
ARTIFICIAL INTELLIGENCE

OVERVIEW

The field of Artificial Intelligence (AI for short) attempts to
understand the principles of intelligence. Unlike philoso-
phy and psychology, which are also concerned with intel-
ligence, the goal of AI is to synthesize intelligent entities,
not only analyze them. The traditional way to define the
research topic is based on intuition:

AI is the art of creating machines that perform func-
tions that require intelligence when performed by peo-
ple (36).

This definition for AI reduces to the question of what in-
telligence is. There is a feel of indefiniteness in this concept:
whenever one exactly knows how something is done, the
aura of intelligence vanishes. Indeed, in AI, the goals seem
to escape — as soon as an AI problem has been solved, it no
more feels like real AI. A good example is the game of chess:
originally, the goal was to construct a program that could
play a reasonable end-game; as this was achieved, the goal
was to achieve still better functionality; but, even though
the computer can today beat the World Chess Champion,
intuitively, it seems that there is the essence of intelligence
still missing. Intelligence can be seen as an emergent phe-
nomenon defying exact definitions — and, by the above def-
inition, this applies also to AI.

The most concrete view of AI is found when one looks
at what the AI researchers do. AI currently encompasses a
huge variety of subfields, from general-purpose areas such
as perception and logical reasoning, to specific tasks such
as playing games, proving mathematical theorems, writing
poetry, and diagnosing diseases. Often, scientists in other
fields facing complex problems move gradually towards AI,
where they find the tools and the vocabulary to systemize
and automate their studies. Similarly, workers in AI can
choose to apply their methods to any area of human in-
tellectual endeavor. In this sense, AI is truly a universal
field.

AI is not only universal — it seems to be a paradigm be-
tween paradigms, hosting studies that cannot yet be classi-
fied in existing categories. AI is an interdisciplinary frame-
work between cognitive science, philosophy, and computer
science,and it has an important role as the source of new in-
tuition. It is a framework also for heuristic studies of more
or less playful nature that have not yet reached the level
of standard science; ideas that are too wild can first only
be discussed in this framework. Only after new techniques
have been firmly established, they can become approved in
other disciplines — but, on the other hand, something that
has been established, when it is just a matter of mechani-
cal implementation, is no more so interesting from the AI
point of view.

As the mystery of what intelligence is will assumedly
always remain unsolved, AI will always be in turmoil. The
methods will change, and one cannot foresee what kind of
transformations take place in this field in the future. Today,

AI already has a long history.
In many universities the computer, or the “electronic

brain”, was first studied in connection with electrical engi-
neering. It was only natural that the engineering-like ex-
plorations in the brain functions were also started in these
faculties. This historical connection between AI and elec-
trical engineering motivates a lengthy introduction into AI
also in this Encyclopedia.

Brief history

From the engineering point of view, most technical deci-
sions are rather pragmatic, that is, the decisions whether
to apply a specific technique or not are based on strictly
objective criteria. In AI, however, there are opinions and
prejudices that are not always objective. It is a rather new
field with peculiar, heuristics-based methods. Much too op-
timistic predictions have been much too common. There
have been promises, expectations, often followed by disap-
pointments. The term AI today seems to be loaded with
connotations. To have some perspective, a short introduc-
tion to the background of the modern AI methodologies is
in place.

Early years. The nature and the principles of human
thinking has been the subject of intense philosophical in-
terest for centuries, and also visions of a “mechanical man”
were presented a long time ago. But everything from the
pre-computer era belongs to the pre-history of AI. It is the
Darthmouth College in 1956 that can be called the birth-
place of modern AI — in that summer, enthusiasts collected
together, most notably from MIT (Massachusetts Institute
of Technology), CMU (Carnegie Mellon University), Stan-
ford University, and IBM. In the early years, the AI re-
search was centered in these institutions. What was per-
haps the most long-lasting contribution, during that work-
shop the name “artificial intelligence” was adopted.

The early years of AI until the late sixties were full of
success — in a limited way: this was the time when ev-
erything that seemed even remotely intelligent was seen
as success. There were plenty of distinct applications for
demonstrating that specific human tasks, on the neuronal
level and on the higher cognitive levels, could really be
implemented in software. In addition to different kinds
of demonstrations, the general AI tools were also devel-
oped: John McCarthy introduced the high-level program-
ming language Lisp in 1958. This language, being tailor-
made for symbol manipulation tasks, became the standard
in AI programming.

From the point of view of knowledge engineering, one
of the most prominent early applications was the Logic
Theorist (LT) by Allan Newell and Herbert Simon: given
the axioms, it was capable of proving mathematical theo-
rems. Later, they introduced the General Problem Solver
(GPS) that was programmed to carry out human-like prob-
lem solving strategies (49). It was characteristic to these
first generation systems that intelligence was assumed to
be based on clever search strategies and syntactic manipu-
lations of data structures.

At this early era, the potential of the new machines and
methodologies seemed unlimited, and the optimism was
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overwhelming. There were fundamental problems, though,
and the proposed methodologies were successful only in
very limited “toy domains”. The huge, exponentially grow-
ing sizes of the search spaces were regarded as a prob-
lem that would be solved with the more efficient hardware.
However, it turned not to be so, and by the end of 1960’s,
practically all U.S. government funding for academic trans-
lation projects was cancelled — this started a depression
period in the AI field. This marked the end of early AI en-
thusiasm.

Role of knowledge. In the second generation systems the
significance of knowledge was recognized. It was no more
the special-purpose data structures that were assumed to
account for intelligence; the inference engine was the same
in different problems, it was the corpus of knowledge that
was now responsible for intelligent behavior.

The application of the AI methodologies to real-world
problems caused an increase in the demands for workable,
general knowledge representation schemes. A large num-
ber of representation formalisms were developed — most
notably, perhaps, the Prolog language that was based on
first-order predicate logic. Other researchers emphasized
the need of more structural knowledge representations. in
addition to rules, in more complex applications frames or
scripts were employed.

In the seventies the AI applications in the form of knowl-
edge engineering and expert systems became commercially
realistic. Later in the eighties, it also became good business:
it was the Japanese Fifth Generation project that specially
boosted the research activity and common interest world-
wide.The industrial scale applications made it necessary to
combine the AI methodologies in the standard-style envi-
ronments. In embedded systems the knowledge-based unit
is an integrated part of the system, so that the straight-
forward data processing tasks are carried out by tradition-
ally realized program modules. The expert systems were
applied to many engineering problems, for example, expert
control became a hot topic.

New possibilities and challenges to knowledge repre-
sentation and processing have been offered by the World
Wide Web. Today, it is the Semantic Web where the main
emphasis seems to be: the “intelligent internet” would fa-
cilitate extension of the AI techniques from local to global
environments. In such systems, the problem of automat-
ing the association of concepts has been changed into the
problem of implementation of ontologies. There already ex-
ist efficient tools for information search and distribution,
and new applications are introduced at a brisk pace.

Connectionism. When knowledge-based systems were
implemented, the brittleness and the unpredictability of
the symbolic rule-based inference became a major prob-
lem in engineering applications. The fuzzy systems were
introduced as a solution, so that the originally linguistic
rules can be transformed in a consistent way into a numeric
form. The “numerical rules” make it possible to implement
efficient and fault-tolerant inference systems, and it is also
easier to verify the integrity of the knowledge base.

But numeric approaches are not only an implementa-
tion technique. Another approach to synthesizing intelli-

gent systems is to proceed bottom-up, starting from the
low-level functional entities; the starting point is the ob-
servation that mind has to be based on the real nerve cells.
Indeed, such connectionistic approaches have practically
as long history as the computational ones.

In 1940’s and 1950’s, the basic observations underlying
the current artificial neural networks were made. Donald
Hebb found a simple mathematical formulation for neural
adaptation; Warren McGulloch and Walter Pitts showed
how first-order logic can be implemented by neural sys-
tems. Marvin Minsky and Seymour Papert introduced the
perceptron in 1969. The real boost in parallel distributed
processing came in the 1980’s, largely due to James L.
McLelland, David E. Rumelhart, and their PDP research
group. There exist many different approaches to connec-
tionism — for example, the self-organizing maps of Teuvo
Kohonen offer an alternative to the perceptron networks.

The subsymbolic approaches seem to offer new tools for
attacking the deficiencies of the symbolic knowledge sys-
tems: one of the primary promises is the enhanced capa-
bility of machine learning.

The dichotomy between the computational top-down ap-
proaches and the connectionistic bottom-up approaches is
a fundamental one: it seems that the qualitative and quan-
titative worlds cannot be easily connected. In this respect,
AI is related to other areas of current activity; in complex-
ity theory one tries to find the simple underlying principles
beyond the observed surface-level complexity. In this per-
spective, the symbols can be seen as emergent patterns re-
flecting attractors of dynamic processes in an environment.
Intelligence is in the functions, not in the machinery.

AI megatrends. New applications of AI techniques are
introduced ever faster. The evolving, more and more com-
plex computer network environments have lately become
one of the driving forces in AI. Distribution of intelligence
and applications of intelligent agents are coming also to
the shop-floor level in modern automation systems.

Below the surface, some fundamental changes are tak-
ing place. In recent years both the content and the method-
ology of research in AI has changed. It is now more common
to build on existing theories than to propose brand new
ones; claims are based on rigorous theorems or hard exper-
imental evidence rather than on intuition, and real-world
problems have substituted the toy examples. In a way, the
AI field has matured. The research is more professional
and serious. It is generally recognized that the problems of
AI are much more difficult than was assumed in the past.

Regardless of the lessons learned, it still seems that
the fluctuation between enthusiasm and despair contin-
ues in AI in some 20 year cycles. The new generations of
researchers do not necessarily recognize that regardless of
the new terminologies, the age-old AI challenges are still
largely the same. For example, about 20 years ago it was
the expert systems with the declarative knowledge repre-
sentations that were proposed as the solution to the knowl-
edge management problem — today, it is the semantic web
with the ontologies that is proposed for the same purpose.
And, just as 20 years ago, it again seems that maintain-
ability of such systems is the key challenge.
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Still, something has changed — developments in AI are
not a cycle but a spiral. Due to technological advances, the
tools are now different, and so is the view of the world.
Whereas the old expert systems were monolithic entities,
the new semantic web applications are truly distributed,
knowledge being delocalized in the net. Perhaps the prob-
lems with knowledge maintenance can be circumvented as
the system updates are carried out by distributed agents?

One of the most characteristic developments in contem-
porary AI in general is this transition from centralized
solutions to distributed ones. It has even been said that
AI today stands for “agent intelligence” or “ambient intel-
ligence”. As can be seen in (58), a shift in this direction
has already been taken. However, regardless of the uni-
fying agent framework, conceptual and practical tools to
efficiently functionalize the decentralization schemes are
still not yet there.

AI debate

As discussed in (58), the question “can machines think” can
be compared to two other formally analogical questions:
“can machines fly” and “can machines swim”. Most people
would agree that the answer to the first question is yes
(airplanes can fly), but the answer to the second question
is no: even if boats and submarines go through water, but
this act is normally not called swimming — only creatures
with limbs, etc., “really” swim. Similarly, the act of thinking
is intuitively limited to humans.

Largely due to the semantically loaded concepts, there
is an ongoing debate about the limits of AI. In the other
extreme, some think that “the human mind can never un-
derstand its own functioning”; the positivists, on the other
hand, are sure that “within 20 years the computer is so fast
that it necessarily outperforms human”. But perhaps the
essence is not in the machinery but in the functioning?

Strong vs. weak AI. One of the most original contribu-
tions in AI (before the name was coined) is the Turing
test, also known as the “imitation game” (70). This test
changes the problem of intelligence into a concrete, mea-
surable form — the experiment setup can be summarized
in a slightly modified form as follows:

An interrogator (a human) communicates with an-
other party via a teletype. The interrogator can ask in
writing whatever questions he likes, and the replies
are given to him also in a written form. The computer
passes the test if the interrogator cannot say whether
there is a human or a computer at the other end.

This is a purely behavioral view of AI. It does not matter
what are the internal processes, as long as the input-output
mapping operates sufficiently. This is called the weak AI
approach. In engineering applications, like in expert sys-
tems where the reasoning rules can explicitly be stated, the
weak view of AI has been enough to reach useful results in
practice. It is possible to mimic intelligent behavior simply
by implementing the rule processing mechanisms. What
comes to practical applications, nobody doubts the value of
this pragmatic view of AI.

Intuitively, however, the above definition for intelligence
is not quite satisfactory. This has parallels in psychology:
the behavioristic research tradition has been substituted
by cognitivism and constructivism, where the mental pro-
cesses play a vital role. As it seems that the “easy wins”
in AI have already been exhausted, the simple methodolo-
gies having been experimented in almost all applications,
perhaps it is time to proceed towards “artificial construc-
tivism”? To reach added value and new functionality in the
AI systems, the internal structure of the knowledge repre-
sentations and the inference mechanisms needs to be stud-
ied closer.

One of the most concrete criticisms against the weak AI
interpretation is the “Chinese room” argument due to John
Searle (60):

The system consists of a human equipped with a rule
book and various stacks of paper, some blank, some
with indecipherable inscriptions. The system is in
a room with a small opening to the outside. Slips
of paper appear in the room through the opening.
The paper slips are filled with indecipherable sym-
bols, and the role of the human is to go through the
rule book, searching there for matching symbols, and
respond accordingly: writing symbols on the paper
slips, selecting symbols from the stacks, and rear-
ranging them. Eventually, a paper filled with sym-
bols will be handed through the opening to the out-
side world.

It turns out that the symbols are Chinese charac-
ters, and the rule book contains rules for carrying out
a conversation. In the sense of Turing, this system
passes the intelligence test. However, the human in
the room does not understand Chinese, and the rule
book and the stacks of paper do certainly not under-
stand Chinese. Can the system be called intelligent
if there is no understanding going on?

According to this argument, running a right program
does not generate understanding.

In the other extreme, some researchers claim that there
cannot exist intelligence without consciousness. An intel-
ligent entity has to be aware of what it is doing — pre-
programmed behavior does not fit our understanding of
what intelligence is all about. This view is called strong AI.
Even if the researchers and application engineers could
leave the question of consciousness to philosophers, there
is an on-going, heated discussion that cannot be avoided
when speaking of AI. So, can the computer ever be truly
intelligent?

Objections against AI. The main arguments against AI
can loosely be grouped in three categories that are closely
related:

1. The argument of intentionality is the formalization
of the above Chinese room example: in an artificial
system there can be no understanding (60).

2. The argument from informality states that the hu-
man behavior is much too complex to be captured by
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Figure 1. The basic structure of knowledge-oriented systems: the
domain-specific knowledge is separated from the general inference
mechanisms

any simple set of rules (12).
3. The mathematical objection against AI is that, as

shown by Gödel, a consistent formal system is nec-
essarily incomplete: all true facts cannot be deduced
using mechanical rules. Machines are inferior to hu-
mans, who can always “step outside” the limiting
logic (41).

According to Searle, consciousness is an emergent prop-
erty of appropriately arranged combinations of neurons
only. Roger Penrose goes even deeper: intelligence and “free
will” emerges from stochastic quantum processes that can-
not be emulated in software (52). A commentary on the
informality argument is available in (67).

Without trying to answer the above questions, the brain
prosthesis experiment illustrates the opposite functionalist
viewpoint — intelligence cannot be bound to the physical
level implementation (48):

Assume that neurophysiology has been developed to
the point where the behavior and connectivity of all
the neurons in the brain are perfectly understood.
Further assume that there are techniques for replac-
ing the neurons, one by one, with identically behav-
ing electronic devices, without interrupting the oper-
ation of the brain as a whole.

By definition of the experiment, the subject’s ex-
ternal behavior must remain unchanged compared to
what would have been observed if the operation were
not carried out. Is it then not also the consciousness
that remains, despite the non-biological substrate?

Clearly, following one’s own intuitions, one easily ends
in paradoxes. In what follows, the approach is pragmatic:
the goal of an AI system is to do thinking-like things.

Closer look at AI techniques

The viewpoint of AI in this article is rather technical, con-
centrating on methodologies that have proved useful. The
focus is on knowledge. The very basic structure underly-
ing the knowledge based systems is shown in Fig. 1. There
are two parts — first, the knowledge base contains the
domain-area expertise in an explicit, declarative rather
than procedural form, and, second, the inference engine
is the rather simple general-purpose machinery that pro-
cesses the declarative knowledge according to predefined
principles (to be precise, the term “inference” refers to a
subclass of knowledge oriented activities; in this context
“reasoning engine” would perhaps be a more appropriate
name).

What is then inside the boxes; how is the knowledge
represented, and how is it processed? This is studied in the

following section.

About this article. This article only discusses AI from
the point of view of how to present knowledge, how to uti-
lize that knowledge, and how to make the machine auto-
matically acquire new knowledge. The following section
discusses knowledge representation formalisms, different
logical systems, semantic nets, etc. Planning and problem
solving based on different search strategies is studied. Af-
ter that, reasoning mechanisms are studied — in addition
to traditional rule-based inference, probabilistic reasoning
as well. The next section is about machine learning. Fi-
nally, the experiences are summarized, and a framework
is presented where knowledge representation, reasoning,
and machine learning can be combined in a plausible way.

Important fields of AI, like pattern recognition and nat-
ural language processing, are discussed in separate arti-
cles in this Encyclopedia. The approach in this article is
mainly symbolic — again, there are separate articles on
fuzzy systems and connectionistic approaches like differ-
ent neural network structures to be found elsewhere in
this Encyclopedia. Knowledge engineering and expert sys-
tems are covered in detail in other articles, and information
about practical AI tools and applications are presented in
those articles.

Further information. There are dozens of books on AI
available — for example, see (5). A classic textbook on AI
is (72), while a more up-to-date, exhaustive presentation
of the field is given in (58). The philosophical and prac-
tical questions of AI are discussed in (27). A specialized
encyclopedia on AI has also been published (63). Interest-
ing personal views and visions about AI are presented, for
example, in (3), (20), and specially in (65) and (47). Collec-
tions of some of the classic publications in AI, either from
the philosophical or from the cognitive science point of view
also exist (see (4) and (10), respectively).

Most recent results appear in the proceedings of the
major AI conferences: the largest one is the biennial In-
ternational Joint Conference on AI (IJCAI), and other main
meetings include the National Conference on AI (AAAI) and
the European Conference on AI (ECAI). The major jour-
nals in the field of general AI are Artificial Intelligence and
Computational Intelligence, and the electronic Journal of
Artificial Intelligence Research. Various more specialized
journals also exist on AI techniques and applications.

KNOWLEDGE REPRESENTATION

Computer solutions to many problems in AI depend more
on the availability of a large amount of knowledge than
on sophisticated algorithms. To make the large knowledge
bases easily accessible, to assure fast retrieval and infer-
ence, the format of the knowledge is an important issue.
The conceptual efficiency is also a good motivation for clever
organization of knowledge in AI systems: the structure of
the knowledge representation has to aid in understand-
ing the body of knowledge to facilitate its maintenance.
Compressed, domain-oriented formalisms are the key to
abstracting the problem field, and they help in mastering
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the knowledge intuitively. Various knowledge representa-
tion schemes have been proposed to achieve benefits in dif-
ferent application domains.

Representation in logic

In the community of traditional AI, there is a rather wide
consensus about the nature of knowledge and reasoning:
knowledge representation is logic, and reasoning is a form
of automatic theorem proving. The starting point in all logic
formalisms is the first-order predicate logic (54).

First-order predicate logic. First order logic is universal
in the sense that it can express anything that can be pro-
grammed — in a more or flexible way. It is also by far the
most studied and best understood logic scheme yet devised.
Generally speaking, other proposals involving additional
capabilities are still debated and only partially understood.
Other proposals that are a subset of the first-order logic are
useful only in limited domains. There exist special logic
programming languages, like Prolog.

The basic elements in first-order predicate logic are
terms that can be constants, variables, or functions. An-
other elementary concept is the predicate that stands for
a relation. These building elements are used in sentences:
whereas the terms refer to objects in the domain universe,
the sentences are used to state facts concerning the objects.
For example, the following atomic sentence (employing the
predicate “Canary” and the constant “Tweety”) says that
“Tweety is a canary”:

Canary (Tweety).

To construct more complicated sentences, logical connec-
tives from the propositional calculus are available: disjunc-
tions and conjunctions (∨ for “or”, and ∧ for “and”), nega-
tions (¬), and implications (→). The following compound
sentence states that “Bill is the owner of Tweety” and “Bill
is a boy”.

Owner(Tweety,Bill) ∧ Boy(Bill).

The quantifiers are the key to the expressional power of
the first-order predicate calculus. There are the universal
(V) and the existential (3) quantifiers, having the mean-
ing “for all” and “for some” (at least one), respectively. The
following sentence means that “all canaries are yellow”:

∀x: Canary(x) → Yellow(x).

The quantifiers can be combined, and the order of them
is significant. The following sentence means that “all ca-
naries have (some) canary parents”:

∀x ∃y: Canary(x) → (Canary(y) ∧ Parent(x, y)),

whereas the following sentence means that “there is
some boy that likes all canaries”:

∃x ∀y: Canary(y) → (Boy(x) ∧ Likes(x, y)).

To achieve understandability and easy maintainability,
it may be preferable to leave the logical relationships in
the original form that resembles natural language sen-
tences. However, to implement efficient reasoning mech-
anisms, the knowledge has to be expressed in a compact
form.

Transformations of expressions. There are various logical
equivalences that can be used for modifying logical expres-
sions. First, assuming that P and Q are arbitrary sentences,
one can utilize the de Morgan rules:

¬(P ∧ Q) ≡ ¬P ∨ ¬Q and ¬(P ∨ Q) ≡ ¬P ∧ ¬Q.

Because the quantifiers have close connection to the con-
nectives (universal quantifier is the “conjunction over the
universe of objects”, for example), there also holds

¬∀x: P(x) ≡ ∃x: ¬P(x) and ¬∃x: P(x) ≡ ∀x: ¬P(x).

Applying this kind of modifications, the sentences can be
transformed into normal forms. After the transformations,
the knowledge base may finally look like (all sentences uni-
versally quantified)

P1,1 ∧ P1,2 ∧ ...→ Q1,1 ∧ Q1,2 ∧ ...

.

.

. Pn ,1 ∧ Pn ,2 ∧ ...→ Qn ,1

∧ Qn ,2 ∧ ...,

so that new facts (Qi,j) can be deduced from known facts
(Pi,j) in a straightforward manner (see next section). An-
other form that is specially useful only contains sentences
of the form

P1,1 ∧ P1,2 ∧ ...→ Q1

.

.

. Pm ,1 ∧ Pm ,2 ∧ ...→ Qm .

Alternatively, the above Horn clauses are often (for ex-
ample, in Prolog) presented in another form, as

Q1 :− P1,1, P1,2 ...

.

.

. Qm :− Pm ,1, Pm ,2 ....

All these formulations make it possible to implement
efficient inference mechanisms.

In first order logic, one can quantify only over objects,
whereas higher-order logics allow one to quantify over func-
tions and relations also. For example, in higher-order logic
it is possible to say that two objects are equal if and only if
all properties applied to them are equal:

∀x ∀y: (x = y) ↔ (∀p: p(x) ↔ p(y)).

Higher-order logics are essentially more powerful than
first-order logic. However, very little is known of how to
reason effectively with this kind of sentences — and the
general problem is known to be undecidable. In practice,
the first-order logic usually suffices: it is well understood
and still very expressive.

Extended logic formalisms. In addition to the first-order
logic, various other formalisms have been developed, either
to match the “natural” way of thinking better, or to cope
with practical applications. Different kinds of intensional
logics exist for special purposes.

To act in an intelligent way, AI systems may need mech-
anisms to cope with concepts like possibility and necessity
— it is modal logic that studies facts that are not only true
but necessarily true. It is possible to construct full logic cal-
culus based on first-order predicate logic and augmented
with these concepts: note that if it is so that a fact A does
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not necessarily hold, it is possible that the negation of A
applies, or, written formally, ¬�A ≡ �¬A. Another exten-
sion is the autoepistemic logic that formalizes the concepts
of knowing and believing. It has been shown that many of
the logic extensions are equal to each other, what comes to
their expressional power.

One of the formalisms that have been developed to cope
with real-life problems is temporal logic. When modeling
dynamic processes using AI techniques, for example, it is
very natural to model phenomena in terms of causal re-
lationships, and to accomplish this the notion of time is
essential. The basis for many temporal representations is
situation calculus (SC) (42). A situation is a snapshot of the
universe at a given moment, and actions are the means of
transforming one situation into another. Situation calcu-
lus makes several strong commitments: the first is about
discreteness of time, so that continuous processes cannot
be modeled; the second assumption is about contiguity of
cause and effect, so that the effects of an action are man-
ifested immediately. The framework does not either allow
concurrent actions.

Despite the limitations of the modeling based on logical,
non-quantitative measures, in qualitative physics models
are constructed also for real-life continuous systems. An-
other approach to capturing the complexity of real world
into compact dependency structures is proposed in system
dynamics (62).

Structured representations

There are various special knowledge architectures that are
meant for special tasks to find domain-oriented, optimized
representations. However, there is a dilemma: the more
structured the representations are, the more complex pro-
cessing mechanisms are also needed. One has to compro-
mise between generality and conceptual efficiency. In the
following, two “frame works” are presented that can be
regarded as extensions of the basic logic formalisms into
practical, complex applications.

Frame theories. Marvin Minsky’s proposal (46) that
knowledge could be represented by a set of frames sparked
a new generation of knowledge representations. The pri-
mary goal is to capture the real-world (or “common sense”)
knowledge in the representations in a practical way. A
frame is a complex data structure representing a proto-
typical situation. For example, the concept “bird” could be
represented by

frame BIRD size: NUMBER constraint size > 0.0
flies: LOGICAL default = yes

The contents of the frame is a list of slots that define
relationships to other frames playing various roles in the
definition. The above example illustrates how the value
types and ranges in the slots can be constrained; and in
the absence of other information, what is the default value
to assume.

An essential feature of the modern frame formalisms is
the inclusion of ISA hierarchies: structures can be shared
between frames. For example, when one defines that a
“bird” is an “animal”, all properties of an animal are inher-

ited by a bird. The more general frame defines the defaults,
even if these default values can be redefined in more spe-
cialized frames. Another extension in the frame systems
are the procedures that allow one to associate more sophis-
ticated operations to frames and slots.

The idea of using frames to capture structured represen-
tations is a rather universal one, and this idea has many
reincarnations. In Prolog, for example, structured repre-
sentations are implemented in the form of hierarchical list
structures. In special contexts, different names are used
for frame-like structures — these alternative names in-
clude “scripts” and “schemata”. Also more general names
like “concept”, “unit”, and “class” have been used. As a mat-
ter of fact, one can see that this idea of classes lives on
in the general-purpose object-oriented programming lan-
guages. The objective is to capture the essence of real-life
entities in a natural way — actually, it is no wonder that
the idea of concept hierarchies can be traced back to the
Aristotelian taxonomies.

Network formalisms. A semantic network is a structure
for representing knowledge as a pattern of interconnected
nodes and arcs. Most versions of semantic nets are oriented
toward the special features of natural languages, but the
more recent versions have grown in power and flexibility
so that they can be regarded as general knowledge repre-
sentation formalisms. In practice, the implementation of
semantic nets and frame systems can be identical; there
is not very big difference between these two. As in the
frame systems, also in the semantic net formalisms differ-
ent kinds of extensions have been proposed to enhance the
expressiveness — for example, procedural routines can be
included in the nodes, and approaches towards incorporat-
ing quantifiers in the logical structure have been proposed.

The knowledge representation in predicate logic has
the relations between entities as building blocks, so that
knowledge about one entity is often distributed between
various representational units. In frame-based represen-
tations, the relevant relations concerning an entity are
collected together, and, further, in semantic nets the rela-
tions that are relevant to an entity are shown in a two-
dimensional, visually understandable “mind map” form.
Perhaps this understandability of semantic nets is their
main advantage over the other representations.

In Fig. 2,a very simple semantic network is shown. Even
if one of the deficiencies of semantic networks is the lack of
common agreement on the notations, there are some prac-
tices: in the figure, the subsets and set members are con-
nected to the “parent” sets by arcs, and arcs are also used
for representing other relations (the name of the relation
is given above the arc). Relations with quantifiers have the
relation name in a box (like in “all canaries are yellow” in
the figure). If all Bill’s relations, etc., were written out, a
real network would result; and in practical applications, to
deal with exceptions (like birds that do not fly), etc., more
sophisticated notations are needed.

Representing uncertainty

The knowledge that is available is often uncertain, impre-
cise, erroneous, or incomplete. Mechanizing the reasoning
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Figure 2. A simple semantic network

that is based on uncertain knowledge has proved difficult,
because the classical methods that are based on logic pre-
suppose exact facts. The management of uncertainty in
expert systems has usually been left to ad-hoc solutions
lacking sound theory, but on the theoretical side, various
well-founded approaches exist (64).

There are different ways to characterize methods to han-
dle uncertainty. One can classify the approaches to exten-
sional and intensional ones. In extensional systems, clas-
sical logic is used as a starting point, and the uncertainty
is expressed as “numerical truth values”. The uncertainty
of the conclusion is defined as a straightforward function
of the component uncertainties. The extensional methods
include multiple-valued logics (and also fuzzy logic sys-
tems), and the different certainty factor implementations
that have been used in the traditional rule-based expert
systems.

In intensional systems, however, more theoretical ap-
proaches are preferred; uncertainty is integrated in the
“possible worlds” underlying the facts and rules, so that
uncertainty propagation is based on rigid semantic models
rather that on syntactical structures. Whereas the exten-
sional approaches are pragmatic and easily implemented,
the intensional ones are semantically more powerful. Rea-
soning principles that are based on intensional models are
explained in more detail later.

PLANNING AND PROBLEM SOLVING

In planning and in problem solving the objective is to find
an action sequence that would lead from the initial state to
a goal state. Planning and problem solving are discussed
here together, even if these subjects differ from each other
in detail: the representations for goals, states, and actions
are different. Planning is usual terminology in robotics,
production automation, and in study of autonomous ve-
hicles, whereas problem solving is more theoretically ori-
ented. The real-world planning tasks are often reducible,
so that the problem can naturally be divided in subtasks
— the problem solving cases usually cannot.

The knowledge representations that are used for de-
scribing the problem field are those that were reviewed
in the previous section (specially, situation calculus and
the frames are often used as frameworks for structuring
the search space and mastering the state transitions). The
implementation of actions based on the knowledge repre-
sentations is studied in the next section.

Problem spaces

The idea of problem spaces is a useful abstraction; it is a
tool to reach a more unified view of AI problems. A prob-
lem space is the environment in which the search for the
problem solution takes place. Generally, a problem space
consists of the set of states and the set of operators that
can be applied to move from a state to another. A state
can be expressed as a set (vector) of variable bindings that
uniquely determine the situation at hand; the operators
modify the state variable values. A problem instance is a
problem space together with an initial state and a goal
state; the goal state can be given explicitly, or if there does
not exist a unique goal, certain properties are defined that
have to be satisfied by the goal state. Usually various sub-
tasks need to be completed before the goal state can be
reached — the planning or problem solving task is to find
a sequence of operators that map the initial state into the
goal state. In a textual form, the primitive actions, or the
state transitions can be presented in the rule form

<Preconditions> → <Postconditions>,

so that if the preconditions are fulfilled, the postcondi-
tions are used to modify the current state.

The transitions from a state to another are conveniently
presented as graphs. The graphs are often expressed in a
simple form as trees, where the path from the initial state
or root node to any of the other nodes seems to be unique.
However, usually there are various alternative paths, and
the tree-form representation becomes redundant, various
nodes in the tree representing essentially the same state.

In simple cases, the problem space reduces to a state
space. In state space the nodes represent actual configu-
rations of the problem to be solved, and the edges repre-
sent primitive actions. The problem-reduction space is an-
other type of a problem space: in problem-reduction spaces
the nodes represent complete subproblems that can be
solved by single primitive actions, and the edges represent
problem-reduction operators which decompose the given
problem into a set of subproblems.

Search strategies

Whatever is the structure of the problem space, to find the
path from the initial state to the goal state, efficient search
methods are needed.

Brute-force methods. The brute-force search algorithms
are the most general methods for search, because no
domain-specific knowledge is needed. The basic brute-force
search methods are breadth-first search and depth-first
search (see Fig. 3; the search spaces are presented in a
tree form).

Breadth-first search starts by generating all the succes-
sors of the root node (this is known as “expanding” a node).
Next, all the successor nodes are expanded, generating all
the nodes at level two in the search tree. Breadth-first
search continues by expanding one complete level of the
tree at a time until a solution is found. Because this method
never expands a node before all the nodes at shallower
levels are expanded, the path that is finally found is nec-
essarily the shortest one. The main drawback of breadth-
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Figure 3. The two elementary search strategies: breadth-first (a)
and depth-first (b)

Figure 4. Bidirectional search, starting simultaneously from the
initial state and the goal state

first search is its memory requirement: each level of the
tree must be saved in its entirety in order to generate the
next level. The complexity of this method is related to the
branching factor, or the number of successors of the nodes.

Depth-first search avoids these space limitations by pro-
ceeding only along one search path at a time. Only one of
the successors of the root node is expanded first, and after
that one of its successors, etc., until the search terminates
naturally or it is cut off at certain depth. If the solution has
not been found along this path, the algorithm backtracks
recursively, expanding the next successor of the previous
level node,and so on. In general,depth-first search expands
nodes in a last-generated, first-expanded order. The disad-
vantage of depth-first search is that in general it requires
a fixed cutoff depth in order to terminate: if this cutoff limit
is too low the solution will never be found, and if it is too
high a large price is paid in terms of execution time.

Bidirectional search is yet another brute-force method.
The main idea of bidirectional search is that instead of
blindly searching forward from the initial state until the
goal is reached, one can start the search simultaneously
from the goal state, so that the two breadth-first search
processes finally meet in the middle (see Fig. 4). However,
bidirectional search requires an explicit goal state rather
than a goal criterion only; furthermore, the operators in the
search space must be invertible, so that backward-chaining
can be accomplished.

Heuristic search. The brute-force methods suffer from
the fact that they are essentially blind searches. The idea
of heuristic search, on the other hand, is to utilize the addi-
tional information there may be available. This additional
information, or the heuristic is often given as an evalua-
tion function that calculates the (approximate) cost of the
present situation, estimating the distance from the current
state to the goal state. A number of different algorithms
make use of heuristic evaluation functions — here, the sim-
plest ones, namely hill-climbing, best-first search, and A*
algorithm are briefly reviewed.

The idea of the hill-climbing algorithm is straightfor-
ward: assuming that the maximum value of the evaluation
function should be found, always proceed towards the max-
imum increase in the function value. That is, when the cur-
rent state is expanded, the evaluation function is applied
to all of its successors, and the successor state with the
highest value is selected as the next state. Unfortunately,
there are a number of problems with this approach — first,
if the sequence of states is not stored, the same states may
be visited over and over again, so that the algorithm may
never terminate. The second problem is typical to all steep-
est ascent (descent) methods: the search may get stuck in a
local maximum. This problem is remedied by the best-first
search algorithm.

In best-first search, the list of visited states is stored
to avoid looping forever, and, additionally, also the list of
states that have been generated but not yet expanded is
stored. In this latter list, the available search tree branches
are ordered according to their evaluated value, and the as-
sumedly best state in this list is always selected as the next
state to expand. This strategy gives the algorithm the abil-
ity to resume a path that was temporarily abandoned in fa-
vor of a path that appeared more promising. The best-first
search is guaranteed to eventually find the global optimum
(assuming that there are no space or time limitations), but
it usually does not find the shortest path to the goal. The
reason for this is that only the assumed cost from the cur-
rent state to the goal state is weighted, and the cost from
the initial state to the current state is ignored. To fix this
problem, the A* algorithm is needed.

The A* algorithm is a best-first search algorithm in
which the figure of merit associated with a state is not
just a heuristic estimate, but rather has the form f (n) =
g(n)+ h(n), where g(n) is the cost of the path from the ini-
tial state to the state n, and h(n) is the heuristic estimate
of the cost from the state n to the goal state. In other words,
f(n) is an estimate of the total cost of the cheapest solution
path going through the state n. At each point of the algo-
rithm the state with the lowest value of f is chosen to be
expanded next. An important theorem concerning the A*
algorithm is that it will always not only find the goal state,
but also find the optimal route there (assuming that the
heuristic function h(n) never overestimates the actual dis-
tance to the goal). The main drawback of this algorithm is
its memory requirement; there are more sophisticated al-
gorithms to avoid this problem, for example, beam search
and iterative-deepening-A*.

About games

Games have always been an important application field of
AI research. One of the reasons for this is that most games
are based on rigid rules that can easily be formalized, even
if successful playing seems to be quite an intellectual chal-
lenge.

There are classes of games where explicit winning
strategies exist; however, normally the only approach that
is available is search. A game tree is an explicit represen-
tation of all possible plays of the game, the root node being
the initial position and the terminal nodes representing
win, loss, or draw. In non-trivial games, the search space is
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so huge that heuristic search methods are needed. When
constructing a game-playing algorithm, the basic search
procedures often need to be modified — for example, in two-
player games, the possible actions of the opponent have
to be processed in a different way compared to the own
ones. This problem setting can often be represented as an
AND/OR graph: whereas only one of the own moves (hope-
fully, the best one) needs to be expanded, all of the oppo-
nents replies need to be taken care of. The nodes at every
other level in the search tree can be called OR links and
the other ones are AND links, respectively.

A practical way to formalize many two-player games
is to use minimax algorithms that have a close connec-
tion to the AND/OR graphs: these algorithms find the path
through the search space so that the own best actions
with the highest profit are selected, whereas the opponent’s
worst actions (from the own point of view) are selected.
In practice, clever search tree pruning methods are addi-
tionally needed to achieve acceptable performance of the
game-playing algorithms.

Chess is perhaps the most widely studied application
example, it has even been used as a benchmark problem
for AI methodologies, and a little closer look at it is taken
here. In principle, chess is a two-player game,and the above
guidelines can be applied: the legal moves define the tran-
sitions between states, spanning the game tree. The size
of the game tree is immense: it has been estimated that
there are about 10120 different games possible, and it is
clear that heuristic search methods are needed. There are
different criteria that need to be weighted when evaluating
the chess board configuration; for example:

� Material balance. Different pieces have different im-
portance, and nu meric values can be defined accord-
ingly (queen 9, pawn 1, etc.). The sum of these piece-
wise values gives a crude estimate of the material
power.

� Mobility of the pieces. The gross mobility can be de-
fined as the total number of moves that are possible
in the given configuration.

� Positional advantage. The center of the board is usu-
ally the key to governing the game; an isolated pawn
is vulnerable to attack, etc.

All such factors should be evaluated in some way; defin-
ing the evaluation function is a difficult task, and the hu-
man pattern analysis capability has proven to outperform
its algorithmic counterparts. It is the processing capac-
ity of the computer that is needed to compensate for this
handicap — and, lately, one of the ultimate AI goals was
achieved: the “Deeper Blue” program was able to beat the
world champion in chess.

REASONING AND INFERENCE

Reasoning in general refers to several different kinds of
activities, like making assumptions about a situation, di-
agnosing possible causes for some condition, and analyzing
and organizing the facts and data concerning some prob-
lem. All these tasks can be carried out by AI programs.

A specially important subclass of reasoning activities is
drawing conclusions from facts and suppositions, or infer-
ence. Methods to achieve automated inference will be con-
centrated on in this section.

Inference principles

Knowledge representations that are based on logic can effi-
ciently be utilized in an automated inference process. Pro-
grams that perform in this way are often called inference
engines — these inference engines range from user-guided,
interactive systems to fully autonomous ones. In classical
AI the processing of knowledge is centralized, but also dis-
tributed control mechanisms have been proposed — for ex-
ample, there are the blackboard techniques, etc.

Logical inference. The prototypical reasoning method in
propositional logic is the modus ponens inference rule:

P P → Q ⇒ Q.

More generally, various facts can be substituted simul-
taneously using the generalized modus ponens rule:

P1, ..., Pn P1 ∧ ...∧ Pn → Q ⇒ Q.

Compared to the basic modus ponens rule, the gener-
alized version takes “longer” and more sensible reasoning
steps, even though there is no difference in expressional
power. However, an inference system that is based on the
modus ponens rules alone is clearly not complete: not all
true sentences can be derived within that framework, and
something more general is needed. Another age-old rea-
soning rule is the simple syllogism:

P → Q Q → R ⇒ P → R.

For example, if it is known that “canary is a bird” and
“bird flies”, one can deduce “canary flies”. The generalized
resolution principle is an extension that can efficiently be
applied for knowledge bases that consist of Horn clauses:

P1 ∧ ...∧ Pm → Qk Q1 ∧ ...∧ Qk−1 ∧ Qk ∧ Qk+1 ∧ ...∧ Qn

→ R ⇒ Q1 ∧ ...∧ Qk−1 ∧ Qk+1 ∧ ...∧ Qn ∧ P1 ∧ ...∧ Pm →
R.

Surprisingly, the resolution principle alone suffices, no
other inference mechanisms are needed. In logic program-
ming (in Prolog, for example), problem solving and infer-
ence tasks are presented in a theorem proving framework,
that is, the axioms are written as Horn clauses,and the goal
is to find the inference steps that are needed to deduce the
given theorem. In practice, rather that showing that the
theorem is consistent with the axioms, it is shown that the
negated theorem contradicts the axioms in the knowledge
base. It can be shown that resolution by refutation (or proof
by contradiction, or reductio ad absurdum) is complete (or,
rather, semidecidable so that true (derivable) sentences can
be derived from the premises, but one cannot always show
whether a sentence is false or not derivable).

The above deduction rules were written for clauses in
propositional logic with no variables. The situation be-
comes slightly more complicated in first-order predicate
logic, where the terms containing variables first have to
be unified.
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Because the sentences in the canonical forms only con-
tain universal quantifiers, it is possible to substitute the
variables with arbitrary constants; that is, ∀x: P(x) →
P(a). Without going into details, the goal is the find
the most general unifiers that make the corresponding
arguments look the same. For example, if the terms
Owns(Bill, x) and Owns(y, z) have to be unified, the
variable binding that makes the least commitment about
the variables is x = z and y = Bill (before unification the
conflicting variable names have to be standardized apart;
see (8)).

Production systems. Most logical inference systems (like
Prolog) are backward-chaining, that is, they search for a
constructive “proof” that satisfies the query. An alterna-
tive is a forward-chaining approach, where inference rules
are applied to the knowledge base, yielding new assertions
until no more rules fire (or some other criterion is fulfilled).
The forward-chaining approach is specially useful in real-
time applications, where the intelligent agent receives new
information on each operation cycle, adding the new per-
cepts to the knowledge base, and reacting accordingly.

A typical production system contains a working memory
where the atomic variables defining the state are stored.
The rule memory contains the set of inference rules — the
inference rules are of the familiar form <conditions>

→ <actions>, where the actions typically modify the
contents of the working memory. During each operation
cycle, the system computes the subset of rules whose left-
hand side is satisfied by the current contents of the working
memory (this unification task can be computationally very
expensive; there are efficient methods to relieve this prob-
lem, for example the rete algorithm). From this conflict set
one of the rules is selected to be executed. There are vari-
ous heuristics that can be applied to this conflict resolution
task:

� No duplication. The same rule is not executed twice
on the same ar guments.

� Recency. Execute rules that refer to recently created
working memory elements (in effect, this results in
depth-first operation; in an interactive system, this
refinement strategy “behaves reasonably”).

� Specificity. Prefer rules that are more specific (this
principle makes it possible to implement default rea-
soning: if no special cases have been defined, the most
general default action is taken).

� Operation priority. Some rules may be more impor-
tant than the others; these rules should be preferred.

Forward-chaining production systems were the founda-
tion of much influential work in AI. In particular, the XCON
system (originally called R1) was built on this kind of an
architecture (44). This system contained several thousand
rules for designing configurations of computer components,
and it was one of the first clear commercial successes in the
field of expert systems.

It seems that production systems are also popular in
cognitive architectures that try to model human reasoning.
For example, in ACT−R (1) and in SOAR (37), the working

memory of the production system is used to model the hu-
man short-term memory, and the productions are part of
long-term memory.

Connections to problem solving. It is often instructive to
try and see a problem in a wider framework — for exam-
ple, it may be helpful to recognize the differences and sim-
ilarities between logical inference and problem solving (as
discussed in the previous section). It turns out that the pre-
viously presented concept of state space makes it possible
to have a unified view (in the case of monotonic reasoning;
see below).

The knowledge base that is written as first-order
predicate logic sentences defines a (possibly infinite-
dimensional) Herbrand universe spanned by the ground
clauses (for example, see (8)). This Herbrand universe can
in principle be identified with a state space. In problem
solving one tries to find a sequence of transformations to
reach another state, and in inference one tries to find out
what is the current state: in which state all the known
facts are consistent? In problem solving the problem states
are simple and the transformations may be complicated,
whereas in inference tasks the state space itself is com-
plex and high dimensional. In problem solving the actions
define the state transformations, whereas in inference the
rules define interrelations between the state variables, con-
straining the feasible solutions.This kind of state-space ap-
proach to knowledge representation is further elaborated
on and concretized in the final section.

In principle, augmenting the state space appropriately,
the problem solving tasks can be expressed as logical in-
ference tasks. However, the representations become less
understandable — and in AI, one of the basic ideas is to
use domain-oriented representations. The problem solv-
ing tasks and the production systems are better managed
when the unknown state components can be hidden and
ignored. Additionally, the more limited languages that are
used in production systems can provide greater efficiency
because the branching factor is reduced.

Problems with logic representations

The validity of the two-valued “crisp” logic has been ques-
tioned. It has been proposed that fuzzy logic would be bet-
ter suited for modeling real expertise, and a heated dis-
cussion continues. In this section two basic problems are
studied that impair the operation of knowledge-based sys-
tems that are based on traditional techniques — problems
that become evident in systems that are large enough.

Nonmonotonic reasoning. Many knowledge systems dif-
fer from classical logic in a very fundamental way: the rea-
soning in them is nonmonotonic, so that new information
can refute earlier conclusions. In classical logic no such
phenomenon emerges; what is the reason for the opera-
tional difference? The answer is the closed world assump-
tion: if there is no affirmative statement in the knowledge
base, a proposition is assumed to be false. A new piece of
information (the proposition is true after all) can then dra-
matically change the overall reasoning results. Whereas
strictly speaking no logical inference is possible in case of
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missing information, in the practical knowledge systems a
pragmatic compromise has been adopted to avoid the dead-
locks in reasoning. For example, Prolog language is based
on this closed world assumption.

More generally, there are various kinds of default logics
and formalisms (compare to the frame structures) that ex-
tend this idea of “typical” values if no more accurate knowl-
edge is available. One of the classic approaches is circum-
scription (43). Nonmonotonic logic systems are reviewed in
detail in (22).

The nonmonotonic nature of the knowledge representa-
tions causes surprises in reasoning; what is perhaps more
acute, belief revision becomes a difficult problem. When the
knowledge base is being updated and new facts are added,
old inference sequences may become outdated; there are no
efficient methods for maintaining the integrity.

There is another aspect that is rather closely related to
the nonmonotonicity problem; that is frame problem.

Frame problems. A classic problem in AI is how to
present common sense knowledge, that is, how to capture
all the nuances of everyday life. In technical terms, this
problem often emerges in the frame systems, and is there
called the frame problem: the number of frame axioms that
would be needed to handle all special situations is unreal-
istically high. The incomplete coverage of all possible vari-
ations causes brittleness in reasoning: the same reasoning
tools that normally work fine may collapse altogether when
there is a seemingly irrelevant change in the situation.

There are different kinds of efforts to attack these com-
mon sense problems. An example of the most ambitious
approaches is the CYC project (39), where the basic na-
ture of the abstract yet fundamental common sense con-
cepts is explicitly represented. This huge corpus of knowl-
edge is proposed as an underlying structure below stan-
dard knowledge-based systems, so that when the special-
ized reasoning system fails, the underlying knowledge base
would be utilized instead.

A simpler approach to the common sense problem is
called case-based reasoning: problem situations are stored,
and when facing a new situation, a similar, previously
solved case is taken as the prototype which is then modi-
fied according to the current situation. Promising results
have been achieved (40).

Probabilistic reasoning

There are different views of what is the source of un-
certainty in the knowledge systems, and, correspondingly,
there are various approaches to automate reasoning that is
based on uncertain information. The models that are based
on symbolic representations are mostly designed to han-
dle the uncertainty that is caused by the incompleteness
of the information (like the default logic formalisms), and
they are usually inadequate to handle the case of impre-
cise information because they lack any measure to quan-
tify the levels of confidence. A well-established approach
to utilizing pieces of information with varying degrees of
belief is known as probabilistic or plausible reasoning (51).
In more recent work, like in the Dempster-Shafer theory, a
more ambitious view of uncertainty is adopted (for exam-

ple, see (64)). Only probabilistic reasoning is discussed in
what follows.

The heart of probabilistic reasoning is the Bayes rule
that combines the probabilities of hypotheses and the cor-
responding evidence:

P(H|e) = P(e|H) · P(H)
P(e)

.

This means that the a posteriori belief of the hypothesis
H after receiving the evidence e, denoted P(H|e), can be
calculated when one knows the a priori probabilities P(H)
and P(e), and the likelihood P(H|e) (the probability that
e will materialize assuming H is true). The denominator
P(e) in the formula is constant, because it is assumed that
P(H|e) and P(H| ¬ e) sum to unity.

Whereas the above formula is, mathematically speak-
ing, a straightforward identity stemming from the defini-
tion on conditional probabilities,

P(A|B) = P(A, B)
P(B)

and P(B|A) = P(A, B)
P(A)

,

in probabilistic reasoning it is regarded as a normative rule
for updating beliefs in response to evidence. The basic rule
can easily be extended — for example, assume that there
are alternative hypotheses H1,. . . , Hn and various pieces of
evidence e1, . . . , em . Then the Bayes rule can be written for
each hypothesis Hi as

P(Hi|e1, . . . , em) = P(e1, . . . , em|Hi) · P(Hi)∑n

j=1(P(e1, . . . , em|H j) · P(H j))
,

assuming that the following conditions are fulfilled:

� Each hypothesis Hi is mutually exclusive with any
other hypothesis, and the set of n hypotheses is ex-
haustive, or

P(Hi, H j) = 0 for i 
= j, and
n∑

i=1

Pi = 1.

� Each piece of evidence ej is conditionally independent
under each hypothesis, that is,

P(e1, . . . , em|Hi) =
m∏

j=1

P(e j|Hi).

The Bayesian approach requires a large amount of data
to determine the estimates for the prior and conditional
probabilities. Such a requirement becomes better manage-
able when the problem can be decomposed, or when it can
be represented as a sparse Bayesian network. In Bayesian
networks nodes (or variables) representing hypotheses and
pieces of evidence alike, are connected to other nodes only
if there is a causal dependency between these variables.
The formed directed graph defines a hierarchy between
the nodes. In these networks the dependencies among vari-
ables are known and only the explicitly defined conditional
probabilities between the variables have to be obtained ex-
perimentally.

When applied to complicated networks, the Bayesian
approach has various shortcomings. The assumptions on
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which this method is based are not easily satisfied — for
example, if the network contains multiple paths linking
some evidence to the same hypotheses, the independence
assumption is violated: the pieces of evidence that are used
for inference, or the values of the variables along the paral-
lel paths, are bound together. Similarly, the claims of mu-
tual exclusiveness and exhaustiveness of the hypotheses
are not very realistic: the strict exclusiveness (only one hy-
pothesis can apply at a time) means the same limitations
to expressive power as the single-fault assumption in the
simplest diagnosing systems does. The exhaustiveness as-
sumption (all possible hypotheses are known a priori) is
violated if the problem domain is not suitable to the closed
world assumption.

Another source of difficulties is caused by the knowl-
edge representation with no “fine structure”: for example,
disjunctive clauses and other nonsin-gletons cannot be as-
signed probability values. This implies the requirement for
a uniform granularity of evidence. Also, there are no mech-
anisms to detect conflictive information. However, some
researchers think that the most severe limitation of the
Bayesian approach is its inability to represent ignorance
and other flavors of everyday uncertainty.

MACHINE LEARNING

One of the most characteristic capabilities of an intelligent
system is its ability to learn. However, to look intelligent,
the system must not only store old experiences — in this
context, it will be assumed that a learning system has to be
able to find new structures that can represent the knowl-
edge in a better, more polished way. The connectionistic
approaches that outperform the traditional AI methodolo-
gies what comes to adaptation, or fine-tuning of the param-
eters, are no panacea when the task is to optimize struc-
tures. In this section, only those machine learning methods
are discussed that are based on structural, symbolic repre-
sentations. Machine learning is discussed in more detail,
for example, in (19).

Classification of approaches

The machine learning algorithms are often characterized
according to how independently they operate:

� In supervised learning the correct behavior is explic-
itly given to the learning system together with the
input example data.

� In reinforcement learning an outside critic evaluates
the system behavior according to some cost criterion,
and the learning mechanism tries to enhance the sys-
tem behavior using some kind of search strategy for
cost minimization.

� In unsupervised learning no “correct” results exist; the
system just tries to find some kind of a model for the
input data.

From the point of view of strong AI, perhaps the most
interesting of the above classes is unsupervised learning:
when the system is not told how it should manage the in-

put data, something unanticipated and truly “intelligent-
looking” behavior can emerge without explicit preprogram-
ming. What is essential is that new structures are con-
structed based on the earlier ones incrementally: illusion of
intelligence (sometimes) emerges when simple constructs
are stacked together.

Another classification of machine learning algorithms
can be done as defined in (7): the algorithm is either based
on learning of rules or learning of concepts. Put informally,
the concepts are the symbols, or the names of the primary
objects and their relations in the logical sentences, whereas
the rules are the logical sentences themselves. These two
alternatives are discussed separately in what follows.

Learning of rules

Inductive inference is the process of hypothesizing a gen-
eral rule from examples. Inductive inference is based on
some kind of background theory that defines the concepts
that are available, the possible constraints, and the class
of examples that are used in the learning process. Posi-
tive and negative examples are needed to generalize and
to specialize rules, respectively.

There are different ways to modify rules to match the
examples, and, simultaneously, simplify the set of rules.
Typical generalization operations include:

� Elimination of a conjunct. One or more constraints
can be eliminated from the set of preconditions; for
example, the rule

Flies(x) ∧ LaysEggs(x) ∧ Feathered(x) → Bird(x)

can be generalized (assuming that the property “to
have feathers” is redundant) as

Flies(x) ∧ LaysEggs(x) → Bird(x).

� Addition of a disjunct. Rules can be relaxed by adding
disjunctions to the set of preconditions; for example,

Flies(x) → Bird(x)

can be extended as

Flies(x) ∨ Penguin(x) → Bird(x).

How this kind of modifications are carried out, is a matter
of heuristic search strategies — in the absence of smoothly
behaving cost criterion, no analytical optimization meth-
ods exist. For example, genetic algorithms have been pro-
posed and experimented in this rule optimization task.

One of the other basic keywords in the field of rule learn-
ing is learning by analogies, or similarity-based learning.
The idea is to find analogous rule structures, and extend
the existing rules to apply to new types of objects.

Another discipline that has lately become popular is
learning by discovery, where the human process of inven-
tive acquisition of new rules is imitated.

Concept formation: examples

Concepts are the means of structuring a complex domain.
Automatic concept formation is an active area of research
(16), but it is also highly complicated: what characterizes
“good” concepts — this question is closely connected to the
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mostly undiscovered principles of the human mental pro-
cesses. It seems that good concepts are tailor-made for each
application domain, capturing the domain-specific depen-
dency structures in an optimal way. In what follows, exam-
ples of some influential systems are briefly presented.

The “Automatic Mathematician” program AM is a classic
system showing that some aspects of creative research can
be effectively modeled as heuristic search (38). The system
starts with only a very elementary knowledge of the basic
ideas in number theory, but it creates new, more sophisti-
cated concepts. The “goodness” of a new concept is evalu-
ated using a heuristic criterion that measures its aesthetic
appearance, or the assumed “interestingness” of the con-
cept. The operating principle of AM differs very much from
the theorem provers: it generates hypotheses rather than
proofs, relying on the heuristic criterion rather than on
proof procedures. It should be noted that AM was capable of
deriving something as advanced as the famous Goldbach
conjecture. However, the extended version of the program,
called EURISKO, showed that the same idea did not to work
as well in non-mathematical application domains.

The EPAM model is one of the most significant general
models of concept formation (15). Even if it was originally
designed as a model of rote learning behavior, it has since
been used to model a varied set of phenomena, including
word recognition and memorization of chess patterns. EPAM
constructs a decision tree in an unsupervised, incremental
manner. Each leaf in the tree represents a “concept”, or a
pattern of features that matches a subset of observations.
When a new observation enters, it is classified down a path
of matching arcs in the tree to some leaf node. If the obser-
vation matches the concept that is stored at the leaf exactly
(that means, all features are equal), then a process of famil-
iarization occurs: the leaf is specialized further by adding
a feature that is present in the new observation but not
yet present in the leaf node. On the other hand, if there is
a mismatch of one or more features, the tree is expanded
by increasing either the breadth or the depth of the tree.
In sum, leaves begin as general patterns that are gradu-
ally specialized by familiarization as subsequent observa-
tions are classified; because of the unsupervised manner
of the concept learning, the emerging concepts are unla-
beled, characterized solely by their special features. The
structure of EPAM is quite simple, but it still accounts for
a significant amount of experimental data — in particu-
lar, the model simulates nicely the mental memorization
of stimuli as a general-to-specific search process. It was
the first computational model of concept formation, and it
has had a significant effect on the systems that have been
developed later.

The CLUSTER/2 algorithm (45) was the first system do-
ing conceptual clustering. It forms categories that have
“good” conjunctive expressions of features that are com-
mon to all (or at least most) category members. The cri-
teria for category goodness in CLUSTER/2 are conflicting:
on the other hand, the simplicity criterion prefers short
expressions, while the fit criterion prefers detailed charac-
terizations — these criteria are used to guide an iterative
optimization procedure. What is important in CLUSTER/2,
it was the first attempt towards coupling characterization
and clustering. In conceptual clustering methods, the cat-

egorization and the interpretation of these categories are
tightly coupled coroutines (as compared to the various nu-
merical taxonomy methods for analysis of data where the
classification of the created clusters is largely manual).

In the following section, the automatic formation of cat-
egories is further elaborated on.

FUTURE PERSPECTIVES

The traditional knowledge engineering approaches work
well if the application area is narrow enough, if there is
an expert that can define the inference rules explicitly, and
if the knowledge base needs not be updated. However, as
the potential of “good old-fashioned AI” (GOFAI for short;
see (27)), has been evaluated in practical applications, it
seems that new needs are emerging. One problem is how
to assure integrity: how to update the knowledge base in
a consistent manner, and how to assure relevance of the
rules so that outdated rules are eliminated? There is more
and more information available, but there are fewer and
fewer human experts available to implement rules — the
AI systems should autonomously adapt.

The current AI methodologies give no tools for attacking
the new challenges. To avoid the deadlock, it is necessary
to widen horizons.

In what follows, a very concrete, engineering-like ap-
proach to AI will be studied. Rather than discussing
whether the weak or the strong view of AI should be
adopted, take an application oriented view, simply defin-
ing intelligence as

ability to adapt in a previously unknown environ-
ment.

This working hypothesis leads to a new problem setting
— the goal now is to find ways to modeling of the envi-
ronment. The problem field should be abstracted somehow,
autonomously, without external supervision. In this frame-
work, questions of “consciousness”, etc., can be ignored, and
many of the age-old arguments in AI can be avoided.

Related disciplines

What this “intelligence modeling” actually means — to
have some perspective in this question, an interdisci-
plinary approach is necessary. In this section the findings
from various related fields are first summarized, and a new
approach combining these results is sketched thereafter.

Cognitive psychology. It is reasonable to start from the
assumption that the behavior of the models for intelligence
should share the same properties as does the only known
truly intelligent system, the human brain. Cognitive psy-
chology (for example, see (68) or (34)) studies the mental
phenomena on the systemic level. In cognitive science a
wealth of concrete facts have been found that are in con-
flict with mainstream knowledge engineering methodolo-
gies (28); the following points will be concentrated on below:

� The knowledge representation and manipulation
structures in the contemporary knowledge systems
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differ from the functions of the human memory.
For example, the operational differences between the
long-term memory (LTM) and short-term (working)
memory (STM) is not addressed (26). Even if this
strict dichotomy has been questioned, it still offers a
firm basis for concrete analysis.

� The fuzziness of categories (57) has not been embed-
ded as an integral entity in the knowledge represen-
tations. The “crispness” of the concepts is one reason
for the brittleness of the inference systems, and the
gap between the symbolic and the subsymbolic levels
makes machine learning a difficult task.

� A striking difference between the artificial and the
real intelligent systems is visible in the shift from
novice to expert (13).

In expertise research it has been noticed that the expert
reasoning becomes faster and more automated compared
to the novice reasoning. This is known as the speedup prin-
ciple (9).The traditional way to enhance knowledge bases is
through growing the number or sophistication of the rules
(for example, see the CYC project (39)) — but how could
the expert make the conclusions faster than the novice if
the rules were more complex?

Very different motoric and mental skills can be regarded
as manifestations of special expertise. There are attempts
towards a general theory of expertise (14); however, with-
out deeper analysis it is impossible to see the general un-
derlying laws.

Neurophysiology. Another source of evidence is neuro-
physiology that studies the mental phenomena on the neu-
ronal level. The gap between the lowest physical level and
the level of cognitive processes is so huge that any conclu-
sions must be made with extreme care. However, in the
analysis of sensory signals, specially in the field of vision,
interesting results have been obtained: it seems plausible
that on the visual cortex a special kind of pattern recon-
struction takes place, so that the visual image is presented
in terms of elementary features. The cortical cells consti-
tute a reservoir of feature prototypes — at any instant only
a subset of all available features is utilized. The active cells
define the coding of the observed image; because only a few
of the cells are active, the code becomes sparse (50).

The potential of sparse representations has been stud-
ied earlier (33), and also in a distributed production system
architecture (69). Using simulations it has been shown that
sparse representations can be obtained autonomously, for
example, using anti-Hebbian learning (18) or Independent
Component Analysis (ICA) (32).

As motivated in (1), there cannot exist separate faculties
for different mental capabilities in the brain — the same
principles are responsible for all different kinds of high-
level activities. This uniformity principle can be extended
further: it can be assumed that the above mentioned sparse
coding of features is characteristic to all levels of mental
behavior.

There are various frameworks available for modeling of
mental phenomena, most notably perhaps ACT-R (1) and
SOAR (37). The validity of a mental model cannot be rig-

orously proven — by extending a model, additional phe-
nomena can be explained ad infinitum. The only problem
is that the model structure becomes increasingly complex,
thus making the model intuitively less appealing.

Robotics. Artificial intelligence differs from cognitive
science because the emphasis is on synthesis rather than
only analysis. The best proof of theories is practice, and
there are lessons learned in the field of modern robotics.

One of the cornerstones of early AI was cybernetics (71).
It is the control structures that intuitively contain the ker-
nel of intelligent behavior. After the early years, develop-
ments in robotics proceeded in the direction of symbolic
approaches and explicit problem solving tasks, alongside
mainstream AI — however, these robots are restricted by
their narrow worlds. It seems that it is time to look back
to basic principles, or the ideas of control.

The today’s emphasis on the environment and survival
is manifested in the “subsumption architectures” (6): in-
telligence is seen as a holistic adaptability in one’s envi-
ronment. The robot systems are again very simple. But
perhaps there is no need to go back to the simplest control
systems — control theory has matured during the decades,
too. In modern control theory one emphasizes the role of
model-based control — what is this model like now?

System theory. System theory is the theory about how to
construct models. Additional challenges to traditional sys-
tem theories are caused by the intuition that the mental
model should not be centralized but distributed. It seems
that the framework of dynamic systems offers tools also
for understanding tensions caused by the environment:
there is a dynamic equilibrium, determined by the attrac-
tor structures of the environmental properties. The emer-
gent patterns can be observed as the asymptotic behaviors
converge to some fixed state (30).

How to compare models, or how to make structurally
different models mutually comparable? System theory that
offers tools also for defining concrete criteria also for men-
tal models. Information theoretic analyses give a rather
firm basis for constructing “optimal” models (for example,
see the Minimum Description Length principle (MDL) as
defined in (55)). Without going into details, the idea is to
weigh the complexity of the model against its representa-
tional power: the more one needs degrees of freedom, or
free parameters, to adjust the model to stand for a specific
application, the lower the model “goodness” is (in fact, this
is the modern formulation of the Occam’s razor: simple ex-
planations should be preferred).

Behaving as well as possible given some limited re-
sources — this kind of an optimization viewpoint is be-
coming an important new approach in AI research, known
as rationality and bounded optimality (59). However, in a
complex environment it is difficult to explicitly define the
constraints, and the resulting analyses seem to be cum-
bersome. To avoid the complexities, the analysis is in this
context started from the first principles. How to construct
a mental representation so that the capacity requirements
are minimized?
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Ontology and epistemology. The fundamental role of the
mental representations is to convey semantics, the mean-
ing of constructs: what is the link between the internal
mental structures and the outside world? To evaluate the
representational power of a mental model, to compare dif-
ferent models reasonably, and to find tailor-made models
to match the observed data, one is facing deep questions.
The nature of semantics has been one of the main tracks
in philosophical discussion over the years (17).

The strong AI goal of “self-consciousness” can be slightly
relaxed: the machine only has to “understand” the observa-
tions in some sense. Only then, intelligent-looking behavior
can be reached without explicit preprogramming.

So, what is the nature of the observation data, or what is
its underlying structure? In other words, what is the data
ontology?

In philosophy, empirism offers a fruitful framework for
AI, as contrasted to the metaphysical paradigms like dual-
ism or rationalism. Rather than assuming that there were
predestinated a priori mental structures that could not
be automatically reconstructed, in empirism one assumes
that knowledge emerges from observations.

Along the extremely reductionistic and simplistic lines
of reasoning that are here adopted, the goal is to find the
data structures starting from tabula rasa: no specialized
data structures exist. This starting point parallels with
the approach of David Hume: all concepts and mental
constructs must have direct correspondence with obser-
vations, either directly or indirectly. As concluded by Im-
manuel Kant, the only pre-existing thing is the structure
construction mechanism.

This view results in the naturalistic semantics: “tem-
perature” is a concept that is directly defined in terms of
thermometer reading, etc. The semantics of more complex
concepts is defined by their context: how a concept is re-
lated to other ones dictates its contents. This means that
rather than speaking of a meaning of an individual sym-
bol one has to study semantic nets as basic entities. The
naturalistic interpretation makes it possible to avoid the
problem of infinite regress, where concepts are defined in
terms of other concepts ad infinitum.

When the contents of the semantic universe are learned
empirically, starting from scratch, the observed data di-
rectly dictates the contents of the mental representations.
This leads to the epistemic problem setting: what is knowl-
edge, and what is truth in the first place? Things that have
been observed together many times, become coupled to-
gether — it is relevance that is of primary importance
rather than “truth”, determining what are the “beliefs” of
the system.

In connectionism, these questions are discussed as com-
putational or procedural semantics (31). Perhaps a bet-
ter name would be associative semantics, to emphasize the
need of parallel processing.

Mathematics and statistics. There does not exist a lan-
guage for presenting parallel phenomena. Mathematical
formalism helps in circumventing this problem — addi-
tionally, in mathematical framework the theories can be
easily analyzed and tested using simulations.

In practice, when modeling complex environments, the
data structures become so huge that efficient data process-
ing machinery is needed, and that is why the most power-
ful mathematical tools are applied in what follows — this
means statistical analysis and linear systems theory. Lin-
earity property makes it also possible to utilize the “divide
and conquer” idea, so that a simple substructure can be an-
alyzed separately and later be included in the overall sys-
tem. It is assumed that the illusion of intelligence emerges
when large numbers of simple operations are combined.

Summarizing and concretizing the previous discussion,
now define the pattern vector f containing the observation
data. The dimension of f is such that all independent obser-
vation units will have an entry of their own; these observa-
tion units will be called variables henceforth (see Sec. 6.2
for examples). As was assumed, the observation pattern
can be decomposed into features θi, where 1 ≤ i ≤ NLTM.
This means that the long term memory capacity of NLTM

units is assumed to be filled with feature prototypes that
are somehow optimally defined to minimize the reconstruc-
tion error. Because of the linearity assumption, f can be
expressed as a weighted sum of the features:

f = φ1( f )θ1 + ·s + φNLTM ( f )θNLTM .

Using the terminology from linear algebra, the feature
vectors span subspaces in the high-dimensional “observa-
tion space”. The nonlinearity that undoubtedly is needed
in the representations results from the sparsity assump-
tion, that means, only NSTM of the weighting factors φi( f )
can be simultaneously non-zero.

How the feature prototypes θi can be optimized is not
elaborated on here (see (29) for more discussion and a prac-
tical algorithm). It only needs to be noted that the features
are dependency structures that are reflected in the correla-
tions between the variables. The role of the model is to com-
press the high-dimensional space of interdependent vari-
ables into a set of maximally independent components. A
closely related statistical method for detection of the un-
derlying structure in the data is called factor analysis (2).

Experiences from artificial neural networks research
are not included in this list of related disciplines as a sepa-
rate item. The reason for this is that their operation can be
explained in terms of mathematics — they are just another
tool to implement statistical data manipulations. What is
more, the connectionist methods are usually used so that
only the input-output relation is realized, and no internal
structure emerges. In complex modeling tasks finding the
underlying structural properties of the domain area is of
utmost importance. It can be claimed that in the perceptron
networks, for example, the ontological assumption fails:

It is hypothesized that because these networks can
implement any function, they can be used to model
the mental functions as well, without the need
of studying the properties of these functions be-
forehand. However, having no prior restrictions to
the class of functions to be searched for, immense
amounts of data are needed for training. To make
the network adaptation feasible in practical applica-
tions, the search is limited only to smooth functions.



16 Artificial Intelligence

The function smoothness is an additional assumption
that has now sneaked in — and when looking at the
operation of the brain, this assumption is hardly jus-
tified (sometimes rather abrupt switching between
categories seems to take place in practice).

As was seen, the problems of AI and their possible so-
lutions have been discussed in many separate disciplines.
An interdisciplinary approach is needed to combine them.

Example: implementing a “mental imagery”

The idea of mental images is a powerful concept. Originally,
mental imagery was studied exclusively in the context of
concrete visual scenes, and different kinds of representa-
tions for spatial images were proposed (see (35); also (24)).
However, the nature of mental imagery is not agreed upon
(53), and parallel “mental views” seem like a good approach
to discuss expertise as well — the expert has internalized
a sophisticated set of mental images governing the prob-
lem area. As presented below, the specialized imagery con-
sisting of the domain-specific features constitutes a “filter”
that preprocesses the observation data, creating a compact
internal representation of the situation at hand.

The case illustrated below is an extension of the idea of
conceptual spaces (21).

Pattern matching. To decompose the observation vector
into features, or to represent f as a sum of vectors θi various
options exist. A heuristic algorithm is presented below:

1. Select the prototype vector with index c, where 1 ≤ c ≤
NLTM, that “best explains” the vector f. Usually the vec-
tor having the highest (weighted, unnormalized) corre-
lation with the vector f is selected:

c = arg max
1≤i≤NSTM

{|θT
i W f |}.

2. The “loading” of the feature c is now

φc = θT
c W f.

3. Eliminate the contribution of the feature c by setting

f← f − φc

θT
c Wθc

· θc.

4. If the iteration limit NSTM has not yet been reached, go
back to Step 1.

The sequence of c indices and the corresponding weights
φc stands for the internal representation of the observa-
tion vector f. The associative reconstruction of f is the sum
of these features. Running the algorithm once constitutes
one reasoning step, completing the variables that have not
been directly observed. The matrix W is used for attention
control: it distinguishes between the explicitly known and
unknown variables (examples are given shortly).

In Step 1, a more complicated criterion for selecting the
contributing features might be in place. The above option

results in “forward-chaining”, whereas goal-directed oper-
ation can also be obtained, as presented in (29).

Because of the non-orthogonality of the feature vectors,
the presented algorithm does not give theoretically correct
loadings for the features vectors. Assume that � is a fea-
ture matrix whose columns are the selected features; then
the vector �(f) containing the corresponding theoretically
correct loadings can be found as

�( f ) = (�T W �)−1 ·� W · f.

The associative reconstruction of the vector f can be ex-
pressed in the matrix form

ª
f = ��( f ),

as derived in (29).

Declarative knowledge. The question where the features
come from will now be elaborated on. As long as the LTM
memory limits have not been reached, the examples or
rules can directly be transformed into feature vectors. As-
sume that the following set of propositions is to be coded:

CANARY is a BIRD. BIRD is a CREATURE that FLIES. TWEETY
is a CANARY.

The capitalized words are the variables, or the observa-
tion units, each spanning a new dimension in the observa-
tion space. It need not be known whether the variables rep-
resent actual input channels or connections to lower-level
subsystems carrying out more elementary categorization
tasks. The variables can also be outputs to some motoric
unit.

Assuming that at least three long-term memory units
are available, the following three vectors corresponding to
the above rules can be stored in LTM (empty slots denote
“no connection”, represented by zeros in the mathematical
formulation):

Examples and simple explicit rules can be represented
as independent features, if no memory constraints exist.
As can be seen, the logical structure of the knowledge rep-
resentations is very constrained: only simple propositions
with static, associative dependencies can be modeled. It
can be argued that in many cases this suffices — the as-
sumed causality in the rule-form representations is just
an illusion. However, the significance of rules is discussed
in (66). The presented representation formalism can be in-
terpreted as an “extended” form of propositional logic (or a
“restricted” version of first-order predicate logic — for more
discussion, see (29)).

Combining quantitative and qualitative information is
straightforward in this framework. For example, take the
following additional piece of information:

...CANARY has SIZE “SMALL”.

When the linguistic value is fuzzified (by scaling it ap-
propriately, so that the maximum value is 1.0 and the min-
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imum is 0.0, for example), the new feature can be included
in the knowledge base:

Associative reasoning. Reasoning based on the feature
representation is implemented as associative reconstruc-
tion of incomplete information.

To apply the feature-form knowledge base for reason-
ing, all evidence is input simultaneously in the vector f.
Assume that the only “fact” that is known is TWEETY. This
also means that only this variable should be observed in
the feature matching process, and the weighting matrix W
(the “attention control”) is defined accordingly:

W = (

ε

ε

ε

ε

1
ε

),

where ε < < 1. Now, using the presented algorithm, the
“spread of activation” proceeds first to produce the inter-
nal image of TWEETY − CANARY (working memory size 1
suffices):

f = (

0
0
0
0
1
0

) →
ª
f = (

1
0
0
0
1
0

).

It needs to be noted that only very simple rules can
be implemented directly in this formalism — for example,
there is problem with the connectives (how to distinguish
between disjunction and conjunction?). This approach re-
sembles the methodology proposed in (23), and, as pre-
sented therein, a more sophisticated reasoning algorithm
can be implemented based on this kind of knowledge repre-
sentation directly. However, even if further reasoning steps
would activate new facts, in this framework the selection of
the “conflict set” and the control of rule firing is not simpler
than in traditional production systems.

The problem is that the novice knowledge representa-
tion is not optimized. In technical terms, the question is of
tangled subspaces spanned by the unpolished feature vec-
tors.

Expert data structures. In (11), it is hypothesized that
there are five stages in the process of acquiring expertise,
starting from traditional AI-like rules and ending with the
ability to select correct responses instantaneously. It is pro-
posed there that the expert know-how would be based on
“some kind of holographic memory” or something else as
unimaginable. It can be shown that the data structure
that was presented above implements the instantaneous
responses in a simple way.

When there is a plenty of data available, most observa-
tions will not have individual prototypes in the long-term

memory. This scarcity of memory resources is the key to
more sophisticated knowledge representations. The actual
feature optimization process is not studied here (see (29)),
but the resulting (slightly streamlined) data structure is
shown:

Above, it is assumed that LTM has capacity of only 2
memory elements, even if various examples of birds have
been presented. The memory cannot store all of the in-
formation, and redundancies have been utilized for opti-
mizing the memory contents. For example, Tweety, being
a single, seldom encountered instance, has not deserved a
feature of its own. However, Tweety has not vanished alto-
gether: there is still a trace of its existence in the general
bird concept (the lengths of the feature vectors have been
normalized).

The reasoning is still based on the presented algorithm.
Now it turns out that just one run of the algorithm suffices
to complete a consistent mental view of the observations
(assuming that the set of observations can be matched with
the feature model).

It needs to be noted that the variable “BIRD” is just an or-
dinary input signal (perhaps from an auditory or text anal-
ysis subsystem). However, this input seems to contribute
very much in θ1, and the whole category may be labeled
accordingly. What is important is that there are a plenty
of other connections to other signals, so that this compu-
tational “bird concept” does not remain empty — it has
meaning or default connotations in this context. The over-
all “birdness” of an observation f is given by φ1(f), and this
signal can be utilized in subsequent classification phases.
Similarly, the feature θ2 could be paraphrased as “being
big”: the bigger a bird is, the higher is the weight of this
feature. Note that as the bird prototype describes an aver-
age bird, the features that are used to modify it can have
negative as well as positive weights. Very much differing
examples (like birds that do not fly) may be better mod-
eled as separate prototypes rather than using cumulative
features.

Discussion. It seems that after adaptation one of the fea-
tures usually dominates over the other ones, defining the
“category center” that is modified by the less significant fea-
tures. Depending on the point of view, the categories may
be called concepts, symbols, or clusters. Correspondingly, re-
gardless of the different manifestations, the features may
can be interpreted as attributes or chunks (9). More tradi-
tional views of concept formation are presented in (16). As
compared with conceptual clustering (compare to CLUS-
TER/2 in the previous section), the operation of the cate-
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gorization in the above schema is totally unsupervised —
this often results in subsymbolic, non-linguistic categories.

When to use features and when to create a new cate-
gory prototype? At some point quantitative changes must
result in qualitative differences in the structure. In the
adaptation algorithm (29), the control between these two
extremes is based on self-organization. Comparing to other
approaches that are based on self-organization (see (56) for
“semantic maps” and (61) for self-organizing concept acqui-
sition), the approach where features rather than the proto-
types only are mapped, allows finer structure of categories
to be modeled.

Comparing the proposed feature representation of
knowledge with the rule based representation, one key dif-
ference is the graceful degradation of the reasoning ca-
pability due to the fuzzy-like categorization. Comparing
with probabilistic reasoning, the idea of representing the
high-dimensional probability distribution of the observa-
tions using only the variables that are the most significant
is actually similar in both cases — however, now the co-
ordinate axes that the observations are projected onto are
hidden variables (the optimized, many-faceted features),
rather than the original observation variables themselves.
The main difference in the operation when compared with
these approaches, however, is the associative, undirected,
and usually one-step nature of reasoning based on a pat-
tern matching process. Expertise as a pattern matching
process has been proposed, for example, also in (25) with
the name template theory.

Conclusions

The field of AI is in turmoil, largely due to the impact from
connectionism. The general principles of the “third gener-
ation” knowledge systems have not yet been found. Also in
the above analysis, parallels between analogical phenom-
ena in different disciplines were drawn, even if there not
yet exists general agreement. However, there seems to be
very much potential.

One of the main benefits in the reviewed methodology
is that it makes it possible to cross the gap between sym-
bolic and subsymbolic representations. It is the same data
structure for the (qualitative) category prototypes and the
(quantitative) features that are used to modify the proto-
type. The sparse coding of the internal representations fa-
cilitates abrupt changes in structure. This possibility to
structural changes eliminates the paradox between the
two goals: the tailor-made and domain-oriented nature of
the representations, and the universality and generality of
them.

It needs to be recognized that it is not only the tradi-
tional expert system applications that one should be think-
ing of. There are potential applications of the new AI based
modeling tools, for example, in data mining, in informa-
tion refinement, and in modeling of unstructured systems.
In these fields, the actual logical form of the problem is
often simple, and the complexity is caused by the high di-
mensionality and low quality of the available data. In a
technical environment where the sensors differ very much
from our senses, a human simply cannot figure out how to
utilize the measurements optimally. Until now the scarcity

of experts has been one of the main problems in knowledge
engineering — in the future, there does not exist a single
human expert that would master the information in the
new increasingly complex environments. Hopefully, the AI
based modeling tools can take care of the information pre-
processing in a clever way.

Whether this is possible or not is crucially dependent of
the validity of the ontological assumptions that are made.
The questions of the essence of the observation data re-
main to be solved. It can only be demonstrated that the
hypothesis of the data structure that was presented here
seems to give interesting results in very differing branches
of engineering work (29).

If the natural mental machinery obeys the same prin-
ciples, or if the ontological assumption is correct and if
the human perception and reasoning mechanisms have
evolved to observe the environment in an optimal way, then
there should be a correspondence between the neural struc-
tures and the computational ones after adaptation (when
the input data is identical in both systems). In that case, it
does not matter what are the underlying mechanisms, and
it suffices to study phenomena on the systemic level. Men-
tal phenomena can be studied in the computer — maybe
AI in a stronger sense is possible, after all.
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