latency observed with OREO �
GSS is identical to OREO when R � 1 (see Eq. 9).

Buffer Management. The technique employed to manage
memory impacts the amount of memory required to support
N simultaneous displays. A simple approach to manage
memory is to assign each user two dedicated blocks of mem-
ory: one for retrieval of data from disk to memory and the
other for delivery of data from memory to the display station.
Trivially, the data is retrieved into one block while it is con-
sumed from the other. Subsequently, the role of these two
blocks is switched. The amount of memory required with this
technique is:

X0
R0

R1

R2

R3

R4

R5

Z0

X1 Z1

X2 Z2 Y0

X3 Z3 Y1

X4 Z4 Y2

X5 Z5 Y3

X0

T1

First time period Second time period

OREO

. . .

. . .

. . .

. . .

. . .

. . .

(a)

Time period schedule

(b)

X1 X2 Y0

Munshared = 2 × N × B (11)Figure 6. Latency time.

726 DISTRIBUTED MULTIMEDIA SYSTEMS

X1

Y1

X1

Y1

Z1

W1

X1

Y1

Z1

W1

Y2

X2

Subcycle 1 Subcycle 2 Subcycle 1

Time period 1

Subcycle 2 Subcycle 1 Subcycle 2 Subcycle 1 Subcycle 2

Z2

W2

Z1

W1

Y2

X2

Z2

W2

Y3

X3

Y2

X2

Z2

W2

Y3

X3

W3

Z3

X4

Y4

Y3

X3

W3

Z3

X4

Y4

Z4

W4

W3

Z3

Time period 2

A block

Time period 3 Time period 4

. . .

Figure 7. Memory requirement per subcycle.

Note that B is different for alternative display techniques: and B combined with OREO � GSS (see the earlier sections for
B gss with GSS, B oreo with OREO, and B combined with the computation of the block size with each display tech-
OREO � GSS. nique).

An alternative approach, termed coarse-grain memory Fine-Grain Sharing (FGS). We describe the memory require-
sharing, reduces the amount of required memory by sharing ment of fine-grain sharing with a display technique that em-
blocks among users. It maintains a shared pool of free blocks. ploys GSS. This discussion is applicable to both OREO and
Every task (either retrieval or display task of an active re- OREO � GSS.
quest) allocates blocks from the shared pool on demand. Once When compared with coarse-grain sharing, fine-grain shar-
a task has exhausted the contents of a block, it frees the block ing reduces the amount of required memory because during a
by returning to it a shared pool. As described later, when com- subcycle, the disk produces a portion of some blocks while the
pared with the simple approach, coarse-grain sharing results active displays consume portions of other blocks. With coarse-
in lower memory requirement as long as the system employs grain sharing, a partially consumed block cannot be used un-
GSS with the number of groups (g) smaller than N . til it becomes completely empty. However, with fine-grain

The highest degree of sharing is provided by fine-grain sharing, the system frees up pages of a block that have been
memory sharing. With this technique, the granularity of partially displayed. These pages can be used by other tasks
memory allocation is reduced to a memory page. The size of a that read data from disk.
block is a multiple of the page size. If P denotes the memory Modeling the amount of memory required with FGS is
page size, then B � mP , where m is a positive integer. The more complex than that with CGS. While it is possible to com-
system maintains a pool of memory pages (instead of blocks pute the precise amount of required memory with CGS, this
with coarse-grain sharing), and tasks request and free pages is no longer feasible with FGS. This is because CGS frees
instead of blocks. blocks at the end of each subcycle where the duration of a

In the following, we describe the memory requirement of subcycle is fixed. However, FGS frees pages during a subcycle,
each display technique with both fine and coarse-grain shar- and it is not feasible to determine when the retrieval of a
ing. The memory requirement of the round-robin schema is block ends within a subcycle because the incurred seek times
eliminated because it is a special case of GSS (g � N) and in a group are unpredictable. Therefore, we model the mem-
OREO (R � 1). ory requirement within a subcycle for the worst case scenario.

Coarse-Grain Sharing (CGS). The total amount of memory Let t denote the time required to retrieve all the blocks in
required by a display technique that employs both GSS and a group. Theoretically, t can be a value between 0 and the
coarse-grain memory sharing is

duration of a subcycle; that is, 0 � t � Tp/g. We first compute
the memory requirement as a function of t and then discuss
the practical value of t. We introduce t to generate anotherMcoarse =

(
N +

⌈
N

g

⌉)
× B (12)

end point (beside the end of a subcycle) where the memory
requirement can be modeled accurately. The key observationTo support N simultaneous displays, the system employs N
is that between t and the end of subcycle, nothing is producedblocks for N displays and N /g blocks for data retrieval on
on behalf of a group, while display of requests in a subcyclebehalf of the group that reads its block from disk. To illus-
continues at a fixed rate of RC. Hence, we model the memorytrate, consider the example of Fig. 7, where g � 2, and N �
requirement for the worst case where all the blocks are pro-4. From Eq. 12, this requires 6 blocks of memory (see (13) for
duced in order to eliminate the problem of unpredictability ofderivation of Eq. 12). This is because the display of X1 and
each block retrieval time in a subcycle. Assuming Si is theY1 completes at the beginning of subcycle 2 in the second time
end of subcycle i, the maximum amount of memory requiredperiod. These blocks can be swapped out in favor of Z2 and
by a group is at Si � t because the maximum amount of dataW2. Note that the system would have required 8 blocks with-
is produced, and the minimum amount is consumed at thisout coarse-grain sharing.
point. Observe that at a point x, where Si � t � x � Si�1, dataOREO and OREO � GSS can employ Eq. 12. This is be-
is only consumed, reducing the amount of required memory.cause the memory requirement of OREO is a special case of
Moreover, at a point y where Si � y � Si � t, data is stillGSS where g � However, the block size (B) computed for

each approach is different: B gss with GSS, B oreo with OREO, being produced.

DISTRIBUTED MULTIMEDIA SYSTEMS 727

The number of pages produced (required) during t is The total memory requirement is produced � consumed �
rem, or

produced =
⌈

N

g

⌉
× m (13)

Mfine = N m + N

g
m − tN m

Tp
− Nm(g − 1)

2g
(16)

The number of pages consumed (released) during t is
Note that Eq. 16 is an approximation because we eliminated
the floor and ceiling functions from the equation. For large
values of m, the approximation is almost identical to the ac-

consumed =
⌊

t × N m
Tp

⌋
(14)

tual computation. An interesting observation is that if the
This is because the amount of data consumed during a time size of a page is equal to the size of a block, then Eq. 16 can
period is N m pages, and hence, the amount consumed during be reduced to Eq. 12. This is because the last two terms in
t is t/Tp of N m pages. We use floor function for consumption Eq. 16 correspond to the number of pages released during t
and ceiling function for the production because the granular- and the first time period, respectively. Since with coarse-
ity of memory allocation is in pages. Hence, neither a par- grain, no pages are released during these two periods; the last
tially consumed page (floor function) nor a partially produced two terms of Eq. 16 become zero, producing Eq. 12.
page (ceiling function) is available on the free list. Moreover, The minimum value of t is computed when all the N /g
m is inside the floor function because the unit of consumption blocks are placed contiguously on the disk surface. The time
is in number of pages, while it is outside the ceiling function required to retrieve them is the practical minimum value of t
because the unit of production is in blocks. and is computed as

One might argue that the amount of required memory is
the difference between the volume of data produced and con-
sumed. This is an optimistic view that assumes everything

tpractical =
⌈

N

g

⌉
× B

RD
(17)

produced before Si has already been consumed. However, in
the worst case, all the N displays might start simultaneously The number of groups g impacts the memory requirement
at time period j (Tp(j)). Hence, the amount of data produced with both coarse and fine-grain sharing in two ways. First, as
during Tp(j) is higher than the amount consumed. This is be- one increases g, the memory requirement of the system de-
cause the production starts during the first subcycle of Tp(j), creases because the number of blocks staged in memory is
while consumption starts at the beginning of the second sub- N /g. On the other hand, this results in a larger block size
cycle. It is sufficient to compute this remainder (rem) and add in order to support the desired number of users, resulting in
it to produced � consumed in order to compute the total mem- higher memory requirement. Thus, increasing g might result
ory requirement because all the produced data is consumed in either a higher or a lower memory requirements. Yu et al.
after Tp(j). (13) suggests an exhaustic search technique to determine the

To compute rem, Fig. 8 divides Tp(j) into g subcycles and optimal value of g (1 � g � N) in order to minimize the entire
demonstrates the amount of produced and consumed data memory requirement for a given N .
during each subcycle. The total amount that is produced dur- An implementation of FGS (beyond the focus of this arti-
ing each time period is N m pages. During the first subcycle, cle) must address how the memory is managed. This is be-
there is nothing to consume. For the other g � 1 subcycles, cause memory might become fragmented when pages of a
1/g of what have been produced can be consumed. Hence, block are allocated and freed incrementally. With fragmented
from the figure, the total consumption during Tp(j) is N m/g memory, either (1) the disk interface should be able to read a
1/g (1 � 2 � � � � � (g � 1)). By substituting (1 � 2 � � � � � block into m disjoint pages, or (2) the memory manager must
(g � 1)) with [g(g � 1)]/2, rem can be computed as bring m consecutive pages together to provide the disk man-

age with m physically contiguous pages to read a block into.
The first approach would compromise the portability of the
final system because it entails modifications to the disk inter-

rem = N m − N m(g − 1)

2g
(15)

cons = m1
g

(g – 1)N
g

prod =

 Time period j

Consume what is produced

Subcycle 1 Subcycle g

mN
g

. . .

. . .

cons = m1
g

3N
g

prod = mN
g

cons = m1
g

2N
g

prod = mN
g

cons = m1
g

N
g

prod = mN
g

cons = 0

prod = mN
g

Figure 8. Memory requirement of the jth time period.

728 DISTRIBUTED MULTIMEDIA SYSTEMS

face. With the second approach, one may implement either a tracks that constitute an LT. Similarly, to facilitate concur-
detective or preventive memory manager. A detective memory rent retrieval with track pairing, if d is an even number, then
manager waits until memory becomes fragmented before re- the disks can be paired such that track i of one disk is paired
organizing memory to eliminate this fragmentation. A pre- with track #cyl � i track of another disk.
ventive memory manager avoids the possibility of memory The third approach as detailed in (11) organizes a clip at
fragmentation by controlling how the pages are allocated and the granularity of blocks (instead of tracks). We describe two
freed. When compared with each other, the detective ap- variations of this approach that guarantee continuous display
proach requires more memory than the preventive one (and while harnessing the average transfer rate of m zones,
would almost certainly require more memory than the equa- namely, FIXed Block size (FIXB) and VARiable Block size
tions derived in this section). However, the preventive ap- (VARB) (11). These two techniques assign the blocks of an
proach would most likely incur a higher CPU overhead be- object to the available zones in a round-robin manner, start-
cause it checks the state of memory per page allocation/ ing with an arbitrary zone. With both techniques, there are a
release. family of scheduling techniques that ensure a continuous dis-

play. One might require the disk to retrieve m blocks of an
Multi-Zone Disks. To guarantee a continuous display, the object assigned to m different zones in one sweep. Assuming

techniques described in the previous section must assume the that N displays are active, this scheduling paradigm would
transfer rate of the innermost zone. An alternative is to con- result in N disk sweeps per time period and substantial
strain the layout of data across the disk surface and the amount of buffer space. (With this scheduling paradigm,
schedule for its retrieval (25–26, 11). This section describes VARB would be similar to LT (26).) An alternative scheduling
three such techniques. With all techniques, there is a tradeoff paradigm might multiplex the bandwidth of each zone among
between throughput, amount of required memory, and the in- the N displays and visit them in a round-robin manner. It
curred startup latency. We illustrate these tradeoffs starting requires the amount of data retrieved during one scan of the
with a brief overview of two techniques and then discussing disks on behalf of a display (m time periods that visit all the
the third approach in detail.

zones, starting with the outermost zone) to equal that con-Track pairing (25), organizes all tracks into pairs such that
sumed by the display. This reduces the amount of requiredthe total capacity of all pairs is identical. When displaying a
memory. However, it results in a higher startup latency. Weclip, a track-pair is retrieved on its behalf per time period
will focus on this scheduling paradigm for the rest of this(alternative schedules are detailed in (25). Similar to the GSS
section.discussions earlier, the system can manipulate the retrieval

To describe the chosen scheduling technique, assume aof physical tracks on behalf of multiple active displays to min-
simple display scheme (GSS with g � N). We choose theimize the impact of seeks.
block size (the unit of transfer from a zone on behalf of anAssuming that the number of tracks in every zone is a mul-
active display) to be a function of transfer rate of each zonetiple of some fixed number, (26) constructs Logical Tracks
such that the higher transfer rate of fast zones compensates(LT) from the same numbered physical track of the different
for that of the slower zones. The display time of the block thatzones. The order of tracks in a LT is by zone number. When
is retrieved from the outermost zone (Z0) on behalf of a dis-displaying a clip, the system reads an LT on its behalf per
play exceeds the duration of a time period (TP(Z0)); see Fig. 9.time period. An application observes a constant disk transfer
Thus, a portion of the block remains memory resident in therate for each LT retrieval. This forces the disk to retrieve data
available buffer space. During the time period when the in-from the constituting physical tracks in immediate succession
nermost zone is active, the amount of data displayed exceedsby zone order. Recall that we assumed a logical disk drive
the block size, consuming the buffered data. In essence, thethat consists of d physical disks. If d equals the number of
display of data is synchronized relative to the retrieval fromzones (m), the physical tracks of a LT can be assigned to a

different disk. This facilitates concurrent retrieval of physical the outermost zone. This implies that if the first block of an

Mem

. . .

.

. . .

Disk service time
to read a block

Tp (Z0) Tp (Z1) Tp (Z1) Tp (Zm–2) Tp (Zm–1) TSeek(Cyl)

TScan

0
Time (s)

Max
required
memory

Figure 9. Memory required on behalf of a display with FIXB.

DISTRIBUTED MULTIMEDIA SYSTEMS 729

Table 1. Seagate ST31200W Disk

FIXB VARB

% Avg % Avg
% Wasted wasted % Wasted wasted

N Mem. (MB) Max l (s) disk space band. Mem. (MB) Max l (s) disk space band.

1 0.007 0.44 58.0 94.1 0.011 0.44 40.4 94.3
2 0.023 0.92 58.0 88.2 0.044 0.92 40.4 88.6
4 0.107 2.10 58.0 76.5 0.192 2.08 40.4 77.3
8 0.745 6.03 58.1 53.1 1.059 5.88 40.4 54.6

10 1.642 9.66 58.1 41.4 2.078 9.26 40.5 43.2
12 3.601 16.15 58.2 29.7 4.040 15.06 40.6 31.9
13 5.488 21.77 58.3 23.9 5.759 19.84 40.4 26.2
14 8.780 31.05 58.0 18.0 8.511 27.26 40.6 20.5
15 15.515 49.23 58.4 12.1 13.481 40.34 41.0 14.8
16 35.259 100.9 58.3 6.3 24.766 69.53 41.3 9.2
17 536.12 1392.5 73.8 0.4 72.782 192.4 42.2 3.5

object is assigned to the zones starting with a zone other than stead, one may logically manipulate the number of zones and
their specifications by either (1) merging two or more physi-the innermost zone, then its display might be delayed relative

to its retrieval in order to avoid hiccups. cally adjacent zones into one and assuming the transfer rate
of this logical zone to equal that of the slowest participatingBoth FIXB and VARB waste disk space due to (1) a round-

robin assignment of blocks to zones, and (2) a nonuniform dis- physical zone, or (2) eliminating one or more of the zones. For
example, one might merge zones 0 to 4 into one logical zone,tribution of the available storage space among the zones. (In

general, the outermost zones have a higher storage capacity zones 5 to 12 in a second logical zone, and eliminate zones 13
to 23 altogether. With this logical zone organization, VARBrelative to the innermost zones.) Once the storage capacity of

a zone is exhausted, no additional blocks can be assigned to supports 17 simultaneous displays by requiring 10 Mbytes of
memory and observing a maximum startup latency of 6.5 sthe remaining zones because it would violate the round-robin

assignment of blocks. Table 1 compares FIXB and VARB by the amount of required memory is lower than that required
by the approach that assumes the transfer rate of the inner-reporting on the amount of required memory, the maximum

incurred startup latency assuming fewer than N active dis- most zone for the entire disk, see the previous paragraph.
Computed with a system that assumes the transfer rate ofplays, and the percentage of wasted disk space and disk band-

width with the Seagate ST31200W disk. The percentage of the innermost zone as the transfer rate of the entire disk, the
throughput of the system is increased by 40% of the expensewasted disk space with both FIXB and VARB is dependent on

the physical characteristics of the zones. While VARB wastes of wasting 35% of the available disk space. A more intelligent
arrangement might even outperform this one. The definitiona lower percentage of the Seagate disk space, it wastes a

higher percentage of another analyzed disk space (HP of outperform is application dependent. A configuration plan-
ner that employs heuristics to strike a compromise betweenC2247) (11).

If we assumed the transfer rate of the innermost zone as the conflicting factors is described in (11).
the transfer rate of the entire disk and employed the discus-
sion earlier to guarantee a continuous display, the system Multiple Disk Drives
would support twelve simultaneous displays, require 16.09

The bandwidth of a single disk is insufficient for those appli-Mbytes of memory, and incur a maximum startup latency of
cations that strive to support thousands of simultaneous dis-7.76 s. A system that employs either FIXB or VARB supports
plays. One may employ a multidisk architecture for these ap-twelve displays by requiring less memory and incurring a
plications. In this report, we assume a homogeneous set ofhigher startup latency; see sixth row of Table 1. For a high
disk drives; that is, all the disk drives have an identical trans-number of simultaneous displays (16 and 17, see last two
fer rate of RD. The issues discussed here can be extended to arows of Table 1), when compared with FIXB, VARB requires
heterogeneous platform. Interested readers are encouraged toa lower amount of memory and incurs a lower maximum
consult (27).startup latency. This is because VARB determines the block

Multidisk environments raise the interesting researchsize as a function of the transfer rate of each zone, while FIXB
problem of data placement. That is, on which disk (or set ofdetermines the block size as a function of the average transfer
disks) a single clip should be stored. A simple technique is torate of the zones, that is, one fix-sized block for all zones.
assign a clip to a disk in its entirety. The drawback is that aThus, the average block size chosen by VARB is smaller than
single disk storing all the hot objects might become a bottle-the block size chosen by FIXB for a fixed number of users.
neck. In (28), we proposed a detective mechanism to detect aThis reduces the amount of time required to scan the disk
bottleneck and resolve it by replicating the hot object(s) into(TScan in Fig. 9) which, in turn, reduces both the amount of
the other disk drives. However, we have learned that bothrequired memory and the maximum startup latency, see (11)
partitioning the resources and a detective mechanism are notfor details.
appropriate for such a setup. For the rest of this section, weA system designer is not required to configure either FIXB

or VARB using the vendor specified zone characteristics. In- describe three alternative data placement techniques in a

730 DISTRIBUTED MULTIMEDIA SYSTEMS

Round-Robin Retrieval. With round-robin retrieval, the
blocks of an object X are assigned to the D disk drives in a
round-robin manner. The assignment of X0 starts with an ar-
bitrary disk. Assuming a system with three disk drives, Fig.
11(b) demonstrates the assignment of blocks of X with this
choice of value. When a request references object X, the sys-
tem employs the idle slot on the disk that contains X0 (say
di) to display its first block. Before the display of X0 completes,

X0.0
X1.0
X2.0

d0

d = D d = 1

(a) (b)

. . .

X0.1
X1.1
X2.1

d1

. . .

X0.2
X1.2
X2.2

d2

. . .

X0
X3

d0

. . .

X1
X4

d1

. . .

X2

d2

. . .

the system employs cluster d(i�1) mod D to display X1. This pro-
Figure 10. RAID (d � D) vs. round-robin retrieval (d � 1).

cess is repeated until all blocks of an object have been re-
trieved and displayed. This can be considered as if the system
supports D simultaneous time periods, one per disk drive.
Hence, the display techniques and memory requirements dis-multidisk hardware platform. These techniques neither parti-
cussed earlier can be applied here with straightforward modi-tion resources nor employ detective mechanisms to balance
fications (see (31). The throughput of the system (i.e., maxi-the load. That is, each CM object is striped across all the disk
mum number of displays) scales linearly as a function ofdrives. Hence, resources (disk drives) are not partitioned, the
additional resources in the system. However, its maximumload is distributed evenly across all the drives and there is
latency also scales linearly (see Fig. 11). To demonstrate this,no need to detect bottlenecks to resolve load imbalance (i.e.,
assume that each disk in Fig. 10(b) can support three simul-bottlenecks are prevented and not detected). The differences
taneous displays. Assume that eight displays are active andamong the three techniques is mainly on their retrieval
that the assignment of object X starts with d0 (X0 resides onschedule.
d0). If the request referencing object X arrives too late to uti-
lize the idle slot of d0, it must wait three (i.e., D) time periodsRAID Striping. One way to render multiple disks is to fol-
before the idle slot on d0 becomes available again (see Fig.low the RAID (29) architecture. This has been done in
12). Hence, the maximum latency time is Tp � D.Streaming RAID (30). Briefly, each block of an object is

striped into fragments where fragments are assigned to the
Hybrid (Disk Clusters). As mentioned neither RAID stripingdisks in a round-robin manner. For example, in Fig. 10a,

nor round-robin retrieval scales as one increases resources.block X0 is declustered across the 3 disks. Each fragment of
In (31–33), we proposed a hybrid approach. Hybrid stripingthis block is denoted as X0,i; 0 � i � D. Given a platform
partitions the D disks into k clusters of disks with each clus-consisting of D disk drives, to retrieve a block, all the D disk
ter consisting of d disks: k � D/d. Next, it assigns the blocksdrives transfer the corresponding fragments simultaneously.
of object X to the clusters in a round-robin manner. The firstSubsequently, the block is formed from the fragments in
block of X is assigned to an arbitrarily chosen disk cluster.memory and sent to the client.
Each block of an object is declustered (34) across the d disksConceptually, a RAID cluster can be considered as a single
that constitute a cluster. For example, in Fig. 13, a systemlogical disk drive. Hence, the display techniques and memory
consisting of six disks is partitioned into three clusters, eachrequirements discussed earlier can be applied here with al-
consisting of two disk drives. The assignment of the blocksmost no modification. In theory, a RAID cluster consisting of
of X starts with cluster 0. This block is declustered into twoD disk drives have a sustained transfer rate of D � RD. How-
fragments: X0.0 and X0.1. When a request references object X,ever, in practice, as one increases D, the seek time dominates
the system employs the idle slot on the cluster that containsthe sustained transfer rate. This is because seek time is fixed
X0 (say Ci) to display its first block. Before the display of X0and is not improved as D increases. Therefore, as D grows,
completes, the system employs cluster C(i�1) mod k to display X1.the RAID system spends a higher percentage of time doing
This process is repeated until all blocks of an object have beenseeks (wasteful work) as opposed to data transfer (useful
retrieved and displayed. Note that the hybrid striping simu-work). In summary, the RAID architecture is not scalable in
lates RAID striping when d � D and round-robin retrievalthroughput (see Fig. 11a).
when d � 1.

The hybrid striping by varying the number of disk drives
within a cluster as well as changing the number of clusters
can strike a compromise between throughput and latency
time. Given a desired throughput and latency (N desired, desired),
(31) describes a configuration planner that determines a
value for the configuration parameters of a system. The value
of these parameters is chosen such that the total cost of the
system is minimized.

Hierarchical Storage Management

The storage organization of systems that support multime-
dia applications is expected to be hierarchical, consisting of
a tertiary storage device, a group of disk drives, and some

800
Max. no. of users Worst latency (s)

600

400

200

0

80

60

40

20

0
201510502015

d = 1 d = 1

d = Dd = D

10
Factor of increase in resources

(memory+disk)
Factor of increase in resources

(memory+disk)

(b) Maximum latency time(a) Throughput

50

memory (32). The database resides permanently on the ter-
tiary storage device, and its objects are materialized on theFigure 11. RAID (d � D) vs round-robin retrieval (d � 1).

DISTRIBUTED MULTIMEDIA SYSTEMS 731

En Go Hp

Tp
Time

Reference X Display X

Ck + 1 Dl + 1 Em + 1 Ai + 2 Bj + 2 Fn + 3

Ck Dl Em Ai + 1 Bj + 1 Fn + 2 Go + 2 Hp + 2 Ck + 3

d2

d1

d0 Ai Bj Fn + 1 Go + 1 Hp + 1 Ck + 2 Dl + 2 Em + 2 X0

Figure 12. Maximum latency time with striping.

disk drives on demand (and deleted from the disk drives delays, that is, the time elapsed from when a device is acti-
vated until it starts to produce data. This delay is determinedwhen the disk storage capacity is exhausted). A small frac-

tion of a referenced object is staged in memory to support by the time required for a device to reposition its read head
to the physical location containing the referenced data; thisits display.

Assume a hierarchical storage structure consisting of ran- time is significantly longer for tertiary storage device (ranges
from several seconds to minutes) as compared to that for adom access memory (DRAM), magnetic disk drives, optical

disks, and a tape library (35) (see Fig. 15). As the different magnetic disk drive (ranges from 10 to 30 ms). Similarly, the
tertiary storage device should not be replaced by magneticstrata of the hierarchy are traversed starting with memory

(termed stratum 0), both the density of the medium (the disk drives because (1) the cost of storage increases, and (2)
it might be acceptable for some applications to incur a highamount of data it can store) and its latency increase, while its

cost per megabyte of storage decreases. At the time of this latency time for infrequently referenced objects.
In this section, we first describe different data flows amongwriting, these costs vary from $40/Mbyte of DRAM to $0.6/

Mbyte of disk storage to $0.3/Mbyte of optical disk to less the three storage components of the system (memory, disk,
tertiary). Next, a pipelining mechanism is explained to reducethan $0.05/Mbyte of tape storage. An application referencing

an object that is disk resident observes both the average la- the startup latency when a request references a tertiary resi-
dent CM object. Finally, we describe some techniques to man-tency time and the delivery rate of a magnetic disk drive

(which is superior to that of the tape library). An application age the disk storage space. Note that the assumed hardware
architecture is identical to that of Space Management.would observe the best performance when its working set be-

comes resident at the highest level of the hierarchy: memory.
However, in our assumed environment, the magnetic disk Data Flows. Assuming an architecture that consists of
drives are the more likely staging area for this working set some memory, several disk drives, and a tertiary storage de-
due to the large size of objects. Typically, memory would be vice, two alternative organization of these components can be
used to stage a small fraction of an object for immediate pro- considered: (1) memory serves as an intermediate staging
cessing and display. We define the working set (36) of an ap- area between the tertiary storage device, the disk drives, and
plication as a collection of objects that are repeatedly refer- the display stations, and (2) the tertiary storage device is visi-
enced. For example, in existing video stores, a few titles are ble only to the disk drives via a fixed size memory. With the
expected to be accessed frequently and a store maintains sev- first organization, the system may elect to display an object
eral (sometimes many) copies of these titles to satisfy the ex- from the tertiary storage device by using the memory as an
pected demand. These movies constitute the working set of a intermediate staging area. With the second organization, the
database system whose application provides a video-on-de- data must first be staged on the disk drives before it can be
mand service. displayed. In (32), we capture these two organizations using

One might be tempted to replace the magnetic disk drives three alternative paradigms for the flow of data among the
with the tertiary storage devices in order to reduce the cost different components:
further. This is not appropriate for the frequently referenced
objects that require a fraction of a second transfer initiation • Sequential Data Flow (SDF): The data flows from ter-

tiary to memory (STREAM 1 of Fig. 14), from memory to
the disk drives (STREAM 2), from the disk drives back
to memory (STREAM 3), and finally from memory to the
display station referencing the object (STREAM 4).

• Parallel Data Flow (PDF): The data flows from the ter-
tiary to memory (STREAM 1), and from memory to both
the disk drives and the display station in order to materi-
alize (STREAM 2) and display (STREAM 4) the object
simultaneously. (PDF eliminates STREAM 3.)

d0 d1 d2

X1.1
X4.1

d0

C0 C1 C2

. . .

X2.0
X5.0
. . .

X2.1
X5.1
. . .

X0.0
X3.0
. . .

X0.1
X3.1
. . .

X1.0
X4.0
. . .

d1 d2
• Incomplete Data Flow (IDF): The data flows from ter-

tiary to memory (STREAM 1) and from memory to theFigure 13. Hybrid striping.

732 DISTRIBUTED MULTIMEDIA SYSTEMS

production rate of tertiary and the consumption rate at a
display station is termed Production Consumption Ratio
(PCR � BTertiary/BDisplay).

When PCR � 1, the time required to materialize an object
is greater than its display time. Neither PDF nor IDF is ap-
propriate because the bandwidth of tertiary cannot support a
continuous display of the referenced object (assuming that the
size of the first slice exceeds the size of memory). With SDF,
the time required to materialize X is n/PCR time periods,
while its display requires n time periods. If X is a tertiary
resident, without pipelining, the latency time incurred to dis-
play X is n/PCR � 1 time periods. (Plus one because an

Tertiary

Memory

Display

R Disk-clusters

...

4

1 2 R

3

21

1, 2, 3, 4
1, 2/4
1, 4

SDF:
PDF:
IDF:

additional time period is needed to both flush the last subob-
Figure 14. Three alternative dataflow paradigms. ject to the disk cluster and to allow the first subobject to be

staged in the memory buffer for display). To reduce this la-
tency time, a portion of the time required to materialize X can

display station (STREAM 4) to support a continuous re- be overlapped with its display time.
trieval of the referenced object. (IDF eliminates both When PCR � 1, the bandwidth of tertiary exceeds the
STREAM 2 and 3.) bandwidth required to display an object. Two alternative ap-

proaches can be employed to compensate for the fast produc-
Figure 14 models the second architecture (tertiary storage is tion rate: either (1) multiplex the bandwidth of tertiary
accessible only to the disk drives) by partitioning the avail- among several requests referencing different objects, or (2)
able memory into two regions: one region serves as an inter- increase the consumption rate of an object by reserving more
mediate staging area between tertiary and disk drives (used time slots per time period to render that object disk resident.
by STREAM 1 and 2), while the second serves as a staging The first approach wastes the tertiary bandwidth because the
area between the disk drives and the display stations (used device is required to reposition its read head multiple times.
by STREAM 3 and 4). SDF can be used with both architec- The second approach utilizes more resources in order to avoid
tures. However, neither PDF nor IDF is appropriate for the the tertiary device from repositioning its read head. For more
second architecture because the tertiary is accessible only to detailed description of pipelining please refer to (32).
the disk drives. When the bandwidth of the tertiary storage
device is lower than the bandwidth required by an object, Space Management. In general, assuming that the storage
SDF is more appropriate than both PDF and IDF because it structure consists of n strata, we assume that the database
minimizes the amount of memory required to support a con- resides permanently on stratum n � 1. For example, Fig. 15
tinuous display of an object. IDF is ideal for cases where the shows a system with four strata in which the database resides
expected future access to the referenced object is so low that on stratum 3. Objects are swapped in and out of a device at
it should not become disk resident (i.e., IDF avoids this object strata i � n, based on their expected future access patterns
from replacing other disk resident objects). with the objective of minimizing the frequency of access to the

slower devices at higher strata. This objective minimizes the
average latency time incurred by requests referencing objects.Pipelining Mechanism. With hierarchical storage organiza-

tion, when a request references an object that is not disk resi- At some point during the normal mode of operation, the
storage capacity of the device at stratum i will be exhausted.dent, one approach might materialize the object on the disk

drives in its entirety before initiating its display. In this case, Once an object ox is referenced, the system may determine
assuming a zero system load, the latency time of the system
is determined by the time for the tertiary to reposition its
read head to the starting address of the referenced object, the
bandwidth of the tertiary storage device, and the size of the
referenced object. Assuming that the referenced object is con-
tinuous media (e.g., audio, video) and requires a sequential
retrieval to support its display, a superior alternative is to
use pipelining (32) in order to minimize the latency time.
Briefly, the pipelining mechanism splits an object into s logi-
cal slices (S1, S2, S3, . . ., Ss) such that the display time of S1

overlaps the time required to materialize S2, the display time
of S2 overlaps the time to materialize S3, and so on and so
forth. This ensures a continuous display while reducing the
latency time because the system initiates the display of an
object once a fraction of it (i.e., S1) becomes disk resident.

With pipelining, two possible scenarios might happen: the
bandwidth of the tertiary is either (1) lower or (2) higher than
the bandwidth required to display an object the discussion for

Memory

Magnetic disks

Optical disks

Tape drives

0

1

2

3

Stratum

Faster
service

time

Lower
cost
per

megabyte
+

higher
density

the case when the bandwidth of tertiary is equivalent to the
display is a special case of item (2). The ratio between the Figure 15. Hierarchical storage system.

DISTRIBUTED MULTIMEDIA SYSTEMS 733

that the expected future reference to ox is such that it should to suffering from the limitations associated with disk parti-
tioning, this approach suffers from internal fragmentationreside on a device at this stratum. In this case, other objects

should be swapped out in order to allow ox to become resi- with the last extent of an object being only partially occupied.
This would waste disk space, increasing the number of refer-dent here.

In this section, we focus on how to manage the disk space ences to the tertiary storage device.
With the multiple block size approach (MBS), the systemwhen objects are migrated in and out of the disk storage from

the tertiary storage. We describe two orthogonal techniques. is configured based on the media type with the lowest band-
width requirement, say M1. MBS requires the block size ofThe first, termed EVEREST, manages the blocks of a continu-

ous media object. It approximates a contiguous layout of a file each of media type j to be a multiple of B (M1); i.e., B (Mj) �
B (Mj)/B (M1)B (M1). This might simplify the management(i.e., a block). The second technique, PIRATE, manages the

entire CM object. Each block of the CM object, however, can of disk space to: (1) avoid its fragmentation, and (2) ensure
the contiguous layout of each block of an object. However,be managed employing EVEREST. PIRATE is a replacement

technique which replaces CM objects partially striving to MBS might waste disk bandwidth by forcing the disk to (1)
retrieve more data on behalf of a stream per time period duekeep the head of the objects disk resident. Therefore, PIRATE

is a nice complement of pipelining. As explained later, how- to rounding up of block size, and (2) remain idle during other
time periods to avoid an overflow of memory. These are bestever, PIRATE is only appropriate for single user systems. For

multi-user systems, objects should be swapped in their en- illustrated using an example. Assume two media types,
MPEG-1 and MPEG-2 objects, with bandwidth requirementstirety.
of 1.5 Mbps and 4 Mbps, respectively. With this approach, the
block size of the system is chosen based on MPEG-1 objects.EVEREST. With � media types, a CM file system might be

forced to manage � different block sizes. Moreover, the blocks Assume, it is chosen to be 512 kbyte; B (MPEG-1) � 512
kbyte. This implies that B (MPEG-2) � 1365.33 kbytes. MBSof different objects might be staged from the tertiary storage

device onto magnetic disk storage on demand. A block should would increase B (MPEG-2) to equal 1536 kbytes. To avoid
an excessive amount of accumulated data at a client dis-be stored contiguously on disk. Otherwise, the disk would in-

cur seeks when reading a block, reducing disk bandwidth. playing an MPEG-2 clip, the scheduler might skip the re-
trieval of data one time period every nine time periods. TheMoreover, it might result in hiccups because the retrieval

time of a block might become unpredictable. To ensure a con- scheduler may not employ this idle slot to service another re-
quest because it is required during the next time period totiguous layout of a block, we considered four alternative ap-

proaches: disk partitioning, extent-based (37–39) multiple retrieve the next block of current MPEG-2 display. If all ac-
tive requests are MPEG-2 video clips and a time period sup-block sizes, and an approximate contiguous layout of a file.

We chose the final approach, resulting in the design and im- ports nine displays with B (MPEG-2) � 1536 kbytes, then
with B (MPEG-2) � 1365.33 kbytes, the system would sup-plementation of the EVEREST file system (40). Below, we de-

scribe each of the other three approaches and our reasons for port ten simultaneous displays (10% improvement in perfor-
mance). In summary, the block size for a media type shouldabandoning them.

With disk partitioning, assuming � media types with � dif- approximate its theoretical value in order to minimize the
percentage of wasted disk bandwidth.ferent block sizes, the available disk space is partitioned into

� regions, one region per media type. A region i corresponds The final approach, EVEREST, employs the buddy algo-
rithm to approximate a contiguous layout of a file on the diskto media type i. The space of this region is partitioned into fix

sized blocks, corresponding to B (Mi). The objects of media without wasting disk space. The number of contiguous
chunks that constitute a file is a fixed function of the file sizetype i compete for the available blocks of this region. The

amount of space allocated to a region i might be estimated as and the configuration of the buddy algorithm. Based on this
information, the system can either (1) prevent a block froma function of both the size and frequency of access of objects

of media type i (41). However, partitioning of disk space is overlapping two noncontiguous chunks or (2) allow a block to
overlap two chunks and require the client to cache enoughinappropriate for a dynamic environment where the fre-

quency of access to the different media types might change as data to hide the seeks associated with the retrieval of these
blocks. Until now, we assumed the first approach. To illus-a function of time. This is because when a region becomes

cold, its space should be made available to a region that has trate the second approach, if a file consists of five contiguous
chunks, then at most, four blocks of this file might span twobecome hot. Otherwise, the hot region might start to exhibit

a thrashing (42) behavior that would increase the number of different chunks. This implies that the retrieval of four blocks
will incur seeks with at most one seek per block retrieval. Toretrievals from the tertiary storage device. This motivates a

reorganization process to rearrange disk space. This process avoid hiccups, the scheduler should delay the display of the
data at the client until it has cached enough data to hide thewould be time consuming due to the overhead associated with

performing I/O operations. latency associated with four seeks. The amount of cached data
is not significant. For example, assuming a maximum seekWith an extent-based design, a fixed contiguous chunk of

disk space, termed an extent, is partitioned into fix-sized time of 20 ms, with MPEG-2 objects (4 Mbps), the client
should cache 10 kbytes to hide each seek. However, this ap-blocks. Two or more extents might have different page sizes.

Both the size of an extent and the number of extents with a proach complicates the admission control policy because the
retrieval of a block might incur either one or zero seeks.prespecified block size (i.e., for a media type) is fixed at sys-

tem configuration time. A single file may span one or more With EVEREST, the basic unit of allocation is a page, the
size of a page has no impact on the granularity at which aextents. However, an extent may contain no more than a sin-

gle file. With this design, an object of a media type i is as- process might read a section; this is detailed below, also
termed a section of height 0. EVEREST organizes these sec-signed one or more extents with block size B (Mi). In addition

734 DISTRIBUTED MULTIMEDIA SYSTEMS

The materialization of an object is as follows. The first step
is to check whether the total number of pages in all the sec-
tions on the free list is either greater than or equal to the
number of pages (denoted no-of-pages(ox)) that the new object
ox requires. If this is not the case, then one or more victim
objects are elected and deleted. (The procedure for selecting a
victim is based on heat (43). The deletion of a victim object
is described further below.) Assuming enough free space is

Section
view

0 1 2 3 4 5 6 7 8 9 101112131415 Blocks

BuddiesBuddies

Depth

0

2

3

4

1

available at this point, ox is divided into its corresponding
sections as follows. First, the number m � no-of-pages(ox) isFigure 16. Physical division of disk space into pages and the corre-
converted to base �. For example, if � � 2, and no-of-sponding logical view of the sections with an example base of � � 2.
pages(ox) � 1310, then its binary representation is 11012. The
full representation of such a converted number is m � dj�1 �
�j�1 � � � � � d2 � �2 � d1 � �1 � d0 � �0. In our example, the

tions as a tree to form larger, contiguous sections. As illus- number 11012 can be written as 1 � 23 � 1 � 22 � 0 � 21 �
trated in Fig. 16, only sections of size(page) � �i (for i 	 0) 1 � 20. In general, for every digit di that is non-zero, di sec-
are valid, where the base � is a system configuration parame- tions are allocated from height i of the free list on behalf of
ter. If a section consists of �i pages, then i is said to be the ox. In our example, ox requires 1 section from height 0, no
height of the section. � height i sections that are buddies sections from height 1, 1 section from height 2, and 1 section

from height 3.(physically adjacent) might be combined to construct a height
For each object, the number
 of contiguous pieces is equali � 1 section.

to the number of ones in the binary representation of m, orTo illustrate, the disk in Fig. 16 consists of 16 pages. The
with a general base �,
 � �j

i�0 di (where j is the total numbersystem is configured with � � 2. Thus, the size of a section
of digits). Note that
 is always bounded by � log� m. Formay vary from 1, 2, 4, 8, up to 16 pages. In essence, a binary
any object,
 defines the maximum number of sections occu-tree is imposed upon the sequence of pages. The maximum
pied by the object. (The minimum is 1 if all
 sections areheight, computed by
physically adjacent.) A complication arises when no section at
the right height exists. For example, suppose that a section
of size �i is required, but the smallest section larger than �iS =

⌈
logω

(⌊
Capacity
size(page)

⌋)⌉
on the free list is of size �j (j � i). In this case, the section of
size �j can be split into � sections of size �j�1. If j � 1 � i,

is 4. To simplify the discussion, assume that the total number then � � 1 of these are enqueued on the list of height i, and
of pages is a power of �. The general case can be handled the remainder is allocated. However if j � 1 � i, then � � 1
similarly and is described below. of these sections are again enqueued at level j � 1, and the

With this organization imposed upon the device, sections splitting procedure is repeated on the remaining section. It is
of height i 	 0 cannot start at just any page number, but only easy to see that, whenever the total amount of free space on
at offsets that are multiples of �i. This restriction ensures these lists is sufficient to accommodate the object, then for
that any section, with the exception of the one at height S, each section that the object occupies, there is always a section
has a total of � � 1 adjacent buddy sections of the same size of the appropriate size, or larger, on the list. This splitting
at all times. With the base 2 organization of Fig. 16, each procedure will guarantee that the appropriate number of sec-
section has one buddy. tions, each of the right size, will be allocated, and that the

With EVEREST, a portion of the available disk space is bounded list length property is never violated.
allocated to objects. The remainder, should any exist, is free. When the system elects that an object must be material-
The sections that constitute the available space are handled ized and there is insufficient free space, then one or more vic-
by a free list. This free list is actually maintained as a se- tims are removed from the disk. Reclaiming the space of a
quence of lists, one for each section height. The information victim requires two steps for each of its sections. First, the
about an unused section of height i is enqueued in the list section must be appended to the free list at the appropriate
that handles sections of that height. In order to simplify ob- height. The second step ensures that the bounded list length
ject allocation, the following bounded list length property is property is not violated. Therefore, whenever a section is en-
always maintained: For each height i � 0, . . ., S, at most queued in the free list at height i, and the number of sections
� � 1 free sections of i are allowed. Informally, this property at that height is equal to or greater than �, then � sections
implies that whenever there exists sufficient free space at the must be combined into one section at height i � 1. If the list
free list of height i, EVEREST must compact these free sec- at i � 1 now violates bounded list length property, then once
tions into sections of a larger height. A lazy variant of this again, space must be compacted and moved to section i � 2.
scheme would allow these lists to grow longer and do compac- This procedure might be repeated several times. It terminates
tion upon demand, that is, when large contiguous pages are when the length of the list for a higher height is less than �.
required. This would be complicated as a variety of choices Compaction of � free sections into a larger section is sim-
might exist when merging pages. This would require the sys- ple when they are buddies; in this case, the combined space
tem to employ heuristic techniques to guide the search space is already contiguous. Otherwise, the system might be forced
of this merging process. However, to simplify the description, to exchange one occupied section of an object with one on the
we focus on an implementation that observes the invariant free list in order to ensure contiguity of an appropriate se-

quence of � sections at the same height. The following algo-described above.

DISTRIBUTED MULTIMEDIA SYSTEMS 735

rithm achieves space-contiguity among � free sections at serted into a queue of house keeping I/Os. Associated with
each element of the queue is an estimated amount of timeheight i.
required to perform the task. Whenever the scheduler locates
one or more idle slots in the time period, it analyzes the queue1. Check if there are at least � sections for height i on the
of work for the element that can be processed using the avail-free list. If not, stop.
able time.2. Select the first section (denoted sj) and record its page

The value of � impacts the frequency of preventive opera-number (i.e., the offset on the disk drive). The goal is to
tions. If � is set to its minimum value (i.e., � � 2), then pre-free � � 1 sections that are buddies of sj.
ventive operations would be invoked frequently because every3. Calculate the page-numbers of sj’s buddies. EVEREST’s
time a new section is enqueued, there is a 50% chance for adivision of disk space guarantees the existence of � � 1
height of the free list to consist of two sections (violates thebuddy sections physically adjacent to sj. bounded list length property). Increasing the value of � will,

4. For every buddy sk, k � 0 � � � 1, k � j; if it exists on therefore, relax the system because it reduces the probability
the free list, then mark it. that an insertion to the free list would violate the bounded list

5. Any of the sk unmarked buddies currently store parts of length property. However, this would increase the expected
other object(s). The space must be rearranged by swap- number of bytes migrated per preventive operation. For ex-
ping these sk sections with those on the free list. Note ample, at the extreme value of � � n (where n is the total
that for every buddy section that should be freed, there number of pages), the organization of blocks will consist of
exists a section on the free list. After swapping space two levels, and for all practical purpose, EVEREST reduces
between every unmarked buddy section and a free list to a standard file system that manages fix-sized pages.
section, enough contiguous space has been acquired to The design of EVEREST suffers from the following limita-
create a section at height i � 1 of the free list. tion: the overhead of its preventive operations may become

6. Go back to Step 1. significant if many objects are swapped in and out of the disk
drive. This happens when the working set of an application
cannot become resident on the disk drive.To illustrate, consider the organization of space in Fig.

17(a). The initial set of disk resident objects is �o1, o2, o3�, and In a real implementation of EVEREST, it might not be pos-
sible to fix the number of disk pages as an exact power of �.the system is configured with � � 2. In Fig. 17a, two sections

are on the free list at height 0 and 1 (addresses 7 and 14, The most important implication of an arbitrary number of
pages is that some sections may not have the correct numberrespectively), and o3 is the victim object that is deleted. Once

page 13 is placed on the free list in Fig. 17(b), the number of of buddies (� � 1 of them). However, we can always move
those sections to one end of the disk—for example, to the sidesections at height 0 is increased to �, and it must be com-

pacted according to Step 1. As sections 7 and 13 are not con- with the highest page-offsets. Then, instead of choosing the
first section in Step 2 in the object deallocation algorithm, thetiguous, section 13 is elected to be swapped with section 7s

buddy, that is, section 6 [Fig. 17(c)]. In Fig. 17(d), the data of system can choose the one with the lowest page number. This
ensures that the sections towards the critical end of the disksection 6 is moved to section 13, and section 6 is now on the

free list. The compaction of sections 6 and 7 results in a new that might not have the correct number of buddies are never
used in both Steps 4 and 5 of the algorithm.section with address 6 at height 1 of the free list. Once again,

a list of length two at height 1 violates the bounded list length In (40) we report on an implementation of EVEREST in
our CM server. Our implementation enables a process to re-property, and pages (4, 5) are identified as the buddy of sec-

tion 6 in Fig. 17(e). After moving the data in Fig. 17(f) from trieve a file using block sizes that are at the granularity of
1/2 kbyte. For example, EVEREST might be configured withpages (4, 5) to (14, 15), another compaction is performed with

the final state of the disk space emerging as in Fig. 17(g). a 64 kbyte page size. One process might read a file at the
granularity of 1365.50 kbyte blocks, while another might readOnce all sections of a deallocated object are on the free list,

the iterative algorithm above is run on each list, from the a second file at the granularity of 512 kbyte.
The design of EVEREST is related to the buddy systemlowest to the highest height. The previous algorithm is some-

what simplified because it does not support the following sce- proposed in (44–45) for an efficient main memory storage al-
locator (DRAM). The difference is that EVEREST satisfies anario: a section at height i is not on the free list; however, it

has been broken down to a lower height (say i � 1), and not request for b pages by allocating a number of sections such
that their total number of pages equals b. The storage alloca-all subsections have been used. One of them is still on the

free list at height i � 1. In these cases, the free list for height tor algorithm, on the other hand, will allocate one section that
is rounded up to 2lgb pages, resulting in fragmentation andi � 1 should be updated with care because those free sections

have moved to new locations. In addition, note that the algo- motivating the need for either a reorganization process or a
garbage collector (39). The primary advantage of the elabo-rithm described above actually performs more work than is

strictly necessary. A single section of a small height, for ex- rate object deallocation technique of EVEREST is that it
avoids internal and external fragmentation of space as de-ample, may end up being read and written several times as

its section is combined into larger and larger sections. This scribed for traditional buddy systems [see (39)].
is eliminated in the following manner. The algorithm is first
performed virtually—that is, in main memory, as a compac- PIRATE. Upon the retrieval of a tertiary resident object

(say Z), if the storage capacity of the disk drive is exhausted,tion algorithm on the free lists. Once completed, the entire
sequence of operations that have been performed determine then the system must replace one or more objects (victims) in

order to allow Z to become the disk resident. Previous ap-the ultimate destination of each of the modified sections. The
scheduler constructs a list of these sections. This list is in- proaches (collectively termed Atomic) replace each of the vic-

736 DISTRIBUTED MULTIMEDIA SYSTEMS

����������������

�����������������

���������������

�
�
��
�������������

���

Blocks:Blocks:

Free list:7 13

14

7 13
6

14

Free list: 0

1

2

3

4

0

1

2Depth

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Depth

3

4

Blocks:

7

14

Free list: 0
:free blocks

O1

O2

O3

1

2

3

4

Depth

0 1 2 3 4 5 6 7

(a)

(b) (c)

(d) (e)

(f) (g)

8 9 10 11 12 13 14 15

6 7

14

Free list: 0

1

2

3

4

Depth

Free list:

14
4

6

0

1

2Depth

3

4

Blocks:Blocks:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

64

Free list: 0

1

2

3

4

Depth

Blocks:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Free list:

4

0

1

2Depth

3

4

Blocks:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 17. Deallocation of an object. The example sequence shows the removal of object o3 from
the initial disk resident object set �o1, o2, o3�. Base two, � � 2. (a) Two sections are on the free
list already (7 and 14), and object o3 is deallocated. (b) Sections 7 and 13 should be combined;
however, they are not contiguous. (c) The buddy of section 7 is 6. Data must move from 6 to 13.
(d) Sections 6 and 7 are contiguous and can be combined. (e) The buddy of section 6 is 4. Data
must move from (4, 5) to (14, 15). (f) Sections 4 and 6 are now adjacent and can be combined. (g)
The final view of the disk and the free list after removal of o3.

DISTRIBUTED MULTIMEDIA SYSTEMS 737

tim objects in their entirety, requiring each object to either be menting size(SZ,1) with the amount of data corresponding to
this time; that is,completely a disk resident or not disk resident at all. With

PartIal ReplAcement TEchnique (PIRATE) (12), the system
chooses a larger number of objects as victims; however, it re-
places a portion of each of its victims in order to free up suffi-

worst reposition time × BDisplay

size(block)

cient space for the blocks of Z. The input to PIRATE include
(This optimization is assumed for the rest of this paper.) If(1) the size and frequency of access to each object X in the
DISK(Z) � size(SZ,1), then (�(Z) � 0 (due to assumed optimiza-database, termed size(X) and heat(X) respectively (46), (2) a
tion). Otherwise (i.e., DISK(Z) � size(SZ,1)), the system deter-set of objects with a disk resident fraction except Z (denoted
mines the starting address of the nondisk resident portion ofF), and (3) the size of the object referenced by the pending
Z (missing), and �(Z) is defined as the total sum of (1) therequest (size(Z)). Its side effect is that it makes enough of the
repositioning of tertiary to the physical location correspond-disk space available to accommodate Z.
ing to missing, and (2) the materialization time of the remain-PIRATE deletes blocks of an object one at a time, starting
der of the first slice,with those that constitute the tail end of the object. For exam-

ple, if PIRATE decides to replace those blocks that constitute
10 min of a 30 min video clip, it deletes those blocks that
represent the last 10 min of the clip, leaving the first 20

size(block)

BTertiary
× (size(SZ,1) − DISK(Z))

min disk resident. The number of blocks that constitute the
The average (expected value of) latency as a function of re-first portion of X is denoted DISK(X), while its deleted (non
quests can be defined asdisk resident) blocks are termed ABSENT(X); ABSENT(X) �

size(X) � DISK(X). (Note: the granularity of ABSENT(X),
size(X), and DISK(X) are in blocks.) PIRATE complements µ =

∑
x

heat(x) ∗ �(x) (18)
pipelining because by keeping the head of the objects disk
resident, their displays can start immediately minimizing the The variance is
observed startup latency time. On the other hand, since all
the requests will access the tertiary, it is possible that the
tertiary becomes the bottleneck. Hence, PIRATE is suitable

σ 2 =
∑

x

heat(x) ∗ (�(x) − µ)2 (19)

for single user environments (such as Personal Computers
(PC) (12) or when the sustained bandwidth of the tertiary is By deleting a portion of an object, we may increase its latency

time resulting in a higher � and �2. However, once the diskhigher than the average load imposed by simultaneous re-
quests. capacity is exhausted, deletion of an object is unavoidable. In

this case, it is desired for some x in F to reduce DISK(x) suchFormal Statement of the Problem. The portion of disk space
allocated to continuous media data types consists of C blocks. that enough disk space becomes available to render object Z

disk resident in its entirety. The problem is how to determineThe database consists of m objects �o1, . . ., om�, with
heat(oj) � (0, 1) satisfying �m

j�1 heat(oj) � 1, and sizes those x and their corresponding fractions to be deleted to min-
imize both the average latency time and its variance. Unfor-size(oj) � (0, C) for all 1 � j � m. The size of the database

exceeds the storage capacity of the system (i.e., �m
j�1 size(oj) � tunately, minimizing the average latency time might increase

the variance and vice versa. In the next section, we presentC). Consequently, the database resides permanently on the
tertiary storage device, and objects are swapped in and out simple PIRATE and demonstrate that it minimizes the aver-

age latency. Subsequently, extended PIRATE is introduced,from the disk. We assume that the size of each object is
smaller than the storage capacity of the disk drive, size(oj) � as a generalization of simple PIRATE, with a knob that can

be adjusted by the user to tailor the system to strike a com-C for 1 � j � m. Moreover, to simplify the discussion, we
assume that the tertiary is not required to change tapes/plat- promise between these two objectives.

Simple PIRATE. Figure 18 presents simple PIRATE. Logi-ters or reposition its read head once it starts to transfer an
object. Assume a process that generates requests for objects cally, it operates in two passes. In the first pass, it deletes

from those objects (say i) whose disk resident portion isin which object oj is requested with probability heat(oj) (all
independent). We assume no advance knowledge of the possi- greater than the size of their first slice (Si,1). By doing so, it

can ensure a zero latency time for requests that referenceble permutation of requests for different objects.
Let F denote the set of objects with a disk resident fraction these objects in the future (by employing the pipelining mech-

anism). Note that PIRATE deletes objects at a granularity ofexcept the one that is referenced by the pending request,
size(F) � �x�F DISK(X). Moreover, assuming a new request a block. Moreover, it frees up only sufficient space to accom-

modate the pending request and no more than that. (For ex-arrives referencing object Z (F � F � �Z�), we define
free_disk_space as C � (size(F) � DISK(Z)). If ABSENT(Z) � ample, if ABSENT(Z) is equivalent to size(X)/10, and X is cho-

sen as the victim, then only the blocks corresponding to thefree_disk_space, then no replacement is required. In this
study, we focus on the scenario where replacement is re- last 1/10 of X are deleted in order to render Z disk resident.)

If the disk space made available by the first pass is insuf-quired; that is, ABSENT(Z) � free_disk_space.
We define latency time observed by a request referencing ficient, then simple PIRATE enters its second pass. This pass

deletes objects starting with the one that has the lowest heatZ (�(Z)) as the amount of time elapsed from the arrival of the
request to the onset of the display. It is a function of DISK(Z) (following the greedy strategy suggested for the fractional

knapsack problem (47). One might argue that a combinationand BTertiary. If DISK(Z) � size(SZ,1), then the maximum value
for �(Z) is the worst reposition time of the tertiary storage of heat and size should be considered when choosing victims.

However, ABSENT(Z) blocks (where Z is the object required todevice. One may reduce this latency time to zero by incre-

738 DISTRIBUTED MULTIMEDIA SYSTEMS

Since heat(Y) � ABSENT(Z) and (heat(X) � heat(Y)) are con-
stants, in order to minimize
, we can only vary �X (this im-
pacts �Y because ABSENT(Z) � �X � �Y). If heat(X) � heat(Y),
then (heat(X) � heat(Y)) is a positive value; hence, in order
to minimize
, the value of �X should be minimized (i.e., the
object with higher heat(X) should not be replaced). On the
other hand, if heat(X) � heat(Y), then (heat(X) � heat(Y)) is
a negative value; hence, in order to minimize
, the value of
�X should be maximized (i.e., the object with lower heat(X)
should be replaced). This demonstrates that the amount of
data deleted from victim(s) (�i) in order to free up disk space
depends only on heat (i) and not size (i).

Extended PIRATE. Extended PIRATE is a generalization of
simple PIRATE that can be customized to strike a compro-
mise between the two goals to minimize either the average
latency time of the system or the variance in the latency time.
The major difference between simple and extended PIRATE
is as follows: Extended PIRATE (see Fig. 19) requires a mini-

define pfs: potential_free_space,
define rds: required_disk_space
rds � ABSENT(Z) � free_disk_space
repeat

victim � object i from set F with:
1) the lowest heat, and
2) DISK(i) � Size(Si,1)

if (victim is NOT null) then
pfs � DISK(victim) � size(Svictim,1)

else
victim � object i from set F

with the lowest heat
pfs � DISK(victim)

if (pfs � rds) then
DISK(victim) � DISK(victim) � rds
rds � 0

else
DISK(victim) � DISK(victim) � pfs
rds � rds � pfs

until (rds � 0)
mum fraction (termed LEAST(x)) of the most frequently ac-

Figure 18. Simple PIRATE. cessed objects to be the disk resident. Logically, extended PI-
RATE operates in three passes. Its first pass is identical to
that of simple PIRATE. If this pass fails to provide sufficient
disk space for the referenced object, then during the secondbecome disk resident) are required to be deleted from the
pass, it deletes from objects until each of their disk residentdisk, independent of the size of the victims. The following
portion corresponds to LEAST(x). If pass two fails (i.e., providesproof formalizes this statement and proves the optimality of
insufficient space to materialize the referenced object), it en-simple PIRATE in minimizing the latency time of the system.
ters pass 3. This pass is identical to pass 2 of simple PIRATE
where objects are deleted in their entirety starting with theLemma 1: To minimize the average latency time of the sys-
one that has the lowest heat.tem, during pass 2, PIRATE must delete those blocks corre-

With extended PIRATE, LEAST(X) for each disk resident ob-sponding to the object with the lowest heat, independent of
ject is defined as follows:the object sizes.

Proof: Without loss of generality, assume F � �X, Y�,
size(block) � 1 and BTertiary � 1. Assume a request arrives at

LEAST(X) =
min(�knob ∗ heat(X) ∗ size(SX ,1)�, size(SX ,1))

(20)

t0 referencing Z, and the disk capacity is exhausted. Let t1 be
the time when a portion of X and/or Y is deleted. We define
�0 (�1) to be the average latency at t0 (t1), see Eq. 18. Subse-
quently, DISK0(i) and DISK1(i) represent the disk resident frac-
tion of object i at time t0 and t1, respectively. Let �i denote the
number of blocks of object i deleted from disk at time t1 (i.e.,
�i � DISK0(i) � DISK1(i)). By deleting X and/or Y partially, we
increase the average latency by
. However, since deletion is
unavoidable, the objective is to minimize
 � �1 � �0, while
ABSENT(Z) � �X � �Y (In computing the average latency, we
ignore the latency of the other objects in the database as well
as the repositioning time of the tertiary. This is because it
only adds a constant to both �0 and �1 which will be elimi-
nated by the computation of
).

µ0 = heat(X) ∗ (size(SX,1) − DISK0(X)) +
heat(Y) ∗ (size(SY,1) − DISK0(Y))

µ1 = heat(X) ∗ (size(SX,1) − DISK1(X)) +
heat(Y) ∗ (size(SY,1) − DISK1(Y))

Thus,

define pfs: potential_free_space,
define rds: required_disk_space
rds � ABSENT(Z) � free_disk_space
repeat

victim � object i from set F with:
1) the lowest heat, and
2) DISK(i) � Size(Si,1)

if (victim is NOT null) then
pfs � DISK(victim) � size(Svictim,1)

else
victim � object i from set F with:

1) the lowest heat, and
2) DISK(i) � LEAST(i)

if (victim is NOT null) then
pfs � DISK(victim) � LEAST(victim)

else
victim � object i from set F

with the lowest heat
pfs � DISK(victim)

if (pfs � rds) then
DISK(victim) � DISK(victim) � rds
rds � 0

else
DISK(victim) � DISK(victim) � pfs
rds � rds � pfs

until (rds � 0)

Figure 19. Extended PIRATE.

� = heat(X) ∗ δX + heat(Y) ∗ δY

= heat(X) ∗ δX + heat(Y) ∗ (ABSENT(Z) − δX)

= heat(Y) ∗ ABSENT(Z) +
δX ∗ (heat(X) − heat(Y))

DISTRIBUTED MULTIMEDIA SYSTEMS 739

where knob is an integer whose lower bound is zero. The min-
imum function avoids the size of LEAST(x) to exceed the size of
the first slice. When knob � 0, extended PIRATE is identical
to simple PIRATE. As knob increases, a larger portion of each
object becomes disk resident. Obviously, the ideal case is to
increase the knob until the first slice of all the objects become
disk resident. However, due to the limited storage capacity,
this might be infeasible. By increasing the knob, we force a
portion of some objects with lower heat to remain disk resi-
dent, at the expense of deleting from objects with a high heat.
By providing each request referencing an object a latency
time proportional to the heat of that object, extended PIRATE
improves the variance while not increasing the average dra-
matically.

There is an optimal value for knob that minimizes �2. If
the value of knob exceeds this value, then �2 starts to in-
crease also.

Lemma 2: The optimal value for knob is C/Aug_Slice1.

Proof: Let U be the total number of unique objects that are
referenced over a period of time. We define

Disk resident

X Y U V W Q

Heat decreases

.

.

(a) knob = 0

Heat decreases

(b) knob = C/Avg_Slicel

S

X Y U V W Q S

Absent

Avg Slice1 =
∑

x

heat(x) ∗ size(Sx,1)

Avg Heat =
∑

x heat(x)

U
= 1

U
Avg Least = knob ∗ Avg Heat ∗ Avg Slice1 Figure 20. Status of the first slice of objects.

The ideal case is when the LEAST of almost all the objects that
constitute the database are disk resident (C is the total num- To achieve this, in an optimal case, it requires ℵ� �
ber of disk blocks): Avg_Least � ℵ� � C/U of disk space. This is optimistic, be-

cause the ℵ� objects have the highest heats, thus a large min-
imum portion. While it is not realistic to use Avg_Least in the
equation, it is useful for approximation. The rest of the disk

C ≈ U ∗ Avg Least

≈ U ∗ knob ∗ 1
U

∗ Avg Slice1
space, C � (ℵ� � C/U), can be used for the minimum portion
of the other objects [see Fig. 20(b)]. Therefore, in the long run,

Solving for knob, we obtain: knob � C/Avg_Slice1. the number of disk resident objects with knob �
C/Avg_Slice1 (i.e., C/Max_Size � Max_Heat � knob � ℵ� � U)

Substituting the optimal value of knob in Eq. 20, we ob- is larger than ℵ�. However, with knob � 0, the first slice of
tain LEAST(X) � heat(X) � size(SX,1)/�

m
i heat(i) � size(Si,1) � ℵ� objects are disk resident, while with knob �

C. This is intuitively the amount of disk space an object X C/Avg_Slice1, only LEAST of each of the ℵ� objects are disk
deserves. In (12), we employed a simulation study to confirm resident. This results in the following tradeoff. On one hand,
this analytical result. Note that because heat is considered in a request referencing an object Z has a higher hit ratio with
the computation of LEAST, with knob � C/Avg_Slice1, the av- knob � C/Avg_Slice1 as compared to knob � 0. On the other
erage latency time degrades proportional to the improvement hand, a hit with knob � 0 translates into a fraction of a sec-
in variance. In summary, when knob � 0, PIRATE replaces ond latency time, while with knob � C/Avg_Slice1, it results
objects in a manner that minimizes average latency time. in a minimum latency time of (size(SZ,1) � LEAST(Z)) �
However, when knob � C/Avg_Slice1, it minimizes the vari- size(block)/BTertiary. This explains why with knob �
ance. To observe, consider the following discussion. C/Avg_Slice1, PIRATE improves the variance proportional to

In the long run, with knob � 0, PIRATE maintains the the degradation in average latency.
first slice of all the objects with the highest heat disk resident,
while the others compete with each other for a small portion

STREAM SCHEDULING AND SYNCHRONIZATIONof the disk space [see Fig. 20(a)]. To approximate the number
of objects that become disk resident with knob � 0 (ℵ�), we

In this section, we investigate a taxonomy of scheduling prob-use the average size (Avg_Slice1) as follows:
lems corresponding to three classes of multimedia applica-
tions. The application classes and the corresponding schedul-
ing problems include

ℵµ ≈ C
Avg Slice1

(21)

However, with knob � C/Avg_Slice1, PIRATE maintains 1. On-demand atomic object retrieval: With this class of
applications, a system strives to display an object (audioonly a minimum portion of all these ℵ� objects disk resident.

740 DISTRIBUTED MULTIMEDIA SYSTEMS

or video) as soon as a user request arrives referencing them from the conventional scheduling problems a more de-
tailed comparison can be found in (50) are (1) tasks are IO-the object. The envisioned movie-on-demand and news-

on-demand systems are examples of this application bound and not CPU-bound, (2) each task utilizes multiple
disks during its life time, (3) each task acquires and releasesclass. We formalize the scheduling problem that repre-

sents this class as the Atomic Retrieval Scheduling disks in a regular manner, (4) the pattern utilized by a task
to employ the disks depends on the placement of its refer-(ARS) problem.
enced object on the disks, and (5) there might be temporal2. Reservation-based atomic object retrieval: This class is
relationships among multiple tasks constituting a compositesimilar to on-demand atomic object retrieval except that
task.a user requests the display of an object at some point in

Independent of the application classes and due to thethe future. An example might be a movie-on-demand
above characteristics, tasks compete for system resources,system where the customers call to request the display
that is, disk bandwidth. The term retrieval contention is usedof a specific movie at a specific time; for example, Bob
in this study to specify this competition among the tasks forcalls in the morning to request a movie at 8:00 p.m.
the disk bandwidth. This contention should be treated differ-Reservation-based retrieval is expected to be cheapter
ently depending on alternative types of the system load. Fur-than on-demand retrieval because it enables the system
thermore, an admission control component, termed con-to minimize the amount of resources required to service
tention prediction (cop), is required by all the schedulingrequests (using planning optimization techniques). The
algorithms to activate tasks in such a manner that no con-scheduling problem that represents this application
tention occurs among the activated tasks. Indeed, the problemclass is termed Augmented ARS (ARS�).
of retrieval contention and its prediction are shared by all the

3. On-demand composite object retrieval: As compared to scheduling problems and should be studied separately.
atomic objects, a composite object describes when two In this section, we first extend the hardware architecture
or more atomic objects should be displayed in a tempo- to support a mix of media types. Note that the terms time
rarily related manner (48). To illustrate the application interval and time period are used synonymously in this sec-
of composite objects, consider the following environ- tion. Subsequently, we study the formally defined four sched-
ment. During the post-production of a movie, a sound uling problems. In (51), we proved that all of these scheduling
editor accesses an archive of digitized audio clips to ex- problems are NP-hard in strong sense. In addition, scheduling
tend the movie with appropriate sound-effects. The edi- algorithms based on heuristics are introduced per problem
tor might choose two clips from the archive: a gun-shot in (51).
and a screaming sound effect. Subsequently, she au-
thors a composite object by overlapping these two sound

Mix of Media Typesclips and synchronizing them with the different scenes
of a presentation. During this process, she might try Until now, we assumed that all CM objects belong to a single
alternative gun-shot or screaming clips from the reposi- media type. For example, all are MPEG-2 compressed video
tory to evaluate which combination is appropriate. To objects. In practice, however, objects might belong to different
enable her to evaluate her choices immediately, the sys- media types. Assuming m media types, each with a band-
tem should be able to display the composition as soon width requirement of ci, the display time of each block of dif-
as it is authored (on-demand). There are two scheduling ferent objects must be identical in order to maintain the fixed-
problems that correspond to this application class: (1) size time intervals (and a continuous display for a mix of
Composite Retrieval Scheduling (CRS), and (2) Resolv- displays referencing different objects). This is achieved as fol-
ing Internal Contention (RIC). While CRS is the sched- lows. First, objects are logically grouped based on their media
uling of multiple composite objects assuming a multi- types. Next, the system chooses media type i with block size
user environment, RIC is the scheduling of a single Subi and bandwidth requirement ci as a reference to compute
composite object assuming a single request. RIC can the duration of a time interval (interval � Subi/ci). The block
also be considered as a preprocessing step of CRS when size of a media type j is chosen to satisfy the following con-
constructing a composite object for each user, in a straint: interval � Subj/cj � Subi/ci.
multi-user environment.

Defining Tasks
CRS and RIC pose the most challenging problems and are

Let T be a set of tasks where each t � T is a retrieval tasksupersets of ARS and ARS�. Researchers are just starting to
that corresponds to the retrieval of a video object. Note thatrealize the importance of customized multimedia presenta-
if an object X is referenced twice by two different requests, ations targeted toward the individual’s preferences (49). Some
different task is assigned to each request. The time to displaystudies propose systems that generate the customized presen-
a block is defined as a time interval (or time period) that istations automatically based on a user query (50). Independent
employed as the time unit.of the method employed to generate a presentation, the re-

For each task t � T , we definetrieval engine must respect the time dependencies between
the elements of a presentation when retrieving the data. To
tackle CRS and RIC, we frist need to solve the simpler prob- • r(t): Release time of t, r:T � N. The time that ts informa-
lems of ARS and ARS�. tion (i.e., the information of its referenced object) be-

To put our work in perspective, we denote the retrieval comes available to the scheduler. This is identical to the
of an object as a task. The distinctive characteristics of the time that a request referencing the object is submitted to

the system.scheduling problems (ARS, ARS�, CRS, RIC) that distinguish

DISTRIBUTED MULTIMEDIA SYSTEMS 741

• �(t): Length (size of the object referenced by t, �:T � N.
The unit is in number of blocks.

• c(t): Consumption rate of the object referenced by t, 0 �
c(t) � 1. This rate is normalized by RD. Thus, c(t) � 0.40
means that the consumption rate of the object referenced
by t is 40% of RD, the cluster bandwidth.

• p(t): The cluster that contains the first block of the object
referenced by t, 1 � p(t) � D. It determines the place-
ment of the object referenced by t on the clusters.

Retrieval schedule

Display schedule
User interface

Storage manager

Logical abstraction

Focus

We denote a task ti as a quadruple: �r(ti), �(ti), c(ti), p(ti)�. Figure 21. Three levels of abstraction.

Atomic Retrieval Scheduling

The ARS problem is to schedule retrieval tasks such that the r(t) � §(t). Other than this distinction in the definition of a
total bandwidth requirement of the scheduled tasks on each task between ARS and ARS�, the definition of ARS� is identi-
cluster during each interval does not exceed the bandwidth of cal to that of ARS. Note that the first constraint of the defini-
that cluster (i.e., no retrieval contention). Moreover, ARS tion remains as �t � T , �(t) 	 r(t).
should satisfy an optimization objective. Depending on the ap-
plication, this objective could be minimizing either (1) the av-

Composite Objectserage startup latency of the tasks, or (2) the total duration of
scheduling for a set of tasks (maximizing throughput). Movie- We conceptualize a system that supports composite objects as
on-demand is one sample application. consisting of three components: a collection of user interfaces,

logical abstraction, and a storage manager (see Fig. 21). User
Definition 1: The problem of ARS is to find a schedule � interfaces play an important role in providing a friendly inter-
(where �:T � N) for a set T , such that (1) it minimizes the face to (1) access existing data to author composite objects
finishing time (52) w, where w is the least time at which all and (2) display objects. The logical abstraction tailors the user
tasks of T have been completed, and (2) satisfies the follow- interface to the storage manager and is described further in
ing constraints: the following paragraphs. The focus of this report is on the

storage manager.
• �t � T �(t) 	 r(t). The logical abstraction is defined to separate the storage

manager issues from the user interface. This has two major• �u 	 0, let S(u) be the set of tasks which �(t) � u �
advantages: simplicity and portability. It results in simplicity�(t) � �(t), then �i, 1 � i � D �t�S(u) Ri(t) � 1.0 where
because different (and maybe inconsistent) representations of
composite objects dictated by the user interface have no im-
pact on the algorithms at the storage manager level. An inter-Ri(t) =

{
c(t) if (p(t) + u − σ (t))mod D = i − 1

0.0 otherwise
(22)

mediate interpreter is responsible for translating the user’s
representations and commands to a uniform, consistent nota-The first constraint ensures that no task is scheduled before
tion at the logical level. The storage manager becomes porta-its release time. The second constraint strives to avoid re-
ble because it is independent of the user interface. Hence, iftrieval contention. It guarantees that at each time interval u
future interfaces start to use goggles and head-sets, the stor-and for each cluster i, the aggregate bandwidth requirement
age manager engine does not need to be modified.of the tasks that employ cluster i and are in progress (i.e.,

At the logical level of abstraction, a composite object is rep-have been initiated at or before u but have not committed
resented as a (X, Y, j), indicating that the composite objectyet), does not exceed the bandwidth of cluster i. The mod-
consists of atomic objects X and Y. The parameter j is the lagfunction handles the round-robin utilization of clusters per
parameter. It indicates that the display of object Y shouldtask.
start j time intervals after the display of X has started. For
example, to designate a complex object where the display of

Augmented ARS
X and Y must start at the same time, we will use the notation
(X, Y, 0). Likewise, the composite object specification (X, Y, 2)ARS� is identical to ARS except that there is a delay between

the time that a task is released and the time that it should indicates that the display of Y is initiated two intervals after
the display of X has started. This definition of a compositestart. A sample application of ARS� could be a movie-on-de-

mand application where the customers reserve movies in ad- object supports the 13 alternative temporal relationships de-
scribed in (48). Figure 22 lists these temporal relationshipsvance. For example, at 7:00 p.m. Alice reserves GodFather

to be displayed at 8:00 p.m. Hence, assuming t be the task and their representation using our notation of a composite
object. The first two columns of Fig. 22 demonstrates the basiccorresponding to Alice retrieving GodFather, r(t) � 7:00, but

its start time is one hour later. Due to this extra knowledge, 7 relationships between atomic objects X and Y. The rest of
the relationships are the inverse of these 7 (note that anmore flexible scheduling can be performed.

The quadruple notation of a task ti for ARS is augmented equal relation has no inverse). Our proposed techniques sup-
port all temporal constructs because they solve for (1) arbi-as ti:�r(ti), §(ti), �(ti), c(ti), p(ti)� for ARS�. The lag parameter,

§(t), determines the start time of the task. That is, the display trary j values, (2) arbitrary sizes for both X and Y, and (3)
arbitrary clusters to start the placement of X and Y.of a task that is released at r(t) should not start sooner than

742 DISTRIBUTED MULTIMEDIA SYSTEMS

tasks while � is a set of composite tasks. A composite task,
itself, is a set of atomic tasks; for example, � � �t1, t2, . . .,
tn�. Each atomic task has the same parameters as defined ear-
lier, except for the release time r(t). Instead, each atomic
tasks has a lag time denoted by §(t). Without loss of general-
ity, we assume for a composite task �, §(t1) � §(t2) � � � � �
§(tn). Subsequently, we denote the first atomic task in the set
� as car(�); that is, car(�) � t1. Lag time of a task determines
the start time of the task with respect to §(car(�)). Trivially,
§(car(�)) � 0. Briefly, §(t) determines the temporal relation-
ships among the atomic tasks of a composite task. Each com-
posite task, on the other hand, has only a release time r(�)
which is the time that a request for the corresponding com-
posite object is submitted.

Definition 2: An atomic task (of a composite task) t is sched-
ulable at u if t can be started at u and completes at u �

size(X) = size(Y) & j =0X equals Y

Allen relations Composite object construct

(Y, X, j)XXX
YYY

size(X) < jX before Y (Y, X, j)XXX YYY

j = size(X)X meets Y (Y, X, j)XXXYYY

j = size(Y) – size(X) < size(Y)X finishes Y (Y, X, j)XXX
YYYYY

0 < j < size(X)X overlaps Y (Y, X, j)XXX
 YYY

j > 0 & size(X) < size (Y) – jX during Y (Y, X, j)XXX
YYYYYY

j = 0 & size(X) < size(Y)X during Y (Y, X, j)XXX
YYYYY

�(t) � 1 without resulting in retrieval contention as defined
Figure 22. Allen temporal relationships and their representation us- in Def. 1.
ing our notation of a composite object.

Definition 3: A composite task � � �t1, t2, . . ., tn� is said to
be schedulable at u if �t � �; t is schedulable at u � §(t).

Our notation extends naturally to the specification of com-
posite objects that contain more than two atomic objects. A

Definition 4: The problem of CRS is to find a schedule �composite object containing n atomic objects can be character-
(where �:� � N) for a set �, such that (1) it minimizes theized by (n � 1) lag parameter, for example, (X1, . . Xn, j2, . .
finishing time (52) w, where w is the least time at which alljn), where ji denotes the lag parameter of object Xi with respect
tasks of � have been completed, and (2) satisfies the follow-to the beginning of the display of object X1.
ing constraintsTo simplify the discussion, we assume integer values for

the lag parameter (i.e., the temporal relationships are in the
• �� � �; �(�) 	 r(�).granularity of a time interval). For more accurate synchroni-

zation such as lip-synching between a spoken voice with the • � be schedulable at �(�). (see Def. 3).
movement of the speaker’s lips, real values of the lag parame-
ter should be considered. This extension is straightforward.

Resolving Internal Contention for CRS (RIC)To illustrate, suppose time dependency between objects X and
Y is defined such that the display of Y should start 2.5 sec- The CRS problem is involved with scheduling multiple com-
onds after the display of X starts. Assuming the duration of a posite tasks. RIC, however, focuses on the scheduling of a sin-
time interval is one second, this time dependency at the task gle composite task. The problem is that even scheduling a
scheduling level can be mapped to (X, Y, 2). Hence, the system single composite task might not be possible due to retrieval
can retrieve Y after 2 s but employ memory to postpone Ys contention among its constituting atomic tasks. RIC is very
display for 0.5 s. much like the clairvoyant ARS problem. The distinction is

that a task can start sooner than its release time, employing
Composite Retrieval Scheduling upsliding. RIC can also be considered as a similar problem to

ASR� where all the tasks have an identical release time butThe objectives of the Composite Retrieval Scheduling (CRS)
different start time. However, with ARS� in the worst case, aproblem are identical to those of ARS. The distinction is
task (who cannot slide upward) can be postponed, while post-that with CRS, each user submit a request referencing a
poning a task with RIC will violate the defined temporal rela-composite object. A composite object is a combination of two
tionships. Furthermore, ARS� and RIC have different objec-or more atomic objects with temporal relationships among
tives. Due to the above reasons, we study RIC as a separatethem. The scheduler assigns a composite task to each re-
scheduling problem.quest referencing a composite object. A composite task is a

A composite object may have internal contention; that is,combination of atomic tasks. The time dependencies among
atomic tasks that constitute a composite task may competethe atomic tasks of a composite task is defined by the lag
with one another for the available cluster bandwidth. Hence,parameter §(t) of the atomic tasks. A sample application of
it is possible that due to such internal contention, a compositeCRS is the digital editing environment. An editor composes
task is not schedulable even if there are no other active re-a composite task on demand, and the result should be dis-
quests. In other words, it is not possible to start all the atomicplayed to the editor immediately. This is essential for the
tasks of � at their start time.editor in order to evaluate her composition and possibly

modify it immediately.
With CRS, each composite task consists of a number of Definition 5: Internal contention: Consider a composite

task � � �t1, t2, . . ., tn�, and �u 	 0; let S(u) � � be the set ofatomic tasks. We use t to represent an atomic task and � for
a composite task. Similarly, T represents a set of atomic atomic tasks which §(t) � u � §(t) � �(t). The composite task

DISTRIBUTED MULTIMEDIA SYSTEMS 743

G1 G0 G5 G4 G3 G2

Time

. . .

1Tp 2Tp 3Tp 4Tp 5Tp 6Tp

G0 G1 G2 G3 G4 G5

G1 G2 G3 G4 G5 G0

G5 G0 G1 G2 G3 G4

G4 G5 G0 G1 G2 G3

G3 G4 G5 G0 G1 G2

G2

G1

G0

G2

G3

G4

G5 G3 G4 G5 G0 G1

C0 C1 C2 C3 C4 C5

X4 X5 X0 X1 X2 X3

Y0 Y1 Y2 Y3 Y4 Y5

Y6 . . .

Figure 23. Rotating groups.

� has internal contention if �u, i 1 � i � D such that �t�S(u) given time period, the requests occupying the slots of a group
retrieve blocks that reside in the cluster that is being visitedRi(t) � 1.0 where
by that group.

Therefore, if there are C clusters (or groups) in the sys-
tem, and each cluster (or group) can support N simultane-Ri(t) =

{
c(t) if (p(t) + u − §(t)) mod D = i − 1

0.0 otherwise
(23)

ous displays, then the maximum throughput of the system
is m � N � C simultaneous displays. The maximumThe above definition intuitively means that /�u such that
startup latency is Tp � C because (1) groups are rotating� be schedulable at u (see Def. 3). This problem is particular
(i.e., playing musical chairs) with the C clusters using eachto composite objects because there is a dependency among
for a Tp interval of time, and (2) at most, C � 1 failuresstart times of atomic tasks, and yet these atomic tasks can
might occur before a request can be activated (when theconflict with each other.
number of active displays is fewer than N � C). Thus,
both the system throughput and the maximum startup la-Definition 6: Resolving the internal contention for a compos-
tency scale linearly. Note that system parameters such asite task � is to modify the start time of its consisting atomic
blocks size, time period, throughput, etc. for a cluster cantasks, such that Def. 5 does not hold true for �.
be computed using the equations provided earlier, de-
pending on the selected display technique. These displaySuch a modification requires use of memory buffers. Ide-
techniques are local optimizations that are orthogonal toally, we should minimize the amount of required buffer.
the optimization techniques proposed by this section.

Even though the work load of a display is distributedDefinition 7: The problem of RIC is to resolve the internal
across the clusters with a round-robin assignment of blocks,contention for a composite task � (as defined in Def. 6) while
a group might experience a higher work load as comparedminimizing the amount of required memory.
to other groups. For example, in Fig. 24, if the system
services a new request for object X using group G4, then

OPTIMIZATION TECHNIQUES all servers in G4 become busy, while several other groups
have two idle servers. This imbalance might result in a

In this section, we discuss some techniques to improve the higher startup latency for future requests. For example, if
utilization of a continuous media server. First, two techniques another request for Z arrives, then it would incur a two
to reduce startup latency are explained. Next, three methods time period startup latency because it must be assigned to
to improve the system throughput are described. Finally, we G5 because G4 is already full. This section describes request
focus on retrieval optimization techniques for those applica- migration and replication (53) as two alternative techniques
tions where a request references multiple CM objects (i.e., to minimize startup latency. These two techniques are or-
composite objects are described earlier). We describe a taxon-
omy of optimization techniques which is applicable in certain
applications with flexible presentation requirements.

Minimizing Startup Latency

Considering the hybrid striping approach described earlier,
each request should wait until a time slot corresponding to
the cluster containing the first block of its referenced object
becomes available. This is true even when the system is not
100% utilized. To illustrate, conceptualize a set of slots sup-
ported by a cluster in a time period as a group. Each group
has a unique identifier. To support a continuous display in a
multi-cluster system, a request maps onto one group, and the
individual groups visit the clusters in a round-robin manner

�
�
��
��
�
�
��
��
��
��
�
�
�
�
�
� ���
��
�
�
��
��G0 G5 G4 G3 G2 G1

C0 C1 C2 C3 C4 C5

X4 X5 X0 X1 X2 X3

Y0 Y1 Y2 Y3 Y4 Y5

Y6 Z0 Z1.

(Fig. 23). If group G5 accesses cluster C2 during a time period,
G5 would access C3 during the next time period. During a Figure 24. Load balancing.

744 DISTRIBUTED MULTIMEDIA SYSTEMS

thogonal to one another, enabling a system to employ both of an object X as its primary copy. All other copies of X are
termed its secondary copies. The system may construct r sec-at the same time.
ondary copies for object X. Each of its copies is denoted as
RX,i, where 1 � i � r. The number of instances of X is theRequest Migration. By migrating one or more requests from
number of copies of X, r � 1 (r secondary plus one primary).a group with zero idle slots to a group with many idle slots,
Assuming two instances of an object, by starting the assign-the system can minimize the possible latency incurred by a
ment of RX,1 with a cluster different than the one containingfuture request. For example, in Fig. 24, if the system migrates
the first block of its primary copy (X), the maximum startupa request for X from G4 to G2, then a request for Z is guaran-
latency incurred by a display referencing X can be reduced byteed to incur a maximum latency of one time period. Migrat-
one half. This also reduces the expected startup latency. Theing a request from one group to another increases the memory
assignment of the first block of each copy of X should be sepa-requirements of a display because the retrieval of data falls
rated by a fixed number of clusters in order to maximize theahead of its display. Migrating a request from G4 to G2 in-
benefits of replication. Assuming that the primary copy of Xcreases the memory requirement of this display by three buff-
is assigned starting with an arbitrary clusters (say Ci con-ers. This is because when a request migrates from G4 to G2

tains X0), the assignment of secondary copies of X is as fol-(see Fig. 24), G4 reads X0 and sends it to the display. During
lows. The assignment of the first block of copy RX, j shouldthe same time period, G3 reads X1 into a buffer (say, B0), and
start with cluster (Ci � jC/r � 1) mod C. For example, if thereG2 reads X2 into a buffer (B1). During the next time period,
are two secondary copies of object Y (RY,1, RY,2) assume its pri-G2 reads X3 into a buffer (B2), and X1 is displayed from mem-
mary copy is assigned starting with cluster C0. RY,1 is assignedory buffer B0. (G2 reads X3 because the groups move one clus-
starting with cluster C2, while RY,2 is assigned starting withter to the right at the end of each time period to read the next
cluster C4.block of active displays occupying its servers.) During the

With two instances of an object, the expected startup la-next time period, G2 reads X4 into a memory buffer (B3), while
tency for a request referencing this object can be computed asX2 is displayed from memory buffer B1. This round-robin re-
follows. To find an available server, the system simultane-trieval of data from clusters by G2 continues until all blocks
ously checks two groups corresponding to the two differentof X have been retrieved and displayed.
clusters that contain the first blocks of these two instances. AWith this technique, if the distance from the original group
failure happens only if both groups are full, reducing theto the destination group is B, then the system requires B � 1
number of failures for a request. The maximum number ofbuffers. However, because a request can migrate back to its
failures before a success is reduced to k/2 � N  due to twooriginal group once a request in the original group terminates
simultaneous searching of groups in parallel. Therefore, theand relinquishes its slot (i.e., a time slot becomes idle), the
probability of i failures in a system with each object havingincrease in total memory requirement could be reduced and
two instances is identical to that of a system consisting ofbecome negligible.
C/2 clusters with 2N servers per cluster. A request wouldWhen k � C � (N � 1) (with the probability of �C � (N �1)

k�0

experience a lower number of failures with more instances ofp(k)), request migration can be applied due to the availability
objects. For an arbitrary number of instances (say j) for anof idle slots. This means that Prob�a group is full� � 0.
object in the system, the probability of a request referencingHence, pf (0, k) � 1. If k � C � (N � 1) (with the probability
this object to observe i failures isof �m�1

k�C � (N �1)�1 p(k)), no request migration can be applied be-
cause (1) no idle slot is available in some groups, and (2) the
load is already evenly distributed. Hence, the probability of
failures is:

p f j
(i,k) =

(
m − j · i · N

k − j · i · N

)
−

(
m − j · (i + 1) · N

k − j · (i + 1) · N

)
(

m
k

) (26)

where 0 � i � k/j � N . Hence, the expected startup latency
is

p f (i, k′) =

(
C − i
k′ − i

)
−

(
C − (i + 1)

k′ − (i + 1)

)
(

C
k′

) (24)

where k� � k � C � (N � 1). The expected latency with re-
quest migration is E[L] =

m−1∑
k=0

p(k) · p f j
(0,k) · 0.5 · Tp

+
m−1∑
k=0

� k
j ·N

�∑
i=1

p(k) · p f j
(i,k) · i · Tp

(27)

Object replication increases the storage requirement of an
application. One important observation in real applications is
that objects may have different access frequencies. For exam-
ple, in a Video-On-Demand system, more than half of the ac-

E[L] =
C·(N −1)∑

k=0

p(k) · 0.5 · Tp

+
m−1∑

k=c·(N −1)+1

p(k) · p f (0,k′) · 0.5 · Tp

+
m−1∑

k=C·(N −1)+1

k′∑
i=1

p(k) · p f (i, k′) · i · Tp

(25)

tive requests might reference only a handful of recently re-
leased movies. Selective replication for frequently referenced
(i.e., hot) objects could significantly reduce the latency with-Object Replication. To reduce the startup latency of the

system, one may replicate objects. We term the original copy out a dramatic increase in storage space requirement of an

DISTRIBUTED MULTIMEDIA SYSTEMS 745

application. The optimal number of secondary copies per ob- Optimization Techniques for Applications
ject is based on its access frequency and the available storage with Flexible Presentation Requirements
capacity. The formal statement of the problem is as follows.

In many multimedia applications, the result of a query is aAssuming n objects in the system, let S be the total amount
set of CM objects that should be retrieved from a CM serverof disk space for these objects and their replicas. Let Rj be the
and displayed to the user. This set of CM objects has to beoptimal number of instances for object j, Sj to denote the size
presented to the user as a coherent presentation. Multimediaof object j, and Fj to represent the access frequency (%) of
applications can be classified as either having Restricted Pre-object j. The problem is to determine Rj for each object j (1 �
sentation Requirements (RPR) or Flexible Presentation Re-j � n) while satisfying �n

j � Rj � Sj � S.
quirements (FPR). RPR applications require that the displayThere exist several algorithms to solve this problem (54).
of the objects conform to a very strict requirement set, such asA simple one known as the Hamilton method computes the
temporal relationships, selection criteria, and display quality.number of instances per object j based on its frequency (see
Digital editing is an example of RPR (see CRS and RIC). In(53). It rounds the remainder of the quota (Qj � Qj) to com-
FPR applications, such as digital libraries, music-juke-boxes,pute Rj. However, this method suffers from two paradoxes,
and news-on-demand applications, users can tolerate somenamely, the Alabama and Population paradoxes (54). Gener-
temporal, selection, and display quality variations. Theseally speaking, with these paradoxes, the Hamilton method
flexibilities stem from the nature of multimedia data andmay reduce the value of Rj when either S or Fj increases in
user-queries.value. The divisor methods provide a solution free of these

RPR applications impose very strict display require-paradoxes. For further details and proofs of this method, see
ments. This is due to the type of queries imposed by users(15). Using a divisor method named Webster (d(Rj) � Rj �
in such applications. It is usually the case that the user0.5), we classify objects based on their instances. Therefore,
can specify what objects he/she is interested in and how toobjects in a class have the same instances. The expected
display these objects in concert. Multimedia systems havestartup latency in this system with n objects is
to guarantee that the CM server can retrieve all the objects
in the set and can satisfy the precise time dependencies,
as specified by the user. There has been a number of stud-

E[L] =
n∑

i=1

Fi · E[LRi
] (28)

ies on scheduling continuous media retrievals for RPR ap-
plications, see (51,66,67,68). In (51,66,68) the time depend-where E[LRi

] is the expected startup latency for object having
encies are guaranteed by using memory buffers, while inRi instances (computed using Eq. 27).
(67), they are guaranteed by using the in-advance knowl-
edge at the time of data placement.Maximizing Throughput

FPR applications provide some flexibilities in the presenta-
A trivial concept for increasing the throughput of a continu-

tion of the continuous media objects. It is usually the caseous media server is to support multiple displays (or users) by
that the user does not know exactly what he/she is lookingutilizing a single disk stream. This can be achieved when
for and is only interested in displaying the objects with somemany requests reference an identical CM object. The problem
criteria (e.g., show me today’s news). In general, almost allis, however, when these requests arrive in different time in-
applications using a multimedia DBMS fall into this category.stances. In this section, we explain three approaches to hide
In this case, depending on the user query, user profile, andthe time differences among multiple requests referencing a
session profile, there are a number of flexibilities that can besingle object:
exploited for retrieval optimization. We have identified the
following flexibilities in (69):1. Batching of requests (55–58): In this method, requests

are delayed until they can be merged with other re-
quests for the same video. These merged streams then • Delay flexibility which species the amount of delay the
form one physical stream from the disk and consume user/application can tolerate between the display of dif-
only one set of buffers. Only on the network will the ferent continuous media clips (i.e., relaxed meet, after,
streams split at some point for delivery to the individ- and before relationship (48). In some applications, such
ual display stations. delays are even desirable in order for the user (i.e., hu-

2. Buffer sharing (59–64): The idea here is that if one man perception) to distinguish between two objects).
stream for a video lags, another stream for the same • Selection flexibility which refers to whether the objects
video by only a short time interval; then, the system selected for display are a fixed set (e.g., two objects se-
could retain the portion of the video between the two in lected for display) or they are a suggestion set (e.g., dis-
buffers. The lagging stream would read from the buffers play two objects out of four candidate objects.) This flex-
and not have to read from disk.

ibility is identified; however, we do not use it in our
3. Adaptive piggy-backing (65): In this approach, streams formal definitions. It is part of our future research.

for the same video are adjusted to go slower or faster
• Ordering flexibility which refers to the display order ofby a few percent, such that it is imperceptible to the

the objects (i.e., to what degree that display order of theviewer, and the streams eventually merge and form one
objects is important to the user).physical stream from the disks.

• Presentation flexibility which refers to the degree of flex-
ibility in the presentation length and presentationBatching and adaptive piggy-backing are orthogonal to

buffer sharing. startup latency.

746 DISTRIBUTED MULTIMEDIA SYSTEMS

Profile aware retrieval optimizer (Prime)
accepts the Query-Script, which contains the
user retrieval requirements and flexibilities

(ordering, delay, display-quality, and
presentation) as a formal definition, and then
generates a retrieval plan that is optimal for

the current CM-Server load.
Video clips being

streamed to the user

CM
server

Meta-
Data

Prime

Meta-dataUser profileUser query (e.g.,
“Show me today’s

news”

Sport:
USC vs. UCLA
football;
90 s
(MPEG II)

Sport:
USC vs. Stanford
waterpolo;
60 s
(MPEG I)

Business:
IBM story;
75 s
(MPEG II)

Business:
ATT Story;
60 s
(MPEG I)

4 s

6 s

5 s

Profile aware user query combiner
module (Parrot) accepts a user

query and consults the user profile,
sessions profile, and the meta-data to

generate a Query-Script.

Parrot

Figure 25. System architecture.

• Display-quality flexibility which specifies the display the application. In (69), we also describe a memory buffering
mechanism that alleviates retrieval problems when the sys-qualities acceptable by the user/application, when data

is available in multiple formats (e.g., MPEG I, MPEG II, tem bandwidth becomes fermented, namely the Simple Mem-
ory Buffering (SimB) mechanism. Our simulation studiesetc.) and/or in hierarchical or layered formats (based on

layered compression algorithms) (70, 71). show significant improvement when we compare the system
performance for the best retrieval plan with that of the worst,

With FPR applications, the flexibilities allow for the construc- or even average, plan of all the correct plans. For example, if
tion of multiple retrieval plans per presentation. Subse- latency time (i.e., time elapsed from when the retrieval plan
quently, the best plan is identified as the one which results is submitted until the onset of the display of its first object)
in minimum contention at the CM server. To achieve this, is considered as a metric, the best plan found by Prime ob-
three steps should be taken: serves 41% to 92% improvement as compared with the worst

plan, and 26% to 89% improvement as compared with the av-
• Step 1: gathering flexibilities erage plans when SimB is not applied (see (69)).
• Step 2: capturing the flexibilities in a formal format and
• Step 3: using the flexibilities for optimization

CASE STUDY
In our system architecture (69), Fig. 25, the first two steps

The design and implementation of many CM servers haveare carried out by the Profile Aware User Query Combiner
been reported in the research literature (e.g., (30, 40, 73, 74,(Parrot). It takes an input the user query, user profile, and
75). Commercial implementations of CM servers are also insession profile (e.g., type of monitor) to generate a query
progress (e.g., Sun’s MediaCenter Servers (76), Starlight Net-script (as output). We assume that there exist intelligent
works’ StarWorks (77), and Storage Concepts’ VIDEOPLEXagents that would build user profiles either explicitly (i.e., by

user interaction) and/or implicitly (i.e., by clandestine moni- (78), see Table 2). Many of the design issues that we discussed
toring of the user actions, as in (72). This query script would in this paper have been practiced in most of the above proto-
capture all the flexibilities and requirements in a formal man- types. In this section, we focus on the implementation of Mi-
ner. The query script is then submitted to the Profile Aware tra (Mitra is the name of a Persian/Indian god with thou-
Retrieval Optimizer (Prime) which, in turn, would use it to sands of eyes and ears) (40) developed at the USC database
generate the best retrieval plan for the CM server. laboratory.

Using the query script, Prime defines a search space that
consists of all the correct retrieval plans. A retrieval plan is Mitra: A Scalable CM Server
correct if and only if it is consistent with the defined flexibili-

Mitra employs GSS with g � N , coarse-grain memory shar-ties and requirements. Prime also defines a cost model to
ing, hybrid striping, a three level storage hierarchy with SDFevaluate the different retrieval plans. The retrieval plans are
data flow, no pipelining, and an Everest replacement policy.then searched (either exhaustively or by employing heuris-

tics) to find the best plan depending on the metrics defined by Multi-zone disk drive optimization (11) as well as replication

DISTRIBUTED MULTIMEDIA SYSTEMS 747

Table 2. A Selection of Commercially Available Continuous-Media Servers

Vendor Product Max. No. of Users Max. Streaming Capacity

Starlight StarWorks-200M 133 @ 1.5 Mb/s 200 Mb/s
Sun MediaCenter 1000E 270 @ 1.5 Mb/s 400 Mb/s
Storage Concepts VIDEOPLEX 320 @ 1.5 Mb/s 480 Mb/sa

a The VIDEOPLEX system does not transmit digital data over a network but uses analog VHS signals instead.

and migration optimizations have also been incorporated in free display at a PM. In addition, it manages the disk
bandwidth and performs admission control. Currently,Mitra.

Mitra employs a hierarchical organization of storage de- the scheduler includes an implementation of EVEREST,
staggered striping, and techniques to manage the ter-vices to minimize the cost of providing on-line access to a

large volume of data. It is currently operational on a cluster of tiary storage device. It also has a simple relational stor-
age manager to insert and retrieve information from aHP 9000/735 workstations. It employs a HP Magneto Optical

Juke-box as its tertiary storage device. Each workstation con- catalog. For each media type, the catalog contains the
bandwidth requirement of that media type and its blocksists of a 125 MHz PA-RISC CPU, 80 MByte of memory, and

four Seagate ST31200W magnetic disks. Mitra employs the size. For each presentation, the catalog contains its
name, whether it is disk resident (if so, the name ofHP-UX operating system (version 9.07) and is portable to

other hardware platforms. While 15 disks can be attached to EVEREST files that represent this clip), the cluster and
zone that contains its first block, and its media type.the fast and wide SCSI-2 bus of each workstation, we

attached four disks to this chain because additional disks 2. Mass storage Device Manager (DM): Performs either
would exhaust the bandwidth of this bus. It is undesirable to disk or tertiary read/write operations.
exhaust the bandwidth of the SCSI-2 bus for several reasons. 3. Presentation Manager (PM): Displays either a video or
First, it would cause the underlying hardware platform to not an audio clip. It might interface with hardware compo-
scale as a function of additional disks. Mitra is a software nents to minimize the CPU requirement of a display.
system, and if its underlying hardware platform does not For example, to display an MPEG-2 clip, the PM might
scale, then the entire system would not scale. Second, it ren- employ either a program or a hardware-card to decode
ders the service time of each disk unpredictable, resulting in and display the clip. The PM implements the PM-driven
hiccups. scheduling policy (40) to control the flow of data from

Mitra consists of three software components: the scheduler.

1. Scheduler: This component schedules the retrieval of Mitra uses UDP for communication between the process in-
stantiation of these components. UDP is an unreliable trans-the blocks of a referenced object in support of a hiccup-

HP magneto-optical disk library
(2 drives, 32 platters)

...

...

. . .

PM1 PM2 PMi

HP 9000/735
125 MHz PA-RISC

N: HP-NOSE DM: Disk Manager

ATM Switch

Audio
player

N

MPEG-1
player

N

MPEG-2
player

N

SCSI-2

DM 13

N

DM 14
Scheduler/

user interface

Ever-
estRet.DB

N

DM 1

N

DM 2

N

DM 3

N

DM 4

Catalog

N

DM 9

N

DM 10

N

DM 11

N

DM 12

N

DM 5

N

DM 7

N

N

DM 6

N

DM 8

N

DM 0

N

S
C

S
I-2

 (8
0

 M
b

/s) fa
st

S
C

S
I-2

 (1
6

0
 M

b
/s)

F
a

st a
n

d
 w

id
e

EVEREST
volume 1

EVEREST
volume 2

EVEREST
volume 3

EVEREST
volume 4

EVEREST
volume 5

EVEREST
volume 6

EVEREST
volume 7

EVEREST
volume 8

EVEREST
volume 9

EVEREST
volume 10

EVEREST
volume 11

EVEREST
volume 12

Figure 26. Hardware and software organization of Mitra.

748 DISTRIBUTED MULTIMEDIA SYSTEMS

8. D. Bitton and J. Gray, Disk shadowing, Proc. Int. Conf. Very Largemission protocol. Mitra implements a light-weight kernel
Databases, September 1988.named HP-NOSE. HP-NOSE supports a window-based proto-

9. J. Gray, B. Host, and M. Walker, Parity striping of disc arrays:col to facilitate reliable transmission of messages among pro-
Low-cost reliable storage with acceptable throughput, Proc. Int.cesses. In addition, it implements the threads with shared
Conf. Very Large Databases, August 1990.memory, ports that multiplex messages using a single HP-UX

10. S. Ghandeharizadeh, J. Stone, and R. Zimmermann, Techniquessocket, and semaphores for synchronizing multiple threads
to quantify SCSI-2 disk subsystem specifications for multimedia,that share memory. An instantiation of this kernel is active
Technical Report USC-CS-TR95-610, Univ. Southern California,per Mitra process.
1995.For a given configuration, the following processes are ac-

11. S. Ghandeharizadeh et al., Placement of continuous media intive: one scheduler process, a DM process per mass storage
multi-zone disks. In Soon M. Chung (ed.) Multimedia Informationread/write device, and one PM process per active client. For
Storage and Management, chapter 2, Norwell, MA: Kluwer Aca-example, in our twelve disk configuration with a magneto op-
demic, August 1996.tical juke box, there are sixteen active processes: fifteen DM

12. S. Ghandeharizadeh and C. Shahabi, On multimedia repositories,processes and one Scheduler process (see Fig. 26). There are
personal computers, and hierarchical storage systems. Proc. ACMtwo active DM processes for the magneto juke-box because it
Multimedia, 1994.

consists of two read/write devices (and 32 optical platters that
13. P. S. Yu, M. S. Chen, and D. D. Kandlur, Design and analysis ofmight be swapped in and out of these two devices).

a grouped sweeping scheme for multimedia storage management.The combination of the scheduler with DM processes im-
Proc. Int. Workshop Network Oper. Sys. Support Digital Audio

plements asynchronous read/write operations on a mass stor- Video, November 1992.
age device (which is otherwise unavailable with HP-UX 9.07).

14. D. J. Gemmell and S. Christodoulakis, Principles of delay sensi-This is achieved as follows. When the scheduler intends to tive multimedia data storage and retrieval, ACM Trans. Inf. Sys.,
read a block from a device (say a disk), it sends a message to 10: 51–90, Jan. 1992.
the DM that manages this disk to read the block. Moreover,

15. D. J. Gemmell et al., Delay-sensitive multimedia on disks, IEEE
it requests the DM to transmit its block to a destination port Multimedia, 1 (3): 56–67, Fall 1994.
address (e.g., the destination might correspond to the PM pro-

16. H. J. Chen and T. Little, Physical storage organizations for time-cess that displays this block) and issue a done message to the dependent multimedia data, Proc. Foundations Data Organ. Algo-
scheduler. There are several reasons for not routing data rithms FODO Conf., October 1993.
blocks to active PMs using the scheduler. First, it would

17. A. L. N. Reddy and J. C. Wyllie, I/O Issues in a Multimedia Sys-
waste the network bandwidth with multiple transmissions of tem, IEEE Comput. Mag., 27 (3): March 1994.
a block. Second, it would cause the CPU of the workstation

18. A. Cohen, W. Burkhard, and P. V. Rangan, Pipelined disk arraysthat supports the scheduler process to become a bottleneck
for digital movie retrieval. Proceedings ICMCS ’95, 1995.

with a large number of disks. This is because a transmitted
19. E. Chang and H. Garcia-Molina, Reducing initial latency in adata block would be copied many times by different layers of

multimedia storage system, Proc. IEEE Int. Workshop Multimediasoftware that implement the scheduler process: HP-UX, HP- Database Manage. Syst., 1996.
NOSE, and the scheduler.

20. B. Ozden, R. Rastogi, and A. Silberschatz, On the design of a low-
cost video-on-demand storage system, ACM Multimedia Syst., 4
(1): 40–54, February 1996.

ACKNOWLEDGMENTS
21. P. Bocheck, H. Meadows, and S. Chang, Disk partitioning tech-

nique for reducing multimedia access delay, in Proc. IASTED/
We would like to thank Ali Dashti, Doug Ierardi, Seon Ho ISMM Int. Conf. Distributed Multimedia Systems and Applica-
Kim, Weifeng Shi, and Roger Zimmermann for contributing tions, August 1994, pp. 27–30.
to the presented material. 22. S. Ghandeharizadeh, S. H. Kim, and C. Shahabi, On configuring

a single disk continuous media server, Proc. 1995 ACM
SIGMETRICS/PERFORMANCE, May 1995.

BIBLIOGRAPHY 23. S. Ghandeharizadeh, S. H. Kim, and C. Shahabi, On disk schedul-
ing and data placement for video servers, USC Technical Report,

1. S. Ghandeharizadeh and L. Ramos, Continuous retrieval of mul- Univ. Southern California, 1996.
timedia data using parallelism, IEEE Trans. Knowl. Data Eng.,

24. T. J. Teory, Properties of disk scheduling policies in multipro-1: 658–669, 1993.
grammed computer systems. Proc. AFIPS Fall Joint Comput.

2. D. J. Gemmell et al., Multimedia storage servers: A tutorial, Conf., 1972, pp. 1–11.
IEEE Comput., 28 (5): 40–49, 1995.

25. Y. Birk, Track-pairing: A novel data layout for VOD servers with
3. D. Le Gall, MPEG: a video compression standard for multimedia multi-zone-recording disks, Proc. IEEE Int. Conf. Multimedia

applications, Commun. ACM, 34 (4): 46–58, 1991. Comput. Syst., May 1995, pp. 248–255.
4. J. Dozier, Access to data in NASA’s Earth observing system (Key- 26. S. R. Heltzer, J. M. Menon, and M. F. Mitoma, Logical data tracks

note Address), Proc. ACM SIGMOD Int. Con. Manage. Data, extending among a plurality of zones of physical tracks of one or
June 1992. more disk devices, U.S. Patent No. 5,202,799, April 1993.

5. T. D. C. Little and D. Venkatesh, Prospects for interactive video- 27. R. Zimmermann and S. Ghandeharizadeh, Continuous display
on-demand, IEEE Multimedia, 1 (3): 14–24, 1994. using heterogeneous disk-subsystems, Proc. ACM Multimedia 97,

6. D. P. Anderson, Metascheduling for continuous media, ACM New York: ACM, 1997.
Trans. Comput. Syst., 11 (3): 226–252, 1993. 28. S. Ghandeharizadeh and C. Shahabi, Management of physical

replicas in parallel multimedia information systems, Proc. Foun-7. C. Ruemmler and J. Wilkes, An introduction to disk drive model-
ing, IEEE Computer, 27 (3): 1994. dations Data Organ. Algorithms FODO Conf., October 1993.

DISTRIBUTED MULTIMEDIA SYSTEMS 749

29. D. Patterson, G. Gibson, and R. Katz, A case for redundant 55. A. Dan et al., Channel Allocation under Batching and VCR Control
in Movie-On-Demand Servers, Technical Report RC19588, York-arrays of inexpensive disks RAID, Proc. ACM SIGMOD Int. Conf.

Manage. Data, May 1988. town Heights, NY: IBM Research Report, 1994.
56. A. Dan, D. Sitaram, and P. Shahabuddin, Scheduling policies for30. F. A. Tobagi et al., Streaming RAID-A disk array management

system for video files, 1st ACM Conf. Multimedia, August 1993. an on-demand video server with batching, Proc. ACM Multime-
dia, 1994, pp. 15–23.31. S. Ghandeharizadeh and S. H. Kim, Striping in multi-disk video

servers, High-Density Data Recording and Retrieval Technologies, 57. B. Ozden et al., A low-cost storage server for movie on demand
databases, Proc. 20th Int. Conf. Very Large Data Bases, Sept. 1994.Proc. SPIE, 2604, 1996, pp. 88–102.

58. J. L. Wolf, P. S. Yu, and H. Shachnai, DASD dancing: A disk load32. S. Ghandeharizadeh, A. Dashti, and C. Shahabi, A pipelining
balancing optimization scheme for video-on-demand computermechanism to minimize the latency time in hierarchical multime-
systems, Proc. 1995 ACM SIGMETRICS/PERFORMANCE, Maydia storage managers, Comput. Commun., 18 (3): 170–184,
1995, pp. 157–166.March 1995.

59. M. Kamath, K. Ramamritham, and D. Towsley, Continuous me-33. S. Berson et al., Staggered striping in multimedia information
dia sharing in multimedia database systems, Proc. 4th Int. Conf.systems, Proc. ACM SIGMOD Int. Conf. Manage. Data, 1994.
Database Syst. Advanced Appl., 1995, pp. 79–86.34. S. Ghandeharizadeh et al., Object placement in parallel hyp-

60. B. Özden, R. Rastogi, and A. Silberschatz, Buffer replacementermedia systems, Proc. Int. Conf. Very Large Databases, 1991.
algorithms for multimedia databases, IEEE Int. Conf. Multimedia35. M. Carey, L. Haas, and M. Livny, Tapes hold data, too: Chal-
Comput. Syst., June 1996.lenges of tuples on tertiary storage, Proc. ACM SIGMOD Int.

61. D. Rotem and J. L. Zhao, Buffer management for video databaseConf. Manage. Data, 1993, pp. 414–417.
systems, Proc. Int. Conf. Database Eng., March 1995, pp. 439–448.36. P. J. Denning, The working set model for program behavior. Com-

62. A. Dan and D. Sitaram, Buffer management policy for an on-de-mun. ACM, 11 (5): 323–333, 1968.
mand video server, U.S. Patent No. 5572645, November 1996.37. M. M. Astrahan et al., System R: Relational approach to database

63. A. Dan et al., Buffering and caching in large-scale video servers.management, ACM Trans. Database Syst., 1 (2): 97–137, 1976.
Proc. COMPCON, 1995.38. H. T. Chou et al., Design and implementation of the Wisconsin

64. W. Shi and S. Ghandharizadeh, Data sharing in continuous me-Storage System, Softw. Practice Experience, 15 (10): 943–962,
dia servers, submitted to VLDB ’97, Athens, Greece, August1985.
1997.39. J. Gray and A. Reuter, Chapter 13, Transaction Processing: Con-

65. L. Golubchik, J. Lui, and R. Muntz, Reducing I/O demand incepts and Techniques. San Mateo, CA: Morgan Kaufmann, 1993.
video-on-demand storage servers, Proc. ACM SIGMRTRICS,40. S. Ghandeharizadeh et al., A scalable continuous media server,
1995, pp. 25–36.Kluwer Multimedia Tools and Appl., 5 (1): 79–108, July 1997.

66. C. Shahabi, S. Ghandeharizadeh, and S. Chaudhuri, On schedul-41. S. Ghandeharizadeh and D. Ierardi, Management of disk space
ing atomic and composite multimedia objects, USC Technical Re-with REBATE, Proc. 3rd Int. Conf. Inf. Knowl. Manage. CIKM,
port USC-CS-95-622, Univ. Southern California, 1995.November 1994.

67. C. Shahabi and S. Ghandeharizadeh, Continuous display of pre-42. P. J. Denning, Working sets past and present, IEEE Trans. Softw.
sentations sharing clips, ACM Multimedia Systems, 3 (2): 76–Engi., SE-6: 64–84, 1980.
90, 1995.

43. S. Ghandeharizadeh et al., Placement of data in multi-zone disk
68. S. T. Cambell and S. M. Chung, Delivery scheduling of multime-drives, Technical Report USC-CS-TR96-625, Univ. Southern Cali-

dia streams using query scripts. In S. M. Chung (ed.), Multimediafornia, 1996.
Information Storage and Management, Norwell, MA: Kluwer, Au-

44. K. C. Knowlton, A fast storage allocator, Commun. ACM, 8 (10): gust 1996, Chapter 5.
623–625, 1965.

69. C. Shahabi, A. Dashti, and S. Ghandeharizadeh, Profile aware
45. H. R. Lewis and L. Denenberg, Chapter 10, Data Structures & retrieval optimizer for continuous media, submitted to VLDB ’97,

Their Algorithms, 367–372, New York: Harper Collins, 1991. Athens, Greece, August 1997.
46. G. Copeland et al., Data placement in bubba, Proc. ACM SIGMOD 70. K. Keeton and R. H. Katz, Evaluating video layout strategies for

Int. Conf. Manage. Data, 1988, pp. 100–110. a high-performance storage server, ACM Multimedia Syst., 3 (2):
47. T. H. Cormen, C. E. Leiserson, and R. L. Rivest (eds.), Introduc- May 1995.

tion to Algorithms. Cambridge, MA: MIT Press, and New York: 71. S. McCanne, Scalable Compression and Transmission of Internet
McGraw-Hill, 1990. Multicast Video, PhD thesis, Berkeley: University of California,

48. J. F. Allen, Maintaining knowledge about temporal intervals, 1996.
Commun. ACM, 26 (11): 832–843, 1983. 72. C. Shahabi et al., Knowledge discovery from users web-page navi-

49. R. Reddy, Some research problems in very large multimedia da- gation, Proc. Res. Issues in Data Eng. RIDE Workshop, 1997.
tabases, Proc. IEEE 12th Int. Conf. Data Eng., 1996. 73. P. Lougher and D. Shepherd, The design of a storage server for

50. G. Ozsoyoglu, V. Hakkoymaz, and J. Kraft, Automating the as- continuous media, Comput. J., 36 (1): 32–42, 1993.
sembly of presentations from multimedia databases, Proc. IEEE 74. J. Hsieh et al., Performance of a mass storage system for video-
12th Int. Conf. Data Eng., 1996. on-demand, J. Parallel and Distributed Comput., 30: 147–167,

51. C. Shahabi, Scheduling the Retrievals of Continuous Media Ob- 1995.
jects, PhD thesis, Univ. Southern California, 1996. 75. C. Martin et al., The Fellini multimedia storage server, in S. M.

52. M. Garey and R. Graham, Bounds for multiprocessor scheduling Chung (ed.), Multimedia Information Storage and Management,
with resource constraints, SIAM J. Comput., 4 (2): 187–200, 1975. Norwell, MA: Kluwer, August 1996, Chapter 5.

53. S. Ghandeharizadeh et al., On minimizing startup latency in 76. Sun� MediaCenter� Series, Server Models 5, 20, and 1000E, Sun
scalable continuous media servers, Proc. Multimedia Comput. Microsystems, Inc., 2550 Garcia Ave., Mtn. View, CA 94043-
Networking, Proc. SPIE 3020, Feb. 1997, pp. 144–155. 1100, 1996.

77. Starlight� StarWorks� 2.0, Starlight Networks, Inc., 205 Raven-54. T. Ibaraki and N. Katoh, Resource Allocation Problems—
Algorithmic Approaches, Cambridge, MA: The MIT Press, 1988. dale Drive, Mountain View, CA 94043, 1996.

750 DISTRIBUTED PARAMETER SYSTEMS

78. The New Standard in Modular Video Server Technology, VID-
EOPLEX Video-on-Demand, Storage Concepts, Inc., 2652 McGaw
Avenue, Irvine, CA 92714, 1995.

SHAHRAM GHANDEHARIZADEH

CYRUS SHAHABI

University of Southern California

